
2019

Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

BINGQING CHENG

Présentée le 18 janvier 2019

Thèse N° 9183

Predicting homogeneous nucleation rate from atomistic 
simulations

Prof. P. Muralt, président du jury
Prof. M. Ceriotti, directeur de thèse
Prof. M. Parrinello, rapporteur
Dr M. Salvalaglio, rapporteur
Prof. B. Smit, rapporteur

à la Faculté des sciences et techniques de l’ingénieur
Laboratoire de science computationnelle et modélisation
Programme doctoral en science et génie des matériaux 





Acknowledgements
I owe a debt of gratitude to my supervisor for mentorship and encouragement throughout the

PhD. I could not have asked for a better supervisor. I want to thank my collaborators for their

excellent work and the joy of working together. I am also grateful to some other lab mates,

including the ones in the labs that I visited, for their help and the fun time spent together. I

thank the people who guided me and gave me enormous inspiration.

I appreciate very much the long-lasting friendships that give me tremendous mental

support. I am very grateful to my extremely supportive parents, and my loving husband.

i





Abstract
Nucleation is ubiquitous, from the formation of clouds to the preparation of pharmaceutical

compounds, from metal casting to the tempering of chocolates, and from the growth of

beautiful nautilus shells to the assembly of microtubules in cells. The first experiment for

observing a nucleation event was performed by Fahrenheit in 1724, and it can be easily

replicated in a kitchen: simply place a bottle of purified water in the freezer. The liquid water

can be cooled to far below zero degrees Celsius without freezing due to the lack of microscopic

nuclei, which are the embryos from which the freezing phase transition can occur. After that,

shaking the bottle will induce nucleation which in turn prompts a rapid ice crystallization.

Despite its pivotal importance and long history, we only have a rough idea about the

underlying mechanism of nucleation. The classical nucleation theory says that, during the

growth of a nucleus inside a bulk phase, an interface that surrounds the nucleus has to be

created. This interface is associated with an energy penalty, which the system has to overcome

for the nucleus to grow into a critical size which precedes an avalanche of structural transitions.

It is analogous to being stuck in a valley on the Alps, so that a great deal of time and energy

have to be spent to climb over a peak in order to reach another valley. And yet, we have not

reached a quantitative understanding of how high the energy barrier is and how long is the

waiting time of nucleation for specific systems. Taking again the example of ice nucleation

from bulk liquid water, there has been a long-standing discrepancy by more than 10 orders of

magnitude between the measured and the predicted expectation time of nucleation. While the

classical nucleation theory is able to paint a physical picture of nucleation, for many systems

it is insufficient and thus needs extension.

Despite substantial improvements in recent years, experimental characterization of the

dynamical nucleation processes is extremely difficult, which motivates atomistic modelling

efforts that use numerical simulation techniques. However, atomistic simulations also faces a

number of challenges: firstly the typical time scales accessible to atomistic simulations are

confined to below microseconds, while nucleation can take hours or days to occur. We have

mitigated the challenge by employing state-of-the-art enhanced sampling methods in the

simulation studies of nucleation [1–5]. In a nutshell, instead of naively waiting for a rare event

to happen, we place a bias to help the system overcome the energy penalty of nucleation. To

return to the earlier analogy with Alpine hiking, we can flatten out the Alps by depositing (a lot

of) sand into all the valleys, making the landscape level and easy to explore.

Secondly, only microscopic quantities such as the coordinates and the velocities of each

atom can be directly obtained from simulations. On the contrary, macroscopic observables
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such as heat content can be easily interpreted by human brains, enter analytic expressions

that explain the phenomena, and be measured experimentally. Compressing the astronomical

amount of information contained in the microscopic quantities into a handful of macroscopic

observables can be a daunting task as there are countless ways to do so and not all are

meaningful. A major part of the problem may sound semantic: what is one phase and what

is another? It is surprisingly hard to tell at the molecular level. Think of an ice nucleus

embedded in liquid water: how can we determine which molecules belong to the solid phase,

and which ones belong to the liquid? What about the molecules that are close to the interface?

Inspired by the concept of Gibbs dividing surface from the founding father of statistical

mechanics, we formulated a thermodynamic framework that reconciles the picture emerging

from simulations with macroscopic theories of nucleation [1, 2]. Crucially, by defining the

interface between two phases and its associated free energy in a rigorous and self-consistent

manner, we are able to accurately extract the energy and the entropy costs to form a new

phase and to create an interface, enabling stringent validation and extension of the classical

nucleation theory [3–5].

The third challenge stems from the shortfalls of atomistic modelling itself. In most cases,

the interactions between atoms and molecules are mimicked by so-called empirical force

fields, which are analytic functions with tunable fitting parameters that take atomic positions

as inputs and return energy and forces. Another option is to compute the interactions from

first principles using the tools from quantum chemistry, which is prohibitively expensive and

thus not practical for systems with more than hundreds of atoms and for time scales longer

than a nanosecond. There is, however, an alternative way to combine the merits of both the

first principles and the empirical force field approaches, by exploiting machine learning (ML)

techniques to “learn” the atomic interactions from quantum mechanics. In essence, a ML

atomic potential “remembers”a pre-computed database of reference structure-property pairs,

and makes predictions about a new structure by comparing it to the members of the reference

set. Recently, we have constructed a ML potential for water, which is able to reproduce well

several thermodynamic properties of water including the melting point [6]. We are currently

combining this ML potential with the aforementioned enhanced sampling methods and the

thermodynamic framework, in order to arrive at a predictive model of ice nucleation.

The field of nucleation is undergoing a renaissance in recent years. Despite all the progress,

we are still in the early stages regarding what we know and what we do not know about nucle-

ation. Perhaps marrying statistical mechanics with machine learning provides the missing

ingredients to achieve predictive modelling and quantitative understanding of nucleation.

Key words: nucleation, phase transition, interface, free energy methods, machine learning

potential, molecular dynamics
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1 Introduction

1.1 Background

Nucleation is a key step in bulk phase transitions [7–10]. This process plays a crucial role

in natural phenomena and in technological applications, from the formation of clouds [10]

to self-assembly[11], and from casting to the growth of thin films [12, 13]. An important

class of problems in nucleation is solidification (i.e. the formation of solid inside bulk liquid

at undercooled conditions). Solidification underlies many natural phenomena such as the

freezing of water in clouds and the formation of igneous rock, and is is also crucial for various

critical technologies including commercial casting, soldering and additive manufacturing [14–

16]. In the present thesis we focus mostly on solidification, because of its pivotal importance,

and also because in the case of solid nucleus inside the liquid the Laplace pressure (e.g. is

the pressure difference between the inside and the outside of a curved surface that forms the

boundary between the two regions) has little influence on the chemical potential of the solid,

which makes the problem somehow simpler compared to bubble nucleation or condensation.

Despite the ubiquity of the nucleation phenomena, experimental characterization is diffi-

cult due to the highly dynamical process at out-of-equilibrium conditions, and considerable

uncertainties involved in the measurements [17, 18]. These difficulties have triggered numer-

ous computational efforts for understanding nucleation, such as evaluating the free energy

change associated with nucleation using atomistic simulations [10]. Atomistic modelling of

nucleation is plagued with technical difficulties, however, as molecular dynamic simulations

have very short time scales and their accuracy is limited by the interatomic potential energy

surfaces assumed in the simulations. Notwithstanding the tremendous amount of efforts from

both the experimental and the theory sides in the last a few decades, a quantitative interpre-

tation of the nucleation phenomena has not been achieved, and the current understanding

goes little beyond the textbook picture of the classical nucleation theory (CNT).

In the remainder of this chapter, we first briefly introduce the classical theory of nucleation,

then summarize the state-of-the-art experimental as well as computational methods for

studying nucleation, and finally identify the challenges involved in the atomistic simulation

1



Chapter 1. Introduction

Figure 1.1 – A schematic of an under-cooled liquid system that contains multiple solid sub-
critical clusters.

studies of nucleation and outline the motivation behind the current thesis.

1.2 Theory of nucleation

A comprehensive theory of nucleation must have two essential elements: an explanation

of the nucleation and phase transition mechanism, and a formulation that can be used to

interpret and predict nucleation rates. The starting point of a nucleation theory is that the

new structure formed inside the metastable bulk phase can be conceptualized as a separate

entity named nucleus whose kinetics and thermodynamic properties can be modelled and

analyzed, so that one does not have to consider the rest of the microscopic events occurring

inside the remaining metastable bulk phase. This starting point of the nucleation theory

comes with a subtle drawback: it is not evident how to identify solid and liquid and draw the

boundaries between a crystal nucleus and the surrounding undercooled melt, and as such the

very identification of a number of particles that belong to the nucleus can be ambiguous. In

the followings we first bypass this drawback and directly introduce the classical nucleation

theory and the various extension to it, while bearing in mind that the very foundation of

any nucleation theory-the definition of a nucleus-is often the core cause of why a nucleation

theory may fail.

2
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Figure 1.2 – A schematic of the bulk, the surface and the overall Gibbs free energy of a solid
cluster as a function of its size ns.

Classical nucleation theory

The classical nucleation theory (CNT) is the simplest and perhaps the most useful model

rationalize nucleation. It assumes that the stable phase forms by growth of nanoscopic

nuclei [19]. These clusters are unstable when they are smaller than a critical size n?, and at

any given time the metastable phase contains multiple sub-critical clusters of the stable phase

(Figure 4.2).

In the context of the homogeneous nucleation of crystalline solids from bulk liquid, CNT

assumes that G(ns) can be expressed as the sum of a bulk and a surface term [9] i.e.

G(ns) =µslns +γA(ns). (1.1)

In this expression the first bulk term stems from the difference in chemical potential between

the solid and the liquid µsl =µs −µl, which is negative below the coexistence temperature Tm.

The second term describes the penalty associated with the interface between the two phases,

and introduces a kinetic barrier to nucleation. This surface term is the product of a specific free

energy excess term γ, and the extensive surface area A(ns). However, due to the diffuse nature

of the interface, there is a degree of ambiguity in the location and area of the dividing surface

between phases. In classical nucleation theory (CNT), an infinitesimally-thin dividing surface

divides the solid nucleus from the surrounding liquid. These two phases are usually taken

to have their bulk densities so the surface area of the solid nucleus can be calculated using

A(ns) =σns
2/3, where σ is a constant that depends on the shape, e.g. σ= (36π)1/3v2/3

s for a

spherical nucleus with bulk solid molar volume vs. Under these assumptions, the free-energy

barrier to nucleation can be calculated using G? = 4
27σ

3µ−2
sl γ

3.

In many cases, nucleation is an activated process, that is, there is usually a very long waiting

time before an occurrence of such event, but once it starts to happen the process itself takes

3



Chapter 1. Introduction

a very short amount of time. For such processes with time-scales separation, the Transition

State Theory (TST) theory can be employed, and the nucleation rate can be obtained from the

standard Arrhenius expression of the transition state theory, i.e.

J = J0 exp(−G?/kB T ), (1.2)

where J0 denotes a kinetic prefactor. There are different approaches to estimate the prefactor

J0, which is frequently expressed as

J0 = (1/vl)Z f + (1.3)

where vl is the molar volume of the undercooled liquid, f + is the addition rate of particles to

the critical nucleus, and the Zeldovich factor

Z =
√

1

2πkB T

d 2G(ns)

dn2
s

(1.4)

can be obtained from the nucleation free energy profile G(ns). Note that the expression for

the Zeldovich factor Z was derived by solving the Becker and Döring Master equation for

nucleation kinetics [7, 20].

The nucleation rate J is a measure of how frequently nucleation events occur for a unit

volume of the system that belongs to the metastable bulk phase. For a specific system with

volume V , the expected amount of time for the system to remain in the mestastable phase is

characterized by the the induction time τ?, which is related to the nucleation rate by

τ? = 1

JV
. (1.5)

The classical nucleation theory has long been criticized for the various simplifying assump-

tions involved [21]:

• The nucleus embedded inside the metastable substrate is assumed to adopt the same

macroscopic properties (e.g. density, enthalpy, free energy) of the stable phase.

• The nucleus is assumed to be spherical.

• The interface between the nucleus and the metastable bulk phase is assumed to be

infinitely thin.

• The interfacial free energy of the interface is assumed to be independent from the

curvature of the interface, that is, γ(R) = γ(∞).

Apart from the danger that these assumptions may lead to oversimplifications, CNT also

suffers from the problem that it has limited range of application, e.g. it is unable to explain the

4



1.2. Theory of nucleation

vanishing of the nucleation barrier at high undercoolings. Despite these limitations of CNT,

it is frequently used as a baseline model due to its general form and physical insights, and

the various extensions and developments in the theoretical modelling of nucleation are built

upon the foundation of CNT.

Two-step nucleation process

The original formulation of CNT assumes that a crystal nucleus inside the melt grows by the

gradual attachment of individual particles, and as such, the number of particles belonging

to the cluster is the natural reaction coordinate for describing the nucleation process, and

there is a single free energy barrier that the system has to overcome to form a critical nucleus.

However, it has been proposed that the formation of crystals from liquids may occur according

to a two-step nucleation mechanism: an amorphous cluster is formed first by overcoming a

first free energy barrier by means of density fluctuations, and then the cluster begins to adopt

crystalline order after surmounting a second free energy barrier.

Ostwald’s rule

Another phenomenon that can further complicate the process of nucleation is the polymor-

phism of crystals, which is the ability of a solid to exist in more than one crystallographic

structure. Ostwald’s rule states that it is not always that case that the most stable polymorph

form during nucleation, but rather may proceed by one or more intermediate polymorphs

that are metastable but have free energies closer to the initial phase [22]. It is hard to imagine

how polymorphism will affect the validity of the central tenet of CNT (Eqn. (1.1)) provided that

the chemical potential and the interfacial free energy terms properly reflect the properties of

the polymorph that actually nucleates, but it makes the modelling and interpretation of the

nucleation process even more complicated.

Heterogeneous nucleation

Heterogeneous nucleation is nucleation with the nucleus first formed at preferential sites such

as an impurity or a surface, is much more common than homogeneous nucleation. In some

cases of the heterogeneous nucleation the presence foreign substrate promote nucleation

because the phenomenon of wetting changes the equilibrium shape of the critical nucleus.

The shape change thereby lowers the effective surface energy and diminishes the free energy

barrier. The process is often rationalized such that heterogeneous nucleation free energy is

equal to the product of homogeneous nucleation and constant factor less than one, i.e. [10]

∆Gheter og eneous =∆Ghomog eneous × f (θ), (1.6)

where f (θ) = (2−3cosθ+cos3θ)/4 is a function of the contact angle θ.

5



Chapter 1. Introduction

Density functional theory

The motivation of using a continuum model to describe nucleation comes from the realization

that physical interfaces are diffuse but are assumed to be infinitesimally thin under the

classical nucleation theory. One of the most popular continuum models is density function

theory (DFT), which uses the density distribution function of a system to characterize the

structures and properties. In the framework of DFT, the mean field Helmholtz free energy of a

fluid-fluid system is expressed as a functional of the local density ρ(r) [23]:

F (ρ(r)) =
∫

V
drFh(ρ(r))−µρ(r)+ 1

2

∫
V

dr
∫

V
dr’ρ(r)ρ(r’)V (|r− r’|), (1.7)

where Fh(ρ(r)) denotes the Helmholtz free energy of a uniform fluid with density ρ, µ is the

chemical potential, and V is the pair-wise interaction potential between particles. Although

DFT methods are in principle exact, approximations are usually made in calculations. One of

the most widely used approximations is the Cahn-Hilliard theory of interfaces and nucleation,

which approximates the free energy using a local term and a square-gradient term of the

density,i.e. [24]

F (ρ(r)) =
∫

V
drFh(ρ(r))−µρ(r)+κ(5ρ(r))2, (1.8)

whereκ is a positive constant that is usually determined phenomenologically. The Cahn–Hilliard

equation is particularly useful in the regime of spinodal decomposition, where the metastable

phase becomes unstable and the free-energy barrier to nucleation vanishes.

The Cahn–Hilliard equation is a good approximation when the term V (|r− r’|) in Eqn. (1.7)

is short-ranged so the free energy is only slightly non-local, since non-locality of the free

energy is only considered by the gradients of the density. For a sharply varying interface,

additional correction terms have to be added [25].

Although DFT methods have been widely employed to study simple and multicomponent

fluids, the nucleation problem that usually involves sharp gradient in the density is more

difficult to treat, particularly when solid-liquid interfaces are involved. It is also worth noting

that, although the continuum DFT model does not assume an infinately thin surface, the

choice for the definition of the density ρ(r) still affect the location and the width of the

interface.

1.3 Experimental studies of nucleation

With the notable exception of high-resolution cryo-TEM [26] which can capture some initial

stage of nucleation, crystal nucleation in liquids takes place much too fast to allow for a se-

quence of snapshots to be taken using experimental instruments. Usually, experimental meth-

ods can be used to detect the nuclei inside the bulk but do not provide any microscopic detail.

Many experimental probes can be used here, including ultrafast X-ray diffraction [27, 28],
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optical microscopy [29], high-speed visual or infrared imaging [30], powder X-ray diffraction

patterns [31]. The nucleation rate J is not a direct observable from experiments, but instead

can be inferred from the induction time τ?.

Besides the lack of dynamical information, experimental characterizations have other

drawbacks as well. Because even small amounts of impurities induce heterogeneous nucle-

ation that massively accelerates the overall nucleation rate of the system, the droplet technique

is often used to address this problem [32]: the metastable liquid is dispersed into a large num-

ber of micrometer-sized droplets droplets, such that a significant number of droplets are free

from impurities that induce heterogeneous nucleation. This technique also has the additional

advantages of reducing the occurrence of multiple nucleation events within the same droplet,

as well as examining an ensemble of independent nucleation events simultaneously. However,

the droplet size cannot be too small either, in order to eliminate the effect from the surface.

Another problem is that the detectable size of a nucleus is usually larger than the criti-

cal size n?, so some amount of crystal growth must take place after the critical nucleus is

formed. However, it is often assumed that the growth rate is normally so much faster than the

nucleation rate such that the time it takes for the nucleus to grow into the detectable size is

negligible compared with τ?.

1.4 Atomistic simulation studies of nucleation

Although experimental techniques for the determination of nucleation rates have seen fast

developments in the past decades [10], the measurements are still challenging due to the

non-equilibrium conditions, and it is difficult to obtain insights into the detailed nucleation

mechanism. As such, employing computational methods for evaluating the free energy change

during nucleation as well as investigating the nucleation pathway is an extremely attractive

alternative. In the last two decades, a considerable number of studies have thus used atomistic

simulation to study homogeneous nucleation, and the key methodologies used in those studies

can be roughly classified into three categories with descending computational costs: brute-

force molecular dynamics, transition path sampling methods [33] that sample the ensemble

of the reactive trajectories from bulk liquids to super-critical nuclei, and quasi-equilibrium

free energy methods such as umbrella sampling [34] and metadynamics [35]. In this section

we briefly introduce the key aspects and the influential nucleation studies employing these

atomistic simulation methods.

Brute-force molecular dynamics

Brute-force molecular dynamics (MD) simulations of homogeneous nucleation are confronted

with the fact that nucleation is a rare event, which is associated with a long waiting time far

beyond the time scale accessible to simulations. As such, in order to observe the spontaneous

formation of a critical nucleus in molecular dynamics simulations, an extreme undercooling of
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the system has to be imposed. For instance, Brute-force MD simulations employing classical

force fields is only feasible when the nucleation rates are above 1025cm−3s−1, which implies

that a liquid water system has to be undercooled by about 80 K in the studies of homogeneous

ice nucleation. Besides carefully select the undercooling of the system considering the con-

straints on the simulation time, one also has to make sure that the system size is significantly

larger than the critical nucleus in order to reduce finite size effects, and at the same time collect

ample statistics of the stochastic nucleation events. Due to these constraints, Brute-force

molecular dynamics have a very limited usage in the nucleation studies.

One method to overcome the nucleation barrier and avoid the long waiting time is called

the seeding technique [36], which has gained some popularity during the last a few years. In

this approach, the undercooled bulk fluid is seeded with a crystalline cluster, and afterwards

the system is allowed to evolve at a certain temperature and pressure. The size of the crystalline

nucleus is then closely monitored at different temperatures, in order to find a temperature

under which the nucleus is critical and its size remains roughly constant. Finally, this size

of the critical nucleus n? is plugged into the original expression of the classical nucleation

theory (Eqn. (1.1)) to get estimates of the nucleation rate, by assuming a constant value for

the interfacial free energy at all radius so that G? =µsln
?/2. The seeding method is simple to

implement and enables the estimation of the nucleation rate in a broad range of materials and

thermodynamic conditions. However, this is an approximate method as it relies on the validity

of both the preconceived structure of the critical nucleus and of classical nucleation theory. It

is therefore important to assess and validate the accuracy of this approximate technique for

different systems.

Transition path sampling

For many rare events, there is a wide disparity of timescales between fast dynamical transition

between two equilibrium states and long waiting time inside an equilibrium state. Transition

path sampling (TPS) is a technique that focuses on the sampling of the ensemble of reactive

trajectories, which is defined as the paths connecting the two equilibrium states [33]. Typically,

a new trajectory is generated by displacing an initial reactive trajectory, and then is collected

into the transition path ensemble if it also connects the initial and the final equilibrium states.

As such, transition path sampling by itself only needs the definition of what are the regions of

the phase space that are associated with the reactant and the product of the reaction, without

requiring the identification of a transition state.

An important feature of transition path sampling is that paths harvested in simulations

are unbiased dynamical pathways, which in principle can be used to study the mechanism

of reactions. However, ergodic sampling of the transition path ensemble is extremely expen-

sive, and the path ensemble by itself does not necessarily contain enough information for

computing the reaction rate. As a remedy, the transition interface sampling (TIS) method [37]

and forward flux sampling (FFS) method [38] are frequently applied. To use these method,

one has to define a set of order parameters which can be used to distinguish not only the
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1.4. Atomistic simulation studies of nucleation

product of the reaction but also the transition states. These two methods place a series of

interfaces between two equilibrium states employing the order parameters, and measure the

effective flux between these interfaces. By so doing, only relatively short trajectories between

the neighboring interfaces are collected, rather than the long reactive trajectories that pass

through both the initial and final states. The success of the TIS and the FFS methods thus

hinges on the quality of the order parameters in characterizing the transition states.

Although being much more efficient and cheaper compared with brute-force MD, transi-

tion path sampling is still associated with high costs. As a consequence, TPS-type methods are

mostly used to explore a reaction coordinate with a complex form, instead of sampling events

that can be represented by a rather simple order parameter. For the problem of nucleation,

many times the size of the nucleus is a good order parameter, and the reaction time can be

very long due to the relatively high activation barriers. For these reasons, nucleation is not

very often studied using transition path sampling, examples include magnetization reversal in

the Ising-model [39], the freezing of a Lennard-Jones system [40], and large scale simulations

performed on the homogeneous nucleation of stacking disordered ice using a monoatomic

water model [41, 42]. Nevertheless, such methods may eventually prove useful in this field.

Quasi-equilibrium free energy methods

A relatively cheap class of free energy methods for studying nucleation is based on the assump-

tion of quasi-equilibrium. Before discussing these methods, let’s set the stage by introducing

the basics of equilibrium statistical mechanics and collective variables (CVs). For a system

in thermodynamic equilibrium at the NPT ensemble, a free energy profile as a function of a

chosen collective variable λ can be expressed as

G(λ) =−kB T ln
∫

dΩexp(−U (Ω)+PV (Ω)

kB T
)δ(λ(Ω)−λ), (1.9)

where the CV (λ(Ω)) is constructed to classify each microstate Ω. Here we restrict the dis-

cussion within the cases with one CV in canonical ensemble for the simplicity of notation,

although the extensions to other ensembles and to include more CVs are straightforward.

For most cases, sampling the system according to the Boltzmann distribution is usually not

sufficient for purpose of free energy estimation. For better sampling, a bias potential as a

function of the CV λ is usually added to the original Hamiltonian,

Hbiased = H +V (λ). (1.10)

The bias potential V (λ) can take various forms, be it a fixed umbrella potential [34], or an

adaptive bias used in metadynamics simulations [35]. After obtaining the biased trajectory

based on Hbiased, a re-weighting procedure has to be performed to retrieve the original Boltz-

mann distribution. Any observable O as a function of the coordinates of the microstates Ω
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can be estimated as

〈O(Ω)〉 = 〈O(Ω)eV (λ(Ω))/kB T 〉bi ased

〈eV (λ(Ω))/kB T 〉bi ased
, (1.11)

averaged from configurations generated from the biased simulation.

During the process of the formation of the nuclei belonging to the more stable phase inside

the metastable phase, the system is strongly out-of-equilibrium. However, one can make a

reasonable assumption, in line with classical nucleation theory, which says the metastable

phase is in an equilibrium before forming a critical nucleus and eventually transforming

into the stable phase. In this way, the equilibrium free energy methods can be applied to

obtain a free energy profile as a function of a chosen collective variable for the system in the

metastable phase. Furthermore, in order to compute the nucleation rate constant, one can

employ the Bennett-Chandler method, which consists a two-step procedure of first computing

the free-energy barrier, and then measuring the kinetic pre-factor from molecular dynamics

simulations constrained at the top of the free-energy barrier.

With the help of the quasi-equilibrium assumption and free energy methods, researchers

have been able to perform atomistic simulations combined with biased sampling methods in

which solid critical nuclei containing hundreds of atoms have been observed to form from

the melt [9, 40, 43–53]. A recent comprehensive review article has compiled a list of such

atomistic studies for systems including Lennard-Jones, colloids, atomic liquids, water, etc [10].

Much of these computational efforts have concentrated on investigating how the free energy

changes with cluster size G(n), and on verifying the accuracy of the CNT model. Some of

these studies have found a good agreement between the CNT prediction in Eqn. (1.1) and the

free energy profile for a cluster G(ns) that was computed from simulations [45, 52]. Others,

meanwhile, have shown significant systematic differences between the two [49]. Once the free

energy barrier of nucleation G? = max(G(ns)) has been determined, the nucleation rate can be

obtained from Eqn. (1.3). The addition rate f + can be computed as a diffusion coefficient from

the mean square displacement of the cluster size after it is released at the top of the nucleation

barrier [45, 54]. However, this approach assumes that dG(ns)/dns is effectively zero when

running multiple trajectories, is influenced by the choice of the initial configuration, and the

latent heat created when the size of the nucleus changes also has an impact [55].

The limitations of atomistic studies of nucleation

In general, atomistic simulations of homogeneous nucleation offer tremendous advantages

including exploration and characterization of detailed nucleation mechanism, elimination

of the influence from impurities, and physical insights to the formulation and the prediction

of the nucleation process. However, many challenges and controversies exists, and there

is a considerable gap between the experimental measurements of nucleation rates and the

theoretical predictions [10].
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One challenge stems from the usual problems of atomistic simulations, e.g. reliability

of the force fields, the slow dynamics of certain supercooled systems, finite size effects, etc.

However, as we anticipated, a major challenge comes from the missing link between atomistic

simulations and macroscopic models such as CNT: due to the diffuse nature of the interface,

there is a degree of ambiguity in the location and area of the surface between phases and

in the determination of the cluster size ns. Furthermore, in a system of undercooled liquid,

there exists a number solid clusters of different sizes as well as local fluctuations. In practice,

when analyzing an atomistic model, one typically proceeds by first selecting an arbitrary

order parameter that is able to distinguish between the atoms in each of the two phases. The

atoms that are thus identified as being part of the more stable phase are then grouped into

clusters [40, 45]. These heuristic procedures make the definition of the clusters size ns, the

associated free energy profile G(ns), and the size of the critical nucleus n? ambiguous. If one

then combines the values of these quantities with macroscopic nucleation theories such as

CNT, in order to predict physical quantities such as the interfacial free energies and nucle-

ation rates, inaccuracies will likely emerge. For example, from the previous computational

predictions of homogeneous ice nucleation rates, even when the same water model and the

same thermodynamic conditions are assumed, nucleation rates predicted in different studies

typically differ by as much as 5-10 orders of magnitude [10]. This discrepancy is due to the fact

that it is often necessary to evoke the standard form of classical nucleation theory (CNT) in

order to estimate quantities such as the nucleation barrier, as the long time scale of nucleation

rules out the option of brute force molecular dynamics simulations. However, a number

of approximations within CNT have been shown to be over-simplifications [10], and more

importantly, it is highly non-trivial to extract the values of the parameters that enter CNT

using the microscopic quantities directly obtained from simulations. For instance, the diffuse

nature of solid-liquid interfaces makes it difficult to rationalize and formulate the nucleation

free energy in a unique and meaningful way, as the choice of the atomic order parameters

used to distinguish ice structures affects the computed free energy profile and the size of the

critical nucleus [3, 36, 56].

1.5 Outline of the thesis/ statement of contributions

In the present thesis, we are primarily focused on introducing a rigorous thermodynamic

model that links macroscopic theories and atomic-scale simulations, in order to provide a

simple and elegant framework for apply and expand classical nucleation theory. The thesis is

organized as follows:

• In chapter 2, we cover the concept of free energy under the framework of statistical

mechanics, and then describe two key free energy methods that are employed in the

thesis. A part of chapter 2 is adapted from Ref. [57].

• A planar interface between two phases resembles the surface of a large nucleus. In

chapter 3, we derive a computational method as well as a thermodynamic framework to
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rigorously define and characterize the free energy of a solid-liquid interface at out-of-

equilibrium conditions. This chapter is adapted from Ref. [1].

• In chapter 4, we address the issue of how to treat multiple nuclei in the metastable

phase, by building a thermodynamic framework that reconcile the picture emerging

from simulation with macroscopic theories of nucleation. This chapter is adapted from

Ref. [2].

• In chapter 5, we discuss how to rigorously extract and analyze the various terms that

contribute to the nucleation free energy profile, from atomstic simulations. This chapter

is adapted from Ref. [3].

• In chapter 6, we demonstrate how to directly evaluate the Tolman length, which deter-

mines the leading order curvature dependence of the interfacial free energy between

two phases, from simulations of planar solid-liquid interfaces. This chapter is adapted

from Ref. [4].

• In chapter 7, we apply the thermodynamic framework as well as the computational

methods that we developed to study the phenomenon of homogenous ice nucleation.

This chapter is adapted from Ref. [5].

• Modelling water using empirical force fields is often not accurate enough for quantita-

tively predicting ice nucleation. To solve this, in chapter 8 we describe a new machine

learning (ML) potential for ice and liquid water that is based on density functional

theory. We show the performance of this ML potential and discuss how it can be used to

model nucleation. This chapter is adapted from Ref. [6].
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2 Free energy estimation methods

Free energy estimation is at the core of understanding nucleation, which is an activated pro-

cess in which the system overcomes a free energy barrier to transition from a metastable state

to a more stable one, as detailed in Chapter 1. Furthermore, the free energy of nucleation can

be conveniently expressed as the sum of a bulk term stemming from the chemical potential

difference between the stable and the metastable phase, and a surface term that is the product

of interfacial free energy and surface area. As such, computing the free energy of nucleation

as well as the chemical potential difference and surface energy is a key step in rationalizing

nucleation phenomena using atomistic simulations. Yet, the implications of free energy esti-

mation extend far beyond that: knowledge of the free energy is crucial in predicting the relative

stability of different states of materials and molecules, and underlies a plethora of physical

and chemical phenomena including phase diagrams, solubility, equilibrium concentration of

defects, and so on. Due to the paramount importance of free energy estimation, this chapter

is devoted to giving an overview of the tricks of the trade. This chapter is organized as follow:

we first define free energy under the framework of statistical mechanics, then describe two

key free energy methods, thermodynamic integration and enhanced sampling methods.

2.1 The fundamentals of free energy

Under the framework of thermodynamics the definition of free energy is somewhat convoluted:

in 1873, Willard Gibbs described it as “the greatest amount of mechanical work which can be

obtained from a given quantity of a certain substance in a given initial state, without increasing

its total volume or allowing heat to pass to or from external bodies, except such as at the close

of the processes are left in their initial condition” [58]. To put this in slightly more accessible

terms, free energy is a measure of the available work (useful energy) a system can perform

when transforming from one state to another. There are two subtle aspects in this statement:
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(i) Free energy of a state is always a relative quantity with respect to an explicit or implicit

reference state, and the free energy of a state compared to another is only meaningful if the

system can be temporarily constrained to the initial state before a transition will happen. (ii)

The initial and the final states are inevitably under certain thermodynamic conditions, and

depending on these conditions the formulation of the free energy takes a different form. The

Helmholtz free energy A is for the systems with fixed temperature and volume, and the Gibbs

free energy G is associated with fixed temperature and pressure of the system. In what follows,

we will use these notations, and use F to denote the free energy in a generic setting.

The concept of free energy is much clearer under statistical mechanics: The expression for

the free energy of a system is closely related to the partition function, which in turn depends

on the thermodynamic boundary conditions defining the ensemble. Under the canonical

(NVT) ensemble, the partition function of a bulk system that has N indistinguishable particles

and is contained in a volume V is given by [59, 60]

Q(N ,V ,T ) = V N

Λ3N N !

∫
D(V )

dqexp

[
−U (q)

kB T

]
, (2.1)

where the potential energy U is a function of the atomic coordinates q = {q1...N }, D(V ) denotes

the spatial domain defined by the containing volume [60], and Λ =
√

2π~2/mkB T is the

thermal de Broglie wavelength. The expression for the absolute Helmholtz free energy of the

system is thus

A(N ,V ,T ) =−kB T lnQ(N ,V ,T ) =−kB T ln
V N

Λ3N N !
−kB T ln

∫
D(V )

dqexp

[
−U (q)

kB T

]
. (2.2)

Always bear in mind that the value of the free energy is always a relative quantity with respect

to something, and in Eqn. (2.2) the implicit reference is the ideal gas state whose free energy

can be expressed as the analytic expression −kB T ln
V N

Λ3N N !
.

When the isothermal-isobaric (NPT) ensemble is used instead, the system can be charac-

terized by the absolute Gibbs free energy

G(N ,P,T ) =−kB T ln
(∫

dV exp

[
− PV

kB T

]
V N

Λ3N N !

∫
D(V )

dqexp

[
−U (q)

kB T

])
, (2.3)

or starting from the Helmholtz free energy,

G(N ,P,T ) =−kB T ln
∫

dV exp

[
− PV

kB T

]
exp

[
− A(N ,V ,T )

kB T

]
. (2.4)

Computing directly the partition function for an arbitrary potential is impractical. In

addition, only the difference in free energies ∆FA−B = F (A)− F (B) between two systems

or states has physical consequences and thus is related to experimental observables: Not

only does ∆FA−B determine the relative probability of finding state A compared to B at
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thermodynamic equilibrium, i.e.

ρ(A)

ρ(B)
= e−β∆FA−B , (2.5)

it also governs the transformation rates between A and B under the principle of detailed

balance, i.e.

P (B → A)t

P (A → B)t
= e−β∆FA−B , (2.6)

where P (B → A)t = P (Ωt ∈ A | Ω0 ∈ B) is the conditional probability of starting from a mi-

crostate belonging to B at time 0, and ending at another microstate belonging to A at time t .

Eqn. (2.6) is satisfied under the detailed balance because the forward and back flux between A

to B exactly cancels out when the system is in equilibrium, i.e. ρ(A)P (A → B)t = ρ(B)P (B →
A)t .

According the Crooks fluctuation theorem [61], Eqn. (2.6) can be further extended to

out-of-equilibrium situations involving non-reversible work,

P (B → A | WB→A)t

P (A → B | WA→B )t
= eβ(WB→A−∆FA−B ), (2.7)

where WB→A is the work done on the system during the forward transformation of the system

B → A. The work is equal to the energy added to the system described by the original Hamilto-

nian H0, through a controllable degree of freedom λ(t ), with λ= 0 indicates the system is in B

and λ= 1 indicates the system is in A, i.e.

WB→A =
∫ t ,λt=1

0,λ0=0

dλ

d t

∂(H0 +∆H(λ(t )))

∂λ
d t . (2.8)

For each forward path B → A, one can always find a reverse path A → B by simply performing

a time reversal and flipping the momenta, and it is easy to see that WA→B = −WB→A is the

external work for each time-reversed path doing the backward transition from B to A. P (B →
A | WB→A)t is the conditional probability of starting from B at time 0 and ending in A at

time t , under the external work WB→A . There are numerous interpretations for the Crooks

fluctuation theorem, personally I think of this as a way to state the equivalence of free energy

and the potential to do useful work, and as such, applying an amount of external work WA→B

effectively changes the free energy difference ∆FA−B and thereby biases the transformation

rates between A and B.

If one applies external work WB→A to the system such that all the paths that start at B at

time 0 end in A at time t , the transformation rates P (B → A | WB→A)t and P (A → B | WA→B )t

in Eqn. (2.7) will be fixed at unity. Under this condition, Eqn. (2.7) then directly implies the

Jarzynski non-equilibrium work relation [62]:

〈e−βWB→A 〉B→A = e−β∆FA−B , (2.9)
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where the ensemble average is taken from all the simple path (i.e. no re-crossing) for B → A.

The Jarzynski equality in Eqn. (2.9) is probably the most general results of statistical mechanics

as the (local) equilibrium assumption is not required during the transition between two states.

The only conditions required are: (i) at the beginning of the switching the system is locally-

equilibrated in state B ; and (ii) the external work WB→A applied during the switching is done

using the same protocol, which mean the controllable degree of freedom λ(t) is varied at a

pre-defined manner. For example, the most non-restrictive protocol is just imposing that

λ0 = 0 and λt = 1, and another possible one is requiring that λ(t ) changes linearly during the

switching.

The two limiting cases of the Jarzynski equality are very instructive: (i) when the switching

is infinitely fast, meaning that the Hamiltonian of the system is suddenly changed to HA

from HB , the work done WB→A is just the energy difference between the initial and the final

microstate under the different Hamiltonians, and Jarzynski becomes the familiar expression

of thermodynamic perturbation:

〈e−β(HA(Ω)−HB (Ω))〉B = e−β∆FA−B , (2.10)

where 〈. . .〉B means the ensemble average over the equilibrium distribution of microstates

Ω under the Hamiltonian HB . On the other hands, at the limit where the driven system is

always in equilibrium (i.e. the switching parameter dλ/d t ≡ 0 and Hλ = (1−λ)HB +λHA)

and WB→A is reversible, the Jarzynski equality reduces to a statement for the second law of

thermodynamics

∆FA−B = 〈W rev
B→A〉 ≤ 〈WB→A〉, (2.11)

and the reversible work can be computed as

W rev
B→A =

∫ 1

0
〈∂H(λ)

∂λ
〉λdλ. =

∫ 1

0
〈HA(Ω)−HB (Ω)〉λdλ, (2.12)

where 〈. . .〉λ means the ensemble average of the equilibrium distribution under the Hamilto-

nian H(λ).

In practice, the raw forms of the Crooks fluctuation theorem and the Jarzynski equality

are seldom used for free energy estimation from atomistic simulations. The reason is, as can

be seen from Eqn. 2.9, that computing the free energy difference using Jarzynski requires

taking the average of an exponential, which usually converges poorly when the spread of the

exponent is much larger than unity [63, 64]. In contrary, when quasi-equilibrium is assumed,

Eqn. 2.12 which only involves a linear operation can be applied, resulting in much better

statistical efficiency. As such, the commonly used free energy methods usually operate under

the quasi-equilibrium assumption. There are two major classes of such methods:

• One class of standard free energy techniques, such as metadynamics, umbrella sampling,

16



2.2. The thermodynamic integration method

and transition path sampling [34, 65, 66], relies on the concept that the phase space of a

system can be divided into a number of states using a choice of collective variables (or

reaction coordinates), and the free energy difference between two states can then be

computed by sampling both states, as well as the transition paths that connect them.

• Another class of free energy methods relies on the thermodynamic integration (TI)

method [60, 67, 68]. The TI can be performed along a physical path for example along

temperature or pressure, or via an unphysical path between the physical system and

a reference system over a switching parameter λ. The TI method does not require a

smooth transformation of the atomic coordinates, but just the evaluation of free-energy

derivatives as a function of a change in the thermodynamic conditions.

Generally speaking, the thermodynamic integration method is particularly suitable for

computing the free energies of bulk phases, and the enhanced sampling methods are better

for systems undergoing a transition. In this chapter, we will describe these methods, with a

particular emphasis on their application to condensed phase systems and the phenomena of

nucleation.

2.2 The thermodynamic integration method

Note: The contents of this section is adapted from Ref. [57].

During a thermodynamic integration (TI), a reversible switching is performed along a

thermodynamic path between two systems, during which the infinitesimal change in free

energy along the path is computed and accumulated. The TI method is very versatile and

flexible; it can be performed along a physical path, for example, along temperature or pressure,

or via an unphysical path between the two systems with different Hamiltonian. In this section,

we discuss on how to compute the absolute free energies of a solid system using the method

of thermodynamic integration. We focus on solid systems because in the case of solidification,

we are often interested in the free energy difference between different crystalline phases that

can nucleate from the melt, as well as the free energy associated with crystallographic defects

inside a nucleus. For the case of fluid systems, please refer to Ref. [67, 69].

2.2.1 A general workflow of thermodynamic integration for solid systems

In the case of a solid system, we found it effective to take a harmonic crystal reference, and

follow the TI routes illustrated in Figure 2.1. In a nutshell, for evaluating the Helmholtz free

energy A of a solid system, we propose to first integrate along λ between the harmonic and the

real crystal and then do an integration with respect to the temperature T , which correspond

to the yellow and the red arrows in Figure 2.1, respectively. To calculate the Gibbs free energy

G of the system, we first obtain the Helmholtz free energy at a low temperature, switch from

the NVT to the NPT ensemble, and finally do TI along the temperature T (the yellow, the blue,
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Figure 2.1 – An illustration of the different thermodynamic integration routes employed in the
present paper. Under the canonical (NVT) ensemble, the yellow arrow indicates the switching
between an harmonic reference system (λ= 0) and a real system (λ= 1), and the red arrow
illustrates TI with respect to temperature. The dashed blue arrow shows the transformation
between the Helmholtz free energy and the Gibbs free energy. The green arrow denotes TI
over temperature under the isothermal-isobaric (NPT) ensemble.

and the green arrows in Figure 2.1). In the following, we discuss in detail how each step can be

computed conveniently and efficiently.

Before we start the detailed discussion, note that in TI it is advantageous and often neces-

sary to constrain the center of mass (CM) of the system. The Helmholtz free energy difference

between the unconstrained and the constrained crystalline system under periodic boundary

conditions can be expressed as [70]

∆Acm(N ,V ,T ) =−kB T
(

ln
V

N
+ 3

2
ln N + ln

1

Λ3

)
, (2.13)

which can be considered as a finite size effect. Therefore, when we perform TI we focus solely

on systems with fixed CM, and at the end of the calculation the term ∆ACM can be added to

retrieve the free energy of the unconstrained system, although at times the influence may be

negligible. We will also discuss in more detail other finite-size effects in Section 2.2.1. In the

other sections – since we will always work under the constant-number-of-particles framework

in TI – we omit N when denoting thermodynamic states.

An absolute reference: the Helmoltz free energy of the Debye crystal

Strictly speaking, only the relative free energy of a system with respect to a reference can be

defined without any ambiguity. The “absolute" free energy in this paper refers to the fact

that the free energies of the chosen reference systems are analytic, and can be meaningfully
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2.2. The thermodynamic integration method

compared between distinct reference systems including those that contain different numbers

of particles.

A harmonically-coupled crystal of N atoms with a constrained center of mass constitutes a

convenient reference system for a solid (point a in Figure 2.1). Taking the phonon frequency

for the crystal to be {ωi=1...3N−3}, 1 one can obtain an expression for the classical free energy of

such a Debye crystal at the temperature T0:

Ah(V ,T0) = kB T0

3N−3∑
i=1

ln
~ωi

kB T0
. (2.14)

Note that from the standpoint of performing thermodynamic integration, the reference can be

any harmonic crystal that has the same number of particles as the real system. For instance,

one could even take a reference in which all particles are independently coupled to the lattice

sites with a constant spring term (i.e. an Einstein crystal) [68, 71, 72]. However, for better

statistical efficiency, it is better to choose a reference harmonic crystal that has the same

frequency modes and equilibrium configuration as the real crystal, both of which can be

determined for example via local energy minimization followed by a diagonalization of the

Hessian matrix [73].

The Helmoltz free energy of an anharmonic crystal

Starting from a reference crystal (a) with a known free energy, one can obtain the Helmholtz

free energy of the real crystal (b) using thermodynamic integration in the NVT ensemble, as

indicated by the yellow arrow in Figure 2.1. using a parameter λ to perform the switch between

the harmonic Hamiltonian Hh and the actual Hamiltonian H . In practice, one should run

multiple simulations with the hamiltonian H (λ) = (1−λ)Hh+λH at different values of λ, so

as to switch between the harmonic Hamiltonian Hh and the actual Hamiltonian H [71]. The

free energy of the real system with a fixed CM can then be evaluated using

A(V ,T0)− Ah(V ,T0) =
∫ 1

0
dλ〈U −Uh〉V ,T0,λ , (2.15)

where 〈. . .〉V ,T0,λ denotes the ensemble average over NVT simulations using the Hamiltonian

H(λ).

In practice, to avoid severe statistical inefficiencies and singularities in the integral, one

should perform this step at a low temperature T0 when the system is quasi-harmonic and

when diffusive or rotational degrees of freedom are completely frozen. If T0 is sufficiently low

and the real and the reference systems are very similar, one also has the option to evaluate

A(V ,T0)− Ah(V ,T0) using the free energy perturbation method, eliminating the integration

error altogether. One only needs to run simulations for the reference harmonic crystal, and

1The zero-frequency translational modes are excluded due to the constraint on CM
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Chapter 2. Free energy estimation methods

obtain the free energy of the real system using

A(V ,T0)− Ah(V ,T0) =−kB T0 ln〈exp

[
−U −Uh

kB T0

]
〉

V ,T0,λ=0
, (2.16)

where 〈. . .〉V ,T0,λ=0 denotes the ensemble average for the harmonic crystal at T0 and V , and U

and Uh denote the real and harmonic potentials, respectively. Note that in order to ensure the

statistical efficiency of this perturbative approach, the standard deviation of U −Uh has to be

of the order of kB T0 [63].

The Helmholtz free energy as a function of temperature

Thermodynamic integration from a Debye crystal to the fully-anharmonic potential tends

to become very inefficient as the temperature increases. For this reason, it is often useful

to perform a thermodynamic integration with respect to temperature from a low to a high

temperature under the desired thermodynamic conditions. Let us start by discussing how to

perform this step under the NVT ensemble, which is the process indicated by the red arrow (b

to c) in Figure 2.1. The Helmholtz free energy of a system that has N atoms and a fixed CM

can be expressed by the well-known thermodynamic integration expression

A(V ,T1)

kB T1
= A(V ,T0)

kB T0
−

∫ T1

T0

〈U 〉V ,T +〈K 〉V ,T

kB T 2 dT, (2.17)

where 〈U 〉V ,T and 〈K 〉V ,T are the ensemble averages of the potential energy and the kinetic

energy, respectively.

One way to improve the convergence of Eqn. (2.17) is to consider that the ensemble

average of the classical kinetic energy of a system that has N atoms and a fixed CM is analytic:

〈K 〉V ,T = (3N−3)kB T /2. Furthermore, one can also consider that if the potential was harmonic,

also 〈U 〉 would take the same value. Thus, one can take

〈δU 〉V ,T = 〈U 〉V ,T − A(V ,0)− (3N −3)
kB T

2
(2.18)

that measures the temperature-dependent anharmonic part of the potential energy. Note that

A(V ,0) = 〈U 〉V ,0. After performing analytically some of the integrals, Eqn. (2.17) becomes

A(V ,T1)

kB T1
= A(V ,0)

kB T1
+ A(V ,T0)− A(V ,0)

kB T0
− (3N −3)ln

T1

T0
−

∫ T1

T0

〈δU 〉V ,T

kB T 2 dT. (2.19)

In quasi-harmonic systems, one can further reduce the variance of the integrand. One can

use again the analytical expression for 〈K 〉V ,T , together with the virial theorem, to write

(3N −3)
kB T

2
= 〈K 〉 =−1

2

N∑
i=1

〈Fi qi 〉 . (2.20)
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2.2. The thermodynamic integration method

Here qi and Fi are the position of atom i and the force vector acting on it. Since the average

force 〈Fi 〉 is zero, one can also add an arbitrary reference position q̂i , and write [74, 75]

〈δU 〉V ,T = 〈U + 1

2

N∑
i=1

Fi (qi − q̂i )〉
V ,T

− A(V ,0) (2.21)

If the potential energy surface is perfectly harmonic, and if one takes q̂i equal to the equilib-

rium position of atom i , it is easy to verify that the virial term would cancel completely the

fluctuations in the potential energy. Even if the potential is quasi-harmonic, as long as it is

not diffusive even at high temperatures, the use of the virial reference and Eqn. (2.21) can

substantially improve the statistical efficiency in the estimation of 〈δU 〉V ,T . However, when

the motion of atoms is strongly anharmonic or diffusive, an atom can start vibrating around a

different equilibrium position, and in that case the statistical efficiency of the straightforward

expression Eqn. (2.18) is better.

Besides improving the convergence of each temperature window, one can try to improve

the accuracy and the efficiency of the TI procedure by choosing wisely the discretization points

or, equivalently, by performing a change of variables that yields a smoother integrand [76].

In this case, it is convenient to perform a change of variables that ensures that the statistical

error in the integrand is roughly constant at all temperatures. Assuming the temperature

dependence of the fluctuations in the anharmonic potential energy is similar to its harmonic

counterpart, i.e. 〈δU 2〉V ,T −〈δU 〉2
V ,T ∼ T , the required change of variable is y = ln(T /T0), which

transforms the integral into the form∫ T1

T0

〈δU 〉V ,T

T 2 dT =
∫ ln(T1/T0)

0

〈δU 〉V ,T0e y

T0e y d y. (2.22)

In other words, one should select temperatures that are equally spaced in ln(T ) in simulations.

Coincidentally, this selection is also optimal for performing replica exchanges between the

systems at different temperatures [77] - which should be done whenever possible as it will

greatly benefit statistical convergence.

Another advantage of performing parallel tempering is that it requires sufficient overlap

between adjacent replicas at temperatures Ti and Ti+1. Under these circumstances, 〈U 〉V ,T

for Ti < T < Ti+1 can be evaluated via re-weighting, such as

〈U 〉V ,T =
〈U exp

[
− U

kB

( 1

T
− 1

Ti

)]〉
V ,Ti

〈exp
[
− U

kB

( 1

T
− 1

Ti

)]〉
V ,Ti

. (2.23)

The integral in Eqn. (2.19) can thus be solved analytically to give an exact (within statistical

uncertainty) expression for the contribution to the integral from the [Ti ,Ti+1] window:

A(V ,Ti+1)

kB Ti+1
− A(V ,Ti )

kB Ti
=−3N −3

2
ln

Ti+1

Ti
− ln〈exp

[
− U

kB

( 1

Ti+1
− 1

Ti

)]〉
V ,Ti

, (2.24)
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Chapter 2. Free energy estimation methods

which effectively turns the thermodynamic integration formalism into a sequence of free

energy perturbations, eliminating completely the integration error.

From the Helmholtz free energy to the Gibbs free energy

More often than not, the isothermal–isobaric ensemble (NPT) provides a more natural frame-

work to describe the thermodynamic conditions of real systems than the NVT ensemble.

However, the harmonic crystal (a in Figure 2.1) that was used as the absolute constant-volume

reference in previous sections does not extend naturally to the NPT ensemble because its

pressure is not well-defined (e.g. the Einstein crystal is a system of independent particles) [78].

As a result, it is not convenient to perform TI with respect to λ from the reference crystal to the

real crystal under the NPT ensemble. One way to avoid NPT simulation involves performing

multiple simulations at different constant volumes, and then computing the Gibbs free energy

and the equilibrium volume of the system by evaluating explicitly the integral (2.4). This is

often done using a harmonic expression for the free energy at the different volumes, leading

to the so-called quasi-harmonic approximation (QHA) [79, 80]. Alternatively, the equilibrium

volume can be computed by performing a single NPT simulation at the desired temperature,

and then A(〈V 〉P,T ,T ) is used as a proxy for G(P,T ) [78]. In this section, we argue that the

transformation between the Helmholtz free energy and the Gibbs free energy, which is the

process marked by the dashed blue arrow in Figure 2.1, can be conducted rigorously. This

process effectively allows us to convert at will between the two ensembles when performing

thermodynamic integrations with respect to ensemble temperature.

The expression for the Gibbs free energy of a system as an integral over the Helmholtz free

energy is given by Eqn. (2.4). This expression can be combined with that for the distribution

of volume fluctuations for the system under the NPT ensemble

ρ (V |P,T ) =
exp

[
− PV

kB T

]
exp

[
− A(V ,T )

kB T

]
∫

dV exp

[
− PV

kB T

]
exp

[
− A(V ,T )

kB T

] , , (2.25)

which is just the normalized probability of observing the system to have instantaneous volume

V in a simulation under constant P and T. We can then write

G(P,T ) = A(V ,T )+PV +kB T lnρ (V |P,T ) , (2.26)

which is valid for arbitrary V .

In practice, one can run NPT simulations for a system and compute ρ (V |P,T ) just by

accumulating the histogram of the instantaneous volume of the system. After that, one can

select a volume V , preferably the one that maximizes ρ (V |P,T ) for the sake of better statistical

efficiency in the determination of ρ (V |P,T ), and compute A(V ,T ) for the same system at that

volume using the route a to b in Figure 2.1. Finally, the Gibbs free energy can be obtained
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2.2. The thermodynamic integration method

applying Eqn. (2.26).

For a solid system, in order to avoid residual strain and elastic energy, one can vary the

shape of the simulation cell instead of using a fixed shape in NPT simulations under a hydro-

static pressure [81]. To account for the degree of freedom associated with the variable cell, in

this case Eqn. (2.26) should be modified to read

G(P,T ) = A(h,T )+P det(h)+kB T lnρ (h|P,T ) , (2.27)

where h is a matrix that represents the dimensions of a simulation cell, and A(h,T ) is the free

energy of the system evaluated at constant cell dimensions.

The Gibbs free energy as a function of temperature

Having converted a harmonic-reference Helmoltz free-energy to a constant-pressure Gibbs

free energy at a given temperature T0, one can easily perform a thermodynamic integration

over temperature in the NPT ensemble (a path indicated by the green arrow in Figure 2.1). For

a system with N atoms and a restricted CM, the expression reads

G(P,T1)

kB T1
= G(P,T0)

kB T0
−

∫ T1

T0

〈U 〉P,T + (3N −3)
kB T

2
+P 〈V 〉P,T

kB T 2 dT, (2.28)

where 〈U 〉P,T + (3N −3)
kB T

2
+P 〈V 〉P,T is the enthalpy. Starting from this expression, one can

apply all the techniques mentioned in Section 2.2.1, for example one can take

〈δH〉P,T = 〈U 〉P,T +P 〈V 〉P,T −G(P,0), (2.29)

where G(P,0) = 〈U 〉P,0 +P 〈V 〉P,0. Doing the integration in Eqn. (2.28) explicitly leaves

G(P,T1)

kB T1
= G(P,0)

kB T1
+ G(P,T0)−G(P,0)

kB T0
− (3N −3)ln

T1

T0
−

∫ T1

T0

〈δH〉P,T

kB T 2 dT. (2.30)

In addition, one can also use the virial theorem (Eqn. (2.20)), the change of variable in the

integration (Eqn. (2.22)), and parallel tempering to further accelerate the convergence. When

performing parallel tempering, one can eliminate the thermodynamic integration error by

using a free-energy perturbation to compute the increment of G between two replicas at

temperatures Ti+1 and Ti :

G(P,Ti+1)

kB Ti+1
− G(P,Ti )

kB Ti
= − 3N −3

2
ln

Ti+1

Ti
− ln〈exp

[
−U +PV

kB

(
1

Ti+1
− 1

Ti

)]
〉

P,Ti

. (2.31)
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Finite size effects

Most of the time, one is interested in computing the free energy per atom of a bulk, infinite

system, or the excess free energy of a defect in the dilute limit. An atomistic simulation,

however, is inevitably restricted to a finite system size, which can result in deviations from the

ideal case. Many of these finite-system-size effects have been documented in the literature.

First of all, in the limit of small system size, the free energy of the system is not an extensive

quantity. Taking the ideal gas part of the Helmholtz free energy Ai d (N ,V ,T ) =−kB T ln
V N

Λ3N N !
in Eqn. (2.2) for example, one can see that

Ai d (N ,V ,T )

N kB T
= 1− ln

V

N
+ ln

1

Λ3 − ln N

2N
+O

(
1

N

)
(2.32)

using Stirling’s formula. The leading ln N /N term is a well-documented finite size effect

that reduces to zero in the thermodynamic limit [70, 82]. The Gibbs free energy per atom

G(N ,P,T )/N as well as kB T lnρ (V |P,T )/N in Eqn. (2.25) also displays a similar dependence

on ln N /N . Constraining the center of mass of the system in simulations also introduces a

non-extensive correction to the free energy,

∆Acm(N ,V ,T ) = A(N ,V ,T )− Acm(N ,V ,T ), (2.33)

where Acm denotes the Helmholtz free energy of the system with fixed center of mass [67, 70].

Fortunately, it is easy to correct for this part, because the expression for ∆Acm in Eqn. (2.13) is

analytic and trivial to compute. More subtle sources of finite size effects come from the cutoff

of potentials, and from the discretization of the vibrational phonon spectrum due to the size

of the supercell in simulations [78]. To help with this issue, there are interpolation techniques

that help accelerate the convergence of the computed phonon dispersion relation [83].

It is worth stressing that for system sizes that can be reached easily in simulations using

empirical force fields, finite-size effects may not be significant. However, one should always

be aware of their presence and check for system-size convergence, particularly in ab initio

calculations where the number of atoms that can be simulated is highly restricted. To minimize

the impact of finite-size effects one should always compare free energies between systems of

similar sizes, to benefit for a (partial) error cancellation.

2.2.2 One example of applying the thermodynamic integration method: vacancy
formation energy in BCC iron

Here we provide a concrete example for the application of the thermodynamic integration

workflow detailed above, in order to paint a more intuitive picture.

A vacancy is a type of point defects in a crystal, in which an atom is removed from one

of the lattice sites. At any given temperature and pressure up to the solid-liquid coexistence

line, an equilibrium concentration exp[−Gv/kB T ] of vacancies exists, where Gv is the Gibbs
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2.2. The thermodynamic integration method

free energy of a vacancy. Often, particularly in materials produced by fast quenching, a non-

equilibrium concentration of vacancies can persist at low temperature, which can play an

important role in technologically relevant solid-state transformations [84].

We studied a BCC iron system using a widely used EAM potential [85, 86]. This potential

was fitted with the BCC vacancy formation energy at 0 K but lacks a thermally stable FCC

phase [85, 87]. Iron exhibits phase transitions between BCC α-iron, FCC γ -iron and a BCC

δ-phase when increasing the temperature at ambient pressure, which are largely due to

the magnetism of the material [87]. Since the stabilization of the austenitic phase is due to

quantum mechanical effects and this EAM potential does not reproduce it, we neglect the

FCC phase in the present study, and performed the simulations considering a perfect BCC

crystal (250 atoms) and a BCC crystal with a vacancy (249 atoms). In all the simulations, the

centers of mass of the systems were constrained.

At high temperatures, the computation of the free energy of the crystal with a vacancy is

particularly problematic using the integration overλ in Eqn. (2.15) due to the onset of diffusion

in simulations [88]. This difficulty is circumvented here as we performed the integration from

the harmonic crystal to the real crystal at a low temperature T0 =100 K and at the equilibrium

cell size (the yellow arrow in Figure 2.1). This harmonic crystal has the same phonon modes

and Hessian matrix as the real system [73, 89]. Note that at this step the Helmholtz free energy

of a crystal with a vacancy that sits at a fixed lattice site is computed, as the vacancy does not

diffuse during the simulations at T0 =100 K. After that, we switched to the NPT ensemble (the

blue arrow in Figure 2.1), and ran simulations at different temperatures and zero hydrostatic

pressure, using stochastic velocity re-scaling for temperature control and the anisotropic Nose-

Hoover barostat to vary the dimensions of the orthorhombic periodic supercell [90, 91]. During

this step, we obtained the temperature dependence of the free energies using Eqn. (2.28) (the

green arrow in Figure 2.1). At high temperatures, the vacancy does diffuse but diffusion does

not change the values of 〈δH〉P,T compared with the case when the vacancy is fixed at one site,

due to the translational symmetry of the lattice. As such, the Gibbs free energy of a crystal

with a fixed vacancy was obtained after integration using Eqn. (2.28).

The Gibbs free energy of a fixed vacancy in the crystal can be expressed as

Gv =Gvacancy −
Nvacancy

Nperfect
Gperfect. (2.34)

We used three different methods to estimate this quantity – namely a minimum-potential

energy calculation, a harmonic free-energy estimate and the fully anharmonic TI – and plot the

results in Figure 2.2 as a function of temperature. Note that, for a given interatomic potential

and within the statistical errors, the thermodynamic integration method gives access to the

full Gibbs free energy, and can be considered as the “ground truth”. The other commonly

used approximations, on the other hand, rest on different assumptions: the harmonic ap-

proximation method assumes that anharmonicity is negligible, while the minimum-potential

energy method neglects both the anharmonicity and entropic contributions. By comparing
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Figure 2.2 – The Gibbs free energy associated with a fixed vacancy in BCC iron estimated
using potential energy difference (PE) at 0 K, the harmonic approximation (HAR), and the
thermodynamic integration method that considers anharmonicity (ANH). QH indicates the
quasi-harmonic approximation using the equilibrium configuration at 1500 K. Statistical
uncertainties are indicated by the error bars.

the predictions from these approximation methods to the accurate values computed using

thermodynamic integration, we can provide a representative benchmark of the accuracy of

these approximations.

The difference between the predictions from the harmonic approximation and the TI

is largely negligible at low temperatures, but becomes significant when the temperature

approaches the melting point 1772 K for this EAM potential system [85]. To investigate

whether this difference stems from a shift in the phonon spectra due to lattice expansion,

or from anharmocity, we analyzed the vibrational modes {ω′
i=1...3N−3} using the equilibrium

configuration of each system at 1500 K, computed the vacancy free energy under this quasi-

harmonic approximation, and plotted the result as the orange dot in Figure 2.2. It can be seen

that the harmonic contribution at 1500 K cannot explain the difference, and therefore the

difference is mainly due to anharmonic effects.

2.3 Enhanced sampling methods

Now we move on to describe the second class of free energy methods, with a common feature

that these methods rely on a choice of collective variables (CV) which are smooth functions

of the atomic coordinates. We will restrict the discussion within the cases with one CV in

canonical ensemble, although the extensions to other ensembles and to include more CVs are

straightforward.

For all methods to work, a CV λ is constructed first. Because the momentum distribution

of classical systems is analytic (Eqn. 2.2), usually one focuses on the distribution in the

configurational space. As such, although λ can be a function of the momenta of the particles
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Figure 2.3 – A schematic of a free energy profile as a function of a collective variable λ.

in the system, usually one selects λ to be a function of the atomic coordinates (i.e. λ=λ(q)).

Clearly, there are numerous ways to select this function but not all are equally helpful. The

construction of CVs is very much of an art, as no clear cut way exists and in most cases it is

highly system dependent. As a rule of thumb, for a system that can adopt states (say A and

B) that have macroscopically-observable distinctions, a good CV separates the two states as

much as possible as well as characterizes the transition states in between. More details on the

construction of CVs are postponed to when specific examples are discussed.

For now we assume a good choice of the CV has already been made for a certain system,

and the free energy profile (as schematically plotted in Fig. 5.1) can thus be computed as

F (λ) =−kB T ln

∫
D(V ) dqδ(λ(q)−λ)exp

[
−U (q)

kB T

]
∫

D(V ) dqexp

[
−U (q)

kB T

] , (2.35)

where δ(. . .) denotes a Delta function. For comparing the free energies of state A and B , one

first use the CV to identify whether a microstate belongs to state A or B , such as{
λ<λ∗, Ω ∈ A

λ>λ∗, Ω ∈ B
(2.36)

After that, the free energy difference can be expressed as

∆FA−B =−kB T ln

∫ λ∗
−∞ dλexp(−βF (λ))∫ ∞
λ∗ dλexp(−βF (λ))

(2.37)

In many cases, however, if the wells of A and B are deep and the curvatures at the bottoms of

the wells (λA and λB ) are similar, it is sufficient to write

∆FA−B ≈ F (λA)−F (λB ). (2.38)

Finally, it is worth stressing that the free energy profile F (λ) is dependent on the arbitrary

choice of the function λ(q), so it is not a physical observable per se. One can easily verify that

if a non-linear transformation λ→λ′ is applied, not only the shape of the free energy profile
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will be changes, the free energy difference computed from Eqn. (2.38) as well as the transition

barrier F∗ in Fig. 5.1 will change. One thus has to bear in mind what are the actual physical

observables and how to obtain these observables from the free energy profile.

2.3.1 Free energy estimation from unbiased and biased molecular dynamics

In a MD simulation, FA−B can be approximated from the histogram of the configurations that

belong to the two states

∆FA−B
.=− 1

β
ln

∑
Ωδ(A(Ω))∑
Ωδ(B(Ω))

, (2.39)

provided that the trajectory is long enough to travel back and forth between the two states for

a number of times. In conventional MD simulations, however, this estimator is only useful if

∆FA−B and the transition barrier are both on the same order of the thermal fluctuations.

For most cases, sampling the system according to the Boltzmann distribution is usually

not sufficient for purpose of free energy estimations. To enhance sampling, a bias potential as

a function of the CV λ is usually added to the original Hamiltonian,

Hbiased = H +V (λ). (2.40)

If one selects a bias potential that takes the form of a parabolic function, i.e. V (λ) = κ(λ−λ0)/2,

the biasing scheme is usually called umbrella sampling [34]. If one selects V (λ) to be a

time-dependent function and is also adaptive, the scheme typically fits into the category of

metadynamics [65].

After obtaining the biased trajectory based on Hbiased, a re-weighting procedure has to

be performed to retrieve the original Boltzmann distribution, and any observable O can be

estimated as

〈O(Ω)〉 = 〈O(Ω)eβV (λ(Ω))〉bi ased

〈eβV (λ(Ω))〉bi ased
, (2.41)

averaged from configurations generated from the biased simulation. Taking O to be the Delta

function δ(A(Ω)) or δ(B(Ω)), one arrives at

∆FA−B
.=− 1

β
ln

∑
Ω eβV (λ(Ω))δ(A(Ω))∑
Ω eβV (λ(Ω))δ(B(Ω))

. (2.42)

2.3.2 An example of enhanced sampling methods: metadynamics

Although the central formulations of the enhanced sampling methods are more or less similar,

there are a large spectrum of different designs. Metadynamics is an adaptive method that

operates at quasi-equilibrium conditions, making it efficient and easy to implement. It works
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by adding a time-depend bias V (λ, t) to discourage the system from re-visiting the already

explored CVs space. During the simulation, the bias is built as a sum of Gaussians of width σ

deposited along the trajectory of λ with the deposition rate ω:

V (λ, t ) =
∫ t

0
d t ωexp

(
− (λ−λ(t ))2

2σ2

)
. (2.43)

In the well-tempered variant, the bias deposition rate reduces with time such as

ω=ω0e
− V (λ,t )

kB∆T , (2.44)

where ∆T +T is the effective temperature at which the CV is sampled. In the adaptive version,

the Gaussian width σ also varies according to diffusional or geometrical considerations [92].

Most of the time, metadynamics is regarded as a free energy method based on the equilib-

rium distribution of the states. The effect of the external bias on any system observables can

be removed by applying Eq. (2.41). On the other hand, it can also be interpreted as a transition

path sampling method; the bias V (λ, t) provides an acceleration factor to help the system

travel to the transition states from the energy basin. Taking state B as the equilibrium state

and state A as the transition state, Bennett-Chandler rate theory assumes,

P (B → A, t ) = κ(t )φ(λA)e−βFA−B , (2.45)

where φ(λA) is the effective velocity of the CV on the top of the transition state

φ=
〈δ(λ(q)−λA) |m− 1

2
∂λ(q)

∂q
|〉√

2πβ〈δ(λ(q)−λA)〉
, (2.46)

where q and m indicate the coordinates and the mass matrix. When WB→A < FA−B and the

process is still thermally activated, the above equation can be extended as

P (B → A | WB→A)t = κ(t )φ(λA)e−βFA−B eβWB→A = P (B → A)t e−β(V (λA ,t )−V (λB ,0)) (2.47)

and the last steps follows the definition of work in Eq. (2.8). This equation implies that the real

transition rate is related to the rate in metadynamics by a simple scaling factor.

Because of the above mentioned versatility of metadynamics, it will be the workhorse in

the present project. Fast setups of metadynamics simulations together with other biasing

protocols were made possible by the PLUMED software [93].

2.3.3 Constructing a collective variable for distinguishing solid from liquid

As mentioned before, a good CV is highly system dependent. For the case of solid clusters

nucleating from bulk liquid, a good CV should be highly correlated with the proportion of
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Chapter 2. Free energy estimation methods

Figure 2.4 – A schematic for selecting and distinguishing local atom environments in a mi-
crostate.

the solid phase inside the whole system. It can be a thermodynamic variable such as energy,

volume, proxy of entropy [94], etc. In many cases, it is advantageous to build a CV from local

order parameters (Fig. 2.4): (i) Firstly, take each environment {ri j } centered at each atom i , (ii)

For each atom-centered environment, compute an atomic order parameter φi =φ({ri j }). At

the atomistic level, several families of order parameter φi can be used to determine whether

the environment around atom i is solid-like or liquid-like [95]. In the next section, we will

introduce a modified version of the cubic harmonic order parameter. (iii) Finally, for each

microstate, we construct a global CVΦ=∑
i φ(i ) by summing over all the atoms.

The PLUMED [93] plug-in provides a simple and efficient way to compute CVs based on

local order parameters: At each step of the simulation, the PLUMED software receives the

atomic configuration from LAMMPS, computes local order parameters and global collective

variables, and returns an external bias potential to the MD code.

2.3.4 An example of local order parameter: FCCUBIC

Here we described a cubic-harmonic-based order parameter φ, which discriminates between

the liquid, the solid, and the various different crystal orientations. This order parameter was

first introduced in Ref. [96], and we latter refined it by re-parameterization and applying a

hyperbolic switching function.

This local order parameter φ for each atom i depends on the position of its nearest neigh-

bors. To single out the first-shell neighbors, we introduce a radial cutoff function between

each pair of atoms i and j :

cr (ri j ) =


1 ri j ≤ r1

0 ri j ≥ r0

(y −1)2(1+2y) r1 < ri j < r0

(2.48)
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Figure 2.5 – The distributions of κ for a bulk fcc crystal oriented with the 〈100〉 direction parallel
the axes of the simulation cell, and for the bulk liquid. All distributions have been computed
at T = Tm. SMAP indicates the sketch-map switching function [97] that we used to define
φ= S(κ).

where y = (ri j − r1)/(r0 − r1). We then compute an angular term cα(ri j ) to identify whether

atom j sits on an fcc lattice point relative to i . This angular term has a functional form inspired

by the cubic harmonics

cα(ri j ) = (x4 y4 + y4z4 +x4z4)/r 8
i j −ax4 y4z4/r 12

i j , (2.49)

Fig. 2.5 shows the shape of the above cubic harmonic function function. The parameter

α= 27 has been changed from the original value used in Ref. [96]. This new value allows us to

differentiate more clearly between different orientations of the fcc environment. This is useful

as cα is not rotationally invariant. It can thus be used in conjunction with a rotation matrix

to ensure that an fcc crystal is only detected when it has a particular orientation, that can be

specified using a set of Euler angles (φ, ψ, θ), i.e.,

c(φ,ψ,θ)
α (ri j ) = cα(R(φ,ψ,θ) · ri j ), (2.50)

where

R(φ,ψ,θ) =

∣∣∣∣∣∣∣
cosφcosψ−cosθ sinψsinφ cosφsinψ+cosθcosψsinφ sinφsinθ

−sinφcosψ−cosθ sinψcosφ −sinφsinψ+cosθcosψcosφ cosφsinθ

sinθ sinψ −sinθcosψ cosθ

∣∣∣∣∣∣∣ .

(2.51)
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The un-scaled local order parameter κ0 is then defined as

κ0(i ) =

∑
i 6= j

cr (ri j )cα(ri j )∑
i 6= j

cr (ri j )
. (2.52)

This quantity is then linearly scaled using κ(i ) = (κ0(i )−κ0
l )/(κ0

s −κ0
l ) to ensure that the perfect

fcc lattice corresponds to κ= 1, while the average κ value for atoms in bulk liquid is zero. The

value of κ0(i ) in the perfect fcc crystal with the desired orientation κ0
s = 1/16 can be readily

computed by summing over the positions of the ideal positions of nearest neighbors. It is also

possible to analytically integrate the value of κ0(i ) in the bulk liquid, as one can safely assume

that the distribution of ri j is uniform in the polar directions, i.e.,

κ0
l =

∫ π

0
dθ

∫ 2π

0
dφcα(ri j (φ,θ,r = 1)) = 143−a

5005
. (2.53)

For a given choice of a, κ(i ) = 80080
2717+16aκ

0(i )+ 16(a−143)
2717+16a .

Figure 2.5 shows that the atoms in bulk fcc crystal and bulk liquid have a minimal amount

of overlap in the distribution of the local order parameter κ. Consequently, a tunable sigmoid

switching function [98] can be used to map each atom onto the solid-like or the liquid-like

regime, i.e.,

φ(i ) = S(κ(i )) = 1− (1+ (2a/b −1)(κ(i )/R0)a)−b/a , (2.54)

The switching function used in this work is shown in figure 2.5. It has a = 8, b = 8, and R0 = 0.45.

These values were selected so that φ= 0.5 corresponds to the crossover point at which the κ

distributions for the atoms belonging to the bulk crystal and the bulk liquid cross.
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3 The interfacial free energy of solid-
liquid interfaces

As detailed in Chapter 1, CNT assumes that the free energy of a solid cluster G(ns) in homoge-

neous nucleation can be expressed as the sum of a bulk and a surface term [9] i.e.

G(ns) =µslns +γA(ns), (3.1)

where µsl = µs −µl is the difference in chemical potential between the solid and the liquid,

and the second surface term is the product of a specific free energy excess term γ, and the

extensive surface area A(ns).

However, in an atomistic simulation of homogeneous nucleation, it is difficult to extract

the various terms that enter Eqn. (3.1) for the following reasons: (i) In a finite undercooled

liquid system, there are many fluctuating solid clusters and it is non-trivial to single out an

individual one and compute the free energy associated with it. (ii) Due to the diffuse nature of

the interface, there is a degree of ambiguity in the location and area of the dividing surface

between the two phases, making the determination of γ and A problematic. (iii) In general, the

interfacial free energy γ exhibits a curvature dependence, so it cannot be treated as a constant

when fitting the computed nucleation free energy profile to the CNT expression Eqn. (3.1).

A great way to simply the problem and circumvent most of the aforementioned issues is

to evaluate the interfacial free energy γ for an idealized planar interface, which resembles

the surface of a mesoscopic nucleus. In the planar limit the value of the surface area A(ns) is

unequivocal. In addition, different crystallographic orientations can be treated separately, so

γ and its anisotropy can be defined more rigorously. At the coexistence temperature of the

system Tm, a few techniques have been developed for computingγ(Tm), including the capillary

fluctuation method, which relies on an analysis of the height profile for the atomically-rough

solid-liquid interfaces [99, 100] and the cleaving method, which computes the reversible work
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Chapter 3. The interfacial free energy of solid-liquid interfaces

required to cleave the bulk solid and liquid and to join the pieces to generate an interface

[101–103]. However, to investigate the solid-liquid interface at conditions that mirror those

in experiments, a method that works for planar interfaces and that operates under realistic

levels of undercooling (T < Tm) is required. In this chapter, we derive just such a method, as

well as a thermodynamic framework to rigorously define and characterize the free energy of a

solid-liquid interface at out-of-equilibrium conditions. We then use this method to compute

the temperature dependence of γ for a realistic interatomic potential.

3.1 Gibbs dividing surface in atomistic systems

In order to relate atomic-scale descriptions with mesoscopic models and experiments, it is

necessary to introduce a consistent framework for quantifying the number of solid atoms ns.

At the atomistic level, several families of structural fingerprints φ(i ) can be used to determine

whether the environment around atom i is solid-like or liquid-like [95]. In our simulations, for

example, we used a cubic harmonic order parameter introduced in chapter 2.3.4. Instead of

defining ns by introducing an ad-hoc threshold onφ, which is quite common in simulations of

this kind, we adopted an alternative approach, that is closely related to the classical definition

of a Gibbs dividing surface.

A Gibbs dividing surface is defined to be an infinitely thin geometrical surface that is sensi-

bly coincident with the physical surface of discontinuity [58, 104]. The surface is meant to be

an idealization of the transition region between the two phases, and one should choose, when-

ever possible, a geometry that is consistent with the boundary conditions and the symmetry

of the problem. The precise position and shape of the Gibbs dividing surface are important,

for instance when one needs to determine its area [58, 104]. When instead one only needs

to define the extent of the two bulk phases, what matters most is that the surface divides

the system into a solid part that has ns atoms and a liquid part that has nl atoms, with no

atom assigned to the interface. It is then useful to construct a reference system, in which the

solid part and the liquid part maintain their bulk properties up to the dividing surface. With a

dividing surface in place, the free energy and the properties of any two-phase system can be

naturally decomposed into a term corresponding to the reference bulk system and an excess

term associated with the interface.

To remove the degree of freedom associated with the choice of a dividing surface, it is

customary to select a surface such that there is no surface excess of a certain extensive quantity

Φ, i.e. such that the real system and the reference system exhibit the same value for the chosen

extensive quantity. This extensive quantity could be the volume occupied by that region, its

internal energy or its entropy for example. More often than not, it is also convenient to use

an extensive order parameter Φ=∑
i φi , where the atomic order parameter φi is calculated

based on the local environment of each of the particles in the system. The zero surface excess
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3.1. Gibbs dividing surface in atomistic systems

condition can be schematically expressed as

Φ(ns,nl) ≡Φref(ns,nl), (3.2)

where Φ(ns,nl) and Φref(ns,nl) stands for the values of the extensive quantity Φ of the real

solid-liquid system and the reference bulk system that both comprise ns solid atoms and

nl liquid atoms, subject to the conservation of the total number of atoms ns +nl = N for a

solid-liquid system comprising a total of N atoms. In turn, in the reference bulk system we

haveΦref(ns,nl) =Φs(ns)+Φl(nl)

Assuming that the instantaneous value of the extensive quantity Φs of the reference bulk

solid system that comprises ns bulk solid atoms can be characterized by the average value for

the order parameter of each atom φs, and Φl of the bulk liquid system can be characterized by

the average value φl, one can have the equation Φref(ns,nl) =φsns +φl(N −ns). One can then

define the number of atoms of solid using a deterministic mapping

ns(Φ) = (
Φ−Nφl

)
/
(
φs −φl

)
. (3.3)

This mapping corresponds to a Gibbs dividing surface between the two phases that has zero

excess for the extensive variableΦ. Within this approach, the choice of the order parameter

implicitly determines the position of the solid-liquid dividing surface while automatically

averaging over roughness and thermal fluctuations.

The free energy of the reference bulk system composed of ns solid atoms and nl = N −ns

liquid atoms is equal to Nµl +µslns, where µl is the chemical potential of the liquid and µsl is

the difference between the chemical potentials of the solid and liquid. Setting the free energy

of the liquid as the reference zero, the free energy of the solid-liquid system with an interface

can be expressed

G(Φ) =µslns(Φ)+Gsurf(Φ), (3.4)

where Gsurf(Φ) is the excess term due to the solid-liquid interface. It is customary to express

the surface free energy excess as the product of a specific surface energy term γΦ and the area

of the interface, i.e. Gsurf(Φ) = γΦA. For a solid-liquid system the surface area is fixed by the

boundary condition of the system, A = 2∆y∆z, where ∆y∆z is the cross-section area of the

simulation cell and the interface is perpendicular to x axis.

It is worth pointing out that, the choice of the Gibbs dividing surface is not unique, however,

regardless of which choice is made the Gibbs free energy of the given solid-liquid system should

not change. For instance, if an extensive quantity Θ instead ofΦ is used to define the dividing

surface, we have

G =µslns(Φ)+γΦA =µslns(Θ)+γΘA. (3.5)

In out-of-equilibrium conditions µsl 6= 0, Eqn. (3.5) thus implies that the subdivision of G
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Chapter 3. The interfacial free energy of solid-liquid interfaces

into bulk and interface terms depends on the choice of the dividing surface for a system

containing a planar interface. The specific free energy excesses obtained using two different

order parameters φ and θ to define the reference state are related by:

γΘ−γΦ =−µsl
ns(Θ)−ns(Φ)

A
. (3.6)

This change in the interfacial free energy could been seen to be coming from a shift in the

position of the dividing surface. This shift means that different numbers of atoms are assigned

to the solid and liquid parts of the system.

Although many choices of the Gibbs dividing surface can be made and they are all equally

valid provided that they are used consistently, a few choices have certain merits and as a

result are more commonly used: The surface of tension (σ-surface), corresponding to the

position at which the mechanical definition of tension applies, is regarded as “special" because

the associated interfacial free energy γσ is curvature-independent. On the other hand, the

equimolar dividing surface with interfacial free energy γV that has no surface excess of volume

(V ) is commonly used when analyzing nucleation, because this surface encloses a nucleus

that has the same density as the bulk, which streamlines the formulation of nucleation free

energy profiles [105, 106].

3.2 Simulation details

We simulated the solid-liquid interface for a simple but realistic Lennard-Jones system [103,

107, 108]. To accelerate the sampling so as to obtain reversible formation of a solid-liquid

interface in a viable amount of simulation time, we performed well-tempered metadynamics

simulations with adaptive Gaussians [92, 109]. usingΦ=∑
i S(κ(i )) (see chapter 2.3.4) as the

CV. A simulation supercell with dimensions commensurate to the equilibrated lattice at the

temperature T , was employed. This cell was elongated along the x axis which was chosen to be

parallel to the crystallographic orientation of the solid-liquid interface. Simulations were run

at constant temperature and pressure, with only the x direction left free to fluctuate. Under

these conditions, the planar interfaces, whenever present, are always perpendicular to the

chosen lattice direction and always have a surface area A = 2∆y∆z equal to twice the supercell

cross section. The sampling has to be restricted to the relevant regions of phase space: the

melt, the coexistence state with correctly-oriented solid-liquid interfaces, and the defect-free

fcc crystal. Choosing an appropriate CV is critical for achieving this end and, in addition,

several judiciously tuned restraints are required to prevent the formation of grain boundaries

and twin defects. The presence of these defects was already observed in biased simulations at

Tm [110] and they become very likely at undercooled conditions. Fast implementation of this

complex simulation setup was made possible by the flexibility of the PLUMED code [93] in

combination with LAMMPS [91].
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Figure 3.1 – The free energy profile averaged from 36 independent metadynamics simulation
runs, and shown as a function of ns(Φ), for an interface perpendicular to 〈100〉 and a simulation
box composed of 16×9×9 fcc unit cells. Representative atomic configurations for different
values of ns(Φ) are shown, with atoms colored according to the local order parameter φ.
The two sets of curves correspond to the free energy profiles at the melting temperature
(γ(Tm) = 0.371(2)) and at a moderate degree of over-heating (γ(0.64) = 0.365(3)). All quantities
are expressed in Lennard-Jones units.

3.3 The planar interfacial free energy γΦ

Figure 3.1 shows the free energy G as a function of ns(Φ) at two different temperatures. These

curves were reconstructed from the metadynamics simulations using on-the-fly re-weighting

[111, 112]. At T = Tm, G(ns(Φ)) displays a broad horizontal plateau that corresponds to the

progressive movement of the solid-liquid interface. As discussed in Ref. [107], γ(Tm)A can be

unambiguously taken as the difference between the free energy of the plateau and the free

energy at the bottom of the solid and liquid minima. The bias potential allows the interface to

form even when µsl is non-zero, at temperatures away from Tm. Figure 3.1 thus also reports

the free energy profile computed for T > Tm . The free energies of the minima corresponding

to the bulk solid and liquid phases now take different values. The slope of the line that joins

these minima is equal to µsl(T ). The region that was a plateau at T = Tm has become an
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Chapter 3. The interfacial free energy of solid-liquid interfaces

oblique line, with a slope that is also equal to µsl as moving the dividing surface now has an

energetic cost that is associated with forcing atoms to undergo the phase transition [113]. The

vertical red arrow in Figure 3.1 indicates the free energy difference between the simulated

system with a solid-liquid interface and a reference state composed of ns(Φ) atoms of bulk

solid and N −ns(Φ) atoms of bulk liquid. This quantity is equal to γ(T )A.

3.4 Using a different Gibbs dividing surface

At this point it is important to note that at T 6= Tm a change in the definition of the order

parameter φ affects how the free energy of a given state is partitioned between the bulk and

surface terms. We will demonstrate later that the value we obtain for γ(T ) thus depends on

φ. As expressed in Eqn. (3.5), this does not change the total free energy of the solid-liquid

system, provided that a consistent framework is used to define the nucleus’ size and surface

energy. It can, however, lead to confusion when comparing simulations, phenomenological

models and interpretations of experiments as these may have been analyzed using different

definitions. In particular, CNT-based models generally assume that the nucleus has the bulk

density. This is equivalent to taking a reference state based on the molar volume, or to using a

zero-excess-volume dividing surface. A V -based value of γ is therefore desirable as one can

then establish a direct link between simulations and CNT models. In addition, simulations

run with different order parameters can be compared straightforwardly if the volume-based

interfacial free energy γV is also computed.

In principle it is possible to compute γ using a different local order parameter θ by on-

the-fly reweighing the biased trajectory. In practice, however, any results obtained are only

reliable when the sampling of Θ = ∑
i θ(i ) is as thorough as the sampling of the CV used in

the metadynamics simulations. In addition, in order to extract γ, the free energy profile

as a function of ns(Θ) must exhibit a clear plateau region that corresponds to solid-liquid

coexistence. Unfortunately, the molar volume does not fulfill these two criteria. To illustrate

this problem, we performed 2D metadynamics simulations in which Φ = ∑
i S(κ(i )) (see

chapter 2.3.4) and the total volume V were used as CVs. In Figure 2 the resulting free energy

surface is displayed as a function of the solid atom counts obtained when these two extensive

quantities are inserted into Eq. (3.3). The fluctuations in the molar volume for the two bulk

phases are so large that they overlap with the plateau region. The molar volume, by itself,

is thus not an effective fingerprint for distinguishing the solid and the liquid phases at the

atomic scale.

Even though one cannot immediately obtain γV from the free energy profile as a function

of ns(V ), it can still be determined indirectly. To do so, one simply computes the change in

atom count that occurs when V rather thanΦ is used to define the reference state:

∆ns (Φ,V ) = 〈ns(V )δ
[
ns(Φ)−ns(Φ′)

]〉−ns(Φ). (3.7)

In the above, the Dirac δ ensures that only states with a certain value of ns(Φ) are selected, and
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Figure 3.2 – The free energy as a function of ns(Φ) and ns(V ) for a simulation at Tm = 0.6185
computed using a supercell 16×9×9 times the fcc unit cell. The dashed line indicates the
ns(Φ) = ns(V ) ideal line, whereas the full line indicates the mean value of ns(V ) for a given
value of ns(Φ). The horizontal offset between the two curves corresponds to the surface excess
for the atom count associated with the Φ-based dividing surface, ∆ns (Φ,V ), which for this
particular calculation is equal to 259±2 atoms.

〈·〉 represents a NPT ensemble average, which can be obtained by appropriately re-weighting

the biased simulation. ∆ns(Ψ,V ) can be determined to a very high statistical accuracy as

long as one of the two order parameters can identify the coexistence region. Graphically, this

quantity corresponds to the horizontal offset between the solid black line and the dashed

diagonal in Figure 3.2, which is constant over the entire plateau region. This implies that,

when a solid-liquid interface is present, a change in the definition of the Gibbs dividing surface

leads to a constant shift in ns. The interfacial free-energy based on the volume, γV (T ), can

thus be inferred from the quantity γΦ(T ) using γV = γΦ−µsl∆ns (Φ,V )/A.

3.5 Results and discussions

Figure 3.3 shows the temperature dependence for µsl and γ computed for the 〈100〉 and

〈111〉 crystal lattice orientations. µsl is a bulk property so its value should not depend on the

orientation of the surface as is observed in the top panel. The magnitude and anisotropy of the

interface free energy at T = Tm match the values reported in the literature Ref. [103, 107, 108].

Its temperature dependence, however, depends strongly on the choice of reference state. The

lower panel shows that γΦ has a near-constant negative slope for both orientations which

indicates that the excess entropy associated with the Φ-based dividing surface is positive. The

importance of using a consistent reference state when studying the solid-liquid interface in

out-of-equilibrium conditions is highlighted by the dramatically different behavior observed
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Figure 3.3 – Chemical potential difference µsl =µs−µl (upper panel) and interfacial free energy
γ (lower panel) for two different crystal orientations, as a function of temperature. γΦ and
γV were computed using a Gibbs dividing surface that has zero surface excess for Φ and
V , respectively (see equation 3.3). These two different ways of partitioning the free energy
of the system between bulk and surface terms ensure that there are significant differences
between γΦ and γV when T 6= Tm. Each data point represents an average over 24 independent
metadynamics runs and statistical uncertainties are indicated by the error bars. The uncer-
tainties in γΦ and µsl∆ns (Φ,V ) were assumed to be independent during the error estimation.
The data points were obtained by restricting the sampling to prevent complete melting. The
simulation boxes comprised about 1200 atoms, which implies a small finite-size effect that
shifts Tm to 0.62. At Tm the interfacial free energies, for the two orientations we considered are
γ100(0.62) = 0.373(2) and γ111(0.62) = 0.352(1). All quantities are expressed in Lennard-Jones
units.
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when the volume is used to define the reference state. γV
100 increases with temperature as

∆ns(Φ,V ) is large and negative. When the molar volume is used to define the reference state a

larger fraction of the interface region is seen as an ordered liquid rather than a disordered solid.

The interface for the 〈100〉 crystal orientation thus has a negative excess surface entropy. For

the 〈111〉 orientation, meanwhile, ∆ns(Φ,V ) is smaller and the slope of γV
111 remains negative.

It is important to remember that the total free energy of the nucleus is the only quantity

that affects its thermodynamic stability. However, the dependence of γ on the dividing surface

will have consequences on predictions and data analysis if the same reference state is not used

consistently. Usually, CNT models are built assuming that the nucleus’ density is constant and

equal to its bulk value, and the equimolar Gibbs dividing surface and the associated value of

γV is most consistent with this assumption.

The observation of a positive slope for γV (T ) is consistent with a simple phenomenological

model for a hard-sphere system [114], and with the effective γ values that were determined by

fitting the values of G?(T ) obtained from simulations run at deeply undercooled conditions

using a CNT expression [46]. Our results paint a somewhat more nuanced picture, however.

The behavior of γV
100 deviates significantly from linearity even at small undercoolings. In

addition, the temperature dependence of the solid-liquid interface energy computed relative

to a zero-excess-volume reference depends strongly on orientation, with the 〈111〉 direction

showing a small negative slope. As a consequence, the anisotropy in γV between the two

orientations we considered decreases down to T = 0.58, suggesting that the shape of the critical

nucleus may depend on the degree of undercooling. Fully determining the size and shape of

the critical nucleus would require one to determine γ and ∂γ/∂T for other high-symmetry

orientations and for small mis-orientations. A direct comparison between planar-interface

calculations and 3D nucleation simulations at intermediate undercoolings would also allow

one to test the validity of the various assumptions within CNT. For example, such simulations

would allow one to determine whether or not the Laplace pressure caused by the curvature

of the interface has a significant effect on the chemical potentials of the two phases. These

calculations, as well as the investigation of more realistic inter-atomic potentials, will be the

subject of future work, which will provide more accurate parameters for mesoscale phase-field

models of nucleation and growth [115, 116].

Using a thermodynamic definition for the size of the solid region allows one to treat atomic-

scale fingerprints and macroscopic observables on the same footing, thereby providing a

practical procedure for converting the value of γ obtained with a computationally-effective

order parameter into the value consistent with the assumptions of mesoscopic theories of

nucleation. The combination of this framework and accelerated molecular dynamics makes

it possible to generate and stabilize planar interfaces at T 6= Tm. Consequently, simulations

can be performed with conditions that more closely resemble those in experiments. Such

simulations could be used to shed light on the changes in morphology of the critical nu-

cleus, to monitor capillary fluctuations at T 6= Tm [99], and to give atomistic insight on the

evolution of interfaces away from equilibrium[117]. In addition, the methodology and the
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thermodynamic considerations we make here, whilst examining solidification, would apply

with minor modifications to the study of nucleation in other contexts, be it melting [118],

precipitation [119], condensation, order-disorder transitions, or other situations in which a

phase transition is hindered by a surface energy term[120].

3.6 Conclusions

The properties of the interface between solid and melt are key to solidification and melting, as

the interfacial free energy introduces a kinetic barrier to phase transitions. This makes solidi-

fication happen below the melting temperature, in out-of-equilibrium conditions at which

the interfacial free energy is ill-defined. Here we draw a connection between the atomistic

description of a diffuse solid-liquid interface and its thermodynamic characterization. This

framework resolves the ambiguities in defining the solid-liquid interfacial free energy above

and below the melting temperature. In addition, we introduce a simulation protocol that

allows solid-liquid interfaces to be reversibly created and destroyed at conditions relevant

for experiments. We directly evaluate the value of the interfacial free energy away from the

melting point for a simple but realistic atomic potential, and find a more complex tempera-

ture dependence than the constant positive slope that has been generally assumed based on

phenomenological considerations and that has been used to interpret experiments.
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4 Bridging the gap between atomistic
and macroscopic models of homoge-
neous nucleation

In the previous chapter, we discussed how to define a Gibbs dividing surface and compute

the free energy associated with a planar solid-liquid interface, we also hint that the situation

of homogeneous nucleation is more complicated because of the presence of multiple nuclei

in the undercooled bulk liquid system. Moreover, there is a conceptual gap in assuming

that fluctuations in the metastable phase involving a few atoms should be regarded as a

nucleus of a stable phase that is only defined in the thermodynamic limit. In this chapter

we address these issues by building a thermodynamic framework that reconcile the picture

emerging from simulation with macroscopic theories of nucleation. To achieve this, we first

investigate a multiple cluster model that we use as a proxy for an idealized atomistic system.

Then, we develop a thermodynamic framework that is consistent with the multiple cluster

model, requires fewer assumptions, and is fully applicable to the atomistic systems simulated

in molecular dynamics or Monte Carlo studies. For the sake of clarity, we will develop our

theoretical framework making reference to the case of solidification from the melt (Figure 4.2),

but our results are general, and we present an application to a two-dimensional Ising model

(Figure 4.4) to demonstrate that it can be applied to all sorts of activated phase transition

processes.

4.1 An idealized multiple-cluster model

We start by taking an idealized model of a metastable bulk liquid phase, in which all the

solid clusters can be identified unambiguously. We then further assume that the interactions

between clusters are insignificant (e.g. negligible volume exclusion). We use the symbol pn to

denote the number of solid clusters containing n atoms. The total number of solid atoms in

the system is thus just ntot =∑∞
n=1 npn . We assume the average population of cluster sizes is
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given by the CNT expression:

〈pn〉∝ exp(−βG(n)), (4.1)

where β= 1/kB T , and G(n) is the free energy excess associated with a single cluster of size n.

The probability distribution for the cluster populations P (n, pn) can be approximated using a

Poisson distribution, i.e.

P (n, pn) =λ(n)pn e−λ(n)/pn ! ,

λ(n) = 〈pn〉 =Nse−βG(n),
(4.2)

where G(n) is the free energy of a single cluster of size n, and Ns is the number of nucleation

sites. Ns is proportional to the total number of particles in the system, and guarantees the

appropriate scaling with system size. G(n) can take any form as long as it is a monotonically

increasing function for n smaller than the size of the critical nucleus, but for this idealized

system we use G(n) = µn +σv
2
3 n

2
3 and the effective interfacial free energy σ is equal to the

specific interfacial free energy γ times a geometrical constant Ω. For our toy system, we

selected parameters kB = 1, T = 0.58, µ=−0.0562ε, γ= 0.354ε/σ2, Ω= 4.836, v
2
3 = 1.035σ2,

and ε and σ are the Lennard-Jones energy and length units. We also assumed Ns = 700. These

parameters were selected to mimic those obtained in the calculations we performed for the

Lennard-Jones system described in chapter 2. The free energy profile for this equation with

these parameters is shown in red in Figure 4.1.

As we have assumed that the cluster size distribution follows Eqn. (4.2), we can derive the

following expression for the free energy profile of the whole system as a function of the total

number of solid atoms, G̃(ntot),

e−βG̃(ntot) =
∞∑

p1=0

∞∑
p2=0

. . .
∞∑

pn?=0
δ

( ∞∑
n=1

npn −ntot

) n?∏
n=1

P (n, pn), (4.3)

by explicitly enumerating all the possible combinations of cluster sizes that result in the same

ntot. Here n? is the size of the critical nucleus, which is taken as an upper bound for the

cluster size, in order to restrict the analysis to the range of metastability of the liquid [47]. We

computed G̃(ntot) analytically using Eqn. (4.3), and plotted the result in blue in Figure 4.1.

It is important to note that G̃(ntot) does not explicitly depend on the size composition of all

the clusters. Defining this quantity is thus an important step towards the formulation of a

macroscopic view of nucleation that is reliant on extensive quantities calculated over the

whole system.

Figure 4.1 shows that the liquid contains 〈ntot〉 solid atoms on average. By writing out

explicitly the cluster size composition, we noticed that when ntot < 〈ntot〉 the most probable

configuration for the system was composed of several small clusters. However, as ntot gets

larger, it typically contained one large solid cluster accompanied by many smaller ones. One

can thus define a cutoff size ncut, such that for ntot À ncut it is orders of magnitude more
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Figure 4.1 – The red line represents the free energy profile G(n) of a single cluster. The blue
line shows the exact G̃(ntot) of the atomistic system with multiple clusters. The red dots and
the blue dots indicate G(n) and G̃(ntot) that are approximated using Eq. (4.4), respectively. The
grey and yellow vertical lines indicate ncut and 〈ntot〉, respectively.

likely to have precisely one cluster with size n > ncut than to have several or none of such large

clusters. At ntot À ncut, the largest cluster can be interpreted as a standalone solid cluster with

n atoms, associated with a probability P (n,1). The rest of clusters in the background can be

treated as a separate bulk liquid system that follows the same distributions (Eqn. (4.2)) as the

original whole system. Under such treatment, at ntot À ncut the expression for G̃(ntot) can be

simplified tremendously as

exp(−βG̃(ntot)) =
ntot∑

n=ncut

Nse−βG(n)e−βG̃(ntot−n), (4.4)

considering also that P (n,1) ≈ Nsλ(n) for large n. The blue dots in Figure 4.1 correspond to

the approximate G̃(ntot) that can be computed using Eqn. (4.4). These points overlap perfectly

with the exact values at ntot & ncut +〈ntot〉. What is more, Eqn. (4.4) suggests that there is

a one-to-one mapping between the G̃(ntot) for the whole system and the G(n) for a single

cluster with n > ncut. As such, Eq. (4.4) allows us to calculate G(n) from a knowledge of G̃(ntot),

without any information on the sizes of individual clusters in each snapshot. The G(n) that is

reconstructed from Eq. (4.4) using a fixed-point numerical scheme is indicated using red dots

in Figure 4.1, and overlaps perfectly with the exact G(n).
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Figure 4.2 – A snapshot of an under-cooled liquid system that has a large solid cluster (solid
circle), and many smaller clusters (dashed circles). Atoms are colored based on the value of
a local order parameter so solid-like atoms are colored in blue, while liquid-like atoms are
colored in red.

4.2 A probabilistic definition of Gibbs dividing surfaces

Our discussion thus far demonstrates that the average distribution of cluster sizes can be

extracted from the distribution of the total number of atoms assigned to the stable phase.

Unfortunately, in actual atomistic simulations it is impossible to assign individual atoms or

molecules to either of the two phases without additional empirical assumptions. In what

follows, we will therefore use the concept of Gibbs dividing surface, and introduce a thermody-

namic approach that draws a connection between an atomistic and a macroscopic description

of homogeneous nucleation.

The starting point of the framework is again the concept of the Gibbs dividing surface [58,

104]. In the previous chapter, we have described in detail about the definition of the dividing

surface. In essence, a Gibbs dividing surface defined by an extensive quantity Φ of the solid-

liquid system comprising a total of N atoms fulfills the zero surface excess condition

Φsl(ns,nl) ≡Φref(ns,nl), (4.5)

where Φsl(ns,nl) and Φref(ns,nl) stands for the values of the extensive quantity Φ of the real

solid-liquid system and the reference system that both comprise ns solid atoms and nl =
N −ns liquid atoms. In the previous chapter, we assumed that the value of ns can be found

by applying the deterministic mapping Φref(ns,nl) = φsns +φl(N −ns) where φs and φl are
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4.2. A probabilistic definition of Gibbs dividing surfaces

the average value for the order parameter of each atom in the solid and liquid respectively.

However, it is important to realize that an instantaneous extensive quantity of a finite piece

of bulk solid or bulk liquid can fluctuate even at fixed thermodynamic conditions. As a

consequence, the extensive quantity Φ of a reference system that has a bulk solid part with ns

atoms and a bulk liquid part with N −ns atoms also have fluctuations. In what follows, we will

describe a probabilistic framework that takes into account the fluctuations when determining

the dividing surface.

First, consider an unbiased simulation of the bulk solid phase. Then, select contiguous

portions of the solid of varying size, and determine for each case the number of atoms n

contained in the region and the value of the extensive quantityΦ. By computing the histogram

of these quantities one can estimate

ρs (Φ|n) =
∫
δ(Φ(Ω)−Φ)dΩ/

∫
dΩ, (4.6)

where Ω denotes a possible microstate for the n atoms of that region, distributed with a

probability consistent with the thermodynamic conditions, and Φ(Ω) is the value of Φ for

that microstate. This distribution, ρs (Φ|n), can be regarded as the conditional probability for

observing Φ in a system consists of a bulk solid region containing n atoms. Since this solid

region should mimic the bulk solid part in the reference system, strictly speaking its shape

should be delimited by the the Gibbs dividing surface and the boundaries of the reference

system. It is worth noting, however, that in the cases we considered in this study the shape

of the solid region has little impact on ρs (Φ|n), as long as a compact shape is chosen. An

analogous distribution ρl (Φ|n) can be derived for a bulk liquid region that contains n atoms

and also has a shape determined by the dividing surface and the boundaries of the reference

system.

Contrary to the multiple cluster model discussed above, “solid” and “liquid” in this case

indicate well-defined thermodynamic states. The bulk solid state encompasses all the possible

configurations for a system of solid, which can contain point defects, other crystal defects,

and even small molten pools. Similarly, a bulk liquid comprises local crystalline orderings and

sub-critical solid clusters.

The finite width of the distributions for ρs (Φ|n) and ρl (Φ|n) in Eqn. (4.6) ensures that the

value ofΦ for a given microstate cannot be used to determine the composition of a reference

system with absolute certainty. Instead, we can compute the distribution of Φ for a reference

system composed of ns solid atoms and nl liquid atoms using

ρref (Φ|ns,nl) =
∫

dϕρs
(
ϕ

∣∣ns
)
ρl

(
Φ−ϕ∣∣nl

)
. (4.7)

According to the concept of the Gibbs dividing surface, if the reference and the actual system

both have ns solid atoms and nl liquid atoms, they should also both have the same distribution
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forΦ. In other words, the zero-excess condition in Eqn. (4.5) takes a probabilistic form,

ρsl (Φ|ns,nl) ≡ ρref (Φ|ns,nl) . (4.8)

Only when ρs (Φ|n) and ρl (Φ|n) are both δ functions at any given n, Eqn. (4.7) is reduced to a

deterministic mapping betweenΦ and ns analogous to that introduced in chapter 3.1.

4.3 Obtaining cluster-size free energies from an extensive order pa-

rameter

Let us now describe how to extract the free energy profile for a solid cluster from atomistic

simulations of undercooled liquid. In simulations, the values of Φ can be easily computed

for every microstate, so the associated free energy G̃(Φ) can be directly obtained from bi-

ased or unbiased molecular dynamics simulations. Since the atomistic simulations are con-

structed so that they sufficiently sample all configurations in the undercooled liquid, the

computed free energy profile G̃(Φ) directly characterizes the distribution of Φ in the liquid,

i.e. ρl (Φ|N ) = exp(−βG̃(Φ)). On the other hand, the bulk liquid sampled in simulations can

have configurations that contain sub-critical nuclei of large sizes, such as the one illustrated

in Figure 4.2. Those configurations can have a value of Φ approaching those typically encoun-

tered for a solid sample. As we have discussed in the multiple cluster model, configurations

that contain a large number of solid-like atoms are overwhelmingly likely to comprise one

and only one cluster of size larger than ncut and a liquid-like background. By a similar logic, a

configuration with a value ofΦ that has enough solid-like characteristics can be interpreted as

a single solid cluster larger than ncut and the surrounding liquid.

Consider a single solid cluster that has ns > ncut atoms together with a liquid background

of N −ns atoms. The values of the extensive quantity for this combination of phases follow the

distribution ρsl (Φ|ns, N −ns). Inside the undercooled bulk liquid, the average population for

solid clusters of size ns can be expressed as 〈pns 〉 = Ns exp(−βG(ns)), where Ns is the number

of nucleation sites that can often be considered as the number of atoms or molecules or

lattice sites in homogeneous nucleation, and exp(−βG(ns)) the probability that a nucleus of

size ns has grown around a nucleation site in the metastable liquid. In other words, G(ns)

represents the free energy excess associated with a solid cluster that has ns atoms relative to

the bulk liquid. Notice also that for ns > ncut, the average population Ns exp(−βG(ns)) is also

the probability of observing a solid cluster of size ns in the bulk liquid system. Based on these

considerations, and using the law of total probability, the probability distribution forΦ in such

systems follows

e−βG̃(Φ) =
∫ n?

ncut

dnsρsl (Φ|ns, N −ns) Nse−βG(ns). (4.9)

This expression is valid for values ofΦ that satisfy ρsl (Φ|n, N −n) ≈ 0 for all n < ncut, so that

the system can be considered to have a single cluster of size larger than ncut.
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4.4. Application: solidification of a Lennard-Jones system

In principle, G(ns) can be determined from Eqn. (4.9), as both G̃(Φ)) and ρsl (Φ|ns, N −ns)

can be computed from simulations. However, to avoid the numerical instabilities in the direct

deconvolution process, we cast the problem as a fixed-point iteration. The averageΦ value

for a system containing ns solid atoms, Φ̄(ns) = ∫
dΦρsl (Φ|ns, N −ns)Φ, follows a monotonic

relation with ns, as shown in the Supplementary Material. One can invert this relation and

obtain a value n̄s(Φ) at each Φ such that Φ = Φ̄(n̄s(Φ)). More generally, after some simple

manipulations, we can rewrite Eqn. (4.9) as:

G̃(Φ) =G(n̄s(Φ))− 1

β
log Ns − 1

β
log

∫ n?

ncut

dnρsl (Φ|n, N −n)e−β[G(n)−G(n̄s(Φ))]. (4.10)

This equation can be rearranged, exploiting the inversion between n̄s and Φ, into a self-

consistency condition on G(ns)

G(ns) = G̃(Φ̄(ns))+ 1

β
log Ns + 1

β
log

∫ n?

ncut

dnρsl
(
Φ̄(ns)

∣∣n, N −n
)

e−β[G(n)−G(ns)], (4.11)

which can be solved iteratively starting from the initial guess G0(ns) = G̃(Φ̄(ns)), and plugging

the old guess onto the right-hand side to obtain a new estimate at each iteration. Upon

convergence, G(ns) is an estimate of the free energy for a solid cluster containing ns atoms

relative to the bulk liquid.

It is worth stressing that the cluster size ns and the associated free energy G(ns) in Eqn. (4.9)

are still dependent on the choice of Φ, because the reference system is defined based on a

Gibbs dividing surface that has zero excess for the extensive quantity Φ. Due to the diffuse

nature of the physical interface, a different choice for the extensive variable can result in a

different location of the Gibbs dividing surface and a different reference system.

4.4 Application: solidification of a Lennard-Jones system

To demonstrate how this thermodynamic framework can be applied to an atomistic simula-

tion of a phase transition, we simulated the processes of homogeneous solidification for a

Lennard-Jones system of 23328 atoms at T = 0.58 [103, 107, 108] – corresponding to a moderate

undercooling relative to the melting temperature of Tm = 0.6185. [1, 103, 107] We performed

12 independent biased sampling runs using the well-tempered metadynamics protocol with

adaptive Gaussians (see chapter 2.3.2) [91–93, 109]. We used a collective variableΦ=∑
i S(κ(i ))

in the biased simulations (see chapter 2.3.4). The solid blue line in Figure 4.3 indicates the free

energy profile G̃(Φ) that was obtained by re-weighting the trajectories. Assuming the Gibbs

dividing surface separating the solid cluster and the bulk liquid has a spherical shape, we also

computed the two probability distributions ρs (Φ|n) and ρl (Φ|n) from unbiased simulations

of the bulk phases.

The snapshot in Figure 4.2 is taken from one of the biased runs, with each atom colored

according to the value of S(κ(i )). Analyzing the population of cluster sizes in this snapshot
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Figure 4.3 – The solid blue line is the free energy profile G̃(Φ), with statistical errors indicated
by the error bars. The red and the blue dots indicate the reconstructed curves for G(ns) and
G̃(Φ), respectively. The grey and yellow vertical lines indicate ncut and the average extensive
quantity 〈Φl〉, respectively.

requires a man-made choice of a cutoff value for S(κ), and a complex procedure to identify

adjacent groups of solid atoms. Instead, by applying the thermodynamic model introduced

above, we can simply characterize the behavior of Φ in the solid and the liquid phases, and

use that knowledge to convert G̃(Φ) of the whole system into G(ns), using the iterative ex-

pression in Eqn. (4.11). Here we also assume the total number of atoms in the system N to

be the number of nucleation sites Ns , although any other choice would simply amount to a

vertical shift of the free-energy curve. This curve of G(ns) plotted as the red dots in Figure 4.3,

corresponds to the free energy for a single cluster relative to the bulk liquid. In order to

demonstrate the convergence of the conversion, we used the computed G(ns) to reconstruct

the free energy profile G̃(Φ) using Eqn. (4.9). As shown in Figure 4.3, the reconstructed G̃(Φ) is

indistinguishable from that obtained directly from the simulation.

As suggested by the many similarities between Figure 4.3 and Figure 4.1, the multiple

cluster model and the thermodynamic model are very closely related. In the Supplementary

Material we show that under a few additional assumptions Eqn. (4.9) is exactly the same

as Eqn. (4.4), with Φ taking the role of ntot. Eqn. (4.9) serves a dual purpose: it converts

the extensive quantity Φ into an estimate for the overall solid fraction and it singles out the

free-energy excess for the largest cluster from the fluctuations of the background liquid.
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4.5. Application: nucleation in a two-dimensional Ising Model

Figure 4.4 – A snapshot of a two-dimensional square-lattice Ising model undergoing a transi-
tion between “up” (blue) and “down” (red) ferromagnetic phases.
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Figure 4.5 – The dotted blue line is the free energy profile G̃(M) as a function of the magne-
tization, for a square-lattice Ising model with size L = 25 and periodic boundary conditions,
simulated at T = 1.5. The solid red and the blue lines indicate the reconstructed curves for
G(nup ) and G̃(M), respectively. The dashed black line is the prediction from Eqn. (4.13). Note
that G(nup ) and G̃(M) are discrete functions, as nup can only have integer values and M can
only be odd integers in this system. The grey vertical lines indicate the choice of ncut for this
system.
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4.5 Application: nucleation in a two-dimensional Ising Model

In order to demonstrate the general applicability of our thermodynamic framework, we

discuss in this section its application to the homogeneous nucleation of a two-dimensional

Ising model, in the absence of external magnetic field. The model is described by the usual

first-neighbour Heisenberg Hamiltonian

H =−J
∑
〈i , j〉

si s j , (4.12)

where J = 1 is the coupling constant, the spin si at site i is either up (+1) or down (-1), and

the sum extends over all its nearest neighbors in the lattice. We used a periodic square

lattice with side L = 25, and performed a Monte Carlo simulation with biased sampling [111]

at the temperature T = 1.5, well below the critical temperature Tc = 2.269. We started the

simulation with all spins down, and also restricted the sampling to the states with negative

total magnetization.

The snapshot in Figure 4.4 (from a simulation with L = 50) shows a large cluster with

positive magnetization embedded in the phase with spins down. Note that one can observe

spontaneous fluctuations of opposite spins not only in the negatively-magnetized background,

but also inside the large nucleating cluster, underscoring the ambiguity in defining cluster

sizes by counting the number of contiguous spins with the same orientation. [47] In contrast,

our thermodynamic model does not rely on any clustering algorithm to identify nuclei of

the different phases, but instead only focuses on the total magnetization M = ∑
i si as a

macroscopic order parameter to characterize the overall state of the system. The dotted

blue line in Figure 4.5 indicates the free energy profile G̃(M). Taking a reference state with a

circular Gibbs dividing surface, we computed the probability distribution ρ
(
M

∣∣nup ,ndown
)

from unbiased simulations of the bulk phases as shown in the Supplementary Material. Using

the iterative expression in Eqn. (4.11), and assuming the number of nucleation sites Ns is

the total size of the lattice, L2, we obtained G(nup ), which corresponds to the free energy

for a single positively-magnetized cluster relative to the bulk negatively-magnetized phase.

G(nup ) is plotted as the solid red line in Figure 4.5, together with the free energy profile G̃(M)

reconstructed using Eqn. (4.9), that matches perfectly the directly computed free-energy curve,

signaling the convergence of self-consistent iterations.

In Ref. [121], the computed nucleation free energy profile of the 2D Ising model was found

to agree well with the expression

G(n) = 2
p
πnσ+τkB T lnn +d , (4.13)

where σ= 1.20585 is the temperature-dependent interfacial free energy for this Ising model

that can be computed analytically [122], τkB T lnn accounts for the shape fluctuations of

the cluster (τ= 5

4
for the 2D Ising model), and the term d = 8−2

p
πσ ensures that the free

energy of a isolated spin is correctly captured. In Figure 4.5, we plotted the exact prediction
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of Eqn. (4.13) as the black dashed line. This prediction matches perfectly the G(nup ) ob-

tained from our thermodynamic framework, without using any fitting parameters and without

explicitly performing a cluster analysis of the simulation.

4.6 Conclusions

The thermodynamic framework introduced here provides a link between the molecular and

the macroscopic scales. Any extensive quantity can be chosen to discriminate between the

solid and the liquid, be it built upon local descriptors, or a traditional thermodynamic quantity

such as the total volume, the energy or the magnetization. By characterizing the fluctuations

of this extensive quantity we can rigorously define, in a probabilistic manner (Eqn. 4.7), a

reference state consistent with a zero-excess Gibbs dividing surface that encloses a single

cluster of the stable phase.

Our method is applicable to all types of phase transitions – from solidification, to precip-

itation or condensation – and it can be combined with any sampling method one chooses

to accelerate nucleation [9, 40, 43–52]. From such simulations the free-energy for the overall

system as a function of any extensive quantity can be computed, and then converted into

the free energy of a single cluster relative to the metastable bulk. By avoiding the need of

singling out atom-size clusters that are inherently ill-defined, our approach is both practically

simple and conceptually elegant. Since no assumption is made on the functional form of the

computed free energy profile for nucleation, our approach can be used to test the limits of

classical nucleation theory, and extended so that it also describes heterogeneous nucleation,

and thus further advances our understanding of bulk and interface-driven phase transitions.
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5 How to use macroscopic nucleation
theory to interpret atomistic simula-
tions of homogeneous nucleation?

When analyzing atomistic simulations of nucleation, macroscopic models that provide analytic

expressions for the nucleation free energy profile G(n) can be extremely useful as they can

be used to extrapolate the G(n) obtained for the sub-critical nuclei which form in atomistic

simulations so as to obtain the free energies of larger nuclei. This is often essential when

predicting the nucleation barrier G?, and when interpolating between results obtained at

different temperatures. Classical nucleation theory has often been used for this purpose, but

it has been shown to give rise to significant systematic errors for all sizes of the nucleus [49].

Although there can be genuine deficiencies of the CNT, how the CNT has been applied can

also cause inaccuracies: a large part of problem is that the number of atoms n in the cluster

is not a well-defined quantity [1, 40, 48, 49]. Different definitions of n inevitably affect the

calculated free energy profile G(n), which forces one to ask which definition of n is most

appropriate within the CNT framework. Another part of the problem is that the CNT expression

is generally used as a fitting model for G(n), because the various physical quantities that

enter this expression - the chemical potential µ and the interfacial free energy γ - cannot

be calculated directly from homogeneous nucleation simulations. In addition, the multiple

clusters encountered in the metastable bulk system further complicate the analysis. As a

consequence, when the results from simulations deviate from the predictions of CNT, it is

not clear which assumption within the model is the main culprit. It is thus difficult to add

additional correction terms to the model to compensate for the missing elements.

In this chapter, we apply the previously developed thermodynamic framework for defining

the nucleation free energy profile G(n) in an unambiguous way (Chapter 3 and 4). We then

fit the computed G(n) to the expressions that come from macroscopic nucleation models,

using the specific interfacial free energy γ and the chemical potential difference µ as fitting

parameters. We also show that a higher-order correction – generally referred to as the Tolman

term – naturally emerges from our formalism. Finally, we compare the predicted values for γ
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and µ that we obtain from simulations of three-dimensional nuclei against those obtained

from the simulations of planar interfaces.

5.1 A recap of the thermodynamic framework

In order to link the atomistic descriptions and the macroscopic representations of a solid-

liquid system, we apply the thermodynamic framework developed in chapter 3 and 4. Using

the Gibbs dividing surface framework introduced in chapter 3, in chapter 4 we provided a link

between G̃(Φ), which is the free energy profile of the whole system as a function of the global

extensive quantityΦ, with the nucleation free energy G(ns(Φ)) of a single solid cluster. We also

introduced the expression

e−βG̃(Φ) =
∫ n?

ncut

dns(Φ)ρsl (Φ|ns(Φ), N −ns(Φ)) Nse−βG(ns(Φ)). (5.1)

To be clear, G̃(Φ) can be directly computed from atomistic simulations of nucleation, and

G(ns(Φ)) then be found by inverting Eqn.(5.1) numerically, as described in Chapter 4.

5.2 A general formulation of classical nucleation theory

With aΦ-based dividing surface, the free energy of the solid-liquid system relative to that of a

bulk liquid can be naturally decomposed into a bulk and a surface term:

G(ns(Φ)) =µslns(Φ)+γΦA(ns(Φ)), (5.2)

Here µsl =µs −µl is the difference between the per-atom chemical potentials of the solid and

liquid phases. The free energy excess associated with the Φ-based dividing surface is then the

product of a specific energy term γΦ and an extensive area term A(ns(Φ)).

For planar interfaces, the surface area A(ns(Φ)) in Eqn. (5.2) is fixed by the boundary

conditions so the specific planar interfacial free energy γΦ = γΦ∞ is a constant that depends on

the crystallographic direction of the planar interface. Notice that if the extensive quantityΘ

is used to define the dividing surface instead of Φ the composition of the reference system

changes. This is important as a change in the composition of the reference state will affect the

value obtained for the interfacial free energy. We quantify this change in composition using:

δns
Φ,Θ = (ns(Θ)−ns(Φ))/A (5.3)

and further note that this quantity should be constant as replacingΦwithΘ shifts the location

of the dividing surface by a fixed amount (see chapter 3). Furthermore, when Φ is replaced by

Θ the resulting change in the planar interfacial free energy

∆γΦ,Θ
∞ = γΘ∞−γΦ∞ =−µslδns

Φ,Θ, (5.4)
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is also a constant, because the total free energy in Eqn. (5.2) should be unaffected by the

change in the extensive quantity.

For the curved interfaces around a three-dimensional nucleus, the surface area A(ns(Φ)) is

not equally well-defined. Classical nucleation theory assumes that the nucleus has the same

density as the bulk solid, which is what ensures that A =Ωv
2
3
s ns

2
3 . Critically, however, this bulk

density assumption is only valid when the equimolar dividing surface is used to define the

reference state, which implies that only quantities determined using a dividing surface with

no excess volume should be inserted into Eqn. (5.2). This equation should thus read:

G(ns(V )) =µslns(V )+γVΩv
2
3
s ns

2
3 (V ). (5.5)

Even when the reference state is defined in a manner consistent with this assumption about

the bulk density of the nucleus, however, one still has to include a term that incorporates the

surface excess free-energies’ dependence on curvature into γV [104, 123]. This dependence of

γV on the effective radius of the nucleus R = (3/4π)
1
3 v

1
3
s ns

1
3 (V ) can be written as

γV (R) = γV
∞(1−2δ/R +O (1/R2)). (5.6)

In this expression δ is the Tolman length - a quantity that measures the difference between

the locations of the equimolar dividing surface and the surface of tension at the planar limit.

γV∞, meanwhile, is the specific interfacial free energy associated with the equimolar surface in

the planar limit. Taking only the leading terms in Eqn. (5.6), Eqn. (5.5) can be rewritten as

G(ns(V ))hµslns(V )+γV
∞Ωv

2
3
s ns

2
3 (V )(1−εns

− 1
3 (V )), (5.7)

where ε= (32π/3)
1
3 v

− 1
3

s δ is a constant.

At the atomic scale, due to the magnitude of fluctuations, it is difficult to distinguish

between the different phases based only on the difference in molar volume. Hence, it is often

not convenient to use this quantity to determine the number of solid particles in a simulation.

One can use a different extensive quantity to determine the location of the diving surface as it is

possible to convert the free-energy profile obtained using one dividing surface to the result that

would have been obtained for a different dividing surface using Eq. (5.3). It would be useful,

however, to derive a CNT expression based on an arbitrary choice of reference thermodynamic

variable Φ. To derive such an expression, we first assumed that the difference between the

location of theΦ-based dividing surface and the location of the equimolar dividing surface is

much smaller than the effective radius of the nucleus R, as this ensures that the difference

between ns(Φ) and ns(V ) can be approximated using

ns(V )−ns(Φ)h δns
Φ,VΩv

2
3
s ns

2
3 (V ), (5.8)
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where δns
Φ,V is the constant that appears in Eqn. (5.3) and (5.4) and where Ωv

2
3
s ns

2
3 (V ) is a

measure of the surface area of the nucleus. We can substitute ns(V ) for ns(Φ) in Eqn. (5.7)

using the above approximation, and can also use the relation γV∞−γΦ∞ = −µslδns
Φ,V . After

dropping the higher order correction terms, we obtain

G(ns(Φ))hµslns(Φ)+γΦ∞Ωv
2
3
s ns

2
3 (Φ)(1+ζns

− 1
3 (Φ)), (5.9)

where ζ= 2
3δns

Φ,VΩv
2
3
s −ε is a constant. This ζns

− 1
3 (Φ) term in Eqn. (5.9), which has the same

mathematical form as the Tolman correction, has two components: the δns
Φ,V term stems

from the difference between theΦ-based dividing surface and the equimolar surface, while the

other ε term is determined from the Tolman length and has a value that is independent of the

choice of the dividing surface. Hereafter, we will use CNT(Φ)+Tol to denote the expression in

Eqn. (5.9) in order to highlight its dependence on the chosen extensive quantity. An awareness

of this dependence on the choice of Φ is crucial when comparing studies performed with

different protocols. Eqs. (5.7) and (5.9) are both valid expressions for the free energy of a

nucleus that are consistent with Tolman-corrected CNT. These two expressions differ, however,

when they come to defining the size of the nucleus and the value and interpretation of the

planar-interface excess free energy and the coefficient for the finite-size correction.

5.3 Simulation methods

We simulated the processes of homogeneous nucleation for a simple but realistic Lennard-

Jones system [103, 107, 108]. The NPT ensemble was employed throughout with the Nose-

Hoover thermostat and isotropic barostat. The time step was set equal to 0.004 Lennard-Jones

time units and a supercell containing 23328 atoms was used throughout. Each independent

simulation at each temperature was run for approximately 6×106 steps. To accelerate the sam-

pling so as to obtain reversible formation of a solid nucleus in a viable amount of simulation

time, we performed biased sampling using the well-tempered metadynamics protocol with

adaptive Gaussians [92, 109], and the collective variableΦ=∑
i S(κ(i )) that was described in

chapter 2.3.4.

5.4 Results and Discussions

At each of the temperatures 0.56, 0.58, 0.60 and 0.6185, a total of 12 independent metadynamics

runs were performed. For each simulation run we first computed the free energy profile G̃(Φ)

with respect to the extensive quantity Φ of the system. We then extracted the nucleation free

energy for a single solid cluster as a function of ns(Φ) using the framework introduced above,

which is thoroughly described in Ref. [124]. Each free energy profile G(ns(Φ)) is plotted as a

thin blue curve in Figure 5.1. For each G(ns(Φ)), we then performed a CNT(Φ)+Tol fit using

Eqn. (5.9) with µsl, γ
Φ∞Ω, and ζ as fitting parameters. Each of these fitted curves is shown in

red in Figure 5.1.

58



5.4. Results and Discussions

MD CNT(Φ)+Tol

500 1000 1500 2000 2500 3000 3500 4000
ns(Φ)

0

100

200

300

400

500

Fr
ee

en
er

gy
pr

of
ile

(ϵ
)

Figure 5.1 – The four sets of curves from bottom to top correspond to the free energy profiles
of ns(Φ) at temperatures of 0.56, 0.58, 0.60 and 0.6185, respectively. Each thin blue curve is
computed from a biased molecular dynamics simulation, and each thin red line corresponds
to the best CNT(Φ)+Tol fit of one blue curve.

T=0.60
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Figure 5.2 – Each symbol in red or orange represents one pair of fitting parameters (γΦ∞Ω
and µsl) that were obtained by fitting one of the free energy curves shown in figure 5.1 that
were themselves extracted from one of the independent simulations that were performed at
T = 0.60. The black arrows indicate the results obtained from simulations of planar interfaces.
All quantities are expressed in Lennard-Jones units.
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Figure 5.3 – In the top panel, the red symbols indicate µsl values computed from homogeneous
nucleation simulations using the CNT(Φ)+Tol fit, the dashed line µsl = 1.714(T − 0.6178)
describes the fitted values of µsl that was extracted from planar interface calculations using
a large simulation box with 20736 atoms. In the middle panel, the purple, blue and green
symbols indicate the values of γΦ∞ for the planar interfaces that are perpendicular to three
different lattice directions. The dashed line indicates the effective γΦ∞ that is obtained when
the results for the planar interfaces are averaged over all lattice directions. The red symbols
indicate the values of the estimates for the fitting parameters γΦ∞Ω that are obtained from the
CNT(Φ)+Tol model divided by the estimated Ω at each temperature. In the bottom panel, the
red symbols indicate the Tolman correction constant ζ in the CNT(Φ)+Tol fits, while the black
symbols indicate the estimate for ζ that is obtained when the planar interface results for µsl

and γΦ∞ are used in Eqn. (5.9). The gray symbols indicate the equimolar-surface correction

to γΦ∞ from the planar limit, 2
3δns

Φ,VΩv
2
3
s . Statistical uncertainties are indicated throughout

using error bars.
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Table 5.1 – A comparison of the predictions for µsl and γΦ∞ from different models. For each
number, the value in the bracket indicates the statistical uncertainty in the last digit. Each
number is the average from the 12 independent runs, and the statistical uncertainty is the
standard error for the mean.

µsl γΦ∞
model 0.56 0.58 0.60 0.6185 0.56 0.58 0.60 0.6185
CNT(Φ)+Tol -0.100(9) -0.061(5) -0.033(4) 0.001(5) 0.42(4) 0.38(2) 0.39(2) 0.37(2)
Planar -0.0991(2) -0.0648(2) -0.0305(2) 0.0012(2) 0.418(4) 0.393(3) 0.377(2) 0.360(2)
CNT(Φ) -0.083(2) -0.049(1) -0.016(1) 0.017(1) 0.346(5) 0.330(2) 0.317(1) 0.302(3)

The red curves in Figure 5.1 start to diverge at larger sizes even though they almost overlap

at small sizes. In order to understand the origin of this divergence we show the two parameters

(µsl, γ∞Ω) obtained from CNT+Tol(Φ) fits for each free energy profile at T = 0.60 in Figure 5.2.

The two parameters µsl and γ∞Ω are clustered around a straight regression line in Figure 5.2,

which suggests that there is a very large correlation between them. The consequence of this

correlation is that a tiny change in the segment of data used for fitting can make the two

parameters vary collectively along the regression line by a significant amount. Thus, small

uncertainties in the computed free energy profile for the small sub-critical nuclei that form in

simulations can propagate and amplify when these curves are extrapolated to large nuclei.

We wanted to determine whether or not the values obtained for µsl and γ∞Ω from the

CNT(Φ)+Tol model are physically meaningful. To this end, we also show results obtained

from simulations of the planar interfaces (see chapter 3) in Figure 5.2. The value of µsl for

an interface perpendicular to any lattice direction can be computed by performing biased

simulations of that interface [1, 113]. We computed these planar interfacial free energies in

our previous work [1] and used a deterministic framework to locate the Gibbs dividing surface.

We observed that the values of the interfacial free energies do not change significantly when

the probabilistic framework in Eqn. (??) is applied, so we chose to adopt the values for γΦ

and γV reported in chapter 3. To estimate γΦ∞Ω, we first obtained the values of γΦ100, γΦ111 and

γΦ110 for planar interfaces with normal vectors parallel to the specified lattice directions. We

then used a common assumption; namely, that for this Lennard-Jones system the interfacial

free energy surface γΦ(~n) can be expanded using cubic harmonics to the third order [99],

whose coefficients can be parametrized using the values of γΦ100, γΦ111 and γΦ110. On the other

hand, the shape of the equimolar surface of the nucleus R(~n) can then be reproduced by

performing a Wulff construction using the γV values [125]. As the difference between the

locations of the Φ-based dividing surface and the equimolar dividing surface was assumed to

be insignificant compared to the radius of the nucleus, the shape, R(~n), that emerges from the

Wulff construction can be considered to be very close to the shape of the Φ-based dividing

surface of the nucleus. From this shape, we can, therefore, estimate the geometrical constant

Ω, and an effective value of γΦ∞ for the surface of the whole nucleus by computing the surface

integral
Î

R γ
Φ(~n)d A/

Î
R d A. At all the temperatures we considered, the shapes R(~n) that we

obtained were close to spherical. In fact, the corresponding Ω values were within 0.5% of the
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geometrical constant for a sphere.

Figure 5.2 suggests that the values of µsl and γΦ∞Ω from the CNT(Φ)+Tol fits are consistent

with the planar limit results. However, there is a large spread in the parameter values because

of the strong correlation between these two parameters in the fitting. Table 7.1 shows all the

values of µsl(T ) together with the values of γ∞(T ) that are predicted both from the CNT(Φ)+Tol

model and the planar limit results and further illustrates the very good agreement between

the two models at all temperatures considered. We think this good agreement is a strong

indication that the CNT(Φ)+Tol model is a good macroscopic model for the free energies of

atomistic nuclei. Indeed, when a different model is used, the values of the two parameters

µsl and γΦ∞Ω may not agree with planar limit results. For example, we also performed a

so-called CNT(Φ) fit on each computed G(ns(Φ)), using a conventional CNT formulation

G(ns(Φ)) = µslns(Φ)+γΦ∞Ωv
2
3
s ns

2
3 (Φ) . The values of µsl and γΦ∞Ω from the CNT(Φ) fits are

indicated in Figure 5.2 and Table 7.1. Once again there are very strong inter-correlations

between the parameters. What is even worse, however, is that the fitted values are no longer

consistent with the planar interface results. This example highlights the perils associated with

using the wrong model to fit the free energy profile for nucleation: although one might obtain

a good fit for the data points, the values of the fitted parameters of the model are physically

unrealistic and the model will most likely have limited predictive power in scenarios that are

outside the range of the existing data set.

The comparison between the values of µsl and γΦ∞Ω from the CNT(Φ)+Tol and the planar

limit results suggests that one should just use the results obtained at the planar interface

limit in Eqn. (5.9) so as to have a model that has ζ as the only fitting parameter. This model

would have much greater statistical accuracy as there are no correlations between the fitting

parameters. We performed such fittings and compared the values of the parameter ζ with

the values obtained from the regular CNT(Φ)+Tol fits using all three parameters. The bottom

panel of Figure 6.4, shows that this new approach results in much smaller uncertainties in the

values of ζ. Therefore, performing simulations of planar interfaces as well as simulations of

three dimensional nuclei is worthwhile when studying homogeneous nucleation, especially

given how computationally inexpensive such simulations are. We would recommend first

computing the values of µsl and γΦ∞Ω from simulations of planar interfaces. This allows one to

determine the leading terms µslns(Φ)+γΦ∞Ωv
2
3
s ns

2
3 (Φ) in a CNT-type model. Comparing these

leading terms with the actual nucleation free energy profiles computed from the simulations

of three-dimensional nuclei, then allows one to extract the other higher-order correction terms

in the CNT-type model with much higher statistical accuracy.

It is worth discussing the higher-order correction term ζ= 2
3δns

Φ,VΩv
2
3
s − ε in Eqn. (5.9)

a little further. This factor has two distinct components but we treat it as a single fitting

parameter in the present study. To evaluate the first term separately we can exploit the fact that

the difference between the number of solid-like atoms per area δns
Φ,V for different definitions

of the dividing surface can be directly evaluated from simulations of planar interfaces as

discussed in chapter 3. We evaluated δns
Φ,V for planar interfaces with normal vectors parallel
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to the 〈100〉, 〈111〉 and 〈110〉 lattice directions at each temperature, and then approximated

δns
Φ,V (~n) using a cubic harmonic expansion, and thus estimated its averaged value for a

three-dimensional nucleus. These estimated values for 2
3δns

Φ,VΩv
2
3
s are shown in the bottom

panel of Figure 6.4. The other term ε= (32π/3)
1
3 v

− 1
3

s δ that enters ζ can be determined from

the Tolman length δ. This quantity can be evaluated from the pressure tensor at each position

along the normal to a planar interface for fluid-fluid systems [126–128]. How this quantity

should be computed for solid-liquid interfaces is, however, unclear. As such, we chose to

subtract the values we obtained for 2
3δns

Φ,VΩv
2
3
s from the value we obtained for ζ and to

extract the Tolman length from ε. In this way, we predicted the Tolman length to be

δ=
2
3δns

Φ,VΩv
2
3
s −ζ

(32π/3)
1
3 v

− 1
3

s

, (5.10)

which is of the order of −0.3 Lennard-Jones length units at the temperatures considered.

Finally, we want to point out that the fact that the CNT(Φ)+Tol model succeeds in describ-

ing small nuclei that contain hundreds of atoms, while being consistent with simulations

performed in the limit of a planar solid-liquid interface has theoretical implications. Even

though the actual interface between the solid and the liquid is diffuse and fluctuating, the

concept of the Gibbs dividing surface can be used to convert the atomistic descriptions of

the solid-liquid system into a macroscopic representation. Moreover, finite-size effects are

well-captured by simple corrections that take into account the deviation between the chosen

dividing surface, the equimolar dividing surface and the surface of tension. In this case, these

two corrections are of comparable size.

5.5 Conclusions

In summary we have studied, by means of atomic-scale simulations, the various terms in clas-

sical nucleation theory that contribute to the free energy profile for homogeneous nucleation.

When analysing our simulations we define a Gibbs dividing surface from the value of a macro-

scopic order parameter when calculating the dependence of the free energy on the number

of particles in the nucleus. Then, by juxtaposing explicit simulations of a three-dimensional

nucleus with simulations of a planar solid-liquid interface, performed in equivalent thermo-

dynamic conditions, we identify the effects that lead the results on small nuclei to deviate

from the predictions of classical nucleation theory. We find that deviations occur because

curvature-dependent corrections to the planar-interface surface energy (the so-called Tol-

man term) are required. These genuine departures from CNT should not be confused with

the deviations that occur when an arbitrary order parameter is used to identify the nucleus,

however. Such corrections are required simply because we require zero surface excess for the

arbitrary extensive quantity Φ when calculating the surface excess free energy. As Φ is not the

volume the value we obtain for this excess free energy differs from the value that would have
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been obtained had we found the true equimolar dividing surface. The leading order correction

for this effect has the same functional form as the Tolman term. It should not, however, be

considered as a genuine departure from CNT as it is simply an artifact in the analysis.

Finally, we discussed the statistical efficiency of different approaches for finding the CNT

parameters. We showed that the surface and bulk parameters in the CNT model are strongly

correlated, which makes the fitted values of these parameters extraordinarily sensitive to small

deviations in the computed free energy surfaces that are used to fit them. We thus concluded

that fitting these terms using a free energy surface obtained from a simulation of a 3D nucleus

is not optimal and that also using information from simulations of planar-interfaces is thus

beneficial. In fact, given that planar-interface models converge faster with respect to both

size and simulation time, and that such simulations can be more easily analyzed in terms of

different order parameters, we suggest that they should always be used in a preliminary phase.

Explicit simulations of 3D nucleation can then be used to identify genuine finite-size effects.

We hope that our careful analysis will help resolve some of the ambiguities in atomic-scale

studies of both homogeneous and heterogeneous nucleation, and that this work will lay the

foundations for the modelling of more complex materials and for the study of different kinds

of phase transitions.
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6 Computing the Tolman length for
solid-liquid interfaces

In the previous chapter, we demonstrated that, after the size of the nucleus is determined by a

Φ-based Gibbs dividing surface, the nucleation free energy profile as a function of the number

of solid atoms ns(Φ) can be expressed as

G(ns(Φ))hµslns(Φ)+γΦ∞Ωv
2
3
s ns

2
3 (Φ)(1+ζns

− 1
3 (Φ)), (6.1)

where ζ= 2
3δns

Φ,VΩv
2
3
s − (32π/3)

1
3 v

− 1
3

s δ is the Tolman correction, which has two components:

the δns
Φ,V term stems from the difference between the Φ-based dividing surface and the

equimolar surface, while the other term −(32π/3)
1
3 v

− 1
3

s δ is determined by the Tolman length

δ. Equally validly, when the volume V is used to define the dividing surface, i.e. the equimolar

dividing surface, the free energy profile of nucleation can be expressed as:

G(ns(V )) =µslns(V )+γVΩv
2
3
s ns

2
3 (V )(1−εns

− 1
3 (V )), (6.2)

where ε= (32π/3)
1
3 v

− 1
3

s δ. One can treat µsl, γ
V and δ as three fitting parameters, or obtain µsl

and γV independently from other metadynamics simulations of planar interfaces [1, 113] and

just use δ as the only fitting parameter.

Although the Tolman length δ can be estimated from fitting the free energy profile to

the CNT expression, it is highly desirable to directly compute it from atomistic simulations,

because (i) there is no guarantee that the CNT is valid for a certain system, (ii) obtaining δ

from the fitting is extraordinarily sensitive to small deviations in the computed free energy

profiles, because all three fitting parameters in the CNT expression are strongly correlated, as

demonstrated in the last chapter, and (iii) the values of the Tolman length can be different for

solid-liquid interfaces along different crystallographic directions, and only an effective value

average over all orientations can be obtained from simulations of homogeneous nucleation.
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Figure 6.1 – A schematic showing the location of different dividing surfaces (equimolar V ,
surface of tension σ, and Φ-based dividing surface) for a 3-dimensional nucleus (left) and
a planar interface (right). The distance between the surface of tension and the equimolar
dividing surface at the planar limit is the Tolman length δ.

The Tolman length δ determines the leading order curvature dependence of the interfacial

free energy between two phases [104, 129]. As such, besides nucleation, it also plays a impor-

tant role in other phenomena that involve curved interfaces such as Ostwald ripening [130].

For many decades, the sign and magnitude of the Tolman length has remained a source of con-

siderable controversy [126, 131–133], due to the conceptual and practical difficulties involved

in measuring or computing it.

For fluid-fluid interfaces, the Tolman length can be computed from molecular dynamics

simulations by summing over the local pressure tensor across the phase boundary [128, 132,

134–136]. This same procedure is not directly applicable for solid-liquid interfaces, however,

because the local pressure tensor is ill-defined for systems that are not uniform fluids [134, 137,

138], and also because the elastic energy stored inside a solid interferes with the determination

of the stress components that are associated with the surface tension. Due to these theoretical

and technical challenges, the value δ for a solid-liquid interface has never been evaluated

directly. Instead it has only ever been used as a curvature correction fitting parameter that

enters the free energy expression for nucleation [49, 106]. Furthermore, in many nucleation

studies [10] this curvature correction term in interfacial free energies is altogether omitted

because of the complexities and the statistical error involved in simultaneously determining

multiple parameters in a numerical fit of nucleation free energies [2]. As such, the lack

of the reference values for δ for solid-liquid interfaces significantly hampers the efforts to

quantitatively model and predict nucleation barrier and rate.

Here we introduces a methodology that can be used to determine directly and accurately

the Tolman length δ for solid-liquid interfaces using atomistic simulations. To this aim, we

first revisit the key thermodynamic concepts that are related to δ, and then reformulate the

problem in an alternative manner at out-of-equilibrium conditions, while refining the capillary
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fluctuation method for computing interfacial free energies.

6.1 The Tolman length and the surface of tension

The definition of the Tolman length is closely related to the concept of the Gibbs dividing

surface, which is an infinitely thin geometrical surface whose position sensibly coincides

with the discontinuity between the two phases. The most common way to determine its

precise location is to consider a reference system in which the bulk phases extend up to the

interface, and has the same value of a chosen extensive quantity (e.g. volume, energy, the sum

of order parameters of all atoms) as the actual system, with no excess term associated with

the interface [58]. Among all the possible choices for the diving surface, the surface of tension

(σ-surface), corresponding to the position at which the mechanical definition of tension

applies, is regarded as “special" because the associated interfacial free energy γσ is curvature-

independent. On the other hand, the equimolar dividing surface (V -surface) that has no

surface excess of volume is commonly used when analyzing nucleation, because this surface

encloses a nucleus that has the same density as the bulk, which streamlines the formulation

of nucleation free energy profiles [105, 106]. The Tolman length characterizes the specific

free energy of a spherical V -surface with radius R, such that γV (R) = γV (1−2δ/R +O (1/R2)).

Furthermore, in the limit of a planar interface, the Tolman length is just the difference between

the location of the surface of tension and of the equimolar dividing surface, i.e. [104]

δ= hV −hσ (6.3)

where hV and hσ indicate the height of the two dividing surfaces for the planar interface, and

h =−∞ is inside the bulk solid. Eqn. (6.3) also implies that the Tolman length is related to the

interfacial free energy difference between the V and the σ-surfaces by [129]

δ= vs
γσ−γV

µsl
, (6.4)

where µsl =µs −µl is the chemical potential difference between the solid and liquid phases,

and vs is the molar volume of the bulk solid. δ/vs can be interpreted as the adsorption of solid

atoms per unit area at the surface of tension, and as such Eqn. (6.4) directly stems from Gibbs

adsorption isotherm [1, 104]. Notice that Eqn. (6.4) is only useful away from the coexistence

point so that µsl 6= 0.

6.2 Free energy of surface of tension

Eqn. (6.4) provides a recipe for computing the Tolman length using the values of γV and γσ

at out-of-equilibrium conditions. A method that employs metadynamics for computing γV

away from the coexistence temperature Tm has only recently become available [1, 65, 96], so

in the present study we focus on obtaining γσ by applying a capillary wave model.
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Figure 6.2 – A schematic showing the capillary waves for a solid-liquid planar interface.

Even at the macroscopic scale, a planar solid-liquid interface is not completely flat due

to the long wavelength thermal distortions of the interface, which are generally referred to

as capillary waves (Figure 6.2) [99, 139]. When the extra surface area δs is generated due

to the capillary waves, the lattice spacing of the solid is conserved and its elastic energy is

unchanged. Following a mechanical definition of the surface energy, without heat transfer,

change in system size or change in composition of the two phases, the variation in free energy

is entirely captured by the change in surface energy δE = γσδs. According to the capillary

wave model, the surface energy of the fluctuating interface with a height function h(x, y) can

be approximated by integrating the orientation-dependent surface tension over the interface

[99, 140], i.e.

Esur f =
∫

s
d sγσ(~n) (6.5)

where ~n is the interface normal vector, and d s ≈ d xd y(1+ (dh/d x)2/2+ (dh/d y)2/2) which is

the surface element. The local curvature of the interface does not enter the equation above as

γσ is curvature independent by construction. If each capillary fluctuation mode is in thermal

equilibrium, the interfacial stiffness and the ensemble average of the long wavelength Fourier

components are related via

〈|Ah(kx ,ky )|2〉 = kB T

lx ly (k2
x γ̃11 +2kx ky γ̃12 +k2

y γ̃22)
(6.6)

The γ̃i j = γσ+ ∂2γσ

∂θiθ j
|θi , j=0 are the components of stiffness tensor.

Eqn. (6.6) is a standard expression for the capillary fluctuation method (CFM) [99, 100, 141],

which is formally valid at thermal equilibrium and so far has only been employed at the

68



6.3. Fluctuating Gibbs dividing surface

coexistence temperature Tm when the planar interface is not under the driving force to

migrate. 1 It was shown in previous work that estimations of the interfacial free energy

at Tm for various types of solid-liquid systems using CFM [99, 100, 141] are consistent with

those obtained using other free energy methods such as metadynamics and thermodynamic

integration [96, 102, 143, 144], which suggests that the central tenet of CFM – the mechanical

definition of the surface energy – is valid for solid-liquid interfaces that exhibit capillary

fluctuations.

However, for our purposes of using Eqn. (6.4), γσ has to be computed at T 6= Tm so the

capillary fluctuation method has to be extended to out-of-equilibrium conditions. At such

conditions, the planar interface is under a driving force to migrate, because of the chemical

potential imbalance between the metastable and the stable phases. However, an umbrella

potential can be introduced to counter-balance this chemical potential difference and to pin

the interface away from the coexistence temperature Tm [113]: taking the actual Hamiltonian

of the system to be H (q), the biased Hamiltonian can be expressed as

Hbi ased (q) =H (q)+ α

2

(
Φ− Φ̄)2

, (6.7)

whereΦ=∑N
i=1φi is an extensive quantity of the whole system that is constructed by summing

up order parameter of each atom, and φi is an atom-centered order parameter that is able to

discriminate between the atoms that belong to each of the two different phases.

With the biased Hamiltonian in Eqn. (6.7), which introduced a constrained ensemble of

states at out-of-equilibrium conditions, CFM can be extended to conditions that are away

from the coexistence temperature Tm. To elucidate why this is the case, as well as to evaluate

〈|Ah(kx ,ky )|2〉 in Eqn. (6.11) in a more efficient and accurate manner, we propose a new and

efficient method for locating the fluctuating surface, which is an extension of the original

formulation of the Gibbs dividing surface.

6.3 Fluctuating Gibbs dividing surface

Let us consider a solid-liquid system that has N atoms, a box size {lx , ly , lz }, and a planar

interface perpendicular to the z axis. We first introduce an instantaneous order parameter

density field

φ̃(x, y, z) =
N∑

i=1
φi g (x −xi )g (y − yi )g (z − zi ), (6.8)

where (xi , yi , zi ) and φi denote the coordinate and the order parameter of the i -th atom,

respectively, and g is a normalized kernel function which is chosen to be a Dirac delta function

in this case. The zero-excess condition that defines the height of the interface h(x, y) at any

point can then be written in terms of a line integral of the phase field (Eqn. (6.8)) along the z

1CFM has been employed for the water-ice interface formed at undercooled conditions due to premelting [142].
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axis over a range that contains the interface∫ lz

0
dz φ̃(x, y, z) =

∫ h(x,y)

0
dz φ̃s +

∫ lz

h(x,y)
dz φ̃l, (6.9)

Here φ̃s and φ̃l indicate the density field inside the bulk solid and liquid phases, respectively.

Eqn. 6.9 can be seen as an extension of the planar Gibbs dividing surface for the whole

system [1, 124] that is restricted to an infinitesimally thin domain centered around (x, y).

Combining Eqn. (6.8) and (6.9), one can write

∫ h(x,y)

0
dz φ̃s +

∫ lz

h(x,y)
dz φ̃l =

N∑
i=1

φi g (x −xi )g (y − yi ). (6.10)

One can take a 2-D Fourier expansion for both sides of Eqn. (6.10) over the whole cross

section of the simulation box {lx , ly } and perform an ensemble average for the amplitude of

each Fourier mode. By making the assumption that the bulk fluctuations and the surface

fluctuations are mutually independent, one obtains

(〈φ̃s〉−〈φ̃l〉)2 〈|Ah(kx ,ky )|2〉+〈|As(〈h〉 ;kx ,ky )|2〉+〈|Al (lz −〈h〉 ;kx ,ky )|2〉

= 〈
[

1

lx ly

N∑
i=1

φi exp(−ikx xi − iky yi )

]2

〉 . (6.11)

In Eqn. (6.11), 〈φ̃s〉 and 〈φ̃l〉 are the averaged values from the bulk fields. As(〈h〉 ;kx ,ky ) and

Al (lz−〈h〉 ;kx ,ky ) are the Fourier coefficients characterizing the bulk fluctuations, respectively

for a slab of bulk solid that has a cross section {lx , ly } and thickness 〈h〉, and for a bulk liquid

with the dimensions {lx , ly , lz −〈h〉}. The average amplitudes of these bulk quantities can all

be evaluated separately from simulations of the bulk phases using a simulation box of the

same cross section as the solid-liquid system, using expressions such as

〈|As(〈h〉 ;kx ,ky )|2〉 = 〈
[

1

lx ly

Ns∑
i=1

φi exp(−ikx xi − iky yi )H(〈h〉− zi )H(zi )

]2

〉 , (6.12)

where H(. . .) is the Heaviside function and Ns is the number of atoms in the bulk solid system.

In the Appendix we also discuss additional and optional approximations that one can make

to simplify the evaluation of 〈|As(〈h〉 ;kx ,ky )|2〉 and 〈|Al (〈h〉 ;kx ,ky )|2〉. As the right hand

side of Eqn. (6.11) can also be evaluated directly from the snapshots of atomic coordinates

for the solid-liquid system in molecular dynamics simulations, the only remaining term

〈|Ah(kx ,ky )|2〉 that enters the CFM expression (Eqn. (6.6)) can be determined. Note that when

there are two parallel planar interfaces in the system, one can simply modify Eqn. (6.11) by

adding a factor of two to the term 〈|Ah(kx ,ky )|2〉.

The zeroth Fourier mode of the height function Ah(0,0), corresponds to the average height

of the fluctuating interface. 〈h〉 = ∫ lx
0 dx

∫ ly

0 dy h(x, y)/lx ly corresponds to the position of the
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conventional planar Gibbs dividing surface of the whole system that has zero surface excess

for the extensive quantityΦ=∑N
i=1φi , since

Φ=
∫ lx

0
dx

∫ ly

0
dy

[∫ 〈h〉

0
φ̃sdz +

∫ lz

〈h〉
φ̃ldz

]
. (6.13)

As extensively discussed in Ref. [1, 104], the location of this planar dividing surface 〈h〉 de-

termines its surface absorption and thus affects its interfacial free energy. Meanwhile, the

magnitudes of all other Fourier modes with non-zero frequencies (Ah(kx ,ky )) do not change

the proportion between the solid and the liquid atoms in the system, and thus do not affect

the surface absorption.

The average height 〈h〉 of the interface is special also because it only depends on the global

extensive quantityΦ. As the umbrella bias potential in Eqn. (6.7) is only a function ofΦ, the

bias does not act on any capillary fluctuation modes other than the zeroth Fourier mode 〈h〉.
Consequently, the effect of the bias balances the chemical potential difference between the

two phases, without altering the energy distributions for other non-zero frequencies. Because

the system under the biased Hamiltonian (Eqn. (6.7)) is in thermodynamic equilibrium, the

equipartition theorem holds for capillary fluctuation modes with non-zero frequencies, and

Eqn. (6.6) is thus still valid.

Another subtle point is that, at a reasonably large length scale, the height function h(x, y)

of the fluctuating interfaces defined by different order parameters are parallel to each other,

and the magnitudes for long wavelength Fourier modes are identical. As extensively discussed

in the Appendix, for each (kx ,ky ) wave vector that is smaller than a certain cutoff, the Fourier

amplitude and the corresponding value of γ̃ are independent from the choice of the order

parameter that is used to define the fluctuating dividing surface. Previous studies that employ

different order parameters and even distinct criteria for locating the interface also arrived at

consistent estimations for γ̃ and γσ at Tm [99, 100, 141, 145].

6.4 Simulation methods

We simulated the solid-liquid planar interfaces for a simple but realistic Lennard-Jones sys-

tem [96, 103, 108]. The NPT ensemble was employed throughout with the stochastic velocity

rescaling thermostat [90]. A Nose-Hoover barostat was used along the z axis which was set up

to be perpendicular to the interface, The dimensions of the supercell along x and y are com-

mensurate with the equilibrium lattice parameters. We considered planar interfaces along the

〈100〉 and 〈110〉 crystallographic directions of the fcc lattice, using supercells containing 256000

and 315392 atoms, respectively. For each orientation and at each temperature (0.56, 0.58,

0.60 and Tm = 0.6178), 10 independent umbrella sampling [34] simulations with the biased

Hamiltonian (Eqn. (6.7)) were performed, using the collective variable Φ=∑
i φi =∑

i S(κ(i ))

(see chapter 2.3.4). Fast implementation of this simulation setup was made possible by the

flexibility of the PLUMED code [93] in combination with LAMMPS [91].
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S(κ) 〈h〉= 10.03(2)

S(q6) 〈h〉=9.21(4)
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Figure 6.3 – The interfacial stiffness γ̃(100)[010] estimated for each pair of (kx ,ky ) wave vector
using dividing surfaces defined using different order parameters at T = 0.58, for a single set of
trajectories. The FCCUBIC κ [96], Q6 and locally averaged Q6 [146] atomic order parameters
were employed, and S indicates a switching function [147]. The converged value of the stiffness
is indicated using a dashed gray band. The average height 〈h〉 of each dividing surface is also
specified in the Lennard-Jones length unit, and the numbers in bracket indicate the error of
the last digit.

By combining Eqn. (6.6) and Eqn. (6.11), the interfacial stiffness γ̃ can be extracted from

each thermal capillary fluctuation mode during post processing. For the 〈100〉 or 〈110〉 inter-

faces, we first extracted the interfacial stiffness tensors γ̃11 and γ̃22 at each temperature using

the atomic order parameter φi = S(κ(i )). After computing the stiffness tensors, we expanded

it in cubic harmonics [100], which are consistent with the symmetry of the fcc crystal, so as to

extract the orientation-dependent interfacial free energy γσ(~n).

6.5 Convergence tests

Before presenting the results from the production runs, we want to demonstrate the validity of

employing Eqn. (6.6) and (6.11) to extract γ̃ at undercooled conditions using different order

parameters. We thus selected a few trajectories generated from umbrella simulations for the

〈100〉 solid-liquid interface at T = 0.58, and analyzed them using distinct order parameters

(e.g. FCCUBIC κ, Q6 and locally averaged Q6). Note that these order parameters are based

on distinct constructions, and for the solid-liquid system the average heights of the dividing

surfaces 〈h〉 defined using these order parameters are significantly apart. For each (kx ,ky )

wave vector, and for each choice of the atom-centred order parameter, the Fourier components

〈|Ah(kx ,ky )|2〉 for the instantaneous interface height were first computed using Eqn. (6.11),

and the interfacial stiffness tensors (γ̃11 = γ̃22 = γ̃(100)[010] and γ̃12 = 0 for the 〈100〉 interface)
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for that wave vector were obtained from Eqn. (6.6). For each (kx ,ky ) wave vector that is

small, the values of γ̃(100)[010] obtained using different order parameters are in a perfect

agreement, even when ergodic sampling for that Fourier mode has not been achieved. This

consistency is a strong indication that the fluctuating Gibbs dividing surfaces defined by

different order parameters are parallel to each other at the length scale of 2π/kx,y . At large

kx ,ky → 1, which corresponds to a wavelength of just a few lattice spacing, the 〈|Ah(kx ,ky )|2〉
that enters Eqn. (6.6) start to depend on the specific choice of the order parameter, implying

that these fluctuating Gibbs dividing surfaces cease to be parallel to the surface of tension at

such length scale. In other words, γ̃ can only be extracted at the constant regime in where

each Fourier mode (kx ,ky ) fulfills the equi-partition theorem and the effective stiffness of that

mode is independent from the wave vector.

Although the same value of stiffness can be extracted using dividing surfaces defined by

different order parameters, the statistical efficiency associated with each order parameter

can be quite different for two reasons: 1) the values of stiffness can only be obtained from

capillary waves at small (kx ,ky ) and one should set a cutoff kcut such that the effective stiffness

extracted from each low k mode is constant. For diving surfaces defined by different order

parameters, the correlation length along the cross section is different. For example, the order

parameters that were constructed based on local averaging tend to be associated with longer

correlation length, and thus kcut has to be set smaller, which hinders the statistical efficiency.

2) the fluctuations in the bulk phases also contribute to the Fourier amplitudes (Eqn. (6.11)),

and the order parameter that gives smaller 〈|As(〈h〉 ;kx ,ky )|2〉 and 〈|Al (lz −〈h〉 ;kx ,ky )|2〉 tends

to give better efficiency.

6.6 Results

In Figure 6.4 we plot the interfacial free energy of the surface of tension γσ for the 〈100〉, 〈111〉
and 〈110〉 interfaces, together with free energies of planar equimolar dividing surfaces γV

that were obtained from our previous metadynamics simulations [1]. The interfacial free

energies at Tm for all three crystalline orientations agree very well with previous results using

different methods including thermodynamic integration, metadynamics, and CFM [1, 100,

103, 141, 145]. Unsurprisingly, the value, temperature dependence, and anisotropy among the

principal orientations of γ vary considerably with the choice of the Gibbs dividing surface.

In theory, at Tm , γσ = γV , but in reality we notice a small difference between them. This is

due to the fact that γV was computed using metadynamics simulations with small supercells

comprising about 1200 atoms, which implies a small finite-size effect that increases interfacial

free energies [96], and also shifts Tm to 0.62 [1]. In order to compensate for this small finite-size

effect, we shifted vertically the values of γV so that γσ(Tm) = γV (Tm) before computing the

Tolman length using Eqn. (6.4).

The purple, blue and green symbols in the top panel of Figure 6.4 indicate the estimates

of the Tolman length for the 〈100〉, 〈111〉 and 〈110〉 interfaces. There is significant anisotropy
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Figure 6.4 – The bottom panel shows the the planar interfacial free energies of the surface
of tension (γσ) and the equimolar dividing surface (γV ) for three different lattice directions
at different temperatures (Tm = 0.6178). The data for γV were obtained from Ref. [1]. The
purple, blue and green symbols in the top panel indicate the predictions of the Tolman length
for the 〈100〉, 〈111〉 and 〈110〉 solid-liquid interfaces. The dashed gray band shows indirect
estimates of the orientation-averaged Tolman length of a solid nucleus from homogeneous
nucleation simulations, where the Tolman length, the chemical potential difference and
the interfacial free energy were treated as three fitting parameters in a classical nucleation
theory expression [106]. The solid gray band indicates another set of results from fitting
nucleation free energy profiles, where δ is used as the sole parameter, and the interfacial free
energies and chemical potentials are obtained elsewhere from independent planar interface
simulations [1, 113]. Statistical errors of the mean estimations are indicated using either error
bars or band widths. All quantities are in Lenard Jones units.
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in δ among the three crystal orientations, and little temperature dependence. The negative

value of δ suggest that the equimolar dividing surface is closer to the bulk solid than the

surface of tension, and that the interfacial energy of a curved equimolar surface γV (R) has

a positive curvature dependence. For comparison, in Figure 6.4 we also plot the estimate of

the orientation-averaged Tolman length for three dimensional solid nucleus from previous

homogeneous nucleation simulations [106]. These values were obtained by fitting nucleation

free energy profiles with a classical nucleation theory expression with a Tolman correction

term in Eqn. (6.1) and Eqn. (6.2). One can treat µsl, γ and δ as three fitting parameters, and the

dashed gray band in Figure 6.4 shows the indirect estimation of the Tolman length δ using this

approach. One can also obtain µsl and γ independently from other metadynamics simulations

of planar interfaces [1, 113] and just use δ as the only fitting parameter. δ estimated in such a

way is plotted with the solid gray band in Figure 6.4. Overall, the estimations of the Tolman

length from all these three different methods agree. This agreement not only corroborates the

present framework and method, but also indicates that a three-parameters CNT (including the

chemical potential difference µsl, the interfacial free energy γV and the Tolman length δ) can

accurately describe the free energy profile for homogeneous nucleation of the Lennard-Jones

crystal from its melt.

6.7 Conclusions

In summary, we presented a thermodynamic framework that enables a direct evaluation of

the Tolman length for planar solid-liquid interfaces in atomistic simulations. This framework

is the coronation of an effort to streamline the study of nucleation by means of atomistic

simulations, and relies on (i) the rigorous definition of the Gibbs dividing surface based on

an atomic-scale order parameter and its fluctuations [1, 124], which we have used here to

formulate an elegant and efficient version of the capillary fluctuation method that does not

require the explicit geometric location of the dividing surface; (ii) the use of metadynamics

to compute the planar-interface surface energy for the equimolar dividing surface γV in out-

of-equilibrium conditions [1, 96]; (iii) the calculation of the mechanical surface tension γσ

based on a capillary fluctuation analysis at T 6= Tm . Based on these theoretical advances, we

computed γσ and the Tolman lengths δ of the solid-liquid planar interfaces of three principal

crystal directions for a model system. In this case, we find that the values of δ that we obtained

by evaluating it directly are in good agreement with the ones obtained by fitting homogeneous

nucleation free energy profiles using CNT expressions. The framework we presented opens

the door to a rigorous determination of the Tolman length δ and the free energy of the surface

of tension γσ for various physical systems, and for different classes of homogeneous and

heterogeneous phase transitions. The ability to compute these quantities is crucial both

to verify the consistency of classical nucleation theory for a given problem, and to obtain

quantitative predictions of nucleation rates by means of atomistic modelling.
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7 Theoretical prediction of the homoge-
neous ice nucleation rate

In the previous chapters, we have developed a rigorous and comprehensive thermodynamic

model that bridges the gap between macroscopic model and atomistic simulation of homoge-

neous nucleation. We removed the ambiguities in macroscopic classical nucleation theory,

and demonstrated how the information contained in atomistic simulations of homogeneous

nucleation should be used when fitting the parameters in macroscopic models. In this chapter,

we will apply the thermodynamic framework to the case of homogeneous ice nucleation from

undercooled liquid water. It is not only an ubiquitous process in nature that influences global

phenomena such as climate change, but also has many practical implications in refrigeration,

anti-freezing, solidification and melting of solutions, as well as many other technological

applications [7, 9, 10]. Along with the application, we will also develop additional techniques

that bring us an efficient and rigorous estimate of the ice nucleation rate.

7.1 Motivation

Despite its pivotal importance, our understanding of homogeneous ice nucleation and homo-

geneous nucleation in general is far from complete, which is partly due to that fact the experi-

mental investigation of dynamical nucleation processes is very difficult and often costly [26].

An alternative is to rely on atomistic simulations to study nucleation, which has gained a lot of

popularity in the last two decades [10]. However, predicting ice nucleation rates using atom-

istic simulations is plagued by difficulties. One major challenge arises from the inaccuracies in

modelling the unique properties of water using either empirical potentials or ab initio meth-

ods [148–153]. On the other hand, as illustrated in Figure 7.1, even when the same water model

and the same thermodynamic conditions are assumed, nucleation rates predicted in different

studies typically differ by as much as 5-10 orders of magnitude [10]. This discrepancy is due

to the fact that it is often necessary to evoke the standard form of classical nucleation theory

(CNT) in order to estimate quantities such as the nucleation barrier, as the long time scale of

nucleation rules out the option of brute force molecular dynamics simulations. However, a

number of approximations within CNT have been shown to be over-simplifications [10], and

more importantly, it is highly non-trivial to extract the values of the parameters that enter CNT
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Chapter 7. Theoretical prediction of the homogeneous ice nucleation rate

Figure 7.1 – A comparison between experimental measurements (crosses) and theoretical
predictions (filled symbols) of the ice nucleation rate at different temperatures. Figure adopted
from Ref. [10].

using the microscopic quantities directly obtained from simulations. For instance, the diffuse

nature of solid-liquid interfaces makes it difficult to rationalize and formulate the nucleation

free energy in a unique and meaningful way, as the choice of the atomic order parameters

used to distinguish ice structures affects the computed free energy profile and the size of the

critical nucleus [3, 36, 56]. Furthermore, an ice nucleus with complex stacking-disordered

structures is usually formed during the homogeneous nucleation process [41, 42, 154], but

it is computationally very expensive to exhaustively sample the numerous corresponding

nucleation pathways even for nuclei that are within a small window of sizes [41, 42]. These

multiple nucleation pathways make the theoretical analysis of the nucleation process even

more difficult.

The present chapter describes a rigorous and efficient framework to estimate the absolute

homogeneous nucleation rate at realistic thermodynamic conditions, and investigate how

different physical quantities, including the interfacial free energy, entropic contributions due

to stacking disorder, and the kinetic prefactor contribute to the overall rate. To demonstrate

this framework on an important system with complex nucleation pathways, we employ a

monoatomic water (mW) model [155], which has proved very successful in reproducing

many thermodynamic and structural properties of water including the melting point and the

relative stability of different ice phases [156] and as a result has been widely used to study
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ice nucleation [10]. We focus on a temperature T = 240 K and pressure P = 1 bar, which are

thermodynamic conditions commonly encountered in clouds [157], freezers, and glaciers.

7.2 The nucleation free energy of ice Ih

Rather than attempting to sample multiple nucleation pathways, we take an alternative route

in which we first compute the nucleation rate for perfect ice Ih nuclei and then add correction

terms to account for stacking disorder. This approach does not only allow us to fully converge

the nucleation rate, but also disentangles contributions of different physical origins. In order to

restrict the sampling to the part of configuration space where only ice Ih nuclei form inside the

liquid, we opt for a combination of the umbrella sampling method and the seeding technique:

at the beginning of the simulation, the fluid is seeded with an initial pure Ih ice cluster of a

certain size. At the same time, an umbrella potential is added to the Hamiltonian H (q) of the

system [34], so the biased Hamiltonian used in simulations is

Hbi ased (q) =H (q)+ κ

2

(
Φ− Φ̄)2

, (7.1)

where κ denotes the spring constant of a rather stiff umbrella potential, and the global collec-

tive variable (CV)Φ=∑
i φ(i ) is constructed by summing the order parameter values φ(i ) for

each of the atoms in the system. Here, φ= S(Q6) is the locally-averaged bond order parame-

ter [146], which we transform with a hyperbolic switching function to enhance its resolving

power between solid and liquid-like atomic environments. The parameter Φ̄ is set to a value

that ensures the stabilization of the initial ice Ih cluster at out-of-equilibrium conditions.

Repeating this procedure many times within a relevant range of sizes of the initial nuclei

and different values of Φ̄, one can reconstruct a free energy profile G̃(Φ) by using the WHAM

method [158].

This combination of the umbrella sampling method and the seeding technique is the

cornerstone of the efficient framework for estimating the nucleation rate: (i) seeding the

nucleus means that little time is spent in growing the nucleus and waiting for the possible

defects formed during the kinetic growth process to annihilate; (ii) equilibrating the system

under the presence of an umbrella potential means that local quasi-equilibrium can be

achieved, and that system is not prone to kinetic factors such as the latent heat; (iii) considering

just one nucleation pathway associated with the pure nucleus ensures easy convergence of

the computed free energy profile.

For the umbrella sampling simulations, the NPT ensemble was employed throughout with

the stochastic velocity rescaling thermostat [90] and an isotropic Nose-Hoover barostat. A

total of 8 sets of simulation runs with the biased Hamiltonian (Eqn. (7.1)) were performed

using a system size of 8192 molecules. For each set, about 50 umbrella sampling windows

were used, and each trajectory lasted about 0.5 ns. Fast implementation of this simulation

setup was made possible by the flexibility of the PLUMED code [93] in combination with

79



Chapter 7. Theoretical prediction of the homogeneous ice nucleation rate

240 K, 1 bar

G(ns(Φ))

G
˜
(Φ)

0 200 400 600 800 1000

Φ

0 200 400 600 800 1000

ns(Φ)

0

50

100

150

200
G
[k

J
/m

o
l]

Figure 7.2 – The light blue curves are the free energy profiles as a function of the collective
variableΦ for 8 sets of umbrella sampling simulations, and the dark blue curve is the averaged
G̃(Φ) from these runs. Each dotted light red curve is the free energy profile of a perfect Ih
nucleus extracted from each set of simulations, the dotted dark red curve is the averaged result,
and the orange curve indicates a CNT fit using Eqn. (7.2). The inset shows a snapshot of an ice
Ih nucleus embedded in liquid water.

LAMMPS [91].

Note that the atomic order parameter Q6 does not distinguish ice Ic and ice Ih phases

but one can monitor the time evolution of another order parameter such as locally-average

bond order parameter Q4 that is able to differentiate the two ice phases. One can also place

a constraint on the number of particles that have Ic stacking. That said, even without such

explicit constraint very few stacking faults form during the umbrella sampling simulations,

and almost all of them are in very small nuclei with fewer than 200 atoms. The very low

occurrence of the stacking faults here is probably due to that the umbrella potential places a

strong constraint on the nucleus size in each simulation, making it difficult for a basal bi-layer

to dissolve and re-crystallize, which is needed for the formation of a stacking disorder.

In Figure 7.2 we plotted the free energy G̃(Φ) that is associated with the formation of pure

ice Ih nuclei. From G̃(Φ), one can extract the free energy profile GIh(ns(Φ)) for the ice Ih

nucleus as a function of the cluster size by using the thermodynamic framework introduced

in chapter 3-5. Any extensive quantity, which is chosen to be the collective variable, Φ in

this case, can be used to unambiguously define a Gibbs dividing surface, which surrounds

a nucleus and determines its size. Chapter 4 describes in detail the conversion between the

free energy profile G̃(Φ) and the nucleation free energy as a function of the size of the solid

nucleus ns(Φ). We obtained GIh(ns(Φ)) for the ice Ih nucleus with sizes larger than the cutoff

value ncut = 50, and plotted the result in Figure 7.2.
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For a single reaction channel, the size ns(Φ) alone is sufficient to characterize the nucle-

ation free energy profile. In such a case, CNT is commonly used to rationalize nucleation.

With aΦ-based dividing surface, the free energy of the ice Ih nucleus relative to the bulk liquid

can be naturally decomposed into a bulk and a surface term,

GIh(ns(Φ))hµIhns(Φ)+γΦ∞Ωv
2
3
s ns

2
3 (Φ)(1+ζns

− 1
3 (Φ)). (7.2)

Here, µIh is the difference between the chemical potentials of ice Ih and the liquid phase, γΦ∞ is

the ice Ih-liquid interfacial free energy of the Φ-based dividing surface at the planar limit, and

Ω= (36π)1/3 is the geometrical constant for a spherical nucleus. The ζns
− 1

3 (Φ) term, which is

determined by the distance between theΦ-based dividing surface and the surface of tension

in the planar limit, captures the curvature dependence of the interfacial free energy γΦ of a

curved interface.

The orange curve in Figure 7.2 shows a CNT fit to the nucleation free energy profile of the ice

Ih nucleus using Eqn. (7.2). The chemical potential µIh =−0.649 kJ/mol at 240 K was obtained

from previous calculations [159], and the other two parameters γΦ∞ = 28.2(2)mJ/m2 and

ζ= 0.2(1) were determined from the fit. From this value of ζ, we estimate the distance between

theΦ-based dividing surface to the surface of tension [3, 4] to be d =−ζ(3vs/32π)1/3 = 0.2Å.

For comparison, if all three parameters are used in the fit, the predicted values are µIh =
−0.69(3) kJ/mol, γΦ∞ = 30(2)mJ/m2 and ζ= 0.0(1).

The surface energy for the ice-liquid interface was computed to be around 35mJ/m2 for

the mW model at its melting point Tm = 274.6 K [143, 144]. In general, the interfacial free

energy exhibits a temperature dependence, and is also dependent on the specific choice

of the extensive quantity used to define the Gibbs dividing surface away from the melting

point [1]. However, as extensively discussed in chapter 5, regardless of which dividing surface

is used, as long as it is used consistently and the curvature correction term ζ is included in the

formulation of the nucleation free energy profile, no discrepancy will emerge. In this case, the

correction term ζ is relatively small such that omitting it altogether from the CNT fit does not

lead to significant changes in the estimation of the interfacial free energy, however, one should

bear in mind that this may not be the case when using a different Gibbs dividing surface or

when studying a different system. In general, employing an interpolation or extrapolation

using the naive version of the CNT without the curvature correction, as is often the case in

computational studies of this kind [36, 160], may result in a systematic error in the prediction

of the interfacial free energy as well as the nucleation barrier [3].

7.3 Accounting for stacking disorder

Above, we have considered a single nucleation pathway to form a pure ice Ih nucleus in liquid

water. We now formulate the difference in free energy of stacking-disordered and hexagonal ice

crystallites. Because the ice-water interfacial free energies are indistinguishable for ice Ih and
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Ic phases [144], the free energy difference due to the formation of stacking disorders can only

be associated with the bulk term. Assuming the nucleus has a certain shape (e.g. spherical),

the number of bi-layers kmax along the basal plane can be easily calculated for a nucleus of a

given size (see the inset of Figure 7.3). The area of each plane Ak at each bi-layer can also be

determined analytically as the bi-layers are equally spaced along the diameter of the spherical

nucleus. We use an analytic model similar to the one-dimension Ising-like system discussed

in Ref. [161]. We assume that the energy of each bi-layer only depends on its neighboring

bi-layers, thus on each layer the stacking order is independent, and the probability ρk of

forming an ice Ic stacking order at the plane k follows the Boltzmann distribution, i.e.,

ρk = 1

Zk
exp

(
− Akγsf(T )

kB T

)
, (7.3)

with the partition function for the k-th bi-layer

Zk = 1+exp

(
− Akγsf(T )

kB T

)
, (7.4)

where γsf(T ) denotes the temperature dependent stacking fault free energy per unit area. Note

that the term stacking fault here refers to a stacking disorder with respect to the standard Ih

stacking, which means a pure Ic nucleus can be considered as having a stacking fault on every

bi-layer. The free energy difference between a pure ice Ih nucleus and one that has the same

size and a stacking disordered structure can be expressed as

∆Gsf =−kB T ln
∏
k

Zk . (7.5)

Using Eqn. (7.5), the problem of computing the free energy difference between a pure Ih

stacking nucleus and a mixed one has been reduced to characterizing the stacking fault free

energy γsf(T ), which we determine next. To do that, we have carefully selected a combination

of multiple thermodynamic integration routes [57], in order to take into account vibrational

entropy and anharmonicity, and make it possible to disentangle the different contributions to

the stacking fault free energy.

The Gibbs free energy for a perfect bulk ice Ih structure and of a Ih bulk crystal with two

stacking fault layers were computed separately using a sequence of thermodynamic integra-

tion routes, following the general strategy outlined in chapter 2.2. We started by computing

the Helmoltz free energy of a real system at a low temperature (90 K) by thermodynamic

integration starting from a reference harmonic crystal. Afterwards, we switched from the NVT

to the NPT ensemble and obtained the Gibbs free energy. Finally, independent molecular

dynamics simulations were performed in the NPT ensemble at temperatures ranging from 90

K to 300 K, in order to obtain the temperature dependence of the Gibbs free energy for each

system by thermodynamic integration with respect to T .

Figure 7.3 shows that, considering only the potential energy difference at 0 K or under
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Figure 7.3 – Upper panel: The stacking fault free energy per area as a function of temper-
ature. The black line is the estimate from the potential energy difference at 0 K, the blue
curve represents the harmonic approximation (HAR), and the red dots show the results from
thermodynamic integration that considers anharmonicity (ANH). Statistical uncertainties are
indicated by the error bars. Middle panel: the free energy difference ∆Gsf between a pure ice
Ih nucleus and a one that has the same size and a mixed stacking disorder at temperatures
230 K, 240 K and 250 K as predicted by the analytic model illustrated in the inset. Lower panel:
The free energy profile as a function of cubicity for nuclei of three different sizes at 240 K.
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the harmonic approximation, the stacking fault free energy per unit area γsf(T ) is estimated

to be zero or negative. Only when anharmonicity is taken into consideration, γsf(T ) is pre-

dicted to be positive, indicating that the ice Ih phase is more stable than Ic. This observation

highlights the importance of accounting for anharmonic effects in studies of this kind. In

Reference [156], γsf(Tm) was predicted to be 0.11(2) mJ/m2 by the method of growing ice

bi-layers in simulations at near coexistence conditions, which agrees well with our results

using thermodynamic integration. Notice also that the magnitude of γsf(T ) is very small at

all the temperatures considered here, which means that for small ice nuclei the term in the

exponent in the partition function Zk (Eqn. (7.4)) is very close to zero.

Using the values of γsf(T ), ∆Gsf obtained from Eqn. (7.5) as a function of the size of the

nucleus at three different temperatures is also shown in Figure 7.3. The magnitude of the

correction term ∆Gsf is larger at high temperature because it mostly stems from the entropic

gain of forming stacking disorders, but it is relatively insensitive with respect to temperature.

Because the analytic model introduced above accounts for the distribution of the stacking

faults at each layer using the accurate values of γsf(T ), one can enumerate all the possible

combinations of the stacking disorder sequences, and thereby compute the free energy as

function of cubicity for a nucleus of a given size. The cubicity here is defined as the fraction

of ice molecules that are in local Ic environments. The lower panel of Fig. 7.3 shows that for

the three sizes considered here it is more favorable for the ice nucleus to adopt a cubicity

close to 0.5, which is fully consistent with the observation in Ref. [160]. For the three nucleus

sizes considered here, the free energy gain associated with the mixed stacking disorder is

larger for the larger nuclei. The most favorable degree of cubicity decreases with cluster size,

consistent with the fact that for ice nuclei approaching macroscopic size, the term Akγsf(T )

in Eqn. (7.4) will dominate, and pure Ih stacking should become favorable. Note also that

cubicity= 1 corresponds to a ice Ic nucleus, and thus the analytic model here predicts that

the chemical potential difference µI c−I h between Ic and Ih is 0.0026(4) kJ/mol at 240 K. This

value agrees well with µI c−I h(240) = 0.0031(2) kJ/mol that we computed independently using

the thermodynamic integration method. This agreement validates our assumption that the

each basal plane can be considered independently when calculating the free energy difference

associated with stacking disorders. Note that the analytic model here neglects the possibility

of intersecting stacking disorders: for ice Ih lattice stacking disorder can only occur along the

two basal faces, but in the uncommon cases when the nucleus consists a large enough domain

of ice Ic, stacking can occur along the four (111) planes of the Ic lattice. It is also possible to

construct a 2D Ising-like model to mimic the intersecting stacking disorders [42], although

one has to make assumptions on the free energy penalty of a grain boundary-like structure in

the intersection.

The cubicity= 1 (i.e. pure ice Ic nucleus) case is illuminating also because one can perform

a set of seeding and umbrella sampling calculations described in the previous section for

the nucleation pathway of pure Ic nuclei. In Figure 7.4 we report the free energy profile

GIc as a function of the nucleus size. The difference in the nucleation barriers G?
Ic −G?

Ih
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7.4. The kinetic factor in homogeneous nucleation

between the Ic and the Ih nucleus is estimated to be 2±2 kJ/mol, and the sizes of the critical

nuclei (about 570 molecules) are similar in both cases. This difference in nucleation barriers

can be entirely explained by the chemical potential difference between the phases of ice

µI c−I h(240K). This result thus supports our assumption as well as the conclusions in previous

calculations [144] that the ice-water interfacial free energies are indistinguishable for ice Ih

and Ic phases. In Ref. [42] G?
Ic −G?

Ih was estimated to be about 6 kJ/mol at 230 K using the

method of transition path sampling over ice nuclei whose sizes are close to that of the critical

nucleus. The difference between their result and ours is still comparable to the magnitude of

the statistical error, and might be related to the fact that the Ic nuclei in our case were initially

seeded in the undercooled liquid and therefore almost defect-free, but the ones in their study

were generated by sampling dynamical trajectories so may contain a higher concentration of

defects.

Further comparisons with Ref. [42] can be made regarding the free energy profile as a

function of cubicity (lower panel in of Figure 7.3). Our analytic model, although simple, is able

to capture the overall trend in the dependence of the free energy on cubicity. Our estimation

for the free energy difference associated with staking disorders ∆Gsf = 8 kJ/mol of the critical

nucleus is smaller compared to the prediction 14 kJ/mol in Ref. [42]. The discrepancy may

be due to that our analytic model neglects intersecting stacking disorders, grain boundaries,

and domains of other phases of ice, which may further lower the free energy of ice nuclei. In

any case, this difference in ∆Gsf here would only accounts for about one order of magnitude

change in the estimated nucleation rate J . It is also worth pointing out that it has been

debated that the mW model underestimates the free energy penalty associated with the Ic

structures [161], and one advantage of using an analytic model is the possibility to employ the

experimental values or ab initio results for γsf when estimating ∆Gsf as well as the cubicity

of nuclei of different sizes [161]. We also want to point out that one has the option to sample

the near critical ice nucleus with stacking disorder and other defects, using transition path

sampling [42, 160] or Monte Carlo methods [161], in order to compute ∆Gsf. Regardless how

one chooses to evaluate ∆Gsf, it can later be directly added on top of GIh for estimating the

free energy profile of ice nucleus with defects, i.e. G(ns(Φ)) =GIh(ns(Φ))+∆Gsf(ns(Φ)).

7.4 The kinetic factor in homogeneous nucleation

Once the free energy barrier of nucleation G? = max(G(ns)) has been determined, the nucle-

ation rate can be obtained from [45, 54]

J = (1/vl)Z f + exp(−G?/kB T ) (7.6)

where vl is the molar volume of the undercooled liquid, f + is the addition rate of particles to

the critical nucleus, and the Zeldovich factor

Z =
√

1

2πkB T

d 2G(ns)

dn2
s

(7.7)
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Figure 7.4 – The red curve is the free energy profile GIh of a pure Ih nucleus, the green curve
is GIc of a pure Ic nucleus, and the black curve indicates the free energy profile of an ice
nucleus that can have a mixed stacking order. The width of the curves indicates the statistical
error in the free energy estimation, computed from the error of the mean from independent
simulation runs.

can be obtained numerically from the nucleation free energy profile G(ns(Φ)) in Figure 7.4.

The addition rate f + can be computed as a diffusion coefficient from the mean square dis-

placement of the cluster size after it is released at the top of the nucleation barrier [45, 54].

However, this approach assumes that dG(ns)/dns is effectively zero when running multiple

trajectories, is influenced by the choice of the initial configuration, and by the latent heat

created when the solid nucleus changes size [55]. In order to overcome these shortcomings,

we computed f + accurately and directly from the umbrella sampling trajectories with the

biased Hamiltonian Eqn. (7.1) by applying a stochastic model originally proposed to mimic

the kinetics of planar interfaces [162].

In the stochastic model, the time evolution of an extensive quantityΦ is viewed as resulting

both from molecules changing from one phase to the other as well as from fluctuations in the

bulk phases,

Φ(t ) = (φs −φl)ns(t )+φlN + f (t ). (7.8)

Here, φs and φl are the averages of the atomic order parameter in the bulk solid and the bulk

liquid phases, respectively. The first term in the above equation stems from the temporal

change of the size ns(t ) of the solid cluster evolving under the action of the biased Hamiltonian.

The term f (t), on the other hand, takes into account fluctuations that do not change the

composition of the solid-liquid system, but are due to changes of the extensive quantity Φ

within the bulk phases, for instance caused by phonons propagating through the system.

In general, the time evolution of these two terms in Eqn. (7.8) occurs on distinct time
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7.4. The kinetic factor in homogeneous nucleation

scales, as the change in ns(t ) is determined by the relatively slow growth rate of the solid-liquid

interface, and the dynamics of f (t) happens on the time scale of lattice vibrations. These

different time scales are reflected in the power spectrum S(ω) of Φ(t), related to the time

autocorrelation function 〈Φ(0)Φ(t )〉 by

S(ω) =
∫ ∞

−∞
〈Φ(0)Φ(t )〉e−iωt d t . (7.9)

In Figure 7.5 we plot ωS(ω) obtained for a solid-liquid system that contains a critical solid

nucleus (blue curve). For comparison, we also show the results for the bulk solid as well as

bulk the liquid under the same thermodynamic conditions. It can be seen that for all three

systems there is a peak at high frequency, which corresponds to the fast fluctuations. Only for

the solid-liquid system with a critical nucleus there is another well separated peak at a low

frequency, which stems from the growth of the crystalline nucleus embedded in the liquid.

To rationalize the power spectrum S(ω) further and extract quantitative information on

the growth process from it, we now postulate that the time evolution of the collective variable

Φ(t ) can be modeled using a pair of coupled Langevin equations as described in Ref. [162]:

γq̇ = −κ( f +q − Φ̄)+η(t ) (7.10)

m f f̈ = −κ f f −κ( f +q − Φ̄)−γ f ḟ +η f (t ), (7.11)

where the variable q , representing the slowly evolving part of Φ, is defined as q = (φs −
φl)ns(t )+φlN . In the above equation, γ and γ f are friction constants associated with q and f ,

respectively, η(t ) and η f (t ) are Gaussian random forces. While the dynamics of q(t ) is assumed

to be over-damped, inertial effects are included for the variable f (t), which is assigned an

effective mass of m f . The force constant κ is the sum of the umbrella spring constant of

value 0.005kJ/mol (Eqn. (7.1)) and the curvature of the free energy for the critical nucleus,

κ′ = 2d 2G/dn2
s =−0.0003kJ/mol, which is negligible in this case. For this model, the power

spectrum S(ω) ofΦ(t ) can be determined analytically,

S(ω) = 2kB T

ω2 Re

[[
1

γ
+

[
γ f + i

(
ωm f −

κ f

ω

)]−1]−1

− iκ

ω

]−1

. (7.12)

We have fitted this expression to the power spectrum obtained from the umbrella sampling

simulation and the result is shown in Figure 7.5. As can be inferred from the figure, the simple

Langevin model captures both peaks of the power spectrum, although the high-frequency

peak is reproduced less accurately than the low-frequency peak, most likely because f (t ) is

sensitive to the details of the order parameter in use. However, we are primarily interested

in the slow mode q(t) and, particularly, in the value of the friction constant γ because this

parameter is related to the addition rate f + is by f + = kB T /γ. Due to the separation of time

scales, the parameters m f and κ f associated with the fast mode f (t) have little bearing on

the dynamics of the slow mode. From the fit, we obtained γ = 0.06 pskJ/mol, yielding an
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Figure 7.5 – The orange, green and blue curves are the spectra ωS(ω) for bulk solid, bulk
liquid, and a solid-liquid system that contains a solid critical nucleus (n? = 550) at 240 K
and 1 bar, respectively. The red curve is the fitting curve using Eqn. (7.12) with parameters
m f = 3×10−5 ps2 kJ/mol, κ f = 0.03 kJ/mol, γ f = 0.0025 pskJ/mol, and γ= 0.06 pskJ/mol.

Table 7.1 – Key parameters for the estimation of the homogeneous ice nucleation rate at
T = 240 K and P = 1 bar. The value for the chemical potential µIh = −0.649k J/mol is from
Ref. [159].

type µsl [kJ/mol] vs [Å3] vl [Å3] G? [kJ/mol] Z f + [s−1] J [m−3s−1] log10(Jm3s)
Ih -0.649 30.48 29.79 192(2) 0.003 3×1013 5×10−3 -2.3
Ic -0.646 30.48 29.79 194(1) 0.004 3×1013 2×10−3 -2.8

mixed - 30.48 29.79 184(2) 0.004 3×1013 0.3 -0.5

addition rate of particles to the critical nucleus of f + = 3×1013 s−1, which is smaller compared

with previous results (7×1013 s−1) [36] but of the same order of magnitude. In addition, we

estimated f + = 2.5×1013 s−1 and 5×1013 s−1 for nuclei of about 340 and 900 atoms, respectively,

confirming that the addition rate increases with nucleus size.

7.5 Results

Combining the free energy profile of stacking-disordered ice nucleus and the kinetic prefactor

using Eqn. (7.6), we estimate the nucleation rate to be J = 0.3 m−3s−1 at 240 K and 1 bar for the

mW model. The key data for this estimation are tabulated in Table 1. For our choice of order

parameter, disregarding the influence from the curvature dependence of the interfacial free

energy changes the predicted nucleation rate by 3 orders of magnitude in this case. The effects

from the curvature dependence, however, may be much larger for other systems or when

using a different choice of the Gibbs dividing surface [3]. Finally, we can estimate that the

free energy gain associated with stacking disorders accelerates the nucleation rate by about 2
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orders of magnitude.

For comparison, for the same water model and at the same thermodynamics conditions

(Figure 7.1), a previous estimate using the seeding approach yields J = 10−9 m−3s−1 [36], and

the forward flux sampling method gives J = 2× 10−7 m−3s−1 [160]. In most experimental

measurements (Figure 7.1), the predicted homogeneous ice nucleation rate is around J =
107 m−3s−1 at an undercooling of 35 K [163–165]. To compare, our estimate is faster by about

9 orders of magnitude compared with previous literature values, but 7 orders of magnitude

slower relative to experiments.

7.6 Discussions

Theoretical prediction of the homogeneous ice nucleation rate is an extremely challenging

problem not only because the high nucleation barrier and complex nucleation pathways

impose computational challenges, but also because the predicted rate is highly sensitive on

the fine details of the simulation methods as well as the water model employed (e.g. a change

of just 10 kJ/mol in nucleation barrier affects the rate by more than 2 orders of magnitude). In

order to systematically improve the existing computational methods and ultimately achieve

quantitative accuracy in the predictions, it is therefore important to understand where the

discrepancies between different computational predictions and between computation and

experiment may come from. Our method helps to build such understanding, as it not only

provides a reference value, but also breaks down the problem into segments and considers

each quantity that affects the nucleation rate in a careful and rigorous manner.

Our estimate of the homogeneous nucleation rate of the mW model is about 9 orders of

magnitude higher than the previous estimates using the seeding approach [36] (Figure 7.1)

. A large part of the difference is probably due to a different definition for the size of the

critical nucleus n?, which is crucial in approximating the nucleation barrier if one employs

the original expression of the classical nucleation theory for which G? = n?|µsl|/2 [36]. It is

common practice to set a threshold on the atomic order parameter in order to distinguish solid

and liquid-like atoms and to determine the nucleus sizes [36, 42, 54, 56, 160, 166], however,

the nucleus size metric in use has a very strong influence on the estimated size [42, 56] and

can thus affect the estimated rate by many orders of magnitude [166]. For example, with

the Φ-based Gibbs dividing surface we estimated n? ≈ 550 molecules, and in Ref. [54] the

estimate is 688 molecules, which implies that the estimated rate would differ by about 8 orders

of magnitude using the original CNT expression. It is worth pointing out that our framework

eliminates this ambiguity in the determination of the critical nucleus and the nucleation

rate, making the classical nucleation theory much more rigorous. In addition, the seeding

approach neglects the affects from stacking disorders, which may lower the rate by a few

orders of magnitude.

Our estimated rate is also 6 orders of magnitude faster than the one from forward flux

sampling [160] (Figure 7.1). A similar discrepancy has been reported at 220 K, where the ice
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nucleation rate of mW water computed with umbrella sampling [56, 167] was found to be

about 5 orders of magnitude higher than the corresponding forward flux sampling result [160].

In addition, for the case of a hard sphere system, the nucleation rates predicted by umbrella

sampling and the ones predicted by forward flux sampling are more consistent though the

former are still marginally faster at low supersaturations [168]. Although the path-based

techniques have a number of advantages including sampling real dynamics without the

presence of bias potentials, but there has been some worries that it may not proceed down

the correct pathway that allows for sufficient local equilibration [167]. From the practical

side, we want to point out that the umbrella sampling method used here is computationally

much cheaper: we performed a total of about 200 nanosecond simulations to obtain a well-

converged free energy profile of nucleation with uncertainty estimations, compared to tens or

hundreds microseconds in the previous studies using path-based techniques [41, 42].

Finally, our estimated rate is 7 orders of magnitude slower compared with experiments (Fig-

ure 7.1), which were measured often with micro-droplets to avoid heterogeneous nucleation

due to foreign particles [163–165], although there have been concerns that residual aerosol

particles or surfactants may still affect the measured rates [165]. In general, at deep undercool-

ings (Tm −T > 50K), previous computational predictions and experimental measurements

agree rather well, but at moderate undercoolings (Tm −T < 50K) the experimental rates are

usually faster by 10-15 orders of magnitudes compared with simulations using different water

models including mW, TIP4P and TIP4P/Ice [10]. Our underestimation of the nucleation rate

is thus in line with this systematic trend.

To further elucidate the origin of this theoretical underestimation of the rate using the

mW model, in what follows we will examine the various relevant terms. First of all, the mW

model overestimates the kinetic prefactor in Eqn. (7.6), as its diffusion coefficient is 2 orders

of magnitude higher compared with experiments [159]. Stacking disorders accelerate the rate

by two orders of magnitude according to our analytic model, and by 3 orders of magnitude

according to previous transition path sampling simulations [42]. As such, the underestimation

of the rate can only come from the overestimation of the nucleation free energy barrier. Recall

that the nucleation free energy profile of the ice Ih nucleus (Figure 7.2) can be well described

by the CNT expression in Eqn. (7.2), suggesting that CNT is accurate for this case and that

the nucleation barrier can be expressed as G?h
4(γΦ∞Ωv2/3

s )3

27|µ|2 +ζ2(γΦ∞Ωv2/3
s )2

3|µ| . The Tolman

correction ζ = 0.2(1) is small in this case, and thus unlikely to play a significant role. On

the other hand, the chemical potential µIh = −0.649 kJ/mol of mW water at 240 K [159]

compares well with the experimental value −0.6756 kJ/mol, which we calculated from the

heat capacities reported in Ref. [41]. The molar volume vs of ice predicted by the mW model is

about 7% smaller compared with experiments ( density 0.983g/cm2 for mW compared with

the actual value 0.92g/cm2), which goes in the direction of lowering the nucleation barrier

compared with experiments. Hence, we infer that our underestimation is probably due to

the fact that the mW model overestimates the interfacial free energy γΦ∞, which is the only

remaining key factor. Away from the melting point, the values of γΦ∞ depend on the choice
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of the Gibbs dividing surface [1], but one can unequivocally compare the values at Tm: the

mW model predicts 35 mJ/m2 [143, 144], compared with the range 24−33 J/m2 measured

experimentally [165, 169, 170], three TIP4P-type water models (TIP4P, TIP4P/2005, TIP4P/Ice)

all predict values between 28 J/m2 and 30 J/m2 [143]. Indeed, if one adjust the value for γΦ∞
of the mW model (decrease by 10−15 %) in the CNT expression (Eqn. (7.2)), and at the same

time correct for the molar volume (increase by 7%) as well as the kinetic factor (decrease by

2 orders of magnitude), a rate of J = 104 −1010 m−3s−1 would be obtained, in a much better

agreement with experiments.

The analysis above highlights the sensitivity of the predicted ice nucleation rate on the

underlying water model, and thus suggests that accurately predicting the rate may require a

high-level water model. In general, empirical water models suffer from various limitations.

As extensively discussed in Ref. [159], TIP4P models usually underestimate the chemical

potential difference µsl between the undercooled liquid and the ice phases by as much as

20-30%, the TIP4P models and the mW model also underestimate the heat of fusion, some

TIP4P models such as TIP4P/Ice underestimates the diffusion coefficient, etc. In the next

chapter, we will explore the possibility of using ab-initio-accuracy potential energy surfaces to

predict the rate. The theoretical framework and the method presented in this paper allow us

to go beyond inexpensive empirical water models, because of the significant reduction in the

computational cost compared with previous path-based methods. Furthermore, disentangling

all the terms that contribute to the overall rate means one can choose to evaluate these terms

independently.

7.7 Conclusions

In order to provide an accurate determination of the absolute nucleation rate for a monatomic

water model, and to decompose it in physically-meaningful terms, we followed three key steps:

Firstly, we computed and characterized the free energy profile for pure ice Ih nuclei at a very

affordable computational cost. Then we took into account multiple nucleation pathways due

to the possibility of forming stacking disordered Ic layers in ice nuclei, by adding an analytic

free energy correction term. We then calculated the kinetic prefactor using a stochastic model,

and finally obtained the homogeneous ice nucleation rate using a general formulation of

classical nucleation theory.

Our framework removed the ambiguity in defining the size of the nucleus, and did not rely

on many commonly-adopted approximations, such as neglecting the curvature dependence

in interfacial free energy and the effect from stacking disorders, both of which may have

contributed to the long-standing controversy on the predicted nucleation rates, that varies by

many orders of magnitude among previous studies.

The presented protocol for the study of homogeneous nucleation involving multiple nu-

cleation pathway makes fast and efficient computation of nucleation rates possible: cost is

lowered by about three orders of magnitude compared with the previous path-based stud-
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ies [41, 42], and further reduction is possible if one uses the CNT expression in Eqn. (7.2)

to perform interpolation or extrapolation of the computed free energy profile of nucleation.

More importantly, our approach disentangles all the terms that contribute to the overall rate,

including the difference in chemical potentials, the interfacial free energy, the stacking fault

free energy, and the kinetic prefactor. Separating those terms not only greatly facilitates the

theoretical understanding and formulation of the homogeneous nucleation process, but also

enables one to evaluate these terms independently. For instance, one can choose to compute

the relatively important terms such as the chemical potential and interfacial free energy em-

ploying an ab initio potential energy surface [153, 171], perhaps even considering nuclear

quantum effects which have been found to play in role in stabilizing the ice Ih phase [172], and

then combine them to estimate the rate. Our framework thus opens the door to the prediction

of homogeneous ice nucleation rates using ab initio potential energy surfaces, allowing for

stringent cross-validations between theoretical and experimental estimates of this important

quantity. In addition, it also provides a recipe for how to tackle even more complex nucleation

phenomena, such as the crystallization of molecular crystals, the precipitation of halide salts,

and the aggregation of hydrates.
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8 The quest for a predictive model of
ice nucleation

In the previous chapter, we computed the homogeneous ice nucleation rate using an empirical

water model, and then discussed the possible cause of discrepancy with experiments. In

general, empirical water models suffer from various limitations. Most notably, the predicted

chemical potential differences µsl using commonly used TIP4P-type models are usually lower

than the actual values by as much as 20%, andµsl heavily influences the nucleation barrier. The

shortfalls of empirical models thus suggests that that accurately predicting the ice nucleation

rate may require a high-level water model.

In this chapter, we first model the systems of ice and liquid water from first principles using

the tools of quantum chemistry. We compute the chemical potential difference between the ice

Ic and Ih phases of water, and between ice Ih and liquid water, at a hybrid density-functional-

theory (DFT) level of theory, taking into account NQEs, proton disorder, and anharmonicity.

This is made possible by exploiting advances in machine learning (ML) techniques to avoid

the prohibitively large computational expenses otherwise incurred by extensively sampling

phase space using first principles methods, and employing state-of-the-art thermodynamic

integration techniques in order to accurately and rigorously compute the Gibbs free energies

of the different phases of water. After that, we explore the possibility of using this ab-initio-

accuracy potential energy surfaces predict the rate.

8.1 The challenges in modelling ice and liquid water

Liquid water and ice are ubiquitous on Earth and are intricately related to its climate sys-

tem [173]. The low-density hexagonal form of ice, Ih, is the thermodynamically stable phase

that occurs in abundance. The cubic form (Ic), a metastable ambient-pressure ice phase,

derives its importance from its relation to the stacking-disordered ice nucleus that occurs as a

precursor of freezing. The relative stability of Ic with respect to ice Ih plays a central role in ice

cloud formation in the Earth’s atmosphere [42, 174, 175], but is extremely difficult to measure

experimentally [173].
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Theoretical prediction of the thermodynamic properties of liquid water and ice is chal-

lenging, because of (i) the shortcomings of common water models including conventional

force-fields [149] and (semi-) local DFT approaches [176–178], (ii) proton-disorder in ice, and

(iii) the importance of nuclear quantum effects (NQEs) [179]. In particular, calculating the

chemical potential difference ∆µIh→Ic =µIc −µIh between proton-disordered Ic and proton-

disordered Ih, which characterizes the relative stability, has been a severe computational

challenge because the zero-point configurational entropies [180] and the configurational [181]

and harmonic vibrational energies of ice Ih and Ic [172] differ by less than one meV/H2O, so

that anharmonic quantum nuclear motion plays a decisive role.

Water and ice have been described with varying success invoking approximations of differ-

ing severity, including simple electrostatic dipole models for the energetics of proton-ordering

[182], force-field based path-integral molecular dynamics (PIMD) studies [171, 183–185], first

principles quasi-harmonic (QHA) [185, 186], and VSCF [172, 187] studies which provide an

approximate upper bound for ∆µIh→Ic. These have greatly advanced our understanding of the

nature of liquid water and ice, but also highlight the harsh trade-offs between the accuracy of

the description of the potential energy surface governing nuclear motion and the associated

cost of sampling relevant atomistic configurations are sampled.

8.2 First-principles thermodynamics

As the underlying electronic-structure description, we employ the hybrid revPBE0 [188–190]

functional with a Grimme D3 dispersion correction [191, 192], which has been demonstrated

to accurately predict the structure, dynamics, and spectroscopy of liquid water in molecular

dynamics (MD) and PIMD simulations [193]. revPBE0-D3 predicts that the difference in

lattice energy between the most stable proton-ordered forms of ice Ic and Ih is U Ic −U Ih =
−0.3meV/H2O [194]. For the same quantity, diffusion Monte Carlo predicts U Ic −U Ih =
−0.4±2.9meV/H2O [181], two random phase approximation methods predict −0.2meV/H2O

and 0.7meV/H2O [195].

Since thorough sampling of the phase space of water at the revPBE0-D3 level of theory is

prohibitively expensive, we sample the phase space using a surrogate ML potential energy

surface (PES), UML and exploit the fact that the Gibbs free energy of the surrogate systems,

GML, can be promoted to the revPBE0-D3 level of theory using free energy perturbation

G(p,T )−GML(p,T ) =−kB T ln〈exp

[
−U −UML

kB T

]
〉

p,T,HML

, (8.1)

where 〈. . .〉p,T,HML denotes the ensemble average for the system sampled at temperature T

and pressure p using the surrogate Hamiltonian HML. Evaluation of Eqn. (8.1) is rendered

particularly affordable and robust by the high fidelity of our surrogate machine-learning PES,

which substantially exceeds that obtained from empirical force fields or local DFT calculations,

which were previously used as implicit surrogates [196, 197].
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8.3 A neural network potential energy surface for bulk water

We constructed a flexible and fully dissociable neural network (NN) potential for bulk liquid

water and ice following the framework of Behler and Parrinello [153, 198, 199] using the

RuNNer code [200], which was trained on the basis of revPBE0-D3 energies and forces for

1,593 diverse reference structures of 64 molecules of liquid water computed using the CP2K

package [201].

Figure 8.1 – Classical (CL) and quantum (Q) density isobars for ice Ic, ice Ih, and liquid water
(L) at P = 1 bar computed via (PI)MD simulations using the NN potential. The predicted
densities of ice Ic and Ih almost overlap both at the quantum and the classical level. The
experimental results for undercooled water are taken from Ref. 202.

The revPBE0-D3-based NN potential describes the density (Fig. 8.1) and structural prop-

erties of water (Fig. 8.2) in very good agreement with experiments. Fig. 8.1 shows density

isobars computed using both classical MD and PIMD simulations in the NPT ensemble for

64-molecule ice Ic, ice Ih, and liquid water systems 1. All (PI)MD simulations use 56 beads

and are performed employing the i-PI code [89] in conjunction with LAMMPS [204] with

a NN potential implementation [205]. Fig. 8.1 highlights that (i) the predicted densities of

liquid water and ice Ih and Ic agree with experiment to within 3%, (ii) the predicted thermal

expansion coefficients show excellent agreement with experimental data, and (iii) the tem-

perature of maximum density for liquid water matches the experimental determination of

3.98 C. It also shows that NQEs lead to an increase of around 1% in the density of the three

phases of water. This anomalous increase for the ice phase has been observed in previous

QHA calculations employing a number of different DFT functionals [185]. Experimentally,

the suppression of NQEs can be partially achieved by deuteration, and it has been observed

that the molar volume of D2O is 0.4% [206] larger compared with H2O for liquid water at

1We have confirmed that the equilibrium density computed with 64 water molecules in classical molecular
dynamics simulations is consistent with the values obtained for systems with about 2,000 molecules.
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Chapter 8. The quest for a predictive model of ice nucleation

Figure 8.2 – Oxygen-oxygen radial distribution functions (RDF) at 300 K and experimental
density computed via (PI)MD simulations in the NVT ensemble using the NN potential. The
experimental RDF was obtained from Ref 203.

the ambient temperature, and about 0.3% larger for hexagonal ice at 250 K [207]. Fig. 8.2

shows that NQEs have a minor effect on the oxygen-oxygen radial distribution functions in

Fig. 8.2, as one would expect because of competing quantum effects [184, 208]. The slight

de-structuring in the simulations with quantum nuclei brings the RDF in excellent agreement

with experiment [203], as also seen in the ab initio (PI)MD calculations with revPBE0-D3 [193].

Despite these excellent agreements, the fitting strategy, the finite cut-off radii applied to

the description of atomic environments, and possible “holes” in the training set inevitably

lead to small residual errors between NN predictions and the underlying first-principles

reference. To assess their significance, we have trained a collection of NN potentials using

different training sets and/or initial random seeds, which demonstrates that predictions of the

chemical potential difference between ice Ic and Ih from two different NN potentials can be

as large as 1meV/H2O. Promoting the results to the DFT level eliminates these residual errors

and any dependence on the specific NN potential employed. This allows us to achieve sub-

meV accuracy in free energies (as required to resolve the greater stability of ice Ih compared

to Ic) and to make unbiased properties predictions at the reference ab initio level of theory

in general. The temperature-dependent DFT corrections to the NN chemical potentials of

different phases of water, ∆µN N = µ−µNN = (G −GNN)/N , as obtained from free energy

perturbations (Eqn. (8.1)) performed on 64-molecule systems, are shown in Fig. 8.3. For

each ice phase (Ic and Ih) 16 different proton-disordered initial configurations with zero

net polarization were generated using the Hydrogen-Disordered Ice Generator [209]. The

standard deviation of the potential energy for the 16 proton-disordered ice Ic configurations

is 0.3meV/H2O (0.25meV/H2O) using the NN potential (DFT), respectively, and for ice Ih
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Figure 8.3 – The difference in the chemical potential ∆µNN ≡ µ−µNN between revPBE0-D3
and NN-based MD simulations at P = 1 bar. Standard errors of the mean are indicated by the
error bars. The violet (green) crosses indicate the results from 16 different 64-molecule proton-
orderings of Ic (Ih). The violet (green) line shows the average ∆µNN across proton-orderings.

is 0.4meV/H2O (0.25meV/H2O) using the NN potential (DFT). Starting from these different

initial configurations is crucial here, because (i) the proton order is effectively “frozen-in” at

the timescales available to simulation [210] and (ii) there are significant differences between

∆µN N of different proton-disordered states (see Fig. 8.3). For liquid water, 1000 single-point

revPBE0-D3 calculations for un-correlated configurations generated from NN-based NPT

simulations suffice to converge the value of the calibration term ∆µL
N N to about 0.2meV/H2O.

For each proton-disordered ice structure, 200 such single-point calculations are enough to

converge ∆µIc
N N and ∆µIh

N N to 0.1meV/H2O.

8.4 The relative stability of hexagonal and cubic ice

To evaluate the absolute quantum-mechanical Gibbs free energies of ice Ih and Ic (and thereby

the chemical potential difference ∆µIh→Ic), we first compute the classical free energies of the

two phases at the NN level, using a sequence of TI steps. The speed and linear scaling of

the NN potential allows us to simulate systems containing as many as 768 water molecules,

which is essential to represent the wide spectrum of possible local arrangements realized in

proton-disordered ice. During the subsequent step of promoting the NN free energies to the

revPBE0-D3 level using free energy perturbation performed over 64-molecule ice systems,

averaging over different proton disordered structures is also important, as demonstrated by

the spread of ∆µN N between different structures in Fig. 8.3.

We closely follow the TI methods described in Ref. [57]: we first integrate from a Debye
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crystal to classical ice at 25 K in the NVT ensemble, then transition to the NPT ensemble, and

finally evaluate the temperature dependence of the Gibbs free energy using MD simulations

in the NPT ensemble at temperatures between 25 K and 300 K. At this point the classical

chemical potential difference between ice Ih and Ic with revPBE0-D3 can be evaluated as

∆µIh→Ic
cl =∆µIh→Ic

cl,NN +∆µI c
N N −∆µI h

N N .

Figure 8.4 – Temperature dependence of the chemical potential difference between ice Ih and
Ic at 1 bar. The errors associated with the classical and quantum-mechanical revPBE0-D3
values arise predominantly from the differences in ∆µNN between different proton-orderings.

NQEs can be taken into account by integrating the quantum centroid virial kinetic energy

〈TCV 〉 with respect to the fictitious “atomic” mass m̃ from the classical mass (i.e. infinity) to

the physical masses of oxygen and hydrogen atoms [64, 171, 211, 212]. , i.e.

∆µIh→Ic
NN −∆µIh→Ic

cl,NN =
∫ ∞

m
dm

〈T I c
CV (m̃)〉−〈T I h

CV (m̃)〉
m̃

(8.2)

where m are the physical masses of the elements. In practice, a change of variable y =p
m/m̃

is applied to reduce the discretisation error in the evaluation of the integral [211], and the

integrand is evaluated using PIMD simulations for y = 1/4,1/2
p

2,1/2,1/
p

2,1, i.e.

∆µIh→Ic
NN −∆µIh→Ic

cl,NN = 2
∫ 1

0

〈T I c
CV (1/y2)〉−〈T I h

CV (1/y2)〉
y

d y. (8.3)

To evaluate the integral in Eqn. (8.3), we perform NN-based PIMD simulations that use

56 beads at the NPT ensemble for systems containing 64 molecules, and assess the impact of

NQEs on the chemical potential at the NN level using ∆µIh→Ic
NN −∆µIh→Ic

cl,NN . We note that the NN

potential is not “biased” towards Ic or Ih as the NN to revPBE0-D3 calibration terms ∆µIc
N N

and ∆µIh
N N are similar (Fig. 8.3), and that the difference in 〈TCV 〉 of difference water phases
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Figure 8.5 – The integral from the classical limit to the full quantum treatment (Eqn. (8.3)), for
the case of ice Ic and Ih (upper panel), and ice Ih and liquid water (lower panel).

99



Chapter 8. The quest for a predictive model of ice nucleation

was previously found to be very similar for three completely different atomic potentials [171].

As such, finally we arrive at the result ∆µIh→Ic =∆µIh→Ic
cl +∆µIh→Ic

NN −∆µIh→Ic
cl,NN . 2

Fig. 8.4 shows that the NN predictions of ∆µIh→Ic and the revPBE0-D3 results are statisti-

cally indistinguishable. At the classical level∆µIh→Ic
cl is negative, especially at low temperatures.

Consistent with the VSCF results of Ref. 172, proton disorder introduces substantial variations

in the chemical potential of ice Ic and Ih. More importantly, nuclear quantum motion is cru-

cial to stabilize ice Ih. At the quantum-mechanical level ∆µIh→Ic is close to zero at 200-250 K

and increases to 0.2±0.2meV/H2O at 300 K, suggesting ice Ih is more stable after all. For

comparison, at the classical level, the monoatomic water model [155] – which omits hydrogen

atoms – predicts a negligible difference (∆µIh→Ic(240 K ) = 0.032±0.002meV [5]), while the

MB-pol forcefield [152], which includes many-body terms fitted to the coupled-clusters level

of theory, predicts a small negative value (−0.4meV/H2O) 3.

8.5 The relative stability of hexagonal ice and liquid water

Figure 8.6 – Temperature dependence of the chemical potential difference between liquid
water and ice Ih at 1 bar. Blue crosses indicate ∆µL→Ih

cl,NN from independent interface pinning
simulations, and the blue dashed line indicates the best fit of these results to the TI expression
in Eqn (8.4).

To evaluate the difference in chemical potential ∆µL→Ih = µI h −µL between the proton-

disordered ice Ih and liquid water, we first perform interface pinning simulations [162] using

the PLUMED code [93] on an ice-liquid system containing 5760 molecules at temperatures

2One can also choose to re-weight the whole ring-polymer using Eqn. (8.1), but this is more costly.
3We computed ∆µIh→Ic(240 K ) for MB-Pol by performing a thermodynamic integration in the NPT ensemble,

using a parameter λ to perform the switching between the NN Hamiltonian HNN and the MB-Pol Hamiltonian
HMB.
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ranging from 250 K to 300 K and pressure 1 bar, employing the NN potential. Then we fit the

results ∆µL→Ih
cl,NN from independent simulations to the TI expression

∆µL→Ih
cl,NN(T ) =−kB T

∫ T

Tm

〈H Ih
cl,NN〉P,T

−〈H L
cl,NN〉P,T

kB T 2 dT, (8.4)

where Hcl ,N N is the enthalpy of the classical system described by the NN potential, whose

value has been computed from separate NPT simulations [194]. The calibration terms for

chemical potentials ∆µL
NN and ∆µIh

NN (Fig. 8.3) are added in order to obtain the revPBE0-D3

predictions, which is shown as the red line in Fig. 8.6. NQEs in H2O water and D2O water are

considered by running a series of PIMD simulations at different fictitious masses using the

NN potential [64, 171, 211, 212].

Fig. 8.6 shows that both the NN potential and revPBE0-D3 give excellent predictions on the

melting point of water (experimental result Tm = 273.15 K). When performing TI from physical

masses (mH for H) to the classical limit, NQEs first stabilize water more compared to ice from

mH to about 6mH, and afterwards stabilize ice more from 6mH to ∞ [194]. Similar phenomena

have been observed before for q-TIP4P/F water [183] and for stacked polyglutamine [213],

and have been interpreted as a manifestation of competing quantum effects. NQEs lower

the melting point of H2O by about 8 K compared with classical water. The difference in Tm

between the D2O and H2O is predicted to be 8±2 K, consistent with the result predicted using

the q-TIP4P/F water model [183], and in rough agreement with experiment (3.82 K) [206].

The Tm of D2O is about the same as the classical water, thanks to a cancellation of NQEs

when performing TI from the atomic mass of deuterium to the classical mass. The heat of

fusion (H f = H L(Tm)−H Ih(Tm)) is estimated to be 52meV/H2O for H2O, 54meV/H2O for D2O,

and 58meV/H2O for classical water at the revPBE0-D3 level, which agree rather well with the

experimental values of H f = 62.3meV/H2O for H2O, and 64.5meV/H2O for D2O.

8.6 Comments on the first principles description of water and ML

potentials

We demonstrate that it is possible to achieve a sub-meV level of statistical accuracy in predict-

ing the thermodynamic properties of a complex system such as water at a hybrid DFT level of

theory, using a machine-learning potential as an intermediate surrogate model. We show that

a revPBE0-D3 description of the electronic structure predicts properties for ice Ih, ice Ic and

liquid water that are in excellent quantitative agreement with experiment. In addition, we rig-

orously assess and disentangle the individual contributions from NQEs, proton disorder, and

anharmonicity. The ideas behind our approach, and the free energy methods that we apply,

are generally applicable to other materials, and enable the accurate and efficient prediction of

the thermodynamic properties of physical systems using machine-learning potentials as a

ladder to achieve first-principles accuracy.
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On the other hand, the NN potential for bulk water has a number of desirable properties

on its own, including a good description of the density isobar, the relative stabilities of ice

Ic and Ih, and the melting point. As such, it is interesting to see what this NN potential will

predict regarding the homogeneous ice nucleation rate, in comparison with the predictions

from empirical water models. The framework and the methods presented in chapter 7 are

directly applicable for such simulations. Including NQEs and promoting to DFT results are

also possible as a post-processing step.
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9 Conclusions

Predictive modelling and quantitative understanding of nucleation is essential for predicting

phase transformation processes in nature and precisely controlling material synthesis and

processing. Atomistic modeling is a powerful tool for capturing the dynamical processes and

investigating the underlying mechanism of nucleation, but it faces several key challenges.

In the present thesis, we tackled the problem of nucleation by attacking it on several

fronts. First of all we employed as well as devised enhanced sampling strategies to make the

computation affordable. In the case of homogeneous ice nucleation, we computed the free

energy profile associated with a single nucleation pathway, and then accounted for the free

energy gain from the possibility of exhibiting stacking disorders in the nucleus.

We then formulated a thermodynamic framework to bridge the gap between the mi-

croscopic and macroscopic pictures of nucleation, and thus provides a simple and elegant

framework to verify and extend classical nucleation theory. Using this framework, we accu-

rately and rigorously extracted different physical quantities that affect nucleation, including

the chemical potential, the interfacial free energy, and the Tolman length. By comparing the

results that we obtained from simulations of homogeneous nucleation to the ones computed

at the planar limit, we verified our thermodynamic framework, as well as benchmarked the

accuracy of the classical nucleation theory.

Finally, we constructed a machine learning potential based on hybrid DFT data, in order to

better model the interatomic interactions in water systems. We predicted the thermodynamic

properties of liquid water as well as hexagonal and cubic ice, rigorously taking into account

quantum nuclear motion, anharmonic fluctuations and proton disorder. The ab initio de-

scription not only leads to structural properties, density isobar, and melting point in excellent

agreement with experiments, but also provides insights on how nuclear quantum effects

modulate the stabilities of different phases of water. In addition, this ab initio modelling of

water opens up many possibilities of future work, including a first principle description of ice

nucleation.
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To sum up, the present thesis provides the key instruments for investigating nucleation

using atomistic simulations, and represents a substantial development in the quantitative

understanding of the nucleation phenomenon. The work present here also opens the door

for a number of future research opportunities that involve nucleation. For example, the pre-

cipitation of salt from solution, the cubic to orthorhombic phase transformation in cesium

lead halide perovskites, and gas bubble formation from liquid water. More in general, the con-

ceptual approach to reconcile atomistic and macroscopic modeling, and the combination of

state-of-the-art sampling and machine-learning techniques, provide a robust, generally appli-

cable framework that can be applied to model and understand other important open problems

in materials science, such as computing contact angles, modelling emulsion instabilities, and

predicting the thermal stabilities of polymorphic molecular crystals.
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10 Appendix

10.1 Cluster distributions under the multiple cluster model

The free energy profile G̃(ntot) as a function of total number of atoms in all the clusters can be

computed by enumerating all the possible combinations using Eqn. (4.3). If a cutoff size ncut

is selected, one can also compute the distribution of ntot under the constraint that no cluster

in the system is of size larger than ncut, i.e.

exp
(−βG̃ (0)(ntot)

)= ∞∑
k1=0

∞∑
k2=0

. . .
∞∑

kncut=0
δ

( ∞∑
n=1

nkn −ntot

) ncut∏
n=1

P (n,kn), (10.1)

On the other hand, if one restricts the system to have exactly one cluster larger than ncut, the

distribution of ntot can be written as

exp
(−βG̃ (1)(ntot)

)= ntot∑
nb=ncut

P (nb ,1)exp(−βG̃ (0)(ntot −nb)) (10.2)

Furthermore, if one restricts the system to have two clusters that have sizes larger than ncut,

the distribution of ntot can be written as

exp
(−βG̃ (2)(ntot)

)= ntot∑
na=ncut

na∑
nb=ncut

P (na ,1)P (nb ,1)exp(−βG̃ (0)(ntot −na −nb)) (10.3)

We selected ncut = 150, computed G̃(ntot), G̃ (0)(ntot), G̃ (1)(ntot), and G̃ (2)(ntot), and plotted

them in Figure 10.1. It can be seen that at ntot > ncut +〈ntot〉, G̃ (1)(ntot) overlaps with G̃(ntot).

In addition, at ntot > ncut +〈ntot〉 it is many orders of magnitude less likely to have zero or two

clusters of size larger than ncut compared with only having one such cluster. Therefore, at

ntot > ncut +〈ntot〉 the system effectively only contains one large cluster with size larger than

ncut, and G̃ (1)(ntot) is a good approximation of G̃(ntot). Note that ncut does not need to be

decided exactly. As long as ncut is reasonably large, the conclusions above apply.
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Figure 10.1 – Free energy profiles G̃(ntot), G̃ (0)(ntot), G̃ (1)(ntot), and G̃ (2)(ntot) of the atomistic
system of multiple clusters. At ntot < ncut, G̃ (0)(ntot) is exactly equal to G̃(ntot). At ntot >
ncut +〈ntot〉, G̃ (1)(ntot) lies on the top of G̃(ntot).

10.2 A fluctuating Gibbs dividing surface

For a solid-liquid system that has N atoms, a box size {lx , ly , lz }, and a planar interface per-

pendicular to the z axis, an instantaneous order parameter density field can be introduced as

φ̃(x, y, z) =
N∑

i=1
φi g (x −xi )g (y − yi )g (z − zi ), (10.4)

where φi and (xi , yi , zi ) denote the atomic order parameter and coordinates of each atom,

respectively. The 3-dimensional normalized kernel g (x −xi )g (y − yi )g (z − zi ) can be chosen

to be a Gaussian function, e.g.

g (x −xi )g (y − yi )g (z − zi ) =
(

1p
2πσ2

)3

exp− (x −xi )2 + (y − yi )2 + (z − zi )2

2σ2 . (10.5)

Take a thin domain that has an infinitesimal cross-section centered at (x, y), the extensive

quantity based on the atomic order parameter for this needle-shaped domain is Φ(x, y), and

the instantaneous height h(x, y) of the Gibbs dividing surface that gives zero access of the

extensive quantityΦ for this domain fulfills

Φ(x, y) =
∫ lz

0
d zφ̃(x, y, z) =

∫ h(x,y)

0
d zφ̃s +

∫ lz

h(x,y)
d zφ̃l, (10.6)

where φ̃s and φ̃l indicate the density field that contains small fluctuations inside the bulk solid
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and the bulk liquid. Combining Eqn. (10.4) and (10.5), one can write

∫ h(x,y)

0
d zφ̃s +

∫ lz

h(x,y)
d zφ̃l =

N∑
i=1

φi
1

2πσ2 exp− (x −xi )2 + (y − yi )2

2σ2 . (10.7)

Take a 2-D Fourier expansion for the left hand side of Eqn. (10.7) over the whole cross

section of the simulation box {lx , ly }, i.e.

F T (Φ(x, y)) = 1

lx ly

∫ lx

0
d x

∫ ly

0
d y

(∫ h(x,y)

0
d zφ̃s +

∫ lz

h(x,y)
d zφ̃l

)
exp(−ikx x − iky y), (10.8)

where kx = 2πm/lx ,m = 0,±1,±2, . . ., and similarly for ky . To simplify the evaluation of the

above Fourier expansion, one can split the bulk density field into an averaged term and a

fluctuating term, e.g. φ̃s = 〈φ̃s〉 +∆φ̃s. At the meantime, h(x, y) = 〈h〉 +∆h(x, y), with the

average height of the interface 〈h〉 = ∫ lx
0 d x

∫ ly

0 d yh(x, y)/lx ly . As such, the left hand side of

the Eqn. (10.7) can be rewritten as

〈φ̃s〉h(x, y)+〈φ̃l〉 (lz−h(x, y))+
∫ 〈h〉

0
d z∆φ̃s+

∫ lz

〈h〉
d z∆φ̃l+

∫ h(x,y)

〈h〉
d z∆φ̃s+

∫ 〈h〉

h(x,y)
d z∆φ̃l. (10.9)

Now let us consider the Fourier coefficients of the non-zero frequency modes of Eqn. (10.9).

For the first two terms in Eqn. (10.9),

F T
(〈φ̃s〉h(x, y)+〈φ̃l〉 (lz −h(x, y))

)= (〈φ̃s〉−〈φ̃l〉)Ah(kx ,ky ), (10.10)

where

Ah(kx ,ky ) = 1

lx ly

∫ lx

0
d x

∫ ly

0
d yh(x, y)exp(−ikx x − iky y). (10.11)

is just the Fourier coefficients of the height function

h(x, y) = ∑
kx ,ky

Ah(kx ,ky )exp(ikx x + iky y). (10.12)

As for the third in Eqn. (10.9), the Fourier coefficients characterizing the fluctuations ∆φ̃s in a

slab of bulk solid that has a cross section {lx , ly } and thickness 〈h〉 are

As(〈h〉 ;kx ,ky ) = 1

lx lz

∫ lx

0
d x

∫ ly

0
d y

∫ 〈h〉

0
d z φ̃s(x, y, z)exp(−ikx x − iky y). (10.13)

Similarly, for the fourth term in Eqn. (10.9), the Fourier coefficients are

Al (lz −〈h〉 ;kx ,ky ) = 1

lx lz

∫ lx

0
d x

∫ ly

0
d y

∫ lz−〈h〉

0
d z φ̃l(x, y, z)exp(−ikx x − iky y). (10.14)

Note that As(〈h〉 ;kx ,ky ) and Al (lz −〈h〉 ;kx ,ky ) can be computed independently from molec-
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ular dynamics simulations of bulk solid and bulk liquid using a simulation box of the same

cross section {lx , ly }. In addition, if one assumes that the bulk fluctuations and the surface

fluctuations are mutually independent, the last two terms in Eqn. (10.9) do not contribute to

the Fourier components. To wrap up, the Fourier expansion of the left hand side of Eqn. (10.9)

yields

(〈φ̃s〉−〈φ̃l〉)Ah(kx ,ky )+ As(〈h〉 ;kx ,ky )+ Al (lz −〈h〉 ;kx ,ky ), (10.15)

and as the three terms above are all mutually independent, the ensemble average of the Fourier

amplitudes can be expressed as

〈|F T (Φ(x, y))|2〉 = (〈φ̃s〉−〈φ̃l〉)2 〈|Ah(kx ,ky )|2〉+〈|As(〈h〉 ;kx ,ky )|2〉+〈|Al (lz −〈h〉 ;kx ,ky )|2〉
(10.16)

Furthermore, additional approximations can be made to facilitate the computation of 〈|As(〈h〉 ;kx ,ky )|2〉
and 〈|Al (lz −〈h〉 ;kx ,ky )|2〉: If one assumes that the correlations between the fluctuations of

different layers in the bulk phases along the z axis are short-ranged, it is possible to select a

length scale λ that is much larger than this spatial correlation length but much smaller than

the simulation cell height lz , and one can make the approximations such as

〈|As(〈h〉 ;kx ,ky )|2〉 = 〈h〉
λ

〈|As(λ;kx ,ky )|2〉 , (10.17)

and

〈|As(λ;kx ,ky )|2〉 = 〈
[

1

lx ly

Ns∑
i=1

φi exp(−ikx xi − iky yi )H(λ− zi )H(zi )

]2

〉 , (10.18)

where H(. . .) is the Heaviside function and Ns is the number of atoms in the bulk solid system

confined in a simulation box of the cross section {lx , ly }.

Now consider the 2-D Fourier expansion for the right hand side of Eqn. (10.7) over the

whole cross section of the simulation box {lx , ly }:

1

lx ly

∫ lx

0
d x

∫ ly

0
d y

N∑
i=1

φi
1

2πσ2 exp− (x −xi )2 + (y − yi )2

2σ2 exp(−ikx x − iky y)

= 1

lx ly

N∑
i=1

φi

∫ ∞

−∞
d x ′

∫ ∞

−∞
d y ′ 1

2πσ2 exp−x ′2 + y ′2

2σ2 exp(−ikx x ′− iky y ′)exp(−ikx xi − iky yi )

= 1

lx ly

N∑
i=1

φi exp−
σ2(k2

x +k2
y )

2
exp(−ikx xi − iky yi ). (10.19)

Because the wavelength associated with k has to be much larger than the atomic spacing in

order for the capillary wave treatment to be meaningful (i.e. 2π/kx Àσ), one can simply take
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exp(−σ2(k2
x +k2

y )/2) ≡ 1 and obtain

〈|F T (Φ(x, y))|2〉 = 〈
[

1

lx ly

N∑
i=1

φi exp(−ikx x − iky y)

]2

〉 . (10.20)

To sum up, the ensemble average of the non-zero frequency Fourier components follows

(〈φ̃s〉−〈φ̃l〉)2 〈|Ah(kx ,ky )|2〉+〈|As(〈h〉 ;kx ,ky )|2〉+〈|Al (lz −〈h〉 ;kx ,ky )|2〉

= 〈
[

1

lx ly

N∑
i=1

φi exp(−ikx x j − iky y j )

]2

〉 . (10.21)

Furthermore, when more than one planar interface are present in the system, the average

amplitudes of their capillary waves are also additive to the above expression. For instance, if

there are two parallel planar interfaces h1 and h2, the left hand side of Eqn. (10.21) becomes

(〈φ̃s〉−〈φ̃l〉)2 (〈|Ah1(kx ,ky )|2〉+〈|Ah2(kx ,ky )|2〉)+〈|As(〈h〉 ;kx ,ky )|2〉+〈|Al (lz −〈h〉 ;kx ,ky )|2〉 .

(10.22)

If the two interfaces are not interacting, the two amplitudes 〈|Ah1(kx ,ky )|2〉 and 〈|Ah2(kx ,ky )|2〉
are independent so the sum of the two average amplitudes is just two times the value for one

interface, i.e.

〈|Ah1(kx ,ky )|2〉+〈|Ah2(kx ,ky )|2〉 = 2〈|Ah(kx ,ky )|2〉 . (10.23)
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Science” in EPFL. 

Jun 2016  Tutor for the CECAM School “Path Integral Quantum Mechanics”.  
Sep 2012 – Jul 2014  Teaching assistant for the course “Introduction to Mechanical Engineering” 

and lab demonstrator in HKU. 

Sep 2012 – Aug 2014  Co-supervised two undergraduate Final Year Project students in HKU. 
 

Awards & Grants 

1. Early Postdoc.Mobility fellowship (Swiss National Science Foundation, 2018) 
2. The JCP poster prize (CECAM workshop on ice nucleation, 2018) 
3. CSCS Production Project S787 (99,100 node hours on Piz Daint, co-PI with Michele Ceriotti). 

This grant already led to two publications so far. 
4. International Visitor Program, ICASEC​,   Georg-August-Universität​ (EUR 500) 
5. Prize for the Best Oral Presentation (Doctoral Program in Materials Science and 

Engineering, EPFL, 2017).​​ One prize was awarded among all ​PhD students in the department. 
6. Poster Contest Award (Marvel Review and Retreat,2017) 
7. Award for Outstanding Research Postgraduate Student (HKU, 2013-2014). ​​Ten awards are 

made each year among all the research postgraduate students in the university. 
8. Mechanical Engineering Outstanding Thesis Award (HKU, 2013-2014)  127



9. Mechanical Engineering Outstanding Research Postgraduate Award (HKU, 2012-2013) 
10. Postgraduate scholarship (HKU, 2012-2014) 
11. Fong’s Project Prize in Mechanical Engineering (HKU, 2012) 

Computer Skills 

Programming  Proficient in Fortran, C++, Python and Mathematica. I have contributed to the 
development of path integral molecular dynamics code i-PI. 

Simulation  Proficient user of molecular dynamics package LAMMPS, enhanced sampling 
plugin PLUMED and i-PI.  

Scientific Activities 

I have independently written a grant for the allocation of computer time (99,100 node hours) at the 
Swiss National Supercomputing Center (CSCS).  

I have refereed for journals including Physica E, Computational Materials Science, and Electronic 
Materials Letters. 

Journal Publications 

(​* Corresponding author​​) 

1. Bingqing Cheng​*,  Edgar A Engel, ​Jö​rg Behler, Christoph Dellago, Michele Ceriotti. (​2018​​) ​ab 
initio thermodynamics of liquid and solid water​.  Submitted. 

2. Bingqing Cheng​*, Christoph Dellago, Michele Ceriotti. (​2018​​) ​Theoretical prediction of the 
homogeneous ice nucleation rate: disentangling thermodynamics and kinetics​.  Physical Chemistry 
Chemical Physics, ​DOI: 10.1039/C8CP04561E. 
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Speybroeck, Michele Ceriotti.  (​2018​​) ​i-PI V2: A Universal Force Engine for Advanced Molecular 
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a-iron: the role of quantum and anharmonic fluctuations. ​Physical Review Letters, 120(22): 225901. 

6. Bingqing Cheng​*​​, Michele Ceriotti. (​2018​​) ​Computing the absolute Gibbs free energy in atomistic 
simulations: applications to defects in solids​.  Physical Review B, 97(5): 054102. 

7. Bingqing Cheng​*​​, Gareth A Tribello, Michele Ceriotti. (​2017​​) ​The Gibbs free energy of 
homogeneous nucleation: from atomistic nuclei to the planar limit​. The Journal of Chemical Physics, 
147(10): 104707. 

8. Bingqing Cheng​*​​, Michele Ceriotti. (​2016​​) ​Bridging the gap between atomistic and macroscopic 
models of homogeneous nucleation​. The Journal of Chemical Physics, 146(3): 034106. 

9. Bingqing Cheng​, ​Jö​rg Behler, Michele Ceriotti. (​2016​​) ​Nuclear Quantum Effects in Water at the 
Triple Point: Using Theory as a Link Between Experiments​. Journal of Physical Chemistry Letters, 
7(12): 2210-2215. 
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10. Bingqing Cheng​, Gareth A Tribello, Michele Ceriotti. (​2015​​) ​Solid-liquid interfacial free energy 
out of equilibrium​. Physical Review B, 92(18): 180102. 

11. Peggy S S Leung, Hing Shun Leung, ​Bingqing Cheng​, Alfonso H W Ngan. (​2015​​) ​Size 
dependence of yield strength simulated by a dislocation-density function dynamics approach​. 
Modelling and Simulation in Materials Science and Engineering, 23(3): 035001. 

12. Bingqing Cheng​, Michele Ceriotti. (​2014​​) ​Direct path integral estimators for isotope fractionation 
ratios​. The Journal of Chemical Physics, 141(24): 244112. 

13. Bingqing Cheng​, Hing Shun Leung, Alfonso H W Ngan. (​2014​​) ​Strength of metals under 
vibrations - Dislocation-density-function dynamics simulations​. Philosophical Magazine, 
95(16-18):1-21. 

14. Hing Shun Leung, Peggy S S Leung, ​Bingqing Cheng​, Alfonso H W Ngan. (​2014​​) ​A New 
Dislocation-density-function Dynamics Scheme for Computational Crystal Plasticity by Explicit 
Consideration of Dislocation Elastic Interactions​. International Journal of Plasticity, 67: 1-25. 

15. Bingqing Cheng​*​​, Alfonso H W Ngan. (​2013)​​ ​Crystal plasticity of Cu nanocrystals during 
collision​. Materials Science and Engineering, 585:326-334. 

16. Bingqing Cheng​, Alfonso H W Ngan. (​2013​​) ​The sintering and densification behaviour of many 
copper nanoparticles: A molecular dynamics study​. Computational Materials Science, 74:1-11. 

17. Bingqing Cheng​*​​, Alfonso H W Ngan. (​2013​​) ​Thermally induced solid-solid structural transition 
of copper nanoparticles through direct geometrical conversion​. The Journal of Chemical Physics, 
138(16):164314. 

18. Bingqing Cheng​, Alfonso H W Ngan. (​2013​​) ​The crystal structures of sintered copper 
nanoparticles: A molecular dynamics study​. International Journal of Plasticity, 47: 65-78. 

(Up-to-date citation data and bibliographic indexes can be obtained at the Google scholar page: 
https://scholar.google.ch/citations?user=s5ZqEskAAAAJ​) 

(Private full texts can be found on ​www.researchgate.net/profile/Bingqing_Cheng​) 

Talks 

1. Atomistic Simulation Center​ Seminar 2018 (Queen’s University Belfast). ​Invited seminar​​: ​ab 
initio thermodynamics of liquid and solid water​. 

2. Theory of Condensed Matter Seminar​ 2018 (University of Cambridge). ​Invited seminar​​: 
Bridging the gap between atomistic and macroscopic models of homogeneous nucleation​. 

3. Computational  physics group seminar​ 2018 (University of Vienna). ​Seminar​​: ​Predicting 
homogeneous nucleation rate from atomistic simulations​. 

4. Condensed Matter Seminar​ 2018 (SISSA, Trieste). ​Invited seminar​​: ​Bridging the gap between 
atomistic and macroscopic models of homogeneous nucleation​. 

5. Group Seminar​ 2018 (​Georg-August-Universität Göttingen​). ​Seminar​​: ​Bridging the gap between 
atomistic and macroscopic models of homogeneous nucleation​. 

6. SFB ViCom Conference​ 2018 (Vienna). ​Selected talk​​: ​Bridging the gap between atomistic and 
macroscopic models of homogeneous nucleation​. 

7. DPG Conference​ 2018 (Berlin). ​Contributed talk​​: ​Computing the absolute Gibbs free energy in 
atomistic simulations: applications to defects in solids. 

8. MARVEL Junior Seminar​ 2017 (Lausanne). ​Seminar​​: ​Bridging the gap between atomistic and 
macroscopic models of homogeneous nucleation​. 

9. EPFL EDMX Materials Research Day​ 2017 (Lausanne). ​Selected talk​​: ​Bridging the gap between 
atomistic and macroscopic models of homogeneous nucleation​. 

10. DPG Conference​ 2017 (Dresden, Germany).​ Contributed talk​​: ​Bridging the gap between 
atomistic and macroscopic models of homogeneous nucleation. 
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 Posters 

1. CC2AI 2018 (Lausanne). ​Poster: ​Bridging the gap between atomistic and macroscopic models of 
homogeneous nucleation​. 

2. Recent Advances in Modelling Rare Events RARE ​2017 (Agra, India). Poster: ​Bridging the gap 
between atomistic and macroscopic models of homogeneous nucleation​. 

3. Marvel Review and Retreat 2017 (Lausanne). ​Poster: ​Bridging the gap between atomistic and 
macroscopic models of homogeneous nucleation​. 

4. NSF/CECAM school on Computational Materials Science: From Basics to Applications​ 2017 
(Lausanne). Poster: ​Bridging the gap between atomistic and macroscopic models of homogeneous 
nucleation​. 

5. CECAM School “Building links between experiments and computer simulations of 
crystallisation”​ 2017 (Lausanne). Poster: ​Bridging the gap between atomistic and macroscopic 
models of homogeneous nucleation​.  

6. VES School 2017 (Lugano). Poster: ​Solid-liquid interface free energy out-of-equilibrium. 
7. CECAM School “Path Integral Quantum Dynamics”​ 2016 (Lausanne). Poster: ​Direct path 

integral estimators for isotope fractionation ratios.  
8. Psi-K Conference​ 2015 (San Sebastian,  Spain). Poster: ​Solid-liquid interface free energy 

out-of-equilibrium. 
9. CECAM School “Computational Trends in Solvation and Transport in Liquids”​ 2015 (Juelich, 

Germany). Poster: ​Direct path integral estimators for isotope fractionation ratios.  
10. PASC​ 2015 Conference (Zurich). Poster: ​Direct path integral estimators for isotope fractionation 

ratios.  
11. GRC on Nano-Mechanical Interfaces​ 2013 (Hong Kong). Poster: ​The mechanism in the sintering 

of Cu nanoparticles.  
12. IC4N Conference 2013 (Corfu, Greece). Poster: ​Novel dislocation-free deformation mechanism in 

Cu nanoparticles. 
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