
CHILI LAB 

 
 
 

 

Cellulo Learning Activity 
Semester project report 
 

 

 

 

 

 

 Bastien Beuchat & Andrea Scalisi 

 2019-01-11 

  



 

Acknowledgments 
 
First of all we would like to thank all the people from the CHILI lab that helped us to accomplish this semester 
project. We are grateful to Pierre Dillenbourg, who allowed us to do this project in his lab, and Ayberk Özgür who 
supervised us, always had answers to our questions, and gave us good advices. We sincerely thank Wafa Johal for 
supervising us and being available during the whole semester, and Arzu Özgür Güneysu for her attendance and 
opinion at our first meeting. We finally thank Florence Colomb who allowed us to have access to the lab during 
the holidays, and Sergei Volodin, whom we have never met but whose work has made it possible to add 
augmented reality to our project.  



 

Table of contents 
 

1 Introduction ....................................................................................................................................................... 1 

2 SolveSpace ......................................................................................................................................................... 1 

2.1 What is SolveSpace ? ................................................................................................................................ 1 

2.2 Why SolveSpace ? ..................................................................................................................................... 1 

2.3 How does it work ? ................................................................................................................................... 1 

3 Limitations ......................................................................................................................................................... 2 

3.1 Consequences for our plug-in ................................................................................................................... 3 

4 Integration to the project .................................................................................................................................. 3 

4.1 Structure of the code ................................................................................................................................ 3 

4.1.1 CelluloGeomPoint2d ............................................................................................................................. 3 

4.1.2 CelluloGeomLine ................................................................................................................................... 3 

4.1.3 CelluloGeomConstraint ......................................................................................................................... 3 

4.1.4 CelluloGeomSystem .............................................................................................................................. 4 

4.2 Interaction with the robots ....................................................................................................................... 4 

4.3 Make it a plug-in ....................................................................................................................................... 5 

4.4 Compatibility ............................................................................................................................................. 5 

4.5 Augmented Reality .................................................................................................................................... 5 

5 Activities based on the plug-in .......................................................................................................................... 6 

5.1 Simple demo ............................................................................................................................................. 6 

5.2 AR demo .................................................................................................................................................... 6 

5.3 Editor with AR ........................................................................................................................................... 7 

6 Conclusion ......................................................................................................................................................... 8 

6.1 Final product and utility ............................................................................................................................ 8 

6.2 Possible improvements ............................................................................................................................. 8 

6.3 Personal feedback ..................................................................................................................................... 9 

 

 

  

 



Cellulo Learning Activity – Semester project 

Bastien Beuchat & Andrea Scalisi 1 2019-01-11 

1 Introduction 
 
For our bachelor semester project, we decided to create a new learning activity with the Cellulo robots. We had a 
few different ideas, but after a couple of meetings with Wafa Johal and Ayberk Özgür, the following idea came 
out : a geometric plug-in which will allow to create interesting situations with the robots, involving shapes and 
constraints. 
 
Such a plug-in would be really useful for school teachers for example. Indeed, children are taught geometry at 
school, but it is known that mathematics are not the funniest activity in the world from the point of view of 
schoolchildren. However, when it comes to play with robots and other technological stuff, everything becomes 
more interesting. By combining both, we strongly believe that their curiosity could be awaken, and that it could 
lead them to make their own experiences with geometric shapes, which would develop their instinct and 
comprehension in this domain. 
 
The goal of our project was then defined : find an already existing geometric tool that allows to create shapes and 
add constraints to them in two dimensions, and adapt it to make a simple usable plug-in for the Cellulo robots. 
 
This is why the first step of our project was to find an open source geometric tool. 
 

2 SolveSpace 
 
It was not easy to find a convenient geometric tool. We had the following criteria : open source, light, implemented 
in C/C++, allows 2D geometric constraints. We spent a quite important amount of time trying several different 
programs. 
 
We eventually found a tool named SolveSpace, which seemed promising. 

 

2.1 What is SolveSpace ? 
 

By its definition, SolveSpace is a free and open source 2D and 3D computer-aided design program. It is a constraint-
based parametric modeler with simple mechanical simulation capabilities.1 

 

2.2 Why SolveSpace ? 
 

As you may have noticed, the definition of SolveSpace matches exactly what we needed. It is implemented in C++, 
which means that it is easily compatible with Qt to integrate it with the robots. Moreover, it provides its constraint 
solver in a library. 

 

2.3 How does it work ? 
 

For our project, we really care only about the two dimensional part of SolveSpace. When the program is launched, 
a simple editor which looks like this is displayed : 

                                                             
1 Definition taken from : https://en.wikipedia.org/wiki/SolveSpace 



Cellulo Learning Activity – Semester project 

Bastien Beuchat & Andrea Scalisi 2 2019-01-11 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In this example, we can observe three points, three segments, and two constraints : one distance constraint on a 
segment (i.e. a distance constraint between two points), and an angle constraint between two segments. 
 
As you can see, SolveSpace allows us to add lots of points and segments (referred as “entities”), in order to create 
geometric shapes such as lines, triangles, quadrangles, etc. and then add constraints on them. This means that  
lots of interesting geometric situations can be created, and the points and segments can be moved to see how the 
shapes behave under the constraints. The solver computes a new solution to the problem every time an entity is 
moved in the plan. 
 

3 Limitations 
 
As said earlier, SolveSpace is simple. This means that users can add as much constraints as they want to a situation, 
which can make the problem unsolvable. Another limitation is the fact that when adding an angle constraint 
between two lines, the order in which the points have been added to each line matters for SolveSpace. Imagine 
that a line is a vector, going from the first point to the second point that has been added to the line. Then, when 
SolveSpace adds an angle constraint between two lines, the angle is set as an angle between two vectors. 
 
Here are two examples. On both cases the two same lines were created, but the points were not added in the 
same order. On the left, the two lines were created like this :  : line1(point1, point2) and line2(point3, point4) and 
on the right, they were created like this : line1(point1, point2) and line2(point4, point3). Then, in both situations, 
an angle of 60° is added between those two lines. SolveSpace will set the constraint like this : 
 

 

Insert entities to the situation 
(points, segments, etc.) 

Add constraints to the entities 
(angles, distance, parallel 
lines, etc.) 



Cellulo Learning Activity – Semester project 

Bastien Beuchat & Andrea Scalisi 3 2019-01-11 

3.1 Consequences for our plug-in 
 
The first limitation mentioned above means that, by using our plug-in, users can create unsolvable situations, in 
which case the solver will simply stop trying to solve the problem. But in this case, we can give the user a feedback, 
and thus this limitation is not a real issue. However, the angle assignment could be counter-intuitive for some 
users. This is why any developer that will implement activities with our plug-in should keep this limitation in mind 
when designing his/her program. 
 

4 Integration to the project 
 
In order to make SolveSpace work with Cellulo, we indeed had to create our own C++ classes to adapt and use the 
code from the SolveSpace library. This was the most challenging part of this project, and this paragraph explains 
the structure of the plug-in we created, with a few details about the decisions we had to make. 

 

4.1 Structure of the code 
 

As you may have understood, a geometric situation in SolveSpace is a system, in which you can add entities and 
constraints. We chose a structure for our plug-in based on the actual structure of SolveSpace2. To make it 
consistent, we decided to add the prefix “CelluloGeom” to every class. Then, in our plug-in, the system is 
represented by a “CelluloGeomSystem” object, the constraints are represented by “CelluloGeomConstraint” 
objects, and the entities are sub-divided into two groups : “CelluloGeomPoint2D” and “CelluloGeomLine”. 
 
Every entity and constraint has a “geomId”, which is a unique identifier used both by SolveSpace and by our plug-
in. 
 
Here are basic explanations about the behaviour of the classes. 

 
4.1.1 CelluloGeomPoint2d 
 
A CelluloGeomPoint2D simply represents a point in two dimensions. A point needs two parameters, X and Y which 
correspond to its coordinates. 
 
4.1.2 CelluloGeomLine 
 
A CelluloGeomLine represents a line, made of two already existing CelluloGeomPoint2d. 
 
4.1.3 CelluloGeomConstraint 
 
A CelluloGeomConstraint represents a constraint, which has a value, a type, and references to the entities to which 
it applies. It can be two points, two lines, or one point and one line. All the different types of the constraints are 
defined in an enum in the header file. 
 
 

                                                             
2 Please refer to the document « solvespace_library.txt » in the root folder of the plug-in 



Cellulo Learning Activity – Semester project 

Bastien Beuchat & Andrea Scalisi 4 2019-01-11 

4.1.4 CelluloGeomSystem 
 
The system itself. This is where all the links with SolveSpace are made. The CelluloGeomSystem contains a 
reference to a SolveSpace system, arrays with CelluloGeomLines, CelluloGeomPoint2d, CelluloGeomConstraint, 
and some maps that link objects from the CelluloGeomSystem to the real SolveSpace system. 
 
All the Q_INVOKABLE methods are implemented in this class. That means that a QML developer will only use 
methods from this class when using our plug-in. 
 
To sum up everything, the CelluloGeomSystem class invoke the solver method from SolveSpace, and then maps 
the results from SolveSpace to the internal representation of the system. 

 

4.2 Interaction with the robots 
 

Once the C++ side of the plug-in was written, we had to bind it with the robots. This paragraph explains how we 
did it in our examples in QML and why we think it is the most suitable way of doing it. 
 
Even though we remembered that Pr. Dillenbourg told us during his class “Introduction à l’informatique visuelle” 
that “intuitive” doesn’t really exist, something that we find “intuitive” is something that we have previously learned, 
we still wanted to find a way to interact simply with the robots to make the system feel like it is intuitive. 
 
First of all, we decided to map robots and points together. Hence, the coordinates X and Y of a robot correspond 
to the coordinates X and Y of a CelluloGeomPoint2d. 
 
Then, a line is simply composed of two robots. We did not find useful to make it possible to add more than two 
robots on a line since a line is mathematically defined by two points. Moreover, robots belonging to the same line 
can be identified with the same colour, and it is possible to add augmented reality to our plug-in3. 
 
Finally, we had to decide how the user can inform the system that he desires to move an entity. We chose the 
following principle : if a robot is simply moved by the user, then it will go back to its place. If the user wants to 
modify the position of the robot (i.e. the position of a point), he has to press any button of the robot while moving 
it. Doing so, it updates the system which is solved by SolveSpace, and the other robots start moving to maintain 
the constraints of the system. 
 
There are two reasons for this choice, the first one being that pressing a button ensures that the user really wants 
to modify the system. The second reason is more technical. Indeed, we need to know which robot is moved by the 
user. Otherwise, since all robots would update their position every time they move, there would be a conflict : 
they would try to go to their new position computed by SolveSpace and at the same time SolveSpace would try to 
re-compute a solution with the new positions of all the robots, which would cause an infinite loop and would lock 
all the robots. 
 
 
 

 

                                                             
3 Please refer to the last paragraph of this section for more details 



Cellulo Learning Activity – Semester project 

Bastien Beuchat & Andrea Scalisi 5 2019-01-11 

4.3 Make it a plug-in 
 

Another thing we had to do with our C++ code was to make it a real installable plug-in. Indeed, we do not want 
future users to have to include all our C++ classes in their CelluloGeom projects4. 
 
To do so, we had a look at the others QML plug-ins of the Cellulo project and created a QT plug-in that wraps our 
classes. Our plug-in is called “CelluloGeomModel” and it involved the creation of two files : 
“cellulogeommodel_plugin.cpp” and “qmldir” which configure the plug-in when we install it with the command 
“make install”. 
 
Then, once it is installed on a computer, our plug-in can be used in any Cellulo project simply by adding the 
following line : “import CelluloGeomModel 1.0”. 
 

4.4 Compatibility 
 

While developing the plug-in, we tested it on its desktop version (i.e. on the computer). Naturally, in order to add 
more interesting features as augmented reality and to improve its portability, we also wanted it compatible with 
Android. 
 
We have to admit that we had a mini hearth attack when, half-way of the project we realized that we did not know 
if SolveSpace was compatible with Android. But luckily for us, life is fair and it was not too complicated to make it 
work on Android. 
 
Hence, our plug-in works both on desktop and Android, and is indeed compatible with the Pool and the Hub 
developed for the Cellulo project. 
 

4.5 Augmented Reality 
 

As said earlier, we managed to make our plug-in work with augmented reality5, thanks to the already existing plug-
in “qml-ar” developed by Sergei Volodin. 
 
This feature is really useful to visualize shapes created by the robots. In our samples, an AR component is created 
for each line in the system. An AR line is a 3D rectangle with a small height and width, its length is simply the 
distance between the two robots (i.e. points) composing the line, and its orientation is computed with the angle 
of the line relatively to the X axis. Labels for lines, points and angles are also displayed in AR. 
 
However, we noticed an improvement that could be made with the augmented reality and this will be discussed 
in the section “Conclusion : possible improvements”. 
 
 
 

 

                                                             
4 You can find the installation procedure in the README of our plug-in 

5 Later referred as AR 



Cellulo Learning Activity – Semester project 

Bastien Beuchat & Andrea Scalisi 6 2019-01-11 

5 Activities based on the plug-in 
 
Since the theme of this project is “Learning Activity”, we had to provide a real learning activity in addition to the 
plug-in. We made three different samples6, which show the possibilities of our plug-in. 

 

5.1 Simple demo 
 

The first one is called “cellulo_constraints” and can be run both on desktop and on Android. In this demo, there 
are four robots which form two lines. The lines are identified by their colours : one is made of two robots with red 
lights, and the other is made of two robots with blue lights. 
 
On the control panel of the application, there are three toggle buttons that can activate or deactivate three 
constraints : the length of the blue line, the length of the red line, and an angle between the two lines. Each 
constraint has a slider, which allows to adjust its value. Then, the evolution of the system can be observed when 
the robots are moved, depending on the number of constraints enabled and their values. 
 

 
 

5.2 AR demo 
 

The second one is a basic demo to show how augmented reality works with our plug-in. Since it needs the camera, 
it is better suited for Android but could be run on a computer with a camera. It is called “ar_cellulo_triangle”. 
 
It is composed of three robots that form a triangle, which is rendered in AR on the screen. There are initial 
constraints on the triangle : two angles of 60 degrees, which forces the third one to be 60 degrees as well and 
hence make the triangle equilateral. Since there are no length constraints on the sides of the triangle, the robots 
can be moved to see how the triangle remains proportional. 
 
We added a button called “Change shape”, which modifies the angle constraints to the following values : 90 
degrees and 45 degrees, which forces the third angle to be 45 degrees as well. This button has for purpose to show 
how the AR shape can evolve relatively to the system. 
 

                                                             
6 The samples can be found in “Samples” in the root folder of the plug-in 

The interface of « cellulo_constraints » 



Cellulo Learning Activity – Semester project 

Bastien Beuchat & Andrea Scalisi 7 2019-01-11 

 

 
 

5.3 Editor with AR 
 

The third demo, called “ar_cellulo_editor” is the most complex one, gives the user freedom, and should be 
considered as our official learning activity. As its name suggests, it is an editor which allows the user to create 
custom geometric situations. 
 
There are just points at the beginning, indicated by robots with white lights. Up to twelve robots can be added. 
They can be selected by clicking on them on the screen. When a robot is selected, it turns red. Then, by clicking 
on the button “Create shape”, it will create a shape depending on how many robots have been selected. Once the 
shape is created, all its lines will be rendered in augmented reality and all the robots of this shape will be lightened 
with the same random colour, excluding red or white, since it is already referring respectively as a selected robot 
or as a point. The lines rendered in AR have the same colour as the robots they are attached to. 
 
For example, if two robots are selected, a click on “Create shape” will add a line to the system. The two robots will 
become, say green, and a green line between those two robots will be rendered in AR. Then, three other robots 
could be selected and a click on “Create shape” will create a triangle (i.e. three lines). The three robots will become, 
say blue, and three blue lines will be rendered in AR.  
 
Please note that creating a shape with one robot is useless and not possible, since a robot is already a point. 
 
Obviously, the button “Add constraint” adds length or angle constraints to the created shapes. 
 
To add a length constraint, two robots have to be selected on the screen. Then, by clicking on “Add constraint”, a 
length constraint will be automatically added between those two robots. It will open a new tab on the app, which 
allows the user to activate, deactivate, or modify the value of the freshly added constraint (as in the 
“cellulo_constraint” demo). Please note that it also works with robots that are just points and not necessary 
previously added in a shape. 
 
To add an angle constraint, two lines must be selected by clicking on their AR component on the screen. Then, 
clicking on “Add constraint” will automatically add an angle constraint between those two lines, that can be tuned 
in a similar way to the length constraints. 
 

The interface of « ar_cellulo_triangle » 



Cellulo Learning Activity – Semester project 

Bastien Beuchat & Andrea Scalisi 8 2019-01-11 

We decided to let users freedom, and not checking that constraints are coherent between them, as SolveSpace 
does. The user will just be notified when the system is unsolvable, and the initial situation can be reloaded simply 
by clicking on the button “Reset”. 
 

  
 
 
 

6 Conclusion 
 

6.1 Final product and utility 
 

Our plug-in is, from our perspective, really complete, and could be exploited to create lots of different geometric 
activities. 
 
Our “ar_cellulo_editor” activity could already be used by school teachers, who want either to create situations to 
give children instinct, or to test the ability of children to create specific situations according to the teacher’s 
instructions. 
 
Indeed, we believe that it is more entertaining and motivating for a children who is asked : “Can you create an 
equilateral triangle ?” to play with robots and a tablet, and then be able to tangibly test their construction by 
moving the robots, than just drawing a triangle on a sheet of paper. 

 

6.2 Possible improvements 
 

Earlier, we mentioned a possible improvement with the augmented reality. It is not directly related to our plug-in, 
but it is related to its association with the augmented reality. Having AR components rendered, in addition to 
multiple calls to the solve function of SolveSpace when a robot is moved, make the overall computation heavy. 
This has for a consequence to make the application slow. This problem could be solved by executing all the 
SolveSpace computations or AR rendering in another thread. 
 
Another aspect that could be explored is using more different constraints. Indeed, a CelluloGeomConstraint has 
34 different types of constraints, and we clearly did not use all of them in our samples. 
 
Eventually, new types of entities could be added to the plug-in, such as “CelluloGeomCircle” for example. 

The tab « Editor » of « ar_cellulo_editor », 
with two shapes and one selected robot 

The tab « Constraints » of « ar_cellulo_editor », that 
opens automatically when you add a constraint 



Cellulo Learning Activity – Semester project 

Bastien Beuchat & Andrea Scalisi 9 2019-01-11 

6.3 Personal feedback 
 

During this project we experienced situations in which we had to be really innovative, as there were no answers 
to our questions on the internet. Indeed, it was the first time in our academic background that we had to really 
do something that nobody has ever done before. It taught us that with perseverance, almost every problem has a 
solution, or in the worst case an alternative. 
 
The development of the activities also stimulated our creativity. The feeling of building something real and useful, 
that could be used in the real world, was really motivating, and gave us a preview of what it is like to live the life 
of a computer engineer. 
 


