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Abstract
The purpose of this thesis is to provide an intrinsic proof of a Gauss-Bonnet-Chern
formula for complete singular Riemannian manifolds with finitely many conical
singularities and asymptotically conical ends. A geometric invariant is associated
to the link of both the conical singularities and the asymptotically conical ends
and is used to quantify the Gauss-Bonnet defect of such manifolds. This invariant
is constructed by contracting powers of a tensor involving the curvature tensor of
the link. Moreover this invariant can be written in terms of the total Lipschitz-
Killing curvatures of the link. A detailed study of the Lipschitz-Killing curvatures
of Riemannian manifolds is presented as well as a complete modern intrinsic proof
of the Gauss-Bonnet-Chern Theorem for compact manifolds with boundary.
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Résumé
Le résultat principal de cette thèse est un théorème de Gauss-Bonnet-Chern pour
des variétés riemanniennes singulières, complètes ayant un nombre fini de singu-
larités coniques et de bouts asymptotiquement coniques. On associe un invariant
géométrique au link de chaque singularité conique et de chaque bout asympto-
tiquement conique qui permet de quantifier le défaut de Gauss-Bonnet de telles
variétés. Cet invariant est construit en contractant des puissances d’un tensor qui
dépend du tenseur de courbure du link. On montre que cet invariant peut être
écrit comme une combinaison linéaire des courbures de Lipschitz-Killing totales du
link. Une étude détaillée de ces courbures de Lipschitz-Killing ainsi qu’une preuve
intrinsèque moderne du théorème de Gauss-Bonnet-Chern pour des variétés com-
pactes à bord sont présentées.
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Introduction

The classical Gauss-Bonnet theorem, which goes back to the nineteenth century,
can be stated as follows: let (S, g) be a closed surface without boundary, let K
denote its Gauss curvature. Then

1

2π

∫
S

KdA = χ(S), (1)

where χ(S) denotes the Euler characteristic of S and dA is the area measure of
S. This remarkable result establishes that although the curvature depends on the
metric g, when it is summed up over the whole surface, this dependence disappears
and the total amount of curvature becomes a topological invariant. If the surface
is compact but admits a boundary, then the total geodesic curvature of ∂S has
to be taken into account. In the 1930s, Cohn-Vossen extended formula (1) to non
compact surfaces with finite total curvature in the form of an inequality: let (S, g)
be a complete Riemannian surface with finite total curvature. Then

1

2π

∫
S

KdA ≤ χ(S). (2)

The strict inequality is achieved for instance by taking S = R
2 endowed with its

standard flat metric. In this case the total curvature is zero whereas the Euler
characteristic of R2 is equal to one.
In this search of generalization an important milestone was achieved in the 1940s
by W. Fenchel [Fen40], C. Allendoerfer and A. Weil [AW43] on one hand, and S.-S.
Chern [Che44], [Che45] on the other hand. They proved using radically different
approaches that the total curvature of a compact Riemannian manifold of arbitrary
dimension is a topological invariant. The method of Fenchel, Allendoerfer and Weil
requires to compute the volume of tubes around submanifolds and is referred to as
extrinsic because they assume that the manifold is embedded in some Euclidean
space (at least locally). By contrast, Chern developped a completely intrinsic
method in his proof by introducing differential forms on the manifold and on its
unit tangent bundle. Chern’s theorem can be stated as follows: let (M, g) be
a closed n-dimensional Riemannian manifold. Let Pf(Ω) be the Pfaffian of the
curvature form of (M, g) then

(−1)nχ(M) =
1

(2π)
n
2

∫
M

Pf(Ω). (3)

1
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The Pfaffian of the curvature form, which will be defined later, is an n-form on
M depending only on the curvature tensor of M , which generalizes the Gauss
curvature in higher dimensions. Note that if the dimension is odd, then this
equation simplifies to χ(M) = 0 since the Pfaffian vanishes. Once again, if the
manifold M admits a boundary, the total curvature of ∂M appears in the formula.
Just a few years before those results, H. Weyl published his famous article "On
the Volume of Tubes" [Wey39] in which he proved that for r ≤ ε sufficiently small
the volume of a tube of radius

Mr = {x ∈ R
N | dist(x,M) < r},

around a compact submanifold Mn ⊂ R
N is given by a polynomial in the radius

r of the tube, whose coefficients K2k(M) depend only on the curvature tensor of
the submanifold itself:

VolN(Mr) =
π

q
2

Γ
(
q
2

) �n
2
�∑

k=0

K2k(M)rq+2k

q(q + 2)(q + 4) · . . . · (q + 2k)
, (4)

where q = N − n is the codimension of M in R
N and Γ is the Gamma function.

These coefficients K2k(M) are called the total Lipschitz-Killing curvatures of the
submanifold and will be of particular importance throughout this thesis. These
curvatures can be defined as in [Gra04], without referring to any embedding by
taking contractions of powers of the curvature endomorphism of M . Although
these curvatures are complex objects, it appears that some of them are well-known
quantities e.g. the first Lipschitz-Killing curvature is the volume of the manifold
K0(M) = Vol(M), the second is the integral of the scalar curvature up to a
constant K2(M) = 1

2

∫
M
SgdvolM and if the dimension of the manifold is even, the

last one is its the Euler-characteristic Kn(M) = (2π)
n
2χ(M) up to a constant.

Searching for a generalization of this theorem, it is natural to ask, as in Cohn-
Vossen’s inequality (2), whether the compactness assumption can be replaced by
some weaker condition enabling the integral of the curvature to converge. In
[KZ01], R. Kellerhals and T. Zehrt show that in the case of an even-dimensional
non compact complete hyperbolic manifold having finite volume a Gauss-Bonnet
formula holds. The assumption of finite volume in the context of non compact hy-
perbolic manifolds is a strong geometric assumption that allows the total curvature
to be well-defined.
Since the total curvature has to be finite, it is natural to look at complete non
compact Riemannian manifolds which are of finite topological type that is manifolds
which are diffeomorphic to the interior of a compact manifold with boundary. This
condition ensures for example that the "unbounded parts" of the manifold are in
finite number. For such manifolds, S. Rosenberg gives in [Ros85] several classes of
complete metrics for which a Gauss-Bonnet formula holds.
Allowing a weaker control on the geometry of the non compact parts, one can ask
if it is possible to obtain a quantification of the Gauss-Bonnet defect, that is the
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difference between the Euler-characteristic and the total curvature. In dimension
two it was shown by Finn [Fin65] and T. Shiohama [Shi85] that if S has finite
total curvature, then

χ(S)− 1

2π

∫
S

KdA = lim
t→∞

L(t)

t
= lim

t→∞
L2(t)

2A(t)
,

where L(t) is the length of S(t) = {x ∈ S | d(p, x) = t} for any p ∈ S and A(t)
is the area of B(t) = {x ∈ S | d(p, x) ≤ t}. Therefore the Gauss-Bonnet defect is
controlled by the geometry "at infinity".
In higher dimensions, the total curvature is finite if the non compact parts are
sufficiently "flat" as for example if they are isometric to cones. In [DK05], F. Dillen
and W. Kühnel study n-dimensional submanifolds of RN which have conical ends
in the sense that these submanifolds consist of a compact core and finitely many
non compact parts that are isometric to subsets of RN of the form

C(N) = {p+ tx | x ∈ N, t ∈ [0,∞)} ⊂ R
N ,

with N an (n−1)-dimensional submanifold of the unit sphere S
N−1 called the link

and p ∈ R
N called the apex of the cone. They prove that if Mn is a complete

submanifold of RN with finitely many conical ends with links N1, . . . Nr, then the
Gauss-Bonnet defect can be expressed as a sum of curvature quantities of the links
of the cones:

χ(M)− 1

αN−1

∫
S⊥M

det(Aξ)dξ =
r∑

j=1

�n−1
2

�∑
k=0

1

αN−1−n+2kαn−1−2k

Θ2k(Nj), (5)

where αj = Vol(Sj), the integrand det(Aξ) is the determinant of the shape operator
in the normal direction ξ ∈ S⊥M = {(p, v) ∈ T⊥M | ‖v‖ = 1} and on the right-
hand side, the Θ2k(Nj) are defined by

Θ2k(Nj) =

∫
S⊥Nj

σ2k(ξ)dξ,

where σ2k(ξ) is the 2k-th elementary symmetric polynomial of the shape operator
in direction ξ of the embeddind Nj ↪→ S

N−1.
Of course this theorem is strongly extrinsic as it requires the embedding of M in
R

N and of Nj in S
N−1. Moreover the various constants depend on the dimension

of the ambient space R
N . It is noteworthy to mention that the condition of being

conical can be relaxed as it is the asymptotic behaviour of the end that matters
in the quantification. Therefore Dillen and Kühnel introduce the notion of a cone-
like end and show that the same statement holds for manifolds admitting cone-like
ends.
Another way of generalizing the Gauss-Bonnet-Chern theorem is to switch from
the class of smooth Riemannian manifolds to a larger class in which the metric
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is allowed to lack some smoothness at a finite number of points. However the
metric is asked to take a certain form in the neighbourhood of these points. This
was investigated in dimension two in [Tro91],[HT92],[Tro93], where the following
Gauss-Bonnet formula for compact surfaces with simple singularities is shown: let
(S, g) be a compact surface with n simple singularities pi of order βi, then

1

2π

∫
S

KdA = χ(S) +
n∑

i=1

βi, (6)

where βi is a local invariant. This formula can be thought as a quantification of
the Gauss-Bonnet defect in terms of the curvature concentrated at each singular
point. Note that simple singularities include conical singularities, conical ends as
well as cusps, and cylindrical and parabolic ends. For surfaces with conical ends,
Formula (6) goes back to R. Finn [Fin65].
The main purpose of this thesis is to give an intrinsic proof of a Gauss-Bonnet
theorem for Riemannian manifolds with finitely many conical singularities and
asymptotically conical ends, answering along the way a question raised in [DK05]
of whether it is possible to prove (5) intrinsically.
Asymptotically conical manifolds have been studied recently in [CEV17], [Con11]
and they are defined to be topological cones over compact manifolds endowed
with a Riemannian metric which converges (as well as its derivatives up to order
r) towards the standard cone metric. As in the case of (asymptotically) conical
ends, a conical singularity comes together with a link (N, gN) which is actually
the key object to study when we want to work without referring to any ambient
space. To each link, we will associate an geometric invariant τ(N) which depends
only on the curvature of N as a Riemannian manifold. More precisely, τ(N) is (up
to some dimensional constants) the sum of the total Lipschitz-Killing curvatures
of N :

τ(N) =

�n−1
2

�∑
k=0

λn,kK2k(N),

where λn,k are explicit constants depending on n and k (see Theorem 4.9). Our
main theorem can be stated

Main Theorem. Let (M̂n, g) be a complete even dimensional singular Rieman-
nian manifold with finitely many conical singularities {p1, . . . , pr} and finitely
many asymptotically conical ends {Er+1, . . . , Es}. Then the total curvature of
M̂ is finite and we have

χ(M)− 1

(2π)
n
2

∫
M

Pf(Ω) = −
r∑

i=1

τ(Ni) +
s∑

i=r+1

τ(Ni), (7)

where M = M̂ \ {p1, . . . , pr} and the Ni are the links of the conical singularities
and of the asymptotically conical ends.
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The precise definitions of conical singularities and asymptotically conical ends will
be given in Chapter 4 as well as the asymptotic behaviour of the metric near those
singularities. It will be shown that, as in the Gauss-Bonnet-Chern Theorem, the
formula (7) for odd dimensional manifolds contains no geometric information as
both the left-hand side and the right-hand side simplifies to χ(N).
In the case where M̂ is two dimensional, then (7) reduces to formula (6) as ex-
plained in Remark 4.29.

The proof of the Main Theorem 7 is articulated in three parts. First we deal with
the case where M is assumed to have only conical ends, that is each end of M
is a standard cone. Applying the Gauss-Bonnet-Chern theorem to an exhaustion
{Mt}t>1 of M by compact manifolds with boundary, we obtain a quantification
of the Gauss-Bonnet defect of M form the asymptotic behaviour of the boundary
term given by the Gauss-Bonnet-Chern theorem. Using the Gauss equation this
boundary term can be expressed using only quantities defined on the link of each
cone, namely the Lipschitz-Killing curvatures of each link. Cartan’s formalism
of moving frames [Car01],[Spi99] is particularly well-suited to this problem. In
particular, it is the approach used by Chern in his proof of the Gauss-Bonnet-
Chern theorem in [Che44] and [Che45].
The second part is devoted to manifold whose ends are asymptotically conical.
The strategy of proof is once again to apply the Gauss-Bonnet-Chern theorem to
an exhaustion and then to find estimates of the additional terms that appear in
this case.
Finally, in the third part, we adapt the method used for asymptotically conical
ends to the case of conical singularities.

We conclude this introduction by mentioning the related work of some other au-
thors dealing with conical singularties or conical ends. The paper [CEV17] by
O. Chodosh, M. Eichmair and A. Volkmann studies isoperimetric inequalities in
asymptotically conical manifolds, their definition is similar to our Definition 4.11,
but they use a slightly weaker asymptotic condition than ours.
Note that our conical singularties are point singularities, meaning the singular lo-
cus is a zero-dimensional set. However one may also consider higher dimensional
conical singularities. A local model for a standard k-dimensional conical singu-
larity in a (singular) Riemannian manifold (M, g) is a Riemannian product of a
smooth submanifold W with a cone over some (n−k−1) Riemannian manifold N
(this is the link of the conical singularity). Manifolds with codimension 2 conical
singularities play a major role in the work of G. Tian and S. Donaldson and his
collaborators to prove the existence of Kähler-Einstein metrics on Fano manifolds.
We refer to P. Eyssidieux’s talk at Seminaire Bourbaki [Eys16] for a survey of this
very rich subject, as well as the PhD thesis of G. De Borbon [deB15].
One obtains the more general class of cone manifolds in a stratified sense if one al-
lows the link N to itself be a stratified cone manifold (the definition being inductive
starting with the zero dimensional strata being a finite set).
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For such a type of stratified cone Manifolds, C. McMullen recently obtained a
Gauss-Bonnet formula in [McM17]. However, this paper assumes the links to be
spherical cone manifolds, as a result McMullen’s Gauss-Bonnet formula does not
contain our Main Theorem.
We finally mention the very recent work of R. Buzano and H.T. Nguyen [BN17,
BN18]. In these papers the authors obtain a Gauss-Bonnet formula for mani-
folds with finitely many tame ends and isolated singular points. Their results
have some similarities with our Main Theorem, but with some important differ-
ences. Their results assume some topological restrictions, conformal flatness and
some non-negativity condition on the scalar curvature near the ends and the point
singularities.

Organization of the Thesis

The text is organized as follows. The first chapter is a review of some definitions
and results in Riemannian geometry that are to be used throughout the thesis.
In particular, we develop in details the moving frame formalism as it is of utmost
importance to define the Lipschitz-Killing curvatures and to understand both the
proof of the Gauss-Bonnet-Chern theorem and our main theorem.
The second chapter is dedicated to the Lipschitz-Killing curvatures of a Rieman-
nian manifold. After introducing the algebra of double-forms, we define and es-
tablish several properties of the Lipschitz-Killing curvatures. In particular we
compute them in the case where the manifold is of constant sectional curvature
as well as in the case where the manifold is a cone over a compact manifold. The
Weyl formula is also presented since it makes the Lipschitz-Killing curvatures ap-
pear naturally in the expression of the volume of the tube around a submanifold
of RN . In the last part of this chapter we make a detour in the world of principal
bundles in order to present a proof of the Gauss-Bonnet-Chern theorem using this
modern language. This yields a definition of the Lipschitz-Killing curvatures as
global differential forms on the SO(n) principal bundle of orthonormal positively
oriented moving frames.
In the third chapter we present Chern’s intrinsic proof of his Gauss-Bonnet-Chern
Theorem using the language of principal bundles. The Hopf-Poincaré Theorem on
the indices of a vector field is recalled and illustrated as it is crucial for the proof,
especially when the manifold is assumed to have a boundary.

The main result of the thesis is proved in the fourth chapter. As we already men-
tioned, the proof is divided in three distinct steps: manifolds with conical ends,
manifolds with asymptotically conical ends and manifolds with conical singular-
ities. This chapter also includes a discussion about the invariant τ(N) in some
special cases.



Chapter 1

Background on Riemannian
Geometry

In this chapter we present the necessary background to understand the rest this
thesis. The common thread consists of the formalism of moving frames, which is
particularly well developed in Spivak’s books [Spi99]. This approach to Rieman-
nian geometry goes back to Élie Cartan [Car01] and can be seen as an alternative
to working with coordinates. The problem of defining a connection usually re-
quires either to choose local coordinates, which induce coordinate vector fields, or
to introduce the global operator ∇. The method of moving frames provides a third
way of defining a connection by considering any n-tuple of linearly independent
vector field on an open subset of the manifold and not only vector fields induced
by some coordinates. Note that throughout all the thesis we will use Einstein’s
convention on the summation of repeated indices.

1.1 Tensor fields
Definition 1.1. Let V be an n-dimensional vector space over R with dual V ∗ and
consider the two following vector spaces

Tenskl (V ) = {T : V ∗ × . . .× V ∗︸ ︷︷ ︸
l

×V × . . .× V︸ ︷︷ ︸
k

→ R | T is multilinear},

Lk
l (V ) = {L : V ∗ × . . .× V ∗︸ ︷︷ ︸

l

×V × . . .× V︸ ︷︷ ︸
k

→ V | L is multilinear}.

Elements of Tenskl (V ) are called tensors of type (k, l), the index k is called the
degree of covariance and the index l the degree of contravariance. It is clear that
Tenskl (V ) is a vector space of dimension nk+l.

These two spaces are closely related one to each other.

Lemma 1.2. There is a canonical isomorphism

Lk
l (V ) 	 Tenskl+1(V )

7
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Proof. To an element L ∈ Lk
l (V ) we associate TL ∈ Tenskl+1(V ) the tensor defined

by
TL(η

1, . . . , ηl, η, v1, . . . , vk) = η
(
L(η1, . . . , ηl, v1, . . . , vk)

)
.

Conversely, given a tensor T ∈ Tenskl+1(V ), we associate the following linear map

LT (η
1, . . . , ηl, v1, . . . , vk) = T (η1, . . . , ηl,−, v1, . . . , vk) : V

∗ → R

which is associated to a vector via the usual identification of V to the bidual V ∗∗.
Those applications are clearly inverse one to each other and R-linear.

Now let M be an n-dimensional differentiable manifold. We construct the vector
bundles associated to Tenskl (TpM) and Lk

l (TpM) for each p ∈ M , i.e.

Tenskl (TM) =
⊔
p∈M

Tenskl (TpM) Lk
l (TM) =

⊔
p∈M

Lk
l (TpM)

The smooth sections of Tenskl (TM) are called tensor fields and the space of all such
sections is usually denoted by Γ(Tenskl (TM)) but whenever there is no ambiguity
we will make the following abuse of notations:

Tenskl (M) = Γ(Tenskl (TM))

Lk
l (M) = Γ(Lk

l (TM))

The familiar examples of tensor fields and elements of Lk
l (M) include any vec-

tor field X ∈ Tens01(M), any one-form ω ∈ Tens10(M), any Riemannian metric
g is a tensor field of type (2, 0), i.e. g ∈ Tens20(M) or the curvature endomor-
phism R(X, Y, Z) = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z is an element of L3

0(M) and,
through the isomorphism in lemma (1.2) extended to the bundles, also an element
of Tens31(M).

1.1.1 The musical isomorphisms

Suppose now that M is endowed with a Riemannian metric g. This allows us to
define the flat isomorphism between vector fields and one-forms:

� : Tens01(M) −→ Tens10(M), X�(Y ) = g(X, Y ).

If we are given a coordinate system (x1, . . . , xn) on an open subset U ⊂ M and if
∂i denotes the i-th coordinate vector field ∂

∂xi , then on U the one-form X� writes
as

X� = g(ai∂i,−) = gija
idxj

where X = ai∂i. We usually set aj = gija
i to write X� = ajdx

j and we say that
we have lowered an index.
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If gij denote the components of the inverse (gij)
−1, then the inverse of � is given

by
� : Tens10(M) −→ Tens01(M), ω� = gijbi∂j =: bj∂j,

where ω = bidx
i and we say that we have raised an index.

Observe that we have
g(ω�, X) = ω(X).

These isomorphisms can be extended to arbitrary tensor fields as follows:

� : Tenskl (M) −→ Tensk+1
l−1 (M) if l ≥ 1,

� : Tenskl (M) −→ Tensk−1
l+1 (M) if k ≥ 1.

but we have to specify which index is lowered or raised. If T ∈ Tenskl (M) we lower
the i-th index by setting

T �(ω1, . . . , ωl−1, X1, . . . , Xk+1) = T (X�
i , ω

1, . . . , ωl−1, X1, . . . , X̂i, . . . , Xk+1),

where the X̂i means that we have omitted Xi. Similarly, we raise the j-th index
by setting

T �(ω1, . . . , ωl+1, X1, . . . , Xk−1) = T (ω1, . . . , ω̂j, . . . , ωl+1, (ωj)�, X1, . . . Xk−1)

In coordinates, we have:

Lemma 1.3. If (x1, . . . , xn) is a coordinate system on an open subset U ⊂ M ,
any tensor T ∈ Tenskl (U) can be written as

T = T j1...jl
i1...ik

dxi1 ⊗ . . .⊗ dxik ⊗ ∂j1 ⊗ . . .⊗ ∂jl , T j1...jl
i1...ik

∈ C∞(U).

Then the components of T � (resp. T �) when we lower (resp. raise) the r-th (resp.
s-th) index, are given by (

T �
)ν1...νl−1

μ1...μk+1
= gμrαT

αν1...νl−1

μ1...μ̂r...μk+1(
T �
)ν1...νl+1

μ1...μk−1
= gνsαT ν1...ν̂s...νl+1

αμ1...μk−1

Proof. Since (∂i)
� = gijdx

j, we have(
T �
)ν1...νl−1

μ1...μk+1
= T �(∂μ1 , . . . , ∂μk+1

, dxν1 , . . . , dxνl−1)

= T
(
∂μ1 , . . . , ∂̂μr , . . . , ∂μk+1

, (∂μr)
�, dxν1 , . . . , dxνl−1

)
= gμrαT

(
∂μ1 , . . . , ∂̂μr , . . . , ∂μk+1

, dxα, dxν1 , . . . , dxνl−1

)
= gμrαT

αν1...νl−1

μ1...μ̂r...μk+1
.
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Similarly, since (dxi)� = gij∂j, we have(
T �
)ν1...νl+1

μ1...μk−1
= T �(∂μ1 , . . . , ∂μk−1

, dxν1 , . . . , dxνl+1)

= T
(
(dxνs)�, ∂μ1 , . . . , ∂μk−1

, dxν1 , . . . , d̂xνs , . . . , dxνl+1

)
= gνsαT

(
∂α, ∂μ1 , . . . , ∂μk−1

, dxν1 , . . . , d̂xνs , . . . , dxνl+1

)
= gνsαT ν1...ν̂s...νl+1

αμ1...μk−1
.

1.1.2 Contractions of tensors

The notion of trace of an endomorphism is easily generalized to arbitrary mixed
tensors by means of contractions . Recall that if V is a finite dimensional real
vector space, then Tens11(V ) = End(V ) and therefore the trace of h ∈ Tens11(V ) is
well-defined as a map

Tr : Tens11(V ) −→ R = Tens00(V )

Therefore, if k, l ≥ 1 we can define the contraction of the μ-th and ν-th indices to
be the map

Cμ
ν : Tenskl (V ) −→ Tensk−1

l−1 (V ),

where its action on a basis of Tenskl (V ) is given by

Cμ
ν (ei1⊗. . .⊗eil⊗εj1⊗. . .⊗εjk) = εjν (eiμ)ei1⊗. . .⊗êiμ⊗. . .⊗eil⊗εj1⊗. . .⊗ε̂jν⊗. . .⊗εjk ,

with (e1, . . . , en) any basis of V and (ε1, . . . , εn) its dual basis. It is easy to show
that this definition does not depend on the choice of the basis.
The contraction can obviously be extended to the bundle Tenskl (M) by taking
V = TpM . In particular, if M is of dimension n we have:

Lemma 1.4. If (x1, . . . , xn) is a coordinate system on an open set U ⊂ M , then
if T ∈ Tenskl (U), the coordinates of Cμ

ν (T ) are given by

(Cμ
ν (T ))

j1...jl−1

i1...ik−1
= T

j1...jμ−1αjμ+1...jl−1

i1...iν−1αiν+1...ik−1
,

where we sum over α.

Proof. By definition

(Cμ
ν (T ))

j1...jl−1

i1...ik−1
= Cμ

ν (T )(dx
j1 , . . . , dxjl−1 , ∂i1 , . . . , ∂ik−1

)

= T b1...bl
a1...ak

Cμ
ν (∂b1 ⊗ . . .⊗ ∂bl ⊗ dxa1 ⊗ . . .⊗ dxak)(dxj1 , . . . , dxjl−1 , ∂i1 , . . . , ∂ik−1

)

= T b1...bl
a1...ak

dxaν (∂bμ)∂b1(dx
j1) · · · ∂bμ−1(dx

jμ−1)∂bμ+1(dx
jμ) · · · ∂bl(dxjl−1)

· dxa1(∂i1) · · · dxaν−1(∂iν−1)dx
aν+1(∂iν ) · · · dxak(∂ik−1

)

= T b1...bl
a1...ak

δaνbμ δ
j1
b1
· · · δjμ−1

bμ−1
δ
jμ
bμ−1

· · · δjl−1

bl
δa1i1 · · · δaν−1

iν−1
δ
aν+1

iν
· · · δakik−1

= T
j1...jμ−1αjμ+1...jl−1

i1...iν−1αiν+1...ik−1
.
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Observe that the contractions are not defined for tensors that are purely covariant
or purely contravariant since both the degree of covariance and contravariance
must be at least one. But if we are given a Riemannian metric g on the manifold
M , then one can extend the contractions to Tens0l (M) and Tensk0(M) provided
k, l ≥ 2 by setting

C1
ν (T ) := C1

ν (T
�), if T ∈ Tens0l (M),

Cμ
1 (T ) := Cμ

1 (T
�), if T ∈ Tensk0(M).

We use the metric to raise or lower an index in order to be able to contract.
Obviously, this is not defined on Tens01(M) or Tens10(M).
As an example, we compute the contraction of the Riemannian metric g ∈ Tens20(M).
In coordinates we have

g� = gikgkj∂i ⊗ dxj = δij∂i ⊗ dxj ⇒ C1
1(g) = C1

1(g
�) = δii = n.

1.2 The method of moving frames
In Riemannian geometry, we are used to see the objects either in coordinates or
with the global language, but there exists a third approach developed by Elie
Cartan, called the method of moving frames. The basic tools of this formalism
are linearly independant vector fields (i.e. moving frames) and their dual covector
fields. Obviously, such frames do not exist globally on every manifold, therefore
it is local, but the gain is that on some open subset of the manifold, one can
consider orthonormal vector fields, which are simpler than coordinate vector fields.
Throughout this section, (M, g) will be an n-dimensional Riemannian manifold,
∇ its Levi-Civita connection and R its curvature tensor.

Definition 1.5. Let U ⊂ M be an open subset. A moving frame on U is an n-tuple
of vector fields (X1, . . . , Xn) such that for every p ∈ U , the list (X1(p), . . . , Xn(p))
is a basis of TpM . The moving coframe associated to (X1, . . . , Xn) is the n-tuple
of differential 1-forms (θ1, . . . , θn) that are dual to the Xi’s, that is they satisfy
θi(Xj) = δij.

Obviously at each point p ∈ U the list (θ1(p), . . . , θn(p)) forms a basis of the
cotangent space T ∗

pM .

Remark 1.6. Let us make a few remarks about this definition.

(a) Given a moving frame (X1, . . . , Xn) on an open subset U ⊂ M , the Xi’s are
not necessarily coordinate vector fields. Therefore their Lie brackets [Xi, Xj]
do not vanish in general.

(b) The domain U ⊂ M on which a moving frame is defined has no relation with
an eventual coordinate chart. For example, it is possible to define a global
moving frame on the whole torus T

2 although it does not admit a global
chart.
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(c) If the manifold is endowed with a Riemannian metric g, the coframe is given
by θi = g(Xi, ·). Moreover by applying the Gram-Schmidt algorithm, one can
always assume that a given moving frame (X1, . . . , Xn) is orthonormal and
therefore the components of the metric with respect to the moving frame are
simply gij = g(Xi, Xj) = δij.

1.3 The connection forms
Let (X1, . . . , Xn) be a moving frame on U ⊂ M with associated coframe (θ1, . . . , θn).
We define n3 functions Γk

ij ∈ C∞(U) by

∇Xi
Xj = Γk

ijXk. (1.1)

It is important to note that the Γk
ij are not the Christoffel symbols associated to

some coordinate system. Hence they do not satisfy the usual symmetry relations.
Nonetheless we have the following lemma:

Lemma 1.7. The Γk
ij’s satisfy the relations:

(i) Γk
ij − Γk

ji = θk([Xi, Xj]).

(ii) In addition if the moving frame is assumed to be orthonormal then

Γk
ij = −Γj

ik.

Proof. These two relations come from the properties of the Levi-Civita connection.

(i) Since the ∇ is torsion-free we have for all X, Y ∈ Γ(M) that [X, Y ] =
∇XY −∇YX, hence

θk([Xi, Xj]) = θk(∇Xi
Xj −∇Xj

Xi)

= θk(Γl
ijXl − Γl

jiXl)

= Γl
ijδ

k
l − Γl

jiδ
k
l

= Γk
ij − Γk

ji.

(ii) Since ∇ is compatible with the metric we have

0 = ∇Xi
δjk = ∇Xi

g(Xj, Xk) = g(∇Xi
Xj, Xk) + g(Xj,∇Xi

Xk)

= g(Γl
ijXl, Xk) + g(Xj,Γ

l
ikXl)

= Γl
ijδlk + Γl

ikδjl

= Γk
ij + Γj

ik
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We now investigate how an element of the coframe varies under covariant differ-
entiation.

Lemma 1.8. We have
∇θk = −Γk

ijθ
j ⊗ θi, (1.2)

or equivalently
∇Xi

θk = −Γk
ijθ

j. (1.3)

Proof. Recall that the covariant derivative of a 1-form ω is given by

∇ω(X, Y ) = (∇Y ω)(X) = Y (ω(X))− ω(∇YX),

for all X, Y ∈ Γ(M). Applying this to θk we get

∇θk(Xi, Xj) = (∇Xj
θk)(Xi) = Xj(θ

k(Xi))− θk(∇Xj
Xi)

= Xj(δ
k
i )− θk(Γl

jiXl)

= −Γl
jiδ

k
l

= −Γk
ji

The n3 functions Γk
ij completely determine the connection and this motivates the

following definition:

Definition 1.9. The n2 differential 1-forms defined by

ωi
j := Γi

kjθ
k (1.4)

are called the connection 1-forms of M . Observe that we have

ωi
j(X) = g(∇XXj, Xi)

The connection 1-forms are anti-symmetric and satisfy the first structure equation:

Lemma 1.10. The connection forms ωi
j satisfy{

ωi
j = −ωj

i ,

dθi = θj ∧ ωi
j.

Proof. The anti-symmetry is a direct consequence of lemma 1.7 (ii). The relation
between the exterior derivative of a 1-form ω and its covariant derivative is the
following

dω(X, Y ) = Xω(Y )− Y ω(X)− ω([X, Y ])

= Xω(Y )− Y ω(X)− ω(∇XY −∇YX)

= Xω(Y )− ω(∇XY )− (Y ω(X)− ω∇YX)

= ∇ω(Y,X)−∇ω(X, Y ).
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Therefore, applying this to θi we get by lemma (1.8)

dθi(Xj, Xk) = ∇θi(Xk, Xj)−∇θi(Xj, Xk)

= −Γi
jk + Γi

kj.

On the other hand we have

θl ∧ ωi
l(Xj, Xk) = δljω

i
l(Xk)− δlkω

i
l(Xj)

= ωi
j(Xk)− ωi

k(Xj)

= Γi
kj − Γi

jk.

With respect to the basis (θj ∧ θk)1≤j,k≤n of Λ2(M) the exterior derivative of θi
can be written as

dθi =
1

2
λi
jkθ

j ∧ θk, λi
jk = −λi

kj,

where λi
jk ∈ C∞(M). The first structure equation provides the following relations

between the Γi
kj and the λi

jk:

Lemma 1.11. We have {
λi
jk = Γi

kj − Γi
jk,

Γi
kj =

1
2

(
λi
jk + λj

ki − λk
ij

)
.

Proof. By the first structure equation we have

1

2
λi
jkθ

j ∧ θk = dθi = θj ∧ ωi
j = Γi

kjθ
j ∧ θk

and since λi
jk = −λi

kj we have

λi
jk = Γi

kj − Γi
jk.

Moreover, from Γi
kj = −Γj

ki we have

λi
jk + λj

ki − λk
ij =

(
Γi
kj − Γi

jk

)
+
(
Γj
ik − Γj

ki

)− (
Γk
ji − Γk

ij

)
= Γi

kj − Γi
jk + Γj

ik + Γi
kj + Γi

jk − Γj
ik

= 2Γi
kj
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1.3.1 The second fundamental form of a hypersurface

It will be useful later on to have an explicit expression for the second fundamental
form of a hypersurface in terms of a moving coframe. So let N ⊂ (Mn, g) be a
Riemannian submanifold of dimension n − 1 isometrically embedded in M , and
let (X1, . . . , Xn−1) be an orthonormal moving frame on U ⊂ N . We extend this
moving frame on N to an orthonormal moving frame on M by taking Xn ⊥ TN
of norm 1. We denote by ∇
 the tangential part of the Levi-Civita connection of
M . It coincides with the Levi-Civita connection of N and the second fundamental
form b of N in M is given for all X, Y ∈ Γ(N) by

∇XY = ∇

XY + b(X, Y )Xn.

The second fundamental form is a (2, 0)-tensor on N which satisfies the Weingarten
equation: for all X, Y ∈ Γ(N) we have

b(X, Y ) = g(∇XY,Xn) = −g(∇XXn, Y ).

Denoting with a and b indices varying between 1 and n − 1, we have by the
Weingarten equation and lemma 1.8:

b(Xa, Xb) = −g(∇XaXn, Xb) = −Γb
an = Γn

ab.

Therefore the second fundamental form can be written as

b = Γn
abθ

a ⊗ θb (1.5)

The last equation provides a simple proof of the symmetry of b.

Lemma 1.12. For all X, Y ∈ Γ(N) we have

b(X, Y ) = b(Y,X).

Proof. Since the Xa’s are tangent to N , it follows that [Xa, Xb] ∈ Γ(N), i.e.
[Xa, Xb] is also tangent to N , for all 1 ≤ a, b ≤ n− 1. Therefore

Γn
ab − Γn

ba = θn([Xa, Xb]) = θn(μc
abXc) = 0

with μc
ab ∈ C∞(U) and 1 ≤ c ≤ n− 1. So it follows that

b(Xa, Xb) = Γn
ab = Γn

ba = b(Xb, Xa).
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1.3.2 The second fundamental form of a submanifold of ar-
bitrary codimension

Suppose now that the submanifold N is of arbitrary dimension 1 ≤ r ≤ n − 1.
As before let U ⊂ N be an open subset on which an orthonormal moving frame
(X1, . . . , Xr) is defined. In the present case the normal space is of dimension n− r
at each point, therefore we choose n− r unit vector fields Xr+1, . . . , Xn ∈ Γ(S⊥N)
that are normal to N . Here

S⊥N = {(p, v) ∈ SM | p ∈ N, v ⊥ TpN},
is the unit normal bundle of N in M . Again denoting by ∇
 the tangent part of
the Levi-Civita connection of M we define the second fundamental form B of N
in M to be the normal part of the connection ∇XY

∇XY = ∇

XY + B(X, Y ),

where X, Y arbitrary extensions to M of vector fields on N . The second funda-
mental form is a (2, 1)-tensor on N and with respect to the frame (X1, . . . , Xn) we
have

B(X, Y ) = Bα(X, Y )Xα, n− r ≤ α ≤ n.

Given a normal direction ξ ∈ S⊥N , we define the second fundamental form in
direction ξ by

Bξ(X, Y ) = g (B(X, Y ), ξ) .

If ξ = Xα and X = Xa, Y = Xb we set

Bα
ab = g (B(Xa, Xb), Xα) ,

so that
Bα(Xa, Xb) = Bα

abXα.

As before we have

Lemma 1.13. (Weingarten Equation) Let X, Y ∈ Γ(N) and ξ ∈ S⊥N and
extend these fields arbitrarily to M . Then

Bξ(X, Y ) = g(B(X, Y ), ξ) = −g(∇Xξ, Y ). (1.6)

In terms of connection forms we have using Equation 1.6

Bα
ab = −g(∇XaXα, Xb) = −g(ΓA

aαXA, Xb) = −Γb
aα = Γα

ab,

therefore the second fundamental form in direction ξ = λαXα ∈ S⊥N can be
written as

Bξ =
n∑

α=n−r

λαΓα
abθ

a ⊗ θb.

As in the preceding section the symmetry of B comes directly from the latter
expression for the second fundamental form.
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1.4 The curvature forms
After having studied the connection in light of the moving frame technique, we
will now express the curvature tensor in terms of the connection forms and their
derivatives. Recall that the curvature tensor of M is the (3, 1) tensor defined for
X, Y, Z ∈ Γ(M) by

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z.

The following lemma gives the components of R with respect to an orthonormal
moving frame (X1, . . . , Xn). We write

R(Xk, Xl)Xj = Ri
jklXi.

Then

Lemma 1.14. We have

Ri
jkl = Xk(Γ

i
lj)−Xl(Γ

i
kj) + Γμ

ljΓ
i
kμ − Γμ

kjΓ
i
lμ + (Γμ

lk − Γμ
kl) Γ

i
μj. (1.7)

Proof. We have Ri
jkl = θi(R(Xk, Xl)Xj), and

R(Xk, Xl)Xj = ∇Xk
∇Xl

Xj −∇Xl
∇Xk

Xj −∇[Xk,Xl]Xj

= ∇Xk
(Γμ

ljXμ)−∇Xl
(Γμ

kjXμ)−∇(∇Xk
Xl−∇Xl

Xk)Xj

= Xk(Γ
μ
lj)Xμ + Γμ

ljΓ
ν
kμXν −Xl(Γ

μ
kj)Xμ − Γμ

kjΓ
ν
lμXν − Γμ

klΓ
ν
μjXν + Γμ

lkΓ
ν
μjXν

which implies that

Ri
jkl = Xk(Γ

i
lj)−Xl(Γ

i
kj) + Γμ

ljΓ
i
kμ − Γμ

kjΓ
i
lμ + (Γμ

lk − Γμ
kl) Γ

i
μj

The terms in the expression of Ri
jkl can be expressed in terms of the connection

forms and their derivatives. Indeed, observe that

∇ωi
j(Xl, Xk) = Xk(ω

i
j(Xl))− ωi

j(∇Xk
Xl) = Xk(Γ

i
lj)− Γμ

klΓ
i
μj,

∇ωi
j(Xk, Xl) = Xl(ω

i
j(Xk))− ωi

j(∇Xl
Xk) = Xl(Γ

i
kj)− Γμ

lkΓ
i
μj,

ωi
μ ∧ ωμ

j (Xk, Xl) = Γμ
ljΓ

i
kμ − Γμ

kjΓ
i
lμ.

Therefore, we can write

θi(R(Xk, Xl)Xj) = ∇ωi
j(Xl, Xk)−∇ωi

j(Xk, Xl) + ωi
μ ∧ ωμ

j (Xk, Xl)

= dωi
j(Xk, Xl) + ωi

μ ∧ ωμ
j (Xk, Xl).

This motivates the following definition:
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Definition 1.15. The n2 differential 2-forms defined by

Ωi
j := dωi

j + ωi
k ∧ ωk

j (1.8)

are called the curvature forms . They obviously satisfy Ωi
j(Xk, Xl) = Ri

jkl, so that
we can write

Ωi
j = Ri

jklθ
k ⊗ θl,

or using the symmetry in the last two indices Ri
jkl = Ri

jlk:

Ωi
j =

1

2
Ri

jklθ
k ∧ θl.

Equation (1.8) is called the second structure equation.

As well as the connection forms, the curvature forms are anti-symmetric:

Lemma 1.16. We have
Ωi

j = −Ωj
i .

Proof. It a direct consequence of the anti-symmetry of the connection forms and
the wedge product:

Ωi
j = dωi

j + ωi
k ∧ ωk

j

= −dωj
i + ωk

i ∧ ωj
k

= −dωj
i − ωj

k ∧ ωk
i

= −Ωj
i .

In the rest of this thesis, we will often use the 2-forms Ωij obtained from the cur-
vature forms by lowering an index. As the components of the metric with respect
to the orthonormal moving (X1, . . . , Xn) are simply gij = δij the components of
Ωij are the same as those of Ωi

j, i.e.

Ωij = gikΩ
k
j = δikΩ

k
j = Ωi

j.

1.5 First and Second Bianchi Identities

In the case of a connection with vanishing torsion, we have the following identities.

Proposition 1.17. We have

(a) the first Bianchi identity
Ωi

j ∧ θj = 0, (1.9)
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Lemma 1.18. We have
ω′ = A−1dA+ A−1ωA.

Proof. From the relation X ′ = X · A we have

X ′ · ω′ = ∇X ′

= ∇(X · A)
= (∇X) · A+X · ∇A

= (X · ω) · A+X · dA
= X · (ω · A+ dA)

= X ′ · A−1 · (ω · A+ dA) ,

whence ω′ = A−1 · dA+ A−1 · ω · A
Assuming now that the manifold is endowed with a Riemannian metric and that
the moving frames X and X ′ are orthonormal, we establish a similar transforma-
tion law for the curvature forms. Denote by Ω and Ω′ the matrices formed by the
Ωi

j and (Ω′)ij. Then

Lemma 1.19. We have
Ω′ = A−1 · Ω · A.

Equivalently denoting then inverse of A by A−1 = (bkl ) we have for all 1 ≤ i, j ≤ n

(Ω′)ij = bikΩ
k
l a

l
j.

Proof. The second structure equation in the matrix notation reads

Ω = dω + ω ∧ ω,

Hence by Lemma 1.18 we get

Ω′ = dω′ + ω′ ∧ ω′

= d
(
A−1 · dA+ A−1 · ω · A)+ (

A−1 · dA+ A−1 · ω · A) ∧ (
A−1 · dA+ A−1 · ω · A)

Since d(A−1) = −A−1 · dA · A−1 and d(dA) = 0 we get

Ω′ = − A−1 · dA · A−1 ∧ dA+ d(A−1 · ω · A) + (A−1 · dA) ∧ (A−1 · dA)
+ (A−1 · dA) ∧ (A−1 · ω · A) + (A−1 · ω · A) ∧ (A−1 · dA) + (A−1 · ω · A) ∧ (A−1 · ω · A)

= dA−1 ∧ (ω · A) + A−1 · dω · A− A−1 · ω ∧ dA+ (A−1 · dA · A−1) ∧ (ω · A)
+ (A−1 · ω) ∧ dA+ (A−1 · ω) ∧ (ω · A)

= (−A−1 · dA · A−1) ∧ (ω · A) + A−1 · dω · A+ (A−1 · dA · A−1) ∧ (ω · A)
+ (A−1 · ω) ∧ (ω · A)

= A−1 · dω · A+ (A−1 · ω) ∧ (ω · A)
= A−1 (dω + ω ∧ ω)

= A−1ΩA.
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1.7 The Gauss equation

One of the fundamental equations of the theory of Riemannian submanifolds is the
Gauss equation, relating the curvature of the ambient manifold with the curvature
of a submanifold. Let (M, g) be an m-dimensional Riemannian manifold and (N, g)
an n-dimensional Riemannian submanifold of (M, g). Then, on an open subset
U ⊂ M we consider an orthonormal moving frame (e1, . . . , em) such that the first
n vector fields form an orthonormal moving frame on N ∩ U . Let (θ1, . . . , θm) be
the dual 1-forms and let ωA

B be the connection forms of M . Observe that since
θα(X) = 0 for all X ∈ Γ(N), the restriction to N of the first structure equation
for M gives

dθi = θA ∧ ωi
A = θj ∧ ωi

j and ωi
j = −ωj

i ,

therefore the ωi
j are the connection forms of the Levi-Civita connection on N .

Now, denote by ΩA
B the curvature forms of M and by Ω

i

j the curvature forms of
N . The Gauss equation is the object of the next proposition.

Proposition 1.20. (Gauss equation)
On N ∩ U we have

Ωi
j − Ω

i

j = ωi
α ∧ ωα

j .

Proof. The second structure equation for M but restricted to N is

ΩA
B = dωA

B + ωA
C ∧ ωC

B

= dωi
j + ωi

C ∧ ωC
j

= dωi
j + ωi

k ∧ ωk
j + ωi

α ∧ ωα
j .

On the other hand, the second structure equation for N is

Ω
i

j = dωi
j + ωi

k ∧ ωk
j ,

therefore
Ωi

j − Ω
i

j = ωi
α ∧ ωα

j .

The Gauss equation can be written in terms of the components ΓA
CB:

Ωi
j − Ω

i

j = ωi
α ∧ ωα

j

=
m∑

α=n+1

−Γα
kiθ

k ∧ Γα
ljθ

l

= −
m∑

α=n+1

Γα
ikΓ

α
jlθ

k ∧ θl,
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since Γα
kl = Γα

lk by lemma 1.12. Also observe that evaluating the Gauss equation
on two vectors fields ek and el of the moving frame gives

Rijkl −Rijkl = −
m∑

α=n+1

Γα
ipΓ

α
jq(δ

p
kδ

q
l − δpl δ

q
k) = −

m∑
α=n+1

(
Γα
ikΓ

α
jl − Γα

ilΓ
α
jk

)

1.8 Conformal change of the metric
We shall now investigate how the connection and curvature forms behave when
one performs a conformal change of the metric, i.e. when the metric is multiplied
by a positive function. Consider an n-dimensional Riemannian manifold (M, g)
as well as a positive function f : M → R

∗
+. Define a new Riemannian metric g̃

on M by setting g̃ = f 2g and let (e1, . . . , en) be an orthonormal moving frame
with respect to the metric g on a subset U ⊂ M , with dual coframe (θ1, . . . , θn).
Then an orthonormal moving frame with respect to g̃ is given by ẽi =

1
f
ei and its

dual coframe is simply θ̃i = fθi. In the basis (θi), write the differential of f as
df = ajθ

j with aj ∈ C∞(M). The relation between the connection forms of (M, g̃)
and (M, g) is given in the following lemma:

Lemma 1.21. We have

ω̃i
j = ωi

j +
1

f
(ajθ

i − aiθ
j)

Proof. The first structure equation for both (M, g̃) and (M, g) give

θ̃j ∧ ω̃i
j = θ̃i

= d(fθi)

= df ∧ θi + fdθi

= df ∧ θi + f(θj ∧ ωi
j)

= θj ∧ (
ajθ

i + fωi
j

)
,

but the left-hand side can also be written as θj ∧ fω̃i
j, therefore we get

θj ∧ (
ajθ

i + fωi
j − fω̃i

j

)
= 0.

Since aiθ
j ∧ θj = 0, the last equation can be written(

ajθ
i − aiθ

j + fωi
j − fω̃i

j

) ∧ θj = 0.

Let ηij = ajθ
i−aiθ

j+fωi
j−fω̃i

j which we write in the basis (θk) as ηij = bijkθ
k. Then

observe that ηij = −ηji and that ηij ∧ θj = 0, so that we have the (anti-)symmetries

bijk = −bjik and bijk = bikj.
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But this implies that bijk = 0, indeed

bijk = −bjik = −bjki = bkji = bkij = −bikj = −bijk,

therefore ηij = 0, i.e.

ajθ
i − aiθ

j + fωi
j − fω̃i

j = 0 ⇐⇒ ω̃i
j = ωi

j +
1

f
(ajθ

i − aiθ
j)

This relation between 1-forms yields an expression relating the components Γ̃i
kj

and Γi
kj. Indeed from the last lemma we get the equation

f Γ̃i
ljθ

l = Γi
ljθ

l +
1

f

(
ajθ

i − aiθ
j
)
,

since ω̃i
j = Γ̃i

lj θ̃
l = f Γ̃i

ljθ
l. Evaluating both sides of the equation over ek gives

Γ̃i
kj =

1

f
Γi
kj +

1

f 2

(
ajδ

i
k − aiδ

j
k

)
(1.11)

The change of the curvature tensor in the case of a conformal change of the metric
is rather complicated. Although the general form of Ω̃i

j is quite messy, we will be
interested in a case where the conformal factor f is sufficiently simple for the next
formula to be manageable.

Proposition 1.22. The curvature forms of (M, g̃) are given by

Ω̃i
j = Ωi

j + θi ∧ εj − θj ∧ εi − aka
kθi ∧ θj,

where
εi =

2ai
f 2

df +
1

f
(akω

k
i − dai)

Proof. The second structure equation for (M, g̃) reads

Ω̃i
j = dω̃i

j + ω̃i
k ∧ ω̃k

j .

Using Lemma 1.21 this equation can be rewritten

Ω̃i
j = d

(
ωi
j +

1

f
(ajθ

i − aiθ
j)

)
+

(
ωi
k +

1

f
(akθ

i − aiθ
k)

)
∧
(
ωk
j +

1

f
(ajθ

k − akθ
j)

)

= dωi
j + d

(
1

f

)(
ajθ

i − aiθ
j
)
+

1

f
d
(
ajθ

i − aiθ
j
)
+ ωi

k ∧ ωk
j + ωi

k ∧
1

f

(
ajθ

k − akθ
j
)

1

f

(
akθ

i − aiθ
k
) ∧ ωk

j +
1

f 2

(
akθ

i − aiθ
k
) ∧ (

ajθ
k − akθ

j
)
.

But we know the following things:
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(a) the terms dωi
j + ωi

k ∧ ωk
j are equal to Ωi

j by the second structure equation for
(M, g);

(b) the differential of the fraction 1
f

is given by

d

(
1

f

)
= − 1

f 2
df = − 1

f 2
akθ

k;

(c) the terms dθi are equal via the first structure equation for (M, g) to

dθi = θj ∧ ωi
j;

therefore the above expression for Ω̃i
j can be written as

Ω̃i
j = Ωi

j −
1

f 2

(
akajθ

k ∧ θi − akaiθ
k ∧ θj

)
+

1

f

(
daj ∧ θi − dai ∧ θj + ajθ

k ∧ ωi
k − aiθ

k ∧ ωj
k

)
+

1

f

(
akθ

j ∧ ωi
k)− ajθ

k ∧ ωi
k

)
+

1

f

(
akθ

i ∧ ωk
j − aiθ

k ∧ ωk
j

)
+

1

f 2

(
akajθ

i
∧θ

k − aka
kθi ∧ θj + aiakθ

k ∧ θj
)

and by simplifying and reorganizing the terms we get

Ω̃i
j = Ωi

j + θi ∧
(
2aj
f 2

akθ
k +

1

f
(akω

k
j − daj)

)

− θj ∧
(
2ai
f 2

akθ
k +

1

f
(akω

k
i − dai)

)
− aka

kθi ∧ θj,

which gives the desired result by remembering that akθk = df and by setting

εi =
2ai
f 2

df +
1

f
(akω

k
i − dai).

Remark 1.23. Proposition 1.22 is the moving frame version of the well-known
formula giving the (0, 4) curvature tensor after a conformal change of the metric
g̃ = e2ϕg:

R̃ = e2ϕ
(
R− g ©∧

(
∇dϕ− dϕ ◦ dϕ+

1

2
|dϕ|2g

))
,

where ©∧ is the Kulkarni-Nomizu product which is defined on p. 30. This formula
can be found in [Bes08].
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Remark 1.24. A case, which will be of particular interest in the sequel, is when
the conformal factor is simply given by a constant, i.e. the new metric writes
g̃ = t2g, with t ∈ R

∗
+. In this case, writing f : M → R

∗
+ the constant function

f(p) = t for all p ∈ M , we have that df = 0, i.e. with the previous notations
ak = 0 for all 1 ≤ k ≤ n. By Lemma 1.21 and Proposition 1.22 we obtain that

ω̃i
j = ωi

j and Ω̃i
j = Ωi

j.

1.9 The Pfaffian
In this section, we introduce the Pfaffian of an even-dimensional squared matrix.
It is a combinatorial expression depending on the coefficients of the considered
matrix and it appears in a crucial way in the Gauss-Bonnet-Chern theorem. We
begin with the case where the matrix has coefficients in R, but what will be
important is the case where the considered matrix is a matrix of 2-forms, more
precisely with the curvature forms Ωi

j as coefficients.

Definition 1.25. Let n = 2k be an even integer and let A ∈ Mn(R) be a squared
matrix. The Pfaffian of A, is the following scalar

Pf(A) =
1

2kk!

∑
σ∈S2k

εσAσ1σ2 · · ·Aσ2k−1σ2k
(1.12)

One of the main features of the Pfaffian is that for a skew-symmetric matrix A we
have

Pf(A)2 = det(A).

See [Spi99, Vol. 5, p. 289] for additional details. For the expression (1.12) to
make sense, it is not necessary that the coefficients of the matrix belong to R

or C. Actually, it is sufficient for them to be in a commutative ring. Following
Spivak, we consider at each point p ∈ M the ring (for the wedge product) of
even-dimensional differential forms on TpM

Λe(TpM) = R⊕ Λ2(TpM)⊕ . . .⊕ Λ2k(TpM),

which is commutative. Then at each point p ∈ M , we consider the anti-symmetric
matrix Ω(p) = (Ωij(p)) ∈ M2k(Λ

e(TpM)) with coefficients the curvature forms of
M at p. Choosing an orthonormal moving frame (e1, . . . , en) on an open subset
U ⊂ M , it makes therefore sense to look at the Pfaffian of Ω, which is a 2k-form
on U :

Pf(Ω) =
1

2kk!

∑
σ∈S2k

εσΩσ1σ2 ∧ . . . ∧ Ωσ2k−1σ2k
. (1.13)

Although the Pfaffian is defined on the domain of the chosen moving frame it
appears that if M is oriented, then it is a differential form on the whole of the
manifold M .
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Proposition 1.26. Let (M, g) be an oriented even dimensional Riemannian man-
ifold and let E = (e1, . . . , en) and E = (e1, . . . , en) be two orthonormal moving
frames on a open subset U ⊂ M with associated matrices of curvature forms Ω
and Ω′. Then

Pf(Ω′) = det(A) Pf(Ω),

where E = E · A.

Proof. On U the two moving frames are related by

E = E · A
with A : U → O(n) a smooth map. By Lemma 1.19 we know that the curvature
forms are related by the equation

Ω
i

j =
n∑

r,s=1

ariΩ
r
sa

s
j ,

since the coefficients of A = (aij) are given by aji . Lowering an index we get

Ωij =
n∑

r,s=1

ariasjΩrs

therefore we have

Pf(Ω) =
1

2kk!

∑
σ∈S2k

εσΩσ1σ2 ∧ . . . ∧ Ωσ2k−1σ2k

=
1

2kk!

∑
σ∈S2k

n∑
i1,...,i2k=1

εσai1σ1ai2σ2 · · · ai2k−1σ2k−1
ai2kσ2k

Ωi1i2 ∧ . . . ∧ Ωi2k−1i2k

=
1

2kk!

n∑
i1,...,i2p=1

( ∑
σ∈S2k

εσai1σ1 · · · ai2kσ2k

)
Ωi1i2 ∧ . . . ∧ Ωi2k−1i2k

=
1

2kk!

n∑
i1,...,i2k=1

εi1...i2k det(A)Ωi1i2 ∧ . . . ∧ Ωi2k−1i2k

= det(A)
1

2kk!

∑
σ∈S2k

εσΩσ1σ2 ∧ . . . ∧ Ωσ2k−1σ2k

= det(A) Pf(Ω)

As a corollary we get

Corollary 1.27. The Pfaffian of Ω of an oriented Riemannian manifold (M, g) is
a globally defined n-differential form on M , i.e. Pf(Ω) ∈ Ωn(M).
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Proof. Since the manifold is oriented, we can choose the two orthonormal moving
frames to be positively oriented. Therefore the map A of the last proof take values
in SO(n) rather than in O(n). Whence

Pf(Ω) = det(A) Pf(Ω) = Pf(Ω).

Example 1.28. Recall that in dimension 2, there is only one non zero curvature
form (up to sign), namely Ω1

2 = −Ω2
1. Therefore, given a Riemannian surface

(S, g), the Pfaffian of its curvature form matrix is simply

Pf(Ω) =
1

2
(Ω12 − Ω21) = Ω12 =

1

2
R12ijθ

i ∧ θj = R1212dvolS = KdvolS,

where K is the Gauss curvature of the surface S. So if S is closed, we can write
the Gauss-Bonnet theorem for S in terms of the Pfaffian of its curvature form:∫

S

Pf(Ω) = 2πχ(S).

1.10 Conical Warped-Product Manifolds
Let (N, gN) be an (n−1)-dimensional compact Riemannian manifold and consider
the manifold M = N × (0,∞) endowed with the following warped-product metric

g = f 2gN + dt2,

where f : M → (0,∞) is defined by f(x, t) = t for (x, t) ∈ N × (0,∞). Such
a warped-product metric will be called a conical warped-product metric. Let
(e1, . . . , en−1) be an orthonormal moving frame on a subset U ⊂ N and let en = ∂

∂t
,

with t the arclentgh parameter on (0,∞). Then, at each point (x, t) ∈ M we have
a splitting of the tangent space as

T(x,t)M = TxN ⊕ R,

and we can extend the vector fields eA to M . In order to get an orthonormal
moving frame on U × (0,∞) we need to scale those extensions by setting

ei =
1

f
ei and en = en.

Denote by θ
A and θA the dual forms to eA and eA so that we have the relations

θ
i
= fθi and θ

n
= θn = dt.

The warped-product structure on M yields an expression for the curvature forms
of M in terms of those of the submanifold N . Indeed, via the Gauss equation,
one can relate the curvature forms of M with those of a hypersurface of the form
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(Nt, gt) = (N, t2gN) for some t ∈ (0,∞). Since (Nt, gt) is conformally equivalent
to (N, g) with a constant conformal factor, we know by Proposition 1.22 that

ωt i
j = ωi

j and Ωt i
j = Ωi

j,

where ωt i
j and Ωt i

j denote the connection and curvature forms of (Nt, gt)
1. On the

other hand, the Gauss equation for the submanifold (Nt, gt) of (M, g) gives

Ω
i

j − Ωt i
j = ωi

n ∧ ωn
j ,

therefore the curvature forms of M can be written as

Ω
i

j = Ωi
j − ωi

n ∧ ωj
n,

so it remains to compute the connection forms ωi
n.

Proposition 1.29. We have {
ωi
n = θi,

Ω
i

n = 0.

Proof. On one hand, the first structure equation for M gives

dθ
i
= θ

A ∧ ωi
A

= θ
n ∧ ωi

n + θ
j ∧ ωi

j

= θ
n ∧ Γ

i

Anθ
A
+ θ

j ∧ Γ
i

kjθ
k

= θ
n ∧ Γ

i

jnθ
j
+ θ

j ∧ Γ
i

kjθ
k

= Γ
i

jnθ
n ∧ θ

j
+ Γ

i

kjθ
j ∧ θ

k
.

On the other hand, using the fact that θ
i
= fθi and the first structure equation

for N we get

dθ
i
= d(fθi)

= df ∧ θi + fdθi

=
∂f

∂t
dt ∧ θi + f(θj ∧ ωi

j)

= θ
n ∧ θi + θ

j ∧ Γi
kjθ

k

=
1

f
θ
n ∧ θ

i
+

1

f
Γi
kjθ

j ∧ θ
k
,

1Here the superscript t refers to the arclength parameter and not to the transpose of the
matrix
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therefore, by comparing the coefficients of θn ∧ θ
j we get

Γ
i

jn =

{
0 if i �= j,
1
f

if i = j.
⇐⇒ Γ

n

ji =

{
0 if i �= j,

− 1
f

if i = j.

Moreover, since θ
n
= dt we get that

0 = ddt = dθ
n
= θ

A ∧ ωn
A = θ

j ∧ ωn
j = Γ

n

Ajθ
j ∧ θ

A
,

so that we deduce Γ
n

Aj = 0 for all A �= j and in particular Γ
n

nj = 0 for all j =
1, . . . , n− 1. Hence

ωn
i = Γ

n

Aiθ
A
= Γ

n

iiθ
i
= − 1

f
θ
i
= −θi,

i.e. ωi
n = θi by anti-symmetry.

As a consequence we immediately get the other equation:

Ω
n

i = dωn
i + ωn

A ∧ ωA
i

= −dθi + ωn
j ∧ ωj

i

= −dθi + θj ∧ ωi
j

= −dθi + dθi

= 0.

As a corollary of this proposition we obtain that the Pfaffian of the curvature
forms of the conical warped-product (M, g) vanishes at each point.

Corollary 1.30. We have
Pf(Ω) = 0

Proof. If the dimension n of M is odd, then the Pfaffian is zero by definition. If
n = 2p, then

Pf(Ω) =
1

2pp!

∑
σ∈S2p

εσΩσ1σ2 ∧ . . . ∧ Ωσ2p−1σ2p ,

so each summand contains a curvature form of the type Ω
i

n or Ωn

i which is zero by
the last proposition. Whence Pf(Ω) = 0.

So we have shown that the curvature forms of M are given by

Ω
i

j = Ωi
j − θi ∧ θj. (1.14)
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It appears that the form θi∧θj can be written using the Kulkarni-Nomizu product
of the metric with itself:

θi ∧ θj =
1

2
(gN ©∧ gN) (ei, ej, ·, ·) : Γ(U)× Γ(U) −→ C∞(U), (1.15)

where ©∧ denotes the following product on the algebra of symmetric (2, 0)-tensors:
given α and β two symmetric (2, 0)-tensors, their Kulkarni-Nomizu product is the
(4, 0)-tensor given by

α©∧ β(X, Y, Z,W ) = α(X,Z)β(Y,W ) + α(Y,W )β(X,Z)

− α(X,W )β(Y, Z)− α(Y, Z)β(X,W ).

In particular, since gN is a symmetric (2, 0)-tensor, we have

(gN ©∧ gN)(X, Y, Z,W ) = 2 (gN(X,Z)gN(Y,W )− gN(X,W )gN(Y, Z)) .

The 2-forms given in (1.15) does actually have a deep geometrical meaning; indeed,
the curvature tensor of a constant sectional curvature κ Riemannian manifold
(V, gV ) can be written

Rκ =
κ

2
gV ©∧ gV ,

and we recall that the curvature tensor can also be written (as a double-form) in
terms of the curvature forms as

R =
1

2
Ωij ⊗ θi ∧ θj.

Hence it follows that if N happens to be the unit sphere, the 2-forms given by
θi∧θj are actually its curvature forms. In this case, the curvature forms Ωi

j vanish
identically, which is easily explained since the product manifold S

n−1 × (0,∞)
endowed with the warped-product metric g = f 2gSn−1 +dt2 is isometric to R

n \{0}
with the euclidean metric and is therefore flat.
Let us summarize the situation: the connection and curvature forms of M are
given in terms of those of N by{

ωi
j = ωi

j and ωi
n = θi,

Ω
i

j = Ωi
j − θi ∧ θj and Ω

i

n = 0.

Proposition 1.31. The curvature tensor R of M is given by

R = t2 (R−D) , (1.16)

where we have set D = 1
2
gN ©∧ gN and R is the curvature tensor of N .
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Remark 1.32. There is a slight abuse of notation in Equation (1.16) since R
is defined on M while R − D is defined on N . What it really means is that
the tensor R is given by t2(R − D) in the directions that are tangent to N and
vanishes in the normal direction en. At the level of components with respect to
the basis (e1, . . . , en) this gives RABCD = 0 if any of the indices is equal to n and
if 1 ≤ i, j, k, l ≤ n− 1

Rijkl =
1

t2
(Rijkl −Dijkl),

indeed

Rijkl = R(ei, ej)(ek, el)

=
1

t4
R(ei, ej)(ek, el)

=
1

t2
(R−D)(ei, ej)(ek, el)

=
1

t2
(Rijkl −Dijkl).

Proof. Indeed on U × (0,∞) we have since Ω
i

n = 0:

R =
1

2
ΩAB ⊗

(
θ
A ∧ θ

B
)

=
1

2
Ωij ⊗

(
θ
i ∧ θ

j
)

=
t2

2

(
Ωij − θi ∧ θj

)⊗ (
θi ∧ θj

)
= t2

(
1

2
Ωij ⊗

(
θi ∧ θj

)− 1

2

(
θi ∧ θj

)⊗ (
θi ∧ θj

))
= t2 (R−D) .

To conclude this study of conical warped-product, let us compute the Ricci, scalar
and sectional curvature of (M, g).

Proposition 1.33. The Ricci tensor, the scalar curvature and the sectional cur-
vature of (M, g) are given by

Ricg = RicgN − C1
2(D),

Scalg =
1

t2
(ScalgN − (n− 1)(n− 2)) ,

Kg =
1

t2
(KgN − 1)

Where C1
2 denotes the contraction of the first upper index and the second lower

index of the tensor D as defined in Section 1.1.2.



32 CHAPTER 1. BACKGROUND ON RIEMANNIAN GEOMETRY

It is actually worth noting that if N = S
n−1, then C1

2(D) is the Ricci tensor of the
sphere since D is the curvature tensor of Sn−1. Moreover, the constant (n−1)(n−2)
appearing in the formula for the scalar curvature is in fact the scalar curvature of
the unit sphere.

Proof. Let us consider the orthonormal moving frame (e1, . . . , en) described above.
Then denoting by Rij the components of Ricg with respect to this moving frame
as well as by Rij the components of RicgN with respect to (e1, . . . , en−1) we have
for all 1 ≤ i, j, k ≤ n− 1:

Rij = R
k

ikj

=
n∑

k=1

Rkikj

=
n−1∑
k=1

g(R(ek, ej)ei, ek)

= t−4

n−1∑
k=1

g
(
t2(R−D)(ek, ej)ei, ek

)

= t−2

n−1∑
k=1

[gN (R(ek, ej)ei, ek)− gN (D(ek, ej)ei, ek)]

=
1

t2
Rij − 1

t2

n−1∑
k=1

Dkikj

=
Rij − (C1

2(D))ij
t2

,

where (C1
2(D))ij is the component (ij) of C1

2(D). Therefore we have shown that

Ricg = RicgN − C1
2(D).

Let us now compute the scalar curvature. Using the fact that

Dijkl = δikδjl − δilδjk,
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we get

n−1∑
k=1

Dkikj =
n−1∑
k=1

(δkkδij − δkjδki)

=
n−1∑
k=1

(δij − δkjδki)

= (n− 1)δij −
n−1∑
k=1

δkjδki

=

{
0 if i �= j,

n− 2 if i = j.

Hence by definition of the scalar curvature we have

Scalg =
n∑

i=1

Rii

=
1

t2

n−1∑
i=1

(
Rii −

n−1∑
k=1

Dkiki

)

=
1

t2

(
ScalgN −

n−1∑
k=1

(n− 2)

)

=
1

t2
(ScalgN − (n− 1)(n− 2))

=
1

t2
(ScalgN − ScalSn−1) .

Finally for the sectional curvature we have for X, Y ∈ Γ(N) extended by 0 in the
normal direction en

Kg(X, Y ) =
R(X, Y )(Y,X)

g(X,X)g(Y, Y )− g(X, Y )2

=
t2(R−D)(X, Y )(Y,X)

t2gN(X,X)t2gN(Y, Y )− t4gN(X, Y )2

=
1

t2
R(X, Y )(Y,X)

gN(X,X)gN(Y, Y )− gN(X, Y )2
− 1

t2
D(X, Y )(Y,X)

gN(X,X)gN(Y, Y )− gN(X, Y )2

=
1

t2
(KgN (X, Y )− 1)





Chapter 2

Lipschitz-Killing Curvatures

When working with Riemannian manifolds of arbitrary dimension, one encoun-
ters a large variety of quantities constructed from the curvature tensor R such
as the Ricci curvature or the scalar curvature. In this section, we define certain
curvatures, called the Lipschitz-Killing curvatures of the manifold, by contracting
some powers of the Riemann tensor. Those curvatures generalize in some sense
the mean and Gauss curvatures that appear in dimension two. In order to be
able to define them, we need to introduce the algebra of double forms which is
constructed from the standard algebra of differential forms. This algebraic detour
will yield a natural interpretation of the curvature tensor as a double-form, which
will be convenient in view of taking exterior powers of this tensor.

2.1 The Algebra of double forms

Let V be an n-dimensional real vector space. Denote by

Λ(V ) =
n⊕

p=0

Λp(V )

the usual algebra of differential forms (also called the Grassmann algebra).

Definition 2.1. For 1 ≤ p, q ≤ n, the vector space of double-forms of type (p, q)
is

Dp,q(V ) = Λp(V )⊗R Λq(V ).

Therefore an element ω ∈ Dp,q(V ) can be written as

ω =
n∑

i=1

αi ⊗ βi,

where αi are p-forms and βi are q-forms.

35
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Note that if q = 0 then Dp,0(V ) = Λp(V ). Using the exterior product on Λp(V ),
one can define an exterior product on Dp,q(V ) by setting for ω1 = α1 ⊗ β1 ∈ Dp,q

and ω2 = α2 ⊗ β2 ∈ Dr,s(V ):

ω1 ∧ ω2 = (α1 ∧ α2)⊗ (β1 ∧ β2) ∈ Dp+r,q+s(V ).

By abuse of notation, the same symbol is used for the exterior product on Λp(V )
and Λp,q(V ). Hence ω1 ∧ ω2 is a double-form of type (p + r, q + s) and its action
on vectors v1, . . . , vp+r, w1, . . . , wq+s ∈ V is given by

ω1 ∧ ω2(v1, . . . , vp+r)(w1, . . . , wq+s) =
1

p!r!q!s!

∑
σ∈Sp+r

τ∈Sq+s

εσετα1(vσ1 , . . . , vσp)β1(wτ1 , . . . , wτq)

· α2(vσp+1 , . . . , vσp+r)β2(wτq+1 , . . . , wτq+s)

This product is associative and it anti-commutes in the sense that

ω1 ∧ ω2 = (−1)pr+qsω2 ∧ ω1. (2.1)

Definition 2.2. Let

D(V ) :=
n⊕

p,q=0

Dp,q(V ).

Then (D(V ),+,∧) is an algebra called the algebra of double-forms.

Given ω a double-form of type (p, q), we denote by ωk the k-fold wedge product
of ω with itself, i.e.

ωk = ω ∧ . . . ∧ ω︸ ︷︷ ︸
k times

,

which is a double-form of type (kp, kq) and by convention we set ω0 = 1 ∈
D0,0(V ) = R. Now we define operators called contractions acting on D(V ) which
allows us to lower the degree of a double-form. If (e1, . . . , en) is any orthonormal
basis of V

C0(ω)(v1, . . . , vp)(w1, . . . , wq) = ω(v1, . . . , vp)(w1, . . . , wq)

Ck(ω)(v1, . . . , vp−k)(w1, . . . , wq−k) =
n∑

i=1

Ck−1(v1, . . . , vp−k, ei)(w1, . . . , wq−k, ei)

It is not difficult to see that this definition does not depend on the chosen or-
thonormal basis.
Note that if ω is of type (p, p), then the kp-th contraction of ωk is a scalar given
by

Ckp(ωk) =
n∑

i1,...,ikp=1

ωk(ei1 , . . . , eikp)(ei1 , . . . , eikp) (2.2)

Now, given an n-dimensional manifold we consider the bundles associated to
Dp,q(V ) and D(V ).
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Definition 2.3. Let M be a manifold of dimension n, the bundle of double-forms
of type (p, q), denoted Dp,q(M) is the tensor product bundle

Dp,q(M) = Λp(M)⊗C∞(M) Λ
q(M).

Then the bundle of double-forms is

D(M) =
n⊕

p,q=0

Dp,q(M).

Finally, the sets of all smooth sections of Dp,q(M) and D(M) are denoted by

Γ(Dp,q(M)) and Γ(D(M)).

We will be particularly interested in those double-forms that are symmetric, i.e.
that are of type (p, p) and satisfy

ω(X1, . . . , Xp)(Y1, . . . , Yp) = ω(Y1, . . . , Yp)(X1, . . . , Xp),

for all X1, . . . , Xp, Y1, . . . , Yp ∈ Γ(M).

Example 2.4. (a) Riemannian metrics are fields of symmetric double-forms of
type (1, 1).

(b) An important example of a field of symmetric double-forms of type (2, 2) is
the Riemannian curvature tensor R of a Riemannian manifold (M, g). Indeed,
if (e1, . . . , en) is an orthonormal moving frame on U ⊂ M with associated
coframe (θ1, . . . , θn), then one can write the curvature tensor as the following
tensor product

R =
1

2
Ωij ⊗ θi ∧ θj, (2.3)

where Ωij = δikΩ
k
j = Ωi

j are the curvature forms. This expression is indeed
symmetric since

R(ei, ej)(ek, el) =
1

2
Ωμν ⊗ θμ ∧ θν(ei, ej)(ek, el)

=
1

2
Rμνij(δ

μ
k δ

ν
l − δμl δ

ν
k)

=
1

2
(Rklij −Rlkij)

= Rklij

= Rijkl

= R(ek, el)(ei, ej)
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2.1.1 Double-forms as endomorphisms

Through the identification of a finite dimensional vector space V endowed with a
scalar product g with its dual V ∗, we have

End(V ) = V ∗ ⊗ V ∼= V ⊗ V.

An element v ⊗ w ∈ V ⊗ V is sent onto the endomorphism defined by g(v, ·)w :
V → V . The trace of an endomorphism of V can be defined without using any
basis of V by using its identification with an element of V ∗ ⊗ V .

Definition 2.5. For T ∈ End(V ), let ηi ⊗ vi ∈ V ∗ ⊗ V its image under the above
isomorphism and set

Tr(T ) = ηi(vi).

This definition of the trace coincides with the usual one:

Lemma 2.6. Let (e1, . . . , en) be a basis of V and let (aji ) be the matrix of T with
respect to this basis. Then

Tr(T ) = aii

Proof. Let (θ1, . . . , θn) be the dual basis to (e1, . . . , en). As an element of V ∗ ⊗ V ,
the endomorphism T is

T = θi ⊗ T (ei).

Indeed
T (v) = T (viei) = viT (ei) = θi(v)T (ei).

Therefore,
Tr(T ) = θi(T (ei)) = θi(ajiej) = aii

Now, by taking Λp(V ) as vector space, we can naturally identify the space of
double-forms of type (p, p) with End(Λp(V )), indeed

Dp,p(V ) = Λp(V )⊗ Λp(V ) ∼= Λp(V )⊗ Λp(V ) = End(Λp(V )),

where Λp(V ) is the space of p-vectors, which is the dual of Λp(V ). So we have

α⊗ β︸ ︷︷ ︸
∈Dp,p(V )

�−→ g(α, ·)⊗ β︸ ︷︷ ︸
∈Λp(V )⊗Λp(V )

�−→ g(α, ·)β︸ ︷︷ ︸
∈End(V)

=: T (α⊗ β)

Observe that according to definition 2.5 the trace of T (α⊗ β) is given by

Tr(T (α⊗ β)) = g(α, β).

The trace of T (α⊗ β) corresponds to the contraction of α⊗ β:
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Lemma 2.7. Let A ∈ Dp,p(V ) and let T (A) ∈ End(ΛpV ) be the image of A under
the above isomorphism. Then

Cp(A) = Tr(T (A)) (2.4)

Proof. Let (e1, . . . , en) be an orthonormal basis of V with dual basis (θ1, . . . , θn).
Then the set

{θi1 ∧ . . . ∧ θip | 1 ≤ i1 < . . . < ip ≤ n}
is an orthonormal basis of Λp(V ). It is enough to show the result for A of the form
A = α⊗ β. Hence, writing

α = αi1...ipθ
i1 ∧ . . . ∧ θip and β = βj1...jpθ

j1 ∧ . . . ∧ θjp ,

we have on one hand by the definition of the contraction operator (2.2)

Cp(α⊗ β) =
n∑

μ1,...,μp=1

α(eμ1 , . . . , eμp)β(eμ1 , . . . , eμp)

=
n∑

μ1,...,μp=1

αμ1...μpβμ1...μp .

On the other hand

Tr(T (α⊗ β)) = g(α, β)

= αi1...ipβj1...jpg
(
θi1 ∧ . . . ∧ θip , θj1 ∧ . . . ∧ θjp

)
=

n∑
i1,...,ip=1

αi1...ipβi1...ip .

Example 2.8. In case where the considered double-form is the curvature tensor
R (see example 2.4), the correspondant endomorphism is the curvature endomor-
phism

R : Λ2(M) −→ Λ2(M), R(θi ∧ θj) = g(R(ei, ej)−,−),

where (θ1, . . . , θn) is the dual coframe to some moving frame (e1, . . . , en) on M .

Remark 2.9. Note that despite End(Λ(V )) being an algebra for the composition
of endomorphisms, the above isomorphism between Dp,p(V ) and End(Λp(V )) does
not extend to an algebra isomorphism between

⊕
p≥0 D

p,p(V ) and End(Λ(V )) since
the composition of endomorphisms is not commutative (in the sense described
above). In particular, if ω ∈ Dp,p(V ), then, denoting by T (ω) its corresponding
endomorphism, we have in general that

ω ∧ . . . ∧ ω = ωk �= T (ω)k = T (ω) ◦ . . . ◦ T (ω),
since ωk ∈ Dkp,kp(V ) and T (ω)k ∈ End(Λp(V )).
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2.2 The Lipschitz-Killing curvatures
It is now possible to define the Lipschitz-Killing curvatures of a Riemannian man-
ifold (M, g). The definition relies on the interpretation of the curvature tensor as
a double-form of type (2, 2).

Definition 2.10. For 0 ≤ j ≤ n the j-th Lipschitz-Killing curvature of M is the
following n-form

κj(M) =

{
1

j!(j/2)!
Cj(R

j
2 )dvolM if j is even,

0 if j is odd.
(2.5)

The constant factor 1
j!(j/2)!

finds its justification both in Weyl’s tube formula and
in the Gauss-Bonnet-Chern Theorem. With this precise normalization the last
Lipschitz-Killing curvature is precisely the Pfaffian of the curvature forms (see
Lemma 2.13).
It is useful to work out an expression of the scalar Cj(Rj/2) with respect to some
orthonormal moving frame.

Proposition 2.11. Let (e1, . . . , en) be an orthonormal moving frame on U ⊂ M
and let j = 2m be even. Then

C2m(Rm) =
(2m)!

22m(n− 2m)!

∑
σ∈Sn

∑
τ∈S2m

ετRσ1σ2στ1στ2
· · ·Rσ2m−1σ2mστ2m−1στ2m

Proof. From equation (2.3) we have that

Rm =
1

2m
(
Ωij ⊗ θi ∧ θj

)m
=

1

2m

n∑
i1,...,i2m=1

(
Ωi1i2 ∧ . . . ∧ Ωi2m−1i2m

)⊗ (
θi1 ∧ . . . ∧ θi2m

)
=

1

2m(n− 2m)!

∑
σ∈Sn

(
Ωσ1σ2 ∧ . . . ∧ Ωσ2m−1σ2m

)⊗ (θσ1 ∧ . . . ∧ θσ2m) ,

since there are exactly (n − 2m)! permutations σ ∈ Sn that send {1, . . . , 2m} to
the set {i1, . . . , i2m}. Now, by definition of the wedge product, we have for some
fixed σ, τ ∈ Sn

Ωσ1σ2 ∧ . . . ∧ Ωσ2m−1σ2m(eτ1 , . . . , eτ2m) =
1

2m

∑
ρ∈S2m

ερΩσ1σ2(eτρ1 , eτρ2 ) · · ·Ωσ2m−1σ2m(eτρ2m−1
, eτρ2m )

=
1

2m

∑
ρ∈S2m

ερRτρ1τρ2σ1σ2 · · ·Rτρ2m−1τρ2mσ2m−1σ2m

=
1

2m

∑
ρ∈S2m

ερRσ1σ2τρ1τρ2
· · ·Rσ2m−1σ2mτρ2m−1τρ2m

,
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and since θσ1 ∧ . . . ∧ θσ2m(eτ1 , . . . , eτ2m) = δσ1...σ2m
τ1...τ2m

is the generalized Kronecker
symbol, we have finally that

C2m(Rm) =
n∑

i1,...,i2m=1

Rm(ei1 , . . . , ei2m)(ei1 , . . . , ei2m)

=
1

(n− 2m)!

∑
τ∈Sn

Rm(eτ1 , . . . , eτ2m)(eτ1 , . . . , eτ2m)

=
1

22m((n− 2m)!)2

∑
σ,τ∈Sn

∑
ρ∈S2m

ερδ
σ1...σ2m
τ1...τ2m

Rσ1σ2τρ1τρ2
· · ·Rσ2m−1σ2mτρ2m−1τρ2m

.

In order for δσ1...σ2m
τ1...τ2m

not to vanish, the set (τ1, . . . , τ2m) must be a permutation
of the set (σ1, . . . , σ2m), and there are (2m)! such permutations. Moreover, once
the elements (τ1, . . . , τ2m) are fixed, one can permute the n− 2m remaining terms
(τ2m+1, . . . , τn) and there are (n − 2m)! such permutations. In other words if
σ ∈ Sn is fixed then:

Card
({τ ∈ Sn | δσ1...σ2m

τ1...τ2m
�= 0}) = (2m)!(n− 2m)!.

Observe also that if δσ1...σ2m
τ1...τ2m

�= 0, then there exists π ∈ S2m such that

(τ1, . . . , τ2m) = (σπ1 , . . . , σπ2m) and δσ1...σ2m
τ1...τ2m

= επ.

Therefore, we can write∑
τ∈Sn

∑
ρ∈S2m

ερδ
σ1...σ2m
τ1...τ2m

Rσ1σ2τρ1τρ2
· · ·Rσ2m−1σ2mτρ2m−1τρ2m

= (n− 2m)!
∑

ρ,π∈S2m

ερεπRσ1σ2σπρ1
σπρ2

· · ·Rσ2m−1σ2mσπρ2m−1
σπρ2m

τ=π◦ρ
= (n− 2m)!(2m)!

∑
τ∈S2m

ετRσ1σ2στ1στ2
· · ·Rσ2m−1σ2mστ2m−1στ2m

,

so that finally

C2m(Rm) =
(2m)!

22m(n− 2m)!

∑
σ∈Sn

∑
τ∈S2m

ετRσ1σ2στ1στ2
· · ·Rσ2m−1σ2mστ2m−1στ2m

We can express every Lipschitz-Killing curvature in terms of the curvature forms
of the manifold.

Proposition 2.12. For all 1 ≤ k ≤ �n
2
� we have

κ2k(M) =
1

2kk!(n− 2k)!

∑
σ∈Sn

εσΩσ1σ2 ∧ . . .Ωσ2k−1σ2k
∧ θσ2k+1 ∧ . . . ∧ θσn
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Proof. For σ ∈ Sn fixed, set

ησ2k = εσΩσ1σ2 ∧ . . .Ωσ2k−1σ2k
∧ θσ2k+1 ∧ . . . ∧ θσn

then, since Ωij =
1
2
Rijklθ

k ∧ θl we have

ησ2k =
1

2k
εσRσ1σ2i1i2 · · ·Rσ2k−1σ2ki2k−1i2kθ

i1 ∧ . . . ∧ θi2k ∧ θσ2k+1 ∧ . . . ∧ θσn

=
1

2k

∑
τ∈S2k

εσRσ1σ2στ1στ2
· · ·Rσ2k−1σ2kστ2k−1

στ2k
θστ1 ∧ . . . ∧ θστ2k ∧ θσ2k+1 ∧ . . . ∧ θσn

=
1

2k

∑
τ∈S2k

εσετRσ1σ2στ1στ2
· · ·Rσ2k−1σ2kστ2k−1

στ2k
θσ1 ∧ . . . ∧ θσn

=
1

2k

∑
τ∈S2k

ετRσ1σ2στ1στ2
· · ·Rσ2k−1σ2kστ2k−1

στ2k
dvolM .

Then comparing the expression∑
σ∈Sn

ησ2k =
1

2k

∑
τ∈S2k

ετRσ1σ2στ1στ2
· · ·Rσ2k−1σ2kστ2k−1

στ2k
dvolM ,

with the one for κ2k(M) in Proposition 2.11, we get that

κ2k(M) =
1

2kk!(n− 2k)!

∑
σ∈Sn

εσΩσ1σ2 ∧ . . .Ωσ2k−1σ2k
∧ θσ2k+1 ∧ . . . ∧ θσn .

Observe that some of those κj(M) are already well-known. Indeed we have the
following lemma:

Lemma 2.13. The 0-th and 2-th Lipschitz-Killing curvatures are respectively

κ0(M) = dvolM ,

κ2(M) =
1

2
SgdvolM ,

where Sg is the scalar curvature. In addition, if M is of even dimension n = 2p,
then

κn(M) = Pf(Ω),

where Pf(Ω) is the Pfaffian of the curvature forms of M .

Proof. For j = 0 it’s clear since R0 = 1. For j = 2, we have if (e1, . . . , en) is an
orthonormal moving frame on an open subset U ⊂ M :

C2(R1) =
n∑

i,j=1

R(ei, ej)(ei, ej) =
n∑

i,j=1

Rijij = Sg,
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therefore
κ2(M) =

1

2
SgdvolM .

Now if n = 2p, recall that the Pfaffian of the matrix of the curvature forms
Ω = (Ωij) is the 2p-form given by

Pf(Ω) =
1

2pp!

∑
σ∈S2p

εσΩσ1σ2 ∧ . . . ∧ Ωσ2p−1σ2p .

Its action on the orthonormal frame (e1, . . . , e2p) is given by

Pf(Ω)(e1, . . . , e2p) =
1

22pp!

∑
σ,τ∈S2p

εσετRσ1σ2τ1τ2 · · ·Rσ2p−1σ2pτ2p−1τ2p .

On the other hand, since Rp is a double-form of type (2p, 2p) we have

C2p(Rp) =

2p∑
i1,...,i2p=1

Rp(ei1 , . . . , ei2p)(ei1 , . . . , ei2p)

= (2p)!Rp(e1, . . . , e2p)(e1, . . . , e2p)

=
(2p)!

22p

∑
σ,τ∈S2p

εσετRσ1σ2τ1τ2 · · ·Rσ2p−1σ2pτ2p−1τ2p

therefore
κ2p(M) =

1

(2p)!p!
C2p(Rp)dvolM = Pf(Ω)

As we shall see, the Pfaffian Pf(Ω) is exactly the integrand in the Gauss-Bonnet-
Chern theorem for compact manifolds.

Example 2.14. As a first example, let us compute the Lipschitz-Killing curvatures
of a Riemannian surface (S, g). The 0-th Lipschitz-Killing curvature is, by lemma
2.13, the volume form of S, i.e. κ0(S) = dvolS. The other non-trivial Lipschitz-
Killing curvature is the second one. Using again lemma 2.13 we have that κ2(S) =
Sg

2
dvolS. But in dimension 2, the scalar curvature is twice the Gauss curvature

K, i.e. Sg = 2K. Note that the Gauss curvature K coincides with the component
R1212 of the curvature tensor of S. Therefore we have⎧⎪⎪⎨

⎪⎪⎩
κ0(S) = dvolS,
κ1(S) = 0,

κ2(S) = KdvolS.

We will now establish several properties of the Lipschitz-Killing curvatures. The
first one is their behaviour under a change of scale of the metric.
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Proposition 2.15. Let (M, g) a Riemannian manifold and let λ ∈ R. Consider the
metric g̃ = λ2g. Then if κ̃j(M) is the j-th Lipschitz-Killing curvature associated
to g̃ we have

κ̃j(M) = λn−jκj(M)

Proof. Under the change g �→ g̃, the (0, 4) curvature tensor R is also modified by
a factor λ2, i.e. R̃ = λ2R. Now, if (e1, . . . , en) is an orthonormal moving frame
with respect to g, then (

ẽ1 :=
1

λ
e1, . . . , ẽn :=

1

λ
en

)

is an orthonormal moving frame with respect to g̃. The contraction operator is
modified as follows

C2m(R̃m) =
n∑

i1,...,i2m=1

R̃m(ẽi1 , . . . , ẽi2m)(ẽi1 , . . . , ẽi2m)

= λ2mλ−4m

n∑
i1,...,i2m=1

Rm(ei1 , . . . , ei2m)(ei1 , . . . , ei2m)

= λ−2mC2m(Rm).

The volume forms of (M, g) and (M, g̃) are related by

dvolg̃ = λndvolg,

therefore
κ̃j(M) = λn−jκj(M).

Remark 2.16. Observe that this homogeneity gives for j = n:

κ̃n(M) = κn(M),

which is consistent with the fact that κn(M) = Pf(Ω) whose integral is a topolog-
ical invariant by Gauss-Bonnet-Chern’s Theorem.

2.2.1 Lipschitz-Killing curvatures of space forms

In order to give some concreteness to the definition of the Lipschitz-Killing cur-
vatures, we now compute them for the three usual model spaces: the Euclidean
space R

n, the sphere S
n et the hyperbolic space H

n endowed with their standard
Riemannian metrics. The result is the following
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Theorem 2.17. Let (Mλ, gλ) be a Riemannian manifold of constant curvature λ.
Then for all 1 ≤ j ≤ n

2

κ2j(Mλ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if λ = 0,

n!rn−2j

2jj!(n− 2j)!
dvolM1 if λ = 1

r2
,

(−1)j
n!rn−2j

2jj!(n− 2j)!
dvolM−1 if λ = − 1

r2
,

(2.6)

and κ0(Mλ) = dvolMλ
in each case.

The proof of this theorem is separated in three cases according to the sign of λ.
The result will follow from Corollaries 2.19 and 2.21.

Curvature zero

This case is the easiest one since the curvature tensor vanishes identically, i.e.
R ≡ 0. Therefore, there is only one non zero Lipschitz-Killing curvature:

κj(M0) =

{
dvolM0 if j = 0,

0 else.

Positive constant curvature

The components of the curvature tensor of a Riemannian manifold M1 of constant
sectional curvature equal to one (with respect to some orthonormal moving frame
(e1, . . . , en)) are given by

Rijkl = δikδjl − δilδjk.

Then using Proposition 2.11, we can work out the Lipschitz-Killing curvatures of
M1.

Proposition 2.18. The Lipschitz-Killing curvatures of M1 are given by

κj(M1) =

⎧⎨
⎩

n!

2j/2(j/2)!(n− j)!
dvolM1 if j is even,

0 if j is odd.

Proof. Let us denote the curvature tensor of (M1, g1) by R. We use the explicit
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formula given in proposition 2.11.

C2m(Rm) =
(2m)!

22m(n− 2m)!

∑
σ∈Sn

∑
τ∈S2m

ετRσ1σ2στ1στ2
· · ·Rσ2m−1σ2mστ2m−1στ2m

=
(2m)!

22m(n− 2m)!

∑
σ∈Sn

∑
τ∈S2m

ετ (δσ1στ1
δσ2στ2

− δσ1στ2
δσ2στ1

)·

· · · (δσ2m−1στ2m−1
δσ2mστ2m

− δσ2m−1στ2m
δσ2mστ2m−1

)

Although this expression looks complicated, it appears that a lot of the summands
vanish. Indeed, the product

(δσ1στ1
δσ2στ2

− δσ1στ2
δσ2στ1

) · · · (δσ2m−1στ2m−1
δσ2mστ2m

− δσ2m−1στ2m
δσ2mστ2m−1

) (2.7)

is non-zero only if the permutation τ is a product of transpositions of the type
(2i− 1 2i) or the identity, for i = 1, . . . ,m i.e. transpositions of the form

1

�� ��

2

����

3

�� ��

4

����

· · · 2m− 1

�� ��

2m

����

1 2 3 4 · · · 2m− 1 2m.

Indeed, since

δikδjl − δilδjk =

⎧⎪⎪⎨
⎪⎪⎩

+1 if (i, j) = (k, l),

−1 if (i, j) = (l, k),

0 else.

the expression (2.7) is non zero if and only if in every term of the product we have

(σi, σi+1) = (στi , στi+1
) or (σi, σi+1) = (στi+1

, στi),

for i = 1, 3, 5, . . . , 2m− 1, which is the same as

(τi, τi+1) = (i, i+ 1) or (τi, τi+1) = (i+ 1, i).

It is easy to see from the above diagram that there are exactly 2m permutations
τ ∈ S2m that make the expression (2.7) non zero. Now, let us study the term

ετ (δσ1στ1
δσ2στ2

−δσ1στ2
δσ2στ1

) · · · (δσ2m−1στ2m−1
δσ2mστ2m

−δσ2m−1στ2m
δσ2mστ2m−1

) (2.8)

for such a permutation τ .

i. If the permutation τ is even, i.e. if ετ = +1, then the decomposition of τ in
transpositions consists simply of an even number of transpositions correspond-
ing to the couples (τi, τi+1) = (i + 1, i) since all the other couples are of the
form (τi, τi+1) = (i, i + 1) and therefore do not appear in the decomposition
in transpositions. Hence there is an even number of terms that are equal to
−1 in the product so that (2.8) is equal to +1.
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ii. If the permutation τ is odd, then by the same argument, there is an odd
number of terms that are equal to −1, but in this case we also have ετ = −1
so that (2.8) is also equal to +1.

From this, we conclude that

C2m(Rm) =
(2m)!

22m(n− 2m)!

∑
σ∈Sn

∑
τ∈S2m

ετ (δσ1στ1
δσ2στ2

− δσ1στ2
δσ2στ1

)·

· · · · (δσ2m−1στ2m−1
δσ2mστ2m

− δσ2m−1στ2m
δσ2mστ2m−1

)

=
(2m)!

22m(n− 2m)!

∑
σ∈Sn

2m

=
(2m)!n!

2m(n− 2m)!

and thus

κ2m(M1) =
1

(2m)!m!
C2m(Rm)dvolM1 =

n!

2mm!(n− 2m)!
dvolM1

Observe that the contractions C2m(Rm) of the curvature tensor of M1 can be
written using the binomial coefficient.

C2m(Rm) =
((2m)!)2

2m

(
n

2m

)
. (2.9)

Corollary 2.19. For λ = 1
r2

> 0 the Lipschitz-Killing curvatures of Mλ are given
by

κj(Mλ) =

⎧⎨
⎩

n!rn−j

2j/2(j/2)!(n− j)!
dvolM1 if j is even,

0 if j is odd.

Proof. Let us denote by g the standard metric of M1. Then, (Mλ, gλ) is isometric
to (M1,

1
λ
g) so that by proposition 2.15 we have

κj(Mλ) = rn−jκj(M1).

Negative constant curvature

The curvature tensor of a manifold M−1 of constant sectional curvature equal to
λ = −1 is given by R = −R, where R is the curvature tensor of (M1, g1).
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Proposition 2.20. The Lipschitz-Killing curvatures of (M−1, g−1) are given by

κj(M−1) =

⎧⎪⎨
⎪⎩

n!(−1)j/2

2j/2(j/2)!(n− j)!
dvolM−1 if j is even,

0 if j is odd.

Proof. The proof is essentially the same as the one for the unit sphere. Let
(e1, . . . , en) be an orthonormal moving frame on U ⊂ M−1. Then the compo-
nents of R with respect to this moving frame are given by

Rijkl = −Rijkl = δilδjk − δikδjl.

Hence by Propositions 2.11 and 2.18 we have

C2m(R
m
) =

(2m)!

22m(n− 2m)!

∑
σ∈Sn

∑
τ∈S2m

ετRσ1σ2στ1στ2
· · ·Rσ2m−1σ2mστ2m−1στ2m

=
(2m)!(−1)m

22m(n− 2m)!

∑
σ∈Sn

∑
τ∈S2m

ετRσ1σ2στ1στ2
· · ·Rσ2m−1σ2mστ2m−1στ2m

=
(2m)!n!(−1)m

2m(n− 2m)!

and finally

κ2m(M−1) =
n!(−1)m

2mm!(n− 2m)!
dvolM−1

As in the case of positive curvature, we obtain as a corollary the Lipschitz-Killing
curvatures of a space of negative constant curvature:

Corollary 2.21. Let λ = − 1
r2

< 0. The Lipschitz-Killing curvatures of (Mλ, gλ)
are given by

κj(Mλ) =

⎧⎪⎨
⎪⎩

n!(−1)j/2rn−j

2j/2(j/2)!(n− j)!
dvolM−1 if j is even,

0 if j is odd.

Remark 2.22. Using the fact that the second contraction of the curvature tensor
is precisely the scalar curvature i.e. using the fact that C2(R) = Sg, we recover
the well-known formula for the scalar curvature of space forms:

Sg = λn(n− 1).

Indeed, writing λ = ± 1
r2

we have from Theorem 2.17 that

Sg = C2(R) =
n!sgn(λ)
(n− 2)!r2

= λn(n− 1),

with sgn(λ) the sign of λ.
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2.2.2 Lipschitz-Killing Curvatures of Conical Warped-Product

As in section 1.10, we consider now a manifold M = N × (0,∞), where N is
compact, endowed with the Riemannian metric g = t2gN + dt2, the metric gN
being a Riemannian metric on N . Let (e1, . . . , en−1) be an orthonormal directly
oriented moving frame on U ⊂ N with dual coframe (θ1, . . . , θn−1), and set en = ∂

∂t
,

where t is the arclength parameter on (0,∞). Then on U × (0,∞) ⊂ M we have
the following orthonormal positively oriented moving frame:

ei =
1

f
ei and en = en = dt,

where f : U × (0,∞) → (0,∞) is the map defined by f(p, t) = t. Recall that we
established the following relations between the connection and curvature forms ωA

B

and Ω
A

B of M and the connection and curvature forms ωi
j and Ωi

j of N :⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ωi
j = ωi

j,

ωi
n = θ

i
= fθi,

Ω
i

j = Ωi
j − θi ∧ θj,

Ω
i

n = 0.

(2.10)

Moreover we showed in Proposition 1.31 that this gives rise to the following ex-
pression for the curvature tensor R of M :

R = t2 (R−D) ,

where D = 1
2
gN ©∧ gN .

Imitating the argument made in the proof of Proposition 2.11, it is easy to show
that

Proposition 2.23. The 2k-th contraction of Rk is given by

C2k(R
k
) =

(2k)!

22k(n− 1− 2k)!

∑
σ∈Sn−1

∑
τ∈S2k

ετRσ1σ2στ1στ2
· · ·Rσ2k−1σ2kστ2k−1

στ2k

Proof. It is the same argument as in the proof of Proposition 2.11 but with the
additional assumption that Ω

i

n = 0 for all 1 ≤ i ≤ n− 1.

There is a relation between the contractions of R
k as a tensor on M and the

contractions of R−D as a tensor on N . To avoid any confusion we denote in this
paragraph the contraction operator on M by CM and the one on N by CN . Then

Lemma 2.24. We have for all 1 ≤ k ≤ �n−1
2
�

C2k
M (R

k
) =

1

t2k
C2k

N (R−D). (2.11)
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Proof. With respect to the orthonormal moving frames on U ⊂ N and U×(0,∞) ⊂
M described above we have

C2k
M (R

k
) =

n∑
i1,...,i2k=1

R
k
(ei1 , . . . , ei2k)(ei1 , . . . , ei2k)

=
n∑

i1,...,i2k=1

t2k(R−D)k(ei1 , . . . , ei2k)(ei1 , . . . , ei2k)

=
1

t2k

n−1∑
i1,...,i2k=1

(R−D)k(ei1 , . . . , ei2k)(ei1 , . . . , ei2k)

=
1

t2k
C2k

N ((R−D)k)

since R and D vanish if one of the argument is en.

2.2.3 Total Lipschitz-Killing Curvatures

Since the κj(M) defined above are differential n-forms on an n-dimensional man-
ifold M , one can naturally integrate them. Obviously, these integrals are not
necessarly defined since the manifold can be non-compact.

Definition 2.25. Let (M, g) be an n-dimensional Riemannian manifold. The total
Lipschitz-Killing curvatures are defined by

Kj(M) =

⎧⎨
⎩

∫
M

κj(M) if j is even,

0 if j is odd.

The first obvious observation is that since κ0(M) = dvolM , then if M is compact,
the 0-th total Lipschitz-Killing curvature of M is simply its volume.

K0(M) = Vol(M).

The second observation that can easily be made is the following: if (M, g) is a
closed Riemannian manifold of even dimension n = 2p, then the Gauss-Bonnet-
Chern Theorem 3.7 can be written using the last total Lipschitz-Killing curvature:

1

(2π)p
K2p(M) = χ(M). (2.12)

Indeed by Lemma 2.13 we know that since M is of even dimension we have

κ2p(M) = Pf(Ω),

therefore integrating over M we get

1

(2π)p

∫
M

Pf(Ω) = χ(M).
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2.3 Weyl’s tube formula

Historically the Lipschitz-Killing curvatures appeared in the famous article [Wey39]
by H. Weyl in 1939 in which it is shown that for r > 0 sufficiently small, the vol-
ume of the r-neighbourhood of a compact submanifold M ⊂ R

N is a polynomial
in the variable r whose coefficients are, modulo some universal constants, the
Lipschitz-Killing curvatures of M .

Theorem 2.26. (H. Weyl, 1939)
Let Mn ⊂ R

N be a compact Riemannian manifold embedded in R
N . Then for all

r > 0 sufficiently small we have

VolN(Mr) =
π

q
2

Γ
(
q
2

) �n
2
�∑

m=0

K2m(M)rq+2m

q(q + 2)(q + 4) · . . . · (q + 2m)
, (2.13)

where q = N − n is the codimension.

Recall that for r > 0, the r-neighbourhood of a subset A ⊂ R
N is the following set

Ar = {x ∈ R
N | dist(x,M) < r}.

The theorem of Weyl is remarkable from at least two viewpoints. First it shows
that the volume of Mr is polynomial in r. Secondly and most importantly, it
shows that this volume does not depend on the particular embedding of M in
R

N . Indeed, since the Lipschitz-Killing curvatures of M are intrinsic quantities, it
follows that VolN(Mε) is intrinsic as well.
The proof of this theorem can be found in the original paper [Wey39] in which
Weyl refers to its own theory of invariants but there are self-contained references
that do not make use of this theory such as [Gra04].

Example 2.27. As an application of Weyl’s tube formula and second proof of
Proposition 2.18 we use Theorem 2.26 to compute the Lipschitz-Killing curvatures
of the unit sphere. So consider the usual (isometric) embedding Sn ⊂ R

n+1. Given
r > 0 sufficiently small it is easy to compute the volume of S

n
r since it is the

difference of the volumes of the (n+ 1)-balls of radii r1 = 1 + r and r2 = 1− r:

Voln+1(S
n
r ) = Voln+1(B

n+1(r1))− Voln+1(B
n+1(r2))

= βn+1(1 + r)n+1 − βn+1(1− r)n+1

= βn+1

n+1∑
k=0

(
n+ 1

k

)
(1− (−1)k)rk

= βn+1

�n
2
�∑

m=0

(
n+ 1

2m+ 1

)
r2m+1,
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since (1− (−1)k) vanishes whenever k is even. On the other hand, Theorem 2.26
gives

Voln+1(S
n
r ) =

π
1
2

Γ(1
2
)

�n
2
�∑

m=0

K2m(S
n)

1 · 3 · . . . · (2m+ 1)
r2m+1

=

�n
2
�∑

m=0

K2m(S
n)

(2m+ 1)!!
r2m+1,

where the double factorial is the operation defined by

(2m+ 1)!! = (2m+ 1)(2m− 1) · . . . · 5 · 3 · 1,

and we have used the fact that Γ
(
1
2

)
= π

1
2 . Therefore by comparing the coefficients

of the powers of r we get that

K2m(S
n) = βn+1

(
n+ 1

2m+ 1

)
(2m+ 1)!!.

Now, using that

βn+1 =
αn

n+ 1
and (2k − 1)!! =

(2k)!

2kk!
,

we can rewrite the total Lipschitz-Killing curvatures of Sn as

K2m(S
n) =

αn

n+ 1

(n+ 1)!

(2m+ 1)!(n− 2m)!

(2m+ 2)!

2m+1(m+ 1)!

=
αnn!

2mm!(n− 2m)!

=

∫
Sn

κ2m(S
n),

where the κ2m(S
n) are the one given by Proposition 2.18.

2.4 Connections in Principal Bundles
The whole approach of Cartan by moving frames can be reformulated in the general
context of principal bundles. We will be using this framework in the proof of the
Gauss-Bonnet-Chern Theorem in Chapter 3.
Instead of constructing the connection and curvature forms locally in an oriented
manifold M , it is possible to define them globally on a larger manifold which
turns out to be the total space of a bundle over M and then pull-back those global
forms using sections of this freshly constructed bundle. The natural choice for the
total space, which will be denoted by SO(M), is to take as the fibre over a point
p ∈ M , all orthonormal positively oriented bases of TpM and therefore any section
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s : U → SO(M) represent what we used to call a moving frame on the open subset
U ⊂ M . There is a natural action of the group SO(n) on each fibre since every
positively oriented orthonormal basis can be sent onto any other positively oriented
orthonormal basis by an element of SO(n). This turns the bundle (SO(M),M, π)
into a principal bundle with structural group G = SO(n).
This construction requires to define an analogue of the connection forms on the
total space of a principal bundle, which will be called an Ehresmann connection.
By differentiation, we will obtain a notion of curvature forms which will satisfy a
structural equation. Finally, by choosing a section of the bundle of orthonormal
positively oriented moving frames, i.e. by choosing a moving frame on an open
subset of the base manifold, we will recover Cartan’s formalism. Although the
definitions of a connection form and of a curvature form are valid for an arbi-
trary principal bundle, we will restrict our attention to the bundle of orthonormal
positively oriented moving frames.
The content of this section comes mainly from the second volume of [Spi99] and
the first volume of [KN63] and we refer to those books for additional background
about connections in principal bundles.

2.4.1 The Connection Form

Let F (M) → M be the frame bundle, i.e. the principal bundle with structural
group GLn(R) and fibre

{(p,X1, . . . , Xn) | (X1, . . . , Xn) is a basis of TpM}.

Sections of this bundle are what we previously called moving frames. Since M is
oriented and endowed with a Riemannian metric, we can restrict our attention to
the following bundle: let π : SO(M) → M be the bundle of orthonormal positively
oriented frames on M with structure group SO(n). The structure group acts on
the right on SO(M):

SO(M)× SO(n) −→ SO(M)

(u,A) �→ u · A.

More precisely, if u = (X1, . . . , Xn) and A ∈ SO(n), then the i-th element of u ·A
is

(u · A)i = Aj
iXj,

since

u · A =

⎛
⎜⎜⎝
X1

1 · · · X1
n

... . . . ...
Xn

1 · · · Xn
n

⎞
⎟⎟⎠
⎛
⎜⎜⎝
A1

1 · · · A1
n

... . . . ...
An

1 · · · An
n

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
X1

i A
i
1 · · · X1

i A
i
n

... . . . ...
Xn

i A
i
1 · · · Xn

i A
i
n

⎞
⎟⎟⎠
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Definition 2.28. An Ehresmann connection on the principal bundle SO(M) is
a smooth o(n)-valued 1-form ω on SO(M) satisfying the two following algebraic
conditions:

(a) for all X ∈ o(n) we have ω(σ(X)) = X;

(b) for all A ∈ SO(n) and all Y ∈ Γ(SO(M)) we have

ω(dRA(Y )) = A−1ω(Y )A;

where RA(u) = u · A for all u ∈ SO(M) is the right action of SO(n) on SO(M)
and σ : o(n) → Γ(SO(M)) is the map defined by

σ(X)(u) = dσu(X),

with σu : SO(n) → SO(M) given by σu(A) = u ·A, the dot standing for the action
on the right of SO(n) on the manifold SO(M).

Remark 2.29. An Ehresmann connection induces a distribution on SO(M) as
follows: for all u ∈ SO(M) the map

ωu : TuSO(M) −→ o(n)

is surjective and therefore the space Hu := ker(ωu) ⊂ TuSO(M), called the hor-
izontal subspace at u has the same dimension as M . Vectors in Hu are called
horizontal vectors. Together with this subspace comes Vu ⊂ TuSO(M) the vertical
subspace at u defined by Vu = ker(dπu) and satisfying TuSO(M) = Hu ⊕ Vu, so
that every tangent vector Y at u can be decomposed as

Y = h(Y ) + v(Y ),

with h(Y ) the horizontal component and v(Y ) the vertical component. Since for
all A ∈ SO(n) the map RA : SO(M) → SO(M) sends a fibre to itself, it follows
that

{σ(X)(u) ∈ TuSO(M) | X ∈ o(n)} = Vu.

The above definition of an Ehresmann connection is actually invariant in the sense
that is does not depend on a particular moving frame.
However one can prove that it is equivalent to requiring that for every section
s : U → SO(M) and every smooth map A : U → SO(n) we have

(s · A)∗ω = A−1dA+ A−1s∗ωA, (2.14)

where s · A : U → SO(M) is defined by

(s · A)(p) = s(p) · A(p) = RA(p)(s(p)).

This is consistent with the transformation law for the connection forms stated in
Lemma 1.19. The proof of equation (2.14) is based on the following proposition
on the differential of the map s · A : U → SO(M), whose proof can be found in
[Spi99], Vol.2, p.312.
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Proposition 2.30. Let s : U → SO(M) be a section of SO(M) and let A : U →
SO(n) be a smooth map. Then for all Xp ∈ TpM) we have

d(s · A)p(Xp) = dRA(p)(dsp(Xp)) + σ(A−1(p)Xp(A))(s(p) · A(p)). (2.15)

The argument of σ has to be an element of o(n), but Xp(A) the derivative of
the map A in the direction X, and therefore an element of o(n); it follows that
A−1(p)Xp(A) is also an element of o(n) and that σ(A−1(p)Xp(A))(s(p) · A(p)) is
well-defined. Observe that the right-hand side of equation (2.15) is the decompo-
sition of the left-hand side in the horizontal and vertical directions i.e.

h(d(s · A)p(Xp)) = dRA(p)(dsp(Xp)) ∈ Hs(p)A(p),

v(d(s · A)p(Xp)) = σ(A−1(p)Xp(A))(s(p) · A(p)) ∈ Vs(p)A(p).

Another observation is that if A is constant on U , then the vertical part vanishes
and one has for all p ∈ U :

d(s · A)p(Xp) = dRA(dsp(Xp))

The o(n)-valued 1-form ω can be seen as a matrix of usual 1-forms on SO(M).
Given a basis (Ei

j) of the Lie algebra o(n) (which is nothing but the skew-symmetric
matrices), one can write

ω = ωi
j · Ej

i ,

with ωi
j ∈ Ω1(SO(M)). Now, the link between the usual notion of a (Koszul) con-

nection on a a manifold and an Ehresmann connection ω is given by the following
consideration: let s : U → SO(M) be the section given by

s(p) = (X1(p), . . . , Xn(p))

and define an operation ∇ : Γ(U)× Γ(U) −→ Γ(U) by

∇Xi
Xj := (s∗ωk

j )(Xi)Xk.

Then one can easily show that ∇ is a Koszul connection on M .

2.4.2 The Curvature and Torsion Forms

As in the case of the Cartan formalism (see Section 1.2) an Ehresmann connection
ω comes together with a curvature form and a torsion form. The curvature form
of ω is the o(n)-valued 2-form defined by Ω = Dω, i.e.

Dω(Y, Z) = (dω)(h(Y ), h(Z)),

with d the ordinary differential and h(Y ) and h(Z) the horizontal components of
Y and Z.
Now, as in the case of the connection form ω, we want to study the behaviour of
the pull-back of the curvature form Ω by a section s : U → SO(M).
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Proposition 2.31. Let s : U → SO(M) be a section of SO(M) and let A : U →
SO(n) be a smooth map. Then

(s · A)∗Ω = A−1s∗ΩA.

Proof. If Xp, Yp ∈ TpM , then by Proposition 2.30 and by the definition of an
Ehresmann connection we have

(s · A)∗Ω(X, Y ) = Ω (d(s · A)(X), d(s · A)(Y ))

= dω (h(d(s · A)(X)), h(d(s · A)(Y )))

= dω (dRA(ds(X)), dRA(ds(Y )))

= R∗
Adω (ds(X), ds(Y ))

= d (R∗
Aω) (ds(X), ds(Y ))

= d(A−1ωA) (ds(X), ds(Y )) .

But ds(X) and ds(Y ) are horizontal i.e ω(ds(X)) = ω(ds(Y )) = 0. Therefore,
since

d(A−1ωA) = dA−1 ∧ ωA+ A−1dωA+ A−1ω ∧ dA,

it follows that d(A−1ωA)(ds(X), ds(Y )) = A−1dω(ds(X), ds(Y ))A. Hence

(s · A)∗Ω(X, Y ) = A−1dω(ds(X), ds(Y ))A = A−1s∗Ω(X, Y )A.

2.4.3 The Structure Equations

Although an Ehresmann connection and its associated curvature form can be de-
fined on any arbitrary principal bundle, it is not the case for the torsion form which
is defined only on the principal bundle of frames (or in our case, the bundle of
orthonormal positively oriented frames). First, we define the analogue of a moving
coframe but in the setting of the principal bundle SO(M). The canonical form of
the principal bundle SO(M) is the Rn-valued 1-form defined at u ∈ SO(M) by

θu(Yu) = u−1(dπu(Yu)) for all Yu ∈ TuSO(M),

where u−1 is the inverse of the isomorphism induced by any element u ∈ SO(M)
and defined by u : Rn → Tπ(u)M which sends the canonical basis (e1, . . . , en) of Rn

to the orthonormal basis (u1, . . . , un) of Tπ(u)M . The fact that θ can be compared
to a coframe associated to a frame comes from the following observation: if we are
given a section s : U → SO(M) with s = (X1, . . . , Xn), then the pullback of θ by
this section is given by

s∗θ(Yp) = θs(p)(dsp(Yp)) = s(p)−1(Yp),
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so that the i-th component of s∗θ(Yp) is the i-th component of Yp with respect
to the basis (X1(p), . . . , Xn(p)), i.e. the s∗θi are the dual 1-forms to the moving
frame (X1, . . . , Xn).
Using the canonical form θ, we define the torsion form Θ of the connection ω by

Θ = Dθ,

which is an R
n-valued 2-form.

The next theorem, whose proof can be found in the [Spi99, Vol. 2, p. 327], consists
of the structure equations. We state the theorem in the case where the considered
principal bundle is SO(M) although the second structure equation is true for an
arbitrary principal bundle.

Theorem 2.32. Let ω be an Ehresmann connection on the principal bundle π :
SO(M) → M , with canonical 1-form θ, torsion 1-form Θ and curvature form Ω.
Then we have

(a) the first structure equation

dθ = −ω ∧ θ +Θ,

(b) the second structure equation

dω = −ω ∧ ω + Ω.

As well as for the connection form, it is useful to express the canonical form,
the torsion form and the curvature form in terms of ordinary differential forms. If
(e1, . . . , en) is the standard basis of Rn, then there exist 1-forms θ1, . . . , θn,Θ1, . . . ,Θn ∈
Ω1(SO(M)) such that

θ = θi · ei and Θ = Θi · ei.

For the curvature form, if (Ei
j) is the standard basis of o(n), then there exist

2-forms Ωi
j ∈ Ω2(SO(M)) such that

Ω = Ωi
j · Ej

i .

Using these notations, the structural equations can be rewritten in the following
(familiar if the torsion form vanishes) form:

dθi = −ωi
j ∧ θj +Θi

dωi
j = −ωi

k ∧ ωk
j + Ωi

j.

It is important to note here that these two equations are defined on the manifold
SO(M) and not on the base space M . However, the construction is made so that
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if s : U → SO(M) is any section, then the structure equations pulled back on M
are

d(s∗θi) = −s∗ωi
j ∧ s∗θj + s∗Θi

d(s∗ωi
j) = −s∗ωi

k ∧ s∗ωk
j + s∗Ωi

j.

After all these general considerations on connections, we will restrict our attention
to the Levi-Civita connection on M . One can prove (e.g. in [KN63], p.158) that
there is a unique connection ω on SO(M) with vanishing torsion, i.e. there exist
a unique connection ω such that the structure equations write

dθi = −ωi
j ∧ θj,

dωi
j = −ωi

k ∧ ωk
j + Ωi

j.

Therefore, in this case, the pulled back forms s∗θi, s∗ωi
j and s∗Ωi

j are precisely
the dual, connection and curvature forms associated to the moving frame s as
presented in Chapter 1.

Remark 2.33. The Lipschitz-Killing Curvatures can be easily transposed to this
new framework of principal bundles. On the manifold SO(M) the following
(global) differential form can be defined

η2k :=
1

2kk!(n− 2k)!

∑
σ∈Sn

εσΩσ1σ2 ∧ . . .Ωσ2k−1σ2k
∧ θσ2k+1 ∧ . . .∧ θσn ∈ Ωn(SO(M)).

Then if s : U → SO(M) is any section we recover the Lipschitz-Killing Curvatures
of Proposition 2.12 by taking the pull-back by s of η2k:

κ2k(M) = s∗(η2k) ∈ Ωn(U).



Chapter 3

The Gauss-Bonnet-Chern Theorem

In this chapter, we present the celebrated Gauss-Bonnet-Chern Theorem which
will be a key ingredient in the proof of our result. This theorem has been proved
almost simultaneously by Fenchel, Allendoerfer and Weil, on one hand and by
Chern on the other hand in the early 40’s. Although they established the same
result, their methods to prove it are quite different. Fenchel considered in [Fen40]
only submanifolds of RN whereas Allendoerfer-Weil used in [AW43] a local em-
bedding theorem due to Cartan to generalize Fenchel’s result. Since, by Nash’s
embedding theorem, every Riemannian manifold can be isometrically embedded
in some Euclidean space this is not actually a restriction, but this theorem was
proved only a decade later. In 1944 Chern’s article A Simple Intrinsic Proof of
the Gauss-Bonnet Formula for Closed Riemannian Manifolds [Che44] was pub-
lished, in which he proves the same result but in a completely intrinsic way, that
is without assuming that the manifold is embedded in some Euclidean space. His
method relies on a phenomenon called transgression, which is the property of a
closed differential form to be exact provided it is pulled-back to a fiber bundle.
In this context, the considered fiber bundle is the bundle of unit vectors in the
tangent space of the manifold. In 1945 Chern’s improved his proof in [Che45],
therefore this article will be our main reference throughout this chapter. However
we refer to [Li11] for a detailed analysis of the proof in [Che44]. Apart from the
extrinsic and intrinsic proofs of the Gauss-Bonnet-Chern Theorem, there are other
classical proofs using characteristic classes ([Li11],[MS74],[MT97]) or via the heat
flow. Our choice of working with the original proof of Chern is motivated by the
fact that we want to obtain an explicit for the boundary term which can be seen
as the Gauss-Bonnet defect in the case of a compact manifold with boundary.

3.1 The Poincaré-Hopf Theorem

The Gauss-Bonnet-Chern theorem partially relies on an earlier result in differen-
tial topology, that establishes a relation between the differential structure of a
compact manifold and its topology. More precisely, this theorem, due to Poincaré
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in dimension two and Hopf in higher dimensions, states that on a closed manifold,
the sum of the indices of a vector field having isolated singularities is equal to
the Euler characteristic of the manifold. The generalization to compact manifolds
with boundary is probably due to Lefschetz. This theorem is now to be explained
in some details but we refer to [Mil97] for a complete proof. Let us begin this
section by recalling some topological notions.

Definition 3.1. A manifold M is of finite topological type if there exists a com-
pact subset K ⊂ M such that M \K is homeomorphic to ∂K × (1,∞). For the
sake of simplicity we will often assume that the boundary of K is connected as in
Figure 3.1 although in the general case it consists of the union of finitely many con-
nected compact components, i.e. there exist N1, . . . , Nr ⊂ ∂K connected compact
submanifolds of the boundary of K such that

∂K = N1 � . . . �Nr.

Figure 3.1: Manifold of finite topological type

The submanifolds Ei := Ni×(1,∞) ⊂ M are called the ends of M . In other words,
this hypothesis means that all the topology of M is contained in the compact K.

Note that in particular any compact manifold M is of finite topological and has
no ends by taking K = M .

Definition 3.2. Let M be a manifold of dimension n which is of finite topological
type. The Euler characteristic χ(M) of M is the following integer number

χ(M) =
n∑

k=0

(−1)k dimR(Hk(M)),

where Hk(M) is the k-th homology group (on R) of M .
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It is well-known that χ is a homotopy invariant and that it has the following
properties. Let M and N be two n-dimensional compact differentiable manifolds
such that their intersection M ∩N is a submanifold. Then

(i) we have an inclusion-exlusion principle

χ(M ∪N) = χ(M) + χ(N)− χ(M ∩N),

(ii) if M is closed (compact without boundary) and the dimension n is odd

χ(M) = 0.

(iii) for any triangulation of M with exactly nk simplices of dimension k =
0, . . . , n, then

χ(M) =
n∑

i=0

(−1)ini.

It is worth noting that if M has a boundary, then since the interior M̊ and M =
M̊ ∪ ∂M have the same homotopy type we have χ(M̊) = χ(M)
Given a vector field X on a manifold M , one can associate a number to each
isolated zero of X called the index of the vector field at this point. It is a measure
of the behaviour of the vector field around the zero and represents in some sense
the winding of X around the singularity.

Definition 3.3. Let p ∈ M be an isolated zero of the vector field X and consider
a smooth chart ψ : U → R

n around p. Since p is isolated, there exist a small
ball B(x, ε) ⊂ R

n around x = ψ(p) such that x is the only zero of the vector
field X̃ = X ◦ ψ−1 ∈ Γ(Rn) in B(x, ε). Therefore, the following vector field is
well-defined on B(x, ε) \ {x}:

ν =
X̃

‖X̃‖ .

In particular, if ∂B(x, ε) = S(x, ε) then ν|S(x,ε) : S(x, ε) → S
n−1 is well-defined.

The index of X at p is the integer given by

Ind(X, p) = deg
(
ν|S(x,ε)

)
.

It is now possible to state the Poincaré-Hopf theorem.

Theorem 3.4. (Poincaré-Hopf theorem) Let M be a compact manifold pos-
sibly with boundary and let X be a smooth vector field with isolated zeroes
p1, . . . , pk ∈ M . If M has a boundary then assume that X is transverse to the
boundary and points outwards. Then

k∑
i=1

Ind(X, pi) = χ(M).
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In the case where the manifold has a boundary, then if instead of pointing out-
wards, the vector field is pointing inwards, the theorem is modified as follows:

k∑
i=1

Ind(X, pi) = χ(M)− χ(∂M).

We refer to [Mil97] for the proof in the case where M has no boundary and to
[BSS09] if ∂M �= ∅.
Example 3.5. As an illustration of the Poincaré-Hopf theorem, consider M = B

n

to be the closed unit ball. Then ∂M = S
n−1 and let X ∈ Γ(M) be the radial vector

field . The only zero of X in M is at the origin. If X is taken to point outwards,
then the origin is a source and Ind(X, 0) = 1, which corresponds to the Euler
characteristic of M since the unit ball has the homotopy type of a point. Now, if
X points inwards, then the origin is a sink and therefore Ind(X, 0) = (−1)n. On
the other hand, since

χ(∂M) = χ(Sn−1) = 1 + (−1)n−1 =

{
2 if n− 1 is even,
0 if n− 1 is odd,

we get that

χ(M)− χ(∂M) = 1− 1− (−1)n−1 = (−1)n = Ind(X, 0).

3.2 Statement of the Gauss-Bonnet-Chern Theo-
rem

We now present the essence of Chern’s second article on the Gauss-Bonnet-Chern
Theorem [Che45]. Let (M, g) be an n-dimensional oriented compact Riemannian
manifold (possibly with boundary). The first step is the construction of what is
the generalization of the Gauss curvature in higher dimension. This quantity is
often called the Pfaffian of the curvature form or the Gauss-Bonnet integrand and
is defined using the Cartan formalism. Let (e1, . . . , en) be an orthonormal moving
frame on an open subset U ⊂ M with dual coframe (θ1, . . . , θn) and let ωA

B and ΩA
B

be the connection and curvature forms associated to the Levi-Civita connection of
M . The Gauss-Bonnet integrand is the following n-form:

Pf(Ω) =

⎧⎪⎨
⎪⎩

1

2pp!

∑
σ∈S2p

εσΩ
σ1
σ2

∧ . . . ∧ Ωσ2p−1
σ2p

if n = 2p is even,

0 if n is odd.
(3.1)

Although Pf(Ω) is defined locally, one can easily show that it is in fact global by
using the transformation law for the curvature forms. In his paper, Chern used a
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slightly modified n-form which simplifies the constants but which is also a little
bit misleading in regard of the modern notations. More precisely, Chern defines

Ω =
1

(2π)p
Pf(Ω).

This notation is slightly ambiguous as Ω can denote both the Gauss-Bonnet in-
tegrand and the matrix of the curvature forms of M . However we shall carefully
precise, whenever it is necessary, to which definition Ω refers.

Let SM = {(p, v) ∈ TM | v ∈ TpM, ‖v‖ = 1} ⊂ TM be the unit tangent bundle
and denote by π : SM → M the canonical projection. The n-form Ω is not exact
in general, however its pull-back by π on SM is exact:

Lemma 3.6. (Transgression Lemma) There exists Π̃ ∈ Ωn−1(SM) such that

π∗Ω = −dΠ̃.

With this lemma, the Gauss-Bonnet-Chern theorem can be stated:

Theorem 3.7. (Gauss-Bonnet-Chern Theorem) Let (M, g) be an n-dimensional
oriented compact Riemannian manifold and let ν be the inward-pointing unit nor-
mal to the boundary. Then we have

(−1)n (χ(M)− χ(∂M))− 1

(2π)
n
2

∫
M

Pf(Ω) =

∫
ν(∂M)

Π̃ (3.2)

Let us make a few remark about this iconic theorem.

Remark 3.8. (1) Observe that for even dimensions χ(∂M) = 0 since ∂M is a
closed odd-dimensional manifold and therefore Theorem 3.7 reduces to

χ(M)− 1

(2π)
n
2

∫
M

Pf(Ω) =

∫
ν(∂M)

Π̃. (3.3)

(2) If the manifold has no boundary, then the Theorem reads

(−1)nχ(M) =
1

(2π)
n
2

∫
M

Pf(Ω),

and if n is odd then both the Euler-characteristic and the Pfaffian vanish so
that the theorem holds but gives no information.

(3) By a standard topological argument we know that the Euler-characteristic of
a compact odd-dimensional manifold with boundary is equal to half of the
Euler-characteristic of its boundary i.e.

χ(M) =
1

2
χ(∂M).

Therefore in odd dimensions, the Theorem reads

1

2
χ(∂M) =

∫
ν(∂M)

Π̃.
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(4) If (M2p
λ , gλ) is a compact even-dimensional Riemannian manifold without bound-

ary of constant sectional curvature λ, we obtain as a consequence of the The-
orem that the volume of Mλ is proportional to its Euler-characteristic. Indeed
recall that the Gauss-Bonnet-Chern Theorem can be stated using the last
Lipschitz-Killing curvature as

χ(Mλ) =
1

(2π)p
K2p(Mλ).

Moreover the Lipschitz-Killing curvatures of manifolds of constant curvature
were given in Theorem 2.17, so that we know that

K2p(Mλ) = λp (2p)!

2pp!
Vol(Mλ),

therefore
λp(2p)!

22pπpp!
Vol(Mλ) = χ(Mλ).

Observe that the sign of the Euler-characteristic depends on the dimension.
In particular if λ = −1 then

(−1)pχ(M−1) > 0.

Which is a particular case of the so called Hopf conjecture.

(5) In the case where the manifold has a boundary, observe that a choice of unit
normal vector ν is made. In particular its orientation (inward/outward point-
ing) is important and modifies the statement of the Theorem as we shall see
hereafter.

3.3 Chern’s Proof

3.3.1 First Step: The Transgression Lemma

Chern’s main idea in the proof of his theorem is to switch from the manifold
M to the manifold formed by all unit tangent vectors, which we denote by SM
and to show that the pullback of the Pfaffian form Pf(Ω) (here Ω denotes the
matrix of the curvature forms on M and not on SO(M)) on this manifold by the
standard projection is exact. The following proposition, whose proof can be found
in [KN63], p.57, will help us to establish a natural link between the connnection
and curvature forms on M and SM .

Proposition 3.9. Let π : P → M be a principal G-bundle and let H ⊂ G be
a closed subgroup of G. Then N := P/H is a differentiable manifold and we
have a principal H-bundle given by π1 : P → N . Moreover there is a canonical
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associated fibre bundle π2 : N → M with fiber G/H such that the following
diagram commutes

P

π1

��

π

��

N π2

�� M.

Let us apply this proposition to the bundle of positively oriented orthonormal
moving frames P = SO(M) with structure group G = SO(n) and H = SO(n− 1).
There is no canonical way for SO(n − 1) to be a subgroup of SO(n) since the
orientation preserving isometries of Rn−1 are not canonically orientation preserving
isometries of R

n. The choice of a direction v ∈ S
n−1 in R

n must be made in
order to split R

n as R
n−1 ⊕ Rv and make SO(n − 1) act on R

n−1, leaving the
direction v invariant. For the rest of this section, we make the following convention:
if (v1, . . . , vn) is an orthonormal directly oriented basis of R

n, then the chosen
direction in making SO(n − 1) a subgroup of SO(n) is the last one v = vn. This
means that the action of SO(n− 1) on SO(M) is defined as follows:

SO(M)× SO(n− 1) −→ SO(M)

(u,A) �→ u · Ā,
where

Ā =

(
A 0

0 1

)
∈ SO(n).

Therefore, if u = (p,X1, . . . , Xn) then (u · A) = (p, Aj
1Xj, . . . , A

j
n−1Xj, Xn) where

we sums over repeated indices run from 1 to n− 1.
The quotient manifold N = SO(M)/SO(n − 1) is therefore diffeomorphic to the
unit-tangent bundle SM since the above action of SO(n − 1) is transitive on the
orthonormal directly oriented bases of Rn−1.
Moreover, we know that the quotient SO(n)/SO(n − 1) is diffeomorphic to the
oriented sphere S

n−1, therefore Proposition 3.9 gives rise to the following bundles:
(a) A principal SO(n)-bundle π : SO(M) → M . We denote this principal bundle

by ξ i.e. ξ = (SO(M),M, SO(n), π).

(b) A principal SO(n − 1)-bundle π1 : SO(M) → SM . We denote this principal
bundle by ξ1 i.e. ξ1 = (SO(M), SM, SO(n− 1), π1).

(c) A fibre bundle π2 : SM → M with fibre S
n−1, which is nothing different but

the usual unit tangent bundle of M . We denote this fibre bundle by ξ2 i.e.
ξ2 = (SM,M, π2).

In terms of a diagram:
SO(M)

π1

��

π

��

SM π2

�� M
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Chern’s construction of the form Π̃ in Lemma 3.6 can now be explained using the
modern language of principal bundles. The particularity of his construction is that
although the form Π̃ is built up from the connection and curvature forms, and is
therefore local in essence, it appears that it does not in fact depend on the chosen
section of the bundle π1 : SO(M) → SM .

As before, write ω = ωi
j · Ej

i and Ω = Ωi
j · Ej

i with (Ei
j) the standard basis of

o(n), and ωi
j ∈ Ω1(SO(M)) and Ωi

j ∈ Ω2(SO(M)). Moreover, if (e1, . . . , en) is
the canonical basis of Rn, the canonical form θ can be written as θ = θi · ei with
θi ∈ Ω1(SO(M)).
On the total space SO(M) consider the following (global) forms:

Φk =
∑

σ∈Sn−1

εσΩ
σ1
σ2

∧ . . . ∧ Ωσ2k−1
σ2k

∧ ωσ2k+1
n ∧ . . . ∧ ωσn−1

n ,

Ψk = 2(k + 1)
∑

σ∈Sn−1

εσΩ
σ1
σ2

∧ . . . ∧ Ωσ2k−1
σ2k

∧ Ωσ2k+1
n ∧ ωσ2k+2

n ∧ . . . ∧ ωσn−1
n .

Remark 3.10. The cautious reader may note that our definition of Φk and Ψk

slightly differs from the one given by Chern in [Che45]. If we denote his forms by
ΦChern

k and ΨChern
k the following relations hold:

Φk = (−1)n−1ΦChern
k

Ψk = (−1)nΨChern
k .

The same is true for the n-form Ω:

Ω = (−1)
n
2ΩChern.

This is actually due to the convention on the indices in the connection and cur-
vature forms ωi

j and Ωi
j. The relation between his convention and ours is the

following
ωChern
ij = ωj

i = −ωi
j and ΩChern

ij = Ωj
i = −Ωi

j.

The apparent complexity of the two differential forms Φk and Ψk hides a powerful
property of invariance when they are pulled back on the unit tangent bundle SM
and therefore that they are globally defined on SM . Indeed, it appears that they
do not depend on a particular section. More precisely we have

Lemma 3.11. Let v : U → SO(M) be a section of ξ2 and let si : Ũi → SO(M)
be two sections of ξ1 such that v(U) ⊂ Ũi. Then

(s1 ◦ v)∗Φk = (s2 ◦ v)∗Φk ∈ Ωn−1(U),

(s1 ◦ v)∗Ψk = (s2 ◦ v)∗Ψk ∈ Ωn(U).
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Proof. For i = 1, 2, let ri := si ◦ v : U → SO(M) and observe that they are
sections of ξ. On U , the sections r1 and r2 are moving frames with the same last
vector, so there exists a smooth map A : U → SO(n− 1) such that

r2 = r1 · Ā,

where Ā : U → SO(n) is defined by Ā =

(
A 0

0 1

)
. By equation (2.14) and

Proposition 2.31 we know that

r∗2ω = (r1 · A)∗ω = Ā−1dĀ+ Ā−1r∗1ωĀ,

r∗2Ω = (r1 · A)∗Ω = Ā−1r∗1ΩĀ.

Moreover

Ā−1 =

(
A−1 0

0 1

)
and dĀ =

(
dA 0

0 0

)
.

Only some particular connection and curvature forms are involved in the expres-
sions of Φk and Ψk, namely the ωi

n and the Ωi
j for 1 ≤ i, j ≤ n − 1. Using the

transformation laws we obtain directly

r∗2ω
i
n = (A−1)ijr

∗
1ω

j
n =

n−1∑
j=1

Aj
ir

∗
1ω

j
n = Ajir

∗
1ω

j
n,

r∗2Ω
i
j = (A−1)ikr

∗
1Ω

k
l A

l
j =

n−1∑
k,l=1

Ak
iA

l
jr

∗
1Ω

k
l ,
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since A−1 = AT . Therefore,

r∗2Φk =
∑

σ∈Sn−1

εσr
∗
2Ω

σ1
σ2

∧ . . . ∧ r∗2Ω
σ2k−1
σ2k

∧ r∗2ω
σ2k+1
n ∧ . . . ∧ r∗2ω

σn−1
n

=
∑

σ∈Sn−1

εσ

(
n−1∑

μ1,μ2=1

Aμ1
σ1
Aμ2

σ2
r∗1Ω

μ1
μ2

)
∧ . . . ∧

⎛
⎝ n−1∑

μ2k−1,μ2k=1

Aμ2k−1
σ2k−1

Aμ2k
σ2k

r∗1Ω
μ2k−1
μ2k

⎞
⎠

∧
⎛
⎝ n−1∑

μ2k+1=1

Aμ2k+1
σ2k+1

r∗1ω
μ2k+1
n

⎞
⎠ ∧ . . . ∧

(
n−1∑

μn−1=1

Aμn−1
σn−1

r∗1ω
μn−1
n

)

=
∑

σ∈Sn−1

n−1∑
μ1,...,μn−1=1

εσA
μ1
σ1
· · ·Aμn−1

σn−1
r∗1Ω

μ1
μ2

∧ . . . ∧ r∗1Ω
μ2k−1
μ2k

∧ r∗1ω
μ2k+1
n ∧ . . . ∧ r∗1ω

μn−1
n

=
n−1∑

μ1,...,μn−1=1

⎛
⎝ ∑

σ∈Sn−1

εσA
μ1
σ1
· · ·Aμn−1

σn−1

⎞
⎠ r∗1Ω

μ1
μ2

∧ . . . ∧ r∗1Ω
μ2k−1
μ2k

∧ r∗1ω
μ2k+1
n ∧ . . . ∧ r∗1ω

μn−1
n

=
∑

τ∈Sn−1

⎛
⎝ ∑

σ∈Sn−1

εσετA
τ1
σ1
· · ·Aτn−1

σn−1

⎞
⎠

︸ ︷︷ ︸
ετ det(A)

r∗1Ω
τ1
τ2
∧ . . . ∧ r∗1Ω

τ2k−1
τ2k

∧ r∗1ω
τ2k+1
n ∧ . . . ∧ r∗1ω

τn−1
n

=
∑

τ∈Sn−1

ετr
∗
1Ω

τ1
τ2
∧ . . . ∧ r∗1Ω

τ2k−1
τ2k

∧ r∗1ω
τ2k+1
n ∧ . . . ∧ r∗1ω

τn−1
n

= r∗1Φk.

The same proof can be carried out to show that r∗1Ψk = r∗2Ψk.

It is important to note here that the sections ri are not arbitrary sections of the
bundle ξ. Indeed, they share the same last vector. Therefore, at each point p ∈ U
we only need the subgroup SO(n− 1), and not the whole group SO(n), to act on
the fibre to send r1(p) onto r2(p). This would not be true if r1 and r2 were arbitrary
sections, since they would be related at each point by an element of SO(n) and not
only SO(n−1). It is then natural to take a closer look at the situation pulled-back
on the unit tangent bundle since we know that SM ∼= SO(M)/SO(n− 1).
Therefore, if we consider the sections of ξ1 defined by

s̃i := ri ◦ π2 : π
−1
2 (U) → SO(M),

we obviously have s̃∗1Φk = s̃∗2Φk and s̃∗1Ψk = s̃∗2Ψk on π−1
2 (U), but actually these

forms are global i.e. they are defined on the whole unit tangent bundle SM .

Proposition 3.12. Let (p0, v0) ∈ SM and let v : U → SM be a vector field such
that v(p0) = (p0, v0). Let also s : U → SO(M) be a section of ξ with v as last
vector and set Φ̃k = π∗

2s
∗Φk ∈ Ωn−1

(
π−1
2 (U)

)
. Then Φ̃k

∣∣∣
(p0,v0)

is independent of v.
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Proof. The differential dπ2 : TSM → TM vanishes on vectors that are tangent to
the fibre π−1

2 (p).

The consequence of this proposition is that at each point (p0, v0) ∈ SM we can
define the form Φ̃k

∣∣∣
(p0,v0)

as above i.e. using a vector field v : U → SM , where U

is an open neighbourhood of p0, and a section s : U → SO(M) having v as last
vector. By Lemma 3.11 the form Φ̃k does not depend on s and by Proposition
3.12 it does not depend on v either. Therefore we have

Corollary 3.13. The form Φ̃k is defined on the whole manifold SM i.e. Φ̃k ∈
Ωn−1(SM).

The last two results hold also for the form Ψ̃k = π∗
2s

∗Ψk. The next step in proving
the transgression lemma is to establish a relation between the Φ̃k and the Ψ̃k. This
is summed up in the following lemma:

Lemma 3.14. Setting Ψ̃−1 = 0 for convenience, we have for all k = 0, 1, . . . , �n
2
�−1

dΦ̃k = Ψ̃k−1 +
n− 2k − 1

2(k + 1)
Ψ̃k

Proof. Let us compute the exterior derivative of Φ̃k, which is an n-form on SM .

dΦk =
∑

σ∈Sn−1

εσ
(
dΩσ1

σ2
∧ Ωσ3

σ4
∧ . . . ∧ Ωσ2k−1

σ2k
∧ ωσ2k+1

n ∧ . . . ∧ ωσn−1
n

+ Ωσ1
σ2

∧ dΩσ3
σ4

∧ Ωσ5
σ6

∧ . . . ∧ Ωσ2k−1
σ2k

∧ ωσ2k+1
n ∧ . . . ∧ ωσn−1

n

+ . . .

+ Ωσ1
σ2

∧ . . . ∧ Ωσ2k−3
σ2k−2

∧ dΩσ2k−1
σ2k

∧ ωσ2k+1
n ∧ . . . ∧ ωσn−1

n

+ Ωσ1
σ2

∧ . . . ∧ Ωσ2k−1
σ2k

∧ dωσ2k+1
n ∧ ωσ2k+2

n ∧ . . . ∧ ωσn−1
n

+ . . .

+Ωσ1
σ2

∧ . . . ∧ Ωσ2k−1
σ2k

∧ ωσ2k+1 ∧ . . . ∧ ωσn−2
n ∧ dωσn−1

n

)
= k

∑
σ∈Sn−1

εσdΩ
σ1
σ2

∧ Ωσ3
σ4

∧ . . . ∧ Ωσ2k−1
σ2k

∧ ωσ2k+1
n ∧ . . . ∧ ωσn−1

n

+ (n− 1− 2k)
∑

σ∈Sn−1

εσΩ
σ1
σ2

∧ . . . ∧ Ωσ2k−1
σ2k

∧ dωσ2k+1
n ∧ ωσ2k+2

n ∧ . . . ∧ ωσn−1
n

since the Ωi
j are two forms and therefore commute without change of the sign with

any other k-forms. The second structure equation (1.8) and the second Bianchi
identity (1.10) are given in matrix notation by

dω = Ω− ω ∧ ω,

dΩ = Ω ∧ ω − ω ∧ Ω,
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or with the indices

dωA
B = ΩA

B − ωA
C ∧ ωC

B ,

dΩA
B = ΩA

C ∧ ωC
B − ωA

C ∧ ΩC
B.

Replacing dΩσ1
σ2

and dω
σ2k+1
n using the last two equations and separating the terms

who do contain some ωi
j (for 1 ≤ i, j ≤ n− 1) and those who don’t, we get

dΦk = k
∑

σ∈Sn−1

εσΩ
σ3
σ4

∧ . . . ∧ Ωσ2k−1
σ2k

∧ Ωσ1
n ∧ ωn

σ2
∧ ωσ2k+1

n ∧ . . . ∧ ωσn−1
n

− k
∑

σ∈Sn−1

εσΩ
σ3
σ4

∧ . . . ∧ Ωσ2k−1
σ2k

∧ Ωn
σ2

∧ ωσ1
n ∧ ωσ2k+1

n ∧ . . . ∧ ωσn−1
n

+ (n− 1− 2k)
∑

σ∈Sn−1

εσΩ
σ1
σ2

∧ . . . ∧ Ωσ2k−1
σ2k

∧ Ωσ2k+1
n ∧ ωσ2k+2

n ∧ . . . ∧ ωσn−1
n

+k
∑

σ∈Sn−1

εσΩ
σ3
σ4

∧ . . . ∧ Ωσ2k−1
σ2k

∧ Ωσ1
i ∧ ωi

σ2
∧ ωσ2k+1

n ∧ . . . ∧ ωσn−1
n︸ ︷︷ ︸

Ak

−k
∑

σ∈Sn−1

εσΩ
σ3
σ4

∧ . . . ∧ Ωσ2k−1
σ2k

∧ Ωi
σ2

∧ ωσ1
i ∧ ωσ2k+1

n ∧ . . . ∧ ωσn−1
n︸ ︷︷ ︸

Bk

+(n− 1− 2k)
∑

σ∈Sn−1

εσΩ
σ1
σ2

∧ . . . ∧ Ωσ2k−1
σ2k

∧ ω
σ2k+1

i ∧ ωi
n ∧ ωσ2k+2

n ∧ . . . ∧ ωσn−1
n︸ ︷︷ ︸

Ck

.

In this huge expression for dΦk there are actually several known and simple terms.
Indeed, the third line is exactly n−1−2k

2(k+1)
Ψk. Moreover the first two lines are the

same up to the transposition that exchanges σ1 and σ2. Therefore we can write

dΦk =
n− 1− 2k

2(k + 1)
Ψk + 2k

∑
σ∈Sn−1

εσΩ
σ3
σ4

∧ . . . ∧ Ωσ2k−1
σ2k

∧ Ωσ2
n ∧ ωσ1

n ∧ ωσ2k+1
n ∧ . . . ∧ ωσn−1

n

+ Ak + Bk + Ck

The second term of the right-hand side is (up to a relabeling of the permutations)

2k
∑

τ∈Sn−1

ετΩ
τ1
τ2
∧ . . . ∧ Ωτ2k−3

τ2k−2
∧ Ωτ2k−1

n ∧ ωτ2k
n ∧ ωτ2k+1

n ∧ . . . ∧ ωτn−1
n = Ψk−1,

so that
dΦk =

n− 1− 2k

2(k + 1)
Ψk +Ψk−1 + Ak + Bk + Ck. (3.4)

Finally, all the terms containing some ωi
j must simplify since the pullback of dΦk

on SM is a global differential form and therefore cannot contain connection forms
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that are not of the type ωi
n. This can be seen by taking a moving frame satisfying

ωi
j(p) = 0 for some point p ∈ U (this corresponds to choosing normal coordinates

in the neighbourhood of the point p). Since dΦ̃k is a global form on SM then
for every choice of a moving frame in the neighbourhood of p the terms in dΦ̃k

containing connection forms of the type ωi
j will simplify at the point p and since

the point is arbitrary. It follows that Ak +Bk +Ck = 0 and pulling back Equation
(3.4) on the unit tangent bundle SM we get

dΦ̃k =
n− 1− 2k

2(k + 1)
Ψ̃k + Ψ̃k−1.

The last lemma yields the following formula for Ψ̃k in terms of dΦ̃0, . . . , dΦ̃k:

Ψ̃k =
k∑

i=0

(−1)k−i (2k + 2) · · · (2i+ 2)

(n− 1− 2i) · · · (n− 1− 2k)
dΦ̃i, (3.5)

for every k = 0, . . . , �n
2
� − 1. Therefore we have

(a) if dim(M) = n = 2m:

Ψ̃m−1 = 2m
∑

σ∈Sn−1

εσΩ̃
σ1
σ2

∧ . . . ∧ Ω̃σ2m−3
σ2m−2

∧ Ω̃
σ2m−1

2m

=
∑

σ∈Sn−1

εσΩ̃
σ1
σ2

∧ . . . ∧ Ω̃σ2m−3
σ2m−2

∧ Ω̃σ2m−1
σ2m

= 2mm!π∗
2 Pf(Ω),

(b) and if dim(M) = n = 2m+ 1:

Ψ̃m−1 = 2m
∑

σ∈Sn−1

εσΩ̃
σ1
σ2

∧ . . . ∧ Ω̃σ2m−3
σ2m−2

∧ Ω̃
σ2m−1

2m ∧ ω̃σ2m
2m = dΦ̃m,

since Ψ̃m = 0.

So finally defining on SM the following global form Π̃ of degree n− 1

Π̃ =

�n−1
2

�∑
k=0

(−1)k+1

2nπ
n−1
2 k!Γ

(
n−2k+1

2

)Φ̃k ∈ Ωn−1(SM), (3.6)

we can show the transgression Lemma 3.6 using Lemma 3.14:

Proof. (Lemma 3.6)
Using the formula (3.5) one can easily show both for n = 2m even and n = 2m+1
odd that the constants simplify so that

−dΠ̃ = π∗
2Ω,
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where Ω is the Gauss-Bonnet integrand (3.1) and is not to be confused with the
curvature form of SO(M), or equivalently

−dΠ̃ =
1

(2π)
n
2

π∗
2 Pf(Ω)

3.3.2 Step Two: Application of The Hopf-Poincaré and The
Stokes Theorems

Throughout this section, let (M, g) be a closed oriented Riemannian manifold of
dimension n. The case where M has a boundary will be dealt with in a second
time.
The next and last step in Chern’s proof is to establish the link between curvature
and topology. This is done by choosing a unit vector field ν with (possibly) isolated
singularities. Denote by I = {x1, . . . , xr} ⊂ M the set of singularities of ν, so that
we can write ν ∈ Γ(M \ I, SM). Without any loss of generality we will assume
that there is only one singularity x. Around this singularity, one can consider a
small ball B(x, ε) such that ν is well-defined on

Mε = M \B(x, ε).

Let Nε denote the image by ν of Mε i.e. Nε = ν(Mε). In order to be able to use the
transgression lemma, we switch from M to SM via the pull-back of the projection
π2|Nε

: Nε → Mε. Restricted to Mε and Nε, ν and π2 are inverse to each other.
Therefore applying the transgression lemma 3.6 as well as Stoke’s theorem we get∫

M

Ω =

∫
Mε

Ω +

∫
B(x,ε)

Ω

=

∫
Nε

π2|∗Nε
Ω +

∫
B(xi,εi)

Ω

=

∫
Nε

−dΠ̃ +

∫
B(x,ε)

Ω

= −
∫
∂Nε

Π̃ +

∫
B(x,ε)

Ω.

Now, letting ε → 0, we obtain on one hand

lim
ε→0

∫
B(x,ε)

Ω = 0.

On the other hand, denoting by Σε the boundary of B(x, ε) i.e. the sphere centered
at x of radius ε, we have

lim
ε→0

∫
∂Nε

Π̃ = − lim
ε→0

∫
ν(Σε)

Π̃
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where the minus sign comes from the orientations of ∂Nε as the boundary of a
manifold and of ν(Σε) as the image of the sphere.

3.3.3 Conclusion of the proof

We reproduce here the argument made by Chern to complete the proof. First,
using normal coordinates he notices that the integral over Σε of ν∗Φk for k ≥ 1 is
bounded by a constant times ε i.e. there exists C ∈ R such that for all k ≥ 1 we
have ∣∣∣∣

∫
ν(Σε)

Φk

∣∣∣∣ < C · ε,

therefore

lim
ε→0

∫
ν(Σε)

Π̃ = − 1

2nπ
n−1
2 Γ

(
n+1
2

) lim
ε→0

∫
ν(Σε)

Φ̃0.

Since

Φ̃0 =
∑

σ∈Sn−1

εσω
σ1
n ∧ . . . ∧ ωσn−1

n

=
∑

σ∈Sn−1

ω1
n ∧ . . . ∧ ωn−1

n

= (n− 1)!ω1
n ∧ . . . ∧ ωn−1

n ,

we get

lim
ε→0

∫
ν(Σε)

Π̃ = − (n− 1)!

2nπ
n−1
2 Γ

(
n+1
2

) lim
ε→0

∫
ν(Σε)

ω1
n ∧ . . . ∧ ωn−1

n .

Finally, by Lemma 3.15 we have

lim
ε→0

1

αn−1

∫
ν(Σε)

ω1
n∧ . . .∧ωn−1

n =
(−1)n−1 deg(f)

αn−1

∫
Sn−1

dvolSn−1 = (−1)n−1Ind(ν, x)

where f : Σε −→ Sn−1 is the map defined by f(p) = νp for p ∈ Σε and αn−1 =
2π

n
2

Γ(n
2 )

is the volume of Sn−1. Thus, since we assumed that x was the only singularity
of ν on M , we also have by Poincaré-Hopf theorem that Ind(ν, x) = χ(M) and
therefore

lim
ε→0

∫
Σε

ν∗Π̃ =
(−1)n(n− 1)!

2nπ
n−1
2 Γ

(
n+1
2

) 2π
n
2

Γ
(
n
2

)χ(M).

Using the identity Γ(z)Γ(z + 1
2
) = 21−2z

√
πΓ(2z) (often called the duplication

formula) we obtain

lim
ε→0

∫
Σε

ν∗Π̃ = (−1)nχ(M).
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Recalling that Ω = (2π)−
n
2 Pf(Ω), this completes the proof of the Gauss-Bonnet-

Chern Theorem in the case where the manifold has no boundary:

(−1)nχ(M) =
1

(2π)
n
2

∫
M

Pf(Ω). (3.7)

Observe that if n is odd the theorem reduces to χ(M) = 0.
By introducing normal coordinates, one can show that the pullback of the volume
form of Sn−1 on Σε by ν can be written by means of the second fundamental form
of ∂M in M :

Lemma 3.15. Let f : Σε −→ S
n−1 be the map defined by f(p) = νp for p ∈ Σε.

Then
f ∗dvolSn−1 = (−1)n−1ω1

n ∧ . . . ∧ ωn−1
n + o(ε).

Proof. Let us make general consideration about the pullback of volume forms.
Let F : Mn

1 → Mm
2 be a differentiable map between two manifolds and let g be a

Riemannian metric on M2 as well as p ∈ M1 and q = F (p). Let U ⊂ M1 be a an
open neighbourhood of p and let (e1, . . . , en) be a directly oriented orthonormal
moving frame on F (U) ⊂ M2. Then on U we have

dF =
m∑
i=1

λiei =
m∑
i=1

ei ⊗ λi ∈ TM2 ⊗ T ∗M1,

where λi ∈ Ω1(U) is the 1-form defined on U by

λi = F ∗θi, with θi(ej) = δij.

This implies that F ∗dvolM2 = λ1 ∧ . . . ∧ λm.
Now, recall that on an open neighbourhood U of a Riemannian manifold (M, g)
we have

∇ei = ωj
i ej = ej ⊗ ωj

i ∈ TM ⊗ T ∗M (3.8)

Going back our particular situation of a map f : Σε −→ S
n−1, consider a directly

oriented orthonormal moving frame (e1, . . . , en−1, en = ν), we have by Equation
(3.8)

∇ν =
n−1∑
j=1

ωj
n,

since ωn
n = 0. Now, by taking a system of normal coordinates at p we identify the

vector field ν and the map f we get

df = ∇ν + o(ε) =
n−1∑
i=1

ωj
nej + o(ε).

Hence we get by the general consideration made above

f ∗dvolSn−1 = ω1
n ∧ . . . ∧ ωn−1

n .
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3.3.4 The Case of Manifolds with Boundary

Suppose now that (M, g) is an n-dimensional compact oriented Riemannian man-
ifold with boundary. In this case, the behaviour (i.e. inward/outward pointing) of
ν at boundary points is important in view of the Poicaré-Hopf theorem. Following
Chern, let ν be inward pointing at each boundary point. The main difference is
that now the boundary of Nε consists of two distinct components, the image of
the boundary of M under ν i.e. ν(∂M) and the image of Σε under ν. Therefore,
the same argument as before gives∫

M

Ω =

∫
Mε

Ω +

∫
B(x,ε)

Ω

=

∫
Nε

π2|∗Nε
Ω +

∫
B(x,ε)

Ω

=

∫
Nε

−dΠ̃ +

∫
B(x,ε)

Ω

= −
∫
ν(∂M)

Π̃ +

∫
ν(Σε)

Π̃ + +

∫
B(x,ε)

Ω.

Letting ε → 0 we obtain by Theorem 3.4 the Gauss-Bonnet-Chern theorem for
manifold with boundary:

(−1)n (χ(M)− χ(∂M))− 1

(2π)
n
2

∫
M

Pf(Ω) =

∫
ν(∂M)

Π̃ (3.9)

Equations (3.7) and (3.9) together prove the Gauss-Bonnet-Chern Theorem 3.7.

Remark 3.16. Observe that when n is even, then ∂M is a closed manifold of odd
dimension, therefore

(−1)n (χ(M)− χ(∂M)) =

{
χ(M) if n is even,
χ(∂M)− χ(M) if n is odd.

This quantity is what Chern, Allendoerfer, Weil and other people call the inner
Euler-Poincaré characteristic of M and that they usually denote by χ′(M).

Example 3.17. If M = S is a compact orientable surface with boundary, then one
recover the classical Gauss-Bonnet theorem. Let e2 := ν be an inward-pointing
vector field defined on a neighbourhood U of the boundary. In dimension 2 there
is a unique vector field e1 such that (e1, e2) is an orthonormal directly oriented
moving frame on U . Then by Example 1.28 we already know that

Pf(Ω) = KdvolS,

where K is the Gaussian curvature of S. Moreover

ν∗Π̃ =
1

4
√
π

1

Γ
(
3
2

)ν∗Φ̃0 =
1

2π
ν∗ω̃1

2 =
1

2π
ω1
2 =

1

2π
kgdvol∂S,
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where kg is the geodesic curvature of the curve ∂S. Therefore the Gauss-Bonnet-
Chern Theorem in dimension 2 reduces to

χ(S)− 1

2π

∫
S

KdvolS =
1

2π

∫
∂S

kgdvol∂S.

3.3.5 A Remark About the Orientation in the Case of Man-
ifolds with Boundary

Recall that the changing the orientation at the boundary (inward/outward point-
ing) of the normal unit vector ν in Theorem 3.4 changes the statement. This
remark is obviously also true concerning the Gauss-Bonnet-Chern Theorem since
Poincaré-Hopf’s Theorem is used. However, the change in the statement of the
Theorem is this time quite subtle. Let (M, g) be a compact oriented n-dimensional
Riemannian manifold with boundary. Denoting as before the inward-pointing unit-
normal vector by ν consider the outward-pointing unit normal vector field ν = −ν.
Let (e1, . . . , en) be an oriented orthonormal moving frame such that en = ν and
let (e1, . . . , en) be the oriented moving frame defined by

ei = ei and en = −en = ν,

for all 1 ≤ i ≤ n− 1. These two frames define an opposite orientation on M (and
therefore on ∂M) and the connection and curvature forms are modified as follows:

Lemma 3.18. Let ωA
B,Ω

A
B, ω

A
B and Ω

A

B be the connection and curvature forms
associated to the two above moving frames. Then⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ωi
j = ωi

j,

ωi
n = −ωi

n,

Ω
i

j = Ωi
j,

Ω
i

n = Ωi
n.

Proof. Using the first structure equation (Lemma 1.10) we have on one hand

dθ
i
= θ

A ∧ ωi
A

= θ
n ∧ ωi

n + θ
j ∧ ωi

j

= −θn ∧ ωi
n + θj ∧ ωi

j,

and on the other hand

dθ
i
= dθi = θn ∧ ωi

n + θj ∧ ωi
j.
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Hence by comparing the terms we get ωi
j = ωi

j and ωi
n = −ωi

n. Now the second
structure equation (1.8) gives

Ω
i

j = dωi
j + ωi

A ∧ ωA
j

= dωi
j + ωi

k ∧ ωk
j + (−ωi

n) ∧ (−ωn
j )

= dωi
j + ωi

A ∧ ωA
j

= Ωi
j,

and since ωn
n = ωn

n = 0:

Ω
i

n = dωi
n + ωi

A ∧ ωA
n

= −dωi
n − ωi

k ∧ ωk
n

= −Ωi
n

This lemma can be interpreted by recalling that the second fundamental forms bν
and bν of ∂M in M with respect to the two unit normals ν and ν can be written
as

bν = Γn
ijθ

i ⊗ θj,

bν = Γ
n

ijθ
i ⊗ θ

j
.

Hence the change of sign ωi
n = −ωi

n simply comes from the fact that the sign of the
second fundamental form depends on the orientation of the chosen unit normal.
By Proposition 1.26 we know that the Pfaffian changes as

Pf(Ω) = −Pf(Ω),

but since the orientation of M is also reversed the integral of the Pfaffian remains
unchanged: ∫

(M,ν)

Pf(Ω) = −
∫
(M,ν)

−Pf(Ω) =

∫
(M,ν)

Pf(Ω),

where we have denoted by (M, ν) and (M, ν) the manifolds with the orientations
corresponding to ν and ν. The form Π̃ is modified as follows:

Π =

�n−1
2

�∑
k=0

(−1)k+1

2nπ
n−1
2 k!Γ

(
n−2k+1

2

)Φk,

where

Φk =
∑

σ∈Sn−1

εσΩ
σ1

σ2
∧ . . . ∧ Ω

σ2k−1

σ2k
∧ ωσ2k+1

n ∧ . . . ∧ ωσn−1
n

= (−1)n−1−k
∑

σ∈Sn−1

εσΩ
σ1
σ2

∧ . . . ∧ Ωσ2k−1
σ2k

∧ ωσ2k+1
n ∧ . . . ∧ ωσn−1

n

= (−1)n−1−kΦ̃k
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whence

Π =

�n−1
2

�∑
k=0

(−1)n

2nπ
n−1
2 k!Γ

(
n−2k+1

2

)Φ̃k. (3.10)

Therefore going through the same proof as the one for manifolds with boundary
and taking into account the Poincaré-Hopf Theorem, the Gauss-Bonnet-Chern
Theorem 3.9 can be rewritten in terms of an outward-pointing unit normal vector
field ν as

(−1)nχ(M)− 1

(2π)
n
2

∫
M

Pf(Ω) =

∫
ν(∂M)

Π. (3.11)

It will actually be important thereafter to know both the statements for an inward
and an outward point normal unit vector.



Chapter 4

Asymptotically Conical Ends and
Conical Singularities

The Main Theorem 7 stated in the introduction shall now be demonstrated. The
choice of separating the proof in three different step has been made in order to
emphasize the particularity of each case. First we assume that the manifold admits
conical ends in the sense that each end is isometric to a Riemannian cone without
perturbation of the metric. This assumption implies in particular that the Pfaffian
of the curvature form Ω vanishes on every end and therefore the total curvature is
well-defined. In this case, the idea of the proof is to consider an exhaustion of M
by compact manifolds with boundary and apply the Gauss-Bonnet-Chern theorem
to each element of the exhaustion. This provides a quantification of the Gauss-
Bonnet defect in terms of an integral on the boundary, and a careful analysis of
the asymptotic behaviour of this boundary term yield the formula.
In a second time, the metric on each end is assumed to be asymptotically conical,
meaning that the metric can be written as the standard conical metric plus a
perturbation term which vanishes asymptotically (as well as his first two covariant
derivatives). The technical details about the convergence of the metric are tackled
in Appendix A. In this case, the integral of the Pfaffian of Ω (i.e. the total
curvature) is not necessarly equal to zero but it does vanish asymptotically so that
the total curvature is well-defined. We then have to ensure that the boundary term
in the Gauss-Bonnet-Chern theorem converge to the one obtained in the previous
(strictly conical) case.
Finally we deal with the case of conical singularities.

4.1 Manifolds with Conical Ends

All the preparation that has been done so far will now serve to show a version of
the Gauss-Bonnet-Chern theorem for complete manifolds that are not necessarly
compact. Assumptions have to be made both on the geometry and the topology
for the integral of the Pfaffian of the curvature forms to converge and for the Euler

79



80 CHAPTER 4. CONICAL ENDS AND CONICAL SINGULARITIES

characteristic to be an integer.
On the topological side, the natural hypothesis is to assume that the manifold M
is of finite topological type (see Definition 3.1), i.e. that there exists a compact
submanifold of M in which all the topology of M is contained.
The geometric assumptions have to ensure the convergence of the integral∫

M

|Pf(Ω)| ,

therefore we will first consider the case where all the ends of M are conical .

Remark 4.1. The expression ∫
|Pf(Ω)|

is to be understood in the sense of densities. More precisely, we say that an n-form
β ∈ Ωn(M) is integrable if ∫

M

|β| < +∞,

where β is the natural density associated to β (See [Lee13], pp. 427-434).

This means that the restriction of the ambient metric g to each end Ei takes the
form

g = t2gNi
+ dt2,

with gNi
a metric on Ni. Recall that by Corollary 1.30 the Pfaffian vanishes

identically on a conical warped-product.
This geometrical hypothesis will be relaxed hereafter as the Pfaffian does not need
to vanish for its integral over M to converge, but only to decrease sufficiently fast.
Let us first suppose that M has no boundary. We will work out an expression for
the Gauss-Bonnet defect of M in terms of the Lipschitz-Killing curvatures of the
Ni’s. More precisely, we have the following theorem:

Theorem 4.2. Let (M, g) be an even n-dimensional complete oriented Rieman-
nian of finite topological type. Assume that M has one end E = N × (1,∞) with
N ⊂ M compact and moreover that E is conical. Then the Gauss-Bonnet defect
of M is given by

χ(M)− 1

(2π)
n
2

∫
M

Pf(Ω) = τ(N), (4.1)

where

τ(N) =

�n−1
2

�∑
k=0

A(n, k)

∫
N

C2k((R−D)k)dvolN (4.2)

with R the curvature tensor of N and D = 1
2
gN ©∧ gN , and the constants A(n, k)

are given by

A(n, k) =
(n− 1− 2k)!

2n−kπ
n−1
2 k!(2k)!Γ

(
n−2k+1

2

) > 0. (4.3)
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Remark 4.3. The requirement for the manifold to have only one end is not a
restriction. The choice of this assumption is purely motivated by the readability
of the formula. If M has r ends N1, . . . , Nr, then the statement is the same except
that one has to sum over each end separately.

4.2 On the invariant τ (N)

The geometric invariant τ(N) can be easily computed in low dimensions. Table
4.1 gives some values of the constant A(n, k) for some small n and 0 ≤ k ≤ �n−1

2
�:

k\n 2 3 4 5 6

0 1
2π

1
4π

1
2π2

3
8π2

1
π3

1 - 1
8π

1
8π2

1
16π2

1
8π3

2 - - - 1
384π2

1
384π2

Figure 4.1: Some values of A(n, k).

Example 4.4. (Dimension 1) Let γ be a closed curve. Denoting by ds the
length element of γ, the invariant τ(γ) is given by

τ(γ) = A(2, 0)

∫
γ

ds =
1

2π
length(γ).

Example 4.5. (Dimension 3) Let (N, gN) be a compact 3-dimensional Rieman-
nian manifold. The invariant τ(N) is given by

τ(N) = A(4, 0)

∫
N

dvolN + A(4, 1)

∫
N

C2(R−D)dvolN .

But given an orthonormal moving frame (e1, e2, e3) on a open subset U ⊂ N we
have by definition of the contraction:

C2(R−D) =
3∑

i,j=1

(R−D)(ei, ej)(ei, ej)

=
3∑

i,j=1

R(ei, ej)(ei, ej)−
3∑

i,j=1

D(ei, ej)(ei, ej)

= ScalgN − 6

since D(ei, ej)(ek, el) = δikδjl − δilδjk. Therefore

τ(N) =
1

2π2
Vol(N) +

1

8π2

∫
N

(ScalgN − 6)dvolN

=
1

8π2

∫
N

(ScalgN − 2) dvolN .
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This result was obtained by Dillen and Kühnel in [DK05, p. 191] in the case of
cones in R

N . Observe that the value of τ(N) depends on the mean scalar curvature
of N .

Example 4.6. (Flat Manifolds) Let us suppose that (N, gN) is a compact odd
dimensional flat Riemannian manifold i.e. that R ≡ 0. It follows that

C2k((R−D)k) = (−1)kC2k(Dk).

But we know the contractions of the curvature tensor of the sphere by Equation
(2.9):

C2k(Dk) =
((2k)!)2

2k

(
n− 1

2k

)
,

therefore

τ(N) =

�n−1
2

�∑
k=0

(−1)kA(n, k)

∫
N

C2k(Dk)dvolN

=

�n−1
2

�∑
k=0

(−1)kA(n, k)
((2k)!)2

2k

(
n− 1

2k

)
Vol(N)

= C · Vol(N).

Example 4.7. (Space forms) As in the preceding example, if (N, gN) is an odd
dimensional space of constant sectional curvature λ ∈ R, the invariant τ(N) is
given by a function of λ times the volume of N . Recall that the curvature tensor
of such a manifold is given by

R = λD.

Hence we have

C2k((R−D)k) = C2k((λD −D)k)

= (λ− 1)kC2k(Dk)

=
(λ− 1)k((2k)!)2

2k

(
n− 1

2k

)
.

Thus τ(N) is given by

τ(N) =

�n−1
2

�∑
k=0

A(n, k)

∫
N

(λ− 1)k((2k)!)2

2k

(
n− 1

2k

)
dvolN

=

�n−1
2

�∑
k=0

(λ− 1)k((2k)!)2

2k

(
n− 1

2k

)
A(n, k)Vol(N)

= φ(λ) · Vol(N),
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the function φ(λ) being a polynomial in the variable λ.
Then if (N, gN) = (Sn−1, g1), with g1 the metric on the unit sphere with constant
sectional curvature λ = 1, then the invariant τ(Sn−1) is simply given by

τ(Sn−1) = A(n, 0)Vol(Sn−1) =
(n− 1)!

2nπ
n−1
2 Γ

(
n+1
2

) = 1.

This value for τ(Sn−1) is confirmed by Theorem 4.2 applied to R
n seen as the

standard cone over S
n−1

τ(Sn−1) = χ(Rn)− 1

(2π)
n
2

∫
Rn

Pf(Ω) = χ(Rn) = 1.

Remark 4.8. (Extension to odd dimensions) The invariant τ(N) is actually
defined also when N is even dimensional. For an arbitrary (n − 1)-dimensional
compact Riemannian manifold (N, gN) we set

τ(N) = (−1)n
�n−1

2
�∑

k=0

A(n, k)

∫
N

C2k((R−D)k)dvolN . (4.4)

We believe that for even dimensional N , this invariant simplifies to give only
the Euler-characteristic of N via the Gauss-Bonnet-Chern theorem. For a 2-
dimensional N we get

τ(N) = −A(3, 0)

∫
N

dvolN − A(3, 1)

∫
N

C2(R−D)dvolN .

As before we have

C2(R−D) =
2∑

i,j=1

(R−D)(ei, ej)(ei, ej)

=
2∑

i,j=1

R(ei, ej)(ei, ej)−
2∑

i,j=1

D(ei, ej)(ei, ej)

= ScalgN − 2

= 2KGauss − 2.

Therefore

τ(N) = − 1

4π
Vol(N)− 1

8π

∫
N

(2KGauss − 2) dvolN

= − 1

4π

∫
N

KGaussdvolN

= −1

2
χ(N),
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where we have used the Gauss-Bonnet Theorem for N in the last equality. Observe
that this result is consistent with Theorem 4.2 since if (M, g) is a complete non
compact 3-dimensional manifold with one conical end of link (N, gN) then the
left-hand side of Equation is simply −χ(M) since the Pfaffian of a 3-dimensional
vanishes. But it is known that the Euler-characteristic of an odd dimensional
manifold with boundary is half the Euler-characteristic of its boundary. In our
case we thus have

τ(N) = −1

2
χ(N) = −χ(M).

Relation between τ(N) and the Lipschitz-Killing curvatures
of N

Knowing the close relation between the contractions of powers of the curvature
tensor of a manifold and its Lipschitz-Killing curvatures, it not surprising that the
invariant τ(N) can actually be written as a sum of Lipschitz-Killing curvatures of
N :

Theorem 4.9. Let (N, gN) be a compact n-dimensional Riemannian manifold.
Then

τ(N) =

�n−1
2

�∑
k=0

λn,kK2k(N), (4.5)

where the λn,k are given by

λn,k =

�n−1
2

�∑
j=k

(−1)n+j−k (n− 1− 2k)!j!(2j)!

(n− 1− 2j)!(j − k)!2j−k
A(n, j), (4.6)

with A(n, j) defined in Equation 4.3.

Proof. Since the double-forms R and D are of type (2, 2) their exterior product
commutes without changing i.e. R ∧D = D ∧ R (c.f. Equation (2.1)). Thus the
k-th exterior power of (R−D) can be expanded using Newton’s binomial:

(R−D)k =
k∑

j=0

(
k

j

)
(−1)k−jRj ∧Dk−j.

It follows that the 2k-th contraction of (R−D)k is given by

C2k((R−D)k) =
n−1∑

i1,...,i2k=1

(R−D)k(ei1 , . . . , ei2k)(ei1 , . . . , ei2k)

=
n−1∑

i1,...,i2k=1

k∑
j=0

(
k

j

)
(−1)k−j

(
Rj ∧Dk−j

)
(ei1 , . . . , ei2k)(ei1 , . . . , ei2k)
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Using the definition of the wedge of double-forms and the fact that the C2k−2j(Dk−j)
are known from Proposition 2.18 we can rewrite this last expression as

C2k((R−D)k) =
k∑

j=0

μn,k,jC
2j(Rj).

Hence, since we have extended the definition of τ(N) to compact manifolds of
arbitrary dimension in Remark 4.8, we have

τ(N) = (−1)n
�n−1

2
�∑

k=0

A(n, k)

∫
N

C2k((R−D)k)dvolN

=

�n−1
2

�∑
k=0

(−1)nA(n, k)
k∑

j=0

μn,k,jj!(2j)!

∫
N

κ2j(N)

=

�n−1
2

�∑
k=0

λn,kK2k(N),

where λn,k is a complicated expression obtained from the constants A(n, k), μn,k,j

and by changing the double sum as a simple sum.
The constants λn,k being universal, a strategy to calculate them explicitly is
to compute the invariant τ(N) on a particular example whose Lipschitz-Killing
curvatures are known. Consider the family of manifolds given by (Na, ga) =
(Sn−1

a , a2gSn−1) consisting of spheres of constant sectional curvature 1
a2

. By Propo-
sition 2.18 we know that:

�n−1
2

�∑
k=0

λn,kK2k(S
n−1
a ) =

�n−1
2

�∑
k=0

λn,k
(n− 1)!αn−1

2kk!(n− 1− 2k)!
an−1−2k.

On the other hand we have by Example 4.7 (which be easily adapted to odd
dimensions):

τ(Sn−1
a ) = (−1)nφ

(
1

a2

)
Vol(Sn−1

a )

=

�n−1
2

�∑
k=0

(−1)n(a−2 − 1)k((2k)!)2

2k

(
n− 1

2k

)
A(n, k)αn−1a

n−1

=

�n−1
2

�∑
k=0

k∑
j=0

((2k)!)2αn−1

2k

(
n− 1

2k

)
A(n, k)

(
k

j

)
an−1−2j(−1)n+k−j
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then by comparing the coefficients of the powers of a we finally get after "simpli-
fications":

λn,k =

�n−1
2

�∑
j=k

(−1)n+j−k (n− 1− 2k)!j!(2j)!

(n− 1− 2j)!(j − k)!2j−k
A(n, j)

=

�n−1
2

�∑
j=k

(−1)n+j−k(n− 1− 2k)!

(j − k!)2j−kπ
n−1
2 Γ

(
n−2j+1

2

)

Although those constants are rather complicated, they are calculable at least for
small dimensions. Some values are given in Table 4.2. Observe that for odd
dimension only the top Lipschitz-Killing curvature is involved in the expression
for τ , which confirms the result obtained in Remark 4.8.

k\n 2 3 4 5 6 7 8

0 1
2π

0 − 1
4π2 0 3

8π3 0 − 15
16π4

1 - − 1
4π

1
4π2 0 − 1

8π3 0 3
16π4

2 - - - − 1
8π2

1
8π3 0 − 1

16π4

3 - - - - - − 1
16π3

1
16π4

Figure 4.2: Some values of λn,k.

In particular, recalling that for an even dimensional compact Riemannian manifold
M2p the last total Lipschitz-Killing curvature is given by

K2p(M) = (2π)pχ(M)

we find that

(a) if dim(N) = 1, then

τ(N) =
1

2π
K0(N) =

Vol(N)

2π
,

(b) if dim(N) = 2, then we recover the result of Remark 4.8

τ(N) = − 1

4π
K2(N) = − 1

4π
(2πχ(N)) = −1

2
χ(N),

(c) if dim(N) = 3, then we recover the result of Example 4.5:

τ(N) = − 1

4π2
K0(N) +

1

4π2
K2(N) =

1

8π2

∫
N

(ScalgN − 2)dvolN
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(d) if dim(N) = 4, then

τ(N) = − 1

8π2
K4(N) = − 1

8π2

(
(2π)2χ(N)

)
= −1

2
χ(N);

(e) if dim(N) = 5, then

τ(N) =
3

8π3
K0(N)− 1

8π3
K2(N) +

1

8π3
K4(N)

=
3Vol(N)

8π3
− 1

16π3

∫
N

ScalgNdvolN +
1

8π3
K4(N);

(f) if dim(N) = 6, then

τ(N) = − 1

16π3
K6(N) = − 1

16π3
((2π)3χ(N)) = −1

2
χ(N);

As it is suggested in Table 4.2 and in the last examples if the dimension n is odd,
or equivalently if dim(N) is even, then τ(N) seems to be equal to −1

2
χ(N). The

next proposition shows that it is actually a general property:

Proposition 4.10. Let (N, gN) be a compact even dimensional Riemannian man-
ifold. Then

τ(N) = −1

2
χ(N). (4.7)

Proof. Denote by n = 2p the dimension of N . Then

λ2p+1,k =

p∑
j=k

(−1)j−k+1 (2p− 2k)!

(j − k)!22p+1−kπpΓ (p− j + 1)

=
(2p− 2k)!

22p+1−kπp

p∑
j=k

(−1)j−k+1 1

(j − k)!(p− j)!

= − (2p− 2k)!

22p+1−kπp(p− k)!

p−k∑
i=0

(−1)i
(
p− k

i

)
,

but the alternating sum of the binomial coefficient vanishes, therefore if k �= p we
have λ2p+1,k = 0 and if k = p then

λ2p+1,k = − 1

2p+1πp
= − 1

2(2π)p
.

Hence using the fact that K2p(N) = (2π)pχ(N) by Equation 2.12, we finally get

τ(N) =

p∑
k=0

λn,kK2k(N) = − 1

2(2π)p
(2π)pχ(N) = −1

2
χ(N).
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4.3 Proof of Theorem
Let us now prove Theorem 4.2. The manifold M being of finite topological type
it can be written as

M = K ∪ (N × (1,∞)) = K ∪ E,

where K ⊂ M is compact with N := ∂K connected and E := N × (1,∞). Let us
denote by gN the restriction of the ambient metric g to N and by gE the restriction
of g to E which can actually be written explicitly as

gE = t2gN + dt2,

since E is supposed to be conical. An exhaustion of M by compact manifolds with
boundary is given by

Mt := K ∪ (N × (1, t]) = K ∪ Et,

with Et = N × (1, t] and the boundary of Mt is given by Nt := ∂Mt = N × {t}.
Endowed with the Riemannian metric gt := g|Nt

= t2gN , the manifold (Nt, gt) is
an (n− 1)-dimensional compact isometrically embedded submanifold of Mt.
Let now (e1, . . . , en−1) be an orthonormal oriented moving frame on an open subset
U ⊂ N and let en = ∂

∂t
be the arclength vector field on (1,∞). This gives rise to

an orthonormal oriented moving frame on U × (1,∞) by setting

ei =
1

t
ei and en = en.

Denote by θi and θ
A the dual forms to ei and eA and as usual the associated

connection and curvature forms of N and M are denoted by ωi
j, ωA

B, Ωi
j and Ω

A

B.
Since (Mt, g|Mt

) is isometrically embedded in (M, g), the connection and curvature
forms of Mt obviously coincide with ωA

B and Ω
A

B. Observe that at each point of
the boundary Nt, the vector field en is unitary and outward-pointing. Therefore
by the Gauss-Bonnet-Chern Theorem with outward-pointing unit normal vector
field (Equation (3.11)) we have

χ(Mt)− 1

(2π)
n
2

∫
Mt

Pf(Ω) =

∫
en(Nt)

Π. (4.8)

By Corollary 1.30 we know that the Pfaffian Pf(Ω) vanishes on E, therefore the
total curvature is well-defined:∫

M

|Pf(Ω)| =
∫
K

|Pf(Ω)| < +∞,

since K is compact. Moreover χ(Mt) = χ(M) for all t > 1, hence letting t → ∞
we can rewrite the Equation (4.8) as

χ(M)− 1

(2π)
n
2

∫
M

Pf(Ω) = lim
t→∞

∫
Nt

e∗nΠ. (4.9)
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Now recall that since the dimension is even the integrand Π of the boundary term
is given by

Π =

�n−1
2

�∑
k=0

1

2nπ
n−1
2 k!Γ

(
n−2k+1

2

)Φk, (4.10)

where

Φk = π∗
2

⎛
⎝ ∑

σ∈Sn−1

εσΩ
σ1

σ2
∧ . . . ∧ Ω

σ2k−1

σ2k
∧ ωσ2k+1

n ∧ . . . ∧ ωσn−1
n

⎞
⎠ . (4.11)

Observe the similarity of Φ̃k with the expression of the Lipschitz-Killing curvatures
given in Proposition 2.12.
Let us denote by ωt i

j and Ωt i
j the connection and curvature forms of the manifold

(Nt, gt). Those forms are constructed from the moving frame (1
t
e1, . . . ,

1
t
en−1). The

Riemannian manifold E = N × (1,∞) is a warped-product manifold as described
in section 1.10. The discussion in this section lead to the following equations
which give expressions for the connection and curvature forms of Mt in terms of
the connection and curvature forms of N :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ωi
j = ωi

j

ωi
n = θi

Ω
i

j = Ωi
j − θi ∧ θj,

Ω
i

n = 0.

(4.12)

In the same discussion we also established equation (1.16) which is the tensor
version of the latter:

R = t2 (R−D) ,

where D = 1
2
gN ©∧ gN .

Using the second equation of (4.12) we can first express Φk as

Φk = π∗
2

⎛
⎝ ∑

σ∈Sn−1

εσΩ
σ1

σ2
∧ . . . ∧ Ω

σ2k−1

σ2k
∧ θσ2k+1 ∧ . . . ∧ θσn−1

⎞
⎠

Since we integrate over the boundary of Mt we have to restrict this form to the
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submanifold Nt. But on this manifold we have:

e∗nΦk =
∑

σ∈Sn−1

εσΩ
σ1

σ2
∧ . . . ∧ Ω

σ2k−1

σ2k
∧ θσ2k+1 ∧ . . . ∧ θσn−1

=
∑

σ∈Sn−1

εσΩσ1σ2 ∧ . . . ∧ Ωσ2k−1σ2k
∧ θσ2k+1 ∧ . . . ∧ θσn−1

=
1

2k

∑
σ∈Sn−1

∑
τ∈S2k

ετRσ1σ2στ1στ2
· · ·Rσ2k−1σ2kστ2k−1

στ2k
θ
1 ∧ . . . ∧ θ

2k ∧ θ2k+1 ∧ . . . ∧ θn−1

=
t2k

2k

∑
σ∈Sn−1

∑
τ∈S2k

ετRσ1σ2στ1στ2
· · ·Rσ2k−1σ2kστ2k−1

στ2k
dvolN ,

since θ
i
= tθi. By Proposition 2.23 we know that

C2k(R
k
) =

(2k)!

22k(n− 1− 2k)!

∑
σ∈Sn−1

∑
τ∈S2k

ετRσ1σ2στ1στ2
· · ·Rσ2k−1σ2kστ2k−1

στ2k

this is equal to

e∗nΦ̃k =
2k(n− 1− 2k)!

(2k)!
t2kC2k(R

k
)dvolN .

Now by Lemma 2.24 we know that the contractions of R
k are related to the

contractions of (R−D)k by the equation

C2k
M (R

k
) =

1

t2k
C2k

N ((R−D)k),

where we have denoted by CM the contraction operator on M and by CN the
contraction operator on N to avoid any confusion. Therefore we can write the
boundary term of the Gauss-Bonnet-Chern Theorem as

e∗nΦk =
2k(n− 1− 2k)!

(2k)!
t2kC2k

M (R
k
)dvolN

=
2k(n− 1− 2k)!

(2k)!
C2k

N ((R−D)k)dvolN

Observe that this expression does not depend on t any more. Using Equation
(4.10) we obtain the following expression for the form Π:

e∗nΠ =

�n−1
2

�∑
k=0

1

2nπ
n−1
2 k!Γ

(
n−2k+1

2

) 2k(n− 1− 2k)!

(2k)!
C2k

N ((R−D)k)dvolN

=

�n−1
2

�∑
k=0

A(n, k)C2k
N ((R−D)k)dvolN ,
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with
A(n, k) =

(n− 1− 2k)!

2n−kπ
n−1
2 k!(2k)!Γ

(
n−2k+1

2

) .
Hence Equation (4.9) becomes

χ(M)− 1

(2π)
n
2

∫
M

Pf(Ω) = lim
t→∞

∫
Nt

e∗nΠ

=

�n−1
2

�∑
k=0

A(n, k)

∫
N

C2k
N ((R−D)k)dvolN ,

which completes the proof.

4.4 Manifolds with Asymptotically Conical Ends
The geometric hypotheses of Theorem 4.2 can be relaxed. Indeed, since we are
interested in the asymptotic behaviour of the boundary term∫

en(Nt)

Π,

we can look at conditions that ensure this boundary term to converge towards the
one we obtained in Theorem 4.2. This convergence is holds if the metric g on each
end E = N × (1,∞) of M and its derivatives converge to the conical metric.
We summarize here some of the main results about asymptotically conical mani-
folds and we refer to Appendix A for more details.
Let (N, gN) be a compact n − 1-dimensional Riemannian manifold and set M =
N × (1,∞). Denote by g the conical metric i.e. the warped-product

g = t2gN + dt2.

For t ∈ (1,∞) we write Nt = N × {t}.
Definition 4.11. A Riemannian metric g on E is asymptotically conical at order
r and with (decreasing) rate α if there exists a function ρ : (1,∞) → R such that
ρ(t) = o(t−α) as t → ∞ and such that for all 0 ≤ k ≤ r and h = g − g we have∥∥∥∇k

h
∥∥∥
g
≤ ρ (4.13)

where this notation means that at every point (x, t) ∈ N × (1,∞) the following
inequality holds ∥∥∥(∇k

h)(x,t)

∥∥∥
g
≤ ρ(t).

A Riemannian manifold (E, g) endowed with an asymptotically conical metric is
said to be asymptotically conical .
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We will be mostly interested in the case where r = 2, as it will provide a control
both on the connection and on the curvature of g with respect to the connection
and the curvature of g. Let ∇ be the Levi-Civita connection associated to g and R
(resp. R) be the curvature tensor associated to g (resp. to g). Let (e1, . . . , en) be an
orthonormal directly oriented moving frame for g on an open set U × (1,∞) ⊂ M
such that e1, . . . , en−1 are tangent to Nt and en = ∂

∂t
. Then the metrics g and g

can be written as
g = δijθ

i ⊗ θ
j and g = gijθ

i ⊗ θ
j
,

where (θ
1
, . . . , θ

n
) is the dual coframe. In Appendix A several estimates about the

rate of convergence of the components of the connection and the curvature of g
are computed. The following Proposition summarizes those results and the reader
may find its proof directly in the Appendix.

Proposition 4.12. The following convergences hold

(a) If r = 0 we have

|hij| ≤ ρ and dvolg = (1 + f)dvolg,

where f is a smooth function on U × (1,∞) such that at each point (x, t) ∈
U × (1,∞) we have |f(x, t)| ≤ ρ(t).

(b) if r = 1 we have in addition to (a) that

|Γk
ij − Γ

k

ij| ≤ C · ρ;

(c) if r = 2 we have in addition of (a) and (b) that

|Ri
jkl −R

i

jkl| ≤ C · ρ;

This control on the geometry at infinity of M yields the same theorem as in the
conical case.

Theorem 4.13. Let (M, g) be an even n-dimensional complete orientable Rie-
mannian of finite topological type. Assume that M has one end E = N × (1,∞)
with N ⊂ M compact and moreover that E is asymptotically conical at order at
least 2. Then the total curvature is well-defined:∫

M

|Pf(Ω)| < +∞,

and the Gauss-Bonnet defect of M is given by

χ(M)− 1

(2π)
n
2

∫
M

Pf(Ω) = τ(N), (4.14)
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Proof. By Proposition 4.12 there exist smooth functions ζ ijk, η
i
jkl such that

Γi
jk = Γ

i

jk + ζ ijk,

Ri
jkl = R

i

jkl + ηijkl,

and |ζ ijk|, |ηijkl| ≤ C ·ρ. The components Γi
jk and Ri

jkl are computed with respect to
the orthonormal moving frame obtained from (e1, . . . , en) by applying the Gram-
Schmidt process (see Appendix A for further details).
First, let us show that the total curvature is well-defined. Recall that Ω ≡ 0 if n
is odd and if n is even

Ω =
(−1)n/2

2nπn/2(n/2)!

∑
σ∈Sn

εσΩ
σ1
σ2

∧ . . . ∧ Ωσn−1
σn

=
(−1)n/2

22nπn/2(n/2)!

∑
σ∈Sn

εσR
σ1
σ2i1i2

· · ·Rσn−1

σnin−1in
θi1 ∧ . . . ∧ θin

=
(−1)n/2

22nπn/2(n/2)!

(∑
σ∈Sn

εσετR
σ1
σ2τ1τ2

· · ·Rσn−1
σnτn−1τn

)
dvolg.

Moreover, by Proposition 4.12 we know that dvolg = (1 + f)dvolg with |f | ≤ ρ.
Therefore, replacing Ri

ijkl by R
i

jkl + ηijkl in the above expression for Ω, we get on
U × (1,∞):

Ω =
(−1)n/2

22nπn/2(n/2)!

(∑
σ∈Sn

εσετR
σ1

σ2τ1τ2
· · ·Rσn−1

σnτn−1τn

)
dvolg +

(−1)n/2

22nπn/2(n/2)!
G(1 + f)dvolg

= Ω+
(−1)n/2

22nπn/2(n/2)!
G(1 + f)dvolg

=
(−1)n/2

22nπn/2(n/2)!
G(1 + f)dvolg

where |G| ≤ C ·ρ and where we have used the fact that Ω ≡ 0 on E by Proposition
1.30. Now, since the volume form dvolg splits on U × (1,∞) as

dvolg = tn−1dvolgN ∧ dt,

and since ρ = o(t1−n) as t → ∞, we have on one hand∫ ∞

1

ρk · t1−ndt < +∞,

for all k ≥ 1 and on the other hand,∫
U×(1,∞)

|Ω| = 1

22nπn/2(n/2)!

∫
U

∫ ∞

1

|G||1 + f ||tn−1dvolgN ∧ dt|

≤ C

22nπn/2(n/2)!

∫
U

∫ ∞

1

(ρ+ ρ2)tn−1dtdvolgN

< +∞.
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Which shows that
∫
M
Ω is well-defined. As in the proof of Theorem 4.2, let us

consider the exhaustion {Mt}t>1 of M given by Mt = K ∪ (N × (1, t]). The
Gauss-Bonnet-Chern Theorem (the version of Equation (3.11) since en is outward-
pointing) applied to the compact manifold with boundary Mt gives

χ(Mt)− 1

(2π)
n
2

∫
Mt

Pf(Ω) =

∫
en(Nt)

Π.

Therefore we need to show that:

lim
t→∞

∫
Nt

e∗nΠ = τ(N).

Here the form Π is given by

Π =

�n−1
2

�∑
k=0

(−1)k+1

2nπ
n−1
2 k!Γ

(
n−2k+1

2

)Φk,

where

Φk = π∗
2

⎛
⎝ ∑

σ∈Sn−1

εσΩ
σ1
σ2

∧ . . . ∧ Ωσ2k−1
σ2k

∧ ωσ2k+1
n ∧ . . . ∧ ωσn−1

n

⎞
⎠ ,

with π2 : SM → M the canonical projection. As in the case of Ω, we show that
Φk can be written as Φk (the same form but built from the g-orthonormal moving
frame (e1, . . . , en)) plus a residual term whose integral tends to 0 as t → ∞.

Φk = π∗
2

⎛
⎝ ∑

σ∈Sn−1

εσΩ
σ1
σ2

∧ . . . ∧ Ωσ2k−1
σ2k

∧ ωσ2k+1
n ∧ . . . ∧ ωσn−1

n

⎞
⎠

= π∗
2

⎛
⎝ 1

2k

∑
σ∈Sn−1

εσR
σ1
σ2i1i2

· · ·Rσ2k−1

σ2ki2k−1i2k
Γ
σ2k+1

i2k+1n
· · ·Γσn−1

in−1n
θi1 ∧ . . . ∧ θin−1

⎞
⎠

= π∗
2

⎛
⎝ 1

2k

∑
σ∈Sn−1

εσ (R
σ1

σ2i1i2
+ ησ1

σ2i1i2
) · · · (Rσ2k−1

σ2ki2k−1i2k
+ η

σ2k−1

σ2ki2k−1i2k
)

· (Γσ2k+1

i2k+1n
+ ζ

σ2k+1

i2k+1n
) · · · (Γσn−1

in−1n
+ ζ

σn−1

in−1n
) θi1 ∧ . . . ∧ θin−1

⎞
⎠

= π∗
2

⎛
⎝ 1

2k

∑
σ∈Sn−1

εσR
σ1

σ2i1i2
· · ·Rσ2k−1

σ2ki2k−1i2k
Γ
σ2k+1

i2k+1n
· · ·Γσn−1

in−1n
θi1 ∧ . . . ∧ θin−1

+F̃i1...in−1θ
i1 ∧ . . . ∧ θin−1

⎞
⎠ ,
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with |F̃i1...in−1 | ≤ C · ρ since all the remaining terms contain at least an ηijkl or a
ζ ijk. Moreover, the coframe (θ1, . . . , θn) is obtained from (θ

1
, . . . , θ

n
) by applying

the Gram-Schmidt process for the metric g. Therefore each θi can be written as

θi = θ
i
+ βi

jθ
j
,

with |βi
j| ≤ ρ. Hence

θi1 ∧ . . . ∧ θin−1 =
(
θ
i1
+ βi1

j1
θ
ji
)
∧ . . . ∧

(
θ
in−1

+ β
in−1

jn−1
θ
jn−1

)
= θ

i1 ∧ . . . ∧ θ
in−1

+H
i1...in−1

j1...jn−1
θ
j1 ∧ . . . ∧ θ

jn−1
,

with
∣∣∣H i1...in−1

j1...jn−1

∣∣∣ ≤ ρ. It follows that Φk can be written as

Φk = π∗
2

⎛
⎝ 1

2k

∑
σ∈Sn−1

εσR
σ1

σ2i1i2
· · ·Rσ2k−1

σ2ki2k−1i2k
Γ
σ2k+1

i2k+1n
· · ·Γσn−1

in−1n
θi1 ∧ . . . ∧ θin−1

+F̃i1...in−1θ
i1 ∧ . . . ∧ θin−1

⎞
⎠

= π∗
2

⎛
⎝ 1

2k

∑
σ∈Sn−1

εσR
σ1

σ2i1i2
· · ·Rσ2k−1

σ2ki2k−1i2k
Γ
σ2k+1

i2k+1n
· · ·Γσn−1

in−1n
θ
i1 ∧ . . . ∧ θ

in−1

+
1

2k

∑
σ∈Sn−1

εσR
σ1

σ2i1i2
· · ·Rσ2k−1

σ2ki2k−1i2k
Γ
σ2k+1

i2k+1n
· · ·Γσn−1

in−1n
H

i1...in−1

j1...jn−1
θ
j1 ∧ . . . ∧ θ

jn−1

+F̃i1...in−1θ
i1 ∧ . . . ∧ θ

in−1
+ F̃i1...in−1H

i1...in−1

j1...jn−1
θ
j1 ∧ . . . ∧ θ

jn−1

⎞
⎠

= Φk + π∗
2

(
Fi1...in−1θ

i1 ∧ . . . ∧ θ
in−1

)
,

with |Fi1...in−1 | ≤ ρ.
Finally, integrating over Nt we get∫

Nt

e∗nΦk =

∫
Nt

e∗nΦk +

∫
Nt

αj
ne

∗
jΦk +

∫
Nt

Fi1...in−1θ
i1 ∧ . . . ∧ θ

in−1

+

∫
Nt

αj
nFi1...in−1θ

i

1 ∧ . . . ∧ θ
in−1

.

But we know that Φk does not depend on t since it is defined on N and thus

αj
ne

∗
jΦk = αj

n

1

t
ej(0)

∗Φk,
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where (e1(0), . . . , en−1(0)) is the gN -orthonormal moving frame on V ⊂ N used to
define the moving frame (e1, . . . , en). Moreover, on the boundary Nt, the terms
θ
i1 ∧ . . . ∧ θ

in−1 are either 0 if two indices are repeated or if ij = n for some j, or
they are equal to εi1...in−1t

n−1dvolN if all indices are given by a permutation of the
set {1, . . . , n− 1}. so that∣∣∣∣
∫
Nt

e∗nΦk −
∫
Nt

e∗nΦk

∣∣∣∣ ≤
∫
Nt

|αj
n|
t

∣∣ej(0)∗Φk

∣∣+ ∫
Nt

tn−1|εi1...in−1 ||Fi1...in−1 |dvolN |

+

∫
Nt

tn−1|αj
n||εi1...in−1 ||Fi1...in−1 ||dvolN |

≤
∫
Nt

ρ

t

∣∣e∗jΦk

∣∣+ ∫
Nt

tn−1ρ|dvolN |+
∫
Nt

tn−1ρ2|dvolN |

Since the right-hand side goes to 0 as t → ∞ we obtain

lim
t→∞

∣∣∣∣
∫
Nt

e∗nΠ−
∫
Nt

e∗nΠ

∣∣∣∣ = 0,

and by Theorem 4.2 we know that for all t we have∫
Nt

e∗nΠ = τ(N),

which completes the proof since we know that

χ(M)− 1

(2π)
n
2

∫
M

Pf(Ω) = lim
t→∞

∫
Nt

e∗nΠ.

4.5 Manifolds with Conical Singularities
After having studied the extremity of the cone lying "at infinity" it is time to take
a closer look at the other side. Let us give the definition of a manifold with conical
singularities.

Definition 4.14. A Riemannian manifold with conical singularities is a metric
space (M̂, d) such that

(a) There exists a finite set Σ = {p1, . . . , pr} ⊂ M̂ such that its complement
M := M̂ \Σ is a smooth Riemannian manifold, that is M is a smooth manifold
and the distance d is induced by a Riemannian metric g.

(b) Each point pi ∈ Σ admits a neighbourhood Ûi ⊂ M̂ which is homeomorphic
to the cone over a connected and compact (n− 1)-dimensional manifold Ni:

Ûi
∼= C(Ni) = Ni × [0, 1)

/
Ni × {0} .
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(c) The above homeomorphism is assumed to be a diffeomorphism on Ui := Ûi \
{pi}.

The point pi is called a standard conical singularity of M̂ with link (Ni, gi) if the
metric g on Ui is the standard cone metric i.e.

g = g := t2gi + dt2.

More generally, the point pi is called a conical singularity of M̂ with link (Ni, gi)
if the metric g on Ui can be written as

g = t2gi + dt2 + hi = g + hi,

where hi is a bilinear form satisfying for 0 ≤ k ≤ 2:

‖∇k
hi‖g ≤ ρ, (4.15)

where ρ : (0, 1) → R is a smooth function such that ρ = o(t) as t → 0.

Remark 4.15. Observe that M̂ is topologically a manifold if and only if each Ni

is homeomorphic to a sphere S
n−1 and M̂ is a Riemannian manifold if and only if

each link (Ni, gi) is isometric to the sphere with its standard metric.

Remark 4.16. Although the condition on the convergence of h and its covariant
derivatives is quite similar to the one in the definition of an asymptotically coni-
cal end, it is remarkable that the convergence in the present case is significantly
weaker. Indeed there is no assumption on the rate of convergence of ρ towards 0
in this case, while for asymptotically conical ends we needed that ρ = o(t1−n) as
t → ∞. This difference is essentially due to the fact that the volume form of the
cone C(N) splits locally as tn−1dvolN ∧ dt and this factor tn−1 diverges as t → ∞
but converges to 0 as t → 0.

4.6 Standard Conical Singularities
Let us first deal with the case of standard conical singularities. The theorem we
are willing to show is the following:

Theorem 4.17. Let (M̂, d) be an even dimensional Riemannian manifold with
one standard conical singularity p ∈ M̂ of link (N, gN). Then we have

χ(M)− 1

(2π)
n
2

∫
M

Pf(Ω) = −τ(N).

Proof. The proof is essentially the same as the proof of the conical end case. The
only difference is that we have to use the other version of the Gauss-Bonnet-Chern
Theorem as this time we will consider an inward pointing vector field at each point
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of the boundary of the exhaustion (we refer to the proof of Theorem 4.2 for the
notations).
By definition of a standard conical singularity we know that there exists an open
neighbourhood U ⊂ M = M̂ \ {p} of p such that U with the induced metric is
isometric to the standard cone on the link N :

U ∼= N × (0, 1) with metric g = t2gN + dt2.

Then M can be written as K∪U where K is a compact submanifold with boundary
and let us consider the exhaustion of M given by

Mt = K ∪ (N × [t, 1)) ,

with boundary Nt := ∂Mt = N × {t}. Now let (e1, . . . , en−1) be an oriented
orthonormal moving frame on an open subset V ⊂ N and set

ei =
1

t
ei and en =

∂

∂t
,

which is an oriented orthonormal moving frame on V × (0, 1) ⊂ M . In contrast
with the proof of Theorem 4.2, the vector field en is inward-pointing at each point
of Nt, therefore by applying the Gauss-Bonnet-Chern Theorem 3.9 to Mt we get

χ(Mt)− 1

(2π)
n
2

∫
Mt

Pf(Ω) =

∫
en(Nt)

Π̃,

where

Π̃ =

�n−1
2

�∑
k=0

(−1)k+1

2nπ
n−1
2 k!Γ

(
n−2k+1

2

)Φ̃k

with

Φ̃k = π∗
2

⎛
⎝ ∑

σ∈Sn−1

εσΩ
σ1

σ2
∧ . . . ∧ Ω

σ2k−1

σ2k
∧ ωσ2k+1

n ∧ . . . ∧ ωσn−1
n

⎞
⎠ ,

where we recall that π2 : SM → M is the canonical projection. Note that here
ωA
B and Ω

A

B denote the connection and curvature forms with respect to the moving
frame (e1, . . . , en) and they are not to be confused with the quantities that are
used in subsection 3.3.5 to define Π.
Now, the relations 4.12 take the following form with respect to our moving frame
(e1, . . . , en): ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ωi
j = ωi

j,

ωi
n = −θi,

Ω
i

j = Ωi
j − θi ∧ θj,

Ω
i

n = 0.

(4.16)
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Therefore

Φ̃k = (−1)n−1−k
∑

σ∈Sn−1

εσΩ
σ1

σ2
∧ . . . ∧ Ω

σ2k−1

σ2k
∧ θσ2k+1 ∧ . . . ∧ θσn−1 ,

and thus

Π̃ =

�n−1
2

�∑
k=0

1

2nπ
n−1
2 k!Γ

(
n−2k+1

2

) ∑
σ∈Sn−1

εσΩ
σ1

σ2
∧ . . . ∧ Ω

σ2k−1

σ2k
∧ θσ2k+1 ∧ . . . ∧ θσn−1

= Π.

Then it suffices to imitate the rest of the proof of Theorem 4.2 to relate Π̃ to τ(N)
and obtain

χ(M)− 1

(2π)
n
2

∫
M

Pf(Ω) =
∫
en(N)

Π = −
∫
N

(−en)
∗Π = −τ(N),

since −en is outward-pointing.

4.7 Conical Singularities

As in the case of asymptotically conical ends, we construct on an open subset
V × (0, 1) with V ⊂ N a g-orthonormal moving frame (e1, . . . , en) where ei is
tangent to N for all 1 ≤ i ≤ n − 1 and en = ∂

∂t
, with t the arclength parameter

on (0, 1). Observe that this time the last vector field of the frame en is inward-
pointing instead of outward-pointing. Imitating the arguments of Appendix A, we
apply the Gram-Schmidt process to the frame to obtain a g-orthonormal moving
frame (e1, . . . , en). The assumption (4.15) on the norm of ‖∇k

h‖g implies, as in
the case of asymptotically conical ends, the following convergences for ρ = o(t) as
t → 0:

(a) For k = 0 then |hij| ≤ ρ and the volume forms are related by

dvolg = (1 + f)dvolg,

with f : V × (0, 1) → R a smooth function such that for all (x, t) ∈ V × (0, 1)
we have |f(x, t)| ≤ ρ(t).

(b) For k = 1 then there exist smooth function ζ ijk such that

Γi
jk = Γ

i

jk + ζ ijk,

and |ζ ijk| ≤ Cρ.
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(c) For k = 2 then there exist smooth functions ηijkl such that

Ri
jkl = R

i

jkl + ηijkl,

and |ηijkl| ≤ Cρ.

We are ready to prove the last part of the Main Theorem 7. The proof is similar to
the argument presented in the case of asymptotically conical ends, the difference
lying in the fact that we look at the limit as t goes to 0 instead of ∞.

Theorem 4.18. Let M̂ be an even dimensional compact Riemannian manifold
with one conical singularity p and let (N, gN) be its link. Then the total curvature
is well-defined: ∫

M

|Pf(Ω)| < +∞,

and
χ(M)− 1

(2π)
n
2

∫
M

Pf(Ω) = −τ(N) (4.17)

The proof is the same as the one of Theorem 4.13 except for the fact that the
function ρ does not have the same behaviour in the neighbourhood of 0.

Remark 4.19. Note that in the following proof, the quantities denoted with a
bar (especially the forms Π and Φk) refer to the moving frame orthonormal with
respect to the standard conical metric g and not to the forms constructed in
Chapter 3.

Proof. By definition of a manifold with a conical singularity, M = M̂ \ {p} is a
smooth Riemannian manifold and there exists a neighbourhood Û ⊂ M̂ of p such
that there is a diffeomorphism between U = Û \ {p} ⊂ M and the cone over the
link (N, gN):

U ∼= N × (0, 1),

on which the metric can be written as

g = t2gN + dt2 + h

As in the case of (asymptotically) conical ends, we consider an exhaustion of M
defined by

Mt = (M \ U) ∪ (N × [t, 1)),

for t ∈ (0, 1). Each Mt is a compact manifold with boundary Nt := ∂Mt = N×{t}.
Let g be as usual the standard cone metric on N × (0, 1). Let (e1, . . . , en) be a
g-orthonormal moving frame on an open subset V × (0, 1) ⊂ M with V ⊂ N
constructed as before by taking vectors ei that are tangent to N for all 1 ≤ i ≤ n−1
and by taking en = ∂

∂t
, where t is the arclength parameter on (0, 1). As in Appendix
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A, we apply the Gram-Schmidt process to this frame with respect to the metric g
to obtain a g-orthonormal moving frame (e1, . . . , en) that satisfies

ei = ei + αj
iej with |αj

i | ≤ ρ,

θi = θ
i
+ βi

jθ
j with |βi

j| ≤ ρ.

As in the proof of Theorem 4.13 the form Ω can be written as

Ω =
(−1)n/2

22nπn/2(n/2)!
G(1 + f)dvolg,

where G is a smooth function satisfying |G| ≤ C · ρ. Therefore∫
V×(0,1)

|Ω| = 1

22nπn/2(n/2)!

∫
V×(0,1)

|G||1 + f ||dvolg|

≤ C

22nπn/2(n/2)!

∫
V×(0,1)

(ρ+ ρ2)tn−1|dvolN ∧ dt|

=
C

22nπn/2(n/2)!

∫
V

∫ 1

0

(ρ+ ρ2)tn−1dtdvolN

< +∞.

Recall that |Ω| is the natural density associated to Ω (see Remark 4.1). Note that
the condition on ρ = o(1) as t → 0 could easily be weakened without changing
the result but this stronger control is needed hereafter. The Gauss-Bonnet-Chern
Theorem 3.7 for the manifold Mt with the chosen inward-pointing vector field en
gives

χ(Mt)− 1

(2π)
n
2

∫
Mt

Pf(Ω) =

∫
en(Nt)

Π̃.

We also know that χ(Mt) = χ(M) and that

lim
t→0

1

(2π)
n
2

∫
Mt

Pf(Ω) =
1

(2π)
n
2

∫
M

Pf(Ω).

Recall that in the proof of Theorem 4.13 we obtained an expression for Φk in terms
of Φk plus a residual term. Reproducing the same argument we get

Φk = Φk + π∗
2

(
Fi1...in−1θ

i1 ∧ . . . ∧ θ
in−1

)
,

with |Fi1...in−1 | ≤ C · ρ. Therefore, writing en = en + αj
nej we conclude that∫

Nt

e∗nΦk =

∫
Nt

e∗nΦk +

∫
Nt

αj
ne

∗
jΦk +

∫
Nt

Fi1...in−1θ
i1 ∧ . . . ∧ θ

in−1

+

∫
Nt

αj
nFi1...in−1θ

i

1 ∧ . . . ∧ θ
in−1

.
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But we know that Φk does not depend on t since it is defined on N and thus

αj
ne

∗
jΦk = αj

n

1

t
ej(0)

∗Φk,

where (e1(0), . . . , en−1(0)) is the gN -orthonormal moving frame on V ⊂ N used to
define the moving frame (e1, . . . , en). Moreover, on the boundary Nt, the terms
θ
i1 ∧ . . . ∧ θ

in−1 are either 0 if two indices are repeated or if ij = n for some j, or
they are equal to εi1...in−1t

n−1dvolN if all indices are given by a permutation of the
set {1, . . . , n− 1}. Hence∣∣∣∣
∫
Nt

e∗nΦk −
∫
Nt

e∗nΦk

∣∣∣∣ ≤
∫
Nt

|αj
n|
t

|ej(0)∗Φk|+
∫
Nt

tn−1|εi1...in−1 ||Fi1...in−1 ||dvolN |

+

∫
Nt

tn−1|αj
n||εi1...in−1 ||Fi1...in−1 ||dvolN |.

The right-hand converges to 0 as t → 0 if lim
t→0

|αj
n|
t

= 0, which is precisely the case

since |αj
n| ≤ ρ = o(t) as t → 0. Since we know that∫

Nt

e∗nΠ = −τ(N),

we finally get that

lim
t→0

∫
Nt

e∗nΠ = −τ(N).

4.8 Proof of the Main Theorem
Recall that the main theorem is the following:

Main Theorem. Let (M̂, g) be a complete even dimensional Riemannian mani-
fold with finitely many conical singularities {p1, . . . , pr} and finitely many asymp-
totically conical ends {E1, . . . , Es} (at order 2 with decreasing rate n− 1). Then
the total curvature of M̂ is finite and we have

χ(M)−
∫
M

Ω = −
r∑

i=1

τ(Ni) +
s∑

j=1

τ(Nj),

where the Nk are the links of the conical singularities and of the asymptotically
conical ends.

Let us resume what has been done in the previous sections. We proved in the
Theorems 4.2 and 4.13 that if a complete even-dimensional Riemannian manifold
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(M, g) of finite topological type has an asymptotically conical end with link N ,
then its Gauss-Bonnet defect is equal to τ(N) . In the Theorems 4.17 and 4.18 we
showed that this statement still holds if (M̂, d) is an even-dimensional Riemannian
manifold with one conical singularities. In each of these cases we can actually
assume that the manifold has a finite number of asymptotically conical ends or
conical singularities and simply add the resulting τ .

Example 4.20. (Cone on the unit sphere) The simplest example having both
a conical end and a conical singularity is the standard cone on a sphere Sn−1, i.e.

M̂ = C(Sn−1) = S
n−1 × [0,∞)

/
S
n−1 × {0} ,

endowed with the metric g = t2gSn−1 + dt2. Then both the end and the singularity
have the same link N = S

n−1 and we know from Example 4.7 that τ(Sn−1) = 1.
Moreover, since M = S

n−1× (0,∞) has the same homotopy type as Sn−1, we have
χ(M) = χ(Sn−1) = 0 if n is even. Therefore, since the Pfaffian vanishes, the Main
Theorem is verified:

χ(M)− 1

(2π)
n
2

∫
M

Pf(Ω) = 0 = −τ(N) + τ(N).

Observe once again that the standard cone on the unit sphere S
n−1 is isometric to

R
n with its standard metric, so this is what the Main Theorem looks like for R

n

seen as a standard cone having a conical singularity at the origin and a conical
end.

4.9 Consequences of the Main Theorem

4.9.1 Total curvature in dimension 4

We present a consequence of the Main Theorem which is in sharp contrast with
the 2-dimensional Cohn-Vossen inequality. Indeed we show that in dimension 4,
there is no topological obstruction for the total curvature of a complete manifold
with a conical end.

Corollary 4.21. Let (M4, g) be a complete 4-dimensional Riemannian manifold
of finite topological type with one conical end. Then for every λ ∈ R there exists
a metric Riemannian g̃ which is conformal to g and such that

1

4π2

∫
M

Pf(Ω) = λ.

In order to prove this result, we introduce the normalized Hilbert-Einstein func-
tional, which is defined for a compact smooth n-dimensional Riemannian manifold
(N, g) by

EN(g) =
1

2

1

V (g)n−2/n

∫
N

Sgdvolg, (4.18)
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where V (g) = Vol(N, g) is the standard volume of (N, g). Note that this functional
is scale invariant i.e. EN(λ

2g) = EN(g) for any constant λ > 0. The infimum of
EN(g) over the conformal class of g is known to be the the conformal Yamabe
energy of g and has been largely studied in the context of the Yamabe problem.
In our case we are interested in the supremum of EN(g) within a conformal class.
More precisely, we show that in dimension ≥ 3, this supremum is arbitrary large:

Lemma 4.22. For any compact Riemannian manifold (N, g) of dimension n ≥ 3,
we have

sup
ϕ

EN(ϕ
2g) = +∞,

where the supremum is taken over all smooth functions ϕ : M −→ (0,∞).

In dimension 2 the Gauss-Bonnet theorem shows that EN(g) does not depend on
the metric since the scalar curvature is twice the Gauss curvature.

Proof. (Lemma 4.22) Let us write a conformal deformation of g as g̃ = ϕ2g =

u
4

n−2 g with u = ϕ
n−2
2 Then the scalar curvatures Sg and Sg̃ of g and g̃ respectively

are related by the well-known equation

u
n+2
n−2Sg̃ = 4

(
n− 1

n− 2

)
Δgu+ Sgu,

where Δg is the Laplacian of g. The volume forms are related by dvolg̃ = u
2n
n−2dvolg.

Therefore, an integration over N gives∫
N

Sg̃dvolg̃ =
∫
N

Sgu
2dvolg + 4

(
n− 1

n− 2

)∫
N

|∇u|2dvolg. (4.19)

Using Lemma 4.23 we can find a sequence {wk} ⊂ C∞(N) such that

|wk| ≤ 1

2
and

∫
N

|∇u|2dvolg
k→∞−→ ∞.

For the sequence gk = (1+wk)
4/n−2g of conformal deformations of g, we then have

from Equation (4.19)

V (gk) ≤
(
3

2

) 2n
n−2

V (g) and
∫
N

Sgkdvolgk
k→∞−→ ∞,

where Sgk is the scalar curvature of gk. We therefore have lim
k→∞

EN(gk) = +∞.

Lemma 4.23. On any Riemannian manifold (N, g) there exists sequence of smooth
functions wk : N −→ R with compact support such that ‖∇wk‖L2(N) → ∞ while
‖wk‖L∞(N) is arbitrarily small.
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Proof. Let C be a smooth simple closed curve in the manifold N with parametriza-
tion γ : [0, 2π] → C Up to a bilipschitz transformation of the metric, one may
assume that a tubular neighbourhood U of C in N is diffeomorphic to a torus
C× B

n−1 with the metric
g = dt2 + h,

where h is the standard metric on the disk B
n−1. Let us fix a constant a > 0 and

choose a function η ∈ C∞
0 (Bn−1) with compact support such that 0 ≤ η ≤ 1 = η(0)

and define the function wk to be zero on N \ U and

wk(t, x) = aη(x) sin(kt),

for any point (t, x) ∈ U ∼= C× B
n−1. We then have ∇wk on N \ U and

∇wk = ka cos(kt)η(x) + a sin(kt)∇η,

in U . Therefore ‖∇wk‖L2(N) = O(k) as k → ∞ and |wk| ≤ a.

The particular case of a compact 3-dimensional Riemannian manifold (N, g) allows
us to write the invariant τ(N) using the normalized Hilbert-Einstein functional
(4.18). Indeed on one hand we have

EN(g) =
1

2

1

V (g)1/3

∫
N

Sgdvolg,

and on the other hand using Example 4.5 we know that

τ(N) =
1

8π2

∫
N

(Sg − 2)dvolg,

so that we can write

τ(N) =
1

4π2

(
EN(g) · V (g)1/3 − V (g)

)
. (4.20)

Proof. (Corollary 4.21)
Let us write M = K ∪ (N × (1,∞)) with K ⊂ M compact and N = ∂K. On
N × (1,∞) the metric g is

g = t2gN + dt2,

with gN a Riemannian metric on N . By the main theorem we know that

1

4π2

∫
M

Pf(Ω) = χ(M)− τ(N, gN),

therefore by Equation (4.20) we obtain

1

4π2

∫
M

Pf(Ω) = χ(M) +
1

4π2

(
V (gN)− EN(gN) · V (gN)

1/3
)
.
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On the link N we consider the following conformal change of the metric: for
α > −1 set

gα = (α + 1)2gN .

Since the Hilbert-Einstein functional is scale invariant we have EN(gα) = EN(gN).
Moreover

V (gα) = (α + 1)3V (gN),

therefore

1

4π2

∫
M

Pf(Ω) = χ(M) +
1

4π2

(
(α + 1)3V (gN)− EN(gN)(α + 1)V (gN)

1/3
)
,

which is a polynomial of degree 3 in the variable α. So by taking α arbitrarily
large, the right-hand side of the latter equation can be made as large as desired.
On the other hand, we showed in Lemma 4.22 that one can find a sequence gk
of conformal deformation of gN such that the volume V (gk) is uniformly bounded
and such that limk→∞ EN(gk) = +∞, which implies that

lim
k→∞

(
V (gk)− EN(gk)V (gk)

1/3
)
= −∞.

4.9.2 Q-curvature and conformally flat 4-manifolds

It appears that in the context of conformally flat geometry, a modified version
of the Pfaffian, called the Q curvature, enjoys better properties under conformal
changes of the metric. This notion goes back to Thomas P. Branson [Bra85] and
has been largely studied since then by people such as Sun-Yung Alice Chang, Paul
Yang and many others. In this section we recover a result by Buzano and Nguyen
at least in a particular case of a conformally flat 4-dimensional manifold.
Although the Q-curvature can be defined in arbitrary dimensions, we restrict our-
selves to the dimension 4 to avoid unnecessary technicalities.

Definition 4.24. Let (M, g) be an 4-dimensional Riemannian manifold. Its Q =
Qg curvature is the following scalar

Qg =
1

12

(−ΔgSg + S2
g − 3‖Ricg‖2g

)
(4.21)

In [BN17], Buzano and Nguyen show the following theorem:

Theorem 4.25. Let g = e2wgeucl be a metric on R
4 \ {0} which is complete at

infinity and has finite area over the origin. If g has finite total Q-curvature∫
R4

|Q|dvolg =
∫
R4

|Q|e4wdvolR4 ,
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and non-negative scalar curvature at infinity and at the origin i.e.

inf
x∈R4\B(0,r2)

Sg(x) ≥ 0 and inf
x∈B(0,r1)

Sg(x) ≥ 0,

for some 0 < r1 ≤ r2 < ∞, then we have

χ(R4)− 1

4π2

∫
R4

Qdvolg = ν − μ, (4.22)

where

ν = lim
r→∞

Volg(∂B(0, r))4/3

4(2π2)1/3Volg(B(0, r))
, μ = lim

r→0

Volg(∂B(0, r))4/3

4(2π2)1/3Volg(B(0, r))
− 1.

Remark 4.26. (a) This theorem is actually a model case of their main result as
they show a more general formula ([BN17, Thm 1.6]) which holds for manifolds
that are not necessary conformally flat. In their case, neither the singularities
nor the ends are assumed to be conical, but on the other hand they suppose
the metric to be conformally flat on the ends and with non-negative scalar
curvature at each singular point and at infinity on each end.

(b) Observe that both μ and ν are limits of isoperimetric ratios and do not involve
the curvature tensor of the manifold, which is in sharp contrast with our
invariant τ . The curvature is actually hidden in the relation between the
Pfaffian and the Q-curvature.

The fact that the manifold is conformally flat yields an easy way to compare the
Q-curvature and the Pfaffian of the curvature forms. To understand this relation
a small digression about the decomposition of the curvature tensor is necessary.

Definition 4.27. Let (M, g) be an n-dimensional Riemannian manifold. The
Schouten tensor of (M, g) is the following (0, 2) symmetric tensor

A =
1

n− 2

(
Ricg − Sg

2(n− 1)
g

)
.

The Schouten tensor has the useful property that it appears in the decomposition
of the curvature tensor as follows

R = W + A©∧ g,

where W is the Weyl tensor of (M, g) and ©∧ is the Kulkarni-Nomizu defined on
p. 30. Observe that if (M, g) is conformally flat then W ≡ 0 and the curvature
tensor writes simply as R = A©∧ g. Using this expression we can show that the
Pfaffian can be written using elementary symmetric functions in the eigenvalues
of A. This result comes from [Via00].
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Lemma 4.28. Let (Mn, g) be an even dimensional conformally flat Riemannian
manifold. Then

Pf(Ω) = (n/2)!σn/2(A)dvolg,

where σk(A) denotes the k-th elementary symmetric functions in the eigenvalues
of A.

Proof. Since R = A©∧ g we have that the curvature forms of M are given (relatively
to an orthonormal moving frame) by

Ωij =
1

2
(A©∧ g)ijklθ

k ∧ θl,

with

(A©∧ g)ijkl = (A©∧ g)(ei, ej, ek, el) = Aikδjl + Ajlδik − Ailδjk − Ajkδil.

Therefore

Ωij =
1

2
(A©∧ g)ijklθ

k ∧ θl

=
1

2
(Aikδjl + Ajlδik − Ailδjk − Ajkδil) θ

k ∧ θl

=
1

2
Aikθ

k ∧ θj − 1

2
Ajkθ

k ∧ θi +
1

2
Ajkθ

i ∧ θk − 1

2
Aikθ

j ∧ θk

= −Aikθ
j ∧ θk + Ajkθ

i ∧ θk.

Without loss of generality A is diagonal i.e. Aij = λiδij with λi the eigenvalues
of A (no sum over the index i), and we obtain the following expression for the
curvature forms

Ωij = −λiδikθ
j ∧ θk + λjδjkθ

i ∧ θk = (λi + λj)θ
i ∧ θj.

The Pfaffian can then be written using these expressions for Ωij:

Pf(Ω) =
1

2n/2(n/2)!

∑
σ∈Sn

εσΩσ1σ2 ∧ . . . ∧ Ωσn−1σn

=
1

2n/2(n/2)!

∑
σ∈Sn

εσ(λσ1 + λσ2) · · · (λσn−1 + λσn)θ
σ1 ∧ . . . ∧ θσn

=
1

2n/2(n/2)!

∑
σ∈Sn

(λσ1 + λσ2) · · · (λσn−1 + λσn)dvolg

=
1

2n/2(n/2)!
2n/2

∑
σ∈Sn

λσ1 · · ·λσn/2
dvolg

=
1

(n/2)!
((n/2)!)2σ2(A)dvolg

= (n/2)!σ2(A)dvolg.
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One can show that if λi denote the eigenvalues of A, then

σ2(A) =
∑
i<j

λiλj =
1

2

(|Tr(A)|2 − ‖A‖2g
)
=

1

2(n− 2)2

(
n

4(n− 1)
S2 − ‖Ricg‖2

)
.

In the particular case of dimension 4 this gives

Pf(Ω) = 2σ2(A)dvolg, with σ2(A) =
1

8

(
1

3
S2 − ‖Ricg‖2

)
.

Therefore, the Q-curvature 4.21 of a 4-dimensional conformally flat Riemannian
manifold can be written as

Qdvolg = Pf(Ω)− 1

12
ΔgSgdvolg. (4.23)

Now that we have an explicit relation between the Pfaffian and the Q-curvature,
we show that in the case of R4 endowed with the metric g = f 2 ·∑4

i=1 dx
2
i , where

f is a smooth function on R
4 satisfying

f(x) =

{
1 if ‖x‖ ≤ 1

2
,

‖x‖α if ‖x‖ ≥ 1,

then our Main Theorem implies Theorem 4.25. The Riemannian manifold (R4, g)
is conformally flat and has one conical end with link (S3, gα). Indeed, on the end
R

4 \B(0, 1) the metric takes the form

t2αgeucl = t2α(t2g2 + dt2) = s2gα + ds2,

where g1 is the standard metric on S
3, gα = (α + 1)2g1 and s = 1

α+1
tα+1. So the

restriction of g to the end is conical. By Proposition 1.33 the scalar curvature of
this cone is given by

Sg =
1

t2
(Sgα − 6) =

1

t2

(
6

(α + 1)2
− 6

)
=

6

t2

(
1

(α + 1)2
− 1

)
,

with Sgα being the scalar curvature of (S3, gα). It follows from this expression
for the scalar curvature that the Laplacian of Sg vanishes on R

4 \ B(0, 1) since
Δg(t

−2) = 0. Therefore the only contribution of the integral of the Laplacian is on
the unit ball B(0, 1). Therefore by the divergence formula we have for some r > 1∫

B(0,1)

ΔgSgdvolg =
∫
B(0,t)

ΔgSgdvolg

=

∫
∂B(0,t)

g(∇Sg, N)dvolg,
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with N the outward-pointing normal unit vector field. But knowing the expression
for Sg on the cone it is easy to compute derivative of the scalar curvature:

∇Sg = −12

t3

(
1

(α + 1)2
− 1

)
∂

∂t
.

Moreover the outward-pointing unit normal N at a point of ∂B(0, t) = S(0, t) is
given by N = ∂

∂t
and the volume form of g is given by

dvolg = (α + 1)3t3dvolg1 ,

so that finally we have∫
B(0,1)

ΔgSgdvolg = −
∫
S3

12

t3

(
1

(α + 1)2
− 1

)
(α + 1)3t3dvolg1

= −24π2
(
(α + 1)− (α + 1)3

)
,

where we have used the fact that the euclidean volume of S3 is 2π2. We have by
Equation (4.23) and by the Main Theorem that

χ(R4)− 1

4π2

∫
R4

Qdvolg = χ(R4)− 1

4π2

∫
R4

Pf(Ω) +
1

48π2

∫
R4

ΔgSgdvolg

= τ(S3, gα) +
1

48π2

∫
R4

ΔgSgdvolg

= τ(S3, gα)− 1

2

(
(α + 1)− (α + 1)3

)
But by Example 4.5 we know that

τ(S3, gα) =
1

8π2

∫
S3

(Sgα − 2)dvolgα

=
1

8π2

∫
S3

(
6

(α + 1)2
− 2

)
dvolgα

=
1

2

(
3(α + 1)− (α + 1)3

)
.

Therefore the Gauss-Bonnet defect using the Q-curvature instead of the Pfaffian
is given in our case by

χ(R4)−
∫
R4

Qdvolg =
1

2

(
3(α + 1)− (α + 1)3

)− 1

2

(
(α + 1)− (α + 1)3

)
= α + 1

On the other hand, by Theorem 4.25 we have

χ(R4)− 1

4π2

∫
R4

Qdvolg = ν,
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where

ν = lim
t→∞

Vol(∂Bt(0), g)
4/3

4(2π2)1/3Vol(Bt(0), g)
.

But we have

Vol(∂Bt(0), g)
4/3 =

(
t3(α + 1)32π2

)4/3
= r4(α + 1)424/3π8/3,

and

Vol(Bt(0), g) = (α + 1)3
r4

4
2π2,

hence

ν = lim
t→∞

Vol(∂Bt(0), g)
4/3

4(2π2)1/3Vol(Bt(0), g)

= (α + 1)
24/3π8/3

2π221/3π2/3

= α + 1.

4.9.3 A Remark About Singularities in Dimension 2

Remark 4.29. We finally rapidly explain why equation (6) is a special case of the
Main Theorem. Following the terminology and notations in [HT92], one says that
a conformal metric g on a compact Riemann surface S has a simple singularity of
order β ∈ R at a point p if there is a local complex coordinate z in a neighbourhood
of p such that in that neighbourhood

g = e2u|z − z(p)|2β|dz|2

where u is a bounded function with integrable Laplacian. Using polar coordinates,
we easily see that if β > −1 then p is a conical singularity with cone angle θ =
2π(1 + β). Replacing the coordinate z by w = 1/|z − p|, one also sees that if
β < −1, then a punctured neighborhood of p is a conical end with cone angle
θ = −2π(1 + β). Note that in both case the cone angle θ is the length of the link.

To derive Formula (6) from the Main Theorem, we now consider a compact sur-
face S with conical singularities {p1, . . . , pr} of order βi > −1 and conical ends
{pr+1, . . . , pm} of order βj < −1 (more precisely one obtains a conical end after
removing the point pj for r + 1 ≤ j < m). We then have

τk =
1

2π
θk =

{
(βk + 1) if k ≤ r

−(βk + 1) if k > r.
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With M = S \ {p1, . . . pr, q1, . . . qs}, we have from the main Theorem

χ(S)− 1

2π

∫
S

KdA = (m+ χ(M))− 1

2π

∫
M

KdA

= m−
r∑

i=1

τi +
m∑

j=r+1

τj

= −
m∑
k=1

βk.
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Appendix A

On Asymptotically Conical
Manifolds

This appendix is devoted to demonstrating the results about asymptotically con-
ical manifolds that we used in the proof of Theorem 4.13. Let us recall the defi-
nition: let (N, gN) be a compact n− 1-dimensional Riemannian manifold and set
E = N × (0,∞). Denote by g the conical metric i.e. the warped-product product
metric given by

g = t2gN + dt2.

For t ∈ (0,∞) we write Nt = N × {t} the slice at height t.

Definition A.1. A Riemannian metric g on E is asymptotically conical at order
r and with (decreasing) rate α if there exists a function ρ : (1,∞) → R such that
ρ(t) = o(t−α) as t → ∞ and such that for all 0 ≤ k ≤ r and h = g − g we have∥∥∥∇k

h
∥∥∥
g
≤ ρ (A.1)

where this notation means that at every point (x, t) ∈ N × (1,∞) the following
inequality holds ∥∥∥(∇k

h)(x,t)

∥∥∥
g
≤ ρ(t).

A Riemannian manifold (E, g) endowed with an asymptotically conical metric is
said to be asymptotically conical.

Our purpose requires to have a control over the curvature, so that the order is
chosen to be at least r = 2 and this control has to be sufficiently strong, meaning
that the decreasing rate must be at least α = n− 1. In some particular cases the
rate can be improved, but in general this value can not be lowered.

Remark A.2. In [CEV17], the authors require that at order r the rate of the k-th
covariant derivative is exactly α = k or in other words they assume that∥∥∥∇k

h
∥∥∥
g
= o(t−k) as t → ∞,
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for all 0 ≤ k ≤ r. Observe that this hypothesis implies that at order 0, there is no
specification of the convergence rate of the norm of h towards 0. One can also com-
pare with the asymptotic conditions given in the definition of an asymptotically
conical end in [Con11].

The bilinear form h can be seen as a perturbation of the conical metric and we shall
see how this modification affects the connection and the curvature. It appears that
the condition (A.1) at order 2 ensures the convergence of the components Γi

jk of
the connection ∇ and Ri

jkl the curvature tensor R with respect to a g-orthonormal
moving frame towards the components Γ

i

jk of the connection ∇ and R
i

jkl of the
curvature tensor R with respect to a g-orthonormal frame.

A.1 Asymptotically Conical Manifolds at Order
Zero

In this context, the moving frame approach requires two different moving frames,
each of them being orthonormal with respect to either g or g. So on U×(1,∞) ⊂ M
let (e1, . . . , en) be an orthonormal frame such that the ei’s are tangent to Nt for
1 ≤ i ≤ n − 1 and en = ∂

∂t
. Denote by (θ

1
, . . . , θ

n
) the dual coframe and let gij

and hij be the components of g and h with respect to g i.e

g = gijθ
j ⊗ θ

j and h = hijθ
i ⊗ θ

j
= (gij − δij)θ

i ⊗ θ
j
.

The condition (A.1) for r = 0 implies that the components of h vanish asymptot-
ically:

|hij| ≤ ‖h‖g ≤ ρ.

This implies that the metrics g and g are bounded with respect to each other, or
in other words:

Proposition A.3. Two norms ‖ · ‖g and ‖ · ‖g are equivalent norms.

Proof. Since supx∈Nt
|hij| → 0 as t → 0, there exists C1, C2 > 0 such that

|h(X, Y )| ≤ C2|g(X, Y )|

for all X, Y ∈ Γ(M). Hence for any vector field X ∈ Γ we have on one hand

‖X‖2g = g(X,X) = g(X,X) + h(X,X) ≤ (1 + C2)‖X‖2g.

and on the other hand

‖X‖2g = g(X,X) = g(X,X)− h(X,X) ≤ (1 + C1)‖X‖2g
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which can be summed up as

1√
1 + C2

‖X‖g ≤ ‖X‖g ≤
√
1 + C1‖X‖g.

The same argument can be carried out for higher order tensors, showing that ‖ ·‖g
and ‖ · ‖g are equivalent on Tenskl (M) for all 0 ≤ k, l ≤ n.

In order to be able to compare the connections and the curvature tensors, it is
convenient to introduce another moving frame which is orthonormal with respect
to g. Applying the Gram-Schmidt process for the metric g to the frame (e1, . . . , en)
we obtain an orthonormal frame (e1, . . . , en) on U × (1,∞). This gives

ei =
ei −

∑i−1
j=1 projej(ei)

‖ei −
∑i−1

j=1 projej(ei)‖g

where the projection is given for 1 ≤ j ≤ i− 1 by

projej(ei) =
g(ej, ei)

g(ej, ej)
ej =

gij
gjj

ej =
hij

1 + hjj

ej.

Set

λi =

∥∥∥∥∥ei −
i−1∑
j=1

projej(ei)

∥∥∥∥∥
g

=

∥∥∥∥∥ei −
i−1∑
j=1

hij

1 + hjj

ej

∥∥∥∥∥
g

This new frame can be seen as the old frame plus a perturbation:

ei = ei +
i∑

j=1

αj
iei,

where the coefficients αj
i for 1 ≤ j ≤ i ≤ n are given by

αi
i =

1− λi

λi

and αj
i =

−hij

λi(1 + hjj)
.
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Since

λ2
i = 1 + hii − 2

i−1∑
j=1

h2
ij

1 + hjj

+
i−1∑
j,k=1

hijhik(δjk + hjk)

(1 + hjj)(1 + hkk)

= 1 + hii −
i−1∑
j=1

h2
ij

1 + hjj

+
i−1∑
j,k=1
j �=k

hijhikhjk

(1 + hjj)(1 + hkk)

≤ 1 + |hii|+
i−1∑
j=1

|h2
ij|

|1 + hjj| +
i−1∑
j,k=1
j �=k

|hij||hik||hjk|
|1 + hjj||1 + hkk|

≤ 1 + ρ+ ρ2
i−1∑
j=1

1

|1 + hjj| + ρ3
i−1∑
j,k=1
j �=k

1

|1 + hjj||1 + hkk|

≤ 1 + ρ+ C1ρ
2 + C2ρ

3,

where C1, C2 ∈ R, it follows that the rate of convergence of λi toward 1 is

λi ≤
√
1 + ρ+ C1ρ2 + C2ρ3 = 1 +

ρ

2
.

This means for the coefficient αi
i that

|αi
i| =

∣∣∣∣ 1λi

− 1

∣∣∣∣ ≤ |λi − 1|+ o(|λi − 1|) ≤ ρ.

The coefficients αj
i for 1 ≤ j < i ≤ n have the same asymptotic beahviour:

|αj
i | =

|hij|
|λi||1 + hjj|

≤ ρ
(
1 +

ρ

2

)
(1 + ρ)

≤ ρ.

It is clear that the new associated coframe (θ1, . . . , θn) satisfies a similar equation:

θi = θ
i
+

i∑
j=1

βi
jθ

j with |βi
j| ≤ ρ.

Using this, a relation between the volume forms of g and g can be worked out.
Once again, we can see the quantity depending on g as a perturbation of the
quantity depending on g.

Lemma A.4. There exists f ∈ C∞(U × (1,∞)) such that |f | ≤ ρ and

dvolg = (1 + f)dvolg.
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Proof. We have

dvolg = θ1 ∧ . . . ∧ θn

=

(
θ
1
+

1∑
j=1

β1
j θ

j

)
∧
(
θ
2
+

2∑
j=1

β2
j θ

j

)
∧ . . . ∧

(
θ
n
+

n∑
j=1

βn
j θ

j

)

= θ
1 ∧ . . . ∧ θ

n
+ fθ

1 ∧ . . . ∧ θ
n

= (1 + f)dvolg

and f is a sum of combinatorial terms, each of them containing at least a factor
βi
j so that |f | ≤ ρ.

A.2 Asymptotically Conical Manifolds at Order
One

As it can be expected, the condition (A.1) for r = 1 provides a control on both
the metric and its connection. Let ∇ (resp. ∇) be the Levi-Civita connection
associated to g (resp. to g). It is known that the difference of two connections is
tensorial, therefore we define a tensor A by setting for X, Y ∈ Γ(M)

A(X, Y ) = ∇XY −∇XY.

The norm of the tensor A is then controlled by the derivatives of h with respect
to ∇.

Proposition A.5. Let X, Y, Z ∈ Γ(M), then

2g(A(X, Y ), Z) = (∇Xh)(Y, Z) + (∇Y h)(X,Z) + (∇Zh)(X, Y ) (A.2)

Proof. By applying twice the Koszul formula we have

2g(A(X, Y ), Z) = 2g(∇XY, Z)− 2g(∇XY, Z)

= 2g(∇XY, Z)− 2ḡ(∇XY, Z)− 2h(∇XY, Z)

= Xg(Y, Z) + Y g(X,Z)− Zg(X, Y ) + g([X, Y ], Z)− g([X,Z], Y )

− g([Y, Z], X)−Xḡ(Y, Z)− Y ḡ(X,Z) + Zḡ(X, Y )

− ḡ([X, Y ], Z) + ḡ([X,Z], Y ) + ḡ([Y, Z], X)− 2h(∇XY, Z)

The covariant derivative of h is the (3, 0)-tensor defined by

(∇h)(Y, Z,X) = (∇Xh)(Y, Z) = Xh(Y, Z)− h(∇XY, Z)− h(Y,∇XZ),

therefore Xh(Y, Z) = (∇Xh)(Y, Z) + h(∇XY, Z) + h(Y,∇XZ). Similarly we find

Y h(X,Z) = (∇Y h)(X,Z) + h(∇YX,Z) + h(X,∇YZ),

Zh(X, Y ) = (∇Zh)(X, Y ) + h(∇ZX, Y ) + h(X,∇ZY ).
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Finally, we use the fact that ∇ is the Levi-Civita connection associated to ḡ and is
therefore torsion-free to write the Lie brackets as the difference [X, Y ] = ∇XY −
∇YX. Replacing all this in the expression for 2g(A(X, Y ), Z) we get after all the
simplifications

2g(A(X, Y ), Z) = (∇Xh)(Y, Z) + (∇Y h)(X,Z) + (∇Zh)(X, Y )

This shows that
‖A‖g ≤ C · ρ, (A.3)

for some constant C ∈ R since by Proposition A.3 we have

‖A‖g = sup
X,Y,Z∈SgM

|g(A(X, Y ), Z)|

≤ 1

2
sup

X,Y,Z∈SgM

∣∣(∇Xh)(Y, Z) + (∇Y h)(X,Z) + (∇Zh)(X, Y )
∣∣

≤ 3

2
‖∇h‖g

≤ C‖∇h‖g.
and by assumption ‖∇h‖g ≤ ρ. It can now be proved that there is a convergence
of ∇ to ∇ in the sense that the components of ∇ with respect to a g-orthonormal
moving frame converge to the components of ∇ with respect to a g-orthonormal
moving frame. Let (e1, . . . , en) and (e1, . . . , en) be the moving frames defined above
and recall that

Γk
ij = g(∇eiej, ek) and Γ

k

ij = g(∇eiej, ek).

Let us first establish a technical result on the convergence of the derivatives of the
coefficients αi

i and αj
i .

Lemma A.6. We have for all 1 ≤ j ≤ i

‖dαj
i‖g ≤ C · ρ.

Proof. Recall that for 1 ≤ j ≤ i ≤ n the coefficients αj
i are given by

αi
i =

1− λi

λi

and αj
i =

−hij

λi(1 + hjj)
, where λi =

∥∥∥∥∥ei −
i−1∑
j=1

hij

1 + hjj

ej

∥∥∥∥∥
g

.

hence

∇αi
i = dαi

i = − 1

λ2
i

dλi

∇αj
i = dαj

i = − dhij

λi(1 + hjj)
+

hijdλi

λ2
i (1 + hjj)

− hijdhjj

λ2
i (1 + hjj)2

.
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It is therefore necessary to compute the total derivative of λi. We use the fact that

dλi =
1

2λi

d(λ2
i )

so that it is enough to calculate dλ2
i :

d(λ2
i ) = dhii − 2

i−1∑
j=1

2hijdhij(1 + hjj)− h2
ijdhjj

(1 + hjj)2

+
i−1∑
j,k=1

(dhijhik(δjk + hjk) + hijdhik(δjk + hjk) + hijhikdhjk) (1 + hjj)(1 + hkk)

(1 + hjj)2(1 + hkk)2

−
i−1∑
j,k=1

hijhik(δjk + hjk)(dhjj(1 + hkk) + (1 + hjj)dhkk)

(1 + hjj)2(1 + hkk)2

= dhii − 2
i−1∑
j=1

hij

1 + hjj

dhij +
i−1∑
j=1

h2
ij

(1 + hjj)2
dhjj +

i−1∑
j,k=1
j �=k

hikhjk

(1 + hjj)(1 + hkk)
dhij

+
i−1∑
j,k=1
j �=k

hijhjk

(1 + hjj)(1 + hkk)
dhik +

i−1∑
j,k=1
j �=k

hijhik

(1 + hjj)(1 + hkk)
dhjk

−
i−1∑
j,k=1
j �=k

hijhikhjk

(1 + hjj)2(1 + hkk)
dhjj −

i−1∑
j,k=1
j �=k

hijhikhjk

(1 + hjj)(1 + hkk)2
dhkk.

Therefore the norm of λ2
i satisfies

‖d(λ2
i )‖g ≤ ‖dhii‖g + 2

i−1∑
j=1

|hij|
|1 + hjj|‖dhij‖g +

i−1∑
j=1

h2
ij

(1 + hjj)2
‖dhjj‖g

+
i−1∑
j,k=1
j �=k

|hik||hjk|
|1 + hjj||1 + hkk|‖dhij‖g +

i−1∑
j,k=1
j �=k

|hij||hjk|
|1 + hjj||1 + hkk)|‖dhik‖g

+
i−1∑
j,k=1
j �=k

|hij||hik|
|1 + hjj||1 + hkk|‖dhjk‖g +

i−1∑
j,k=1
j �=k

|hij||hik||hjk|
(1 + hjj)2|1 + hkk|‖dhjj‖g

+
i−1∑
j,k=1
j �=k

|hij||hik||hjk|
|1 + hjj|(1 + hkk)2

‖dhkk‖g

≤ ρ+ C1ρ
2 + C2ρ

3 + C3ρ
4,

since for all 1 ≤ j ≤ i ≤ n the following bounds hold

|hij| ≤ ρ, ‖dhij‖g ≤ ρ and
1

|1 + hjj|k is bounded for all k.
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So the norm of the dαi
i satisfies

‖dαi
i‖g =

1

2λ3
i

‖dλ2
i ‖g

≤ 1

2λ3
i

(
ρ+ C1ρ

2 + C2ρ
3 + C3ρ

4
)

≤ C · ρ,

because 1
λi

is bounded. It remains to deal with the case of dαj
i for j < i, but from

the expression for dαj
i we deduce that

‖dαj
i‖g ≤

1

λi|1 + hjj|‖dhij‖g + |hij|
λ2
i |1 + hjj|‖dλi‖g + |hij|

λ2
i (1 + hjj)2

‖dhjj‖g

≤ ρ

λi|1 + hjj| +
ρ

2λ3
i |1 + hjj|‖d(λi)

2‖g + ρ2

λ2
i (1 + hjj)2

≤ ρ

λi|1 + hjj| +
ρ2 + C1ρ

3 + C2ρ
4 + C3ρ

5

2λ3
i |1 + hjj| +

ρ2

λ2
i (1 + hjj)2

≤ C · ρ.

This technical lemma is now used to show the anticipated result.

Proposition A.7. We have

|Γk
ij − Γ

k

ij| ≤ C · ρ.

Proof. So far we have the following relations between the objects defined (M, g)
and (M, g): ⎧⎪⎪⎨

⎪⎪⎩
g = g + h,

ei = ei + αμ
i eμ,

∇ = ∇+ A,

where h, αj
i and A all vanish asymptotically in the sense describe above. Therefore

Γk
ij = g(∇eiej, ek)

= g(∇eiej, ek) + h(∇eiej, ek)

= g(∇eiej, ek) + g(A(ei, ej), ek) + h(∇eiej, ek) (A.4)

First of all, by Equation (A.3) the term g(A(ei, ej), ek) is bounded by

g(A(ei, ej), ek) ≤ ‖A‖g ≤ C · ρ
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Now let us study more carefully the terms g(∇eiej, ek) and h(∇eiej, ek). First by
replacing all the el by el + αμ

l eμ in g(∇eiej, ek) we get

g(∇eiej, ek) = g(∇eiej, ek) + g(αμ
i ∇eμej, ek) + g(∇ei(α

ν
j eν), ek) + g(αμ

i ∇eμ(α
ν
j eν), ek)

+ g(∇eiej, α
ρ
keρ) + g(αμ

i ∇eμej, α
ρ
keρ) + g(∇ei(α

ν
j eν), α

ρ
keρ)

+ g(αμ
i ∇eμ(α

ν
j eν), α

ρ
keρ)

The first term on the right-hand side is precisely Γ
k

ij. Moreover, all terms that do
not involve a derivative of αμ

ν will tend to zero asymptotically since the Γ
k

ij are
bounded (see Section 1.10) and since |αμ

ν | ≤ ρ. It remains to deal with the terms
of the form g(∇ek(α

j
iej), el), but by Lemma A.6 we know that the derivatives of

αj
i have the following asymptotics

‖dαj
i‖g ≤ C · ρ.

So we obtain the bounds

|g(αμ
i ∇eμej, ek)| ≤ |αμ

i |Γ
k

μj ≤ ρ · Γk

μj.

|g(∇ek(α
j
iej), el)| ≤ |ek(αl

i)|+ |αj
i |Γ

l

kj ≤ ‖dαl
i‖g + ρ · Γk

μj ≤ C̃ · ρ

Repeating the process of replacing all the el by el +αμ
l eμ in h(∇eiej, ek), we again

find that
|h(∇eiej, ek)| = C · ρ,

for the same reasons (and since |hij| ≤ ‖h‖g ≤ ρ). Thus

|Γk
ij − Γ

k

ij| ≤ C · ρ.

A.3 Asymptotically Conical Manifolds at Order
Two

By adding a control the asymptotic behaviour of the second derivative of h, it can
be expected to obtain convergence results at the level of the curvature tensor R of
(M, g).
As in the previous section, let us begin with a technical lemma, this time about
the second derivatives of αj

i .

Lemma A.8. For all 1 ≤ j ≤ i ≤ n we have

‖∇dαj
i‖g ≤ C · ρ.
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Proof. As before we treat separately αi
i and αj

i for j < i. The computations made
in the proof of Lemma A.6 lead to the following expression for the derivative of
αi
i:

dαi
i = − 1

2λ3
i

d(λ2
i )

= − 1

2λ3
i

⎛
⎜⎜⎝dhii − 2

i−1∑
j=1

hij

1 + hjj

dhij +
i−1∑
j=1

h2
ij

(1 + hjj)2
dhjj +

i−1∑
j,k=1
j �=k

hikhjk

(1 + hjj)(1 + hkk)
dhij

+
i−1∑
j,k=1
j �=k

hijhjk

(1 + hjj)(1 + hkk)
dhik +

i−1∑
j,k=1
j �=k

hijhik

(1 + hjj)(1 + hkk)
dhjk

−
i−1∑
j,k=1
j �=k

hijhikhjk

(1 + hjj)2(1 + hkk)
dhjj −

i−1∑
j,k=1
j �=k

hijhikhjk

(1 + hjj)(1 + hkk)2
dhkk

⎞
⎟⎟⎠ .

It is not difficult to see that the norm of the covariant derivative of each of the
terms in brackets will be bounded by C · ρ if not a higher power of ρ. The term
with slowest rate of convergence is

‖∇hii‖g ≤ C̃ · ρ.
Therefore

‖∇dαi
i‖g ≤ C · ρ.

For 1 ≤ j < i ≤ n we know that

dαj
i = − dhij

λi(1 + hjj)
+

hijdλi

λ2
i (1 + hjj)

− hijdhjj

λ2
i (1 + hjj)2

,

hence

‖∇dαj
i‖g ≤

1

λ2
i |1 + hjj|‖dλi‖g‖dhij‖g + 1

λi(1 + hjj)2
‖dhjj‖g‖dhij‖g + 1

λi|1 + hjj|‖∇dhij‖g

+
1

λi|1 + hjj|‖dhij‖g‖dλi‖g + 2|hij|
λ3
i |1 + hjj|‖dλi‖2g

+
|hij|

λ2
i |1 + hjj|‖dhjj‖g‖dλi‖g + |hij|

λ2
i |1 + hjj|‖∇dλi‖g

+
1

λ2
i (1 + hjj)2

‖dhij‖g‖dhjj‖g + 2|hij|
λ3
i (1 + hjj)2

‖dλi‖g‖dhjj‖g

+
2|hij|

λ2
i |1 + hjj|3‖dhjj‖2g +

|hij|
λ2
i (1 + hjj)2

‖∇dhjj‖g
≤ C · ρ.

Which completes the proof.
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This technical lemma allows us to show the convergence of the components of R
to R in the following sense.

Proposition A.9. We have

|Ri
jkl −R

i

jkl| = C · ρ.
Proof. Recall that by Lemma 1.14 we have the following expression for the com-
ponents of the curvature tensor:

Ri
jkl = ek(Γ

i
lj)− el(Γ

i
kj) + Γμ

ljΓ
i
kμ − Γμ

kjΓ
i
lμ + (Γμ

lk − Γμ
kl) Γ

i
μj. (A.5)

Moreover by Proposition A.7 there exist smooth functions ηijk ∈ C∞(U × (1,∞))
such that |ηijk| ≤ C · ρ and

Γi
jk = Γ

i

jk + ηijk.

Therefore by replacing Γi
jk by Γ

i

jk + ηijk, and ek by its expression as a "perturbed
frame" i.e. ek = ek + αν

kek, we get from Equation (A.5):

Ri
jkl = (ek + αν

keν)(Γ
i

lj + ηilj)− (el + αν
l eν)(Γ

i

kj + ηikj) + (Γ
μ

lj + ημlj)(Γ
i

kμ + ηikμ)

− (Γ
μ

kj + ημkj)(Γ
i

lμ + ηilμ) + (Γ
μ

lk + ημlk − Γ
μ

kl − ημkl)(Γ
i

μj + ηiμj)

=
(
ek(Γ

i

lj)− el(Γ
i

kj) + Γ
μ

ljΓ
i

kμ − Γ
μ

kjΓ
i

lμ + (Γ
μ

lk)− Γ
μ

kl)Γ
i

μj

)
+ ek(η

i
lj) + αν

keν(Γ
i

lj) + αν
keν(η

i
lj)− el(η

i
kj)− αν

l eν(Γ
i

kj)− αν
l eν(η

i
kj)

+ Γ
μ

ljη
i
kμ + Γ

i

kμη
μ
lj + ημljη

i
kμ − Γ

μ

kjη
i
lμ − ημkjΓ

i

lμ − ημkjη
i
lμ + Γ

μ

lkη
i
μj + Γ

i

μjη
μ
lk

+ ημlkη
i
μj − Γ

μ

klη
i
μj − Γ

i

μjη
μ
kl − ημklη

i
μj.

Therefore the difference of the components of R and R is given by

Ri
jkl −R

i

jkl = ek(η
i
lj) + αν

keν(Γ
i

lj) + αν
keν(η

i
lj)− el(η

i
kj)− αν

l eν(Γ
i

kj)− αν
l eν(η

i
kj)

+ Γ
μ

ljη
i
kμ + Γ

i

kμη
μ
lj + ημljη

i
kμ − Γ

μ

kjη
i
lμ − ημkjΓ

i

lμ − ημkjη
i
lμ + Γ

μ

lkη
i
μj + Γ

i

μjη
μ
lk

+ ημlkη
i
μj − Γ

μ

klη
i
μj − Γ

i

μjη
μ
kl − ημklη

i
μj.

The terms that do not involve a derivative of Γi

jk or ηijk are already known to be
bounded by C · ρ since the Γ

i

jk are bounded in t and |ηijk| ≤ C · ρ. So it remains
to show that we have

|el(Γi

jk)| = |dΓi

jk(el)| ≤ C · ρ,
|el(ηijk)| = |dηijk(el)| ≤ C · ρ.

First recall from Section 1.10 that for 1 ≤ i, j, k ≤ n−1, the Γi

jk are the components
of the connection of the manifold N and therefore do not depend on t. Moreover
if 1 ≤ j, k ≤ n− 1

Γ
n

jk =

{
0 if j �= k,

−1
t

if i = j.
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Hence we have the following possibilites

el(Γ
i

jk) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

does not depend on t if 1 ≤ i, j, k, l ≤ n− 1,

0 if 1 ≤ i, j, k ≤ n− 1, l = n

0 if i = n, 1 ≤ j, k, l ≤ n− 1, j �= k,

t−2 if i = l = n, 1 ≤ j = k ≤ n− 1.

In any case, we have
|αν

l eν(Γ
i

jk)| ≤ C · ρ.
Finally, we we deal with the derivatives of the ηkij. Expanding Equation (A.4) to
its maximum we find the following (rather long) expression for the ηkij:

ηkij = Γk
ij − Γ

k

ij

= αμ
i Γ

k

μj + ei(α
k
j ) + αν

jΓ
k

iν + αμ
i eμ(α

k
j ) + αμ

i α
ν
i Γ

k

μν + αμ
kΓ

μ

ij + αμ
i α

ν
kΓ

ν

μj

+ αμ
kei(α

μ
j ) + αμ

kα
ν
jΓ

μ

iν + αμ
i α

ν
keμ(α

ν
j ) + αμ

i α
ν
jα

ρ
kΓ

ρ

μν + Ak
ij + αν

kA
ν
ij

+ αν
jA

k
iν + αν

jα
μ
kA

μ
iν + αμ

i A
k
μj + αμ

i α
ν
kA

ν
μj + αμ

i α
ν
jA

k
μν + αμ

i α
ν
jα

ρ
kA

ρ
μν

+ Γ
μ

ijhμk + αμ
kΓ

ν

ijhνμ + ei(α
μ
j )hμk + αμ

j Γ
ν

iμhνk + ei(α
μ
j )α

ν
khμν + αμ

j α
ν
kΓ

ρ

iμhρν

+ αν
i Γ

μ

νjhμk + αν
i α

μ
kΓ

ρ

νjhρμ + αν
i eν(α

μ
j )hμk + αν

i α
μ
j Γ

ρ

νμhρk + αν
i α

ρ
keν(α

μ
j )hμρ

+ αν
i α

ρ
kα

μ
j Γ

σ

νμhσρ,

where Ak
ij and hij are the components of A and h with respect to (e1, . . . , en). We

have to show that the derivative in the direction el of every term on the right-
hand side of the above expression bounded by a constant times the function ρ
plus possibly a map which is little o of ρ. Fortunately, the following asymptotic
behaviours are already known:

• ‖dhij‖g ≤ ρ for all 1 ≤ i, j ≤ n;

• ‖dαi
j‖g ≤ C · ρ for all 1 ≤ i, j ≤ n;

• ‖A‖g ≤ C · ρ;

• |αν
l eν(Γ

i

jk)| ≤ C · ρ;

Therefore differentiating the above expression for ηkij in the direction el, we note
that it is enough to show that

|el(ek(αi
j))| ≤ C · ρ,

|el(Ak
ij)| ≤ C · ρ,
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as ρ → 0. But by Lemma A.8 we have

|el(ek(αi
j))| ≤ |(∇dαj

i )(ek, el)|+ |Γμ

lkdα
j
i (eμ)|

≤ ‖∇2
h‖g + ‖∇h‖g

≤ C · ρ.

Finally, we deal with the derivatives of Ak
ij:

el(A
k
ij) = ∇el(g(A(ei, ej), ek))

= ∇el (g(A(ei, ej), ek))−∇elh(A(ei, ej), ek)

=
1

2
∇el

(∇eih(ej, ek) +∇ejh(ei, ek) +∇ekh(ei, ej)
)−∇elh(A(ei, ej), ek),

where the last equation comes from Proposition A.5. Hence

|el(Ak
ij)| ≤ C̃‖∇2

h‖g + ‖∇h‖g‖A‖g ≤ C · ρ,

which completes the proof.





Bibliography

[AL13] Michael Atiyah and Claude Lebrun. Curvature, cones and characteristic
numbers. Math. Proc. Cambridge Philos. Soc., 155(1):13–37, 2013.

[AW43] Carl B. Allendoerfer and André Weil. The Gauss-Bonnet theorem for
Riemannian polyhedra. Trans. Amer. Math. Soc., 53:101–129, 1943.

[Bes08] Arthur L. Besse. Einstein manifolds. Classics in Mathematics. Springer-
Verlag, Berlin, 2008. Reprint of the 1987 edition.

[BN17] Reto Buzano and Huy The Nguyen. The chern-gauss-bonnet formula
for singular non-compact four-dimensional manifolds. Commun. Anal.
Geom., 2017.

[BN18] Reto Buzano and Huy The Nguyen. The higher-dimensional chern–
gauss–bonnet formula for singular conformally flat manifolds. The Jour-
nal of Geometric Analysis, May 2018.

[Bra85] Thomas P. Branson. Differential operators canonically associated to a
conformal structure. Math. Scand., 57(2):293–345, 1985.

[BSS09] Jean-Paul Brasselet, José Seade, and Tatsuo Suwa. Vector fields on sin-
gular varieties, volume 1987 of Lecture Notes in Mathematics. Springer-
Verlag, Berlin, 2009.

[Car01] Élie Cartan. Riemannian geometry in an orthogonal frame. World Scien-
tific Publishing Co., Inc., River Edge, NJ, 2001. From lectures delivered
by Élie Cartan at the Sorbonne in 1926–27, With a preface to the Rus-
sian edition by S. P. Finikov, Translated from the 1960 Russian edition
by Vladislav V. Goldberg and with a foreword by S. S. Chern.

[CEV17] Otis Chodosh, Michael Eichmair, and Alexander Volkmann. Isoperimet-
ric structure of asymptotically conical manifolds. J. Differential Geom.,
105(1):1–19, 2017.

[Che44] Shiing-shen Chern. A simple intrinsic proof of the Gauss-Bonnet formula
for closed Riemannian manifolds. Ann. of Math. (2), 45:747–752, 1944.

129



130 BIBLIOGRAPHY

[Che45] Shiing-shen Chern. On the curvatura integra in a Riemannian manifold.
Ann. of Math. (2), 46:674–684, 1945.

[Con11] Ronan Jospeh Conlon. On the Construction of Asymptotically Conical
Calabi-Yau manifolds. PhD thesis, Imperial College London, 2011.

[CV35] Stefan Cohn-Vossen. Kürzeste Wege und Totalkrümmung auf Flächen.
Compositio Math., 2:69–133, 1935.

[deB15] Gonzalo Martin deBorbon. Asymptotically conical Ricci-flat Kahler met-
rics with cone singularities. PhD thesis, Imperial College London, 2015.

[DK05] Franki Dillen and Wolfgang Kühnel. Total curvature of complete sub-
manifolds of Euclidean space. Tohoku Math. J. (2), 57(2):171–200, 2005.

[Dut12] Nicolas Dutertre. Euler characteristic and Lipschitz-Killing curvatures
of closed semi-algebraic sets. Geom. Dedicata, 158:167–189, 2012.

[Eys16] Philippe Eyssidieux. Métriques de Kähler-Einstein sur les variétés de
Fano [d’après Chen-Donaldson-Sun et Tian]. Astérisque, 2014/2015(380,
Séminaire Bourbaki):Exp. No. 1095, 207–229, 2016.

[Fen40] W. Fenchel. On total curvatures of Riemannian manifolds: I. J. London
Math. Soc., 15:15–22, 1940.

[Fin65] Robert Finn. On a class of conformal metrics, with application to dif-
ferential geometry in the large. Comment. Math. Helv., 40:1–30, 1965.

[Gra04] Alfred Gray. Tubes, volume 221 of Progress in Mathematics. Birkhäuser
Verlag, Basel, second edition, 2004. With a preface by Vicente Miquel.

[HT92] D. Hulin and M. Troyanov. Prescribing curvature on open surfaces.
Math. Ann., 293(2):277–315, 1992.

[KN63] Shoshichi Kobayashi and Katsumi Nomizu. Foundations of differential
geometry. Vol I-II. Interscience Publishers, a division of John Wiley &
Sons, New York-London, 1963.

[KZ01] Ruth Kellerhals and Thomas Zehrt. The Gauss-Bonnet formula for
hyperbolic manifolds of finite volume. Geom. Dedicata, 84(1-3):49–62,
2001.

[Lee13] John M. Lee. Introduction to smooth manifolds, volume 218 of Graduate
Texts in Mathematics. Springer, New York, second edition, 2013.

[Li11] Y. Li. The Gauss-Bonnet-Chern Theorem on Riemannian Manifolds.
ArXiv e-prints, November 2011.



BIBLIOGRAPHY 131

[McM17] Curtis T. McMullen. The Gauss-Bonnet theorem for cone manifolds and
volumes of moduli spaces. Amer. J. Math., 139(1):261–291, 2017.

[Mil97] John W. Milnor. Topology from the differentiable viewpoint. Princeton
Landmarks in Mathematics. Princeton University Press, Princeton, NJ,
1997. Based on notes by David W. Weaver, Revised reprint of the 1965
original.

[Mor08] Jean-Marie Morvan. Generalized curvatures, volume 2 of Geometry and
Computing. Springer-Verlag, Berlin, 2008.

[MS74] John W. Milnor and James D. Stasheff. Characteristic classes. Princeton
University Press, Princeton, N. J.; University of Tokyo Press, Tokyo,
1974. Annals of Mathematics Studies, No. 76.

[MT97] Ib Madsen and Jø rgen Tornehave. From calculus to cohomology. Cam-
bridge University Press, Cambridge, 1997. de Rham cohomology and
characteristic classes.

[Ros85] Steven Rosenberg. On the Gauss-Bonnet theorem for complete mani-
folds. Trans. Amer. Math. Soc., 287(2):745–753, 1985.

[Sak96] Takashi Sakai. Riemannian geometry, volume 149 of Translations of
Mathematical Monographs. American Mathematical Society, Providence,
RI, 1996. Translated from the 1992 Japanese original by the author.

[Shi85] Katsuhiro Shiohama. Total curvatures and minimal areas of complete
surfaces. Proc. Amer. Math. Soc., 94(2):310–316, 1985.

[Spi99] Michael Spivak. A comprehensive introduction to differential geometry.
Vol. I-V. Publish or Perish, Inc., Wilmington, Del., third edition, 1999.

[Tro91] Marc Troyanov. Prescribing curvature on compact surfaces with conical
singularities. Trans. Amer. Math. Soc., 324(2):793–821, 1991.

[Tro93] Marc Troyanov. Surfaces riemanniennes à singularités simples. In Dif-
ferential geometry: geometry in mathematical physics and related topics
(Los Angeles, CA, 1990), volume 54 of Proc. Sympos. Pure Math., pages
619–628. Amer. Math. Soc., Providence, RI, 1993.

[Via00] Jeff A. Viaclovsky. Conformal geometry, contact geometry, and the cal-
culus of variations. Duke Math. J., 101(2):283–316, 2000.

[Wey39] Hermann Weyl. On the Volume of Tubes. Amer. J. Math., 61(2):461–
472, 1939.

[Wil93] T. J. Willmore. Riemannian geometry. Oxford Science Publications.
The Clarendon Press, Oxford University Press, New York, 1993.





Index

Asymptotically Conical
End, 91
Manifold, 91, 115
Metric, 91, 115

Bundle of Frames, 53
Bundle of Orthonormal Frames, 53

Canonical Form, 56
Conformal Change, 22
Conical

End, 80
Conical End, 80
Conical Singularities, 96, 100

Standard, 97
Conical Warped-Product Metric, 27
Connection Forms, 13
Contraction

Of Double-Forms, 36
Of Tensors, 10

Curvature Form
Of an Ehresmann Connection, 55

Curvature Forms, 18

Double-Forms
Algebra Of, 36
Bundle Of, 37
Endormorphisms As, 38
Space Of, 35

Ehresmann Connection, 54
End of a Manifold, 60

Finite Topological Type, 60

Gauss Curvature, 43

Gauss Equation, 21
Generalized Kronecker Symbol, 41

Kulkarni-Nomizu Product, 24, 30

Lipschitz-Killing Curvatures, 40, 84
Change Of Scale, 43
In the Frame Bundle, 58
Of Unit Sphere, 51
Total, 50

Moving Frame, 11
Orthonormal, 12

Pfaffian, 42
of a Matrix, 25
of the Curvature Forms, 25

Principal Bundle, 53

Scalar Curvature, 42, 43
Of Space Forms, 48

Schouten Tensor, 107
Second Fundamental Form

Of a Hypersurface, 15
Space Forms, 82
Structure Equation

First, 13, 57
Second, 18, 57

Torsion Form
Of an Ehresmann Connection, 57

Trace, 38
Transformation Laws, 54

Unit Normal Bundle, 16

Weyl’s Tube Formula, 51

133





Adrien Marcone
Ch. de la Tuilière 41

1805 Jongny
� +41 78 698 62 68

� adrien.marcone@epfl.ch

Formations
2014 – 2018 PhD en Mathématiques, EPFL,

Titre: A Gauss-Bonnet Theorem for Manifolds with Asymptotically Conical
Ends and Manifolds with Conical Singularities.
Directeur de Thèse: Prof. Marc Troyanov

2008 – 2014 Bachelor et Master en Mathématiques, EPFL.

Expériences professionnelles
2014–2018 Assistant Principal, EPFL.

� Géométrie hyperbolique et groupes discrets (Master), Dr. L. Merlin.
� Introduction aux variétés différentiables (Bachelor), Prof. M. Troyanov.
� Algèbre linéaire avancée I pour physiciens (Bachelor), Prof. M. Troyanov.
� Géométrie I et II (Bachelor), Prof. M. Troyanov.

2012 – 2014 Assistant-étudiant, EPFL.
Divers cours de première année.

2011 – 2014 Enseignant remplaçant, Collège des Terreaux, Neuchâtel.
Divers remplacements au niveau secondaire.

Liste des Conférences
19 Sept. 2018 Oberseminar, Université de Fribourg

3-7 Sept. 2018 Summer School on Generalized Curvature, Lausanne, EPFL
20-25 Juin 2016 Summer School Géométrie Asymptotique, Sète, Université de Montpellier
14-16 Oct. 2015 Rencontre de Géométrie 2015, Bordeaux, Université de Bordeaux
17-19 Juin 2015 Workshop on Integral Geometry and Valuation Theory, Zürich, ETHZ

Compétences informatiques
Logiciels LATEX, Microsoft Office (Word, Excel, PowerPoint)
Langages Connaissances en C++ et matlab

Langues
Français Langue maternelle
Anglais Niveau C1

Allemand/Italien Niveau B2

Divers
Permis de conduire Cat. B

Centres d’intérêt
Echecs, piano, gastronomie



Ce document a été imprimé au Centre d’impression EPFL, 
imprimerie climatiquement neutre, certifiée myClimate.


