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Résumé
La distribution des diamètres axonaux (DDA) est une caractéristique importante de la sub-

stance blanche : elle influence la vitesse des potentiels d’action, évolue pendant le développe-

ment et est affectée lors d’évènements pathologiques. L’imagerie de diffusion par résonance

magnétique est un outil puissant, non invasif, et sensible au déplacement des molécules d’eau.

Les diamètres axonaux étant bien en dessous de la résolution de l’image, la DDA est estimée

indirectement en ajustant un modèle biophysique au signal mesuré. L’imagerie microstruc-

turelle ce base sur ce principe et utilise des modèles compartimentaux, séparant l’espace

intra-axonal et extra-axonal. La reconstruction de la DDA demeure un problème difficile en

pratique, notamment à cause de la dégénérescence du problème (des solutions différentes

peuvent avoir des signaux similaires), le diamètre minimum visible par le scanner, ainsi que la

difficulté de modéliser le signal extra-axonal de manière adéquate.

Dans cette thèse, nous avons abordé le problème en nous concentrant séparément sur le

compartiment intra-axonal et extra-axonal. La précision des différents modèles a été évaluée

en comparant les estimations avec la valeur réelle fournie par des simulations de Monte Carlo.

La dégénerescence a été abordée en utilisant une régularisation de Laplace, qui a fournit des

estimations plus précises de la DDA à partir du signal intra-axonal. La sensibilité aux petits

diamètres a été améliorée par l’utilisation d’un protocole de diffusion conçu pour maximiser

la sensibilité à un ensemble de diamètres, ayant permis de reconstruire des distributions

unimodales et bimodales, sensibles aux changements spécifiques à une des populations.

En ce qui concerne l’espace extra-axonal, nous avons montré que l’utilisation d’un mélange

de tenseurs d’ordre supérieur améliore la reconstruction du signal par rapport aux modèles

standards. Le modèle proposé est suffisamment flexible pour s’adapter à la variété de signaux

simulés, surpassant les modèles actuels.

L’estimation de la DDA a partir de signaux contenant les deux compartiments a été légèrement

améliorée. La similitude entre les signaux intra-axonaux et extra-axonaux pourrait cependant

être le principal facteur limitant lors de l’utilisation de séquences de type PGSE.

Mots-clefs : IRM de diffusion, distribution de diamètres axonaux, problèmes inverses, imagerie

de microstructure, Monte Carlo.
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Abstract
The distribution of axon diameters (ADD) is an important white matter feature: it influences

action potential speed, it has been shown to evolve during development, and also to be af-

fected during pathological processes. Diffusion Magnetic Resonance Imaging is a powerful

non-invasive tool that is sensitive to the displacement of water molecules. In theory, as axon

diameters are well bellow the imaging resolution, the ADD can be estimated indirectly by

fitting a biophysical model to the measured signal. Such an approach is the basis of microstruc-

ture imaging. Microstructure imaging usually relies on compartment models, splitting the

signal into the intra-axonal or the extra-axonal compartments. However, in practice, ADD

reconstruction remains a challenging problem, mainly due to model degeneracy (different

solutions can have similar signals), the diameter lower bound which dictates the smallest

diameter visible by the scanner, and the difficulty in modeling properly the extra-axonal signal.

In this thesis, we addressed the challenges at stake by focusing on the intra-axonal and extra-

axonal compartments separately. Model performance was evaluated by comparing estimates

with the ground-truth provided by Monte Carlo simulations.

Model degeneracy was addressed by introducing Laplacian regularization, which was shown

to provide better ADD estimates when considering the intra-axonal signal only. Sensitivity

to small diameters was improved by using a richer diffusion protocol designed to maximize

sensitivity to a set of diameters, which was shown to provide reconstruction of unimodal and

bimodal distributions, with sensitivity to population specific changes.

Regarding the extra-axonal space, using a mixture of higher order tensors improved recon-

struction of the signal compared to standard models. The proposed model is flexible enough

to adapt to a variety of simulated signals, outperforming current models of hindered diffusion.

Combining the results for both compartments slightly improved estimates for some of the

simulated signals. We highlighted the similarity between the intra-axonal and extra-axonal

signals, which might be the main limiting factor when using single Pulsed Gradient Spin Echo

sequences.

Keywords: diffusion MRI; axon diameter distribution; inverse problems; microstructure imag-

ing; Monte Carlo.
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1 Introduction

This thesis focuses on the reconstruction of axon diameter distributions through diffusion

Magnetic Resonance Imaging (dMRI). The work was conducted under supervision of Professor

Thiran (École Polytechnique Fédérale de Lausanne (EPFL), Switzerland) and Professor Dyrby

(Danish Research Center for Magneric Resonance (DRCMR) and Danish Technical University

(DTU), Denmark), from November 2014 to November 2018.

The Axon Diameter Distribution (ADD) is an important feature of White Matter (WM) fascicles,

and is of interest in neuroscience and neurology. By exploiting the protons’ response to varying

magnetic fields, MRI scanners can be used to probe microstructural properties of the brain

tissue non-invasively. ADD estimation is nevertheless a challenging problem. To recover the

ADD (which is several order of magnitude smaller than the imaging resolution), a compartment

model is fit to the signal. It appears that the problem is very ill-posed (different solutions

can have similar signals). MRI hardware and diffusion protocols also control the diameter

lower bound, which is the smallest diameter visible by the scanner. This lower bound can in

some cases mask most of the diameters present in white matter fascicles. Currently, there’s

also a difficulty in modeling properly the extra-axonal (EA) signal, with residuals affecting the

estimates of intra-axonal (IA) parameters.

To understand and push the limits of ADD reconstruction, we studied the IA and EA compart-

ments using simulated data. Our simulations have the strong hypothesis that WM consists of

impermeable and parallel cylinders, with a mean diameter varying between 0.6 and 3.2μm.

Such assumptions might deviate from real WM tissue, but the aim was to show that despite

such a simplified picture of the WM, ADD estimation remained a challenging problem.

Content of the thesis

The content of the chapters presented in this thesis are the following:

1. Chapter 2: Summary of the state of the art and theory regarding WM tissue, microstruc-

1



Chapter 1. Introduction

ture imaging models and validation/evaluation methods.

2. Chapter 3: Effect of voxel size on the EA dMRI signals generated using Monte Carlo

simulations. Voxel size should be considered to avoid bias when evaluating performance

of the ADD reconstruction methods presented in the remaining chapters.

3. Chapter 4: Improved model for the IA compartment. The ActiveAxAMICO model (de-

signed for mean diameter mapping) is extended to ADD mapping. ADD estimation

is shown to be reliable when considering only the IA signal. Addition of the EA signal

results in lower reconstruction accuracy when using a standard model for the EA signal.

4. Chapter 5: Reconstruction of unimodal and bimodal ADDs using a protocol designed to

maximize sensitivity to a set of diameters. Lower reconstruction accuracy was achieved

for unimodal distributions when the EA compartment was added.

5. Chapter 6: Improved model for the EA compartment. We show that a mixture of higher

order tensors better describes the EA signal compared to other models.

6. Chapter 7: Joint model. The last chapter presents preliminary work on a joint model

for both compartments, as well as perspectives and future work in order to apply the

proposed methods to real tissue samples.

Relevant publications

The contributions presented in this thesis have been (or will be) shared publicly as follows

(corresponding chapters are in parenthesis):

1. David Romascano, Jonathan Rafael-Patino, Ileana Jelescu, Muhamed Barakovic, Tim B.

Dyrby, Jean-Philippe Thiran and Alessandro Daducci, "Voxel size matters: big voxels are

required to generate realistic extra-axonal dMRI signals from Monte Carlo simulations",

26th annual meeting of the International Society for Magnetic Resonance in Medicine

(ISMRM), Paris, France, June 16-21, 2018 (Chapter 3).

2. Jonathan Rafael-Patino, David Romascano, Alonso Ramirez-Manzanares, Gabriel Gi-

rard, Erick Jorge Canales-Rodríguez, Alessandro Daducci, Jean-Philippe Thiran, "To-

wards Realistic and Robust Monte Carlo Simulations for Diffusion MRI", to be resubmit-

ted to NeuroImage (Chapter 3).

3. David Romascano, Muhamed Barakovic, Anna Auría, Tim B. Dyrby, Jean-Philippe

Thiran and Alessandro Daducci, "Is it Feasible to Estimate Rotation-Invariant Non-

Parametric Axon Diameter Distributions from PGSE? Preliminary Insights from Regular-

ized Discrete Linear Modeling and Simulated Intra-Axonal Signals", ISMRM Workshop

on breaking the barriers of Diffusion MRI, Lisbon, Portugal, September 11-16, 2016

(Chapter 4).
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Other publications

4. David Romascano, Muhamed Barakovic, Anna Auría, Tim B. Dyrby, Jean-Philippe Thi-

ran and Alessandro Daducci, "Orientation invariant and non-parametric Axon Diameter

Distribution mapping using PGSE and regularized discrete linear modeling", 25th an-

nual meeting of the International Society for Magnetic Resonance in Medicine (ISMRM),

Honolulu, USA, April 22-27, 2017 (Chapter 4).

5. David Romascano, Muhamed Barakovic, Jonathan Rafael-Patino, Tim B. Dyrby, Jean-

Philippe Thiran, Alessandro Daducci, "ActiveAxADD : towards non-parametric and ori-

entationally invariant axon diameter distribution mapping using PGSE", submitted to

MRM on the 17th of September 2018 (Chapter 4).

6. David Romascano, Erick J. Canales-Rodriguez, Jonathan Rafael-Patino, Marco Pizzolato,

Gaëtan Rensonnet, Muhamed Barakovic, Gabriel Girard, Alessandro Daducci, Tim B.

Dyrby and Jean-Philippe Thiran, "HOTmix: Characterizing hindered compartments in

diffusion MRI using a mixture of higher order tensors", in preparation (Chapter 6).

Other publications

During my PhD, I also contributed to other publications whose content is not addressed in

the thesis:

Journal papers

• Kurt G. Schilling et al. "Limits to anatomical accuracy of diffusion tractography using

modern approaches", NeuroImage, 2018, doi:10.1101/392571

• Erick J. Canales-Rodríguez, Jon Haitz Legarreta, MarcoPizzolato, Gaëtan Rensonnet,

Gabriel Girard, Jonathan Rafael-Patino, Muhamed Barakovic, David Romascano, Yasser

Alemán-Gómez, Joaquim Radua, Edith Pomarol-Clotet, Raymond Salvador, Jean-Philippe

Thiran, and Alessandro Daducci, "Sparse wars: A survey and comparative study of spher-

ical deconvolution algorithms for diffusion MRI", NeuroImage, 2018

• Aline M. Studerus-Germann, Oliver P. Gautschi, Pietro Bontempi, Jean-Philippe Thiran,

Alessandro Daducci, David Romascano, Dieter von Ow, Gerhard Hildebrandt, Alexan-
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2 Theory and State-of-the-art

2.1 White matter

The brain is the most complex organ in the human body. It is composed of two main tissues:

the grey matter (GM) which contains neuron’s cell bodies and their billions of synapses, and

the white matter (WM) which contains the neuron’s axons that relay the signals between the

different GM regions (Figure 2.1).

Figure 2.1 – Schematic of the brain’s organization. Different GM regions are labeled in color.
Some fascicles are illustrated with blue lines, going through the WM.
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Neurons in the central nervous system take input signals from other neurons through their

dendrites (Figure 2.2). Multiple excitatory or inhibitory inputs are transmitted to the body (or

soma) where they are combined to eventually trigger an action potential at the base of the

axon. The axonal membrane depolarizes, opening ion channels further away along the axon,

propagating the action potential until the axon terminal. Signal transmission along axons is

influenced by several microstructural properties like the internal axon diameter [92, 98] or

the membrane permeability. Some neurons are myelinated by oligodendrocytes, accelerating

signal transmission depending on myelin thickness and distance between Ranvier nodes. The

integrity of WM microstructural properties therefore ensures the proper performance of the

brain.

Figure 2.2 – Axon structure. Modified from Quasar Jarosz’s illustration for Wikipedia
(https://en.wikipedia.org/wiki/Neuron). CC BY-SA 3.0

It appears that WM fascicles are composed by axons with different diameters (Figure 2.3) [59, 1].

A broad spectrum of neurological disorders is linked to alterations of the WM tissue microstruc-

ture, disrupting or altering communication between brain regions and leading to various

neurological and/or motor symptoms. In particular, the Axon Diameter Distribution (ADD)

has been shown to change during normal development [23], but also during pathological

events involving axonal degeneration and/or injury, like multiple sclerosis [94, 65, 34, 28],

amyotrophic lateral sclerosis [21, 61], alzheimer [9], traumatic brain injury [29], or stroke [17].

Changes in the ADD have also been reported in psychiatric diseases like autism [78, 48],

dyslexia [71], and schizophrenia [82, 84].

Characterizing WM tissue microstructure can thus help researchers and medical doctors to

better understand and diagnose such diseases, as well as monitoring and adapting therapy to

improve patient outcome.
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Figure 2.3 – EM section of axons showing the distribution of axon diameters. Image kindly
provided by Professor Innocenti.

2.2 Diffusion weighted imaging (DWI)

Diffusion weighted Imaging (DWI) or dMRI provides a unique way to probe WM organization

non-invasively. Indeed, the dMRI contrast is sensitive to water diffusion due to thermal motion

(i.e. Brownian motion), and can be measured along a given direction using an MRI scanner.

This is achieved using the well known Pulsed Gradient Spin Echo (PGSE) sequence [89], whose

diagram is shown in Figure 2.4 The radio frequency (RF) pulses have the same effect as for a

Figure 2.4 – PGSE protocol showing the gradient amplitude G, duration δ and separation Δ.
Modified from [54]

.

standard spin echo sequence, where the measured signal S0 corresponds to

S0 = M0(1−e
−TR
T1 )e

−TE
T2 . (2.1)

M0 is the initial magnetization or proton density, T1 and T2 are the longitudinal and transverse

relaxation times, and TR and TE are the repetition time and echo time, respectively.
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The PGSE sequence includes two diffusion gradients of amplitude G, durationδ and separation

Δ, applied in a direction g . The first gradient adds a phase to the spins. If the spins do not

move during the time Δ, the additional phases get cancelled by the second gradient, and the

measured signal is the same as obtained with a standard spin echo sequence. If the spins do

move along the direction of the diffusion gradient, then the measured signal S has a decreased

amplitude compared to the spin-echo signal S0. The decrease in amplitude depends on how

far spins move on average and on the gradient’s amplitude, duration and separation.

Water molecules are always moving randomly (i.e. diffusing) due to thermal energy. In the case

of free diffusion, Einstein [33] showed that the averaged squared displacement of an ensemble

of spins between two time points can be described using the following equation:

< d 2 >= 6Dt , (2.2)

where d is the displacement of a spin during time t , and D is the sample’s diffusivity. In stan-

dard units, diffusivity is expressed in m2/s. In the case of free diffusion, and by summarizing

the sequence parameters into the so-called b-value b = (γGδ)2(Δ−δ/3) [89], the measured

signal can be expressed as:

S

S0
= e−bD . (2.3)

The apparent diffusion coefficient (ADC) along a given direction can thus be estimated by

applying the diffusion gradients in said direction, and solving for ADC = −log (S/S0)
b . For free

diffusion, the ADC is the same in any direction, and the ADC profile is said to be isotropic.

2.3 Microstructure imaging

Cell membranes hinder and restrict the motion of water molecules located between and within

cells. Deviation from free diffusion therefore provides information on the local microenviron-

ment sampled by water molecules during the diffusion time. The ADC per se was shown to

be useful for the early detection of ischemic stroke [67]. The ADC decreases immediately in

regions affected by an ischemic stroke. The explanation for the decrease in MD is thought to

be mainly linked to cell swelling, and might be related to lower intracellular diffusion, but also

to alteration of diffusion properties in the extra-cellular space [16, 19, 26, 43, 44, 95]. The main

contribution of DWI has been the early diagnostic of ischemic stroke, which accelerates the

initiation of necessary health-care procedures that are required for a better prognosis for the

patient [39].

Microstructure imaging aims at extracting useful information about the tissue microstructure

using the dMRI signal [3]. Not any information can be extracted though, as the dMRI sensitivity

to specific microstructural features depends on the parameters of the PGSE sequence (namely

gradient amplitude G, durationδ and separationΔ) and the models used for the reconstruction.
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Models can be separated into two categories: signal models and compartment models.

2.3.1 Signal models

Five different signal models are presented hereafter: the Diffusion Tensor model (DT) [11] that

represents the signal assuming gaussian diffusion, and the Higher Order Tensor (HOT) [64] and

Diffusion Kurtosis (DK) [52] models which are used to characterize non-gaussian diffusion.

Diffusion Tensor

WM being composed of axons, spins trajectories are interfered preferentially along the per-

pendicular direction. The ADC profile is said to be anisotropic, with spins moving a longer

distance along the axons, and less in the direction perpendicular to them. A set of dMRI signals

can be acquired with the same b-value over different directions, forming what is referred to as

a "shell". The b-value can also be expressed as a 2nd-order tensor (i.e. a 3×3 matrix) b(2):

b(2) =

⎡
⎢⎣

b(2)
11 b(2)

12 b(2)
13

b(2)
21 b(2)

22 b(2)
23

b(2)
31 b(2)

32 b(2)
33

⎤
⎥⎦ (2.4)

where b(2)
i1i2

= (γδ)2gi1 gi2 (Δ−δ/3). Here, the subscripts represent the dimensions of the frame

of reference (i.e. 1, 2 and 3 represent the 1st, 2nd and 3rd component of a 3D vector), such that

a diffusion gradient has a magnitude G that depends on the gradient components g1, g2 and g3

according to G = ∥∥[g1, g2, g3]T
∥∥

2 for a PGSE protocol. As b(2)
i1i2

= b(2)
i2i1

, b(2) can be summarized

to a 6-element vector for each PGSE sample. Concatenating the b(2) for all measurements in a

diffusion protocol is referred to as the b-matrix [57].

Assuming Gaussian diffusion and the presence of a single main fiber orientation allows express-

ing the dMRI signal as a second order DT [11]. In Diffusion Tensor Imaging (DTI), the signal is

approximated by a 2nd order tensor in 3 dimensions, given by the following expression:

log (
S

S0
) =−b(2)

i1i2
D (2)

i1i2
, (2.5)

following Einstein’s summation rule and using the b-matrix elements bi1i2 . By exploiting the

symmetries of the tensor (e.g. D (2)
12 = D (2)

21 and b(2)
12 = b(2)

21 ), the summation simplifies to

log (
S

S0
) =−b(2)

11 D (2)
11 −2b(2)

12 D (2)
12 −2b(2)

13 D (2)
13 −b(2)

22 D (2)
22 −2b(2)

23 D (2)
23 −b(2)

33 D (2)
33 . (2.6)

The 6 variables D (2)
i1i2

can therefore be solved by acquiring N ≥ 6 dMRI samples in 6 or more

non collinear directions. If Y ∈RN×1 is the log-transformed normalized signal, B ∈RN×6 is the

b-matrix, and D is the linearized 6-elements of D (2), then the signal is equal to Y = BD and D
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can be reconstructed by solving the equation using ordinary least-squares:

D = (B T B)−1B T Y . (2.7)

The reconstructed tensor D (2) can be used to extract properties which characterize the underly-

ing tissue. For example, it’s first eigenvector can be thought to provide the main orientation of

the axons in the voxel; it’s first eigenvalue to provide the ADC along the axons; the mean of the

second and third eigenvalues to provide the ADC perpendicular to the axons; it’s normalized

trace (mean of all eigenvalues) to provide the bulk ADC, discarding orientation information;

the Fractional Anisotropy (FA) [12] combines the bulk ADC <λ> with the eigenvalues λi into

the following expression

FA =
√

3

2

√∑
i=1(λi−<λ>)2√∑

i=1λi

, (2.8)

to provide the degree of anisotropy, ranging from 0 (completely isotropic) to 1 (completely

anisotropic).

The main pitfall of DTI is that is assumes that the diffusion process in the brain is gaussian.

Diffusion in the brain is never gaussian, but it can be approximated as such for low b-values.

Higher Order Tensors

At higher b-values, non-gaussianity cannot be ignored. To cope with non-gaussian diffusion,

higher order tensors can be used, as proposed by Liu [64]. The complex dMRI signal is

expressed as a truncated series of Higher Order Tensors (HOT):

l n(
S

S0
) =−b(2)

i1i2
D (2)

i1i2
+b(4)

i1i2i3i4
D (4)

i1i2i3i4
− ...+ (−1)nb(2n)

i1i2...i2n
D (2n)

i1i2...i2n

+ j (−b(3)
i1i2i3

D (3)
i1i2i3

+b(5)
i1i2i3i4i5

D (5)
i1i2i3i4i5

− ...+ (−1)nb(2n+1)
i1i2...i2n+1

D (2n+1)
i1i2...i2n+1

),
(2.9)

where j =�−1 ∈ C. Exploiting the symmetries of the tensors, and expressing the previous

equation as a linear system, the signal’s real component can be expressed as Yr = Br Xr , where:

Yr = [real(ln(S1/S0)), real(ln(S2/S0)), ..., real(ln(Sm/S0))]T (2.10)

Xr = [D (2)
11 ,D (2)

12 , ...,D (2)
33 ,D (4)

1111,D (4)
1112, ...,D (4)

3333, ...]T (2.11)

Br =

⎡
⎢⎢⎢⎢⎣

−b(2),1
11 −2b(2),1

12 ... −b(2),1
33 b(4),1

1111 4b(4),1
1112 ... b(4),1

3333 ...

−b(2),2
11 −2b(2),2

12 ... −b(2),2
33 b(4),2

1111 4b(4),2
1112 ... b(4),2

3333 ...

... ... ... ... ... ... ... ... ...

−b(2),m
11 −2b(2),m

12 ... −b(2),m
33 b(4),m

1111 4b(4),m
1112 ... b(4),m

3333 ...

⎤
⎥⎥⎥⎥⎦ , (2.12)

where m samples of the signal S have been acquired using different gradient directions and
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strengths. Here, the b-matrix elements are given by:

b(n)
i1i2...in

= (γδ)n gi1 gi2 ...gin (Δ− n −1

n +1
δ). (2.13)

Using a similar expression for the imaginary part of the signal, Liu et al. [64] showed that the

signals from various closed pores could be reconstructed, along with their spins’ Probability

Density Function (PDF). The pore shapes included an isotropic sphere, a single tube, a crossing

of tubes and a Y-shaped tube.

Diffusion Kurtosis

Non-gaussian diffusion can also be characterized by measuring the kurtosis tensor (KT) [52].

In Diffusion Kurtosis Imaging (DKI), the dMRI signal is expressed as:

ln(
S

S0
) =−bDapp + 1

6
b2D2

appKapp +O (b3), (2.14)

where b is here the 2nd-order b-value b = b(2) = (γGδ)2(Δ−δ/3). Similarly to the DT and HOT,

kurtosis can be anisotropic and its 3D profile estimated by recontructing the kurtosis tensor

Wi1i2i3i4 :

ln(
S

S0
) =−b(2)

i1i2
D (2)

i1i2
+ 1

6
(b(2)

i1i2
)2(

1

3
tr(D (2)

i1i2
))Wi1i2i3i4 . (2.15)

2.3.2 Statistical models

Statistical models assume that the perpendicular signal arises from a distribution of diffu-

sivities, motivated by the assumption that different spin "packets" will sense different local

micro-environments during the diffusion experiment. In general, the diffusion signal is

assumed to be given by the following equation:

S⊥
S0

=
∫

P (D (2)
⊥ )e−b(2)D (2)

⊥ dD (2)
⊥ , (2.16)

where b(2) and D (2)
⊥ are the 2nd-order b-value and perpendicular diffusivity, and P (D (2)

⊥ ) is

the distribution of perpendicular diffusivities in the voxel of interest. Yablonskiy et al. [100]

proposed to model the distribution as a gaussian distribution, deriving a general expression for

a truncated gaussian in case of high variance with respect to the mean, as well as a simplified

expression in the case of a narrow distribution. Scherrer et al. [86] extended the expression to

a distribution of diffusion tensors:

S

S0
=

∫
D (2)∈Sym+(3)

P (D (2))e−b(2)D (2)
dD (2), (2.17)

where D (2) ∈ Sym+(3) are symmetric positive-definite 2nd-order tensors. The authors further

derive the expression for a distribution consisting of a mixture of populations, each following a
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matrix-variate Gamma distribution [86]. The model was shown to efficiently capture mixtures

of restricted, hindered and isotropic diffusion, providing information on the heterogeneity of

diffusion coefficients present in each population. The model was coined DIAMOND, standing

for DIstribution of 3D Anisotropic MicrOstructural eNvironments in Diffusion-compartment

imaging.

In overall, the signal and statistical models presented earlier do not provide metrics that are

specific enough on their own, as many tissue features can influence them similarly (e.g. fiber

crossings, exchange, dispersion, axonal loss, demyelination, etc...). Higher specificity can be

achieved by using compartment models. Specific microstructure properties include features

like the mean axon diameter [4], or axon diameter distributions [6, 15], as well as intra-axonal

and extra-axonal volume fractions or neurite dispersion [102].

2.3.3 Compartment models

WM is usually considered to be made of infinite impermeable cylinders [3]. Under such

assumption, the WM dMRI signal can thus be decomposed into two compartments. On

one hand, the Intra Axonal (IA) compartment represents the signal from water molecules

trapped inside the axons and whose trajectory is restricted by axonal membranes. On the

other hand, the Extra Axonal (EA) compartment represents the signal from water molecules

that are moving in the space between axons, and whose trajectory is hindered by the axonal

membranes.

The WM tissue signal y is therefore expressed as a mixture of compartments, using the follow-

ing equation:

y =∑
fi yi s.t.

∑
fi = 1, (2.18)

where fi are the compartment volume fractions and yi are the normalized compartment

signals. Compartment models usually include a free-water component signal yfree , featuring

isotropic diffusion and therefore modeled as a perfect sphere, a restricted signal yr and a

hindered signal yh whose formulations depend on the tissue model. Different compartment

models are presented hereafter.

CHARMED

The Composite Hindered And Restricted Model of Diffusion (CHARMED) was proposed by

Assaf et al. [7] in 2004. The model consists of a mixture of M hindered and N restricted

compartments:

E(q,Δ) =
M∑

i=1
f i

h E i
h(q,Δ)+

N∑
j=1

f j
r E j

r (q,Δ) (2.19)

where f i
h and f j

r are the signal volume fractions of the hindered and restricted compartments;
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E i
h(q,Δ) is the signal of the hindered compartment, given by an axi-symmetric DT; and E j

r (q,Δ)

is the signal of the restricted compartment, given by the signal of a cylinder with radius R

(fixed to typical values in the spinal cord) as derived by Neuman [68]. The q-value is given

by q = 1
2πγδg , with γ the gyromagnetic ratio and g the gradient amplitude. Having several

restricted compartments allows the model to handle fiber crossings, as shown experimentally

by the authors [7, 5]. The model uses a fixed expression for the diameter of the cylinder(s).

AxCaliber

The AxCaliber model aims at estimating the distribution of axon diameters, and was proposed

by Assaf et al. in 2008 [6]. It simplifies the WM structure to a single population, and therefore

expresses the diffusion signal as one restricted and one hindered compartment:

E(q,Δ) = fhEh(q,Δ)+ fr Er (q,Δ). (2.20)

The hindered compartment remains modeled by an axi-symmetric DT, as for the CHARMED

model. The restricted compartment on the other hand is now modeled a set of parallel

cylinders with radii sampled from a gamma distribution. The parameters of the model are

the two parameters of the gamma distribution (α and β), the perpendicular diffusivity in the

hindered compartment, and the compartment volume fractions, which are obtained through

a non-linear least-squares (LS) routine using Levenberg–Marquardt minimization. AxCaliber

analysis was initially based on NMR diffusion data with fixed gradient duration δ = 2.5 ms, 5

different diffusion times Δ = [10,15,20,30,40,50,60, and 80] ms and 16 gradient strengths per

diffusion time (Gmax = 1200 mT/m) [6]. In vivo measurements were subsequently performed

with a protocol using a fixed gradient duration of δ = 3.2 ms, 5 diffusion times Δ = [11,20,30,60,

and 100] ms and 16 gradient strenghts varying between 0 and 282mT/m [10]. The AxCaliber

model assumes diffusion gradients to be applied perpendicularly to the axons’ main axis,

which limits the method to samples with known orientation prior to scanning.

ActiveAx

The ActiveAx framework proposed by Alexander et al. in 2010 [4] includes a tissue model and

an optimization framework to design ad-hoc PGSE protocols for mean diameter estimation [2].

The optimization framework can be adapted to provide protocols for either in vivo or ex

vivo dMRI data [2]. The WM tissue model is coined the minimal model for white matter

diffusion (MMWMD), as it describes the restricted signal as a perfectly parallel cylinder of

radius a′ and the hindered compartment as an axi-symmetric tensor. As dMRI is sensitive to

the volume of spins sampling a given microstructural environment, the radius a′ is coined

the mean volume weighted diameter, or diameter index [4]. It is related to the distribution

of radii by a′ =∑
r 3

i /
∑

r 2
i [4], although more recent work relate then by a′2 ≈< r 4 > / < r 2 >

for PGSE protocols with short gradient duration and a′4 ≈< r 6 > / < r 2 > for long gradient

durations [18]. The parameters of the hindered signal are coupled to the intra-cellular volume

fraction using the tortuosity model proposed by [90] to reduce the degrees of freedom. The

model parameters include the diameter index a′ and the compartment volume fractions,

which are estimated using a non-linear optimization coupled to a Markov Chain Monte
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Carlo (MCMC) procedure. The posterior distribution of the estimated parameters can be

plotted, showing their confidence level. The mean diameter index is however a limited

information compared to the whole ADD.

NODDI

The neurite orientation dispersion and density imaging (NODDI) model does not suppose

that the restricted signal comes from perfectly parallel cylinders. It introduces a parameter for

dispersion, and discards the information regarding axonal diameter for the problem to remain

tractable [102]. The restricted signal is thus modeled as a set of dispersed sticks (cylinders

of zero radius) and the hindered compartment as a dispersed axi-symmetric tensor. The

parameters to estimate are the compartment volume fractions and the dispersion, which are

obtained through a Gauss-Newton non-linear optimization. The NODDI model is such that a

protocol can be optimized to provide the dMRI signal required to extract the information of

interest, using clinical scanners.

Such methods have revealed promising pre-clinical and clinical applications, although their

reconstruction requires long computation time and computational power [25].

2.4 Inverse problems

As mentioned above, microstructure imaging methods are based on non-linear optimization

algorithms, and are thus subject to some pitfalls, like local minima, long computation time

and computational power [25].

2.4.1 Microstructure imaging as an inverse problem

Efficient microstructure estimation can be achieved by linearizing the microstructure problem.

A framework called AMICO (Accelerated Microstructure Imaging using Convex Optimization)

was proposed by Daducci et al. [25], in which WM microstructure problems can be reformu-

lated as a discrete linear inverse problem, solvable using dedicated solvers that yields a global

solution thousands of times faster than conventional non-linear methods [25]. The dMRI

signal y is formulated using the following linear equation:

y =Dx +η, (2.21)

in which D is a matrix encoding the forward model (e.g. MMWMD, NODDI, etc...) that depends

on the microstructure model, x are the volume fractions to be estimated for each of the atoms

(i.e. columns of the matrix) present in D and ε represents the noise in the dMRI signal. The

matrix D is also called a convolution operator or a dictionary. A unique and global solution

can be obtained by solving the following convex problem:

argmin
x≥0

∥∥Dx − y
∥∥2

2 +λFr (x), (2.22)
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in which Fr (·) regularizes the solution x and depends on the tissue model. AMICO was first

used to linearize the ActiveAx [4] and NODDI [102] models.

2.4.2 ActiveAxAMICO

Following the ActiveAx model [4], the dictionary D is split into a set of Nr atoms modeling

the restricted compartment Dr , a set of Nh atoms to model the hindered compartment Dh

and an isotropic atom DI SO such that: D = [Dr ,Dh ,DI SO]. The Nr restricted dMRI signals

are computed using the forward model for the parallel cylinders derived by [96], using a set

of Nr radii Ri equally spaced between 0.5μm and 10μm. The Nh hindered dMRI signals are

computed using the zeppelin analytical model, which corresponds to an axi-symmetric tensor

with perpendicular diffusivity expressed as a function of the axonal density as in [4, 77], with

densities varying between 0.3 and 0.9. In the case of the ActiveAx model [4], the regularizer

Fr (·) is set as a simple Tikhonov regularization Fr (x) = ‖x‖2
2. The objective function (2.22) to

linearize the ActiveAx model is then:

argmin
x≥0

∥∥Dx − y
∥∥2

2 +λ‖x‖2
2 . (2.23)

As each atom corresponds to a given diameter or perpendicular diffusivity, tissue microstruc-

tural features can be recovered from the solution x . The intra-axonal volume fraction corre-

sponds to the sum of the cylinders’ weights: icvf =
Nr∑

i=1
xi . The mean diameter index a′ [4] can

be recovered using the cylinders radii Ri and the following expression:

a′ =

Nr∑
i=1

2Ri xi

Nr∑
i=1

xi

. (2.24)

2.4.3 NODDIAMICO

In the case of the NODDI model [102], the axons are not considered as necessarily perfectly

parallel anymore. To solve the problem using the linear inverse formulation (2.22), the dictio-

nary D is split into anisotropic and isotropic compartments. The anisotropic compartment

is made of atoms representing every combination of dispersion and axon packing densities,

as derived from the NODDI model [102]. The isotropic compartment DI SO is the same as

for the ActiveAx model. As a single combination of dispersion and axonal packing density is

expected to model the dMRI signal, the regularization is set to impose the elastic-net penalty:

Fr = λ1 ‖x‖2
2 +λ2 ‖x‖1. The objective function (2.22) to linearize the NODDI model then

becomes:

argmin
x≥0

∥∥Dx − y
∥∥2

2 +λ1 ‖x‖2
2 +λ2 ‖x‖1 . (2.25)
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As for the ActiveAx model, tissue microstructural features can be extracted from the solution

x . The AMICO framework proved to yield microstructure estimates close to the original

implementations and several orders of magnitude faster [25].

2.4.4 Non-parametric ADD estimation

In ADD estimation, axons are usually modeled as impermeable cylinders [6, 4, 15, 3]. The WM

dMRI signal S is expressed as a weighted contribution of IA and EA dMRI signals [7]:

S = S0 ∗ [ fIASIA + (1− fIA)SEA]+ε. (2.26)

The IA dMRI signal fIASIA can further be considered as the weighted contribution of the water

within a set of Nd cylinders with different radii:

fIASIA =
Nd∑

d=1
wd Scyl(Rd ,D∥,Ω), (2.27)

where wd are the volume fractions of each cylinder, and Scyl is the dMRI signal for a cylinder

with radius Rd , parallel diffusivity D∥ and dMRI protocol parameters Ω [96]. Clustering the

cylinders into NA bins gives:

fIASIA =
NA∑

bin=1
ΨbinScyl(Rbin,D∥,Ω), (2.28)

where Ψbin is the volume fraction occupied by cylinders belonging to each bin, and Rbin is the

characteristic radius of the bin (taken to be the center of the bin).

In Eq. 2.28, the coefficients Ψ are analytically related to the ADD and a direct mapping between

the two is possible [15]. An important aspect of ADD mapping is that the formulation presented

previously reconstructs the volume weighted ADD, similarly to the relationship between the

mean diameter index and the distribution of radii presented by Alexander et al. for the

MMWMD [4]. If the number weighted ADD represents the relative number of cylinders with

diameter within a given range (i.e. the normalized diameter histogram), then the coefficients

Ψ represent the volume fraction occupied by those same cylinders, with respect to the total IA

volume. Benjamini et al. nicely illustrate the concept in Figure 2.5.

In this schematic illustration, the distribution is made of 15 axons with diameter of 1μm, 4

axons with diameter of 4μm and 1 axon with diameter of 7μm. If the ADD is assumed to

be discretized with 3 bins with ranges 0-2.5, 2.5-5 and 5-7.5μm. The number weighted ADD

is therefore Ψ = [0.75, 0.2, 0.05]. The volume weighted ADD on the other hand is given by

[0.12, 0.50, 0.38]. As mentioned by Benjamini et al. [15], a mapping between the volume

weighted ADD Ψ(a) and number weighted ADD is possible by dividing the values of Ψ(a)

by the diameter squared of the respective bin, and then normalizing the distribution such

that it sums up to 1. All mentions of the ADD in the rest of this article will be refering to the
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Figure 2.5 – Number weighted and volume weighted ADD. Reprinted from [15], Copyright
2016, with permission from Elsevier Inc.

coefficients Ψ (ie: the volume weighted ADD).

Similarly to ActiveAxAMICO, Eqs. 2.26 and 2.28 can be combined and reformulated as a linear

inverse-problem [15, 25, 45]:

y =Dx +ε, (2.29)

where D is a dictionary encoding the IA and EA signal using a mixture of cylinders and

zeppelins, as done for ActiveAxAMICO.

As the problem is ill-posed, the solution vector x can be estimated by minimizing the following

penalty function:

argmin
x≥0

∥∥Dx − y
∥∥2

2 +λ‖Γx‖2
2 , (2.30)

where the role of the regularization term λ‖Γx‖2
2 is to stabilize the solution. Using a matrix

D as described previously, x is a vector that contains the estimated volume fractions of each

column, and can be split as x = [xIA|xEA]. The normalized IA coefficients xIA∑
xIA

therefore

correspond to the estimated ADD. The estimated mean diameter index a′ can be extracted

from the vector x as in [25]:

a′ =
∑NA

i=1 2Ri xi∑NA
i=1 xi

(2.31)

where Ri is the radius corresponding to the i-th column of D. The estimated IA and EA volume

fractions (IAVF and EAVF) can be computed as the sum of each compartment’s coefficients,

divided by the sum of all coefficients:

IAVF =
∑

xIA∑
x

, EAVF =
∑

xEA∑
x

. (2.32)
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As cylinder signals can be quite similar, Benjamini et al. proposed to use an optimized Double

Diffusion Encoding (DDE) protocol that minimizes the mutual coherence of the design matrix

D [13, 14, 15]. This approach reduces the ill-posedness of the problem, providing more robust

ADD estimates compared to single diffusion encoding sequences [14]. The method also

provides non-parametric ADD estimates, as opposed to AxCaliber for example, which imposes

the distribution to follow a parametric shape.

2.5 Validation and model evaluation

To validate that microstructure imaging does provide features that reflect real tissue properties,

such features should be compared to a gold-standard. Finding an appropriate gold-standard

is not an easy task [32]. Validation can be achieved by comparing dMRI estimates to tissue

properties measured from microscopy, although such an approach is invasive and subject to

some limitations. Another approach to evaluate the performance of dMRI methods is to use

Monte Carlo simulations, where a virtual tissue sample is created to generate the dMRI signal,

which is subsequently analysed with the method of interest, and the results compared to the

parameters of the virtual tissue used in the first place.

2.5.1 Microscopy

Microscopy methods provide images of tissue at resolutions that are high enough to measure

directly the features of interest. Electron microscopy (EM) has enough resolution to measure

axon diameters for example, as shown in Figure 2.3. Assaf et al. showed good correspondence

between the ADD estimated using AxCaliber and the ADD measured from EM (Figure 2.6).

Figure 2.6 – AxCaliber estimates compared to Electron Microscopy, modified from [6], pub-
lished by John Wiley and Sons, Copyright 2008, Wiley Liss Inc.

Lamantia and Rakic [59] have provided ADD estimates from EM section of rhesus monkey

brains. Aboitiz et al. [1] provided similar data for the human corpus callosum. Such values

have been used to compare estimates of the mean diameter index using the ActiveAxMMWMD
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model (Figure 2.7). Diameters estimated from MRI were consistantly higher than the ones

observed from histology. Such an overestimation can be explained to some degree by the

"diameter lower bound" presented by Nilsson et al. [69], which describes the lowest diameter

that can be statistically differentiated from a cylinder with zero radius. This lower bound is

linked to the gradient strenght used in the protocol, which was shown to influence diameter

estimation, and therefore part of the mismatch between diameters estimated from MRI and

from histology [31, 47, 87, 35]. Part of the overestimation of the mean diameter also rises from

Figure 2.7 – ActiveAx estimates compared to Electron Microscopy measurements reported for
(a) human subjects [1], and (b) monkeys [59]. Modified from [4], published by Elsevier Inc,
Copyright 2010.

modeling approximations. For instance, the instantaneous diffusivity in the EA space was

found to vary with diffusion time [18]. This time-varying behavior for the EA comparment

was observed in vivo for the transverse component [36]. The EA compartment was also

found contribute more to the overall time-varying perpendicular diffusivity compared to

the IA compartment [62]. Modeling the EA compartment using a tensor (which is not time-

dependent) leaves a residual that can be captured by the IA model, leading to diameter

overestimation [27]. On the other hand, including time-dependence in the EA model reduces

this overestimation [27].

Benjamini et al. [15] found good agreement between ADD estimates from dMRI and estimates

from histology on a ferret spinal cord (Figure 2.8), although the histological ADD values have

been questioned [49]. However, tissue samples have to undergo a series of preparation steps

before EM imaging, like fixation, staining, and/or slicing, which might alter the structure of the

sample before an image can be generated. The measured ADD might therefore not correspond

to the ADD of fresh tissue.
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Figure 2.8 – ADD estimates using dMRI compared to estimates from EM. Reprinted from [15],
Copyright 2016, with permission from Elsevier Inc.

2.5.2 Monte-Carlo simulations

Monte Carlo (MC) simulations provide a controlled environment where the user can fine tune

the tissue properties. In MC simulations, a virtual tissue (or substrate) is created (Figure 2.9).

Spins are modeled by dots that move randomly with a fixed step size computed according to

their intrinsic diffusivity. If a spin encounters an "axon" membrane, it is elastically reflected.

MC simulations can be used to compute the diffusion coefficient, using the average displace-

ment of the spins during a given simulation time. Virtual diffusion gradients and inversion

pulses can also be applied during the experiment, and the phase-shift of each spin computed

at each timestep according to its displacement. The resulting DWI signal is then computed by

taking the sum of all the spin’s accumulated phase-shifts.

MC simulations have the advantage that the virtual tissue is exactly the same when generating

the dMRI signal and when computing tissue properties for model evaluation. This advantage

comes at the cost of computation time and power. Simple WM geometries that might deviate

from real WM tissue (e.g. perfectly parallel and impermeable cylinders), are required in order

to decrease the aforementioned computational burden.

2.5.3 Volume weighting

As mentionned earlier, dMRI measurements are weighted by volume fractions. Dyrby et al. [32]

pointed out that dMRI was shown to have a diameter lower bound that is specific to protocol

settings, and under which the mean diameter index cannot be reliably estimated [31, 69]. The
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Figure 2.9 – Virtual WM structure used for MC simulations

diameter lower bound has been shown to be a function of acquisition noise, spin diffusivity,

as well as pulse duration and amplitude [69]. Concerning simulation results for ActiveAx, a

large proportion of cylinders used in the simulated substrates are above this lower bound,

which might explain the overall good agreement between simulations and the estimated mean

diameter index [4, 31]. However, most axonal population in the primate brain have a peak

bellow 1μm [93, 63, 50], which is below the aforementioned lower bound. For microstructure

models, such axons would appear as having a diameter of zero, and they would therefore

not contribute to the estimated mean diameter index. Mean diameter index estimated from

histology does take into account those small diameters. This might partially explain why the

mean diameter index estimated using microstructure imaging is overestimated compared to

observations from EM, even though they both follow the same trend (Figure 2.7) [32]. Dis-

crepancies between microstructure imaging estimates and EM might also rise from the blunt

approximations done in order for the problem to remain tractable, namely the hypothesis that

axons are impermeable and parallel structures, while axons are known to undulate [70], have

a dispersed geometry [102] and have some permeability to some extent [60].

2.6 Conclusion

Non-parametric ADD estimation has been shown to be feasible using DDE. In this thesis,

non-parametric and orientationally invariant ADD estimation using PGSE is studied in detail.

As the proposed models are evaluated using simulated dMRI signals, the importance of using

realistic voxel sizes if first presented. Then focus is driven on the IA and EA compartments

separately to understand the challenges at stake. The last chapter finally presents preliminary

work showing improved ADD estimates from combined compartments.
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3 Effect of voxel size on the dMRI signal

Overview

MC simulations are widely used to evaluate the performance of microstructure models or

as input for such models [83]. In this chapter, we show the importance of considering the

voxel size when generating dMRI signals using MC simulations. Results were presented at

the 26th International Society for Magnetic Resonance in Medicine (ISMRM) Annual Meeting

(Publication 1), as well as part of an article to be resubmitted for peer review to NeuroImage [81]

(Publication 2). Our results motivate the use of realistic voxel sizes for the MC simulations

used in the remaining chapters.

3.1 Introduction

Ex vivo and in vivo dMRI acquisitions involve in-plane voxel resolutions of the order of

500×500μm2 for animal imaging and 2.0×2.0 mm2 for humans. Given this voxel size, and

keeping in mind our simplified model of WM, the hindered signal perpendicular to the axons

should be isotropic and is therefore usually modeled as a axi-symmetric tensor [7, 2, 77].

While real WM might present non-symmetric fanning or dispersion [91], or also undulating

patterns [70], we here focus on the assumption that WM can be approximated by perfectly

parallel cylinders, whose hindered compartment can be assumed to be axi-symmetric. In

order to evaluate the performance of such models, dMRI signals have been generated using

MC simulations, and contaminated with rician noise before model fitting and comparison of

estimates with ground-truth values [4, 31, 25]. Other approaches have also made use of MC

simulations to fit dMRI signals and recover the underlying microstructure [83]. Simulating

dMRI signals using realistic voxel sizes is demanding in terms of memory and computation

time [40]. MC simulations are therefore usually performed in voxels of much smaller size,

containing a few hundred cylinders [40, 4, 31]. Such an approach implicitly assumes that the

substrate’s geometry is complex enough to approximate the signal from voxels with realistic

sizes. Such an approach has two limitations. First, concerning the IA signal, sampling a few
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cylinders is unlikely to generate a representative set of the sampled distribution. The MR signal

being volume weighted, over or under representation of big cylinders might heavily influence

the MR signal. The restricted compartment in MC simulations using a few hundred cylinders

is therefore unlikely to represent the restricted compartment arising from several thousand

cylinders. Second, concerning the EA signal, sampling a few hundred cylinders might limit

the number of micro-environments sensed by the spins during the diffusion experiment. If

that’s the case, increasing the number of spins would not improve the estimates, as that would

not increase the number of local micro-environments. Small voxels might be representative of

bigger ones for particular protocols (at low b-value for example), but there is no evidence of

that hypothesis being valid in general. This chapter explores the validity of such hypothesis

for a protocol with high gradient strengh and various diffusion times, as might be achieved in

high-end scanners.

3.2 Methods

The 1st substrate was generated by sampling 100 radii from a Gamma distribution with pa-

rameters Γ(3.27,4.91E −7). Corresponding cylinders were then placed randomly in a voxel

with side 40.5x40.5μm2, such that the IA volume fraction was 60%, and imposing periodicity

at the voxel boundaries [40]. The sampled diameters were ordered from largest to smallest,

and the position randomly chosen within the voxel. In case of overlap with previously posi-

tioned cylinders, a new position was sampled, until there was no overlap with any previously

positioned cylinder. Cylinders were aligned with the z-axis. The dMRI signal was generated

with an in-house MC simulator [79, 81]. The software was implemented in c++, and takes

as input the position of cylinders (including mirrors for the periodicity at boundaries), the

number of spins, their initial compartment, the intrinsic diffusivity and the diffusion protocol

to simulate. It also takes the number of steps to compute. The duration of the experiment (the

TE) is divided into the number of steps, giving a step duration. From the diffusivity, a step

length is computed. Each spin takes a step with this given size in a random direction, and

get elastically reflected by cylinder walls. The signal is computed by summing the dephasing

of each spin due to their trajectories. The same simulator was used in all the simulations

presented in the next chapters. For the current experiment, 1×106 spins were placed in the

EA space with diffusivity of 1.7×10−9 m2/s, TE=75 ms and 5000 steps. With such setting, each

time step was of 15μs, and each random step had a length of 0.32μm. Additional experiments

with a diffusivity of 0.6×10−9 m2/s and twice the number of steps showed similar results. The

diffusion protocol was set with G=300 mT/m, δ=10 ms and Δ from 15 to 100 ms, acquired in

180 directions distributed in the perpendicular plane (xy-plane).

The remaining substrates were generated by replicating the initial list of 100 cylinders N=2,3,...,100

times, and the corresponding cylinders placed in voxels whose sizes were adapted such that

the IA volume fraction was 60%. The generated substrates therefore all have the exact same IA

volume fraction and normalized distribution of radii as the 1st substrate. The dMRI signals

were generated using the same procedure as described above.
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The capacity of the MC/DC Simulator [81] to accurately mimic the diffusion process of spins

in the hindered compartment has been previously validated using a Finite Element Method

(FEM) approach [80]. A set of spins was initialized in a few points and allowed to diffusion

and interact with a set of cylinders. The density of spins at the end of the experiment was

compared to the density obtained by solving for the diffusion equation over a tesselation of the

hindered space using FEM. Results were similar for both the FEM and the MC/DC approaches.

The dMRI signal obtained for a small substrate was compared to the signal generated using

the MC simulator implemented in Camino, using the same set of cylinder position, substrate

size, number of spins, intrinsic diffusivity and diffusion protocol. Both simulators provided

signal samples that were identical up to the 4th decimal, making the MC/DC simulations

trustworthy.

Additional experiments were carried using a distribution of cylinders with approximately half

the diameter of the ones used at first.

3.3 Results

The radial signal was observed to be more and more anisotropic as the voxel size decreased.

The anisotropy was also increased for longer diffusion times. Results for 3 substrates with

cross-section sizes of 406×406, 181×181 and 40.5×40.5μm2 are summarized in Figure 3.1. The

first row shows the cylinder positions on cross-sections of the substrates. For visibility, the

same scale was used on all sections, and the voxel boundaries marked with a dotted blue line.

The periodicity of the cylinders is therefore visible for the voxel with size of 40.5×40.5μm2.

The second row displays the substrates’ corresponding radial EA signals.

Figure 3.2 shows the mean and normalized standard deviation of the EA signal as a function of

substrate size. The normalized standard deviation was computed as:

∑
i (

S⊥
i

S̄⊥ −1)2

N −1
, (3.1)

where S̄⊥ was the mean radial signal and N was the number of samples, quantifying how

much the signal deviates from a perfectly isotropic signal.

Isotropic EA signals could also be recovered by averaging many small substrates. The signals of

100 substrates of size 40.5×40.5μm2 (each with shuffled cylinder positions) were averaged. The

resulting EA signal had a normalized standard deviation and amplitude that were equivalent

to the signal obtained for a voxel of 406×406μm2.

Regarding the distribution of cylinders with half the diameter, results indicated that half the

voxel size was required to obtain signals with satisfying isotropy.
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Figure 3.1 – Effect of voxel size on the MC signal for three different substrates.

3.4 Discussion

Although substrates were composed of perfectly parallel cylinders, results showed that the

radial EA signal generated with MC simulations was highly anisotropic for small voxels, illus-

trating the influence of voxel size on the simulated signal. Small voxels showed anisotropic

profiles over the perpendicular plane, while bigger voxels had more isotropic profiles. Our

experiments therefore confirm the hypothesis that the EA signal is axi-symmetric in voxels

with a size of the order of millimetres, but reject the hypothesis that the signal of big voxels

can be approximated by MC simulations in smaller ones.

The anisotropy observed in small voxels might arise from the fact that a reduced size limits

the diversity of local environments explored by the spins during the diffusion time. Having

"fewer" local microenvironments, it is more likely that spins diffuse faster in certain directions

compared to bigger voxels were the diversity of microenvironments is higher.

Reshuffling cylinder positions creates new combinations of local microenvironments. Av-

eraging the signals of several small substrates might therefore be equivalent to increasing

the spectrum of environments sampled by the spins, which is why the resulting signal looks

similar to the signal of a bigger voxel.
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Figure 3.2 – Effect of voxel size on the mean radial MC signal and its anisotropy.

In practice, dMRI signals from voxel sizes of the order of millimetres cannot be approximated

by using MC simulations in a single small voxel. When using MC simulations to evaluate

microstructure models, voxel sizes of the order of 400×400μm2 should be used to avoid biasing

estimates when using a distribution similar to the one used in our experiments. In general,

more than 5’000 cylinders seem to be required in order to have a hindered compartment that

is "rich" enough for the molecules’ radial mean squared displacement to be independent on

the orientation.

Anisotropic profiles might be observable in large voxels containing cylinders fanning non-

symmetrically. The Bingham distribution (which is not symmetric), has been proposed to

improve the fitting of dMRI signals acquired on real data [91]. If such a model was to be

evaluated using MC simulations, our results indicate that experiments should be carried on

large voxel sizes in order to avoid introducing anisotropic profiles due to the limited number

of micro-environments instead of the non-symmetric bending of cylinders.

Implementation of MC simulators that are able to cope with the computational cost of such

simulations is therefore important [81]. Researchers without access to such simulators still

have the option to average the signal of many small substrates in order to reduce the bias. The

MC simulator implemented in Camino has recently been updated to be able to cope with

larger structures [41], and the use of this feature should be promoted to avoid biasing results

for simulations using high gradient strengths.

3.5 Conclusion

As voxel size has an effect on the radial dMRI signal of the EA compartment generated with

MC simulations, all the simulations used in the remaining chapters were conducted using a

fixed voxel size of 500×500×500μm3.
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4 ADD estimation using ActiveAxADD

Overview

The following chapter extends the ActiveAxAMICO model from a single diameter estimation

method to a model for orientationally-invariant and non-parametric ADD estimation. Part of

the work presented here was presented at the ISMRM workshop on Breaking the barriers of

diffusion MRI in Lisbon (Publication 3) and at the 25th ISMRM annual meeting in Honolulu,

USA, April 22-27, 2017 (Publication 4). The content of the whole chapter was submitted for

peer-review to Magnetic Resonance in Medicine (MRM) [85] (Publication 5).

4.1 Introduction

ADD estimation using dMRI data remains challenging, mainly due to the similarity between

the dMRI signals of cylinders with close diameters [13]. The problem is degenerate (or ill-

posed), in the sense that very different ADDs have very similar dMRI signals. A small variation

in the signal (e.g. due to noise) can thus drastically change the solution, providing microstruc-

tural estimates that do not reflect the underlying tissue microstructure. Several approaches

have been proposed to address this ill-posedness, as presented hereafter.

The AxCaliber method proposed by Assaf et al. [6] recovers ADDs that are constrained to follow

a given parametric distribution [10, 46, 27], in order to reduce the number of parameters to es-

timate. This forces the ADD to follow a specific shape, which might not always be appropriate.

AxCaliber relies on the Pulsed Gradient Spin Echo (PGSE) sequence [89]. Benjamini et al. [15]

proposed to estimate the ADD using a discrete linear model, thus providing non-parametric

ADD estimates, but using a Double Diffusion Encoding (DDE) acquisition. Both methods

require the orientation of the axons to be known prior to the acquisition, which limits these

methods to well oriented structures like the corpus callosum or the spinal cord. Indeed, the

required number of diffusion samples is such that it would be infeasible to acquire them using

a High Angular Resolution Diffusion Imaging (HARDI) protocol (i.e. a protocol where each

diffusion samples is acquired densely over the unit sphere, which allows the orientation of the
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fibers to be estimated a posteriori, providing orientationally invariant estimates). To provide

orientationally invariant metrics, Alexander et al. proposed the ActiveAx framework [4]. The

framework includes an optimization algorithm that designs an ad hoc multi-shell (i.e. multiple

b-values) HARDI protocol (allowing orientationally invariant estimates) for estimating the

mean diameter. The framework can be adapted for ex vivo or in vivo samples, monkey or

human subjects, as well as to the scanner hardware limitations [4, 31]. The ActiveAx frame-

work relies on the Minimal Model for white matter diffusion (ActiveAxMMWMD) which fits a

single cylinder to the IA signal, thus reducing the number of parameters to one but losing

information regarding the shape of the ADD.

All these approaches trade the robustness of estimates for other aspects. Ideally, an ADD

reconstruction method should provide the whole non-parametric ADD without requiring

prior knowledge on the orientation of the fibers (Table 4.1).

Whole ADD Non-parametric
Orientationally-

PGSE
invariant

Assaf et al. [6] � � � �
(AxCaliber)

Benjamini et al. [15] � � � �

Alexander et al. [4]
� � � �

(ActiveAxMMWMD)
Proposed method � � � �

(ActiveAxADD)

Table 4.1 – Properties of ADD mapping methods

On one hand, Daducci et al. [25] showed that the AMICO framework (Accelerated Microstruc-

ture Imaging using Convex Optimization) could be used to linearize the ActiveAxMMWMD

model. On the other hand, Hollingsworth and Johns [45] showed that non-parametric distri-

butions of droplet sizes can be estimated from NMR signals by using Laplacian regularization.

Here, the discrete linear framework provided by AMICO is combined with Laplacian regu-

larization to estimate the full non-parametric ADD using data acquired with the ActiveAx

protocol. The proposed method is coined ActiveAxADD, as it extends the use of ActiveAx to the

estimation of the whole ADD. Performance is assessed using simulations with ex vivo parame-

ters. Experiments first focus on the IA signal only, to compare performance between standard

Tikhonov regularization and Laplacian regularization, and then explore the performance of

the proposed method on the whole dMRI signal (mixture of IA and EA components).

4.2 Theory

The dictionary formulation presented in Chapter 1 is used:

y =Dx +η, (4.1)
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where microstructure estimates can be extracted from the coefficients x obtained by solving:

argmin
x≥0

∥∥Dx − y
∥∥2

2 +λFr (x). (4.2)

When estimating the mean diameter index using ActiveAxAMICO, standard Tikhonov regular-

ization is used, where Fr (x) = ‖Γx‖2 and Γ= I [15, 25]. The aim of the current chapter is to

explore the benefits of using Laplacian regularization to provide non-parametric estimated

of the ADD, as suggested by Hollingsworth et al. [45]. When using Laplacian regularization,

Γ= Lz
2, where Lz

2 is the 2nd order finite difference operator with zero boundary conditions [42].

The proposed formulation is coined ActiveAxADD.

4.3 Methods

4.3.1 Substrate design

Cylinder diameters were sampled from 22 different gamma distributions corresponding to

histological samples [4, 59, 1] and randomly placed into isotropic voxels of 0.5x0.5x0.5mm3

to create 22 different substrates. All cylinders were aligned with the z-axis. The number

of cylinders Nd was adapted in order to get IA volume fractions of 0.7 for each substrate.

Cylinders were placed to ensure periodicity at the voxel boundaries [40]. Cylinder positions for

the substrate with the lowest mean diameter could not be generated due to the high packing

density and size of the voxel, and thus only appears in the IA experiments described hereafter.

For illustrative purposes, properties of three of the generated substrates used in the current

study are shown in Figure 4.1 (substrates with smallest, medium and biggest mean diameter

index).

4.3.2 Estimates from the IA compartment’s signal

Unless otherwise stated, all simulated signals in this chapter were computed using the 3-

shell HARDI protocol with Gmax=300mT/m optimized for mean diameter mapping using

ActiveAx [31]: G = 300,219,300 mT/m, Δ = 12.1,20.4,16.9 ms and δ = 5.6,7.0,10.5 ms. Each of the

3 shells was acquired along 60 directions homogeneously distributed on the unit sphere [20].

By acquiring the signal homogeneously on a sphere, the orientation of the cylinders can be

estimated from the data, and the dictionary build in the corresponding direction to estimate

microstructural properties. The method is therefore orientationally invariant, in the sense

that microstructural estimates do not vary with the orientation of the cylinders (which would

be the case if the signal was acquired along a single direction for example).

Experiments were first focused on estimating Ψ from the IA signal. The IA signal yIA was

computed as yIA =∑Nd

i=1 wi SIA(Ri ,D∥,Ω) where wi was the volume weighted fraction of each

cylinder with respect to the total IA volume (wi = R2
i∑
R2

i
). SIA was computed using Van Gelderen’s

formula, based on the Gaussian Phase Approximation [96]. MC simulations for spins inside a
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Chapter 4. ADD estimation using ActiveAxADD

Figure 4.1 – Properties of the substrates with smallest, medium and biggest mean diameter
index: diameter histogram and partial cross-section of the substrates showing some of the
cylinder’s positions.

cylinder of 10μm provided a signal almost identical to the analytical expression, when using

the previously mentionned ActiveAx protocol. Diffusivity was set to reported values for ex

vivo samples [4]: D∥= 0.6×10−9m2/s. The signal yIA was computed for each substrate and

contaminated with 50 different Rician noise realizations such that the noisy signals ŷIA had an

SNR of 30 in the S0 volumes.

The ActiveAxMMWMD model proposed by Alexander et al. approximates the IA compartment

using the signal of a single cylinder [4, 31]. To understand the validity of this model concerning

the IA compartment, the diameter of the cylinder whose signal was the closest to the noiseless

IA signal was reported. For the noisy signals ŷIA, the diameter index a′ was estimated by

performing MCMC sampling on the posterior probability of a single cylinder fitted to ŷIA,

similarly to the implementation of the ActiveAxMMWMD basic model in Camino [24].

To test the effect of regularization on the ADD estimation, xIA was estimated from ŷIA by

solving argmin xIA ≥ 0
∥∥AIAxIA − ŷIA

∥∥2
2 +λ‖xIA‖2

2 with either standard Tikhonov regularization

(ActiveAxAMICO) or Laplacian regularization (ActiveAxADD). No EA compartment was included

in the model. The dictionary AIA consisting of NA = 30 cylinders was build with diameters

equally spread between 0.5×10−6m and 20×10−6m. λ controls how much the regularization

penalty weights with respect to the data fidelity term. Higher weighting will thus provide

smoother solutions. Different values for λ were tested, between 0.001 and 10, and was fixed to

0.2 for all experiments as this value provided the most accurate ADD reconstruction for a wide

range of substrates. The estimated ADD was compared to the corresponding ground-truth

by computing the Hellinger distance H(P,Q): H(P,Q) = 1/
�

2
∥∥�P −√

Q
∥∥

2 where P was the

estimated ADD and Q was the ground-truth. For comparison with results of Benjamini et
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al. [15], the Jensen distance was also computed, given by JSD(P,Q) =∑
i

Pi l og (Pi )+Qi log (Qi )
2 −

Pi+Qi
2 log ( Pi+Qi

2 , where P was the mean ADD estimated over different noise realisations and Q

was the ground-truth. A small ε=1e-16 was added to Pi and Qi for the JSD to be valid even in

the presence of zeros. Results were similar when ignoring terms i where Pi or Qi = 0.

4.3.3 Influence of maximal gradient strength

As described in Dyrby et al. [31], the maximum gradient strength drives the sensitivity to

the smallest axon size detectable by the ActiveAxMMWMD model. The IA experiments were

repeated for the different protocols proposed in Dyrby et al. [31], with Gmax of 140 and 60 mT/m

respectively, exploring how robust the proposed method was to lower gradient strengths.

4.3.4 Influence of the EA compartment

The performance of the proposed method was then assessed on a more realistic dMRI signal,

containing contributions from both the IA and EA compartments. The EA signal yEA was

computed from Monte-Carlo simulations, using an in-house software compiled on a Intel

Xeon E5-2650 v2 cluster. One million spins with a diffusivity of 0.6×10−9m2/s were placed in

the EA compartment and allowed to interact with the cylinders during TE = 44 ms, divided

in 5000 steps, while running the ActiveAx diffusion protocol with Gmax=300mT/m presented

above. The total signal was computed as y = fIA ∗ yIA + (1− fIA)∗ yEA , where fIA was the IA

volume fraction (set to 70%). 50 different noisy signals ŷ were generated for each substrate by

adding Rician noise such that the SNR was 30 in the S0 volumes.

To take into account the EA space in our approach, the EA compartment was modeled by

adding the EA dictionary AEA , built using 7 EA atoms corresponding to 7 axi-symmetric

tensors with perpendicular diffusivities uniformly sampled between 0.06×10−9m2/s and

0.42×10−9m2/s [4, 25]. The coefficient vector x was fit to the noisy data ŷ using Eq. 2.30

with Laplacian regularization. The smoothness penalty was only applied to the IA coefficients,

as there was no evidence that smoothness should be promoted for the EA coefficients [15].

For completeness, the basic ActiveAxMMWMD model (a single cylinder and an axi-symmetric

tensor) was fit to the noisy signals ŷ using the Camino software. Camino implements a

tortuosity constrain, in which the perpendicular diffusivity of the axi-symmetric tensor is set

to be equal to the EA volume fraction times the parallel diffusivity.

4.4 Results

4.4.1 Estimates from the IA compartment’s signal

When using only the IA signal, both ActiveAxAMICO and ActiveAxADD provide robust estimates

of the mean diameter index. Figure 4.2 shows the estimated diameter index a′ for different
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substrates, using the IA signals. Figure 4.2a and Figure 4.2b show the ActiveAxMMWMD esti-

mates when approximating the distribution by a single cylinder for the noiseless and noisy

signals respectively. Even without noise, a slight overestimation was observable for diameters

between 1.0 um and 4.0 um. Results for the noisy signals illustrate the ill-posedness of the

problem, as small variations in the signal due to noise lead to a high range of estimated diame-

ters for substrates with a′ lower than 2.0um. The ActiveAxMMWMD model was thus considered

to have a lower bound around 2.0 um, under which the mean diameter index could not be

estimated robustly. This was in accordance with Eq. 15 in Nilsson et al. [69], for which the

minimum diameter should be d (SDE)
mi n = ( 768

7
σ̄D0

γ2δg 2 )1/4 = 2.7 um (using the 3rd shell, an SNR of

30, significance level of 5% and 1 repetition). The observed lower bound for ActiveAxMMWMD

was likely decreased as the substrate is made of a mixture of diameters, and also because each

sample on the sphere partially provided information on the perpendicular signal, which would

mimic an increase in the number of repetitions. If the perpendicular signal had been acquired

60 times, d (SDE)
mi n would be 1.6um. The effective d (SDE)

mi n lies somewhere in between, which is

what was observed. The mean diameter index was well estimated for bigger substrates. Fig-

ure 4.2c and Figure 4.2d show the mean diameter extracted using the ActiveAxAMICO (Tikhonov

regularization) and ActiveAxADD (Laplacian regularization) models respectively. Both methods

performed similarly and showed accurate estimation of the diameter index a′, with a lower

bound around 1.5×10−6m. The absolute error between estimated diameter indexes and the

ground truth had a mean of 0.25um and 0.21um for ActiveAxAMICO and ActiveAxADD respec-

tively (paired t-test P < 0.001). The use of Laplacian regularization improved ADD estimates

compared to Tikhonov regularization, when using the IA signal. Figure 4.3 shows the ADD

(mean and standard deviation) estimated from ŷIA using ActiveAxAMICO or ActiveAxADD, for

the three substrates shown in Figure 4.1. Estimates were overlapped with the ground-truth

ADD. ActiveAxAMICO overestimated the contribution of small diameters in Ψ, although the

mean axon diameter index was properly estimated (Figure 4.2c). ActiveAxADD provided better

reconstruction of the ADD, in particular regarding the contribution of small diameters. Over

the set of all substrates, the ActiveAxAMICO model had a mean Hellinger distance of 0.28+/-0.06

between the estimated ADD and the ground-truth, while this values went down to 0.24+/- 0.09

for the ActiveAxADD model (paired t-test P < 0.001).

4.4.2 Influence of maximal gradient strength

Robust ADD estimation with ActiveAxADD required protocols with high gradient strengths. As

shown in Figure 4.4, ADD estimates from IA signals using ActiveAxADD were less accurate for

gradient strengths of 60 and 140 mT/m as compared to estimates from acquisitions with a

gradient strength of 300 mT/m, in particular for substrates with small or big diameter indices.

4.4.3 Influence of the EA compartment

ADD estimates using ActiveAxADD were influenced by the addition of the EA compartment.

Figure 4.5 shows the ADD estimates when the EA compartment was included in the signal
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Figure 4.2 – Estimated a′ for different methods using the IA signal only. (a) Fitting a single
cylinder to the noiseless IA signal. Black arrows indicate the substrates reported in Figure 4.1;
(b) Fitting a single cylinder using MCMC on the noisy IA signal; (c) a′ extracted from Ψ

estimated using ActiveAxAMICO; (d) same as (c) with ActiveAxADD. Estimates of a′ for each
noise realisation is shown with a blue cross, while the mean over all realisations corresponds
to the red cross. The ground truth lies over the dotted black line.

ŷ . A longer tail was observable (higher contributions for cylinders around 5 um for the

small substrate, and cylinders around 10um and 20um for the medium and large substrates).

Overestimation of the contributions for the cylinders with diameter higher than 10um could

indicate that the IA model was capturing part of the EA signal. However, the estimated IA

volume fractions ranged from 0.5 to 1.0, when the ground-truth was 0.70. If only the EA

compartment was being captured by the IA model, the estimated IA volume fractions would

have been lower than 0.70. This indicated that the EA model was also capturing part of the IA

signal (i.e. cross talk between compartment signals and models).

Boxplots summarizing the Hellinger distance between all reconstructed ADDs and their

corresponding ground-truth are shown in Figure 4.6, for the different models presented earlier.

When considering only the IA signal, Laplacian regularization decreased the median of the

reconstruction error. Adding the EA signal increased the error in ADD estimation. Jensen

distances for the mean ADD estimated from the IA signal only using ActiveAxADD varied

between 0.016 and 0.172 over the different substrates (mean JSD and standard deviation were

0.048+/-0.046). When adding the EA compartment, Jensen distances varied between 0.018 and

0.282 (mean and standard deviation of 0.091+/-0.08). The ActiveAxMMWMD model was also

37



Chapter 4. ADD estimation using ActiveAxADD

Figure 4.3 – ADD estimates compared to the ground truth, using either ActiveAxAMICO or
ActiveAxADD. The estimated ADD (mean and standard deviation) is shown in blue, while the
ground truth is in red.

affected by the inclusion of the EA compartment (Figure 4.7). The ActiveAxMMWMD model was

not able to provide reliable estimates of the mean diameter index (mean absolute error 0.823+/-

0.47um). The discrete linear models performed better, with ActiveAxADD yielding estimates

that were the closest to the ground truth. Results for ActiveAxADD were similar to estimates

from the IA signal only (Figure 4.2d), although the absolute error between the estimated and

the ground truth diameter index significantly increased (from an average of 0.21+/-0.18um

when using the IA signal only to 0.65+/-0.53um when including the EA compartment, paired

t-test P < 0.001). The lower bound in the estimation of the mean diameter increased to more

than 2×10-6m.

4.5 Discussion

Overall, by assuming that a mixture of cylinders can approximate the WM tissue, our results

indicate that ActiveAxADD has the potential to provide precise non-parametric and orienta-

tionally invariant ADD estimates from a simple 3-shell PGSE protocol and for a wide variety

of samples mimicking WM. The use of Laplacian regularization significantly improved ADD

estimates when compared to standard Tikhonov regularization. The mean of the Jensen

distance between the average ADD over 50 noise repetitions and the ground-truth ADD was of

0.048. Benjamini et al. reported Jensen distances varying between 0.007 and 0.062 regarding

the volume weighted ADD [15]. When considering only the IA compartment, ActiveAxADD

therefore provides ADD estimates from PGSE data that are as robust as using DDE, with the

added value of parameters being orientationally invariant. Orientationally invariant ADD

estimation using DDE might be feasible using the 5-design protocol proposed by Jespersen

et al. [53], but to our knowledge no study so far has reported stable ADD estimates using this

approach. Improved ADD reconstruction is related to the zero-boundary condition, which
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Figure 4.4 – Effect of Gmax on the estimated ADD using ActiveAxADD on IA signals.

promotes solutions with a small weight at the boundaries. Promoting such solutions goes in

line with what has been observed in histology [59, 1, 10, 63]. Laplacian regularization might

have an extrapolation effect, extending the ADD bellow the diameter lower bound by smoothly

prolonging the trend in the weights of the diameters the protocol is sensitive to. Laplacian

regularization also has a direct impact on the estimated diameter index a′. ActiveAxADD pro-

vides estimates with lower absolute error as well as a decreased lower bound compared to

ActiveAxMMWMD. The lower bound for ActiveAxMMWMD was considered to be of the order

of 2.0μm, as the standard deviation of the estimated mean diameter significantly increased

bellow this value (e.g. a substrate with diameter 1.8 μm could be estimated to have a diameter

between 0.8 and 2.5 μm due to noise only).

However, ActiveAxADD inherits one of the main limitations in biophysical models, namely

the similarity between the IA and EA signals. Biophysical models do not form an orthogonal

basis for the dMRI signal. Part of the IA signal can therefore be captured by the EA model,

and vice versa, which is what was observed in our experiments. This goes in line with results

from Jelescu et al. [51], which show the degeneracy of compartment models. The use of

other dMRI sequences like oscillating gradients or DDE [22] might increase the difference

between the signals of the two compartments, making it easier for the reconstruction method

to disentangle them, but careful experiments should be carried on in order to verify this.

In real WM tissue, the spins in the IA space might have higher diffusivity than the spins in

the EA compartment [58]. Although having different diffusivities might make it easier to

distinguish the two compartments, the formulation used in ActiveAxADD requires an estimate
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Figure 4.5 – Influence of the EA compartment on the estimated Ψ from pure IA signals and
IA+EA signals. Estimates are shown in blue and the ground-truth ADD is shown in red.

Figure 4.6 – Hellinger distance between all reconstructed ADDs and their corresponding
ground-truth, for the ActiveAxAMICO using IA signals (left), ActiveAxADD using IA signals (mid-
dle) and ActiveAxADD using IA+EA signals (right).

of the compartment diffusivity. By assuming the same diffusivity in both compartments, it

can be estimated from the dMRI signal using its tensor first eigenvalue, which corresponds

to free diffusion. Estimating two diffusion coefficients is much less accurate, in particular

because the volume fraction of each compartment needs to be estimated too, worsening the

ill-posedness of the problem. Such a case was therefore not explored within the scope of this

thesis.

Sources of cross-talk between signals and compartments might also include modeling inac-

curacies. The appropriate model to be used for the EA compartment is still debated [18, 27].

Several methods assume it can be modeled using a gaussian and axi-symmetric tensor [5,

6, 10, 4, 31, 25, 15]. De Santis et al. proposed to include a time-dependent model for the EA

dMRI signal, showing improvement in the estimation of the mean diameter index estimated

from a parametric ADD reconstruction method [18, 27]. The improvement in the estimation

of a′ indicates that choosing an appropriate EA model might improve ADD estimates when
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Figure 4.7 – Effect of the EA compartment on the estimated mean diameter index a′ for
different reconstruction models.

considering the IA and EA signal. A proper method should be proposed and validated before

applying ActiveAxADD to real data.

In terms of acquisition, our experiments are based on an ActiveAx protocol, consisting of only

3 shells [31], that is optimized for mean diameter mapping. Such a protocol can easily be

implemented on a pre-clinical scanner with sufficiently strong diffusion gradients. Indeed,

as shown by our experiments, a maximum gradient strength of 300 mT/m is required in

order to obtain reliable ADD estimates as well as a decreased lower bound for the estimated

mean diameter index [31]. Optimizing the HARDI protocol for ADD mapping, or using other

sequences like oscillating gradients, might further improve the quality of the results [30].

Results regarding ADD estimates using only the IA dMRI signal are in accordance with the

experimental observations of Hollingsworth and Johns [45]. Indeed, their work was demon-

strated on an emulsion of oil in water, by following the attenuation in the aromatic peak in

the NMR spectrum of the sample. The signal could therefore be assumed to be composed

of a single restricted compartment, without the need to deal with other types of diffusion,

like hindered diffusion. Our results are therefore promising for the field of microstructure

spectroscopy. Indeed, diffusion Magnetic Resonance Spectroscopy (dMRS) sequences allow

isolating the diffusion signal for very specific metabolites like N-acetyl-aspartate and gluta-

mate, which are physically restrained to the IA space [76]. Acquiring data on ex vivo or in vivo

samples using spectroscopy could provide isolated IA diffusion signals that are not influenced

by the presence of the EA compartment. Furthermore, the diffusion coefficient of metabolites

being smaller than the one of water [76], the diameter lower bound described by Nilsson

et al. should in theory be smaller [69], allowing to estimate smaller diameters. The main

drawback would nonetheless be the limited resolution provided by dMRS methods, which

require voxel sizes of the order of centimeters in order to achieve a reasonable SNR, which

could easily break the assumption of a single axonal orientation within the voxel. Results

are also promising for acquisitions done at very high b-value, as made possible by recent

high-end scanners like the Connectome Scanner. At such high b-values, the EA signal could be

considered to be negligible, making it possible to focus on the IA compartment only. Careful

experiments should also be performed in order to ensure that the EA compartment can be
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effectively ignored (e.g. MC simulations).

Application to real data should also take into consideration the following. First, T1 and T2

relaxation effects should be taken into account, as there might be differences between com-

partments. This would affect the measured signal, and the estimates would then correspond

to signal fractions instead of effective volume fractions. The IA and EA compartments might

also have different parallel diffusivities, which are not easily determined [51]. The validity of

the WM model should also be verified before. Indeed, if the axons are not perfectly parallel,

estimates might be biased. This might be addressed by including dispersion in the proposed

method, as done by Zhang et al. [101].

4.6 Conclusion

Non-parametric and orientationally invariant ADDs can be reliably reconstructed from PGSE

data using ActiveAxADD, when considering only the IA compartment. ActiveAxADD, is based on

an optimized 3-shell ActiveAx protocol, and therefore doesn’t require information on the orien-

tation of the fibers before the acquisition. It provides better ADD reconstructions compared to

ActiveAxAMICO, which directly increases the accuracy of the estimation of the mean diameter

index. The method inherits common limitations in microstructure models, in particular

regarding the axon diameter lower bound and cross talk between IA and EA compartments

and models. The cross talk between IA and EA compartments needs to be reduced before

applying the method to real data. In Chapter 5, we explore the potential benefit of using a

richer dMRI protocol optimized to increase the sensitivity to a set of diameters. Chapter 6 on

the other hand proposes a new model that better captures the EA signal. Finally, Chapter 7

presents preliminary results showing improved ADD reconstruction when considering both

the IA and EA compartments.
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timodal distributions

Overview

In the previous chapter, the use of Laplacian regularization was shown to improve ADD esti-

mation. In this chapter, we explored whether changing the parameters of the PGSE sequence

could improve ADD reconstruction, for both unimodal and bimodal distributions.

5.1 Introduction

As seen in the Chapter 2, ADD changes during development as well as in disease events. Some

evidence seems to point out that certain neurodegenerative disease have different effects

on axonal populations depending on their size [34]. ADD mapping not only has the added

value to provide the whole ADD compared to mean axon diameter mapping, it could also

provide information on population specific changes if the method is sensitive enough. Here,

we present a method for non-parametric ADD reconstruction based on a PGSE sequence

optimized to maximize sensitivity to a set of diameters, and study its performance using

simulations. We first show that a 20-shell protocol allows robust unimodal and bimodal ADD

reconstruction when using the IA signal only. To our knowledge, bimodal distribution have

not been observed in histological studies of WM, as reported histograms are usually smooth

and contain a single peak for the studied pathways. However, bimodal distributions might

arise in large voxels, were two fascicles with different diameters might converge, as in the

internal capsule for example. The effect might be even more pronounced when acquiring

dMRI datasets using isotropic encoding. Crossing fascicles in the centrum semiovale for

example will be "merged" into a single distribution, which would appear to be bi-modal.

Nevertheless, results regarding multimodal ADD reconstructions showed that a minimum

distance between underlying populations is required to detect population specific changes,

namely a distance larger than most axons in WM. Results are however transferable to other

cell types, like prostate cells, which have diameters that are an order of magnitude larger than

axons.
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5.2 Methods

Reconstruction framework

We assume the dMRI signal can be expressed as follows [15]:

y =
Nr∑

i=1
Ψ(di )S1(di ,d∥,Ω�), (5.1)

whereΨ(r ) is the volume weighted ADD, S1 is the dMRI signal for a cylinder [96] of diameter

di , parallel diffusivity d∥ and PGSE protocol settings Ω�. The signal is acquired in 60 directions.

We focus on ex-vivo imaging and IA signal only, and therefore ignored the EA compartment.

Equation 1 can be expressed as a linear formulation y =Dx, where we build D and x can be

recovered from the convex inverse problem [45, 25, 15]:

argmin
x≥0

∥∥Dx − y
∥∥2

2 +λ‖Γx‖2
2 . (5.2)

Ill-posedness can be reduced by decreasing the mutual coherence of D (using DDE [13] for

example), by using regularization λ‖Γx‖2
2 [45], and/or by extracting the mean diameter index

a′ instead of Ψ [4, 25]. We proceeded as done in the previous chapter, that is using Laplacian

regularization Γ= L2
z [45], but this time with a PGSE protocol designed to maximize sensitivity

to a range of diameters matching our biophysical model.

Protocol design and ADD reconstructions

The PGSE parameter space was considered to be Ω= {G ,δ,Δ}. We performed a grid-search

on Ω [30] in order to find a set of 20 shells Ω� that maximized the sensitivity S′(di ) to a set of

20 diameters di : S′(di ) = ||S1(di +ε,Ωi )−S1(di −ε,Ωi )||2. We bounded Ω to Gmax = 550mT/m,

2 < δ<= 70ms and δ+6ms <Δ for the protocol to be implementable on a preclinical scanner.

The IA signals were computed as in the previous chapter, using our proposed protocol and

ADDs from histological samples [59, 1, 4], and reconstructed Ψ from 100 noisy realisations

(Rician noise with SNR=30).

We then created bimodal ADDs with two gaussians: a first fixed population N1 (μ1 = 4.0μm) and

a second moving population N2 with increasing mean μ2. We extracted two estimated means,

μ̂1 and μ̂2 by fitting a gaussian mixture model to the estimated Ψ. A second experiment tested

if the method is sensitive to a reduction of 50% in the amplitude of N2. Relative amplitudes

were set to 1:1 and 1:0.5 in the mixture model.
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Figure 5.1 – Left: Positions of 20 selected shells Ω� in the PGSE parameter space. Shells
are ordered from Ω�

1 (G=550mT/m,δ=22ms,Δ=28ms) to Ω�
20 (G=70mT/m,δ=17ms,Δ=52ms).

Right: sensitivity profile for each of the shells in Ω�. Stars: sensitivity for the diameter Ω�
i was

selected for. Each color corresponds to a different shell.

Figure 5.2 – Left: estimated a′ compared to the ground-truth for different distributions. Middle:
mean and standard deviation of the distribution coefficients estimated with our method, and
compared to the ground-truth, for the distribution with a′ bellow the diameter lower bound.
Right: same as (middle) for the distribution with biggest diameter index.

5.3 Results & Discussion

The 20 selected shells maximized the sensitivity to diameters between 4.5μm and 10.0μm

(Figure 5.1). Shells with maximum sensitivity for diameters lower than 4.5μm were beyond the

limits of Ω. By maximizing sensitivity to a set of diameters, differences between columns of D

was increased, reducing its mutual coherence.

Unimodal distributions

Unimodal distributions were reliably reconstructed for all simulations (Figure 5.2). The mean

diameter index a′ [4] was robustly estimated for values down to almost 1.0μm, although the

expected lower bound has previously been shown to be around 2μm [31]. As observed, in the
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Figure 5.3 – Boxplots for the 100 estimated μ̂1 and μ̂2. Each line shows a boxplot summarizing
the values of μ̂1 (on the left) and μ̂2 (on the right) extracted for a given separation between
the two populations N1 and N2. Ground-truth values μ1 and μ2 are shown by yellow stars
(μ1=4.0μm for all separation distances, while μ2=[5.0μm, 6.0μm, 7.0μm, etc..]). The 1st row
mistakenly shows good performance for distances of 1.0μm: N1 and N2 are collapsed into a
single peak (wrong Ψ) but is then split into correct μ̂1 and μ̂2 by the mixture model (Figure 5.4).

previous chapter, the smaller lower bound might have been due to extrapolation properties of

the regularization.

Resolving two axonal populations

As shown in Figure 5.3, N1 and N2 should be separated by at least 4.0μm for their respective

means to be recovered (μ1 and μ2 are not within the 1st and 3rd quartiles of μ̂1 and μ̂2 for

smaller separations). This minimal separation depends on the amplitude and variance of

N1 and N2. When N1 and N2 are far enough, μ̂1 and μ̂2 are well estimated, and population

specific changes can be detected (Figure 5.4). Interestingly, preliminary results indicate that

removing the last 10 shells of Ω� compromised bimodal reconstructions while preserving

robustness for unimodal distributions, showing that Ω�
10−20 provides information for bigger

diameters.

Results presented here correspond to a proof-of-concept, showing the improvement of ADD

reconstruction when designing the protocol to include sensitivity to a range of diameters.

To our knowledge, bimodal distributions of axon diameters have not been observed within

the same fascicle in histological studies. However, some fascicles "merge" in regions like the

internal capsule, and this might result in bimodal distributions when measuring the dMRI

signal on large voxels. Histological reports might not cover a field of view that is large enough

to observe the multiple peaks. Bimodal distributions might also be observable when factoring

our the macroscopic anisotropy (e.g. when using the Spherical Mean Technique or isotropic
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Figure 5.4 – Mean and variation of ADD coefficients obtained for bimodal distributions. Left:
bimodal distribution with separation of 2μm. Middle: bimodal distribution with separation of
4μm. Right: bimodal distribution with separation of 4μm and decreased volume fraction for
N2. All plots have a small boxplot on the top summarizing the estimated a′ and the ground
truth a (yellow star), illustrating the robustness of a′ but also the gain of information provided
by mapping the distribution instead of the mean diameter.

encoding). In the case of voxels containing crossing fascicles with different ADDs, the resulting

measured distribution will be the weighted average of the two, which would be a bimodal

distribution if the modes of the fascicles are separated enough.

In our experiments, bimodal reconstructions were distinguishable for sizes that were quite

larger than the axon diameters observed in WM. Nevertheless, using such an approach for

MRS might provide robust estimation of bimodal distribution for sizes comparable to the ones

observed in WM, the diffusion coefficient of metabolites being smaller than the one of water

(decreasing the diameter lower bound described by Nilsson et al. [69]). However, the protocol

should be re-optimized for the corresponding diffusivity and the whole experiment conducted

again in order to verify this.

5.4 Conclusions

Mapping ADD changes is challenging due to the ill-posedness of the problem [45, 13]. Our

simulations show the feasibility of reconstructing non-parametric unimodal and bimodal

distributions using a simple IA model based on PGSE. We showed the sensitivity of the method

to population specific changes within bimodal distributions, as long as the two populations

are separated by a minimal distance. Non-parametric and multi-modal ADD designs could

therefore identify changes in ADD that are known to occur in development [23], and dis-

eases like multiple sclerosis [28], providing specific characterization of neuronal tissue mi-

crostructure, which cannot be achieved by current mean diameter mapping techniques as

ActiveAxMMWMD [4] or parametric methods as AxCaliber [6]. Chapter 7 will explore whether

the use of the protocol designed in this chapter improves robustness to the addition of the

extra-axonal compartment (which might bias estimates and influence the diameter lower

bound, as observed in Chapter 4).

47





6 Modeling hindered diffusion using
HOTmix

Overview

In the previous two chapters, ADD estimates were shown to be less accurate when considering

the EA compartment. In this chapter, we propose a new method to characterize the EA

compartment, coined HOTmix, which we use to describe the EA signal for dMRI protocols

at high b-values. A manuscript is in preparation to be submitted for peer-review to the

Proceedings of the National Academy of Science (PNAS) (Publication 6).

6.1 Introduction

Models for axon diameter distribution like AxCaliber and ActiveAxM MW MD assume that axons

are perfectly parallel cylinders and take into account the diameter into their IA compartment,

using a closed form solution [96, 38, 75]. Diffusion protocols with high gradient strengths,

durations and separations are required in order to distinguish between different compositions

of radii [30]. Unfortunately, there is no such closed form solution for the dMRI signal of the EA

compartment. In fact, all WM tissue models cited above assume that the EA signal follows a

gaussian diffusion model and that it can be characterized using a simple 2nd-order diffusion

tensor.

Such a model is unlikely to be accurate for protocols that use various diffusion times and high

b-values, as Burcaw et al. [18] showed that the EA space has time-dependent diffusivity and

a non-gaussian behavior. If not modeled properly, this time dependence is thus likely to be

captured by the IA model, biasing estimates. De Santis et al. [27] proposed to include time-

dependence in the EA model and showed improved estimation of the mean diameter index,

confirming the need to model correctly both compartments in order to recover meaningful

estimates. The proposed model however has been designed for long diffusion times (ie.

between 40 and 200 ms or more) only accessible through the use of STEAM dMRI sequences.

Proper modeling of the EA time-dependence should be applied to shorter diffusion times in the

case of the standard and widely used PGSE sequence. Other models for non-gaussian diffusion
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include diffusion kurtosis imaging (DKI) [52, 66], as well as higher order tensors (HOT) [74, 64],

but to our knowledge no study so far has reported benefits of using such models to model the

EA space in particular.

The aim of this chapter is to propose a new model for the EA space, based on a mixture of

higher order tensors (HOTmix). We present how the model is derived from the work of Liu et

al. [64], and evaluate its performance to fit EA dMRI signals generated using MC simulations

on a wide variety of virtual tissue samples. Fitting error is compared to the standard DT model

as well as state-of-the-art non-gaussian models (KT and HOT). Correlation between estimated

parameters and tissue properties are highlighted. The same procedure is then carried on

using the dMRI signal acquired on a physical phantom composed of thick Dyneema fibers,

mimicking the EA space.

6.2 Methods

6.2.1 Axi-symmetric HOT

Liu et al. [64] proposed the GDTI method, which approximates the dMRI signal as an expansion

of 2nd and higher order tensors (HOT):

l n(S/S0) =−b(2)
i1i2

D (2)
i1i2

+b(4)
i1i2i3i4

D (4)
i1i2i3i4

− ...+ (−1)nb(2n)
i1i2...i2n

D (2n)
i1i2...i2n

+ j (−b(3)
i1i2i3

D (3)
i1i2i3

+b(5)
i1i2i3i4i5

D (5)
i1i2i3i4i5

− ...+ (−1)nb(2n+1)
i1i2...i2n+1

D (2n+1)
i1i2...i2n+1

),

(6.1)

where the b-values are defined as:

b(n)
i1i2...in

= γn gi1 gi2 ...ginδ
n(Δ− n −1

n +1
δ),

and gin is the component of the diffusion gradient along the in axis. The HOT model defined

by Liu et al. uses a definition of the b-value which is different from the kurtosis model (and

other higher tensor models in the literature). In diffusion kurtosis, the higher order b-value is

the squared 2nd-order b-value, given by b2 = (γGδ)4(Δ−δ/3)2. The b-value proposed by Liu

et al. adapts the expression of the term for diffusion time to each order. The HOT model has

thus the potential to express both multi-exponential decay and time-dependent diffusion.

Truncating Equation 6.1 to order 2 gives the standard formula for DTI. Using the expansion up

to the 4th order gives a model with 21 parameters to estimate: 6 for the 2nd order tensor and

15 for the 4th order tensor [64].

Before presenting the derivation of the HOTmix model, the expression given by Liu et al. was

simplified by making a few assumptions. Considering the real part of a GDTI of order 4, the
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signal is given by:

ln(S/S0) =−b(2)
i1i2

D (2)
i1i2

+b(4)
i1i2i3i4

D (4)
i1i2i3i4

. (6.2)

By assuming that all cylinders are perfectly aligned along the z-axis (ie: the axial direction is

n = ez), the terms of the 2nd order tensor can be expressed as:

−b(2)
i1i2

D (2)
i1i2

=−b(2)(D (2)
∥ cos2(α)+D (2)

⊥ si n2(α)),

where b(2) = γ2G2δ2(Δ−δ/3) was the standard b-value, G the magnitude of the diffusion

gradient and α the angle between n and g . Similarly, the terms of the 4th order tensor can be

expressed as:

b(4)
i1i2i3i4

D (4)
i1i2i3i4

= b(4)D (4)
⊥ si n4(α)),

where the 4th-order b-value is given by:

b(4)
i1i2i3i4

= (γGδ)4(Δ− 3δ

5
).

Equation 6.2 then becomes:

ln(S/S0) =−b(2)D (2)
∥ cos2(α)−b(2)D (2)

⊥ si n2(α)

+b(4)D (4)
⊥ si n4(α).

(6.3)

A detailed derivation is available in Appendix A.

6.2.2 Derivation of the HOTmix model

In addition to examining the benefits of using an axi-symmetric HOT model to characterize

the EA compartment, a new model based on a mixture of axi-symmetric 4th order HOTs is

considered. The model goes as follows:

S/S0 =
K∑

i=1
wi e−b(2)D (2)

∥ cos2(α)−b(2)D (2)
⊥,i si n2(α)+b(4)D (4)

⊥,i si n4(α). (6.4)

Such a model is based on the assumption that a voxel is composed by a mixture of local

microenvironments with different characteristics. Spins sample different microenvironments

depending on their intrinsic diffusivity and their location in the voxel. Packets of spins sam-

pling the same microenvironments will thus have an apparent D (2)
⊥ and D (4)

⊥ that is different

from packets of spins sampling different microenvironments. Having an infinite number of

possible D (2)
⊥ and D (4)

⊥ , the dMRI signal can be expressed as:

S/S0 =
∫∫

P (D (2)
⊥ ,D (4)

⊥ )e−b(2)D (2)
∥ cos2(α)−b(2)D (2)

⊥ si n2(α)+b(4)D (4)
⊥ si n4(α)dD (2)

⊥ dD (4)
⊥ . (6.5)
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To estimate the distribution of D (2)
⊥ and D (4)

⊥ in the voxel, we discretized their values, which is

equivalent to fit a discrete mixture of components, each one centered at a defined value of

D (2)
⊥ and D (4)

⊥ . The distribution of D (2)
⊥ and D (4)

⊥ is then estimated by recovering the weights wi .

Equation 6.4 can be linearized to:

Y =Dx (6.6)

where Y is the normalized dMRI signal S/S0, D ∈Rm,k is a dictionary or convolution operator

with M ∗N = K columns or atoms Dk encoding our forward-model and x are the weights

w to be retrieved. The dictionary is build by sampling M ×N combinations of D (2)
⊥ and D (4)

⊥ .

Results slightly improved when taking M linearly spaced samples of D (2)
⊥ and

√
D (4)

⊥ . As shown

after, the slight improvement provided by sampling
√

D (4)
⊥ instead of D (4)

⊥ might be due to the

relationship between D (4)
⊥ and the variance of the diffusivity pools.

6.2.3 Link with a mixture of gaussians with time-dependent variance

The HOT and HOTmix models use a 4th order b-value given by b(4) = (γGδ)4(Δ−3δ/5) while

other higher order tensors in the literature use powers of b(4) (e.g. the kurtosis tensor uses

(γGδ)4(Δ−δ/3)2). The perpendicular component of an axi-symmetric HOT is given by:

l n(S⊥/S0) =−b(2)D (2)
⊥ +b(4)D (4)

⊥ . (6.7)

Yablonskiy et al. [100] showed that the dMRI signal generated by a gaussian distribution of

2nd order tensors with mean diffusivity D0 and variance σ2 is given by:

ln(S/S0) =−b(2)D0 + 1

2
σ2b(2)2

, (6.8)

when D0 is much smaller than σ2. In this formulation, the 4th-order b-value is the squared

2nd-order b-value. By comparing Yablonskiy’s formulation with the HOT tensor, a HOT tensor

can be interpreted as being a gaussian distribution of radial diffusivities with mean μ and

variance σ2 equal to:

μ= D (2)
⊥ (6.9)

σ2 = 2D (4)
⊥

(Δ− 3δ
5 )

(Δ− δ
3 )2

. (6.10)

The proposed HOTmix model being a mixture of HOT tensors, it can therefore be considered

as a mixture model of such gaussians.

Westin et al. [99] show a relationship between the b-tensor used for encoding and the 4th and

higher orders of the diffusion tensor. Acquiring the data using b-tensors might provide better

estimates of the contribution of this higher order components.
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In such statistical interpretation, the mean of the gaussian components does not vary with

diffusion time. Time-dependent D (2)
⊥ can be implemented by sampling different combinations

of D (2)∞ and A as formulated by De Santis et al. [18, 27]. Concerning WM substrates, adding

time-dependence didn’t improve significantly the reconstruction error, although a significant

improvement was observed for substrates with an order of magnitude larger diameters, as

shown hereafter.

6.2.4 Monte Carlo simulations

The radii of the cylinders used to create the virtual tissue samples were drawn from 22 gamma

distributions corresponding to real WM samples [4, 1, 59]. For each gamma distribution,

non-abuting cylinders were positioned randomly in three 500×500×500 um3 voxels such that

the intra-axonal volume fraction was 50%, 60% and 70% respectively, imposing periodicity at

the voxel boundaries [40]. Our packing algorithm did not manage to achieve an IA volume

fraction of 70% for 4 out of the 22 distributions (i.e. 22 different substrates with packing

densities of 50% and 60% were generated while 18 substrates with packing densities of 70%

were generated). The EA dMRI signal of each substrate was computed using an in-house dMRI

MC Simulator [81]. One million spins were positioned in the EA space and let to diffuse in the

synthetic tissue while running our dMRI experiments, with spins elastically reflected by the

cylinder walls. Spin’s intrinsic diffusivity was set to 0.6×10−3 mm2/s to mimick ex vivo WM

samples, and to 2.0×10−3 mm2/s to mimick in vivo WM samples [4]. Figure 6.1 illustrates the

process for 2 different virtual tissue samples.

For ex vivo signals, the diffusion protocol consisted of three different sets of b-values ranging

from 1’000 to 16’000 s/mm2, with steps of 500 s/mm2. Each set of b-values was obtained by

either varying the gradient amplitude G, the gradient separation Δ or the gradient duration δ,

while keeping the other two parameters constant. The b-value set with varying Δ started at

2’500 s/mm2, as shorter diffusion times could not be implemented on the preclinical scanner

(see section on MRI acquisition and processing). The Echo Time (TE) was fixed to 65ms.

Models were fit using a selection of 9 shells, whose parameters are summarized in Table 6.1.

For in vivo signals, the same protocol was used with b-values up to 6’000 s/mm2, as higher

b-values led to signals with amplitude lower than 1e-4. The 9 shells used for model fitting are

summarized in Table 6.2.

6.2.5 Fitting perpendicular signals

Focus was first placed on the reconstruction of the perpendicular signal as a function of

b-value. Models were fit using either the noiseless signal, or 50 noisy realisations with SNR=30.

Rician bias was removed [55] and the signal denoised [97] before model fitting. When consid-

ering the perpendicular signal only, the different axi-symmetric tensor models that were used
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Chapter 6. Modeling hindered diffusion using HOTmix

Figure 6.1 – Illustration of the pipeline used to generate EA dMRI signals for 2 different virtual
samples with IA volume fractions of 0.7. (a) Cylinder diameter distribution; (b) cylinder
positions (only a 100×100 um2 section is shown for visibility); (c) MC generated dMRI signals.
Left: 489’691 radii ∈ Γ(8.5,3.7E-8). Right: 16’589 radii ∈ Γ(3.2,4.9E-7).
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6.2. Methods

Table 6.1 – dMRI protocol for D0 = 0.6x10−3mm2/s

G (mT/m) Δ (ms) δ (ms) b-value (s/mm2)

Varying G

{ 127.0 20.0 7.0 1’000
359.3 20.0 7.0 8’000
508.2 20.0 7.0 16’000

Varying Δ

{ 550.0 9.5 3.75 2’500
550.0 27.5 3.75 8’000
550.0 53.8 3.75 16’000

Varying δ

{ 114.4 32.4 5.9 1’000
114.4 32.4 18.0 8’000
114.4 32.4 27 16’000

Table 6.2 – dMRI protocol for D0 = 2.0x10−3mm2/s

G (mT/m) Δ (ms) δ (ms) b-value (s/mm2)

Varying G

{ 127.0 20.0 7.0 1’000
220.1 20.0 7.0 3’000
311.2 20.0 7.0 6’000

Varying Δ

{
550.0 11.1 3.75 3’000
550.0 21.0 3.75 6’000

Varying δ

{ 114.4 32.4 5.9 1’000
114.4 32.4 10.5 3’000
114.4 32.4 15.3 6’000
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(DT, KT and HOT) were simplified to the following linear expression:

l n(
S⊥
S0

) = B x, (6.11)

where S⊥ is the perpendicular signal simulated for the different b-values in the protocol. The

model parameters x were estimated by solving argminx≥0

∥∥∥ln( S⊥
S0

)−B x
∥∥∥

2
. For the HOTmix

model, its parameters were estimated by solving argminx≥0

∥∥∥S⊥
S0

−Dx
∥∥∥

2
. The matrix B or D

and coefficients x changed depending on the model, as follows.

Diffusion Tensor model

B = [−b(2)] (6.12)

x =
[

D (2)
⊥

]
(6.13)

Kurtosis model

B =
[
−b(2) 1

6 (b(2))2
]

(6.14)

x =
[

D (2)
⊥ K

]T
(6.15)

Higher order tensor

B =
[
−b(2) b(4)

]
(6.16)

x =
[

D (2)
⊥ D (4)

⊥
]T

(6.17)

HOTmix model

D=
[

e−b(2)D (2)
1 +b(4)D (4)

1 e−b(2)D (2)
1 +b(4)D (4)

2 ... e−b(2)D (2)
M +b(4)D (4)

N

]
(6.18)

x =
[

w1 w2 ... wM×N

]T
(6.19)

6.2.6 Fitting of 3D signals

As fiber orientation in real brain tissue is usually unknown, reconstruction performance was

also assessed on 3D signals. In this case, each shell in Table 6.1 was acquired in 60 directions

homogeneously covering the unit sphere [20]. To avoid numerical instability when working

56



6.2. Methods

with the noiseless signal, in particular along the parallel direction, signal values lower than free

diffusion were ignored during the fit. Regarding noisy signals, Rician bias was removed [55]

and the signal denoised [97] before model fitting. For tensor fitting, negative values were

ignored during the fit, while all values were considered for the fitting of HOTmix. SNR was

set to 30 for ex vivo samples. As diffusivity is higher for in vivo samples, signal amplitude was

lower for in vivo samples, in particular for samples in the parallel direction. We chose to use

an SNR of 60 for in-vivo samples, to decrease the number of dMRI samples that were bellow

the noise floor. This concerns signal samples that are parallel to the cylinders, as the signal as

a function of the b-value decays the fastest in this direction. For a SNR of 30, most of shells’

samples are bellow the noise floor, meaning the reconstruction method would fit more noise

than real signal. Although a SNR of 60 is irrealistic for a single acquisition, averaging 4 volumes

acquired with a SNR of 30 would be equivalent. We considered that increased scan time was a

fair compromise in order to get a reliable signal to fit. For all models, the main orientation

and parallel diffusivity D (2)
∥ were estimated by fitting an axi-symmetric DT to the 3 shells with

b-value lower than 3’000 s/mm2. The remaining parameters of the different axi-symmetric

tensor models were estimated by solving argminx≥0

∥∥∥l n( S⊥
S0

)+b(2)D (2)
∥ cos2(α)−B x

∥∥∥
2

. For the

HOTmix model, its parameters were estimated by solving argminx≥0

∥∥∥S⊥
S0

−Dx
∥∥∥

2
. The matrix

rows Br or Dr and coefficients x changed depending on the model, as follows. The angle

α represents the angle between the gradient direction and the estimated direction of the

cylinders.

Diffusion Tensor model

B = [−b(2)si n2(α)
]

(6.20)

x =
[

D (2)
⊥

]
(6.21)

Kurtosis model

B =
[
−b(2)si n2(α) 1

6 (b(2))2si n4(α)
]

(6.22)

x =
[

D (2)
⊥ K

]T
(6.23)

Higher order tensor

B =
[
−b(2)si n2(α) b(4)si n4(α)

]
(6.24)

x =
[

D (2)
⊥ D (4)

⊥
]T

(6.25)
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HOTmix model

D=
[

e−b(2)(D (2)
∥ cos2(α)+D (2)

⊥,1si n2(α))+b(4)D (4)
⊥,1si n4(α) ... e−b(2)(D (2)

∥ cos2(α)+D (2)
⊥,M si n2(α))+b(4)D (4)

⊥,N si n4(α)
]

(6.26)

x =
[

w1 w2 ... wM×N

]T
(6.27)

6.2.7 HOTmix parameters and substrate properties

Spins in the EA space might carry microstructural information like the mean axon outer

diameter, or axonal packing density. To verify whether microstructural features could be

extracted from the HOTmix parameters, substrate features were computed from the position

and sizes of the cylinders and compared to values extracted from HOTmix parameters.

The first microstructural feature that was tested was the IA volume fraction. According to the

tortuosity constraint used in ActiveAxMMWMD [4, 25], the IA volume fraction can be computed

from the estimated 2nd-order parallel and perpendicular diffusivity: IAVF = (D (2)
∥ − ¯D (2)

⊥ )/D (2)
∥ .

Here, ¯D (2)
⊥ was the weighted average of the 2nd-order perpendicular diffusivities returned

by the HOTmix model. The estimated IA volume fraction was computed using the previous

equation, and compared to the ground-truth value used to design the substrates.

Secondly, the average 2nd-order perpendicular diffusivity was compared to the volume

weighted mean diameter of the substrates.

Finally, the weighted average standard-deviation of the diffusivity pools for the shortest

diffusion time was also computed and compared to the standard deviation of the cylinder

diameters in the substrate. The shortest time was used as longer diffusion times have a blurring

or "coarse-graining" effect [73].

6.2.8 Dyneema phantom

Three physical phantoms made of dyneema fibers were build following the procedure pre-

sented by Fieremans et al. [37]. Two types of yarn where used: the "SK99" and the "SK78",

made of filaments of 10 μm and 20 μm in diameter respectively.

As the yarn had a diameter that was almost an order of magnitude higher than the ones used

in the simulations, we created two substrates with diameters corresponding to Dyneema

fibers, using a normal distribution with mean μ of 10 μm or 20 μm and standard deviation

σ= 0.2×μ. A third substrate was build using a mix of 10μm and 20μm cylinders, such that the

volume of both populations was equal. The packing density was set to 70%. HOTmix with HOT

components of order 4 was unable to fit the generated signal: it didn’t capture the 3 different

curves (potentially due to the higher diameter of the cylinders compared to the ones used in

58



6.2. Methods

Table 6.3 – Composition of dyneema phantoms

SK99 SK78 Mix-SK99-SK78

# filaments of SK99 251680 - 125840
# filaments of SK78 - 63180 31590

Outer diameter after shrinkage 8.8 7.7 8.1
Inner diameter after shrinkage 7.06 5.74 6.36

Estimated hindered volume fraction 0.49 0.23 0.38

WM mimicking substrates). We extended the HOTmix model to include time-dependence

in the 2nd-order perpendicular diffusivity [18, 27]. This involved replacing the atoms in the

dictionary corresponding to D (2)
⊥ with combinations of D (2)∞ and A, two parameters related

to the bulk diffusivity at infinite diffusion time and the correlation length of the EA space,

respectively [18, 27]. Fitting improved drastically compared to the simple HOTmix model.

The physical phantoms composition is summarized in Table 6.3. For each phantom, the

fibers were placed inside a transparent shrinking tube (Tyco Electronics, ref RNF-3000-18/6-X)

underwater. Water was heated up to 90ºC for initial shrinking. The tubes were taken out of

the water and heated up to around 200ºC using a heat gun, for the tube to shrink to their

maximum. Shrinked tubes were placed underwater again, and remaining bubbles removed

using the degazing program of a Branson (Danbury, United States) ultrasonic device. The

phantoms were placed in hot water (60ºC) during 24h for the water to diffuse and wet all

the filaments. The phantoms were then cooled down to room temperature overnight and

placed in the same plastic tube using a 3D printed holder. The plastic tube was then closed

(Figure 6.2) and remaining air bubbles were removed using a 2nd session of degazing before

MR acquisition.

6.2.9 MRI acquisition and processing

The phantoms were placed in a 4cm volume coil and scanned using a 7T Bruker preclinical

scanner. Air-flow at room temperature was used to regulate the sample temperature during

the whole acquisition. Temperature was monitored and fluctuated from 25.2ºC to 27.7ºC with

a mean and standard deviation of 26.2+0.52ºC. First, a high resolution T2-weighted image was

acquired to check for remaining air bubbles, which were found to be negligeable (Figure 6.3).

The main orientation of the fibers was computed using a DTI acquisition with b-value of 1’000

acquired over 60 directions. The main orientation was determined by fitting the DTI model

in all voxels inside the phantoms and averaging all the first eigen-vectors. The subsequent

diffusion weighted images where then acquired in 3 directions on the plane perpendicular

to the fibers. The PGSE parameters of the DWI images were set to be the same as for the

protocol used in the MC simulations (ie more or less 31 b-values acquired by either varying

G, Δ or δ). Imaging parameters are summarized in Table 6.4. Eight separate b0 images were

acquired at regular intervals between the DWI volumes. All PGSE volume were corrected
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Figure 6.2 – Dyneema phantoms in closed plastic tube before MRI acquisition.

Table 6.4 – Imaging parameters for MRI acquisitions

TurboRARE PGSE

FoV 64x64mm2 40x40mm2

Image size 512x512 64x64
Slice thickness 1.3mm 1.3mm

Resolution 0.078125x0.078125x1.3mm 1x1x1.3mm
Number of slices 30 30
Repetition time 10s 5s

Echo time 65.026ms
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Figure 6.3 – High resolution T2 weighted scan of the dyneema phantoms.

for gibbs ringing [56]. The signal for each phantom was computed by averaging over the 3

perpendicular directions, normalizing to the mean b0 volume and averaging over all voxels

inside the corresponding phantom. HOTmix with time-dependent D (2)
⊥ was fitted to the data.

6.3 Results

6.3.1 Ex vivo WM signals

All models were first evaluated using the noiseless perpendicular signal. Plots showing the

reconstructed perpendicular signal compared to the ground truth are shown in Figure 6.4,

for the two substrates shown in Figure 6.1. The fit was done using 9 samples: 3 samples of

each of the 3 curves simultaneously (smallest, intermediate and highest b-value of each of the

three curves). The reconstructed signal was then computed from the fit for all intermediate

values, for comparison with the ground-truth signal. The DT model can only fit a line to

the log of the perpendicular signal, and was therefore unable to capture the curvature nor

the differences between curves. By estimating the diffusion kurtosis, the KT model was able

to capture the curve of the signal. However, the formulation presented by Jensen et al. [52]

assumes that the diffusion time remains constant in order to estimate K (Δ). As the same model

was used to fit a protocol where all G, Δ and δ were changing, the model was unable to fit the

3 different curves at the same time. The HOT model was able to distinguish the 3 different

curves, but not with the required curvature (higher order tensors might be required). Finally,

the HOTmix model was able to capture the curvature of the 3 different curves simultaneously.

The HOTmix model had the lowest reconstruction error over all generated ex vivo WM signals.

Fitting error over all substrates are shown in Figure 6.5. Figure 6.5a summarizes the fitting

error for the noiseless perpendicular signal. As fiber orientation in real brain tissue is usually

unknown, reconstruction performance was also assessed on 3D signals (Figure 6.5b). The

HOTmix model was also the one that best reconstructed the EA dMRI signal from noisy

samples. Figure 6.5b and Figure 6.5c summarize the distribution of the reconstruction error

for the different models when the perpendicular and the 3D dMRI signals were contaminated
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with Rician noise corresponding to an SNR of 30. As mentionned earlier, including a time-

Figure 6.5 – Fitting error for different models used on (a) the noiseless ex vivo perpendicular
signal, (b) the noiseless ex vivo 3D signal, and (c) the noisy ex vivo 3D signal. DTI: Diffusion
Tensor Imaging, DKI: Diffusion Kurtosis Imaging, HOT(4): Higher Order Tensor of order 4.
HOTmix(4): mixture of Higher Order Tensors of order 4 (proposed method). RMAE: Relative
Mean Absolute Error.

dependent D (2)
⊥ term as proposed by De Santis et al.[27, 18] didn’t significantly improve the

reconstruction error. Regarding the substrate with largest distribution of cylinders, computing

the average mean-square displacement of the center of mass of the spins between the two

gradient pulses showed that the instantaneous diffusivity was of 0.29 mm2/s for a diffusion

time t = 8.2ms, 0.28 mm2/s for t = 29.5ms, and 0.27 mm2/s for t = 52.5ms.

6.3.2 HOTmix parameters and substrate properties

A summary of HOTmix parameter values for two substrates is shown in Figure 6.6.

Parameters estimated from the weights of HOTmix on the noiseless 3D signal were compared

to substrate properties and are summarized in Figure 6.7. The IA volume fraction was under-

estimated on average by 8, 11.5 and 14 percentage points for volume fractions of 50%, 60%

and 70% respectively 6.7a). This underestimation matches the underestimation presented

by Novikov and Fieremans [72] for substrates with high IA volume fractions. The size of the

cylinders seemed to have an influence on the estimated IA volume fraction, as substrates with

bigger cylinders had a lower estimated IA volume fractions. As the signal of a tensor with
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Figure 6.6 – HOTmix parameter values for two substrates used in the study, using their noiseless
3D signals.

low perpendicular diffusivity is closer to the signal of a large cylinder than a small cylinder,

contributions of large cylinders might be confused with hindered diffusion and captured by

the tensors with low diffusivity. If that’s the case, the EA volume fraction would increase, and

the estimated IA volume fraction decrease, explaining our observations regarding substrates

with large diameters.

The mean 2nd-order perpendicular diffusivity was clearly related to the substrate’s mean

volume weighted diameter as well as the IA volume fractions (Figure 6.7b). Plotting the mean

2nd-order perpendicular diffusivity against the log of the diameter showed 3 different lines,

with slope and offset that depended on the IA volume fraction.

The average standard deviation of the diffusivity pools was also influenced by both the IA vol-

ume fraction and the standard deviation of the diameters in the substrates (Figure 6.7c). While

there was little correlation between the variance of the diffusivity pools and the variance of

the diameters for substrates with IA volume fractions of 50%, there was a very high correlation

for substrates with IA volume fractions of 70% (pearson correlation coefficient of 0.98, p<1e-9).

This is likely explained by the variance of the cylinder diameters driving most of the variance

of the diffusivity pools in the EA space when the packing density is high. At lower packing

densities, the relationship is less clear, but a pattern was still observable.

6.3.3 In vivo WM signals

Figure 6.8 shows the reconstructions obtained using the noiseless perpendicular signal for

two substrates.

Reconstruction error over all substrates are summarized in Figure 6.9. Results include fitting

error for the noiseless perpendicular signals (Figure 6.9a), the noiseless 3D signals (Figure 6.9b),

the noisy perpendicular signals (Figure 6.9c) and noisy 3D signals (Figure 6.9d). The HOTmix
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Figure 6.7 – HOTmix features compared to substrate properties. (a) Estimated IA volume
fraction inspired from the tortuosity model in [4] compared to the ground-truth IA volume
fraction. (b) Relationship between the mean 2nd-order perpendicular diffusivity estimated
from HOTmix and the volume weighted diameter. (c) Average standard deviation of diffusivity
pools estimated from HOTmix and compared to the standard deviation of the radii in the
substrate.
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model had the lowest reconstruction error for all simulated signals.

Figure 6.9 – Fitting error of different models used on in vivo signals (a) noiseless perpendicular
signal, (b) the noiseless 3D signal, and (c) perpendicular signal with SNR = 350. DT: Diffusion
Tensor, DK: Diffusion Kurtosis, HOT(4): Higher Order Tensor of order 4, HOTmix(4): mixture
of Higher Order Tensors of order 4 (proposed method). RMAE: Relative Mean Absolute Error.

6.3.4 Dyneema phantom

Reconstructed signals using MC simulations for the Dyneema phantom are shown in Fig-

ure 6.10. HOTmix without a time-dependent D (2)
⊥ term was unable to distinguish the 3 different

curves (1st row). However, including time dependence as proposed by De Santis et al. [27, 18]

did improve the reconstruction accuracy (2nd row). When considering the simulations for

the SK99 fiber (mean diameter of 10μm), computing the instantaneous diffusivity from the

mean square displacement of the spin’s center of mass between the two diffusion pulses

resulted in a diffusivity of 0.97×10−3 mm2/s for t=4.7ms, 0.84×10−3 mm2/s for t=28.5ms

and 0.80×10−3 mm2/s for t=50.7ms. For the SK78 fiber, the instantaneous diffusivity was

1.19×10−3 mm2/s, 1.0×10−3 mm2/s, and 0.94×10−3 mm2/s for diffusion times of 4.7 ms,

28.5 ms and 50.7 ms, respectively. For all simulations, the parallel instantaneous diffusivity

was estimated to be 2.0×10−3 mm2/s (which corresponds to the intrinsic diffusivity), and re-

mained constant over diffusion times, providing confidence on the reliability of the estimated

instantaneous diffusivity.

The acquired signal using the physical Dyneema phantom is shown in Figure 6.11 along
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Figure 6.10 – Reconstruction of MC simulated Dyneema phantom signals. HOTmix is either
used with HOTs of order 4 with fixed D (2)

⊥ (first row), or time-varying D (2)
⊥ (2nd row).

with the reconstructed signal using HOTmix. The behavior of HOTmix was similar to the

observations made for the MC simulated signal: the basic HOTmix model with fixed D (2)
⊥ failed

to reconstruct the three curves while the formulation with time-dependent perpendicular

diffusivity significantly improved the quality of the fit. This highlights the importance of

including time-dependence when modeling the EA compartment in phantoms made of

Dyneema fibers [37].

Figure 6.11 – Reconstruction of Dyneema phantom signals. HOTmix is either used with HOTs
of order 4 with fixed D (2)

⊥ (first row), or time-varying D (2)
⊥ (2nd row), significantly improving

the quality of the fit, as expected from MC simulations.
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6.4 Discussion

Our experiments showed that the HOTmix model improves the reconstruction of the EA signal

compared to single tensor models like the DT, KT and HOT. In simulations, the model adapts to

the shape of the EA signal for a wide variety of distributions inspired from histology [59, 1, 4, 31],

for both the tested ex vivo and in vivo protocols. The methods also shows robust signal

reconstruction even in the presence of noise.

In terms of physical interpretation, HOTmix corresponds to a weighted sum of higher order

tensors. It can be interpreted as the reconstruction of a distribution of tensors, which raises

from packets of spins sampling different local microenvironments, similar to the DIAMOND

model [86]. HOTmix differs mainly because no particular distribution shape is imposed, nor

the number of peaks. HOTmix is also proposed to model hindered diffusion in particular, while

DIAMOND was proposed as a generic model to capture all restricted, hindered and isotropic

diffusion tensors. HOTmix is only composed of tensors that are anisotropic, with a parallel

diffusivity which is set to the spins estimated intrinsic diffusivity (as there is no hindrance in

the parallel direction when considering hollow cylinders). The perpendicular diffusivity on

the other hand is lower, due to the hindrance caused by the cylinder walls. Each tensor has a

different apparent 2nd-order perpendicular diffusivity, as well as a 4th-order perpendicular

diffusivity, depending on the local microenvironment sampled by the spins. The inclusion of

higher order diffusivities makes it able to capture local non-gaussian behaviors, as opposed to

a distribution of 2nd-order tensors only [100]. The use of the higher order b-value defined by

Liu et al. [64] also makes it able to distinguish the effect of the gradient amplitude G, separation

Δ and duration δ (up to a certain limit). This feature is not the case for the DT or KT, as only a

single signal can be generated for a given b-value, while the simulated signals show a different

behavior when different G, Δ or δ are used.

The HOTmix model can be interpreted as the reconstruction of a distribution of diffusivities

using a mixture of gaussians. In the formulation used for WM, it appeared that the mean

of such gaussians was not required to vary with diffusion time, as suggested by Burcaw et

al. [18], in order to provide accurate signal reconstruction. For the diffusion times used in

our simulations, and the distribution of cylinder diameters present in the WM mimicking

substrates, it appeared that the instantaneous diffusivity remained stable over time. This goes

in line with the observations of Burcaw et al. [18], in particular in Figure 11, where D(t )−D∞
is very close to zero for diffusion times between 10ms and 100ms, when considering WM

substrates. As shown by Figures 11a and 11c in Burcaw et al. [18], the importance of time-

dependent diffusivity decreases for smaller diameters. Indeed, for a given diffusion time, as A

is related to the EA characteristic length and the axon diameters, a decrease in mean diameter

lowers the value of A which in turn brings the instantaneous diffusivity closer to D∞. As no

myelin sheet was included in our substrates, the spins in the EA space of our experiments

probed cylinder diameters that were smaller compared to the simulations presented by Burcaw

et al [18], decreasing the importance of including a time-varying factor. However, regarding the

dyneema phantom, as diameters are an order of magnitude larger, including a time-dependent
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term for the 2nd-order diffusivity significantly improved reconstruction results. The presence

of time-dependent diffusivity was confirmed by computing the instantaneous diffusivity at

different diffusion times using the mean squared displacement between the center of masses

of the spins during the two diffusion pulses. The instantaneous diffusivity was observed to

decrease significantly with diffusion time, illustrating the need to account for time-dependent

diffusivity in the HOTmix model. This again goes in line with observations presented by

Burcaw et al [18], in particular Figure 6a, where the perpendicular instantaneous diffusivity of

water in a dyneema phantom greatly varies for diffusion times between 0 and 200ms.

As pointed out by Burcaw et al. [18] and De Santis et al. [27], modeling inaccuracies in the

EA compartment might result in a "residual" that might be captured by the IA compartment,

biasing estimated microstructural features. In the case of ADD estimation, this might be

a potential source of the bias observed in Chapters 4 and 5. Our simulations indicate that

varying the protocol parameters G, Δ and δ have different effects on the EA signal for the exact

same b-value. At least two parameters change between shells used in protocols for ADD or

mean diameter estimation [6, 4, 31, 30], or to optimize sensitivity to a set of diameters (see

Chapter 5). The HOTmix model might prove to be useful in the context of ADD estimation

by capturing the shape of the EA signal with better accuracy compared to the EA models

used previously. Experiments exploring the use of the HOTmix model for ADD mapping are

presented in the next chapter.

Our experiments also indicate that parameters from the HOTmix model are related to mi-

crostructural features like the IA volume fraction or the mean diameter index and the standard

deviation of the cylinder diameters. Such observations might be exploited in ADD mapping in

order to constrain the problem, linking IA and EA estimates. Robustness of microstructural

features to noise should also be explored in order to propose a method applicable to real dMRI

signals.

As pointed out earlier, Westin et al. [99] linked characteristics of the b-tensor used for encoding

and the 4th and higher orders of the diffusion tensor. Such acquisitions might provide higher

sensitivity to the higher order components, providing improved fitting performance.

6.5 Conclusion

This chapter shows that the EA signal is better characterized when using the HOTmix model

compared to standard tensor models. The last chapter will present preliminary results regard-

ing ADD mapping when including such a model for the EA compartment.
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Overview

In Chapter 4, ADD reconstruction was shown to be robust when using the IA signal and the

ActiveAx protocol. However, estimates were biased when considering the EA compartment.

A richer PGSE protocol was proposed in Chapter 5, which improved the reconstruction of

unimodal and bimodal ADDs. A new model to characterize the EA dMRI signal was also

proposed in Chapter 6. In this chapter, we explore whether ADD reconstruction from the

full signal (IA and EA) can be improved by using the protocol proposed in Chapter 5 and the

HOTmix model to describe the EA compartment.

7.1 Introduction

As pointed out by Burcaw et al. [18] and De Santis et al. [27], improper modeling of the EA

space might be a major factor in the overestimation of the mean diameter index observed

when comparing ActiveAxMMWMD to histology. The same observation is likely to hold for ADD

estimation. As seen previously, robust ADD estimates can be obtained from noisy IA signals

using an ActiveAx protocol. The aims of the experiments described hereafter are to explore

the benefits of using another protocol designed to maximize sensitivity to a set of diameters,

and of using the HOTmix model, in terms of ADD reconstruction accuracy.

7.2 Methods

The different models used in this chapter were tested on a selection of substrates with 18

different gamma distributions and 70% packing density.

We first focused on the 20-shell protocol proposed in Chapter 5. The EA signal was computed

using our in-house MC simulator [81], as done in Chapter 4, and mixed with the IA signal such

that the IA volume fraction was of 70%. For the fitting, we used the ActiveAxADD formulation,
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namely a dictionary with an IA and an EA compartment. The dictionary was build with a

selection of cylinders to model the IA compartment (as done in Chapter 4), and either (i)

a mixture of zeppelins (to explore the benefits of using a richer protocol compared to the

ActiveAx protocol) or (ii) the HOTmix model to characterize the EA compartment (as done

in Chapter 6, to explore the benefits of using such a model for the EA compartment instead

of a mixture of zeppelins). No time-dependent term was used for D (2)
⊥ as experiments in

the previous chapter showed that the instantaneous diffusivity varied only slightly over the

diffusion times used in our simulations and the size of WM mimicking cylinders. Furthermore,

including time-dependence in the HOTmix model didn’t improve the results compared to the

basic HOTmix model.

As results improved when using HOTmix instead of a mixture of zeppelins, but were not

perfect, we explored whether adding a prior on the IA volume fraction could improve the ADD

reconstruction. In practice, if the IA volume fraction was to be known, it could be translated

into the problem by adding a row of ones to the IA columns, and zeros to the EA columns. The

signal to be fit should be extended with a value being equal to the IA volume fraction (set to be

70% in this case). This should promote solutions to the problem for which the sum of the IA

weights is close to the estimated IA volume fraction.

7.3 Results

Figure 7.1 shows the estimated ADD for 3 different substrates using either the IA signal only

(1st row), the whole signal with zeppelins for the EA compartment (2nd row), the whole signal

with the HOTmix model (3rd row), and the whole signal with the HOTmix model and a prior

on the IA volume fraction (4th row).

Similarly to the results using the ActiveAx protocol, the addition of the EA space had a relatively

minor effect on the ADD estimates for substrates with low diameter index. However, for sub-

strates with higher diameter index, the estimated ADD was heavily biased. The reconstructed

ADD was bimodal even though the ground-truth was generated using a gamma distribution

(Figure 7.1, 2nd row).

The use of the HOTmix model improved ADD estimates of substrates with large cylinders, but

worsened the estimated ADD for substrates with small cylinders (Figure 7.1, 3rd row).

Finally, the addition of a prior on the IA volume fraction slightly improved the ADD recon-

struction for substrates with small cylinders, but worsened the ADD estimates for substrates

with large cylinders, as a spurious peak appeared at the end of the ADD (Figure 7.1, 4th row).

The l2-norm between the largest cylinder used in the IA dictionary and the closest atom in

the EA dictionary was found to be 0.18 for the mixture of zeppelins, and 0.15 for the HOTmix

model (for 1’200 diffusion weighted samples). Even though the HOTmix model improved the

reconstruction of the EA signal, some of its components were closer to the signal of a cylinder

72



7.4. Discussion

compared to the axi-symmetric tensors used previously. When reconstructing the ADD from

the joint model, the IA signal was therefore more likely to be captured by components of

the HOTmix model. Furthermore, the condition number of the dictionary was found to be

3.6×1016 when using a mixture of zeppelins for the EA compartment, and it raised to 1.7×1017

when using the HOTmix model. Using the HOTmix model therefore made the problem more

ill-conditioned compared to using axi-symmetric tensors.

7.4 Discussion

Using the HOTmix model to characterize the EA compartment had a limited impact on ADD es-

timation. As shown in the results, ADD estimates improved for substrates with large cylinders,

but worsened for substrates with small cylinders.

Regularization might play an important role in the compartment model used for ADD recon-

struction. Indeed, no regularization was used for the EA compartment in this experiment [15].

However, HOTmix estimates appear to be sparse (i.e. only a few higher order tensors are se-

lected, as observable in Figure 6.6) even though such solutions are not particularly promoted.

Promoting such solutions, by applying an l1-penalty on the EA coefficients exclusively, might

improve ADD estimates compared to the current approach.

Having a higher correlation between the components of the HOTmix model and cylinders

showed that the IA axonal signal was more likely to be captured by components of the HOTmix

model, compared to the mixture of axi-symmetric tensors used previously. As the HOTmix

model improved the reconstruction of the EA signal, it seems that the EA signal has compo-

nents that are similar to cylinders (i.e. pseudo-restricted pools) which might arise from closely

packed cylinders. Improved EA reconstruction might therefore come at the cost of a larger

fraction of the IA signal being captured by cylinders in the EA compartment model, and vice

versa. Overall, using the HOTmix model coupled to a PGSE sequence seems to make it harder

to distinguish between the IA and EA compartments.

Westin et al. [99] proposed a formulation for b-tensors such that some elements can be

associated to the higher order components of the diffusion tensor. By properly designing

a b-tensor, the contrast to higher order components could be increased. If the IA and EA

signals can be better segregated with their higher order components, using b-tensor encoding

might be helpful in order to better distinguish the two comparments. Other sequences might

also improve the distinction between hindered and restricted compartments, like DDE, as

it has recently been shown to reduce model degeneracy [22]. Another viable approach, as

the problem seems to be the similarity between the IA and EA comparments, would be to

eliminate the EA signal. This can be done by using diffusion spectroscopy with metabolites

that are known to be present in the IA compartment only, for example. The first option has the

advantage that metabolites have lower diffusivity compared to water, lowering the diameter

lower bound and increasing sensitivity to small diameters. It comes at the cost of very large

voxel size, challenging the assumption of parallel cylinders. Factoring out the orientation
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dependence, using the Spherical Mean Technique (SMT) for example [55], might be an option

to circumvent this limitation. Using high b-values to eliminate the EA signal might be easier

to achieve on in vivo samples compared to ex vivo samples, as the diffusivity is higher and

the EA signal should decay faster to zero compared to ex-vivo samples. Finally, considering

different intrinsic diffusivities for the IA and EA compartment [58] might prove to be helpful

in order to distinguish between the two compartments.

NODDIAMICO and the framework proposed by Rensonnet et al. [83] use atoms that are mixtures

of IA and EA signals. Such an approach might be beneficial here, as the issue seems to be

the similarity between the IA and EA signals. In our approach however, there is no constrain

avoiding the solution to be made of purely IA atoms, or purely EA atoms, which is never

observed in our selection of substrates. In the framework presented by Rensonnet et al. [83],

each atom is generated from a MC simulation performed on both the IA and EA compartments,

and only one atom is selected per fiber population present in the voxel. The relative volume

fractions of the two compartments is therefore fixed, and by selecting only the atom that best

fits the signal, the two compartments can easily be segregated.

7.5 Conclusion

This chapter presents preliminary results concerning the use of the protocol designed in

Chapter 5 and the HOTmix model presented in Chapter 6, in terms of ADD reconstruction

accuracy when considering both the IA and EA compartments. Interestingly, results were

ambiguous when using the HOTmix model, showing worse ADD estimates for simulations

with small cylinders, but improved ADD reconstruction for simulations with large cylinders.

The limiting factor seems to be the similarity of the IA and EA signals. Further work is required

in order to provide accurate non-parametric and orientationally invariant ADD estimates from

signals including both IA and EA compartments.
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Figure 7.1 – Effect of using a mixture of zeppelins (2nd row) or the HOTmix (3rd row) EA models
on the estimated ADD. The first row shows estimates when considering the IA signal only.
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8 Conclusion

In this thesis, we have studied the different challenges at stake when estimating Axon Diameter

Distributions (ADDs) from diffusion MRI: model degeneracy, the "diameter lower bound",

and the difficulty in modeling properly the extra-axonal signal.

Performance was assessed by comparing estimates with ground-truth obtained from MC

simulations. The effect of voxel size on the dMRI signal was shown in Chapter 3, and motivated

the use of realistic voxel sizes in the remaining chapters.

In Chapter 4, ActiveAxAMICO was extended to ActiveAxADD by including Laplacian regulariza-

tion for the IA compartment. This formulation was shown to better regularize the problem,

providing robust ADD estimates for a wide variety of simulated white matter samples. ADD

estimates were however worsened when considering the EA compartment.

The diffusion protocol was modified to increase sensitivity to a set of diameters in Chapter 5,

showing improved ADD reconstruction when using the IA signal, as well as sensitivity to

population specific changes within the distribution, decreasing the degeneracy of the problem.

In Chapter 6, a new model to characterize the EA compartment signal was proposed, and

showed better signal reconstructions as compared to other state-of-the-art models.

However, as shown in Chapter 7, different combinations of these specific improvements didn’t

automatically yield better results in terms of ADD reconstruction when considering both the

IA and EA compartments. Even though experiments were focused on a very simple white

matter model (perfectly parallel and impermeable cylinders), the similarity between the IA

and EA compartment remained a challenging problem.

8.1 Perspectives

From our experimental results, it appeared that a wide variety of ADDs can be reconstructed

when using the IA signal. Most acquisitions consist of a mixture of IA and EA signals, but the
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IA signal can be isolated by using diffusion spectroscopy on metabolites that are know to be

present in the IA compartment only. The advantage of using such an approach would be the

lower diffusivity of metabolites compared to water, which would decrease the diameter lower

bound and increase sensitivity to smaller diameters. Specific protocols would nevertheless

have to be optimized for such lower diffusivity. As spectroscopy acquisitions have voxel sizes

of the order of the centimetre, it is highly unlikely to have perfectly parallel axons within a

voxel. ADD estimates should then be performed after factoring out the effect of orientation,

either by using the SMT method [55], or isotropic encoding sequences. In the case of crossing

fascicles with different ADDs, the estimated distribution might be multi-modal after factoring

out the orientation. This should in theory not be a problem for our framework, as shown in

Chapter 5, in particular thanks to the lower diffusivity of metabolites. The IA signal can also be

isolated by using b-values that are high enough to suppress the EA signal. For ex vivo samples,

b-values of 16’000 mm2/s were not enough to suppress the perpendicular component of the

EA signal (as shown in Chapter 6 and Chapter 7). However, b-values higher than 6’000 mm2/s

should be enough to suppress the EA compartment. In such a picture, the measured signal

can be modeled with a mixture of cylinders, giving estimates similar to the ones presented in

Chapter 4.

There are several options that might improve ADD estimates from whole signals (IA and EA

signals). First, the protocol proposed in Chapter 5 was designed considering the IA signal only.

Taking the EA signal into account [2, 13], using the HOTmix model for example, might result

in a protocol more suited for ADD estimation. As discussed in Chapter 7, model parameters

might be further contrained by imposing relationships between the IA and EA coefficients.

Such a relationship could be the tortuosity constrain in ActiveAxMMWMD [4]. The parameters

might also be contrained to follow the relationship observed between the mean 2nd-order

perpendicular diffusivity and the volume weighted mean diameter, as observed in Figure 6.7b.

Such constrains might require to implement an iterative fitting procedure, or a non-linear

implementation, and might also not improve drastically the estimated ADD.

Our experiments were exclusively based on the Pulsed Gradient Spin Echo sequence. Ben-

jamini et al. [15] showed ADD estimates in the ferret spinal cord that were in agreement with

measurements from histology, using Double Diffusion Encoding. The motivation behind

using DDE was to reduce the similarity between axons of similar diameter [14, 15]. However,

our experiments showed that similar accuracy in ADD reconstruction can be obtained using

ActiveAxADD and the signal of the IA compartment. The actual benefit of using DDE might

actually be an improved distinction between the hindered and the restricted signal. This might

be in line with observations made by Coelho et al. [22] with respect to DDE being able to

"prevent degeneracy in parameter estimation of biophysical models in diffusion MRI". The

degeneracy mentioned here concerns the IA and EA diffusivity, and DDE might provide IA

and EA signals that are less alike compared to PGSE. Careful experiments should be carried

on in order to see if using DDE could improve ADD estimates when considering both the

IA and EA compartments. Such experiments should include the generation of the EA signal

using MC simulations with realistic voxel sizes. If the tensor model turned out to deviate

78



8.1. Perspectives

from the EA signal, the HOTmix model might be of interest to model the EA signal and might

be incorporated in the model after deriving its formulation for a DDE sequence. Finally, if

using DDE is not a successful approach, other sequences like oscillating gradients [88] or

b-tensors [99] might be of interest to explore. Indeed, as pointed out by Westin et al. [99], a

link can be expressed between the structure of the b-tensor and higher order components of

the diffusion tensor. Properly designing a b-tensor might therefore provide a contrast to better

estimated this higher order components, increasing the sensitivity to the differences between

the IA and EA compartments.

All the work presented in this thesis was also based on the main assumption that white matter

tissue can be represented by infinite, straight, parallel and impermeable cylinders. This

approximation might be unrealistic, given the structure observable from electron miscroscopy

and syncrotron imaging. The time-varying behavior of the instantaneous diffusivity estimated

from MRI was also observed for the longitudinal diffusivity, but without specificity with

respect to the IA or EA compartment [36]. This illustrates the presence of disorder in the

parallel direction of the axons, countering the hypothesis that WM can be modelled with

perfectly parallel cylinders. For ADD mapping to be applied on real WM signals, the effect

of dispersion, permeability and crossings should be examined first. If the effect of such

parameters influences the estimated ADD, then they should be included in the formulation

of the model. Dispersion might be included in the dictionary, after being estimated using

NODDIAMICO [102, 25]. Indeed, each cylinder in the IA model can be generated with a given

diameter and dispersion [101]. Crossings can also be modeled by identifying populations

using Constrained Spherical Deconvolution (CSD), and the dictionary for ADD mapping

replicated for each population, similarly to the work done for the mean diameter index in

crossing voxels [8, 83].
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A Appendix: Derivation of the axi-
symetric HOT model

As all cylinders are perfectly aligned, the medium is isotropically symmetric, meaning that the

4th order tensor only has 6 non-zero terms: D (4)
1111, 6D (4)

1122, 6D (4)
1133, D (4)

2222, 6D (4)
2233 and D (4)

3333.

Assuming that diffusion is gaussian along n and independent of the radial diffusion process,

all terms of the 4th order tensor involving index 3 are set to zero. The 4th order tensor can thus

be reduced to:

b(4)
i1i2i3i4

D (4)
i1i2i3i4

= b(4)
1111D (4)

1111 +6b(4)
1122D (4)

1122 +b(4)
2222D (4)

2222.

Expanding the expression of the b-value gives:

b(4)
i1i2i3i4

D (4)
i1i2i3i4

= γ4δ4(Δ−3δ/5)(g 4
x D (4)

1111 +6g 2
x g 2

y D (4)
1122

+g 4
y D (4)

2222).

Assuming that the radial dMRI signal is the same for any perpendicular gradient with ampli-

tude G⊥; that D (4)
1111 = D (4)

2222 = D (4)
⊥ ; and considering two radial diffusion gradients g1 and g2

with angles α1 and α2 with respect to the x-axis respectively, such that ||g1|| = ||g2|| =G⊥, the

following must hold:

D (4)
⊥ (g 4

1,x + g 4
1,y )+6g 2

1,x g 2
1,y D (4)

1122 =
D (4)

⊥ (g 4
2,x + g 4

2,y )+6g 2
2,x g 2

2,y D (4)
1122

As

g1,x =G⊥cos(α1) , and

g1,y =G⊥si n(α1)
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then

g 4
1,x + g 4

1,y =G4
⊥((cos2(α1)+ si n2(α1))2 −2cos2(α1)si n2(α1))

=G4
⊥(1−2cos2(α1)si n2(α1)).

Similarly,

g 4
2,x + g 4

2,y =G4
⊥(1−2cos2(α2)si n2(α2)).

Furthermore,

g 2
1,x g 2

1,y =G4
⊥cos2(α1)si n2(α1) , and

g 2
2,x g 2

2,y =G4
⊥cos2(α2)si n2(α2).

The previous equation then becomes:

G4
⊥D (4)

⊥ (1−2cos2(α1)si n2(α1))+6G4
⊥cos2(α1)si n2(α1)D (4)

1122 =
G4

⊥D (4)
⊥ (1−2cos2(α2)si n2(α2))+6G4

⊥cos2(α2)si n2(α2)D (4)
1122

6cos2(α1)si n2(α1)D (4)
1122 −6cos2(α2)si n2(α2)D (4)

1122 =
D (4)

⊥ (1−2cos2(α2)si n2(α2))−D (4)
⊥ (1−2cos2(α1)si n2(α1))

3D (4)
1122(2cos2(α1)si n2(α1)−2cos2(α2)si n2(α2)) =

D (4)
⊥ (1−2cos2(α2)si n2(α2)−1+2cos2(α1)si n2(α1))

3D (4)
1122(2cos2(α1)si n2(α1)−2cos2(α2)si n2(α2)) =

D (4)
⊥ (2cos2(α1)si n2(α1)−2cos2(α2)si n2(α2))

3D (4)
1122 = D (4)

⊥

D (4)
1122 = D (4)

⊥ /3

The expression for the 4th order tensor can thus be written as:

b(4)
i1i2i3i4

D (4)
i1i2i3i4

= γ4δ4(Δ−3δ/5)D (4)
⊥ (g 4

x +2g 2
x g 2

y + g 4
y ).

Coming back to an arbitrary diffusion gradient g such that ||g || =G , we have

Gsi n(α) =
√

g 2
x + g 2

y ,
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so

g 4
x +2g 2

x g 2
y + g 4

y =G4si n4(α),

and the 4th order tensor finally reduces to:

b(4)
i1i2i3i4

D (4)
i1i2i3i4

= b(4)D (4)
⊥ si n4(α) (A.1)

where b(4) = γ4G4δ4(Δ−3δ/5). Equation 6.2 then becomes:

ln(S/S0) =−b(2)D (2)
∥ cos2(α)−b(2)D (2)

⊥ si n2(α)

+b(4)D (4)
⊥ si n4(α).

(A.2)
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