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Abstract—Synchrophasor estimation is typically performed
by means of spectral analysis based on the Discrete Fourier
Transform (DFT). Traditional DFT approaches, though, suffer
from several uncertainty contributions due to the stationarity
assumption, spectral leakage effects and the finite-grid resolution.
The present paper addresses these limitations, by proposing
a joint application of the Hilbert Transform (HT) and the
interpolated DFT (IpDFT) technique. Specifically, the HT enables
the suppression of the spectral leakage generated by the negative
image of the tones under analysis, whereas the IpDFT limits
the effects of spectrum granularity. In order to relax the
constraint in terms of measurement reporting latency, the
proposed estimator can adopt a window length of 40 ms and
yet provides a noticeable estimation accuracy with a worst-
case Total Vector Error and Frequency Error equal to 0.02%
and 4 mHz, respectively, in steady-state conditions. In this
context, the paper discusses the most suitable setting of the
algorithm parameters and their effect on spurious component
rejection. Moreover, a thorough metrological characterization
of the algorithm estimation accuracy and responsiveness with
respect to the IEEE Std. C37.118.1 is carried out in order to
detect the main uncertainty sources as well as possible room
for enhancement. Finally, a comparison with two consolidated
IpDFT approaches shows the actual performance enhancement
provided by the proposed algorithm.

Index Terms—Phasor Measurement Unit (PMU),
synchrophasor, Hilbert Transform, interpolated DFT, IEEE Std.
C37.118.1.

I. INTRODUCTION

Monitoring and automation of power grids are growing
in importance and the recent literature has discussed the
application of Phasor Measurement Units (PMUs) to provide
measurements of voltage and current phasors synchronized to
Universal Time Coordinates (UTC) [1], [2], as they guarantee
a promising trade-off between measurement accuracy and
latency [3], [4]. A generic PMU is expected to provide an
estimate of the fundamental amplitude, phase, frequency and
Rate Of Change Of Frequency (ROCOF) with a reporting
rate in the order of some tens of frames per second. In
this regard, the IEEE Std. C37.118.1 [5] and its recent
amendment [6], briefly IEEE Std, introduce two different
performance classes: class M is intended for monitoring
applications where high accuracy levels are required, whereas
class P is conceived for protection applications where high
responsiveness is recommended. As regards the performance
characterization, the estimation accuracy is quantified in terms
of Total Vector Error (TVE), Frequency Error (FE) and
ROCOF Error (RFE), whose limits vary as function of the
considered test conditions. The IEEE Std also introduces
a maximum measurement reporting latency, defined as the

maximum time interval between the measurement time-stamp,
and the time when the measurement becomes available at the
PMU output.

The stringent requirements in terms of accuracy have
pushed the development of highly-sophisticated algorithms for
synchrophasor estimation (SE), capable of rejecting spurious
contributions as well as accounting for fundamental dynamics
[7], [8]. In view of a PMU practical application, though,
also latency limits have to be taken into account [9]. In
particular, the IEEE Std requires the maximum latency not
to exceed two or five times the reporting period for class
P and M, respectively, i.e. not to exceed some tens of
milliseconds. To this end, any possible delay contribution has
to be minimized, starting from the computational complexity
of the adopted SE algorithm. In literature, most of the existing
approaches address synchrophasor estimation as a spectral
analysis problem [10]. Given a finite series of samples (i.e.
a signal window), the application of the Discrete Fourier
Transform (DFT) enables us to retrieve the information
associated to the fundamental component. However, traditional
DFT approaches suffer from several uncertainty contributions,
due to the stationarity assumption, the finite-grid resolution,
and spectral leakage effects [11]. In order to solve these
limitations, the recent literature has proposed several solutions,
ranging from interpolation techniques [8], [12], Taylor-series
expansions [13]-[16], and super-resolution approaches [17].
Nevertheless, the longer the window length and the higher
the computational complexity, the higher the group delay
introduced by the synchrophasor estimation process. Most of
current PMUs attempt to compensate for the increased group
delay by shifting the measurement time-stamps. However, this
solution produces a higher reporting latency that risks to affect
the performance of mission-critical PMU applications [18].

Typically, DFT-based algorithms adopt a minimum window
length equal to 60 ms, corresponding to three cycles at
the nominal system frequency (50 Hz). In fact, a shorter
window might result in a too scarce frequency resolution
and an intractable distortion level. In this regard, the main
contribution to estimation uncertainty is represented by the
interference due to the image of the fundamental component at
negative frequency. It should be noticed that this phenomenon,
ascribable to long-range spectral leakage, is inherent in the
definition of DFT of a real-valued signal [19].

In this context, the Hilbert Transform (HT) might represent
a promising and effective solution. Given the acquired
waveform, in ideal conditions the HT produces a complex-
valued signal, also known as the analytic signal, whose
spectrum consists only of positive frequency components.



In practical applications, we can largely mitigate the effects
of long-range spectral leakage that calls for dedicated and
complex algorithms [8], [12], [13], [20], and provide accurate
synchrophasor estimates even on reduced window lengths, up
to just two cycles at nominal system frequency, i.e. 40 ms
(corresponding to a frequency resolution of 25 Hz).

In more detail, the proposed algorithm consists of three
consecutive steps. First, we compute the analytic signal
associated to the acquired waveform by means of the HT.
Then, we apply a Hanning weighing function. Finally, we
adopt a three-point interpolation technique to estimate the
fundamental amplitude, frequency and initial phase. For
this reason, we identify the algorithm as HT-IpDFT, that
accounts for both leakage suppression and finite resolution
compensation.

It is worth noticing that the HT has been previously applied
to the analysis of power signals, because of the capability
to extract an instantaneous envelope of the signal under
analysis [21]. This peculiar property is typically employed,
in combination with singular value decomposition [22] or
wavelet transform [23], for a nearly real-time monitoring
of power quality indices. In [24], HT is applied to the
autocorrelation of the acquired power signal to design an
innovative P-class PMU for protection applications.

The paper is organized as follows. In Section II we introduce
the mathematical formulation of the HT, and discuss its
possible implementations. Section III describes the main stages
of the proposed HT-IpDFT algorithm and defines the criteria
for setting the parameters. In Section IV we thoroughly
characterize the estimation accuracy in all the static and
dynamic test conditions indicated by the IEEE Std with
specific reference to the compliance requirements for both
class P and M. Section V compares the proposed algorithm
with two other IpDFT-based solutions, that attempt to mitigate
long-range spectral leakage. Finally, in Section VI we provide
some closing remarks.

II. HILBERT TRANSFORM

We consider a time-variant noise-less power signal affected
by disturbances, modeled as follows:

z(t) = A(1 +a(t)) - cos(2mft + @o + £, (1)) +n(t) (1)

where A, f and g are the amplitude, frequency and initial
phase of the fundamental component, respectively!. The time-
varying terms € 4(t) and £,(t) represent amplitude and phase
fluctuations, whereas 7)(¢) accounts for possible sources of
spurious contributions, e.g. DC, harmonic or inter-harmonic
components and, in general, any transient event. It is worth
observing that, based on (1), it is possible to reproduce any
test condition provided by the IEEE Std (see Section IV).

In the context of PMU-based applications, we typically
acquire a discrete time-series of samples, defined as follows:

z[n] = {z{)+pt) | t=nTs,n=1I1,...N,] €N} (2)

Unless otherwise indicated, we consider a power system scenario within
the synchronous grid of Continental Europe, where the nominal values of A,
f and g are equal to 1 pu, 50 Hz and 0 rad, respectively.

where N,, is the number of samples that compose the
considered window z[n], and p(t) accounts for wide-band
disturbances (e.g additive uncorrelated noise). For the sake
of simplicity, we assume a uniform sampling rate Fy = T, 1.

Given z[n], synchrophasor estimation algorithms attempt to
retrieve the instantaneous value of A, g, f, and ROCOF with
a given reporting rate F..

The HT #(-) is defined as a convolution operator with the

function 1/7t:
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It should be noticed that the integrand function presents a
singularity in 7 = ¢, thus (3) does not yield a closed-form
solution. In this regard, an approximation can be obtained by
applying the Cauchy Principal Value method as follows [25]:
1 t—e +()O
Hlz(t)] = — lim / ﬂdT—i—/ MdT 4)
Te—0t |J_o T—T the t—T
In this way, it is possible to define the HT of some basic and
frequently employed functions [26], e.g. H[cos(t)] = sin(t).
In addition to the convolution operator formulation, the

HT can be also interpreted as a linear phase-shift filter,
characterized by a frequency response H (-) defined as follows:

H(w) = —j-sgn(w) &)

where w and j represent the considered angular frequency
and the imaginary unit, respectively. Accordingly, the HT
filter exhibits a Hermitian symmetric trend with respect to the
DC frequency, i.e. it keeps unaltered the spectral component
magnitudes, while producing a phase shift equal to —sgn(w) -
/2.

In this context, let us introduce the analytic signal Z(t):

#(t) = 2(t) +j Ha()] =2(0) + ] 7(t)  ©)

defined as a complex-valued quantity, with the original signal
and the HT filter output as real and imaginary component,
respectively. From (5) and (6), we observe that the spectral
representation of the analytic signal does not consist of
negative frequency components, but only of (doubled) positive
frequency components. It is thus reasonable to expect that
the DFT of the analytic signal is less affected by long-range
spectral leakage effects.

It should be noticed that the removal of the negative
frequency components does not correspond to a loss or
alteration of the original information content. From a
mathematical point of view, the analytic signal can be
considered as a generalization of the concept of phasor
representation. Given a phasor model, we are able to provide
an instantaneous estimate of the signal amplitude, frequency
and phase, under the assumption that such quantities are time-
invariant. The analytic signal, instead, allows for tracking the
time-variations of the signal parameters [27].

In this context, Fig. 1(a) compares the DFT representations
of three different signals: a real-valued cosine signal x(¢), the
corresponding analytic signal Z(t), and a DFT pure tone w(t)
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Fig. 1. In (a), DFT of a real-valued cosine signal (blue, squares), the analytic
signal obtained by its HT (red, circles), and the ideal spectral representation
(black, crosses). In (b), discrepancy between real-valued and analytic signal
with respect to ideal spectral representation (only positive frequency).

(usually referred to as DFT kernel) with the same amplitude,
frequency and initial phase:
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More precisely, the signal under investigation is characterized
by A, f and ¢g equal to 1 pu, 52.5 Hz and O rad,
respectively, while the sampling rate is 50 kHz. In this case,
the window length consists of three nominal cycles, i.e. 60
ms, corresponding to a frequency resolution of 16.67 Hz.
This window length has been selected in order to enhance the
graphical representation of spectral leakage effects, but similar
results hold for any window length. For the sake of a clearer
comparison, both the analytic and pure tone signals have been
halved, therefore the DFT peak values coincide.

Due to incoherent sampling, all the spectral representations
are affected by spectral leakage. Nevertheless, it is interesting
to observe how the analytic signal presents only the lobe
associated to the positive frequency component. In this regard,
Fig. 1(b) presents the point-wise deviation of real-valued and
analytic signal DFTs with respect to the complex exponential
reference. It should be noticed that the suppression of the
negative frequency component is nearly perfect: the remainder
spurious contribution is in the order of some parts per million,
probably due to the limited spectral resolution given by the
finite number of samples employed in this example. Based
on this property, it is reasonable to expect that DFT-based
algorithms might provide accurate estimates also on restricted
window lengths, i.e shorter than 60 ms.

As aforementioned, though, the HT computation represents
an open issue. Indeed, we cannot know in advance the exact
signal model, thus an approximation of the HT should rely
exclusively on the acquired time-series x[n]. In this context,
two are the possible solutions. On one side, the frequency-
based methods apply a weighing function to the signal DFT,
to approximate (5), and retrieve the analytic signal through

the inverse DFT [28], [29]. Such methods can be easily
implemented, but are affected by the typical DFT limitations,
e.g. stationarity constraint and truncation effects. In this regard,
it is worth observing that the DFT relies on a static signal
model, that does not comply with time-varying test conditions
[30]. For this reason, in the presence of dynamic trends, it is
reasonable to expect that the signal DFT accounts only for
an average representation of the parameter variations. On the
other side, the time-based methods approximate (5) by means
of a cascade of Infinite Impulse Response (IIR) filters [31].
These methods can operate in nearly real-time conditions, even
if that requires an accurate characterization and compensation
of filter contributions in terms of magnitude gain and phase
delay. Moreover, the employment of digital filters does not
require the computation of both direct and inverse DFT, and
better preserves the original signal dynamics [32]. For this
reason, in the present paper we propose a time-based method
that employs two different filter banks, whose implementation
details are provided in the next section.

III. ALGORITHM DESCRIPTION

In this section, we describe the main steps of the
proposed HT-IpDFT algorithm and discuss the theoretical and
experimental criteria that condition the choice of parameter
values.

The block scheme in Fig. 2 identifies the algorithm data-
flow, organized in two sequential stages committed to filtering
and estimation operations, respectively.

In the first stage, the acquired signal passes through a bank
of two parallel HT filters, characterized by high reconstruction
accuracy and responsiveness, respectively. An Event Detection
Block determines which filter output has to be propagated
to the following stage. If a transient event is detected, the
best option is represented by the Fast HT Filter, capable
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Fig. 2. Block scheme of the proposed HT-IpDFT algorithm.



of promptly responding to rapid variations. Otherwise, the
Accurate HT Filter is preferable, because of its reduced
distortion effect.

In the second stage, we apply a Hanning Window to
the selected HT filter output and employ a Three-Point
Interpolated DFT (3p-IpDFT) algorithm to estimate the
amplitude, frequency and initial phase of the fundamental
component. Based on this preliminary estimate, we subtract
the fundamental component contribution and we verify
whether the resulting spectrum still contains spurious narrow-
band components. To this end, we apply an Energy
Thresholding Process to the DFT bins in a restricted
bandwidth, i.e. [0, 150] Hz. If the energy content is larger than
the expected noise level, an iterative compensation routine is
triggered. Otherwise, the obtained estimates are validated as
the final HT-IpDFT outcomes.

In the following paragraphs, we will briefly describe the
implementation details of each stage and define the criteria
for the parameters’ setting.

a) Filtering stage: In order to meet the IEEE
Std stringent requirements in terms of accuracy and
responsiveness, we design and implement in Matlab R2018a
two different filters that approximate the HT properties. Both
rely on a two-stage cascade of IIR filters, whose parameters
and performance indices are reported in Table I where a
sampling frequency of 50 kHz is assumed. It should be
noticed that the IIR implementation allows to approximate
the ideal HT frequency response with a sufficiently restrained
computational complexity. The main disadvantage of IIR filters
is typically represented by their non-linear phase response.
Nevertheless, the present analysis focuses on a restricted
bandwidth, i.e [10, 150] Hz, where the filter response can
be reasonably considered as almost linear and thus can be
properly compensated. Once characterized the filter response
as function of frequency, it is possible to determine the
amplitude and phase correction based on the estimated value
of the fundamental frequency.

In this context, it should be noticed that the solution
proposed in the present paper allows for an effective mitigation
of long-range spectral leakage effects. Nevertheless, the PMU
developer can choose among many other implementation
alternatives based on the adopted hardware platform and
processing capabilities. In this context, the main objective
consists only in obtaining the most suitable approximation of
the frequency response given in (5).

As regards the filter design, we set the same transition width
of 50 Hz, thus guaranteeing a flat pass-band response within
the range [25, 75] Hz, that corresponds to the pass-bandwidth
of a PMU that assumes a nominal fundamental frequency of
50 Hz and a reporting rate of 50 fps. In the design process,
we aim at minimizing the pass-band ripple and the power
density of the round-off noise, in order not to introduce further
uncertainty sources in the acquired waveforms. To this end, we
design two different filters, whose order is set equal to 61 and
21, for the accurate and fast solution, respectively.

In order to evaluate the filter performance, we consider
four different aspects: the pass-band ripple, the group delay,
the power spectral density of the round-off noise, and the

TABLE I
HT FILTER PARAMETERS

Parameter \ Accurate Fast

filter order 61 21

stages number 2 2
transition width [Hz] 50 50

pass-band ripple [dB] 8.37-10-10  8.86.10—6

group delay [ms] at 50 Hz 4.6 5.7
round-off noise [dB/Hz] at 50 Hz -89.3 -99.8
multipliers number 32 12

adders number 61 21

states number 65 25

computational complexity. The pass-band ripple accounts for
the deviation from unity gain in the filter pass-bandwidth. In
this regard, the accurate solution is characterized by a ripple
lower than 8.5-1071% dB, whereas the fast solution provides a
ripple in the order of 8.9-10~% dB. The group delay, instead,
quantifies the time delay between the input and output of
the filter cascade. Since IIR filters are characterized by group
delays varying with the frequency of the test signal, in Table
I we report the value related to the nominal fundamental
frequency, 50 Hz. In particular, we measure a group delay
of 4.6 and 5.7 ms for accurate and fast solution, respectively.

The round-off noise is produced by the quantization and
truncation error within the filter cascade, due to the finite
precision arithmetic. In line with the group delay analysis,
we focus on the noise power within the bandwidth of interest.
In particular, at 50 Hz the accurate solution is characterized
by a noise power spectral density in the order of -90 dB/Hz.
Thanks to the reduced number of coefficients, the fast solution
guarantees an even lower noise power, around -100 dB/Hz.
Finally, we evaluate the computational complexity of the
designed filters. In particular, we determine the number of
multipliers, adders and filter internal states, necessary to
implement the filter cascades. In this context, the accurate
solution proves to be more demanding than the fast solution.
In fact, the more precise approximation of the peculiar HT
frequency response is achieved at the price of higher number
of states and operations.

Fig. 3(a) represents the magnitude and phase response of
the Accurate HT Filter over the entire acquisition bandwidth.
It is worth observing that the magnitude response (blue line)
is nearly equal to O dB for the positive frequency components,
whereas it decreases from -60 up to -140 dB in the negative
frequency domain. In accordance with (5), the phase response
(red line) produces a shift of 7/2 for the negative frequency
components and -7/2 for the positive frequency ones. In this
way, it is reasonable to expect that a significant rejection of
the long-range interference can be achieved.

A detailed view of the trend over the PMU pass-bandwidth
[25, 75] Hz is provided in Fig. 3(b). Both magnitude and phase
response are not equal to their ideal values, i.e. 0 dB and
-m/2, respectively. Nevertheless they exhibit a nearly linear
trend that can be easily compensated, once the frequency of
the fundamental component has been estimated. Similar trends
can be obtained on varying the filter order (e.g. from 61 to 21)
or the sampling rate (e.g. from 50 to 10 kHz). Once designed



the filter frequency response, we model the magnitude gain
and phase delay within the range of interest [10, 150] Hz by
means of a smoothing spline approximation. In this regard, the
goodness of fit is guaranteed by the fact that the models present
a coefficient of determination 72 equal to 1, and the square
root of the variance of the residuals is equal to 2.31-10~* and
8.82:1076 for the accurate and fast solution, respectively.

The selection between Accurate and Fast HT Filter outputs
is carried out by an Event Detection Block that relies on a
simple feedback operation. First, we process the input signal
through a Butterworth third-order low-pass filter. We set the
cut-off frequency equal to 3 kHz, in order to include within
the filter pass-bandwidth any harmonic term up to 50 order.
As shown in Fig. 4(a), the stop-band is characterized by an
attenuation of -20 dB. Then, we compute the discrepancy, i.e.
the point-wise difference, between the original and filtered
version of the input signal: if it exceeds the expected level
of variability (due to measurement noise and filter distortion)
a transient event is detected.

In order to define the threshold level, we carry out a heuristic
procedure and we evaluate the distribution of the discrepancy
values in the test conditions indicated by the IEEE Std with a
test duration of 5 s, a sampling frequency of 10 kHz, and
a signal-to-noise ratio of 60 dB. In this regard, it should
be noticed that we consider the most challenging among the
considered scenarios, as it is characterized by the highest noise
level and the poorest time resolution. As it can be seen in Fig.
4(b), in the presence of amplitude and phase steps (AS and PS,
respectively) the discrepancy presents some outliers that can
be used to detect the occurrence of a step change with a delay
of less than 10 samples. In the presence of abrupt variations
(e.g., an amplitude step change), the filter output presents a
slower transition, due to the finite impulse response and the
limited pass-bandwidth. As a consequence, the discrepancy
value is expected to exceed its typical variability depending
on the test signal characteristics, the SNR and the sampling
frequency. Based on this analysis, the event detection threshold
(black dashed line) is set equal to 17.5-10~3 pu, larger than the
maximum discrepancy obtained during high-order harmonic
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Fig. 3. Frequency response of the Accurate HT Filter for a sampling rate of
50 kHz, over the acquisition (a) and the PMU pass-bandwidth (b).

distortion (HD-2500), but lower than the outliers produced by
amplitude and phase step. Due to its non-linear dependence
by the test conditions, the event detection process might be
improperly triggered in the presence of high-order harmonic
tones. Nevertheless, the presence of a single harmonic tone
whose amplitude and frequency are equal to 0.1 pu and
2500 Hz is rather unrealistic in practice, as it would imply
a carryover of 10% of the signal energy at high frequency.
Furthermore, it is worth noticing that this kind of interference
does not produce significant distortion effects on the DFT bins
interested by the interpolation process. Therefore, even in case
of erroneous detection, also the Fast HT filter guarantees a
sufficient level of estimation accuracy (as shown by TVE and
FE results in Sec. IV.c).

b) Estimation stage: Once computed the analytic signal
Z(t), we estimate the fundamental amplitude, frequency and
initial phase through an approach based on the IpDFT.

This technique enables us to mitigate the detrimental
effects of spectral finite resolution by interpolating the highest
amplitude DFT bins of the signal spectrum [19], as well as to
reduce the effects of spectral leakage thanks to the application
of bell-shaped windowing functions [11].

In the present case, we adopt the following configuration:

« Hanning window function, for the good trade-off between
the main-lobe width and side-lobe levels [33];

« three-point interpolation, as the multiple-point schemes
inherently reduce long-term spectral leakage effects [34].

By considering the analytic signal Z(¢), we would expect
to deal with spectra containing the positive frequency
components only. In the absence of spurious interfering
components, the long-term spectral leakage should be
almost negligible. However, since the HT filter is only
an approximation of the ideal transform, residual distortion
contribution might still be present, and should be suitably
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mitigated, in particular when a two-cycle window length is
employed.

As any other IpDFT-based approach, also the HT-IpDFT
is affected by two accuracy issues. On one side, it relies on
a static signal model, i.e. amplitude, frequency and phase are
assumed to be time-invariant within the considered observation
window. On the other side, the interpolation technique does
not account for distortion contributions coming from spurious
components (either harmonic or inter-harmonic).

As regards the static signal model, it is worth pointing
out that this assumption does not hold in practical operating
conditions, when several dynamic trends might affect the
signal parameters. In this context, it is necessary to make
specific distinctions. If a transient event (e.g. a step change
of amplitude or phase) occurs, the signal energy content is
spread over the entire spectrum and cannot be analyzed by
canonical spectral analysis methods characterized by finite
frequency resolution, as further discussed in Sec. I'V.c. Instead,
if the signal is affected by a modulation or linear variation,
the observed dynamic is typically limited (e.g. the IEEE Std
considers a maximum modulation frequency of 5 Hz). In
this sense, a shorter window length allows for reducing the
discrepancy between signal model and acquired waveform, and
thus reducing the estimation errors.

In terms of rejection of spurious contributions, instead, the
IpDFT produces inaccurate and unreliable results in presence
of interfering components that are relatively close to the
main one, such those defined in the IEEE Std Out of band
interference (OOBI) test. To this end, an iterative routine
has been developed to identify the interfering component
parameters and suitably compensate their contribution in the
DFT bins associated to the fundamental component [§].

First, we approximate the spectral trend of the positive
frequency component associated to the estimates A*, f*
and g, and subtract it from the original DFT bins to
produce a spectrum that accounts for any remainder spurious
contribution. Then, we compute the ratio between the residual
and original spectrum energy F, and compare it with
a threshold level, defined on the basis of the expected
uncertainty level due to measurement noise and algorithm
accuracy. If the threshold is exceeded, a peak search identifies
the plausible bin associated to the interfering component and
a new three-point interpolation is performed. Once identified
the spurious component parameters, they are subtracted from
the original DFT bins and a new fundamental estimation is
performed.

In order to guarantee feasibility and efficiency, we introduce
two stop criteria. More precisely, the routine stops when the
incremental ratio between two consecutive values of FE,. is
negligible, i.e. lower than 10710, or when the iteration number
exceeds the maximum limit () equal to 100.

In the present case, we apply this compensation routine only
to inter-harmonic and harmonic components whose frequency
does not exceed 150 Hz. In fact, higher-frequency components
do not produce significant distortion effects within the DFT
bins associated to the fundamental component. Therefore, the
energy computation and thresholding process can be restricted
to a set of bins, whose cardinality K depends on the adopted
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Fig. 5. Iterative Compensation Routine: boxplot representation of the energy
ratio value in different IEEE Std tests with respect to selected threshold level
with window length equal to two (a) and three cycles (b).

window length, i.e. 5 and 8 bins for 40 and 60 ms, respectively.

In order to define the most suitable detection threshold, we
carry out a heuristic procedure to determine the distribution
of E, in the test conditions indicated by the IEEE Std,
with a sampling frequency of 10 kHz and a signal-to-
noise ratio (SNR) of 60 dB. As stated before for the event
detection threshold, this particular condition represents the
most challenging scenario among the ones reproduced in this
analysis. In this regard, Fig. 5 shows the box-plot associated to
the different test conditions for window length equal to 40 and
60 ms, respectively. For this analysis, interfering component
amplitudes are set equal to 0.1 pu, i.e. the maximum value
required by the IEEE Std.

It is interesting to observe that the threshold value is nearly
coincident in the considered two cases (0.11% for two-cycles,
0.15% for three-cycles) and enables us to discriminate between
the presence of spurious components with frequency lower
than 150 Hz, whereas higher-order harmonics (HD-OTH) or
dynamic test conditions do not trigger the iterative routine.

In both the configurations, the OOBI test is characterized
by a significantly large variability, due to the wide range of
frequencies interested by the interfering tones, i.e. [10, 25]
Hz and [75, 95] Hz. As regards the third-order harmonic, it is
worth noticing that it exceeds the threshold only in two-cycle
configuration. In this case, the reduced frequency resolution
and the Hanning windowing produce the tails of the harmonic
component to interfere with the tails of the fundamental
one. In the tree-cycle configuration, instead, the enhanced
frequency resolution guarantees a complete separation between
the two spectral contributions, as confirmed by the energy
ratio distribution that coincides with the one produced by the



higher-order harmonic components. The energy ratio might
assume high values (close to the detection threshold) also in
the presence of transient events, like amplitude and phase step
changes. Nevertheless, in this case, the Event Detection block
is triggered and the compensation routine is not activated.

c) Computational complexity: In order to assess the
practicality of a future integration of HT-IpDFT into an
embedded hardware solution, we evaluate the computational
complexity of the proposed algorithm with respect to
the Matlab implementation employed for the following
simulations and characterization. In this context, Table II
summarizes the number of arithmetic operations required to
produce each step of the HT-IpDFT, in case the energy ratio
threshold for the iterative compensation is exceeded or not.

Taking as reference a Field Programmable Gate Array
(FPGA)-based device, we discriminate between simple (like
additions, multiplications) and complex operations (like
exponential, trigonometric operators), as well as function calls
(like the call of a sub-routine or an algorithm).

In Table II, the operation count is parametrized with respect
to the number of considered DFT bins K, and the iteration
number Q. The first parameter K depends on the window
length: two- and three-cycle configurations correspond to 5
and 8, respectively. The second parameter Q is upper limited
to 100, but its actual value depends on the amplitude and
frequency of the interfering tone. For instance, if we consider
a three-cycle window, the HT-IpDFT, inclusive of the OOBI
compensation routine, requires 233+223-Q simple operations,
and 32+14-Q complex operations.

As terms of comparison, we consider the computational
complexity of the e-IpDFT [12] and i-IpDFT [8] algorithms,
that implement similar leakage compensation routines. In
particular, the e-IpDFT algorithm applies a routine to
mitigate the long-range spectral leakage due to the image
of the fundamental component at the negative frequency,
but is affected by a significant performance deterioration in
the presence of interfering terms. Conversely, the i-IpDFT
attempts to compensate also the short-range spectral leakage
caused by harmonic or inter-harmonic components.

For this analysis, we consider a three-cycle window
and a Hanning weighing function. In this context, the e-
IpDFT requires just 186 simple operations and 105 complex
operations. The i-IpDFT, instead, requires 1151+2174-Q
simple operations, and 713+1426-Q complex operations,
where the iteration number Q is upper limited to 28. If we
consider the maximum iteration number, we obtain a worst-
case scenario where the number of simple operations is 23533
for HT-IpDFT and 62023 for i-IpDFT, and the number of
complex operations is 1432 for HT-IpDFT and 40641 for
i-IpDFT. It is thus reasonable to say that the HT-IpDFT is
characterized by a noticeable estimation accuracy as well as
a limited computational complexity thanks to the possibility
of neglecting half of the signal spectrum (i.e. its negative
frequency components).

IV. PERFORMANCE CHARACTERIZATION

In this section, we thoroughly characterize the estimation
accuracy of the HT-IpDFT algorithm in terms of TVE and FE.

TABLE 11
HT-IPDFT COMPUTATIONAL COMPLEXITY

Parameter Value
Q <100
5 (2 cyc.)
K 8 (3 cyc.)
+| = Ix  :l|exp|sin|L funct
(A) Dirichlet kernel 10 8
(B) Hanning window 7 0 3 x (A)
(C) Image compensation 5 1 K x (B)
(D) 3p-IpDFT 20 6
(E) 3p-IpDFT (+ comp) 21 6
HT-IpDFT (single tone) 3K+4 0 ©) + (D)
2Q+2) x (C) +
HT-IpDFT (OOBI com.) 3K +7 0 (Q+1) x (D) +

Q x (B)

As suggested by the signal processing models in the IEEE Std
Annex C, the HT-IpDFT computes ROCOF as the incremental
ratio between two consecutive frequency estimates [5].

For this analysis, we reproduce in Matlab both the static and
dynamic test conditions dictated by the IEEE Std. For each
test condition, we compare the estimation accuracy with the
most stringent and challenging requirements (independently
from the performance class M or P). In this way, we aim at
proving that the HT-IpDFT is suitable for both monitoring and
protection applications.

To this end, we consider four different configurations of HT-
IpDFT. On one side, we adopt two different window lengths,
i.e. [40, 60] ms, corresponding to two and three cycles of the
nominal system frequency, respectively. On the other side, we
vary the sampling rate F within [10, 50] kHz, that represent
typical values in current commercial PMUs.

For each test condition, we reproduce a signal waveform
x[n] with an overall duration of 5 s (except for the modulation
and frequency ramp tests where the duration can be increased
up to 20 s). In order to approximate a more realistic operating
scenario, we simulate the measurement uncertainty by means
of an additive white Gaussian noise component. In particular,
we consider two different signal-to-noise ratios (SNRs) equal
to 80 and 60 dB, corresponding to an equivalent resolution of
13 and 10 bits, respectively.

Unless otherwise specified, the reporting rate F;. is set equal
to 50 fps, even if it can be increased up to the value of Fj
(e.g. during the interleaved analysis in Section IV.c). As a
result, each test produces a time-series of TVEs, FEs and
RFEs, defined according to the IEEE Std specifications as:
RFE = or _of ®)

Hﬁ I)”2 R
’ ’ 8]’; at

Hp||2

where p and f represent the synchrophasor and frequency
associated to the fundamental component, respectively, and the
hat denotes the estimated values with respect to the reference
true values. For each performance index, we determine the
maximum error value and compare it with the corresponding
requirement of class M and P.



In the following, the test results are presented in two ways.
For each group of tests, a Table reports the maximum TVE
and FE provided by each HT-IpDFT configuration as function
of the test condition?. For the sake of conciseness, instead,
the figures are limited to the configurations with F and
SNR equal to 50 kHz and 80 dB, respectively. This choice
is motivated by the fact that similar values of sampling
rate and resolution can be reasonably achieved by modern
technology of embedded controllers and voltage and current
sensors respectively.

a) Static Tests: In accordance with the IEEE Std
specifications, the static tests are intended to assess the
algorithm estimation accuracy in steady-state conditions. In
this context, Table III reports the results of HT-IpDFT for all
the static tests.

The first test, known as Signal frequency range, considers
a signal model defined as follows:

z(t) = A-cos(2m ft + o) 9)

where A and g are fixed to their nominal values, whereas
f varies within [45, 55] Hz with an incremental step of 1
Hz. Since the fundamental frequency is not synchronized with
the sampling rate, this test enables us to characterize also the
estimation accuracy as function of the initial phase.

As reported in Table III, it is reasonable to say that in terms
of TVE the main uncertainty source is represented by the
additive noise rather than the window length. In the worst-case,
TVE does not exceed 0.025%, i.e. it is negligible if compared
with the IEEE Std limit equal to 1%. As regards FE, instead, it
is worth observing that the window length significantly affects
the estimation accuracy: passing from two to three cycles, the
error is nearly halved. Nevertheless, the worst-case FE keeps
strictly lower than the IEEE Std limit of 5 mHz.

Also, similar results are obtained with a sampling frequency
of 10 or 50 kHz. Indeed, by increasing the sampling frequency,
we are able to mitigate the effect of additive white Gaussian
noise, and thus produce a significant error reduction in all the
considered configurations. In the worst-case, TVE and FE do
not exceed 0.015% and 2 mHz, respectively. In this regard, Fig.
6 shows how a three-cycles window guarantees more accurate
frequency estimates, whilst it does not provide a comparable
enhancement in terms of TVE.

In terms of RFE, the two- and three-cycle configuration
provide a maximum error of 3.6 and 1.7 mHz/s, respectively,
largely within the limit 100 mHz/s introduced in the last
amendment of the IEEE Std [6].

In the Harmonic distortion test, we use the signal model:

z(t) =
nt) =

where the fundamental component is characterized by nominal
amplitude, frequency and initial phase, whereas the harmonic

A - cos(2mft + po) + n(t)

Ap, - cos(2mh ft + ©p) (10)

ZFor the sake of brevity, the maximum RFE is not included in the tables,
but is thoroughly discussed throughout the text.

31t should be noticed that the IEEE Std requires a similar characterization as
function of the signal amplitude. In a simulation context, though, the vertical
resolution is independent from A. Nevertheless, the simulation of different
SNRs enables us to partially explore also this aspect.
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Fig. 6. Signal frequency range test: worst-case TVE (a) and FE (b) as function
of signal fundamental frequency, with 2 (blue) and 3 cycles (green) window.
The solid and dashed red lines represent the performance requirements for
M- and P-class, respectively.

distortion is produced by a single component whose amplitude
Ay, correspond to Total Harmonic Distortion (THD) level of
either 1 or 10%. For this analysis, we vary the harmonic order
h from 2 to 50. For the sake of generality, we also vary the
harmonic initial phase within [0, 7] rad, with an incremental
step of 7/10. In this way, we can evaluate also the effect of
phase displacement between the harmonic and the fundamental
component.

According to the IEEE Std, TVE and FE limits are equal
to 1% and 5 mHz, respectively. The worst-case TVE proves
to be independent from the sampling rate, and satisfies the
performance requirement in all the considered configurations,
not exceeding a maximum value of 0.195%.

Conversely, the worst-case FE varies significantly as
function of the distortion level. Given a THD equal to 10%, the
frequency error keeps lower than 4 mHz. However, limiting
the distortion level to 1%, the worst-case FE becomes larger
than 80 mHz for a two-cycle window length. In this case,
the frequency resolution is too scarce to suitably identify
an interfering component with reduced amplitude. As a
consequence, the iterative compensation routine might not be
successful, and the resulting frequency estimates are gravely
distorted. In fact, uncompensated distortion represents one of
the main uncertainty sources for any DFT-based synchrophasor
estimation algorithm [34], [35].

This effect is noticeable in Fig. 7. The three-cycles
configuration is characterized by nearly stable performance
TVE and FE around 0.001% and 0.13 mHz, respectively,
whereas the two-cycle configuration exhibits a significant
accuracy deterioration as the harmonic frequency is lower than
200 Hz.

As regards RFE, the IEEE Std defines a limit of 400 mHz/s.
If the THD is set equal to 10%, the worst-case performance
is 169 and 137 mHz/s for two- and three-cycle configuration,
respectively. If the THD is set equal to 1%, instead, the HT-
IpDFT produces a maximum RFE of 216 and 86 mHz/s for
two- and three-cycle configuration, respectively.



TABLE III

MAXIMUM TVE AND FE IN STATIC TESTS

TVE [%] FE [mHz]
Class HT-IpDFT Class HT-IpDFT
Fs = 10 kHz Fs = 50 kHz Fs = 10 kHz Fs = 50 kHz
P M 2 cycles 3 cycles 2 cycles 3 cycles P M  2cycles 3 cycles 2 cycles 3 cycles
SNR [dB] 60 80 60 80 60 80 60 80 60 8 60 8 60 8 60 80
Sign Freq 1 1 002 0003 002 0002 0.01 0.001 0.01 0.001 5 5 406 045 274 026 197 0.17 1.04 0.10
Harm Dist (1%) 1 1 016 0.154 0.11 0.090 0.19 0.187 0.01 0.001 5 25 865 834 217 0.19 847 834 1.03 0.13
Harm Dist (10%) 1 1 010 0.09 0.11 0.090 0.01 0.007 0.01 0.001 5 25 390 050 1.68 0.17 260 036 1.07 0.13
OOBI (47.5 Hz) - 1.3 0.1 0091 0.11 0.087 0.03 0.025 0.01 0.008 - 10 823 290 255 039 578 528 125 095
OOBI (50 Hz) - 13 0.2 0.092 0.11 0.091 0.02 0.020 0.01 0.007 - 10 796 134 3.19 032 6.10 499 137 0.88
OOBI (52.5 Hz) - 13 019 0.165 0.19 0.163 0.05 0.022 0.02 0.009 - 10 824 334 390 039 6.08 5.13 141 1.03
T Rovdes 3 cycles M clpss IEEE Std — = P class IEEE St test, the three-cycle configuration guarantees a significant
10 ! performance enhancement, due to the fact that a larger
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Fig. 7. Harmonic distortion test (THD = 10%): worst-case TVE (a) and FE
(b) as function of harmonic component frequency, with 2 (blue) and 3 cycles
(green) window. The solid and dashed red lines represent the performance
requirements for M- and P-class, respectively.

The Out-of-band interference test relies on the signal model:

a(t)
n(t) an

where the interfering component has an amplitude A;,
corresponding to a Total Inter-Harmonic Distortion (TIHD)
of 10%, and its frequency varies within [10, 25] or [75, 95]
Hz. In this regard, we consider an incremental step of 5 Hz,
in line with the definition of inter-harmonic group [36], [37].

For this analysis, the fundamental amplitude and initial
phase are fixed to 1 pu and O rad, respectively, whereas
the fundamental frequency varies within [47.5, 50, 52.5]
Hz. In this way, it is possible to evaluate how different
frequency deviations and phase-shifts between fundamental
and interfering components affect the algorithm estimation
accuracy.

It is interesting to observe that, for this test, the IEEE Std
does not introduce requirements for class P. The compliance
to class M, instead, requires TVE and FE not to exceed
1.3% and 10 mHz, respectively. In this regard, the results
reported in Table III prove that HT-IpDFT is compliant
with the IEEE Std requirements in terms of both TVE and
FE in all the considered configurations. As in the previous

A - cos(2mft + o) + n(t)
Ain - cos(2m fint + @in)

reduced short-range interference, and thus a better capability
of compensating the spurious tones.
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Fig. 8. Out-of-band interference test (TIHD = 10%, f = 52.5 Hz): worst-
case TVE (a) and FE (b) as function of inter-harmonic component frequency,
with 2 (blue) and 3 cycles (green) window. The solid and dashed red lines
represent the performance requirements for class M and P, respectively.

In this context, Fig. 8 presents the worst-case TVEs and FEs
as function of the inter-harmonic frequency, obtained with a
fundamental frequency of 52.5 Hz.

If f;n is lower than 15 Hz, the frequency resolution of

the two-cycle configuration does not allow for discriminating
between DC and inter-harmonic contributions. As a
consequence, the iterative compensation routine is non-
optimal and produces a TVE and FE equal to 0.02% and 7
mHz, in the worst-case.
Within [15, 25] Hz, the two- and three-cycle configurations
provide comparable results: TVE and FE do not exceed
0.05% and 1 mHz, respectively. Finally, if f;, varies within
[75, 95] Hz, the three-cycle configuration guarantees a
performance enhancement by almost one order of magnitude,
with a maximum TVE of 0.004% and a FE lower than 0.2
mHz.

Based on the obtained results, the efficiency of the
interference compensation routine cannot be totally guaranteed



if we consider a window length of just two cycles. In
this regard, it should be remembered that the DFT-based
spectral analysis has a resolution limit that depends on
the adopted window length and weighing function [11]. In
the present case, the Hanning weighing function requires a
distance of at least two bins to distinguish the interfering tone
from the fundamental component. Since in both Harmonic
distortion and Out-of-band interference tests this constraint
is not satisfied, the compensation routine produces only an
approximation of the interfering tone parameters.

The interference compensation routine is characterized by
two stop criterion. The first one is related to the residual energy
ratio F,., whereas the second one sets a maximum number
of 100 iterations. In order to prove the effectiveness of the
selected criteria, Fig. 9 represents FE and [E, as function of
the iteration number Q in two significant cases of the Out-of-
Band Interference test, with a two-cycle window.
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Fig. 9. Frequency Error and Energy ratio as function of the iteration number
Q of the OOBI compensation routine in two-cycle configuration. In (a), we
consider f = 52.5 Hz and f;; = 75 Hz; in (b), f = 50 Hz, f;;, = 10 Hz.

The upper graph (a) considers one of the worst-cases, where

f and fi, are set equal to 52.5 and 75 Hz, respectively.
As a consequence, the distance between fundamental and
inter-harmonic component is less than a single bin on the
considered frequency axis. In this challenging scenario, FE
and E, decades monotonically but slowly: 72 iterations are
necessary to obtain a FE compliant with M-class requirement.
In the lower graph (b), instead, we set the fundamental and
inter-harmonic frequency equal to 50 and 10 Hz, respectively.
Since the deviation between f and f;, is relevant, it is
reasonable to expect that the interference effect is reduced. In
fact, FE achieves the compliance with the IEEE Std limit after
just four iterations. In a similar way, the residual energy E,.
rapidly decreases and becomes constant just after 7 iterations.
This example proves how the double stop -criterion
represents an optimal trade-off between computational
efficiency and estimation accuracy. In most the cases, the
residual energy determines the end of the compensation
routine. Only in the most challenging cases, a high number
of iterations is required to achieve the IEEE Std compliance.
b) Dynamic Tests: After assessing the steady-state
compliance, the dynamic tests enable us to investigate the

M class IEEE Std = = P class IEEE Std
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Fig. 10. Amplitude modulation test (depth 10%): worst-case TVE (a) and
FE (b) as function of modulation frequency, with 2 (blue) and 3 cycles
(green) window. The solid and dashed red lines represent the performance
requirements for M- and P-class, respectively.

estimation accuracy in the presence of time-varying test
conditions. In this context, Table IV reports the results of HT-
IpDFT.

The Amplitude modulation test relies on the signal model:

z(t) = A-(1+e4(t)) - cos(2mft+ ¢o)
ea(t) = k- cos(2mfpt)

where the fundamental amplitude, frequency and initial phase
are fixed to their nominal values, whereas k,, and f,, account
for modulation depth and frequency, respectively. In particular,
we set k,, equal to 0.1, and we vary f,,, within [0.1, 5] Hz.

In this context, the IEEE Std requires TVE and FE not to
exceed 3% and 60 mHz, respectively. Both the constraints are
easily met by HT-IpDFT in all the considered configurations,
as reported in Table IV. In the worst case, TVE is equal to
0.415%, whereas FE is lower than 13.55 mHz.

Fig. 10(a) and (b) represent the worst-case TVEs and FEs as
function of the modulation frequency f;,. It is worth noticing
that the estimation accuracy does not depend significantly on
the window length. Amplitude, phase and frequency errors are
mainly due to the mismatch between the static signal model
employed by interpolated DFT and the time-varying trend
of the modulated signal. Indeed, comparable results can be
obtained also with most recent IpDFT solutions [8].

In terms of RFE, the worst-case performance is equal to
653 and 603 mHz/s for two- and three-cycle configuration,
respectively, whereas the IEEE Std set the limit to 2.3 Hz/s.

Similar considerations can be made for the Phase
modulation test, whose signal model is defined as follows:

z(t) =
go(t) =

where the modulation depth k,,, is equal to 7/18 rad, whereas
the modulation frequency f,, varies between 0.1 and 5 Hz.
As in the previous test, the fundamental amplitude, frequency
and initial phase are fixed to their nominal values.

With respect to the previous test, the errors have slightly
increased. In the worst-case, TVE and FE are equal to 0.925%

(12)

A - cos(2mft + o + €, (1))

ko - cos(27 frnt — ) (13)



TABLE IV
MAXIMUM TVE AND FE IN DYNAMIC TESTS

TVE [%] FE [mHz]
Class HT-IpDFT Class HT-IpDFT
Fs = 10 kHz Fs = 50 kHz Fs = 10 kHz Fs =50 kHz
P M 2 cycles 3 cycles 2 cycles 3 cycles P M 2 cycles 3 cycles 2 cycles 3 cycles
SNR [dB] 60 80 60 80 60 80 60 80 60 8 60 8 60 8 60 80
Ampl Mod 3 3 042 0404 031 0309 037 0362 0.30 0.268 60 300 132 13.0 135 129 11.1 103 10.7 10.0
Ph Mod 3 3 093 0922 0.82 0.824 049 0.488 0.37 0.341 60 300 20.1 19.0 19.6 185 157 151 152 15.1
Freq Ramp Pos 1 1 0.05 0034 003 0.022 0.03 0.025 0.03 0.026 10 10 544 1.60 3.05 152 287 132 2.01 1.27
Freq Ramp Neg 1 1 0.05 0.035 0.05 0.039 0.03 0022 0.03 0.021 10 10 532 229 348 212 373 148 2.01 141
Zcycles TS cycles T RSS IEEE Sl — P loss [BEE S on the polarity of the linear ramp: nearly coincident results are
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= for modulation tests, the algorithm performance does not vary
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as shown also in Fig. 11(a) and (b), the proposed algorithm
proves to be compliant with the IEEE Std requirements for
both class M and P in all the considered configurations.

As regards RFE, the worst-case performance is equal to
792 and 694 mHz/s for two- and three-cycle configuration,
respectively, whereas the IEEE Std set the limit to 2.3 Hz/s.

For the Frequency ramp test, we adopt the signal model:

x(t)
gp()

where the quadratic phase term corresponds to a linear
contribution in frequency. In this context, k, accounts for the
rate of change of frequency, as measured in Hz/s.

For this specific test, the IEEE Std requires the fundamental
frequency to vary between 45 and 55 Hz with a rate of change
of 1 Hz/s, and vice-versa. In terms of accuracy, the worst-case
TVE and FE are limited to 1% and 10 mHz, respectively.

The results in Table IV show that HT-IpDFT is compliant
with the IEEE Std limits in all the considered configurations.
In particular, TVE and FE do not exceed 0.05% and 5.50 mHz.
As shown in Fig. 12, the estimation accuracy does not depend

A - cos(2mft+ o + e, ()
k, - wt?

(14)

Fig. 12. Frequency ramp test: worst-case TVE (a) and FE (b) as function
of the ROCOF, with 2 (blue) and 3 cycles (green) window. The solid and
dashed red lines represent the performance requirements for M- and P-class,
respectively.

c) Step tests: As final test, we characterize the algorithm
performance during an instantaneous step change of signal
amplitude or phase. In this way, it is possible to evaluate the
algorithm responsiveness to a transient event. In this context,
Table V reports the results of HT-IpDFT.

The signal model of the Amplitude step test is defined as:

() =A- (14 k- x(t—T})) - cos(2mft + o) (15)

where k; and T} account for the step size and occurrence time,
respectively, whereas y(-) models a piece-wise step function:

0 ift<O

16
1 ift>0 (16

x(t)

For this analysis, we set k; and 7} to 0.1 and 1.5 s, respectively.
In this case, the IEEE Std requirements regard the algorithm
response time, defined as the time to transition between two



TABLE V
MAXIMUM RESPONSE TIME [MS] FOR TVE AND FE IN STEP TESTS

TVE Resp Time [ms]

FE Resp Time [ms]

Class HT-IpDFT Class HT-IpDFT
Fs = 10 kHz Fs = 50 kHz Fs = 10 kHz Fs = 50 kHz
P M 2 cycles 3 cycles 2 cycles 3 cycles P M 2 cycles 3 cycles 2 cycles 3 cycles
SNR [dB] 60 8 60 8 60 8 60 80 60 80 60 80 60 80 60 80
Ampl step 40 140 229 229 328 325 235 235 358 358 90 280 644 63 578 57.1 62 612 558 558
Ph step 40 140 265 264 825 82 362 361 71.1 71.1 90 280 849 845 1434 1407 944 94 1236 1207

steady-state measurements before and after the step change.
It is determined as the difference between the instants when
the measurement accuracy exits and reenters within a given
limit (i.,e. TVE < 1%, FE < 5 mHz). This requirement is
particularly stringent for class P: the response time should not
exceed 40 and 90 ms for TVE and FE, respectively.

This analysis cannot be performed with the canonical
reporting rate of 50 fps. It is necessary to compute the
interleaved time-domain trend of TVE and FE, as indicated
by the IEEE Std specifications. To this end, we set F). equal
to I producing a new estimate in correspondence with each
acquired sample.

In Fig. 13, the solid blue and green lines represent TVE
and FE as function of time. The error trends obtained with
two and three cycles have been aligned with respect to Tssqr¢,
i.e. the time instant where the performance index exceeds the
corresponding threshold (dashed black line). The dashed lines
indicate the step occurrence time 7} in the two configurations.

Both TVE and FE are characterized by a response time
lower than the class P limit (dashed red line). As reported in
Table V, the worst-case response time is equal to 35.8 and
64.4 ms for TVE and FE, respectively.

In Table V, we notice a degradation of the algorithm
responsiveness as the window length is increased. None of the
three-cycle configurations is compliant with the requirements
of P class, in terms of neither TVE nor FE. Conversely, the
two-cycle configurations guarantee a satisfactory estimation
accuracy, with the only exception of sampling frequency equal
to 50 kHz, where the worst-case FE response time exceeds the
limit by less than 5 ms. On the other hand, it is important to
notice that all the considered configurations are compliant with
the requirements of class M.
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Fig. 13. Amplitude step test (+0.1): interleaved analysis of TVE (a) and FE
(b), with 2 (blue) and 3 cycles (green) window. The solid and dashed red
lines represent the performance requirements for class M and P, respectively,
whereas the dashed black line represents the corresponding accuracy limits.

In line with (15), the Phase step signal model is:
x(t) x(t=11))

where the step size k; corresponds to 7/18 rad, and the step
occurrence time 77 is set equal to 1.5 s.

= A-cos(2mft + po + ki - 17

Fig. 14. Phase step test (+7/18 rad): interleaved analysis of TVE (a) and
FE (b), with 2 (blue) and 3 cycles (green) window. The solid and dashed red
lines represent the performance requirements for class M and P, respectively,
whereas the dashed black line represents the corresponding accuracy limits.

With respect to the previous test, the reason for such
a performance deterioration can be found in the filter
frequency response. Given the limited order, the Fast HT
Filter is characterized by a step response with a reduced
settling time, but a non-negligible ringing effect: the cosine
argument exhibits a damped oscillation that can be interpreted
as either a phase or frequency modulation. In fact, the
synchrophasor estimation algorithm is unable to discriminate
between these contributions, due to the ambivalent definition
of synchrophasor phase angle depending on both fundamental
frequency and phase [40], [41]. Therefore, the same damped
oscillation is noticeable in TVE and FE trends in Fig. 14,
whereas in the Amplitude step test, this trend was restricted to
only the TVE.

It should be noticed that an analysis based only on TVE
and FE in the presence of transient events might lack
of consistency. The IEEE Std relies on a synchrophasor



model that assumes the signal DFT representation to consist
of few narrow-band components: a term associated to the
fundamental component, plus a restricted set of harmonic or
inter-harmonic contributions. In practical conditions, though,
this finite spectrum assumption might not be able to suitably
represent quasi-instantaneous variations of signal parameters
and the definition of TVE might not be the most appropriate
metric for assessing the accuracy of synchrophasor estimation
algorithms [42].

For this reason, we perform also a time-domain analysis,
intended to quantify the discrepancy between the HT-IpDFT
estimates and the acquired waveform. At each reporting
period, we employ the estimated values A*, f* and ¢ to
recover the time-domain trend of the fundamental component
as:

¥ [n] = A" - cos(2nf*nTs + ¢p), m=1[1,...Ny] (18)

Then, we compute the normalized Root Mean Squared Error
(nRMSE) between the recovered and original waveform:

nRMSE =

S @l =l

N,

n=1

It should be noticed that nRMSE is not intended as
a replacement of the canonical TVE, but as a numerical
index of the estimation reliability [42]. Therefore, at each
reporting period, we are able to provide not only the
estimated amplitude, frequency, and initial phase, but also
the corresponding nRMSE, that quantifies the discrepancy
between what the PMU is acquiring and what the PMU is
estimating. The recent literature proposes a similar metric,
called Goodness of Fit, that depends on the residual energy, as
well as on the number of degrees of freedom of the considered
signal model [43].

In this context, Fig. 15 presents the nRMSEs as measured
during both Amplitude and Phase step tests as function of time.
Before and after the step change, the nRMSE accounts only
for the measurement noise, with an average value of about
10~ pu that corresponds exactly to the expected SNR of 80
dB. As the acquired waveform includes also the step change,
the nRMSE rapidly increases up to 10~2 pu. In fact, during the
transient event the signal energy is conveyed through the entire
spectrum and the synchrophasor model does not represent a
reliable approximation of the observed phenomenon.

Based on nRMSE, it is also possible to investigate the SE
algorithm responsiveness, following a procedure similar to the
one employed for the response time computation. In this case,
we adopt as performance limit a threshold level computed as
three times the expected noise level, i.e. 3-10~4 pu. Then, we
compute the time difference between the threshold crossings.

In this context, it is interesting to compare these time
interval duration with TVE and FE response times. However,
it should be noticed that the nRMSE metric account for the
cumulative estimation uncertainty due to amplitude, frequency,
and initial phase error. Moreover, the adopted threshold
represents a more challenging limit with respect to a maximum
TVE or FE equal to 1% and 5 mHz, respectively. By setting the
threshold equal to the expected noise level, we are measuring
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Fig. 15. Normalized root-mean-squared error during amplitude (a) and phase
(b) step test for window length equal to 2 (blue) and 3 cycles (green). The
dashed black line represents the reliability threshold, computed as three times
the expected noise level.

the time interval necessary to return to an estimation accuracy
typical of steady-state test conditions.

With respect to TVE and FE response times, the nRMSE
analysis confirms the advantage of the two-cycle configuration,
characterized by a prompter adjustment to the transient event,
as well as the performance deterioration in the Phase step
test. In this regard, it is worth observing that the nRMSE-
based time interval is strictly lower than the FE response
time. This result demonstrates that the damped oscillations
observed in Fig. 14 are due to frequency and phase errors
that are partially compensating each other. For this reason, a
time-domain analysis that does not suffer from this duality
inherent in the synchrophasor model definition might be a
more effective solution to study the reliability of the algorithm
estimates in the presence of transient events.

d) Performance summary: As an aggregated result
summary, Table VI reports the worst-case TVEs, FEs, and
RFEs provided by the HT-IpDFT in all the considered
configurations for each test condition defined by the IEEE
Std, including all considered noise levels and window lengths.

In this regard, it is worth noticing that TVE does not
exceed 1% and we keep FE and RFE within 90 mHz and 800
mHz/s, respectively, even considering a DFT-based frequency
resolution of just 25 Hz.

V. COMPARISON WITH IPDFT STATE OF THE ART

In this section, we compare the estimation accuracy
of the proposed HT-IpDFT with other two IpDFT-based
synchrophasor estimation algorithms. To this end, in the
present analysis we consider the Enhanced IpDFT, briefly
e-IpDFT [12], and the Iterative IpDFT, briefly i-IpDFT [8].
On one side, e-IpDFT relies on a two-point IpDFT and
iteratively compensates the long-range spectral leakage due
to the negative image of the fundamental component. On
the other side, i-IpDFT employs a three-point IpDFT and
iteratively estimates and compensates the spectral leakage
effects due to not only the fundamental component, but
also generic interfering tones. This comparison enables us to



TABLE VI
WORST-CASE PERFORMANCE OF HT-IPDFT IN IEEE STD TESTS

Test \ TVE [%] FE [mHz] RFE [mHz/s]
Sign Freq | 0.02 4.06 3.6
Harm Dist (1%) 0.19 86.5 216
Harm Dist (10%) 0.11 3.90 169
OOBI \ 0.19 8.24 264
Ampl Mod 0.42 13.5 653
Ph Mod 0.93 20.1 792
Freq Ramp |  0.05 5.44 189

Response Time \ TVE [ms] FE [ms]

Ampl Step 35.8 64.4
Ph Step 82.5 1434

determine which algorithm is more successful in mitigating
the spectral leakage effects, even when significant spurious
contributions affect the test signal.

Since the rejection of interferences is one of the major
issues for IpDFT-based algorithms, we focus on the estimation
accuracy provided by HT-IpDFT, e-IpDFT and i-IpDFT in
both Harmonic distortion and Out-of-band interference test.
For this analysis, the amplitude of the interference tone is set
equal to 0.1 pu, corresponding to a THD and TIHD of 10%.
In this context, Fig. 16 presents the maximum FE as function
of the interfering tone frequency. The sampling frequency and
SNR are set equal to 50 kHz and 80 dB, respectively.

More precisely, Fig. 16(a) refers to a window length of two
cycles, i.e. 40 ms. As the interference frequency is lower than
25 Hz, only the HT-IpDFT solution proves to be compliant
with the IEEE Std requirements for M-class. The motivation
of this significant performance enhancement can be found
in the interference compensation routine: not implemented
in e-IpDFT, and ineffective in i-IpDFT. In this regard, it is
worth noticing that the proximity with the negative frequency
components makes the compensation process more difficult.
Similar results are obtained for interference frequencies larger
than 75 Hz. In this context, e-IpDFT does not comply with
the IEEE Std requirements, whereas i-IpDFT exceeds the
performance limit only for f;, = [75, 80] Hz. Conversely,
HT-IpDFT guarantees the FE to be compliant with the IEEE
Std requirements for the entire considered frequency range.

In Fig. 16(b) we consider a three-cycle window length. In
this case, HT-IpDFT and i-IpDFT provide nearly coincident
results. Only in the frequency range [10, 25] Hz, the Hilbert
formulation produces a slight performance enhancement,
thanks to the mitigation of the long-range spectral leakage
effects from the negative frequency components. On the
other hand, e-IpDFT cannot compensate the out-of-band
injections, and complies only with the Harmonic distortion
test requirements.

VI. CONCLUSION

In this paper, we present a novel synchrophasor estimation
algorithm based on the joint application of the HT and
IpDFT. By considering the analytic signal representation,

e-IpDFT ——— i-IpDFT ——— HT-IpDFT —— |EEE Std limit
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Fig. 16. Estimation accuracy comparison between e-IpDFT (cyan), i-IpDFT
(magenta) and HT-IpDFT (blue) with two different window lengths, i.e. 40
ms in (a), and 60 ms in (b). Maximum FEs as function of the interference
frequency are compared to the IEEE Std most stringent limits (red): 10 mHz
for Out-of-band interference test, and 5 mHz for Harmonic distortion test.

we are able to mitigate the long-range spectral leakage
effect caused by the negative frequency components and
thus reduce significantly the window length up to 40 ms.
In this way, we aim at providing high-accuracy estimates
of synchrophasor, frequency, and ROCOF associated to
the fundamental component, as well as minimizing the
measurement reporting latency.

First, we describe the theoretical principles and the
implementation details of the proposed HT-IpDFT algorithm,
providing a preliminary analysis of its computational
requirements and discussing the most suitable setting of the
algorithm parameters. Then, we characterize its metrological
performance in terms of estimation accuracy and response
time in all the test conditions indicated by the IEEE Std.
In the context of step tests, we also discuss the validity of
the canonical synchrophasor representation in the presence
of transient variations, and we propose the adoption of
an alternative time domain metric to assess the estimation
reliability. Finally, a comparison with other IpDFT-based
algorithms proves that the HT-IpDFT is more accurate and
robust in the presence of out-of-band and low-order harmonic
interferences.

Based on the obtained results, the employment of Hilbert
Transform represents a promising solution for synchrophasor
estimation, as it allows for a relaxation of the reporting latency
constraints and a restraint of the computational complexity. An
IpDFT-based approach guarantees the compliance with all the
IEEE Std requirements for both M and P class, with the only
exception of Harmonic distortion (1%) and Phase step tests.
As a consequence, the future steps of the research activity
will involve: a more effective routine for the detection and
compensation of small amplitude interfering tones, and a more
stable though fast response of the filter cascade employed to
compute the analytic signal.
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