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Abstract

The computational prediction of crystal structures has emerged as an useful alter-
native to expensive and often cumbersome experiments. We propose an approach
to the prediction of crystal structures and polymorphism based on reproducing the
crystallization process on the computer. The main hurdle faced by such an approach is
that crystallization usually takes place in timescales much longer than those that can
be afforded with standard molecular simulations. In order to circumvent this difficulty
we construct a bias potential which is a function of one or more collective variables and
whose role is to promote crystallization. This approach can only have true predictive
power if the collective variable is crystal structure agnostic, that is to say, it does not
include information about the geometry of any particular crystal structure. In order
to achieve this goal, we take inspiration from thermodynamics and propose to use
an entropy surrogate as collective variable. We use an approximation for the entropy
based on the radial distribution function g¢(r). Using this collective variable we are
able to explore polymorphism in simple metals and molecular crystals. We study the
case of urea and find a new polymorph stabilized by entropic effects. We also propose
a projection of the collective variable onto each atom that is useful to characterize
atomic environments. Lastly, we introduce a generalized Kullback-Leibler divergence
that measures the distance between two radial distribution functions. We apply this
divergence to the automatic classification of the polymorphs that crystallize during
the simulations.
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Riassunto

Luso di simulazioni al computer per scoprire strutture cristalline offre un’alternativa
agli esperimenti che risultano spesso costosi e difficili. In questa tesi, proponiamo un
metodo computazionale che permette, tramite la simulazione della cristallizzazione,
di scoprire diverse strutture cristalline. Lo studio della cristallizzazione € complesso in
quanto € un processo che avviene su scale di tempo molto pit lunghe di quelle che si
possono raggiungere con simulazioni molecolari standard. Per superare questa diffi-
colta costruiamo un potenziale di bias in funzione di una o piu variabili collettive, il cui
scopo e promuovere la cristallizzazione. Affinché questo approccio possa identificare
la struttura cristallina del sistema, ¢ necessario che queste variabili non includano
informazioni sulla geometria di nessuna struttura in particolare. A tal fine, pren-
dendo ispirazione dalla termodinamica, proponiamo di usare come variabile collettiva
un’espressione approssimata dell’entropia, basata sulla funzione di distribuzione radi-
ale g(r). Con questo approccio siamo in grado di trovare diversi polimorfi sia nel caso
di metalli semplici che in quello di cristalli molecolari. In particolare, nel caso dell’'urea
abbiamo identificato un nuovo polimorfo che risulta stabilizzato dall’entropia. Oltre
che per promuovere la cristallizzazione, questa approssimazione dell’entropia si riv-
ela utile per altri scopi. Mostriamo che proiettando la variabile collettiva su ogni
atomo, siamo in grado di caratterizzare I'ordine atomico locale. Inoltre, se guardiamo
all’approssimazione dell’entropia come una distanza tra la g(r) del sistema e quella
del gas perfetto, possiamo generalizzarla per misurare la distanza tra due funzioni
di distribuzione radiale. Un’applicazione di questa distanza ¢ la classificazione dei
polimorfi che emergono durante le simulazioni.
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|8} Introduction

It is hard to think of a material that does not undergo some form of crystallization
during its manufacturing process. Recall for instance the crystallization of metal
oxides using the sol-gel process and the recrystallization of steel after substantial
plastic deformation. One of the main characteristics of all crystallization processes is
the existence of a kinetic bottleneck for the transformation. Lets consider an everyday
life example to illustrate this point. It is well-known that water freezes at 0°C. However,
liquid water can exist well below this temperature and be trapped in the metastable
liquid state for relatively long times. In this state, an external perturbation or simply a
natural fluctuation can help the system squeeze through the kinetic bottleneck and
trigger crystallization. A natural conclusion is that when studying this phenomenon
most of the time will be wasted waiting for the crystallization event to occur. This
example illustrates that crystallization is an infrequent or rare event.

Since the dawn of atomistic computer simulations in the 1960s it was recognized that
interesting insights into crystallization could be obtained from atomistic simulations
[1-3]. Initially, two approaches were employed to tackle the rare event problem. One
was the brute force approach in which one or more independent simulations are
performed for very long times waiting for the relevant event to take place [4]. Another
approach was to employ deep quenches in order to bring the process within the times
accessible to atomistic simulations [5]. The latter procedure has the disadvantage that
the supersaturation might be too large to be compared with experiments and moreover
one risks entering in the spinodal decomposition regime.

Later on, many methods were developed to address rare events in molecular sim-
ulations. Some examples are transition path sampling [6], umbrella sampling [7],
adaptive biasing force [8] and metadynamics [9]. The main objective of these methods
is sampling all the relevant configurations including metastable states and transitions
regions during a comparatively short simulation. Many of these methods are based
on introducing a bias potential which is a function of a small number of collective
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coordinates or collective variables. These collective variables are typically non linear
functions of the atomic coordinates and provide a low dimensional description of the
process under consideration. Once that an appropriate collective variable has been
found the problem can be considered essentially solved. The main approach to the
design of collective coordinates has been using physical or chemical intuition although
recently machine learning techniques have also been employed [10-12].

Collective variables employed to study crystallization typically contain information
about the geometry of the target crystal structure. Thus, one needs to choose a different
collective variable for each crystal structure. Some examples of these variables are the
Steinhardt parameters [13, 14], the variables for molecular crystals proposed by Santiso
and Trout [15, 16] and the variable for the fcc structure proposed by Angioletti-Uberti
et al [17]. It would be useful to develop a collective variable that is not based on any
particular feature of the crystal structure. Some advantages of this variable would be
that it could be applied effortlessly to different systems and it could even be used for
predicting the crystal structure of a system.

However, finding such a collective variable is not trivial. The path that I shall take here
is to take inspiration from a general physical principle. Recall that in all first order
phase transitions there is an interplay between enthalpy and entropy. In crystallization
in particular, the high energy and high entropy phase, the liquid, transforms into a
low energy and low entropy phase, the solid. I propose to use enthalpy and entropy as
collective variables. Enthalpy or energy have already been used as collective variables
[18,19] for instance in the context of the well tempered ensemble [20]. On the other
hand entropy had not been employed before the work described in this thesis!. This is
not surprising since computing entropy can be a daunting task. Here I take a simple
approach in which the entropy of the system is expressed in an approximated fashion.
Although the idea of using approximated expressions for the entropy is quite general, in
this thesis I shall only discuss the use of the so called two-body excess entropy [22, 23].
This approximation is based on a function of paramount importance in the theory of
liquids, namely the radial distribution function (see for instance ref. [24]).

This thesis is made as a compilation of articles and is organized as follows. The first
article A variational approach to nucleation simulation discusses a new method to
enhance the sampling of nucleation events based on a variational principle introduced
in ref. [25]. The second article Enhancing entropy and enthalpy fluctuations to drive
crystallization in atomistic simulations is the landmark paper in which we introduced
the idea of employing entropy surrogates as collective variables. The third article
Entropy based fingerprint for local crystalline order describes the use of the two-body

'Entropy was also used as a collective variable in ref. [21] although in that work the grand canonical
ensemble is used and the entropy is a simple function of the energy of the system, namely 5 = Y=
where S is the entropy, U is the potential energy, . is the chemical potential, and 7' is the temperature.
Since in the grand canonical ensemble p and 7" are constant, their collective variable is a function of the
atomic coordinates R only through the implicit dependence of the energy U(R).
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excess entropy to distinguish between liquid-like and solid-like environments. The
fourth article Predicting polymorphism using orientational entropy presents a variant
of the entropic collective variable tailored to study polymorphism in molecular crystals.
Finally I present some conclusions and several ideas for the future development of the
work done in this thesis.

Since this thesis does not include an introduction to the theoretical underpinnings
of molecular simulation, I refer the reader to the book by Frenkel and Smit [26] for
information about basic simulation methods and to a review by Valsson, Tiwary and
Parrinello [27] for a discussion on enhanced sampling methods.






YA Articles

2.1 Avariational approach to nucleation simulation

This article deals with a first order phase transition, but at variance with the other
articles in this thesis, here we focus on the condensation of a Lennard-Jones fluid.
Furthermore, we choose as collective variable a function of the coordination num-
bers instead of an entropy surrogate. The main feature of this work is the use of a
variational principle to construct the bias potential. The standard approach to solve
the variational problem is to expand the bias potential in a basis set. Here we take a
different approach and we use as bias potential the recipe for the free energy provided
by classical nucleation theory [28]. This work is part of an effort to replace the descrip-
tion of bias potentials using basis sets with expressions that reflect the physics of the
phenomena under study. Other work in this direction is using the Ginzburg-Landau
theory for the description of second order phase transitions [29].

I present the postprint version of the article published in Faraday Discussions. The
supplementary information of this article is not included in this thesis but a link has
been provided in the electronic version. My contribution to this article has been
implementing the algorithms, performing the simulations, and writing the paper
jointly with Prof. Parrinello.

Full bibliographic reference: Pablo M. Piaggi, Omar Valsson, and Michele Parrinello.
A variational approach to nucleation simulation. Faraday discussions, 195: 557-568,
2016. doi: 10.1039/C6FD00127K. URL http://dx.doi.org/10.1039/C6FD00127K.

Copyright ® 2016 Royal Society of Chemistry.
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A variational approach to nucleation simulation
Pablo M. Piaggi'?, Omar Valsson??, and Michele Parrinello®3

!Theory and Simulation of Materials, Ecole Polytechnique Fédérale de Lausanne,
CH-1015 Lausanne, Switzerland
2Facolta di Informatica, Instituto di Scienze Computazionali, and National Center for
Computational Design and Discovery of Novel Materials (MARVEL), Universita della
Svizzera italiana (USI), Via Giuseppe Buffi 13, CH-6900, Lugano, Switzerland
3Department of Chemistry and Applied Biosciences, ETH Zurich, ¢/o USI Campus, Via
Giuseppe Buffi 13, CH-6900, Lugano, Switzerland

Abstract

We study by computer simulation the nucleation of a supersaturated Lennard-
Jones vapor into the liquid phase. The large free energy barriers to transition
make the time scale of this process impossible to study by ordinary molecular dy-
namics simulations. Therefore we use a recently developed enhanced sampling
method [Valsson and Parrinello, Phys. Rev. Lett. 113, 090601 (2014)] based on the
variational determination of a bias potential. We differ from previous applica-
tions of this method in that the bias is constructed on the basis of the physical
model provided by the classical theory of nucleation. We examine the technical
problems associated with this approach. Our results are very satisfactory and
will pave the way for calculating the nucleation rates in many systems.

2.1.1 Introduction

Nucleation is a process that plays a prominent role in chemistry, engineering and
materials science. Among many others, it finds applications in the pharmaceutical
industry where crystal shape and structure dramatically affect the drugs potency
[30]. Moreover, nucleation is not only technologically relevant but also scientifically
interesting since it is a paradigmatic example of a self-assembly process [31]. There is
thus a great interest in understanding, and eventually controlling, the way in which
a new phase emerges from the parent one [32, 33]. In spite of the importance of
nucleation, the small scales involved represent a formidable hurdle to experimental
studies and thus the details of the process are not easy to unveil. In this regard,
molecular simulation and theory could pave the way to a better understanding of the
early stages of this process.

One of the simplest examples of homogeneous nucleation is the condensation of a
supersaturated vapor. Being a fairly well understood phenomenon, it provides a useful
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A variational approach to nucleation simulation

scenario to test new simulation methods. A vapor at a constant temperature and a
pressure higher than the vapor pressure is in metastable equilibrium with respect to
the liquid phase [28] and thus it will make a transition to the liquid phase in order
to minimize its free energy. However, one of the characteristics of first order phase
transitions is the ability to remain in the metastable state due to the existence of a free
energy barrier. In this metastable state the system experiences density fluctuations
that can be described as the fleeting appearance of small clusters of the new phase.
Occasionally the fluctuations are so large that a critical cluster is formed and the
whole system condensates. In order for this to occur, the system has to overcome a
large energy barrier. This makes nucleation a rare event that cannot be sampled in
ordinary simulations. Many solutions to this problem have been proposed [6, 7,9] and
applications to liquid-vapor nucleation have also been reported [34-36]. The closest
in spirit to our approach is the work of ten Wolde and Frenkel [37]. In this work the
free energy landscape of a Lennard-Jones fluid was explored via Monte Carlo (MC)
simulations that used umbrella sampling [7] to overcome kinetic barriers.

Our paper has a strong methodological connotation since we aim at applying to this
well-studied problem the newly developed variationally enhanced sampling (VES)
method [25] in which the bias is determined via a variational procedure based on a
suitably defined functional. A few applications of the method have already been pre-
sented in the literature [25,38-41]. The default way of solving the variational problem
is to expand the bias potential in a basis set and use the expansion coefficients as
variational parameters. We differ from this approach in that, rather than following this
procedure, we use a physically motivated expression derived from classical nucleation
theory (CNT). This expression contains two empirical parameters, the supersaturation
and the effective surface energy. We shall optimize the functional with respect to
these two parameters. This will allow us to understand better the properties of the
functional and lay the foundations for future work in which we plan to use a variant of
the variational method [38,42] designed to calculate nucleation rates.

2.1.2 C(lassical nucleation theory

The textbook way of describing nucleation phenomena is CNT. In CNT the cost of
forming a cluster of the new phase (in our case the liquid one) can be expressed as:

AFNT(n) = —Apn+ o n?/3, 2.1.1)

where n is the number of atoms in the cluster, Ay is the difference in chemical potential
between the two phases (supersaturation), and o is an effective interfacial energy. The
first term represents the energy gain in going into the new more stable phase whereas
the second term expresses the energetic cost of forming an interface between the
liquid and the vapor. Since on average liquid clusters are spherical, o can be related
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to the surface free energy v by o = (367)'/3p~2/3y where p is the density of the new
phase. The supersaturation Ay is often expressed as a dimensionless quantity called
supersaturation ratio (S) and defined through Ay = kgTlog S. The expression in
equation (2.1.1) differs from the one normally found in textbooks in that the latter uses
the drop radius R as a measure of its size. If one makes the assumption that the drops
have a spherical shape, the relation between n and Risn = %WR?’ p. Substituting this
relation in equation (2.1.1), the standard expression AFCNT(R) = — 7R3 pAp+4mR%y
is recovered.

2.1.3 Methods

The presence of high barriers often hinders exhaustive sampling in molecular simu-
lations. Enhanced sampling methods aim at solving this problem. Many rely on the
introduction of a bias potential V which is a function of a small number of collective
coordinates s. Among these, it is worth noting the historically important umbrella
sampling [7], also used by ten Wolde and Frenkel [37], and metadynamics which has
proved to be successful in a variety of fields [9,27]. In the next subsection we describe
the theoretical underpinnings of the recently introduced VES [25].

Variationally enhanced sampling

As in umbrella sampling and many other enhanced sampling methods, we project
the high-dimensional R space of the N particle system into a much smaller and
smoother d-dimensional space by introducing the set of collective variables s(R) =
(s1(R), s2(R), ..., sq(R)) that give a coarse-grained description of the system. The free
energy surface (FES) associated to the CV set s is defined as:

F@y:—;mg/dRa@—san)eﬁka (2.1.2)

where we have dropped an immaterial constant as we shall also do in the following.

In ref. [25] it was shown how to construct a bias potential V' (s) that acts on the CVs via
the optimization of the following functional:

1 [ds e~ BIF(s)+V(s)]
QV] = Blog fdse—ﬁF(S)

+ /dsp(s)V(s), (2.1.3)

where p(s) is a chosen target probability distribution. This functional is convex and it
is made stationary by the bias potential:

w@:—m@—;mmmy (2.1.4)
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It follows that once the functional is minimized, the probability distribution of s in the
biased ensemble py (s) is equal to the target distribution p(s):

o BIFE)+V(S)]

Pv(S) = g e v P 2.1.5)

The simplest choice for p(s) is to consider the uniform target distribution p(s) = 1/,
where Q, = [ ds is the volume of CV space. In this case F(s) = —V/(s) as in standard
metadynamics. If instead one takes p(s) o po(s)'/” where ~ is greater than one and
po(s) is the equilibrium probability distribution of s in the unbiased ensemble [39],
the well-tempered metadynamics distribution is recovered. Other choices have been
suggested [38,40] and here we shall also make use of the added flexibility offered by the
freedom of choosing p(s). Once the bias has been determined, a standard reweighting
procedure can be used to calculate statistical averages in the unbiased ensemble [7].
Details of the reweighting procedure are provided in the Supplementary Information
(SD.

Collective variable

In order to use the CNT free energy expression to construct the bias, we need to define
properly a CV that expresses in analytical and differentiable form the variable » in
equation (2.1.1) as a function of R.. This requires first defining what is meant by liquid
cluster. For this, we follow the procedure suggested by ten Wolde and Frenkel [37].
A pair of atoms is considered to belong to the same cluster if their distance is below
an assigned radius r. and each of them has at least n. neighbors within r.. Once the
clusters have been defined, in order to write a CV that corresponds to the one in CNT
one would have had to sort the clusters by their size and consider also their multiplicity,
a procedure that would have been expensive and cumbersome.

In their work based on MC, ten Wolde and Frenkel [37] decided to use as CV the largest
cluster. The idea behind this choice is that, as the system climbs the barrier, only the
largest cluster survives. Eventually the free energy is reweighted to obtain the cluster
size distribution (n) as needed in the CNT expression. In the present work, that is
based on MD, the use of the largest cluster as CV would have caused problems in the
calculation of the forces. In fact, the flag of the largest cluster can change abruptly from
one set of atoms to another. Although this could have been remedied, we preferred
to use as CV the total number of liquid-like atoms (n;), a quantity that is easy to
calculate. In the SI we describe in detail the calculation of ;. As we shall see, for small
systems where the probability of observing several clusters is negligible, this is a good
choice and the resulting free energy as a function of this variable is similar to the CNT
expression. For larger systems this is no longer the case but still using a reweighting
procedure the cluster size distribution can be obtained (see the SI for details).
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Using the CNT model for the bias potential

Having decided how to represent n, albeit in an approximate form, we first take p(s) to
be uniform and write for the bias the functional form:

V(s; Ap,0) = — AFNT (s: Ap, o)
__ (—Aus+032/3>, 2.1.6)

where s = n;. In equation (2.1.6) we have used the fact that if p(s) is uniform, V' (s) =
—F(s). Expression (2.1.6) is then inserted into Q[V] and the functional is minimized
relative to Ay and o. As already discussed in the introduction, this differs from the
usual approach in which the bias V (s) is expanded in an orthogonal basis set and the
expansion coefficients are used as variational parameters.

In principle at this stage we could have moved to describe the calculation. However,
before doing so, a practical issue needs to be addressed. It is in fact convenient to
restrict the accessible CV space such that the region in which the system is totally
converted into liquid is not explored. This region is not of interest since here we focus
on the nucleation barrier and restricting the CV space accelerates the convergence. We
shall use p(s) to limit the exploration of the CV space. In particular we shall choose a
p(s) that is uniform until a value sy and vanishes smoothly beyond it, i.e.:

1 .
el if s < S0
s) = ; (2.1.7)
ple) {ée‘éﬁ”“(s_s())2 if s > s

where sy should lie beyond the barrier region, « is a constant that determines how fast
p(s) goes to zero, and C'is a normalization constant. The bias potential would be able
to produce this p(s) provided that it had sufficient variational flexibility. Since we use
instead a bias potential with minimal flexibility, V'(s) must be constructed in such a
way that it is capable of satisfying equation (2.1.4) in all the CV space. A bias potential
that is able to do so is:

—AFNT (s; A if
Vi(s) = { (53 &u, 0) e 2.1.8)

B —AFONT (s; Ap, o) + k(s — s50)  if s > 59 .

Appropriate values for x and sy can be easily chosen based on a very approximate
knowledge of the free energy landscape. In Figure 2.1.1 the functional forms of F'(s),
V(s) and p(s) are depicted.

10
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Energy

p(s)

s - collective variable

Figure 2.1.1: Top plot) One dimensional nucleation free energy surface F'(s) (blue line),
bias potential V'(s) (orange line), and effective free energy surface F'(s) + V(s) (green
line). Bottom plot) Target distribution function p(s). The plots are here for illustrative
purposes only and do not reflect the properties of specific physical systems.

Optimization algorithm

Inserting equations (2.1.8) into 2[V], the functional becomes a function of Ay and o,
Q(Ap,0). In order to optimize the functional we need to evaluate the gradient:

LT )y~ (o)
8(2(?:,0) = — (M%) + (73, 2.1.9)

and the Hessian matrix:

_ |\ Hapap Hapo| _ . (s*)v — (o)} —(s73)y 4+ (s)v(s*®)v
H(Ap,o) = [HU#A;L H:o ] =7 [—<s5/3>v n <s>v<vs2/3>v <s4/3>v _ <52/3>%/
(2.1.10)

These expressions involve only expectation values either in the biased ensemble ( )y
or over the target distribution ( ),.

Crucial to a successful optimization is the use of the averaged stochastic gradient
descent algorithm [43]. In the present case this algorithm can be written as an iterative

11
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procedure with a fixed step size yu:

0 A

S+ — ) _ [‘99 + Hy e (8~ B 4 Hy - (o0 —a<k)>] 7

o0 .
ApFHD = Ap® — [ + Hapap (Au(k) - Au(k)) + Hayo - (U(’“) - 0“”)]

Jo
(2.1.11)

where Ay and o are the instantaneous parameters whereas M(k) = k! Zle Ap®
and 7*) = k=132 5 are their averaged counterparts. At each iteration k, both
the gradient and the Hessian matrix are estimated in the bias ensemble with a bias
potential given by the averaged parameters M(k) and %),

In previous calculations we have used only the diagonal part of the Hessian. Here the
use of the full Hessian is essential for a successful optimization. In fact the minimiza-
tion problem is ill-conditioned with a condition number ~ 10*.

Although using the full Hessian allowed us to reach the minimum, we found that a
faster convergence could be achieved by making the following change of variables,

3
s(z) = Ny (x;1> , 2.1.12)

where Ny is a number slightly larger than the point sy where p(s) starts decaying
towards zero. This change of variables is akin to the one described in subsection 2.1.2
that transforms the number of atoms n in the droplet into its radius R. Therefore x
is related to a characteristic length of the droplet. With this change of variables the
new CV is defined in the interval [—1, 1] and, for s < so, V(x; Ay, o) can be written as a
polynomial:

1\* 1\?
V(x; Ap, o) = NoAp (5”; ) ~ N3 (x;r ) . (2.1.13)

It is therefore natural to express V' (z; Ay, o) in terms of Chebyshev polynomials,
Vi Ap,o) =Y oy Ti(x) (2.1.14)

where T;(x) is the Chebyshev polynomial of degree i. Comparison with the expression

12
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in equation (2.1.13) gives a set of relations between the «;, and Ax and o

_5Au Ny 3o Ng/g

@o 16 8
15Au Ny o ]\702/3
= —
! 32 2
3AuNy o NP
a9 = —
16 8
Ap Ny
— . 2.1.15
a3 D) ( )

We can now use, say, a2 and a3 as variational parameters, constraining the other two
via equations (2.1.15). In these new variables, the problem is better behaved and the
condition number of the Hessian is reduced to the manageable value of ~ 5. Although
V (s; a2, a3) depends only on two variables, the fact that it can be formally expressed
as a linear expansion in orthogonal polynomials allows us to use the optimization
machinery previously developed to handle this case [25].

2.1.4 Computational details

We have studied condensation from the vapor phase in a Lennard-Jones system in
which the interaction potential was truncated and shifted at a cutoff radius » = 2.501, 5,
with o7, ; the particle diameter. All MD simulations were performed using LAMMPS [44]
patched with a private development version of the PLUMED 2 enhanced sampling plug-
in [45]. In the following we shall measure all quantities in Lennard-Jones units [26],
such that the Lennard-Jones well depth ¢ is the unit of energy and the Lennard-Jones
diameter oy ; is the unit of length. In the definition of the liquid-like atoms we used
the values r. = 1.5 and n. = 5 as suggested in ref. [37].

Periodic boundary conditions and a time-step of 0.001 were used in the simulations
[26]. In all cases the stochastic velocity rescaling thermostat [46] and the isotropic
version of the Parrinello-Rahman barostat [47] were employed. The relaxation time for
the thermostat and the barostat were 0.05 and 50, respectively. We employed cubic
boxes with different number of particles and a temperature of 0.741 (7, = 1.085). The
target pressure of the barostat was set to 0.016 . This system setup is similar to that of
ref. [37], although the supersaturation is higher in our case.

Each iteration in the optimization of 2 corresponded to 500 MD steps and the step
size p in the optimization was chosen to be 0.001. In all cases 4 multiple walkers were
employed, starting half of them in the vapor basin and the rest beyond the nucleation
barrier. Due to the highly non-local nature of the basis sets employed, the use of
multiple walkers proved to be instrumental in accelerating the optimization. The
initial variational parameters were taken as Ay = 0 and o = 0 such that initially the
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Figure 2.1.2: (a)-(b) Evolution of Ax and o during the optimization process for a
system of 216 particles. (c) Comparison between the sampled probability distribution
of the CV n; py (s) and the target probability distribution p(s).

bias was V'(s) = —% log p(s). The parameters of p(s) were sp = 120 and x = 0.1.

2.1.5 Results

As an example of a typical behavior of the optimization process, we show in Figure
2.1.2 (a)-(b) the convergence of the variational parameters Ax and ¢ as a function of
the number of optimization steps in a system with 216 atoms. If we use Lennard-Jones
parameters appropriate to argon, the total length of the optimization corresponds
to a ~ 100 ns long simulation. A measure of the quality of the variational ansatz in
equation (2.1.6) is how much the biased distribution py (s) differs from the target
distribution p(s) (see Figure 2.1.2(c)). According to equation (2.1.5) these should be
identical. Indeed, they are very close but not totally identical. The small discrepancies
are a result of the limited variational flexibility of V'(s) (equation (2.1.6)).

We now turn our attention to the behavior of the free energy as a function of the
collective variable n; for three different system sizes (see Figure 2.1.3(a)). By and
large, the curves are rather similar, however, some differences are observed. This is not
surprising since the probability of observing several liquid clusters at one time depends
on the system size. This is particularly evident for the low n; region on which the largest
size dependence is observed. This behavior has already been reported for the free
energy associated with the size of the largest cluster [48]. For larger n; the probability
of finding more than one cluster is small, at least for the system sizes studied here,
and the size effects are negligible. These finite size effects are quantified in Table 2.1.1
where we compare the estimates of Ay and o obtained from minimizing Q to a fit to
F(n;) of the CNT expression. It is seen that the smaller the system, the smaller the
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Figure 2.1.3: (a) Reweighted free energy as a function of n; for system sizes N;,; =
216,432 and 864. For small n; the curves show discrepancies. (b) Reweighted free
energy associated to n for the same system sizes as above. All free energies are equal
within the statistical error.

deviation of F'(n;) from a CNT-like behavior. However if we reweight our data so as
to obtain F'(n) (see Figure 2.1.3(b)), all the finite size effects disappear. Details of the
reweighting procedure and of the calculation of F'(n) can be found in the SI. The results
can be all fitted to the CNT expression and give what is possibly our best estimate for
these parameters (see Table 2.1.1), assuming that our data can be described by CNT.
The values obtained are consistent with the estimates of Ay = 0.530 and o = 2.85
that can be calculated using a coexistence pressure Py = 0.00783 obtained from Gibbs
ensemble simulation [37] and a surface free energy v = 0.494 [37,49].

From F'(n) we can estimate the nucleus size and the barrier height. The nucleus size n*
at the supersaturation condition studied here corresponds to 56 atoms. We estimated
the barrier height defined as F'(n*)-F(1) to be ~ 13 kpT.

In order to test the correctness of the approach described in this work, we have per-

Optimization Fit F'(ny;) Fit F(n)
System size Ap o Ap o rms error  Ap o rms error
216 0.42(1) 2.4(1) 0.409(6) 2.38(3) 0.39 0.439(2) 2.51(1) 0.12
432 0.41(2) 2.4(3) 0.408(8) 2.37(4) 0.54 0.432(2) 2.48(1) 0.12
864 0.37(4) 2.2(56) 0.38(1) 2.22(7) 0.83 0.436(2) 2.49(1) 0.11

Table 2.1.1: We compare estimations of Ay and o for different system sizes. From left
to right we show the direct result of the optimization at 5 - 10° steps, a fit of the CNT
expression to F'(n;) in the interval [0,N], and a similar fit to F'(n) in the interval [1,N].
In the last two cases, we show also the error associated to the fit.
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formed a benchmark simulation employing well-tempered metadynamics [50]. The
details of this simulation can be found in the SI. The free energies obtained with the
methodology described in this work are equal to those calculated employing well-
tempered metadynamics within the statistical error (see Figure S1 in the SI).

2.1.6 Discussion and conclusions

We have developed an enhanced sampling method based on the introduction of a bias
potential with a physically motivated functional form. In particular, in the context of
nucleation, we have employed the functional form of classical nucleation theory for
the free energy of formation of a cluster. This idea is put into practice employing a
variational principle that allows the estimation of the parameters of the model. In this
way the bias potential compensates the underlying free energy of the system.

Our results are encouraging, however they underline the fact that attention must be
paid to the choice of the collective variables. In particular for the system of interest
here, the choice of n; as CV has clear computational advantages but it is best applied to
small systems where F'(n;) is very close to the free energy associated to the cluster size
distribution F'(n), that is system size independent. It must also be noted that for small
systems the values for Ap and o obtained via the optimization, are very close to those
obtained by reweighting the trajectory to get the cluster size distribution and fitting
the CNT expression to the results. This might provide and expedite way to estimate
the vapor pressure and the surface energy, two quantities of great practical interest.

The lesson learned here will be applied to nucleation rates calculation. In fact, given the
results obtained, one could use n; as the collective variable and employ the approaches
suggested either in ref. [42] or ref. [38]. Both methodologies rely on introducing a bias
potential that leaves the transition region between metastable states untouched. Under
this assumption the physical transition time (7) can be related to the one calculated in
a biased simulation (/) by [42,51,52],

=y (VDY (2.1.16)

However, the two methodologies differ from each other in the manner in which the
bias potential is constructed. On the one hand, ref. [42] describes a metadynamics
based methodology with infrequent deposition of kernels. If the transition is rare but
fast then the procedure leads to bias free transition regions therefore fulfilling the
assumption that leads to equation (2.1.16). On the other hand, the approach described
in ref. [38] is based on the construction of a bias potential by means of the variational
principle [25] also used in the present work. This bias potential floods the free energy
surface up to a predefined energy level. By construction this approach guarantees
bias free transition states and accurate times can be extracted using equation (2.1.16).
We point out that the independence of F'(n) from the system size provides a strong
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encouragement to limit ourselves to the study of small systems.

Finally, our results provide yet another confirmation of the validity of CNT for liquid-
vapor nucleation.
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2.2 Enhancing entropy and enthalpy fluctuations to drive crys-
tallization in atomistic simulations

This is the seminal article in which we introduce the idea of using a proxy for entropy
as a collective variable. In this case we combine entropy with enthalpy to accelerate
the frequency of reversible transitions between the liquid and the solid. The most
remarkable result of this paper is the fact that the collective variable does not contain
any information of the crystal structures and yet it is able to crystallize different sub-
stances into their equilibrium crystal structure. All subsequent articles described in
this thesis will be extensions of the ideas presented here. The collective variable has
been implemented in the PLUMED 2 enhanced sampling plugin.

I present the postprint version of the article published in Physical Review Letters.
The supplementary information of this article is not included in this thesis but a
link has been provided in the electronic version. My contribution to this article has
been implementing the algorithms, performing the simulations, and writing the paper
jointly with Prof. Parrinello.

Full bibliographic reference: Pablo M. Piaggi, Omar Valsson, and Michele Parrinello. En-
hancing entropy and enthalpy fluctuations to drive crystallization in atomistic simula-
tions. Physical Review Letters, 119 (1): 015701, 2017. doi: 10.1103/PhysRevLett.119.015701.
URL https://link.aps.org/doi/10.1103/PhysRevLett.119.015701.

Copyright ® 2017 American Physical Society.
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Abstract

Crystallization is a process of great practical relevance in which rare but crucial
fluctuations lead to the formation of a solid phase starting from the liquid. Like in
all first order first transitions there is an interplay between enthalpy and entropy.
Based on this idea, in order to drive crystallization in molecular simulations, we
introduce two collective variables, one enthalpic and the other entropic. Defined
in this way, these collective variables do not prejudge the structure the system is
going to crystallize into. We show the usefulness of this approach by studying
the case of sodium and aluminum that crystallize in the bcc and fcc crystalline
structure, respectively. Using these two generic collective variables, we perform
variationally enhanced sampling and well tempered metadynamics simulations,
and find that the systems transform spontaneously and reversibly between the
liquid and the solid phases.

Crystallization is a remarkable physical process in which the disordered atoms of a lig-
uid spontaneously form beautifully ordered periodic patterns. It is also a phenomenon
of great importance in many areas of application, from metallurgy to material science,
pharmacology and even biology. Not surprisingly this problem has received consider-
able attention. Understanding the way in which crystallization proceeds holds also the
key to improve many scientific and technological processes. It suffices to recall here
the difficult art of protein crystallization. Since experiments can only provide a limited
insight into this phenomenon, already in the very early days of computer simulation
much effort has been devoted to the study of crystal nucleation [1-3].

Unfortunately in most cases the time scale of nucleation is much longer than what
can be reached in an atomistic simulation. Early on this problem was tackled by
forcing nucleation using unphysically deep temperature quenches so as to bring the
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nucleation time scale within the reach of simulation [3]. This procedure is not without
problems since it can even change the nature of the nucleation process [5]. For this
reason enhanced sampling methods have been extensively used [14, 53, 54]. Most
of them are based on the definition of appropriate collective variables (CVs) able to
distinguish one type of local order from another. Typical examples of CVs used in this
context are the Steinhardt order parameters [13, 14] or the ones introduced by Santiso
and Trout [15, 16, 54].

However, the use of these kind of CVs can prejudge the structure the system is going
to crystallize into. Thus, it would be extremely useful to have an enhanced sampling
method that does not assume from the start the final structure. Such a method could
illuminate important details of nucleation and complement structure prediction meth-
ods that are based on finding the crystal structure of lowest energy [55, 56]. This would
be extremely valuable in all those cases in which the crystal structure is stabilized by
strong entropic effects as in superionic or plastic crystals.

In order to achieve this result the CV should not be related to this or that feature of the
geometry of the crystal. It thus comes natural to recall that in crystallization, like in
all first order transformations, there is a trade off between enthalpy and entropy, and
introduce two CVs able to describe these changes. Of course enthalpy H = E + PV
where F is the total energy, P the pressure and V' the volume, is easy to estimate while
for the entropy there is no exact expression. However in order to bias the system we
do not need to compute the exact entropy and even an approximate expression will
do. The liquid state theory provides an expression in which the excess entropy per
atom is expanded in an infinite series of terms involving multiparticle correlation
functions [23]. The first such term S, used in ref. [57-59] to perform insightful analysis,
includes only two body correlations and is given by:

= —27Tpk3/ r)Ing(r) — g(r) 4+ 1) r2dr. (2.2.1)
0

In this equation g(r) is the radial distribution function and p is the density of the system.
We shall use 5> as CV. In a different context the use of S, has already been suggested to
address rare events problems in which the entropy plays a dominant role [60]. Both H
and Sz have a proper thermodynamic meaning only when averaged. However, for the
purpose of this paper we use their instantaneous values to define useful CVs.

In this spirit we introduce two CVs, one enthalpic sy and the other entropic sg. The
former is defined as:

UR)+ PV

T (2.2.2)

SH =

where U(R) is the potential energy and N the number of atoms in the system [20]. We
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thus do not include the kinetic energy contribution to the total energy in the definition
of sy. The latter is slightly more complex. We first define a mollified version of the
radial distribution function:

1 1 2 2
- E —(r—ri;)*/(20%)
9m(") = N2 oy Vamoro ’ 223

where r;; is the distance between particles i and j, and ¢ is a broadening parameter.
The mollification is necessary to ensure that the derivatives of g,,(r) relative to the
atomic positions are continuous. The resulting g,,, (r) is inserted into equation (2.2.1)
and the integral calculated numerically using the trapezoid rule up to a cut off distance
Tmax- 10 the spirit of the work of Tiwary and Berne [61] 7, is chosen so as to optimize
the frequency of transitions between solid and liquid.

Before describing the details of our simulation we would like to pause a little to discuss
a small but crucial technical issue. It has long been recognized that a given crystalline
order can conflict with the periodic boundary conditions of molecular dynamics (MD)
simulations and that allowing the MD cell shape to vary is essential to study processes
that involve crystals. This is at the heart of the Parrinello-Rahman method that allows
the MD cell to change under conditions of constant stress [47]. The MD cell shape
is expressed by an upper diagonal matrix h = [hq1, hoo, h33, has, h13, h12]. Changes
in h are driven by the unbalance between the internal and the external stress. A
straightforward application of the Parrinello-Rahman method to the liquid state is
however problematic since a liquid offers no resistance to shear and left to its own
devices the MD box shape would fluctuate randomly assuming even inconvenient
cigar like shapes. In order to remedy this we take h1; = hoo = hss and this forces the
volume to be always close to a cube but still allows the off diagonal elements to vary,
and thus accommodate different structures.

We now exemplify the usefulness of this approach in the cases of sodium and aluminum
that crystallize in the bcc and fcc structures, respectively. We simulated Na and Al using
embedded atom models [62, 63] whose melting temperatures have been determined.
Biased MD simulations were performed using LAMMPS [44] patched with PLUMED
2 [45] and the VES code [64]. The integration of the equations of motion was carried out
with a timestep of 2 fs. We employed the stochastic velocity rescaling thermostat [46]
with a relaxation time of 0.1 ps. The target pressure of the barostat was set to its
standard atmospheric value and a relaxation time of 10 ps was used. Systems composed
of 250 and 256 atoms were employed for Na and Al, respectively. In order to determine
the Gibbs free energy surface G(s) as a function of sy and sg we used well tempered
metadynamics [50] and the variationally enhanced sampling (VES) [25] method in its
well tempered variant [39]. Details of the calculations can be found in the Supplemental
Material. For the calculation of sg we used a cutoff of r,,,,, = 0.65 nm for Na and
rmax = 0.70 for Al. The broadening parameter ¢ in equation (2.2.3) and the step size in
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Figure 2.2.1: Marginal probability distribution with respect to sy and sg. a) Na at
350 K. b) Al at 800 K. A liquid and a solid basin are observed in the plots and some
characteristic configurations in each basin are depicted. The solid structures were
identified using CNA. Bcc-like atoms are colored in blue and fcc-like atoms are colored
in green. As expected, the solid configurations in Na and Al, have a bcc and fcc
crystalline structure, respectively. A liquid configuration is also shown with liquid-like
atoms colored in red. sy is expressed in units of the cohesive energy and sg is in k.

the numerical integration of equation (2.2.1) was 0.0125 nm both for Na and Al.

As shown in Figure 2.2.1, employing these CVs we were able to describe accurately
the phase transition between the liquid and crystalline phases in Na and Al without
having had to feed any prior information on the systems. In both cases two basins
were observed, one of high enthalpy and high entropy, and another of low enthalpy
and low entropy, corresponding to the liquid and solid basins, respectively. This
reflects the trade off discussed in the introduction between enthalpy and entropy
in first order phase transitions. As hoped for, Na crystallized into the bcc structure
whereas Al crystallized in the fcc structure. In all cases the transition is reversible (see
Supplemental Material) allowing the free energy surface to be estimated.

We performed a detailed analysis of the crystalline structures in the trajectories using
common neighbor analysis (CNA) [65, 66]. For Na the only solid phase that can be
identified in the simulation is bcc. In the case of Na either sg or sy can act as order
parameters, since any of them by itself could be able to distinguish between the liquid
and bcc phases. However they alone do not fully capture the nature of the transition.
We have performed simulations biasing only ss or sy and we found that their efficiency
in metadynamics is very low. Instead if they are biased together the sampling efficiency
is greatly improved. Furthermore, the FES is essentially one dimensional thus no extra
computational burden is posed by the use of two CVs rather than one. For Al the
situation is slightly more complex since there is a bcc phase at high free energies. In
this case the use of both sg and sy is necessary to distinguish between the liquid, fcc,
and bcc phases. For compact structures such as fcc, the formation of stacking faults
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Figure 2.2.2: Difference in free energy between the liquid and solid phases as a function
of temperature as calculated from equation (2.2.4). Subplots a) and b) correspond to
Na and Al, respectively. The melting temperatures reported in ref. [62] and [63] are
marked in the abscissa axis with 7'},. The straight lines have only been fitted to the
three middle points.

must be considered. In our simulations these defects rarely form since the stacking
fault energy of the Al potential [63] reproduces well the high experimental value. These
results are discussed to a greater detail in the Supplemental Material.

From our calculation we can also get the difference in free energy between the two
phases as:

AGs .y — —Liog (Judse”” 224
S—>L——Eog W (2.2.4)

where s is the set of CVs sy and sg and the integrals are restricted to the liquid (L) and
solid (S) basins, respectively. In Figure 2.2.2a we plot AGs_, 1, for Na in the temperature
range 300-400 K. From this calculations, we estimate the melting temperature to be
around 340 K in agreement with results obtained using a different technique (366
K) [62], if one takes into account that the melting temperature is a strong function of
system size [67]. For details of these calculations we refer the reader to the Supplemen-
tal Material. In Figure 2.2.2b we plot AGs_,, for Alin the temperature range 700-900 K.
The melting temperature is around 800 K, somewhat below the melting temperature
calculated from coexistence simulations (926 K). Again this is due to strong finite size
effects.

Once that AGg_, 1, is determined as a function of temperature, the difference in en-
tropy between the liquid, ASs_, 1, can be calculated from the thermodynamic identity
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ASg_., = —‘Mg# NP Since also AHs_,;, can be calculated, the definition of Gibbs

free energy AGs_,;, = AH s —TASg_ .1 provides an independent estimate of ASg_. .
In Table 2.2.1 we compare these two estimates of the entropy and calculations from
experiments, both for Na and Al. The estimates are comfortably similar and in line
with the experimental values [68].

In conclusion, the use of a collective variable that couples directly to entropy has
proven to be very promising. We have illustrated the power of the approach by crystal-
lizing Na and Al in their minimum free energy structures. The success of our calculation
suggests a general strategy for tackling those problems in which entropy alone or in
combination with enthalpy plays a role. This in the practice means that one only needs
to find approximate ways of expressing the entropy and the enthalpy. Once that the
variables have been chosen, the use of metadynamics [9] or VES can amplify the CV
fluctuations and accelerate the observation of the desired transition. We stress that
arigorous definition of entropy is not necessary and metadynamics or VES are very
accommodating in this respect. We can anticipate here that the strategy of biasing an
entropic CV is being adapted to the folding of small proteins.
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JAGg_, J AHg .1, —AGg_, J : J
SyStem _$ N.P (K mol) . LT — (K mol) Experlmental [68] (m)
Na 5.8 6.6 7.017
Al 9.5 10.7 11.475

Table 2.2.1: Difference in entropy between the solid and liquid phases ASgs_,, at the
melting temperature. ASg_,;, was calculated using two different approaches and the
results are compared with the experimental value.
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2.3 Entropy fingerprint for local crystalline order

Another area that can profit from structure agnostic collective variables is the analysis
of atomic environments in molecular simulations. For this purpose in the next article
we define a local, atomic version of our entropy inspired collective variable that we dub
pair entropy fingerprint. We have applied our method to distinguish between solid and
liquid-like atomic environments, including the challenging and spectacular case of
nanocrystals. In order to make the pair entropy fingerprint available to the community
I have implemented it in the widely used softwares LAMMPS and PLUMED 2.

I present the postprint version of the article published in the Journal of Chemical
Physics. My contribution to this article has been implementing the algorithms, per-
forming the simulations, and writing the paper jointly with Prof. Parrinello.

Full bibliographic reference: Pablo M. Piaggi and Michele Parrinello. Entropy finger-
print for local crystalline order. Journal of Chemical Physics, 147 (11): 114112, 2017.
doi: 10.1063/1.4998408. URL https://doi.org/10.1063/1.4998408.

Copyright ® 2017 American Institute of Physics.
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Abstract

We introduce a new fingerprint that allows distinguishing between liquid-like
and solid-like atomic environments. This fingerprint is based on an approximate
expression for the entropy projected on individual atoms. When combined with a
local enthalpy, this fingerprint acquires an even finer resolution and it is capable
of discriminating between different crystal structures.

2.3.1 Introduction

Atomistic computer simulation is an important technique used in the study of a broad
range of phenomena in materials science, chemistry, and condensed matter physics.
In these fields, very often one is faced with the problem of identifying different local
arrangements. A paradigmatic case is that of the nucleation of a crystal from the liquid
where one is required to distinguish between solid-like and liquid-like atomic environ-
ments. The situation is even more complicated in systems exhibiting polymorphism
since in these cases it is desirable to classify the atoms as belonging to one of the
different polymorphic structures. This is a common occurrence in nucleation studies
where Ostwald’s step rule is observed [16, 69] or where clusters exhibit a core-shell
structure [70, 71]. Another area where the ability to distinguish between different
local arrangements plays a role is in the identification of crystallites in nanocrystalline
materials [72].

Several methods have been proposed to distinguish between liquid-like and solid-like
atoms and to identify local crystalline structures. One such method is the common
neighbor analysis (CNA) [66, 73] which is an efficient algorithm able to distinguish
between liquid, bcc, fcc, and hep phases. However, it lacks robustness with respect
to particle displacements such as those arising from thermal motion or stresses. An-
other popular method is based on the local Steinhardt parameters [74] which are
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local, averaged versions of the original Steinhardt parameters [13]. Although they are
more general than other choices, Steinhardt parameters require choosing the angu-
lar component / that defines them in order to distinguish between different crystal
structures.

This work is inspired by a recent progress in the study of nucleation using metadynam-
ics [9,50] to enhance the probability of inducing the crystal formation in an accessible
computer time. Metadynamics relies on the identification of appropriate collective
variables (CVs). In Ref. [75] we found that enthalpy and an approximate expression for
entropy based on the two body correlation function, were useful CVs in this context.
One of the features of this work was that the CVs did not contain any information
on the geometry of the crystal structure. This suggested that perhaps from these two
quantities one could extract fingerprints able to distinguish between different local
atomic arrangements.

Enthalpy and entropy are global properties and in order to be able to use them as local
parameters we have to project them onto each atom. We propose a method that is able
to do so. We find that the local entropy thus defined is able to distinguish extremely
well between solid-like and liquid-like atoms. Furthermore, in conjunction with local
enthalpy it can distinguish well between different polymorphs, even in the subtle case
of the difference between fcc-like and hcp-like arrangements.

2.3.2 Entropy approximation based on the two body correlation function

Ref. [75] was based on the consideration that in the liquid to solid transition there
is a trade-off between entropy and enthalpy. The role of metadynamics was there to
enhance the fluctuations of these two quantities so as to accelerate crystallization.
This required designing CVs able to describe these two quantities. Enthalpy is easy
to compute but entropy is extremely costly to evaluate. However, an expression that
gives an approximate evaluation of the entropy is sufficient for the purpose of driving
crystallization. Such an expression was derived from an expansion of the configura-
tional entropy in terms of multibody correlation functions [22,23,76]. In simple liquids
the second term of the expansion, often called two-body excess entropy, involves
only the pair correlation function and accounts for about 90% of the configurational
entropy [76-79]. This term is given by,

= —ZkaB/ ) Ing(r) — g(r) + 1] r2dr, (2.3.1)
0

where p is the system’s density, and g(r) is the radial distribution function. Extensions
of the expansion to multicomponent [80, 81] and inhomogeneous [82] systems are
also available. We also recall that entropy series expansions have been used to study
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Figure 2.3.1: Analysis of functions related to the entropy approximation Ss. a) Radial
distribution function ¢(r), and b) integrand in equation (2.3.1) I(r) = [g(r) Ing(r) —
g(r) + 1]r2. These functions are compared for the liquid, fcc, hcp, and bee phases of
a Lennard-Jones fluid at the melting temperature. We use Lennard-Jones units, i.e.
o=1.

order-disorder phenomena starting with the landmark work of Kikuchi [83].

In order to come to grasp with S, and understand better why it works, we first con-
trast in Figure 2.3.1 the different behaviors of ¢g(r) and the integral in equation 2.3.1
I(r) = [g(r) Ing(r) — g(r) +1]r%. The data were taken from a system with Lennard-Jones
interactions at temperature 7' = 1.15 and pressure P = 5.68, that corresponds to the
fcc-liquid coexistence point [84]. The Lennard-Jones potential was truncated at 2.5
and tail corrections were included. We refer the reader to the Appendix for further
computational details. As usual we use Lennard-Jones units [26],i.e. c = 1 and € = 1.
We have chosen these thermodynamic conditions because at this temperature and
pressure the fcc, hep, bee, and liquid phases are all metastable allowing a fair com-
parison. The first observation is that while g(r) has some difficulty at distinguishing
between solid and liquid, it strikes the eye that I(r) in the liquid phase is much more
short ranged than in the solid phases. Furthermore, the g(r) for the solid phases can
hardly distinguish between the different polymorphs. In contrast, the bcc I(r) appears
clearly different from that of the closed packed structures. More subtle is the difference
between fcc and hcp, that is revealed only if one goes as far out as the third neighbor
shell.

2.3.3 Entropy fingerprint for solid-like and liquid-like environments

The analysis of I(r) suggests that, if properly projected onto the different atoms, S,
could be used as a fingerprint to identify local structures. The projection on atom i can
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Figure 2.3.2: Distributions of sg and sg for a) bce Na [62] at 350 K, b) fcc Al [67] at 900
K. Orange, green, and blue lines refer to the bcc, fcc, and liquid phases, respectively.
Dotted and full lines refer to the non-averaged sg and averaged parameters sg, respec-
tively. The probability distributions of each phase are normalized to one. The solid
atomic configurations correspond to {100} planes of bcc and fcc crystals at 0 K. The
parameters r,,, 74, and o that were used are summarized in Table 2.3.1.

be achieved using the expression:

Tm

st = —27r,0k3/ (g0, (r) Ingl,(r) — gb () + 1] r2dr, (2.3.2)
0

where r,, is an upper integration limit that in principle should be taken to infinity,
and ¢! is the radial distribution function centered at the i-th atom. To obtain a
continuous and differentiable order parameter, we define a mollified version of the
radial distribution function [75],

, 1 1 o
i —(r—ri;)2/(20%)
I (1) Tnpr? Ej P g , (2.3.3)

where j are the neighbors of atom 3, 7;; is the distance between atoms i and j, and o is
a broadening parameter. We shall choose ¢ so small that g,,,(r) ~ g(r) yet large enough
for the derivatives relative to the atomic positions to be manageable [75]. A similar
projection of S, has been used in Ref. [85].

If we use sfg as defined in equation (2.3.2) it can be seen in Figure 2.3.2 that, in the
cases of Na [62] at 350 K and Al [67] at 900 K (see Appendix for technical details), the
distribution of s% in the liquid and solid phases are peaked at two different positions but
exhibit a large overlap. In order to calculate local order parameters whose distributions
are more clearly distinct, we take cue from Lechner and Dellago [74] and define an
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Structure Model T (K) 7, (a) r, (@)

bcc Na 350 1.8(5NS) 1.2 (2NS)
fcc Al 900 1.4 (3NS) 0.9 (INS)

Table 2.3.1: Parameters in the definition of sg and 54 for different structures. The
columns represent the crystal structure, the model system, the temperature (T) at
which the distributions of solid and liquid phases are compared, and the parameters
rm and r, defined in equation (2.3.2) and (2.3.3). r,, and r, are in units of the lattice
constant, a = 4.23 A for Na and a = 4.05 A for Al. We report the number of neighbor
shells (NS) corresponding to r,,, and r,. For both cases ¢ = 0.02 nm.

average local entropy:

i Zj S‘éf(?“ij) + S.iS'

oS > f(rij) +1

where j runs over the neighbors of atom i and f(r;;) is a switching function with cutoff
rq. Switching functions have a value of 1 for r;; < r,, 0 for r;; > r,, and decay smoothly
from 1 to O for r;; ~ r,. We have used a switching function with the functional form:

(2.3.4)

1— (rij/ra)
L= (rij/ra)™

with N = 6 and M = 12. Such a form has proven useful in many other contexts [45].
At variance with s, the distributions of 5% of the liquid and solid phases now have
a negligible overlap (see Figure 2.3.2). Henceforth, we shall drop the index i when
referring to distributions and we shall refer to sg as entropy fingerprint.

fri;) = (2.3.5)

The ability to distinguish sharply between solid-like and liquid-like molecules depend
on a wise choice of the parameters r,, and r,. As r,, is increased, more of the long
range part of the integrand is included making the difference between liquid and
solid more and more evident. On the other hand by increasing r,, more neighbors are
included in the summation in equation (2.3.4) and eventually the locality of sg is lost.
In the practice we have chosen for r,,, and r, the smallest values that still ensure sharp
distinction between solid-like and liquid-like atoms. The parameters r,,, r,, and o that
were used are summarized in Table 2.3.1.

It is interesting to investigate whether the entropy fingerprint can identify ordered
structures in a complex situation, in a context different from nucleation. To this effect
we generated a nanocrystalline structure (see Figure 2.3.3) using a procedure described
in the Appendix. The system is Al, as described by the potential in Ref. [63]. It can be
seen that the entropy fingerprint clearly brings out the nanostructure of the system
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Figure 2.3.3: Nanocrys-
talline Al with mean grain
size 5 nm at 300 K. Atoms
are colored according to
55 (see text for details).
The colorscale is such
that green and blue atoms
have ordered and disor-

ordered , disordered dered environmentsy re-
5.0 45 40 55 3.0 2.5 Spectively. ~ Image ob-

3g tained with OVITO [65].

and the network of grain boundaries. This indicates that the entropy fingerprint can
also work in inhomogeneous situations where different atomic environments coexist.

2.3.4 Identification of crystal structures

In the previous subsection we have shown that sg is able to distinguish liquid-like from
solid-like atomic environments. We will now explore the possibility of distinguishing
between fcc, hcp, bee and liquid-like atomic environments. As we shall see, this is
best achieved if we accompany our definition of local entropy with a measure of local
enthalpy.

The local enthalpy is easily defined if we consider an interatomic potential U(R)
that can be decomposed into energies U;(R) associated to individual atoms. Here R
denotes the atomic coordinates of an N atom system. The expression that we shall use
is then,

sy = U;(R) + PV/N (2.3.6)

where P and V' are the system’s pressure and volume, respectively and, for simplicity,
we have partitioned the volume of the system into N equal parts. A more complex
partition criterion is also possible, such as using the Voronoi volume of each atom. As
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Figure 2.3.4: Joint probability distributions of s;; and sg (P(sy, Ss)) of the fcc, hep, bec,
and liquid phases of the Lennard-Jones system (see text for simulation details). The
dashed lines are the iso-probability lines for a probability equal to 1/10 max{P(Sy, 55)}.
The scattered points are 150 random samples of 5 and sg over the trajectory in each
phase. The solid atomic configurations correspond to {100} planes of bcc and fcc
crystals, and the basal plane of an hcp crystal at 0 K.

done for the local entropy, we define an average local enthalpy,

) Zj quf(n‘j) + Siq
8% = 2.3.7

where the symbols have the same meaning as in equation (2.3.4).

We calculated the joint probability distributions of sy and ss (P(sg, 5s)) of the fcc,
hcp, bec, and liquid phases of the Lennard-Jones system described in Section 2.3.2. For
this purpose we simulated systems in each of those phases for 200 ps. The thermody-
namic conditions were the same as described in Section 2.3.2. We used the following
parameters to define sy and sg: r,, = 2.5, and ¢ = 0.1. We studied two choices for
the averaging cutoff, r, = 1.4 and r, = 2.5. The P(5y, 55) of each phase are shown in
Figure 2.3.4 for r, = 2.5. Each P(5y, 55) was normalized to one.

We now discuss the results in Figure 2.3.4. We first notice that the distributions of the
different phases in Figure 2.3.4 have minimal overlap and therefore s and s are useful
fingerprints. As in the case of Na and Al, the distributions of liquid and solid phases
are very far apart and therefore the fingerprints distinguish very well between liquid-
like and solid-like environments. The distributions in the solid phases are clustered
together in the region of low enthalpy and entropy, and it is easy to distinguish between
the structures using sy and sg. We analyze in detail the challenging case of fcc and hcp.
Both fcc and hep structures are formed by stacking of close-packed planes. However,
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phases ro=14 r,=25

fcc-hep 0.041177 0.000022

fce-bee 0.003090  0.000000 Table 2.3.2: Overlap integrals of each pair
bee-hep 0.154870  0.002675 of phases in the Lennard-Jones system
liquid-fcc  0.000086 0.000000 (see text for details). Calculations have
liquid-bcc  0.000749  0.000000 been performed both for r, = 1.4 and
liquid-hcp  0.000010  0.000000 = 2.5,

they differ in the way the close-packed planes are stacked. For this reason, these
structures are usually not easy to discriminate. As seen in Figure 2.3.4, the fingerprints
introduced in this work discriminate well between fcc and hcp configurations.

In order to make our results quantitative we have calculated the integrals of the product
of the probability distributions of each pair of phases. We employed the definition
of the overlap integral used in Ref. [74]. The results are shown in Table 2.3.2 both for
re = 1.4 and r, = 2.5. For both choices of r, there is negligible or non measurable
overlap between the liquid and solid phases. For the small cutoff, r, = 1.4, there is
a small overlap between the solid phases, that however is somewhat larger for the
bce-hep case. On the other hand, for the large cutoff, r, = 2.5, the fingerprint is much
sharper and identifies each solid phase with negligible probability of misclassifying
them.

2.3.5 Conclusions

To conclude, the degree of success of the entropy based fingerprint is at first sight
surprising. However, the root of this success must lie on the point of view taken
here that does not directly focus on the local geometry but on properties of deeper
thermodynamic significance, like local entropy and enthalpy. It also points to the
usefulness of looking at old problems from a different standpoint.

Appendix: Computational details

We performed molecular dynamics (MD) simulations using LAMMPS [44]. We em-
ployed an anisotropic Parrinello-Rahman barostat [47] and the stochastic velocity
rescaling thermostat [46]. The fingerprints were programmed in a development ver-
sion of PLUMED 2 [45].

The Lennard-Jones simulations were performed at temperature 7 = 1.15 and pressure
P = 5.68 (fcc-liquid coexistence [84]). As usual, we use Lennard-Jones units [26], i.e.
o = 1and € = 1. The Lennard-Jones potential was truncated at 2.5 and tail corrections
were included. The time step for the integration of the equations of motion was 2 fs.
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The relaxation times of the barostat and thermostat were 5 and 0.05, respectively.

Na and Al were simulated using embedded atom models (EAM) [62, 67]. For Na we
set the temperature at 350 K, close to the melting temperature (366 K) of the model.
For Al the temperature was set to 900 K, near the melting temperature 931 K. In both
cases the pressure was set to its standard atmospheric value. The relaxation times of
the barostat and thermostat were 10 ps and 0.1 ps, respectively. The results presented
in Figure 2.3.2 were obtained by performing independent simulations in the liquid
and solid phases of Na and Al at the above cited temperatures. Each simulation had
a length of 200 ps and the distributions of sg and 55 were calculated taking samples
every 1 ps.

The configuration of the nanocrystalline Al was constructed using Voronoi tesselation
[72,86]. The mean grain size was 5 nm and the system contained 255064 atoms. We
performed an annealing at 600 K for 0.2 ns, then the temperature was ramped to 300 K
in 0.2 ns, and finally the temperature was kept constant at 300 K for 0.2 ns. For these
simulations we employed a different EAM potential [63]. The configuration in Figure
2.3.3 corresponds to the last in this trajectory. The simulation details were the same as
those used for Al above.

EAM potentials [87,88] have a natural way to partition the energy between the atoms
as needed in equation (2.3.6), i.e.

Ui (R) = Z ¢(Tij) +F Z Patom (Tij) (238)
i i

where ¢ is a pairwise potential, F' is the embedding energy function, and p,ton, is the
electron charge density function. We have used this partition criterion.
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2.4 Predicting polymorphism using orientational entropy

In the previous articles I have discussed simple atomic systems. However, the idea of
using approximate expressions for entropy is quite general and is not circumscribed to
these simple systems. Therefore, it would be interesting to assess whether the method
can also be applied in more complex scenarios. In the following article I introduce an
extension of the entropy collective variable that can be applied to small and relatively
rigid molecules. The collective variable is still based on the two body excess entropy
but in this case the molecules are described using a center and an orientation in space.
We successfully apply the method to the cases of urea and naphthalene and discover
an interesting polymorph of urea.

I present the preprint version of the article published in Proceeding of the National
Academy of Sciences of the USA. The supplementary information of this article is
not included in this thesis but a link has been provided in the electronic version. My
contribution to this article has been implementing the algorithms, performing the
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Abstract

We introduce a computational method to discover polymorphs in molecular
crystals at finite temperature. The method is based on reproducing the crys-
tallization process starting from the liquid and letting the system discover the
relevant polymorphs. This idea, however, conflicts with the fact that crystalliza-
tion has a time scale much longer than that of molecular simulations. In order
to bring the process within affordable simulation time, we enhance the fluctua-
tions of a collective variable by constructing a bias potential with well tempered
metadynamics. We use as collective variable an entropy surrogate based on an
extended pair correlation function that includes the correlation between the
orientation of pairs of molecules. We also propose a similarity metric between
configurations based on the extended pair correlation function and a generalized
Kullback-Leibler divergence. In this way, we automatically classify the configu-
rations as belonging to a given polymorph using our metric and a hierarchical
clustering algorithm. We apply our method to urea and naphthalene. We find
different polymorphs for both substances and we predict new polymorphs. One
of them is stabilized at finite temperature by entropic effects.

Polymorphism is the ability that substances have to crystallize into different structures.
A paradigmatic example is carbon that in its two main polymorphs, graphite and
diamond, exhibits amazingly different properties. Polymorphism is also important
from a practical point of view since controlling which crystal structure forms is of the
utmost importance in many manufacturing processes. The pharmaceutical industry
suffers in particular the consequences of polymorphism [89,90]. Active pharmaceutical
ingredients are usually small, organic molecules that frequently exist in a plethora of
crystalline forms. Different polymorphs can be patented separately and usually lead to
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different drug performances. Therefore a comprehensive screening of polymorphs is
crucial to avoid a rival company from releasing to the market the same molecule in a
different polymorph [91], and to anticipate the transformation of one polymorph into
another during the manufacturing process or the shelf life [92].

The screening of polymorphs was traditionally performed experimentally in spite of
the large costs involved [90]. In the last 15 years the increase in computer power and
the development of algorithms able to screen a large number of polymorphs has lead
to very significant successes in polymorph prediction [56,93-96]. Such methods are
based on the search of local minima on the potential energy surface. The minima
are ordered by energy and typically corrected for thermal effects using the harmonic
approximation. Typically these methods find hundreds of structures most of which are
thermodynamically unstable. In addition, entropic effects beyond the harmonic ap-
proximation can be significant. Not only they can alter the delicate energetic balance
between the different polymorphs but even stabilize structures that are not local min-
ima of the potential energy surface, for instance in the case of superionic conductors
such as AgI [97]. Another issue that is often overlooked is the kinetic side of crystal-
lization, for instance a given polymorph can be favored relative to energetically lower
ones by the fact that is kinetically more accessible. For all these reasons we take here a
different approach and we try to reproduce on the computer the crystallization process
starting from the liquid state and letting the system discover different polymorphs.

The above ambition conflicts with the fact that crystallization is a process that occurs
on a time scale that is much longer than that of computer simulations. This requires
the use of enhanced sampling methods that bring the time scale of crystallization
within affordable simulation time [27]. Some enhanced sampling methods require the
definition of order parameters or collective variables (CVs). These methods channel
and enhance the fluctuations so as to favor the reversible observation of multiple
freezing and melting events. Thus far such order parameters have been based on some
structural geometrical information on the phase the system is going to crystallize into.
If one is interested in discovering new polymorphs this approach defeats the purpose.
Recently, however, we have shown that in simple systems this can be circumvented
by using as CVs surrogates of enthalpy and entropy [75]. The idea is to mimic what
happens in a real system in which there is a trade off between entropy and enthalpy.
We dealt with simple one component [75] or two component [97] atomic systems. In
this case the following expression is used as a surrogate for entropy:

= —27r,0k3/ ) Ing(r) — g(r) + 1] ridr, (2.4.1)
0

where r is a distance, g(r) is the radial distribution function and p is the density of
the system. Together with enthalpy, S> proved successful in predicting the lattice into
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which the system was going to crystallize. For a discussion of S, we refer the reader to
Ref. [75]. This has been a simple proof of principle to show that crystal structures, even
the ones that are stabilized by entropy [97], can be predicted.

Molecular systems that are of interest to pharmaceutical industry present a complexity
much larger than the relatively simple systems so far handled in which most of the
times only one polymorph was stable. Here we enlarge considerably the scope of these
calculations and move to study molecular systems that, as we shall see, present a large
number of polymorphs.

We shall consider a system of molecules and, for the purpose of developing a CV, we
shall represent each molecule by the position of its center of mass and a vector that
characterizes its orientation in space. We can define a correlation function g(r, #) akin
to g(r) but including the relative orientation between two molecules. 6 is defined as

0 = arccos (\\Y?I.\‘:fj-l) where v; and v; are the vectors characterizing the orientation of
illVj
molecules i and j. Statistical mechanics provides us with an expression for the entropy

of such a system equivalent to the one in equation (2.4.1), this is [81],
Sp = —mpkp / / [g(r,0) Ing(r,0) — g(r,0) + 1] r*sin 6 dr db. (2.4.2)
00

We shall use Sy as CV to drive simulations. A similar CV was introduced in ref. [98]
although in that case the probability as a function of the angle of the molecules with
respect to a fix reference frame was used to define the entropy.

An important part in the definition of our CV is the choice of angles to characterize
the relative orientation between neighboring molecules. In principle, three angles are
needed to specify completely the relative orientation between two rigid molecules,
for instance the three Euler angles ¢, 0,v. This would imply the construction of a
function g(r, ¢, 6, 1) whose calculation would be cumbersome. Here we take a different
approach and we use several CVs each involving one angle.

We shall choose two systems to test the ability of Sy to explore polymorphism, namely
urea and naphthalene. We have chosen two CVs and therefore two angles for each
system. In the case of urea we use the angles #; and 0 to define the CVs sy, and s, .
The first one is defined using the direction of the dipole moment and the second with
the direction of the vector joining the two nitrogens. In the case of naphthalene we use
the direction of the longest axis of the molecule and the direction perpendicular to the
aromatic rings to define the CVs sg, and sy, . Other choices are possible, for instance
the directions of the eigenvectors of the moment of inertia tensor. At variance with our
previous work [75], here we do not bias enthalpy. This would add a third CV making
the calculation more cumbersome. Also, the scope here is different since our objective
is to discover new structures, and observing multiple and reversible transitions is less
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Figure 2.4.1: ¢(r,0) for the liquid and polymorph I of urea at 450 K. Snapshots of the
system in each of the phases are shown. Polymorph I is viewed down the c axis. C, O, N
and H atoms are shown in orange, grey, blue and white, respectively.

of an issue.

Since the use of ¢(r, #) is not so widespread, we thought it useful to help the reader get
a feeling of its behavior by plotting ¢(r, 6,) for the liquid and polymorph I of urea at 450
K (see Figure 2.4.1). The liquid ¢(r, 6, ) exhibits some structure at very short distances
and almost no correlations at distances larger than 0.8 nm. On the other hand the
g(r,01) of polymorph I shows a well defined structure that persists at long distances
as expected from a solid phase. As can be observed in the figure, one of the main
characteristics of polymorph I is that molecules have parallel or antiparallel dipole
moments. Thus, ¢(r, #) contains important orientational information that can help to
distinguish between phases.

We briefly describe the polymorphs found experimentally so far for each system. Urea
shows a rich polymorphism and up to five polymorphs have been reported [99-101].
The most stable form at ambient conditions is form I and it has been extensively
studied. Two other forms exist at higher pressures, namely forms III and IV. Another
high pressure polymorph, form V, has been found although to our knowledge the
details of the structure have not been reported. There has also been theoretical work
that found other polymorphs [16,102]. In particular, for urea as described by the Amber
force field, the so called form A [16, 102] is highly relevant having an energy very close
to that of the ground state. At variance with urea, naphthalene has only one solid form
and in spite of several investigations at high pressure [103, 104] no new forms have yet
been found.

We have used well-tempered metadynamics (WTMetaD) [50] to enhance the fluctua-
tions of sg, and sg,. In WTMetaD a time-dependent potential is constructed as a sum of
kernels, typically chosen to be Gaussians. The potential discourages frequently visited
configurations thus boosting the exploration of configuration space. We simulated
urea at 450 K and naphthalene at 300 K. Both temperatures were chosen close to the
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melting point of each substance. Further details can be found in the Materials and
Methods section. In the 200 ns biased simulations both urea and naphthalene explore
thoroughly the space spanned by the CVs, although understanding the nature of the
configurations explored requires further analysis. A visual inspection of the trajectories
shows many transitions to different crystal forms. The crystalline configurations have
different orientations in space and some of them contain small crystalline defects. The
wealth of information that these simulations contain, however, cannot be analyzed
with the naked eye. It would therefore be useful to have an automatic method to
identify and classify the polymorphs that crystallize in the course of the simulation. In
the following paragraphs we propose one such automatic method.

A key ingredient for an automatic method to identify and classify polymorphs is a
metric for the similarity between two given configurations. Several structural similarity
metrics exist in the literature [105] but in this work we shall propose a new one. In
the present context, it is natural to use for this purpose the very function g(r, #) that
defines the CVs to characterize the configuration of the system. However, we still need
a measure of distance between two g(r, ). We can define a distance taking inspiration
in the pair entropy expression. We first note that equation (2.4.2) is a measure of the
distance between the g(r, #) of the present configuration and the ¢(r, #) of the ideal gas,
i.e. g(r,0) = 1V r, 0. Inspired by this observation we introduce a divergence of ¢, (r, 6)
with respect to g2 (r, 0),

™

D(q1llg2) = // [gl (r,0)In il (r, 9) —g1(r,0) + g2(r,0) r2sin 6 dr df. (2.4.3)
P)
0 0

(. 0)

This is a generalization of the Kullback-Leibler divergence for non-normalized func-
tions. This divergence is a special case of Bregman divergence and has some interesting
properties such as that of being convex and having a minimum at g; = g, [106]. Strictly
speaking D(g1]|g2) is not a distance since it is not symmetric. For applications in which
a well defined distance is needed we shall use a symmetrized version of equation
(2.4.3), namely,

~ D(g1llg2) + D(g2lg1)

d(g1,92) = 5 : (2.4.4)

Equipped with this metric, we can compare configurations and analyze the rich and
complex trajectories resulting from the biased simulations. We will exemplify our
approach by analyzing the trajectory of urea. The configurations in the trajectory were
clustered using a hierarchical clustering approach [107, 108] based on the distance
defined in equation (2.4.4). We used the average distance between points in two
clusters as linkage criterion. As a result of the clustering, we obtain a tree diagram (see
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Figure 2.4.2: Tree diagram resulting from the clustering according to the distance in
equation (2.4.4) of the trajectory of urea at 450 K. The threshold distance used to join
clusters is shown with a grey dashed line. Configurations at 450 K for selected clusters
are shown.

Figure 2.4.2) that shows the similarity between different configurations in the trajectory.
We can now choose a threshold distance d. and join together all configurations that
belong to a branch with maximum distance d. between configurations. The choice
of d. allows us to focus on the dominant structures that appear in the simulation. In
Figure 2.4.2 d. is shown with a dashed line and the resulting clusters of structures are
shown with different colors.

We still have to determine the phases that each cluster represents. A possible way
to do so is by choosing the minimum energy configuration within each cluster. This
configuration will be the one with the least number of defects and less affected by
the thermal motion of molecules. In some cases this approach is not appropriate, for
instance when structures are stabilized by large entropic effects. In these cases one can
choose the configuration that has an energy close to the average energy of the cluster.
We have chosen with this criteria the configurations that are used to determine the
nature of each cluster. Some of these configurations are shown in Figure 2.4.2.

We now describe the phases that were found. The tree diagram has two main branches.
The right branch contains liquid-like configurations (violet cluster in Figure 2.4.2)
and interesting partially ordered configurations (brown cluster in Figure 2.4.2) in
which the dipole moments are oriented in the same direction but do not exhibit long
range translational order. The left branch contains solid-like configurations and it can
be further subdivided into five relevant clusters. One of these clusters contains an
unstable structure and we shall disregard it (grey cluster in Figure 2.4.2). The other four
clusters correspond to form I, to a new polymorph that we shall name form B, to form
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IV and form A. To the best of our knowledge it is the first time that form B has been
reported. The other structures were expected based on previous studies [16, 100, 102].
All polymorphs are metastable at 450 K and they do not transform during a 1 ns
unbiased simulation. We include the configurations of all relevant structures in the SI.
We have also performed a similar analysis for naphthalene. The clustering identifies
the experimentally known form [, the liquid, and a new structure that we shall name
form A. The results can be found in the SI.

We have estimated the free energy difference between the polymorphs and the liquid
using:

AG =~ Llog <pi) (2.4.5)
B D

where p; and p; the probabilities to observe polymorph i and the liquid, respectively.
The states that we consider in these calculations are either purely solid or purely liquid.
In an unbiased MD simulation one could calculate the probabilities p; and p; directly
from the simulation. However, since we have introduced the WTMetaD potential that
alters the probability of observing a given configuration, the p;’s must be calculated
with the reweighting procedure described in ref. [109]. We have employed the clus-
tering described above to identify the phase of each configuration. The resulting free
energy differences are shown in Figure 2.4.3. The error bars in this figure are relatively
large since free energy differences calculated in this way are not easy to converge
and the simulation contains transitions between many different structures. Figure
2.4.3 shows also the enthalpy A H of the polymorphs with respect to the liquid phase.
Using AG and AH the entropy AS can be calculated from the definition of free energy
AG = AH — T AS. The results show that form I of urea is close to equilibrium with
the liquid at 450 K, in line with ref. [110] and [16] where the melting temperature was
found to be around 420 K. Similarly, form I of naphthalene is close to equilibrium with
the liquid at 300 K, as expected from the estimated melting temperature (330 K).

We shall now consider in detail the newly discovered polymorphs. We first discuss form
B of urea that has a P4;/mbc space group and is shown in Figure 2.4.4. This polymorph
is particularly interesting because it has a relatively high enthalpy, roughly ks T above
form I (see Figure 2.4.3). Based only on energy arguments one would conclude that
this structure cannot compete with form I. However, strong entropic effects stabilize it.
The entropies shown in Figure 2.4.3 indeed show a greater contribution to the stability
in form B than in form I. We suggest that an important factor that contributes to the
entropy is the fast rotation about the C-O axis. We have calculated the characteristic
rotation time using the time autocorrelation function of the N-N unit vector and
fitting an exponential function to it. We show the results in Figure 2 of the SI and we
compare them with those of form I. The characteristic time of rotation in form I is
~ 800 ps while in form B it is ~ 7 ps. We have also computed the probability p(6) as
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Figure 2.4.3: Enthalpy, entropy and free energy for selected polymorphs of urea at 450
K and naphthalene at 300 K. All quantities have the liquid as reference state.

a function of the rotation angle ¢ about the C-O axis. From p(¢) the free energy can
be calculated as G(0) = —kpT log p(#) sin . We show the results in Figure 2 of the SI.
Both in form I and B G(#) exhibits a barrier separating two molecular configurations in
which the N are exchanged. The barrier height is ~ 18 kJ/mol in form B while it is ~ 34
kJ/mol in form I. The entropy contribution from this rotation can be calculated from
kT [ p(0) logp(8) sin 6dh. The difference in entropy between form I and B accounts
for about 1.5 kJ/mol (0.4 kgT). As the temperature is lowered, the structure undergoes
a phase transition at around 200 K. Therefore, methods that search structures at zero
temperature would only find the low temperature form instead of the high temperature
one. The change in structure cannot be accounted for using harmonic corrections.

We now turn to discuss polymorph A of naphthalene. Form A has a layered structure
and its space group is Pnnm [112]. The structure is shown in Figure 2.4.4. During
an unbiased simulation at 300 K, form A decays to the liquid. This is consistent with
the calculated free energy (see Figure 2.4.3) that shows that form A has a free energy
around 3 kT higher than form I and the liquid. In spite of the relatively high free
energy, it is possible that this polymorph could be kinetically trapped.

We have presented a method to explore polymorphism in molecular crystals in finite
temperature molecular dynamics simulations. An important feature of our method is
that not only does it discover polymorphs but also pinpoints which are the relevant
ones at finite temperature. In fact, the new polymorph of urea, form B, could have
not been predicted from a zero temperature search with harmonic corrections. A key
ingredient of our approach is the structure similarity metric defined using ¢(r, #) and
the new distance in equation equation (2.4.3). This metric allows us to automatically
assign configurations to a given polymorph, thus reducing the burden of the analysis
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Urea form B

Figure 2.4.4: Crys-
tal structures of the
new forms of urea and
naphthalene. C, O,
N and H atoms are
shown in cyan, red,
blue and white, re-
spectively.  Images
obtained with VMD
[111].

of the simulations. We are also able to calculate free energies and entropies from the
simulation using a reweighting procedure [109]. In the future, we plan to generalize our
approach to crystals with more complex hydrogen bond networks and to molecules
with internal degrees of freedom.

Materials and methods

Urea and naphthalene were described using the generalized amber force field (GAFF)
[113]. For naphthalene, the electrostatic potential was calculated at the B3LYP/6-
31+G(d,p) level using Gaussian 09 [114] and the partial charges of the atoms were fitted
using the restrained electrostatic potential (RESP) method [115]. The partial charges of
urea were those provided with the Amber 03 database [116]. Biased MD simulations
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were performed using Gromacs 5.1.4 [117] patched with a development version of
PLUMED 2 [45]. Van der Waals interactions and the electrostatic interaction in real
space were calculated with cutoffs 0.9 nm and 0.75 nm for urea and naphthalene,
respectively. The electrostatic interaction in reciprocal space was calculated using
the particle mesh ewald (PME) method [118]. The atomic bonds involving hydrogen
were constrained using the LINCS algorithm [119] and the equations of motion were
integrated with a 2 fs timestep. The temperature was controlled using the stochastic
velocity rescaling thermostat [46] with a relaxation time of 0.1 ps. The target temper-
ature of the thermostat was 450 K and 300 K for urea and naphthalene, respectively.
We maintained the pressure at its atmospheric value employing the isotropic version
of the Parrinello-Rahman [47] barostat with a 10 ps relaxation time. We employed
systems of 108 and 36 molecules for urea and naphthalene, respectively.

It must be added here that we do not expect that the observed nucleation process is
realistic. In fact small size effects and periodic boundary conditions will artificially
promote crystallization. In the present context this is a desirable feature. If we were to
study the nucleation process much larger systems should be considered.

We now provide the parameters used for the WITMetaD simulations [50]. The Gaussians
had a width of 0.1 ki and 0.2 kp for urea and naphthalene, respectively. In all cases
the Gaussians had an initial height of 5 kzT and were deposited every 1 ps. The bias
factor was 200 for all simulations. The maximum free energy explored by WTMetaD
is roughly the bias factor in k5T In our case we use a relatively large bias factor that
ensures the exploration of high free energy regions.

We now discuss some practical aspects of the use of Sy as a CV. In order to calculate
the forces arising from the WTMetaD bias, Sy should be continuous and differentiable.
This can be achieved by constructing the function ¢(r, §) using Gaussian kernels of
width o, and oy, as done in previous work. Furthermore, the integration in equation
(2.4.2) cannot have an infinite upper limit, and in practice a finite cutoff r,, is taken.
The integration is performed numerically using the trapezoid rule with steps of size o,
and oy in the r and cos # dimension, respectively. We report in Table 2.4.1 the chosen
parameters. oy is reported in units of cosf. A subtlety in the calculation of Sy is the
periodicity of g(r, 0) in its § argument. For a general molecule ¢(r, #) is periodic in 0
with period 7. However, for a molecule that has a mirror symmetry with respect to the
plane perpendicular to the vector v defining the orientation of the molecule, g(r, 6)
has a period 7 /2. We report in Table 2.4.1 whether a given CV is defined based on a
direction of the molecule with mirror symmetry.
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rm (M) o, (nm) g’ mirror symmetry

urea
So, 0.6 0.05 0.25 no
S 0.6 0.05 0.125 es
o y Table 2.4.1: Parameters used
naphthalene in the definition of CVs Sj,
S, 0.7 0.05  0.125 yes and Sy, for urea and naph-
Sos, 0.7 0.05 0.125 yes thalene. See text for details.
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1 Conclusions

In this thesis [ have presented different methods to study crystallization using com-
puter simulations. The main method is based on employing approximate expressions
for the entropy as collective variables. In particular we make use of the so called two-
body excess entropy approximation [22, 23] that is based on the radial distribution
function g(r). I have shown that these collective variables can drive crystallization
both in simple metals [75] and in molecular crystals [120]. Moreover, since they are
crystal-structure agnostic, they can be used for the prediction of crystal structures. At
variance with traditional crystal structure prediction methods that work at 0 K, our
approach probes the stability of crystal structures at finite temperature thus automat-
ically including the effects of entropy. In order to illustrate this point, I have shown
an application of the method to the discovery of polymorphs in urea and naphtha-
lene [120]. The simulations are able to find the already known polymorphs, and also a
new interesting polymorph of urea that is stabilized by entropic effects. This finding
illustrates that the effects of temperature must be treated carefully when performing
crystal structure prediction.

I have also presented a novel fingerprint based on the two-body excess entropy [121]
that allows to characterize atomic environments. This fingerprint can distinguish well
between liquid-like and solid-like local environments, even if it does not contain any
information about the particular crystal structure under study. Recently it has also
been employed to characterize atomic environments in amorphous solids [122]. Fur-
thermore, when this entropic fingerprint is combined with an enthalpic counterpart,
they are able to distinguish between atomic environments compatible with different
polymorphs.

In this thesis [ have also introduced a generalized Kullback-Leibler divergence between
two radial distribution functions. This divergence is inspired by the interpretation of
the two-body excess entropy as a distance between the radial distribution function of
the system and that of the ideal gas. I have generalized the two-body excess entropy
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expression to a divergence that measures the distance between any two radial distri-
bution functions and employed it as a metric to compare atomistic configurations.
The metric is very sensitive to changes in the structure and I have applied it to the
unsupervised classification of the polymorphs that appear during a simulation [120].

Finally, I have presented a variational formalism to construct a bias potential based on
the free energy expression of classical nucleation theory [123]. In this method, efficient
sampling of the free energy surface is achieved simultaneously with the determination
of the parameters of classical nucleation theory, namely the supersaturation and the
surface free energy.
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In this chapter I discuss ideas for the future development of the methods described in
this thesis and I also propose new applications.

4.1 Two-body excess entropy collective variable

Using approximate expressions for the entropy in order to construct collective vari-
ables is a relatively general idea. However, in order to construct good approximations
one must include information about the physics and chemistry of the system being
studied. Consider the case of small organic molecules that were tackled using Eq.
(2.4.2). This equation encodes one of the main characteristics of these systems, namely
that correlations in the orientations between molecules are key to describe molecular
crystals. Therefore the application to other type of systems will also require to include
relevant physical information. In this section I discuss the cases of ionic crystals and
molecules with conformational flexibility. I analyze the characteristics of each type of
system and I propose possible collective variables.

4.1.1 Ionic crystals

A large number of materials fall in the category of ionic crystals, from traditional
ceramics to state-of-the-art materials for electronic applications. Here I shall focus
only on binary AB compounds. The most frequent crystal structures in this class
are that of NaCl and CsCl [124]. In order to construct a collective variable for these
systems we first note that in this case correlations between different pairs of species
will be relevant. These correlations can be described through the radial distribution
functions g44(7), ggp(r), and g4 (r) that involve AA, BB, and AB pairs, respectively. An
entropy expansion in terms of multibody correlation functions for a multicomponent
system has been discussed in refs. [80,81]. In particular for a binary AB compound the
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Figure 4.1.1: Left: Representation of the {100} plane of a rocksalt structure. Atoms have
been labeled as A and B to match the discussion in the text. Right: Radial distribution
function of NaCl rocksalt structure at 600 K. g44(r), gsp(r), and gap(r) are shown in
the top, middle, and bottom plot respectively.

two-body term is:

52 = —27rp‘24

kg(Na + Ng) s [gaa(r)Ingaa(r) — gaa(r) + 1] r? dr

0
_47TpAppB / [gaB(r)Ingap(r) — gap(r) + 1] r2 dr
0
/ l95B(r) Ingpp(r) — gpp(r) + 1] r* dr (4.1.1)
0

where p4 and pp are the number densities of species A and B, respectively, and p is the
global density. One could employ this expression as a collective variable in order to
explore polymorphism.

Figure 4.1.1 shows a representation of the rocksalt structure for species A and B (left),
and an example of the radial distribution function for NaCl (right). Although NaCl at
ambient conditions is the paradigmatic example of the rocksalt structure, it also has a
high pressure polymorph with the structure of CsCl [125]. It is therefore an interesting
candidate to test a collective variable based on Eq. (4.1.1). Another possible candidate
is ZnO that can crystallize both in the zinc blende and in the rocksalt structure [126].
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A B

Figure 4.1.2: Main conformational isomers or conformers of aspirin.

4.1.2 Molecular crystals with conformational flexibility

Most molecules employed as active pharmaceutical ingredients exhibit conformational
isomerism. It is often the case that the barriers for the interconversion of different
conformers are high enough to hinder good sampling. In the case of crystallization
from solution or the melt, the formation of the crystal requires that each lattice position
is occupied by the right conformer. This requirement increases the complexity of crys-
tallizing these molecules compared to molecules without conformational flexibility.

Consider the case of aspirin that has two main conformers that I shall name A and
B. The two conformers differ in the rotation of the ester functional group. Other con-
formers exist [127], although the probability of finding them is relatively low compared
with that of A and B. The most common polymorph of aspirin, form I, hosts both
conformers A and B simultaneously in its crystal structure. The conformers are shown
in Figure 4.1.2.

If the conformers A and B are regarded as two different components, then the two
body entropy for a binary mixture discussed in the previous section can be employed.
However, the inclusion of the correlations in the orientations between molecules is still
crucial to describe the system. Thus, combining Eq. (4.1.1) with the extended radial
distribution function g(r, §) in Eq. (2.4.2) we obtain,

So

2 oo T
_ PA// -
kn(Nat Na)  © r,0)In r,0) — r,0) + 1] r%sin6 dr do
kp(Na+ Np) P [944(7,0) Ingaa(r,0) = gaa(r,0) +1]

80

— pAp //gAB'rHIDgAB(r 0) — gAB(r,9)+1]r2sin0drd9

3

B
p

/ gpB(r,0)Ingpp(r,0) — gpp(r,0) + 1] r2sin6 dr df.
0

(4.1.2)
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This expression encodes information both on the relative distance and orientation
between molecules and on the spatial distribution of conformers. Although aspirin
has been used and studied for over a century, it has recently been shown to exhibit
polymorphism [128]. Therefore, it would be interesting to study whether Eq. (4.1.2)
can be used as a collective variable to study polymorphism in aspirin.

4.2 Generalized Kullback-Leibler divergence

The generalized Kullback-Leibler divergence described in Eq. (2.4.3) is an important
outcome of this thesis. The divergence can be used in all scenarios in which a distance
between radial distribution functions is required. Here, I propose one application that
could profit from this divergence.

Consider the crystallization of a one component system. We assume that the only
phases that exist in some thermodynamic condition are the liquid and the solid, and
we characterize each of them by their radial distribution functions ¢;(r) and g4(r),
respectively. We can construct two divergences D(g||g;) and D(g||gs) that measure the
distance between the current g(r) of the system and a target g(r), i.e. g;(r) for the liquid
and g;(r) for the solid. These divergences are:

oo

= ng(T) —q(r | r? dr
Do) = [ oty 2% o) + )| 1,

D(gllgs) = / {g(r) In gg(r) —g(r)+ gs(r)} r? dr. (4.2.3)

We consider the case of elemental sodium and analyze a biased simulation in which
the liquid and solid phases are visited reversibly (see ref. [75]). In Figure 4.2.3a) we plot
D(g||gi) vs D(g||gs) for this trajectory. The biased probability of finding the system in
a given point is shown with contour lines. Some points of the trajectory are shown
and colored with the common neighbor analysis [65, 66] technique that quantifies the
fraction of bcc atoms. We note that the line D(g||g;) = D(gl|gs) divides the space in two
important regions. The region D(g||g;) < D(gl||gs) corresponds to the configurations
that are closer to the liquid than to the solid, and for the region D(g||g;) > D(gl|gs) the
opposite is true.

It is clear that this result can be used for classification purposes but it can also be
employed to define new collective variables. A very simple collective variable is:

s = D(gllg;) — D(gllgs)- (4.2.4)
This collective variable has the property that for positive s the system is closer to
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Figure 4.2.3: Analysis of a biased trajectory using the divergences defined in equation
(4.2.3). a) Scatter plot and contour lines of the joint probability density of D(g¢||¢;) and
D(gl|gs). The regions closer to the solid than to the liquid are separated with a thick
black line. Lines of constant s are shown in thin grey lines. The points in the scatter
plot are colored according to the fraction of bcc atoms as obtained from common
neighbor analysis [65, 66]. Note that the solid is not fully bcc due to the thermal noise.
b) Collective variable s vs time for the biased trajectory.

the solid than to the liquid, and for negative s the system is closer to the liquid than
to the solid. In Figure 4.2.3b) s is plotted against time for the biased trajectory of
sodium. It is clear that s is able to distinguish very well between the liquid and solid
states. A remarkable characteristic of this collective variable is that all the information
contained in the g(r) is leveraged in an elegant way to distinguish between the liquid
and the solid.

The preliminary results presented here are very encouraging and I envisage that these
ideas could be used to distinguish multiple polymorphs and the liquid.
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