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Abstract

I started my PhD studies in August 2014 with a strong desire to push my own

limits without knowing precisely the areas I wanted to cover in detail. To me, it

was clear that I was interested by many different fields, however, I was particularly

concerned with behavioural finance and with the fact that simple actions could be

followed by strong market reactions.

It is in this context that my supervisor, Prof. Semyon Malamud, advised me

to derive/measure the consequences of the large acceptance of the RiskMetrics

variance model on the price of financial assets. Indeed, this method has the

advantage of providing a simple formula to estimate the volatility of any financial

asset, but above all, has been used significantly by practitioners in the financial

industry. The question then arises, “Is there a link between this method and the

price of financial assets?” In order to answer this question, I have designed a simple

portfolio optimization model in which agents update volatility estimates with the

RiskMetrics formula. Thanks to this simple idea my first project was born and I

quickly realized that I could design an elegant model. With this framework I have

been able to establish the existence of a risk factor of which the economic literature

was unaware. Moreover, the empirical strategy allows me to estimate the relative

risk aversion coefficient independently from established procedures. Importantly,

my estimates are in line with the ones obtained with these (standard) approaches.

Meanwhile, I was also interested in a topic that covers a large part of all trades and

is known as “over-the-counter markets”. These markets are characterized by their

high level of decentralization. Indeed, every transaction is settled directly between

a buyer and a seller. In these markets, the only way to secure a trade is to find

another agent that is willing to take the counter-party. I became very interested in
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Abstract

a series of books and articles that were modeling financial assets traded under these

conditions. Hence, I have started to work in this field by solving different models.

I was particularly interested in understanding how the price of assets traded with

this constraint would react under stressful situations, that is, when agents had to

liquidate their investments. After a trial and error process, I found that my model

generated puzzling results. Indeed, this model made predictions that were against

traditional wisdom. Above all, that model predicted that a large level of capital

mobility could impair welfare.

Hence, I had eventually found the link between all the fields I wanted to cover in

my thesis, where I debate the optimal allocation of capital under different types

of frictions. While my first article treats the case of a centralized market with an

agent who forecasts volatility using a particular method, the second article concerns

how capital flows across markets when agents are subject to searching frictions.

My third article is based on the second and discusses the interaction between

innovation and the competition between firms supplying the same products. This

article focuses on how capital is used by firms to innovate and how firms grow.

Key words: Asset Pricing, General Equilibrium, Volatility, Risk Premium, Search

and Matching Frictions, OTC Markets, Oligopolistic Competition, Firm Size

Dynamics, Game Theory.
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Résumé

J’ai commencé mes études doctorales en automne 2014 avec l’ambition de repousser

mes limites, sans avoir pour autant une idée précise des sujets dont je voulais

traiter. Il était évident que je m’intéressais à beaucoup de domaines, à commencer

par la finance comportementale et l’impact que de simples décisions prises par les

intervenants financiers pouvaient engendrer sur les prix des actifs financiers.

C’est dans cette dynamique que mon superviseur, Prof. Semyon Malamud, m’a

proposé de tenter d’estimer l’impact que l’adoption à grande échelle de la base

de données Riskmetrics pouvait avoir sur le prix des actifs. En effet, la procédure

utilisée pour établir cette base de données a le grand avantage de conduire à une

formule de mise à jour des estimations de volatilité très simple et d’être largement

utilisée dans l’industrie financière. Existe-t-il donc un lien entre cette méthode

et le prix des actifs financier ? Pour répondre à cette question, j’ai développé un

modèle d’optimisation de portefeuille ou les agents utilisent cette technique pour

estimer le risque des actifs. Grâce à cette simple idée, mon premier projet était né.

Je me suis rapidement rendu compte qu’il était possible de dériver un modèle très

élégant mathématiquement. Ce modèle m’a permis d’établir l’existence d’un lien

entre les primes de risques et un facteur qui n’était pas connu dans la littérature

économique. De plus, l’évaluation empirique de mon modèle permet d’estimer

l’aversion moyenne au risque des agents financier indépendamment des méthodes

utilisées jusqu’à ce jour.

En parallèle, je me suis intéressé à un sujet couvrant une large partie des échanges,

tant financiers que commerciaux : les marchés de gré à gré. Ces marchés sont

caractérisés par une importante décentralisation. En effet, une transaction y est

conclue directement entre un acheteur et un vendeur. Les individus intervenant sur
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Abstract

de tels marchés doivent donc trouver d’autres acteurs avant de pouvoir effectuer

une transaction. J’ai rapidement été passionné par toute une série d’articles et de

livres modélisant les actifs financiers lorsqu’ils sont échangés dans ces circonstances.

En accord avec mon superviseur, j’ai donc commencé à travailler dans ce domaine,

et à résoudre différents modèles. En particulier, je m’intéressais à comprendre

comment réagissent le prix des actifs financiers échangés dans ce type de marchés

en situation de stress, c’est-à-dire lorsqu’un individu, pour des raisons exogènes,

doit liquider ses positions. Après de multiples tentatives, mon modèle a généré des

résultats particulièrement troublants, car allant à l’encontre de certaines croyances

fondamentales en économie. En effet, mon modèle prévoyait que dans certains cas,

une grande mobilité du capital pouvait avoir des effets dommageables.

Le lien entre ces sujets, pourtant si différents au premier abord, était tout trouver :

ma thèse allait traiter de l’allocation optimale du capital lorsque les agents

économiques sont soumis à diverses contraintes. En effet, alors que mon premier

sujet traite d’allocation du capital dans un marché centralisé, les intervenants

estiment le risque de leurs positions à partir d’une unique approche. Le second sujet

s’intéresse à la façon dont le capital est alloué lorsque les agents sont soumis à des

frictions de recherche. Mon troisième article étend mon second afin de déterminer

les effets de l’interaction entre l’activité de recherche et développement avec la

concurrence entre produits finaux. Cet article se focalise sur la façon dont le capital

(physique dans ce cas) est utilisé par les entreprises dans le but d’accrôıtre leur

taille et leur importance.

Mots-clés : Evaluation d’actifs financiers, modèle d’équilibre général, volatilité,

prime de risque, frictions de recherche, marchés OTC, concurrence oligopolistique,

taille des entreprises, théorie des jeux.
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1 The RiskMetrics Anomaly

This paper develops an overlapping-generations economy where the agents forecast

future variance with the RiskMetrics variance model. I show that this feature

induces a two-factor asset pricing model in which risk premiums are determined

by both the market beta and the “RiskMetrics beta” (this latter results from

an interaction between the past returns of the asset and the market). I confirm

this prediction by estimating the model with panel regressions; importantly, the

RiskMetrics beta provides a direct estimate of the relative risk aversion. The

predicted range is consistent with previous studies. Furthermore, this effect is

found in each of the major financial markets, except in Europe. The RiskMet-

rics anomaly is stronger when the forecasting horizon is short. The effect is

robust when considering the three Fama-French factors and the Momentum factor.

1.1 Introduction

An elementary belief at the foundation of mean-variance analysis is that investors

expect a higher return for increased risk. However, assessing the riskiness of a

1



Chapter 1. The RiskMetrics Anomaly

financial security requires adopting a methodology that can capture this feature

efficiently. The RiskMetrics variance model, which was first established as a J.P.

Morgan’s internal risk management resource, was quickly endorsed by a large

percentage of the market participants. In fact, the simplicity of this technology

makes it highly transparent and easily reproducible. The success of this apparatus

opens a channel for distortions in the pricing of financial assets. The goal of the

current paper is to develop a theoretical model that accounts for this channel and

then empirically test this model.

To this end, I develop an overlapping-generations (OLG) model in which mean-

variance agents live two periods. In the first period, an agent is born with some

initial capital and solves a portfolio allocation problem. In the second period

the agent consumes the proceeds of the investment and dies, while a new agent

is born into the economy. Importantly, I take into consideration the case when

the conditional volatility, which is an important state variable into the agent’s

optimization problem, is computed with the RiskMetrics Variance model. Thus, the

price of the financial security today feeds back into future prices via the volatility

channel. I show that this behaviour induces a two-factor asset pricing model in

which risk premiums are determined by both the market beta and the “RiskMetric

beta” (this latter results from an interaction between the past returns of the asset

and the market). Lastly, I validate this prediction by estimating the model with

panel regressions. Importantly, my empirical strategy allows me to estimate the

relative risk aversion coefficient independently from established procedures. My

estimates are in line with the ones obtained with those approaches.

My model predicts that the expected risk premiums are linearly related to the

conditional volatility. However, this relation, known as the risk-return tradeoff, is

weaker than mainstream theories usually predict. With a simple adjustment to my

2



1.2. Related Literature

model, I extend the analysis to the case where the conditional volatility is instead

computed with a generalized autoregressive conditional heteroskedasticity (GARCH)

model. This approach allows me to compute the risk-return tradeoff in closed-form.

My findings suggest that the slope of the relation decreases monotonically with

the parameter that controls for the persistence of the variance. Most strikingly,

the relation can turn negative, which is consistent with the intense debate on this

subject. Finally, my model uses an alternative methodology to test for market

anomalies; the main innovation resides in the fact that I use panel regressions

instead of the more standard Fama-MacBeth procedure. Since some variables are

indexed both by asset and time (i.e. heterogenous), while the control variables

are only indexed by time (i.e. homogenous), I orthogonalize sequentially for all

homogenous variables and use the residual of these regressions in a second-step

panel regression.

This paper is organized as follows: Section 1.2 discusses the related literature,

Section 1.3 describes the model and derives the main predictions, Section 1.4

introduces the data and provides empirical support for the model’s predictions and

Section 1.5 presents the conclusions.

1.2 Related Literature

Because my paper provides an alternative to the capital asset pricing model

(CAPM), it undeniably belongs to the literature that test this benchmark. Tests of

the CAPM can be traced back to Black et al. (1972) and Fama and MacBeth (1973)

who find, as predicted by the theory, a positive relation between average stock

returns and asset betas. Following these findings, researchers discovered patterns

in contradiction with this paradigm (which are nowadays known as “anomalies”)

3
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and are surveyed in depth in Schwert (2003). The author defines an anomaly as a

pattern that seems to be inconsistent with asset pricing theories. This includes

for instance the value and the size effects. The value effect refers to the relation

between asset returns and value-related variables. Empirical evaluation of this

anomaly started with Basu (1977), who finds that low price-earnings portfolios

have earned higher returns than the high price-earnings securities. This finding

is in contradiction with the efficient market hypothesis. Basu’s paper has been

followed by many others, which include for instance Rosenberg et al. (1985) and

Bondt and Thaler (1987). Another well-known anomaly is the size effect, first

discussed by Banz (1981). The author shows that smaller firms provide higher risk

adjusted returns on average than larger firms and concludes that the capital asset

pricing model is misspecified. Tests of the ICAPM are also subject to empirical

peculiarities. In particular, Boguth et al. (2010) demonstrate that unconditional

alphas are biased when conditional beta covaries with the volatility. Fortunately,

this finding does not affect my results since the equation estimated in my paper is

different than the one pointed out here. (In fact, although conditional beta covaries

with volatility, all the necessary information required to compute beta is available

to investors ex ante. Furthermore, the relative risk aversion coefficient, which is

the parameter estimated in my model, is unconditional and does not covary with

the RiskMetrics factor).

A cornerstone of the asset pricing literature is provided by the arbitrage pricing

theory from Ross (1976) which offers an alternative to the standard capital asset

pricing model and importantly builds the theoretical foundations of factor models,

which include seminal contributions such as Fama and French (1992), Fama and

French (1993) and Carhart (1997). More recently, Frazzini and Pedersen (2013)

argue that because many investors are constrained in the leverage that they can

4
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take, they overweight risky securities. Consistent with that, they show that a

betting against beta factor, which is long leveraged low-beta assets and short

high-beta assets, produces significant positive risk-adjusted returns. Malkhozov

et al. (2014) study how funding constraints affect asset prices. Consistent with

their framework they find that by holding betas constant, stocks with higher

illiquidity earn higher alphas and Sharpe ratios. Finally, Malamud and Vilkov

(2018) develop an OLG model in which investors differ in their investment horizons.

They predict that in equilibrium the hedging demand of non-myopic investors leads

to a two factor intertemporal capital asset pricing model and find evidence for their

conjectures.

My model is based on the idea that agents take for granted the fact that volatility

features clustering and strong persistence in time. Hence, my article belongs to

the literature that analyses the dynamics of the volatility of financial returns. This

body of literature is based on Engle (1982) and comprises notable contributions

such as Bollerslev (1986), Engle and Bollerslev (1986), Glosten et al. (1993) and

Andersen et al. (2001). Interestingly, Christoffersen et al. (1998) established that

volatility forecastability declines quickly with the horizon; while the volatility

fluctuations are highly predictable for daily horizons, the forecastability vanishes

beyond horizons of two weeks. This is of primary importance in my paper since the

volatility is one of the main variables used to design the agent’s portfolio. Hence,

investors with long holding periods cannot take advantage of the predictability of

volatility. Ma et al. (2007) show that estimated standard errors of the GARCH(1,1)

model are in general biased downward, implying that the persistence of volatility

is less strong than it usually appears. This is also of great importance here since

my model predicts that these parameters have a direct effect on the slope of the

risk-return tradeoff.

5
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My model is also closely related to Bacchetta et al. (2010). The authors design

a model with which they analyze the large spikes in asset price risk during the

recent financial crisis. My framework shares some important features with their

model. In particular, all their findings are based on the link between the current

asset price and the risk about the future asset price, which is also key in my model.

Nevertheless, while their focus is on financial crisis and self-fulfilling shifts in risk,

mine is on equilibrium risk premiums, which is complementary to their analysis.

My paper belongs to the risk-return tradeoff literature. Virtually all models in asset

pricing exhibit a tradeoff between the risk premium and the conditional volatility.

However, the empirical evidence in favour of this relationship is weak. While many

authors find a positive relationship between the expected excess market return and

conditional variance (for example, French et al. (1987), Chou (1988), Campbell

and Hentschel (1992) and Bansal and Lundblad (2002)), others find the opposite

(for instance, Baillie and DeGennaro (1990), Nelson (1991) and Glosten et al.

(1993)). Interestingly, Lundblad (2007) shows with simulations that even 100 years

of data constitute a small sample that may easily lead to a negative association

between risk premiums and conditional volatility, even though the true relation

is positive. Hence, the author uses nearly two centuries of history of returns and

concludes in favour of a positive and significant risk-return tradeoff. Hedegaard

and Hodrick (2016) proposes an alternative to increase the sample size. On the

theory side, some models have emerged such as Bandi and Perron (2008) and

Bonomo et al. (2015). The first paper found that the tradeoff is mild for short

horizons, but increases with the time horizon, while the second paper proposed a

model to reconcile stylized facts. My article contributes to this field of literature

by providing an analytical characterization of this tradeoff when agents forecast

future volatility with a GARCH(1,1) model. Importantly, the relation is positive in
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1.3. Model

general, however, it is weaker than expected and can even turn negative for some

parameterizations.

1.3 Model

The model presented here is an overlapping-generations economy in which a new

representative agent is born at each time t with wealth Wt and lives for two periods.

There are N securities, each one paying a dividend Dn
t and having wn shares

outstanding. While the old agent consumes the proceeds of their investment and

dies, the young representative agent chooses a portfolio and invests the remainder

of their wealth in the risk-free asset (which pays the risk-free return rf ) to maximize

their utility:

max
{xn}N1

N∑
n=1

xn
(
Et[Dn

t+1 + P n
t+1]− (1 + rf )P

n
t

)
− γ

A

2

N∑
n=1

N∑
j=1

xnxjP
n
t P

j
t σ

n,j
t+1, (1.1)

where γA is the representative’s absolute risk aversion, P n
t is the time t price of

security n, P n
t+1 is the time t+ 1 price of security n, Dn

t+1 is the time t+ 1 dividend

paid by security n and σi,jt+1 is the covariance of the returns between securities i and

j at time t+ 1. Each agent estimates the time t+ 1 covariance between the returns

of securities i and j with an exponential weighted moving average (EWMA),

σi,jt+1 = φσi,jt + (1− φ)ritr
j
t ∀i, j, t. (1.2)

where φ is a constant to be defined. For instance, the RiskMetrics database

(produced by JP Morgan, now known as ISS and maintained by Wharton Research

7



Chapter 1. The RiskMetrics Anomaly

Data Services) uses an EWMA with φ = 0.94 for updating daily volatility.1 Finally,

I am interested in the properties of the competitive equilibrium in which the

demand for securities equals the supply, xn = wn ∀n.

1.3.1 The Benchmark Case

I consider first the case when φ = 1 and σi,jt+1 = σi,j ∀t. This benchmark is a

simple textbook portfolio optimization problem, which will lead to the capital asset

pricing model (CAPM). To derive equilibrium, let us consider the agent’s first

order condition:

Et[Dn
t+1 + P n

t+1]− (1 + rf )P
n
t − γAP n

t

N∑
j=1

wjP
j
t σ

n,j = 0 ∀n, t.

In this economy, the total market capitalization is given by Ω :=
∑N

i=1 Pi × wi. It

follows that the market portfolio weight for security n is given by wnP
n
t /Ω. Thus,

dividing the first-order condition (FOC) by P n
t implies that it can be rearranged

as follows,

Et[rnt+1 − rf ] = γ
N∑
j=1

πjσ
n,j ∀n, t, (1.3)

where
∑N

j=1 πjσ
n,j is the covariance between the market portfolio and asset n.

Thanks to equation (1.3), which must hold for any asset and at any time t, one

1One important remark is that equation (1.2) is closely related to,

σi,jt+1 = ωi,j + αi,jσ
i,j
t + βi,jr

i
tr
j
t ∀i, j, t.

which is a diagonal vech GARCH(1,1) equation. Hence, equation (1.2) is simply a particular
case with ωi,j = 0, αi,j = φ, and βi,j = (1 − φ), ∀i, j. All the following computations could
have been made with GARCH, nevertheless, the main advantage of EWMA resides in the fact
that practitioners use some well-defined constants (i.e. RiskMetrics variance model), which
reduces the dimensionality of the estimation. Moreover, I find an equilibrium relation which is
significantly more comprehensible.

8



1.3. Model

can construct the expected market risk premium; multiplying (1.3) by the market

portfolio weights for each security n and summing over all assets gives:

Et[rMt+1 − rf ] = γ

N∑
i=1

N∑
j=1

πjπiσ
i,j, (1.4)

where
∑N

i=1

∑N
j=1 πjπiσ

i,j is the variance of the market portfolio. Thus, using the

fact that βn := σn,M

σ2
M

, the CAPM relation follows from dividing (1.3) by (1.4),

Et[rnt+1 − rf ] = βn × Et[rMt+1 − rf ] ∀n, t. (1.5)

Finally, analogous to the Intertemporal CAPM (ICAPM), the expected risk

premium depends linearly on the (conditional) variance,

∂Et[rnt+1 − rf ]
∂σ2

= γ.

1.3.2 The Full Case

Here, I consider the case when φ < 1. It follows that the representative agent

who is born at time t believes that the covariance between assets i and j at time

t + 1 is provided by equation (1.2). To derive equilibrium, let us consider the

representative agent’s (born at time t) first order condition for security n after

having replaced σ2
t+1 by equation (1.2):

Et[Dn
t+1 + P n

t+1]− (1 + rf )P
n
t =

γAP n
t

[
φ

N∑
j=1

wjP
j
t σ

n,j
t + (1− φ)rnt

N∑
j=1

wjP
j
t r

j
t

]
= 0 ∀n, t.
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Chapter 1. The RiskMetrics Anomaly

In this economy, the total market capitalization is still given by Ω :=
∑N

i=1 Pi ×wi.

Thus, the market portfolio weight for security n is given by wnP
n
t /Ω. Since the

market return is given by rMt :=
∑N

j=1 πjr
j
t , dividing the FOC by P n

t implies that

it can be rearranged as follows,

Et[rnt+1 − rf ] = φγ

N∑
j=1

πjσ
n,j
t + (1− φ)γrnt r

M
t ∀n, t, (1.6)

where
∑N

j=1 πjσ
n,j
t is the covariance between the returns of the market portfolio

and the returns of the asset n at time t. Multiplying this equation by the market

portfolio’s weight for security n and summing over all assets gives the expected

market risk premium,

Et[rMt+1 − rf ] = φγ
N∑
i=1

N∑
j=1

πiπjσ
i,j
t + (1− φ)γrMt × rMt , (1.7)

where
∑N

i=1

∑N
j=1 πiπjσ

i,j
t is the variance of the market portfolio at time t. Substi-

tuting equation (1.7) into equation (1.6) and using the fact that βnt :=
σn,Mt

(σMt )
2 leads

to Proposition 1.1.

Proposition 1.1 The equilibrium expected risk premium of security n at time t is

given by,

Et
[
rnt+1 − rf

]
= βnt × Et

[
rMt+1 − rf

]
+ (1− φ)γrMt

[
rnt − βnt rMt

]
∀n, t. (1.8)

In this framework, not only the systemic risk is compensated for, but there is an

additional factor (which comprises two parts) that derives from the above equations.

The first part is the square of the last holding period return of the market rMt . The

higher this quantity, the lower the expected return of any financial asset during

10



1.3. Model

the next period. The second part is the product between the last holding period

returns of the market and asset n rMt × rnt . If both quantities have the same sign,

the expected return of security n will increase with the product of the returns. On

the other hand, the expected return of security n will decrease with that product

if returns have opposite signs. Lastly, the betas are time-varying; because both the

variance of the market and the covariance between financial assets and the market

are not constant the sensitivity to the market factor changes over time.

1.3.3 Risk-Return Tradeoff

Here, I consider the case where there is only one risky asset (equivalently, where

each of the assets are independent from each other). To derive equilibrium I

substitute equation (1.2) into the first order condition of the agent’s problem.

Then, because demand equals supply x = w. Hence, the following identity must

hold at any time,

Et[rt+1] = rf + γ
[
φσ2

t + (1− φ)r2
t

]
. (1.9)

The risk-return tradeoff characterizes the relation between expected returns and

financial securities’ risk. Thus, this association can be illustrated by deriving the

right-hand side of equation (1.9) by σ2
t which gives,

∂Et[rt+1]

∂σ2
t

:= γφ+ γ(1− φ)
∂r2

t

∂σ2
t

.

Then, I use the implicit function theorem to pin down
∂r2
t

∂σ2
t
. Let us define F (σ2

t , r
2
t ) :=

Et[rt+1] − rf − γφσ2
t − γ(1 − φ)r2

t . Equation (1.9) implies that F (σ2
t , r

2
t ) = 0.

Furthermore, because the partial derivative of F with respect to Et[rt+1] never

11



Chapter 1. The RiskMetrics Anomaly

vanishes (as long as Et[rt+1] 6= 0), the IFT holds, which implies that,

∂r2
t

∂σ2
t

= −1− φ
φ

.

Proposition 1.2 follows from substituting this quantity into ∂Et[rt+1]

∂σ2
t

.

Proposition 1.2 The sensitivity of expected returns to conditional variance is

given by,

∂Et[rt+1]

∂σ2
t

= γ

(
φ− (1− φ)2

φ

)
. (1.10)

Importantly, this proposition predicts that the risk-return tradeoff is constant;

if σ2
t increases by ∆ the expected return will increase by ∆γ

(
φ− (1−φ)2

φ

)
. This

is strictly smaller than the prediction of the benchmark case (i.e. ∆γ). Hence,

when agents use the exponentially weighted moving average to assess the risk in

the future, the risk-return tradeoff is weaker than the one predicted by Merton’s

ICAPM. This relation can even turn negative if φ < 1/2, where the larger the risk

the less the expected return.

1.3.4 Risk-Return Tradeoff, a Generalization

In the previous section I showed that when agents forecast future volatility with the

RiskMetrics variance model, the relation between expected returns and conditional

variance is weaker than the relation predicted by mainstream theories. Here, I

generalize this result by extending the analysis to the GARCH(1,1) model instead

of the EWMA. The aim of this extension is to provide a potential justification

for why researchers tend to find a weaker relation between excess returns and

conditional volatility when they use that methodology with other methods (see for
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1.3. Model

instance Lundblad (2007)). Accordingly, the GARCH(1,1) one-step ahead variance

forecast is given by,

σ2
t+1 = ω + ασ2

t + βr2
t .

Hence, the counterpart of equation (1.9) is given by,

Et[rt+1] = rf + γ
[
ω + ασ2

t + βr2
t

]
.

Thus, deriving the right-hand side of this relation gives, ∂Et[rt+1]

∂σ2
t

:= γα + γβ
∂r2
t

∂σ2
t
.

Then, I use the implicit function theorem to determine
∂r2
t

∂σ2
t
. Let us define

F (σ2
t , r

2
t ) := Et[rt+1] − rf − γασ2

t − γβr2
t . The IFT implies that

∂r2
t

∂σ2
t

= −β
α
.

Proposition 1.3 follows from substituting this quantity into ∂Et[rt+1]

∂σ2
t

.

Proposition 1.3 The sensitivity of expected returns to conditional variance is

given by,

∂Et[rt+1]

∂σ2
t

= γ × α2 − β2

α
. (1.11)

Here, α is the parameter that controls for the persistence of the variance (i.e. the

GARCH effect), while β controls the sensitivity to the surprise (i.e. the ARCH

effect). There are many observations that are important to mention. Firstly,

the long-term variance does not affect the risk-return tradeoff. Secondly, today’s

variance influences the expected returns via two channels. On the one hand,

conditional variance is persistent; when it is high today, it will be high in the

near future as well; on the other hand, the higher the variance today, the higher

the security’s risk and the lower today’s price, hence, today’s squared return

tends to be lower too. As long as α > β the first effect dominates the second.
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Chapter 1. The RiskMetrics Anomaly

However, when the relation is reversed the risk-return tradeoff turns negative.

Depending on the financial security and on the frequency of the returns, the ARCH

parameter β is found between 0 and 0.1, while α is found between 0.7 and 0.9.

With this parameterization the risk-return tradeoff appears significantly weaker

than traditionally (around 30% weaker). Importantly, Ma et al. (2007) show that

the GARCH parameter is overestimated when the ARCH parameter is low, which is

typical for financial securities. This effect further deepens the relationship between

expected returns and volatility, though testing for this channel is outside of the

scope of this paper.

1.4 Data and Methodology

1.4.1 Data

The data are taken from Kenneth French’s data library. For the sake of replicability

I believe it is essential to use a dataset that is widely accepted. Because the factors

and portfolios provided here rely on standard procedures, this dataset respects

this important criterion. The data consists of different subsamples summarized in

Tables 1.1 and 1.2.

Each sample consists of 25 portfolios. Each portfolio is constructed at the

intersection of five portfolios formed on one characteristic (such as size) and

five portfolios formed on one different characteristic (such as Book-to-Market,

Momentum, etc.). While most subsamples span the period 1927-2018, others cover

only the years 1963-2018. This feature is reported in columns three and four of each

table. As with portfolios, all the factors (risk-free rate, market, small minus big,

high minus low and momentum) come from Kenneth French’s data library. Hence,
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1.4. Data and Methodology

Table 1.1: Summary Statistics: Major markets (excl. U.S.)

This table shows summary statistics of the different subsamples used to test my model
for all major markets except for the U.S. market. The first column indicates the market.
The second explains how stocks are sorted. The third column illustrates the frequency of
the returns. Finally, columns four and five describe the period of time covered by each
sample.

Market Stocks sorted by Frequency Start date End date
Asia Size and Book-to-Market D,M,A 1991-01-01 2018-03-30
Asia Size and Investment D,M,A 1991-01-01 2018-03-30
Asia Size and Profitability D,M,A 1991-01-01 2018-03-30
Asia Size and Momentum D,M,A 1991-01-01 2018-03-30
Europe Size and Book-to-Market D,M,A 1991-01-01 2018-03-30
Europe Size and Investment D,M,A 1991-01-01 2018-03-30
Europe Size and Profitability D,M,A 1991-01-01 2018-03-30
Europe Size and Momentum D,M,A 1991-01-01 2018-03-30
Japan Size and Book-to-Market D,M,A 1991-01-01 2018-03-30
Japan Size and Investment D,M,A 1991-01-01 2018-03-30
Japan Size and Profitability D,M,A 1991-01-01 2018-03-30
Japan Size and Momentum D,M,A 1991-01-01 2018-03-30

the one-month Treasury bill rate proxies the risk-free rate. The construction of the

other factors are explained in Fama and French (1993) and Carhart (1997).

1.4.2 Estimation Strategy

In this section, I test Proposition 1.1. My model predicts that the expected risk

premium of a financial security can be decomposed into two different factors; the

first is the sensitivity to the market premium, as predicted by the capital asset

pricing model. However, the sensitivity of the assets’ risk premium to the market

premium is time-varying, which is not the case in the standard CAPM. The second

factor, which is novel in the literature, results from the interaction between the last

holding period returns of both the market and the assets. Hence, that proposition
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Chapter 1. The RiskMetrics Anomaly

Table 1.2: Summary Statistics: U.S. stocks

This table shows summary statistics of the different subsamples used to test my model
for the U.S. market. The first column describes how stocks are sorted. The second
illustrates the frequency of the returns. Finally, the last two columns describe the period
of time covered by each sample.

Stocks sorted by Frequency Start date End date
Book-to-Market and Investment D,M,A 1926-11-03 2018-03-29
Book-to-Market and Profitability D,M,A 1926-11-03 2018-03-29
Profitability and Investment D,M,A 1926-11-03 2018-03-29
Size and Accruals M,A 1963-07 2018-03
Size and Book-to-Market D,M,A 1926-11-03 2018-03-29
Size and Investment D,M,A 1926-11-03 2018-03-29
Size and LT Reversal D,M,A 1926-11-03 2018-03-29
Size and Momentum D,M,A 1926-11-03 2018-03-29
Size and Market Beta M,A 1963-07 2018-03
Size and Net Share Issues M,A 1963-07 2018-03
Size and Profitability D,M,A 1926-11-03 2018-03-29
Size and Residual Variance M,A 1963-07 2018-03
Size and ST Reversal D,M,A 1926-11-03 2018-03-29
Size and Variance M,A 1963-07 2018-03

can be rewritten as the following (panel) equation,

yt,i = βt,i
[
rMt − rft

]
+ (1− φ)γrMt−1

[
rit−1 − βt,irMt−1

]
+ ut,i. (1.12)

As emphasized earlier the asset beta is time dependent. In fact, because both the

variance of the market premium and the correlation of the asset returns with the

market are time dependent, the beta is no longer constant. Hence, I use formula

1.2 to reestimate this parameter at every point in time. Then, I rearrange the

equation by shifting the market premium factor to the left-hand side. Equation

(1.12) then becomes,

ỹt,i = γ × x̃t,i + ut,i,
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1.4. Data and Methodology

where ỹt,i := yt,i − βt,i
[
rMt − rft

]
, βt,i := σi,Mt ×

[
σM,M
t

]−1
and x̃t,i := (1 −

φ)rMt−1

[
rit−1 − βt,irMt−1

]
. This is a simple panel equation with one homogenous

parameter γ. Importantly, γ provides a direct estimate of the relative risk aversion

coefficient. Hence, a conclusive test in favour of my framework would be that γ is

both statistically significant and greater than zero.

The first column of Tables 1.3–1.8 reports the estimate of the relative risk aversion

without any control or fixed effects. The second column shows the estimate of

γ while controlling for the market risk premium. The third column exhibits the

estimate of γ while controlling for all three Fama-French factors (i.e. market risk

premium, small minus big and high minus low). Finally, I control for Carhart four

factors model (Fama-French plus momentum) in the last column. Hence, models

(1)–(3) are nested in model (4), which can be rewritten as follows,

ỹt,i = γ×x̃t,i+βMi Markett+β
S
i SMBt+β

H
i HMLt+β

C
i Momentumt+ut,i. (1.13)

Estimating model (1) is trivial, however, this is not the case for models (2)–(4). In

these specifications the main complication resides in the fact that the parameters

for the control variables {βMi , βSi , βHi , βCi } are allowed to be heterogenous, while the

last γ is homogenous. Serlenga et al. (2001) propose an interesting approach for this

type of problem. An alternative procedure is to pre-multiply each cross-sectional

unit equation,



ỹi,1

ỹi,2
...

ỹi,T


︸ ︷︷ ︸

yi

=



M1 S1 H1 C1

M2 S2 H2 C2

...

MT ST HT CT


︸ ︷︷ ︸

w

×



βM1

βS1

βH1

βC1


+γ×



x̃i,1

x̃i,2
...

x̃i,T


︸ ︷︷ ︸

xi

+



ui,1

ui,2
...

ui,T


︸ ︷︷ ︸

ui

, i = 1...N
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Table 1.3: Estimates of the relative risk aversion for the Asian market

This table summarizes my main findings for the Asian market. Columns 1–4 report
estimates of the relative risk aversion computed with daily returns. Columns 5–8 report
estimates of the relative risk aversion computed with monthly returns. Finally, columns
9–12 report estimates of the relative risk aversion computed with annual returns.

(1) (2) (3) (4)
Size and Book-to-Market 35.851*** 31.134*** 20.677** 19.884**

(3.641) (3.352) (2.370) (2.273)
Size and Investment 40.268*** 32.584*** 21.271*** 20.898***

(4.157) (3.823) (2.737) (2.685)
Size and Momentum 21.147 18.635 13.254 4.800

(1.547) (1.381) (1.023) (0.391)
Size and Profitability 38.560*** 30.723*** 19.461*** 18.955***

(4.284) (3.867) (2.696) (2.626)
Size and Book-to-Market 2.199 5.191* 2.194 1.888

(0.714) (1.829) (1.164) (1.042)
Size and Investment 0.827 5.422* 1.671 0.491

(0.227) (1.759) (0.872) (0.271)
Size and Momentum 8.770*** 9.395*** 7.929*** 1.274

(2.682) (3.405) (3.756) (0.809)
Size and Profitability 3.359 6.730** 2.245 1.594

(1.031) (2.350) (1.340) (0.989)
Size and Book-to-Market −0.521 0.779 0.211 0.433

(−0.428) (0.933) (0.298) (0.569)
Size and Investment −1.222 −0.001 −0.512 −0.816

(−1.140) (−0.001) (−0.755) (−1.197)
Size and Momentum −1.108 0.084 −1.105 −0.285

(−0.934) (0.094) (−1.319) (−0.387)
Size and Profitability −1.721* −0.194 −0.775 −0.824

(−1.716) (−0.305) (−1.428) (−1.514)
Filtered by Market Factor no yes yes yes
Filtered by SMB & HML Factors no no yes yes
Filtered by Momentum Factor no no no yes

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors in parentheses.



Table 1.4: Estimates of the relative risk aversion for the European market

This table summarizes my main findings for the European market. Columns 1–4 report
estimates of the relative risk aversion computed with daily returns. Columns 5–8 report
estimates of the relative risk aversion computed with monthly returns. Finally, columns
9–12 report estimates of the relative risk aversion computed with annual returns.

(1) (2) (3) (4)
Size and Book-to-Market 14.373*** 11.763*** 3.319** 3.195**

(4.413) (5.735) (2.062) (2.120)
Size and Investment 15.100*** 11.946*** 2.320 2.288

(4.367) (5.574) (1.300) (1.376)
Size and Momentum 10.468*** 9.070*** 1.118 2.309

(3.128) (3.572) (0.495) (1.340)
Size and Profitability 14.800*** 11.957*** 2.024 2.006

(4.363) (5.749) (1.194) (1.291)
Size and Book-to-Market −5.124 −5.115 3.525 2.480

(−1.069) (−1.165) (1.311) (0.944)
Size and Investment −5.856 −1.452 −3.057 −4.709*

(−1.085) (−0.360) (−1.203) (−1.945)
Size and Momentum 23.538*** 20.120*** 21.158*** 8.273***

(4.712) (6.044) (7.446) (4.111)
Size and Profitability 5.557 4.908 5.897** 4.459*

(1.243) (1.251) (2.065) (1.663)
Size and Book-to-Market 9.669*** 4.603** 3.693*** 3.634***

(3.657) (2.125) (2.811) (2.730)
Size and Investment 9.870*** 4.857** 2.158 1.886

(3.834) (2.452) (1.536) (1.408)
Size and Momentum 6.126 2.157 0.623 2.007

(1.557) (0.864) (0.280) (0.977)
Size and Profitability 13.824*** 9.195*** 5.667*** 5.825***

(6.229) (4.809) (3.886) (4.003)
Filtered by Market Factor no yes yes yes
Filtered by SMB & HML Factors no no yes yes
Filtered by Momentum Factor no no no yes

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors in parentheses.



Table 1.5: Estimates of the relative risk aversion for the Japanese market

This table summarizes my main findings for the Japanese market. Columns 1–4 report
estimates of the relative risk aversion computed with daily returns. Columns 5–8 report
estimates of the relative risk aversion computed with monthly returns. Finally, columns
9–12 report estimates of the relative risk aversion computed with annual returns.

(1) (2) (3) (4)
Size and Book-to-Market 13.773*** 12.856** 11.167*** 9.468***

(2.671) (2.324) (3.419) (2.969)
Size and Investment 14.923*** 14.053** 11.555*** 10.593***

(2.923) (2.543) (3.338) (3.096)
Size and Momentum 20.543*** 19.530*** 16.184*** 8.651***

(4.997) (4.731) (5.964) (3.829)
Size and Profitability 14.846*** 14.005*** 12.606*** 11.104***

(3.177) (2.812) (4.054) (3.648)
Size and Book-to-Market 21.218*** 19.866*** 3.859** 3.255*

(5.741) (5.305) (2.016) (1.673)
Size and Investment 19.750*** 19.718*** 1.690 0.507

(5.452) (5.919) (0.948) (0.291)
Size and Momentum 25.453*** 23.740*** 10.323*** 2.411

(7.353) (7.681) (4.846) (1.612)
Size and Profitability 21.074*** 20.364*** 2.974 2.321

(6.080) (6.290) (1.634) (1.278)
Size and Book-to-Market −6.388*** −1.272 1.033 0.729

(−5.877) (−1.078) (1.201) (0.873)
Size and Investment −5.313*** −2.011* 0.392 0.124

(−5.488) (−1.815) (0.522) (0.164)
Size and Momentum −6.049*** −2.076** 0.120 −0.830

(−7.737) (−2.187) (0.173) (−1.524)
Size and Profitability −3.997*** −1.684 −0.660 −1.056

(−2.881) (−1.269) (−0.916) (−1.509)
Filtered by Market Factor no yes yes yes
Filtered by SMB & HML Factors no no yes yes
Filtered by Momentum Factor no no no yes

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors in parentheses.



Table 1.6: Estimates of the relative risk aversion for the U.S. market with daily returns

This table summarizes my main findings for the U.S. market at the daily frequency. Each
row represents a different type of sorting.

(1) (2) (3) (4)
Size and Book-to-Market 22.734*** 22.920*** 8.634** 8.446**

(6.049) (5.761) (2.338) (2.314)
Size and Investment 34.960*** 33.585*** 4.235* 4.412**

(6.001) (5.777) (1.943) (2.087)
Size and Momentum 28.555*** 27.583*** 12.900*** 9.295***

(9.347) (9.397) (5.094) (4.131)
Size and Profitability 34.036*** 31.799*** 6.625*** 6.670***

(5.801) (5.461) (2.697) (2.778)
Book-to-Market and Investment 34.493*** 31.502*** 20.970*** 20.409***

(5.473) (5.354) (5.059) (4.985)
Book-to-Market and Profitability 31.877*** 26.538*** 20.582*** 20.336***

(5.488) (4.993) (4.595) (4.548)
Profitability and Investment 22.614*** 18.924*** 19.010*** 18.089***

(3.858) (3.306) (4.124) (4.012)
Size and LT Reversal 12.127*** 11.943*** 5.026** 4.827**

(3.112) (3.145) (2.342) (2.294)
Size and ST Reversal 34.774*** 33.751*** 23.299*** 23.118***

(10.715) (11.180) (6.951) (6.908)
Filtered by Market Factor no yes yes yes
Filtered by SMB & HML Factors no no yes yes
Filtered by Momentum Factor no no no yes

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors in parentheses.



Table 1.7: Estimates of the relative risk aversion for the U.S. market with monthly
returns

This table summarizes my main findings for the U.S. market at the monthly frequency.
Each row represents a different type of sorting.

(1) (2) (3) (4)
Book-to-Market and Investment −0.193 −0.439 −0.017 −1.204

(−0.043) (−0.100) (−0.005) (−0.362)
Book-to-Market and Profitability −0.412 1.904 2.565 1.536

(−0.103) (0.543) (0.903) (0.551)
Profitability and Investment −8.411** −4.292 −5.127** −5.636**

(−2.483) (−1.578) (−2.161) (−2.444)
Size and Accruals 4.624* 7.423*** 0.991 1.084

(1.746) (3.299) (0.779) (0.843)
Size and Book-to-Market 17.270*** 10.916*** 1.928 1.915

(5.821) (4.383) (1.120) (1.113)
Size and Investment 4.491 6.949*** 0.107 0.221

(1.502) (2.833) (0.078) (0.159)
Size and LT Reversal 20.261*** 13.500*** 3.603*** 3.283***

(6.207) (5.579) (2.891) (2.639)
Size and Momentum 19.444*** 14.042*** 6.631*** 4.344***

(5.055) (4.918) (4.668) (3.598)
Size and Market Beta 5.315* 7.191*** 0.724 0.774

(1.812) (3.287) (0.559) (0.606)
Size and Net Share Issues −1.393* −1.219* 0.229 0.228

(−1.665) (−1.892) (0.427) (0.417)
Size and Profitability 4.188 6.003** −0.663 −0.803

(1.380) (2.324) (−0.386) (−0.476)
Size and Residual Variance 7.748** 9.616*** 5.709*** 5.268***

(2.185) (3.559) (2.774) (2.908)
Size and ST Reversal 19.545*** 14.093*** 5.602*** 5.478***

(5.007) (4.783) (4.021) (3.855)
Size and Variance 9.636*** 10.141*** 6.737*** 5.941***

(2.709) (3.861) (3.307) (3.387)
Filtered by Market Factor no yes yes yes
Filtered by SMB & HML Factors no no yes yes
Filtered by Momentum Factor no no no yes

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors in parentheses.



Table 1.8: Estimates of the relative risk aversion for the U.S. market with annual
returns

This table summarizes my main findings for the U.S. market at the annual frequency.
Each row represents a different type of sorting.

(1) (2) (3) (4)
Book-to-Market and Investment 7.177*** 3.643 2.178 1.995

(2.667) (1.473) (1.258) (1.180)
Book-to-Market and Profitability 9.436*** 6.929** 7.035*** 6.087***

(2.823) (2.436) (3.082) (2.947)
Profitability and Investment 4.166* 1.587 1.168 0.804

(1.779) (0.779) (0.612) (0.416)
Size and Accruals 10.993*** 10.601*** 2.053** 1.615

(5.564) (6.411) (1.982) (1.593)
Size and Book-to-Market 1.834 2.761*** 0.514 0.510

(1.579) (2.718) (0.835) (0.842)
Size and Investment 7.445*** 6.949*** −0.005 −0.206

(3.261) (3.576) (−0.005) (−0.208)
Size and LT Reversal 1.591 1.910** −0.612 −0.677

(1.396) (2.133) (−0.757) (−0.830)
Size and Momentum 3.253*** 3.964*** 1.349** 0.536

(3.655) (5.541) (2.321) (0.919)
Size and Market Beta 9.466*** 7.708*** 1.935 0.488

(4.250) (3.879) (1.639) (0.474)
Size and Net Share Issues 3.102*** 3.195*** 2.676*** 2.812***

(4.851) (8.118) (6.511) (6.773)
Size and Profitability 7.204*** 6.262*** −0.863 −1.190

(3.216) (3.168) (−0.710) (−0.992)
Size and Residual Variance 11.409*** 8.583*** 2.791** 0.698

(4.889) (4.557) (2.088) (0.637)
Size and ST Reversal 1.153 1.715 −1.041 −1.085

(0.855) (1.599) (−0.782) (−0.809)
Size and Variance 10.929*** 8.212*** 2.396* 0.560

(4.696) (4.362) (1.840) (0.515)
Filtered by Market Factor no yes yes yes
Filtered by SMB & HML Factors no no yes yes
Filtered by Momentum Factor no no no yes

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors in parentheses.



Chapter 1. The RiskMetrics Anomaly

by a T × T idempotent matrix, Q := IT×T −w(w′w)−1w′. This procedure starts

by projecting both y and x onto the vector space generated by the columns of w

and then regresses the residual of the first regression on the residual of the second.

Consequently, this allows me to remove all the control variables in the right-hand

side (pre-multiplying vectors M , S, H, or C by matrix Q results in a T × 1 vector

of zeros). Hence, each cross-sectional unit equation becomes2,

Qỹi︸︷︷︸
Ai

= γ Qx̃i︸︷︷︸
Bi

+Qui︸︷︷︸
vi

, i = 1...N. (1.14)

Once that procedure is applied to all the cross-sectional unit equations the panel

can be reshaped and the estimate of the relative risk aversion can be assessed by

simply regressing Ai on Bi.
3

1.4.3 Analysis of the Results

I test my model with different subsamples and at different return frequencies.

Tables 1.3–1.5 shows my results for the Asian, European and Japanese markets.

For each of these tables rows 1–4 show estimates computed with daily returns.

Rows five to eight estimates are computed with monthly returns. Finally, the last

rows show estimates which are computed with annual returns. Tables 1.6–1.8 only

show estimates of γ for the U.S. market. Table 1.6 shows estimates computed with

daily returns. Table 1.7 and 1.8 report estimates computed with monthly and

annual returns respectively.

2Let us define V to be the space spanned by the columns of w. Then, Ai corresponds to the
projection of ỹi onto the space orthogonal to V . Likewise Ai is the residual of the regression of
ỹi onto the vector of controls w, while Bi corresponds to the projection of x̃i onto the space
orthogonal to V . Finally, vi is the residual of the regression of ui on w. Thus, only the noise
orthogonal to V is left.

3Note that the estimator of the relative risk aversion, γ̂, is both, unbiased and consistent as
illustrated by Wawro (2009).
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1.4. Data and Methodology

The analysis of Tables 1.3–1.8 reveals an interesting result. Though all specifications

are reported I discuss only the last column of each table which provides the most

robust estimates. While the parameters are always strongly significant at the

daily frequency for the Asian, Japanese and the U.S. market, whatever the sorting

applied to stocks, this is less clear for Europe. In addition, the range where the risk

aversion appears is coherent with previous studies (in general below 20). The fact

that the coefficients are so strongly significant at that frequency argues in favour

of an anomaly, the “RiskMetrics effect”, identified in most of the (main) financial

markets around the world. Importantly, my model is robust even after controlling

for well-established factors in the empirical asset pricing literature (i.e. the market

premium, the momentum and the Fama-French factors).

Christoffersen et al. (1998) established that volatility forecastability declines quickly

with the horizon; while the volatility fluctuations are highly forecastable for short

horizons (such as with daily returns), the forecastability seems to vanish beyond

horizons of two weeks. When choosing a portfolio a mean-variance agent balances

the expected return with the risk, measured here by the conditional variance.

Moreover, an investor must also decide how long they will keep their portfolio

without altering its composition. Therefore, it is natural to conjecture that

agents who rebalance their portfolios frequently care more about the volatility

forecastability than agents who do not. If the holding period is a month almost

all the predictable part of the variance is gone. Thus, the simple benchmark case

derived in Section 1.3.1 (i.e. with constant variance) is expected to hold, implying

that the effect predicted by my model should disappear. Contrarily, when the

holding period is a day volatility is highly predictable. Hence, the model derived in

Section 1.3.2 should hold. Consequently, I expect to find a “RiskMetrics” anomaly

with daily data but not necessarily with lower frequency returns. This is confirmed
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Chapter 1. The RiskMetrics Anomaly

by the data; the quantity of significant coefficients for monthly and annual returns

is drastically smaller than with daily returns. It turns out that the regression

coefficients are never statistically different from zero for both the Asian and the

Japanese markets at the monthly and annual frequencies (with one minor exception

that I consider insignificant). For the U.S. market the quantity of significant

estimates decreases monotonically with the return frequency, consistent with my

conjecture.

Contrastingly, the European market appears as the exception; the anomaly is

observed more frequently at lower frequencies, which is puzzling. A possible

explanation is that the behaviour towards risk is different across the world. This

is not the first time that a study concludes that financial markets are not that

integrated. Another possible interpretation could be related to the fact that the

volatility is less persistent in Europe than in the other markets. Because of this

feature, the risk becomes harder to forecast, which reduces the magnitude of the

anomaly.

1.5 Conclusion

This paper considers an overlapping-generations economy where the agents forecast

future variance with the RiskMetrics variance model. I show that this feature

induces a two-factor asset pricing model in which risk premiums are determined

by both the market beta and the “RiskMetrics beta”; this latter results from

the interaction between the past returns of the asset and the market. I validate

this prediction by estimating the model with panel regressions; importantly, my

empirical strategy allows me to estimate the relative risk aversion coefficient
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1.5. Conclusion

independently from established procedures. My estimates are in line with the ones

obtained with these approaches.

Furthermore, this effect is found in each of the major financial markets, except

in Europe. The magnitude of the effect depends on the frequency of the returns;

with high frequency data (here, daily returns) the RiskMetrics anomaly is easier to

detect as compared with low frequency data (monthly or annually). The effect is

robust to the major pricing factors found in the empirical asset pricing literature,

which are the three Fama-French factors and the Momentum factor.

Finally, I extend my model and show that the risk-return tradeoff predicted by my

model when the volatility is forecasted with a GARCH model is significantly weaker

than the relation predicted by mainstream finance theories. This can provide a

potential explanation as to why the relationship between expected returns and

conditional volatility is, empirically, so weak.
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2 Slow Arbitrage

This paper develops a dynamic model in which financially constrained agents

search for markets which are subject to decreasing returns to scale. In equilibrium,

agents only invest in markets with total capital below an endogenous threshold that

depends on the equilibrium distribution of capital across markets. Strikingly, I show

that perfect capital mobility is not necessarily the most efficient outcome, breaking

down the common belief that perfect mobility is always better. Furthermore, I

extend the model and allow the redistribution of wealth from buyers to sellers

through taxation. With this extension I demonstrate that in the case of parameter

uncertainty taxing too much will cause less damage than taxing too little, which

has significant implications for fixing tax rates.

2.1 Introduction

Market efficiency depends crucially on capital mobility; in an efficient market

capital quickly flows to positive net present value (NPV) projects. In this paper I
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Chapter 2. Slow Arbitrage

show that this conventional wisdom can break down; capital mobility can have an

adverse effect on welfare.

I build a model and study the equilibrium properties of capital flows through

a continuum (a non-atomic measure space) of segmented markets; those are

indistinguishable except for the amounts of capital invested in each. This economy

is populated by risk-neutral investors all endowed with one unit of capital. These

agents search markets and, upon meeting one, invest all their capital. At Poisson

times markets return a profit to all investors present on top of their investment.

Then, these investors return to searching. As a matter of supply and demand I

assume that the profit paid to the agents in that market is strictly decreasing with

the aggregate capital. Finally, I conjecture that investors cease to enter into a

particular market once its aggregate capital is above a level, settled endogenously.

With this model I show that an economy characterized by perfect capital mobility

is not desirable.

My results suggest that the intensity at which investors search, a proxy for capital

mobility, is the main driver of market liquidity; this has strong consequences on

welfare. When searching is not allowed the economy performs very badly; there are

no markets for liquidity and no benefits from trade, since there are no means of

exchange. As searching frictions vanish investors coordinate without difficulty. In

this regime the agents’ optimal strategy is to spread across the entire universe of

markets and, since there are no search frictions, they can do that easily. Surprisingly,

the first-best outcome is not necessarily achieved here. Because their reservation

value is small investors lower their sights; the level above which agents cease to

enter is set higher. Then I investigate what happens when investors can set their

search intensity. This is particularly useful when it comes to discussing taxation

and financial incentives.
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2.1. Introduction

Finally, I explore a simple extension of the model; some agents (the seekers of

capital) sell their own assets to cover a sudden need for cash. The buyers—the

former investors—that have allocated their capital to that particular seller, pool

their capital, buy the asset, consume the proceeds and return to searching. Then I

allow for the redistribution of wealth from buyers to sellers through taxation. I

am particularly interested in rescue packages offered by government institutions,

which guarantee toxic assets in significant proportions. My results establish that a

simple tax scheme on search technology provides a smart solution for the financing

of these interventions and incites buyers to set search intensity at its first-best level.

Last but not least, I show that in the case of parameter uncertainty taxing too

much will always cause less damage than taxing too little.

2.1.1 Related literature

My model belongs to the literature on search and matching frictions applied to

economics and finance. An important early paper on this is Diamond (1982);

agents are searching for production opportunities and, upon meeting one, pay

the associated cost of production or return to searching. This literature has been

extended in many directions, including asset prices and allocations in OTC markets

(e.g., Ricardo et al. (2011), Vayanos and Wang (2007), Vayanos and Weill (2008)

and Weill (2007)). An important paper in this field of literature is Duffie et al.

(2005); the authors study the consequences of search frictions in a single market.

Similarly, Duffie et al. (2007) examine the impact of search and bargaining frictions

on asset prices. Afonso and Lagos (2015) build a model of the market for federal

funds where banks face search and bargaining frictions. More recently, Hugonnier

et al. (2016) design a search and bargaining model with investors’ valuations drawn

from any arbitrary distribution.
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Chapter 2. Slow Arbitrage

My model is closely related to Duffie and Strulovici (2012). The authors design a

model with which they analyze the equilibrium movements of capital between two

partially segmented markets; these are indistinguishable except for the amount

of capital invested in each. My framework shares some important ingredients

with their model. Firstly, investors are not assigned to one particular market;

rather, they can trade in all of them. Secondly, markets are distinguished by the

quantity of capital invested in each. In contrast I study a continuum of markets.

Additionally, while their focus is on the intermediation channel I have abstracted

from that; my results put more emphasis on the consequences of capital mobility

on welfare, which is complementary to their analysis.

Section 2.3 investigates the idea that assets may be sold at a discount when buyers

are financially constrained (papers related to this literature include, for example,

Allen and Gale (1994), Allen and Gale (2004), Allen and Gale (2005), Shleifer and

Vishny (1992) and Shleifer and Vishny (1997)). This endeavour is related to the

seminal work of Acharya et al. (2013). The authors argue that outside arbitrageurs

do not necessarily come in and take advantage of a fire sale because they face a

tradeoff; arbitrage capital entails both benefits, when assets are sold at a discount

and costs, such as opportunity cost of not investing in other profitable activities.

This tradeoff also shows up in my framework, nevertheless, my contribution to this

literature is very different. Firstly, this investigation is an extension of my model,

rather than its primary purpose. Secondly, my methodology is very different; my

model is a continuous time model, while they work with a stylized three-period

model. To summaries, while the importance of the dynamics of arbitrage capital is

stressed in both papers, our respective approaches are completely different. Lastly,

this section also refers to Kondor (2009), who studies a model of (limited) capital

allocation. Interestingly he suggests that, despite the magnitude of arbitrage
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2.2. Model

opportunities arbitrageurs keep some capital aside in case these opportunities

become more profitable. He focuses on risk arbitrage and my model shares that

feature; when capital is limited and the probability that a new (better) opportunity

appears is strictly positive, keeping capital aside is optimal. Nevertheless, the

mechanisms at work are quite different. In Kondor’s paper arbitrageurs save some

capital because, as time goes by, prices might diverge further. Contrastingly, my

model is built such that the profitability of a given opportunity can only disappear

over time; the arbitrage capital is generated by the large dimension of the market

space.

This paper is structured as follows: Section 2.2 presents the model and its main

consequences, Section 2.3 applies this framework to a fire sale of assets, discussing

some equilibrium properties, welfare implications and potential policy interventions.

Finally, I summarize the main results and present my conclusions in Section 2.4.

2.2 Model

The economy is populated by a mass A of agents (arbitrageurs), each endowed

with one dollar. There is a continuum of markets where profits are a decreasing

function π(k) of the capital invested in that market k. Agents arrive at a rate λ

and decide whether to stay or keep searching further. When an agent decides to

stay, they invest their dollar and wait until the profits, π(k) are paid. The time

at which a market pays off is exponentially distributed with intensity η (this is

the time when the fruit matures). At that moment the agent consumes the net

profit π(k)− 1 and returns to searching with their suddenly liberated dollar. In the

meantime new opportunities appear at the same rate η so that the total number of

opportunities remains constant. I define M as the total mass of agents which have
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Chapter 2. Slow Arbitrage

currently invested their money in a market waiting for profits to be paid. Similarly,

A −M corresponds to the fraction of the total mass of arbitrageurs searching

for opportunities. Then, from the law of large numbers for independent random

matching, the total meeting rate at which agents find markets is λ(A−M). For

any given market traders arrive at Poisson times, thus the aggregate capital in

each market follows a Poisson process. Some possible paths are shown in Figure

2.1. Therefore, if the previous capital invested in a given market was k, it jumps to

Figure 2.1: Dynamics of the aggregate capital in a single market

This figure shows the dynamics of the aggregate capital in one single market.
Importantly, the aggregate capital behaves as a Poisson process (it jumps from
k to k + 1 at exponentially distributed random times with mean 1/Λ or dies at
exponentially distributed random times with mean 1/η).

k0 k0 + 1 k0 + 2 k0 + bk∗ − k0c − 1 k0 + bk∗ − k0c

Λ Λ Λ Λ

· · ·

η

k + 1. Finally, I assume that when new opportunities appear they are immediately

filled with some initial capital drawn from an arbitrary exogenous distribution F .

I consider an equilibrium where agents enter only when k + 1 ≤ k∗. Whenever an

agent finds a market with capital larger than k∗ − 1 they immediately return to

searching without investing. This mechanism is summarized in Figure 2.2. The

stationary cross-sectional distribution of masses across markets is given by p(k) to
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2.2. Model

Figure 2.2: The main mechanisms of the model

This figure underlines the main mechanisms of my model. An agent can be in
two different states. If the agent is searching, they meet a market with intensity
λ. When they find a market they must decide, on the basis of the capital already
invested in that market, whether they will invest or not. If they do not invest they
return to searching. Otherwise, they invest their unique dollar and wait until that
market pays a profit. When this event occurs they consume their respective profit
and return to searching.

Invest?

Investor

Wait until
market matures

Consume profits,
π(m) − 1

Return to
searchingSearcher

yes

no

η, τη ∼ exp[1/η]

λ, τλ ∼ exp[1/λ]

be determined in equilibrium. Letting pt(k) be the probability distribution function

at an instant t, then the measure of markets with a capital not larger than k is

given by,

Φt(k) ≡
∫ k

0

pt(x) dx.

This equation is a piecewise function. From 0 to 1 there are no interactions between

search and initial capital heterogeneity since an agent would not invest less than one

dollar. Accordingly, the dynamics of the cross-sectional distribution for k ∈ [0, 1]

satisfies,

Φ̇t(k) = η[F (k)− Φt(k)]− ΛΦt(k), (2.1)
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Chapter 2. Slow Arbitrage

where the dot stands for the time derivative. From 1 to k∗ − 1, searching interacts

with capital heterogeneity. It is worth mentioning that a market in that range could

already have experienced multiple rounds of financing. However, agents finding

that market would still invest as long as k ≤ k∗ − 1. Accordingly, the dynamics of

the cross-sectional distribution for k ∈]1, k∗ − 1] satisfies,

Φ̇t(k) = η[F (k)− Φt(k)]− ΛΦt(k) + ΛΦt(k − 1). (2.2)

The dynamics of the cross-sectional distribution for this range is very similar to

equation (2.1); the only difference is regarding how searching interacts with capital

heterogeneity. When a meeting occurs the agent invests their capital and a capital

of k results from adding 1 to k − 1. On the contrary, no one would invest if the

market’s aggregate capital was larger than k∗ − 1. This implies that the dynamics

of the cross-sectional distribution for k ∈]k∗ − 1, k∗] satisfies,

Φ̇t(k) = η[F (k)− Φt(k)]− ΛΦt(k
∗ − 1) + ΛΦt(k − 1). (2.3)

All markets born with an initial capital larger than k∗ are located between k∗

and ∞. The first term on the right-hand side of equation (2.1) reflects that at

every instant, a measure η of new markets appear, with initial capital drawn from

F (k). Meanwhile, there is a measure ηΦt(k) of markets with capital m ≤ k which

matures. Then, the total meeting rate is Λ ≡ λ(A−Mt). Finally, the total mass

of agents who have their capital in a market is given by Mt which must satisfy the

following differential equation,

Ṁt = λ(A−Mt)Φt(k
∗ − 1)− ηMt (2.4)

The first term on the right-hand side of (2.4) reflects the rate at which agents meet

36



2.2. Model

markets. Since agents invest in a market only if k ≤ k∗ − 1, the total meeting rate

must be adjusted by the probability of meeting non-saturated markets, Φt(k
∗ − 1).

Then ηMt is the measure of agents that return to searching.

2.2.1 Stationary Distribution

The stationary cross-sectional distribution results from setting the time derivative

equal to zero. Since the shape of the distribution depends on the functional form

of F (k) I discuss two different approaches to solve for the model’s equilibrium.

The first method is very general; I discretize the state (capital) space and solve

for the equilibrium recursively. This procedure has the advantage of not requiring

setting the functional form of F (k) and π(k). However, this approach can not

provide a closed-form solution for the cross-sectional distribution. The second

technic is based on the theory of difference equations; while this method requires

to parameterize both F (k) and π(k) the cross-sectional solution can be computed

in closed-form.

Capital takes value on the set Γ ≡ [0, 1/N, · · · , ku], where N ∈ N∗ (the case

N →∞ reduces to the continous case) and ku is chosen large enough to ensure k∗

belongs to Γ (for that, I use ku = π−1(1)). While the investment capacity of agents

is constant (i.e. one dollar), the initial capital in all existing markets is drawn

from the distribution F (k) and is distributed over the whole set Γ. Therefore, the

stationary cross-sectional distribution is characterized by a recursive system, which

can be rewritten as a system of equations, A× x = y, where A ∈ RN×k∗+1,N×k∗+1

and, x,y ∈ RN×k∗+1,1. In particular, I define Ai,j as the i, j element of the

matrix A. Then, all elements in the diagonal equal one. Any element satisfying

Ai+N,i, i ∈ (1, · · · , N × (k∗ − 1) + 1) equals −Λ/(η + Λ). Any element satisfying

Ai+N,i, i ∈ (N × (k∗ − 1) + 2, · · · , N × k∗) equals −Λ/η. Finally, any element
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satisfying Ai,N×(k∗−1)+1, i ∈ (N×(k∗−1)+2, · · · , N×k∗) equals Λ/η. All the other

elements are zero. Concerning the vector y, all elements i ∈ (1, · · · , N×(k∗−1)+1)

take the value η/(η+Λ)×F ((i−1)/N), while all the others are simply F ((i−1)/N).

The vector x is the stationary cross-sectional distribution function. Accordingly,

all elements equal Φ((i− 1)/N). Eventually, since matrix A is diagonally dominant

it can be inverted, resulting in Φ = A−1 × y.

The second approach uses the fact that the cross-sectional distribution satisfies a

first order linear difference equation. Accordingly, the equation characterizing the

stationary distribution must be,

Φ(k) = C ×
(

Λ

η + Λ

)k
+ g(k), 1 ≤ k ≤ k∗ − 1,

where the first part is the general solution (C is a constant to be defined) and g(k)

is the particular solution (which depends on the functional form of F (k))1. For

example, assuming that the initial capital is uniformly distributed over the range

[0, ku], F (k) := k
ku

results in the following stationary distribution,

Φ(k) =



1
ku

(
Λ

η+Λ

)bkc [
Λ
η
− Λ

η+Λ
(k − bkc)

]
+ 1

ku

[
k − Λ

η

]
0 ≤ k ≤ k∗ − 1,

k
ku

+ Λ
η
[Φ(k − 1)− Φ(k∗ − 1)] k∗ − 1 ≤ k ≤ k∗,

k
ku

k ≥ k∗.

Where b·c is the floor function. Figure 2.3 shows different cross-sectional distri-

butions. The first piece of this equation describes the cross-sectional distribution

1For difference equations, the treatment of the boundary condition is different from that of
differential equations. For example, let us assume that the initial capital of a market is k0 and kτ
is the aggregate capital invested in this market when it pays off. Importantly, kτ belongs to the
set {k0, k0 + 1, · · · , k0 +m} where m is a natural number such that k∗ − 1− k0 ≤ m ≤ k∗ − k0.
By varying k0 one modifies the entire set. Hence, it must be keeped in mind that there is one
constant for each path (one path being the set defined previously). This implies that one must
compute the constant for any k ∈ [0, 1[.
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Figure 2.3: Stationary distribution when the profit function is linear

The figure bellow has the following parameters: A = 1, η = 2, r = .05, a = 10
and b = 1. The solid line shows the stationary cross-sectional distribution for
an arbitrary individual search intensity satisfying 0 ≤ λ ≤ ∞. The dotted line
represents the no-search regime CDF, while the dashed line is the fast search
regime.

0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of markets with capital ranging from 0 to k∗ − 1. From 0 to 1 markets are not

populated by agents, rather all the capital comes from the first round of financing

(i.e. the capital heterogeneity). From 1 to k∗ − 1 the searching channel interacts

with the initial capital. Agents do not invest above k∗ − 1 since they would end

up in a market with k > k∗. For any k ≥ k∗ the cumulative distribution function

is given by F (k). This is because initial capital is drawn from F (k), allowing a
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positive measure of markets to be filled with some initial capital greater than k∗.

Finally, since Λ feeds into the cross-sectional distribution of markets, which itself

depends on M , one must substitute Φ(m) in equation (2.4) (when Ṁt = 0) to solve

for the endogenous stationary distribution. Because the dynamics of Φt(x) and Mt

are nonlinear it is not guaranteed ex ante that a unique equilibrium exists. The

following proposition treats this problematic.

Proposition 2.1 There is only one fixed point that satisfies system (2.1)− (2.4)

with the restriction that M lies between 0 and A. Hence, there is a unique cross-

sectional distribution associated with each k∗.

2.2.2 Value Functions and Equilibrium Characterization

Bellman’s principal of optimality implies that the value function for an agent in a

market characterized by a capital of k ≤ k∗ − 1 satisfies,

V (k) = E
[
e−r(τη∧τΛ){1{τη≤τΛ}[π(k)− 1 + VS] + 1{τη>τΛ}V (k + 1)

]
.

Here, τη denotes the time at which this specific market matures. Similarly, τΛ is

the time at which a new agent invests in this market. An agent that has invested

their capital in this market faces two different outcomes; either a new investor

discovers this market, or this market pays off. Thus, the expectation is computed

with respect to the distribution of the minimum between τη and τΛ := τη ∧ τΛ.

The indicator function 1{τη≤τΛ} corresponds to the probability that the investment

opportunity matures before another agent invests multiplied by the corresponding

payoff (the agent collects the profits [π(k) − 1] and returns to searching, with

continuation utility VS). The second part is essentially the same; 1{τη>τΛ} accounts

for the probability that one investor discovers this market before it pays off. When
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this event occurs the aggregate capital in this market will increase by one dollar,

which means that the continuation value, conditional on this event, is V (k + 1).

After integrating both sides with respect to the distribution of τη∧τΛ, this equation

becomes,

(r + η + Λ)V (k) = η[π(k)− 1 + VS] + ΛV (k + 1). (2.5)

Similarly, the value function of an agent in a saturated market (i.e. where k∗− 1 ≤

k ≤ k∗) satisfies,

V ∗(k) =
η

r + η
[π(k)− 1 + VS]. (2.6)

For these markets only the time at which these specific investment opportunities

mature matters. The term [π(k)−1+VS] corresponds to the profit of an arbitrageur

once the market matures. Similarly, I find that the value associated to searching,

VS, satisfies,

VS = E
[
e−rτλ

(∫ k∗−1

0

V (x+ 1)p(x) dx+ [1− Φ(k∗ − 1)]VS

)]
.

Here, τλ denotes the time at which one particular investor finds a market. Condi-

tional on finding a market with capital k ≤ k∗ − 1, the agent invests one dollar,

resulting in the capital in that market to jump from k to k+ 1. After some algebra

that equation becomes,

VS =
λ

r + λΦ(k∗ − 1)

∫ k∗−1

0

V (x+ 1)p(x) dx. (2.7)

Since equations (2.5), (2.6) and (2.7) belong to the class of linear difference

equations, the approaches used to solve for the cross-sectional distribution are still
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applicable. Hence, the general method detailed in the previous section implies that

the vector of value functions can be characterized by a recursive system which can be

rewritten as a system of equations A′× x′ = y′, where A′ ∈ RN×(k∗−1)+2,N×(k∗−1)+2

and x′,y′ ∈ RN×(k∗−1)+2,1. In the diagonal, all elements satisfying A′i,i, i ∈

(1, (k∗ − 2)×N + 1 equal r + η + Λ, while all the other diagonal elements equal

r+ η except the very last term, which equals r
λ

+ Φ(k∗− 1). Any element satisfying

A′i,i+N equals −Λ except the very last term (i.e. A′N×(k∗−2)+2,N×(k∗−1)+1). Then, any

element satisfying A′N×(k∗−1)+1,i, i ∈ (1, · · · , N × (k∗ − 1)) equals −η. Finally, all

elements in the last row equal p(i), except the very last one, which has already been

discussed. Eventually, since matrix A′ is diagonally dominant it can be inverted,

resulting in V = A′−1 × y′.

The second approach uses the fact that value functions satisfy a first order linear

difference equation. The equation characterizing the value functions satisfies,

V (k) = C ×
(
r + η + Λ

Λ

)k
+ g(k), 1 ≤ k ≤ k∗ − 1,

where the first part is the general solution (C is a constant to be defined) and g(k)

is the particular solution (which depends on the functional form of π(k)2). For

instance, assuming that the profit is a linear function of the form π(k) = a− bk3

results in the following equation,

V (k) =
bηΛ

(r + η)2

(
r + η + Λ

Λ

)−bk∗−kc
+

η

r + η

[
a− 1 + VS − b

(
Λ

r + η
+ k

)]
.

Figure 2.4 shows the value function when the profit is linear in the market’s

aggregate capital. To proceed further I substitute V (k) back into VS. Finally, the

2Once again, the reader must keep in mind that there is one constant for each possible path.
This implies that one must compute the constant for any k ∈ [k∗ − 1, k∗[.

3Assuming this implies ku = (a− 1)/b.
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Figure 2.4: Value function when the profit function is linear

When π(k) = a−bk, V (k), the value that a buyer associates with being in a market
with aggregate capital k satisfies,

V (k) =
bηΛ

(r + η)2

(
r + η + Λ

Λ

)−bk∗−kc
+

η

r + η

[
a− 1 + VS − b

(
Λ

r + η
+ k

)]
.
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last variable to identify is the threshold k∗. In order to find this quantity one must

remember that if an agent finds a market with current capital k < k∗ − 1 the

associated equilibrium strategy is to invest, which reveals that the value they extract

from searching is strictly lower than the value they would receive by investing. If an

investor finds a market with aggregate capital k > k∗−1, their equilibrium strategy

is not to invest, implying that there is a greater value in searching for another

opportunity. Finally, if k + 1 = k∗, an agent is indifferent between searching or
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investing. Accordingly, the equilibrium k∗ must satisfy the following conditions,

VS ≤ V (k), ∀k ≤ k∗,

VS > V (k), ∀k > k∗.

To put it another way, this set of conditions describes the outcome of a Nash

Equilibrium. It is not valuable for an agent to deviate from their optimal strategy

given that the other agents play their own optimal strategy. Practically, one must

check each criterion for a given k∗ ∈ [1, ku] and iterate the procedure until those

conditions are met. If these criteria are satisfied for a particular configuration,

then it is an equilibrium. When one uses the closed-form solution for V (k) instead,

the necessary and sufficient condition for a candidate to be an equilibrium is

V ∗(k∗)−VS(k∗) = 0. The next proposition characterizes the equilibrium in general.

Proposition 2.2 An equilibrium is characterized by the optimal threshold k∗ that

solves equation (2.8),

η[π(k∗)− 1]− rVS = 0, (2.8)

once all pieces of the problem are treated simultaneously (that means equations (2.1)-

(2.4) are set to zero, (2.5) and (2.6) are substituted into (2.7), which is substituted

back into (2.8)).

2.2.2.1 Comparative statics

Figure 2.5 consists of four plots summarizing the main properties of the equilibrium,

for a given set of parameters, when one varies the search intensity. In this figure,

the profit function is simply linear, π(k) = a− bk. The upper left plot shows the
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shape of the aggregate search intensity (the total meeting rate Λ). The upper

right plot shows how the proportion of agents who have invested their capital into

a market varies with respect to λ. The shape of this function results from the

interaction of two competing forces. Since λ represents the speed at which investors

find markets, the proportion of agents who are searching must decrease accordingly.

This is because an increase in the search intensity reflects an increase in the mass

of markets found. On the other hand, because the agents find a market more easily

the value function associated with searching rises. Hence, it becomes more valuable

to skip some opportunities. Figure 2.5 shows a monotonic increasing function that

converges asymptotically to M̄ < 1. The lower left plot illustrates how the value of

searching evolves when one varies λ. This plot has to be analyzed simultaneously

with the last one which shows the endogenous threshold. Both plots suggest that

the agents see an increase of λ as beneficial. They can find more markets in a given

time frame and reject more potential opportunities.

2.2.2.2 Model without search technology (λ0)

In this section I discuss the equilibrium when agents can not search (i.e. λ0).

Because searching is absent from this model, Φ(k) = F (k) and M = 0. Moreover,

the value of searching is worth zero. Therefore, the equilibrium threshold k∗ equals

ku ≡ π−1(1).

2.2.2.3 Fast Search (λ∞)

While the previous section illustrates how the equilibrium behaves when arbitrageurs

do not search, it remains only to explore its characteristics as search frictions vanish

(i.e. λ∞). In the following proposition I describe the main features of that limiting

case.
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Figure 2.5: The model’s main statistical properties

The figures bellow have the following parameters: A = 1, η = 2, r = .05, a = 10
and b = 1. The top-left plot shows the aggregate intensity Λ. The top-right panel
shows the fraction of the measure of agents, who have their capital in a market at
that moment. The bottom left panel illustrates the value associated with searching.
Finally, the last diagram shows the endogenous threshold k∗.
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Proposition 2.3 When the search intensity tends to infinity, Λ→∞ and M ≤ A,

the optimal threshold k∗∞ is the quantity that solves equation (2.8) when VS is

characterized by the following relation,

[r(A−M) + ΛΦ(k∗ − 1)]VS =

∫ k∗−1

0

V ∗(x+ bk∗ − xc)Λp(x) dx. (2.9)

Because Λ→∞, both p(x) and Φ(x)→ 0, implying that their product with the

aggregate search intensity is indeterminate. The hospital theorem helps resolve this
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problematic; specifically, when F (x) ∼ U [0, a/b], these quantities are respectively,

Λp(x) = b/a× η(bxc+ 1),

ΛΦ(k∗ − 1) = b/a× ηbk∗c
(
k∗ − 1− 1

2
bk∗ − 1c

)
.

It remains to substitute these objects into VS to solve for the equilibrium.

2.2.3 Is Perfect Capital Mobility Socially Efficient?

In the previous sections I have discussed two antithetical regimes; in the first one

(λ0) arbitrageurs have no search technology. Agents can not invest their capital

leading to the worst possible outcome (as previously shown). This first case is

contrasted by the second case (λ∞) in which agents search at an infinite intensity.

I show in this section that while λ∞ is usually regarded as the most efficient

outcome it is not always desirable. To understand why I start by drawing the

cross-sectional distribution of markets for three levels of search intensity. This is

represented in Figure 2.3. While the continuation value of arbitrageurs is a strictly

monotonic increasing function of the search intensity as depicted in Figure 2.5, this

relation is ambiguous for the agents that would draw their expected utility from the

cross-sectional distribution. This follows simply from the fact that the stationary

CDF for the infinite search intensity does not second-order stochastically dominate

the stationary CDF of the finite intensity. I discuss welfare more formally in the

following section.

2.2.3.1 Social Surplus and Dead Weight Loss

In light of the above the profit function π(k) can be generally considered as a

demand for capital. For simplicity I review the case when this function is linear,

47



Chapter 2. Slow Arbitrage

π(k) = a− bk. Furthermore, I assume that the distribution from which the initial

capital is drawn satisfies F (k) = a−1
b
k. Then, I designate the old agents as the

providers of capital, while the new agents (those who provide the demand function)

are the seekers of capital. Finally, k0, which was defined as the initial capital,

is considered here as demand heterogeneity (some markets saturate faster than

others). Then, the consumer surplus is defined as the area between the demand

Figure 2.6: Visual representation of the strategy used to measure the welfare loss

This graph shows the offer and consumer surplus (green and blue respectively) and
the welfare loss in red for k = 5 (the accumulated capital at exit time), k0 = 1 and
k∗ = 7. The profit function is linear and capital can take values on the set [0, a/b].
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bk

function, the price function (the horizontal line at π(k) = a− bk) and the vertical

line that goes through k0
4 weighted by the stationary CDF5;

4Figure 2.6 shows the consumer and producer surplus and welfare loss.
5Since the capital accumulated until an exit event k is at the aggregate level, distributed according
to the stationary CDF, any surplus or welfare loss must be weighted by this distribution.

48



2.2. Model

CS(λ, k0) =

∫ k∗

0

b

2
(k − k0)2p(k) dk, k ≥ k0.

Figure 2.7: Welfare loss when capital is abundant

This graph shows the dead weight loss function with the following parameters:
A = 1, η = 2, r = .05, a = 10 and b = 1. Here, the profit function is linear. The
minimum is reached when λ =∞.
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The offer surplus is defined as the area of the rectangle bounded by the vertical

lines that goes through k0 and k and the horizontal lines that goes through 1 and

p.

OS(λ, k0) =

∫ k∗

0

(k − k0)(a− bk − 1)p(k) dk, k ≥ k0.
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Figure 2.8: Welfare loss when capital is scarce

This graph shows the dead weight loss function with the following parameters:
A = 0.01, η = 2, r = .05, a = 10 and b = 1. Here, the profit function is linear. The
minimum is reached well before λ = ∞, which is in contradiction to traditional
wisdom.
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Finally, the welfare loss is defined as the area between the demand function, the

price function and the vertical line that goes through k. Since the dead weight loss

depreciates welfare λ should be set such that this quantity is minimized.

WL(λ) =

∫ a−1
b

0

1

2
(a− bk − 1)

(
a− 1

b
− k
)
p(k) dk. (2.10)

It is important to note that the upper boundary is beyond k∗. This follows from the

fact that beyond this threshold markets are not populated (there is no offer), which

is inefficient from a social planner’s point of view. Since welfare loss is not affected
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by k0 it is the simplest object to compute. Additionally welfare loss provides an

intuitive description of the magnitude of the inefficiency in the whole economy

and is shown in Figures 2.7 and 2.8. As expected, welfare loss is the highest at

λ = 0, then the magnitude of the inefficiency decreases rapidly. While the loss of

welfare decreases monotonically in Figure 2.7, it reaches a minimum (well before

λ =∞) in Figure 2.8. Clearly this is in contradiction with the belief that perfect

capital mobility is always better. These results are summarized in the following

proposition.

Proposition 2.4 From a social planner’s point of view, perfect capital mobility is

not always the most desirable scenario.

2.2.4 Endogenous Search

The following section explores which level of search intensity an agent, who seeks

to maximize the value of searching, would employ. For this purpose I assume that

searching is costly. Moreover, once an agent chooses the search technology they

must stick with it. This makes the computations increasingly more tractable and

can be interpreted as the result of the presence of large adjustment costs. Fixing a

cost function c(λ) which can be differentiated, Bellman’s principal of optimality

implies that the value associated with searching is given by,

VS(λ) = E
[
e−rτλ

(∫ k∗−1

0

V (m+ 1)p(m) dm+ VS(λ)[1− Φ(k∗ − 1)]

)
−∫ τλ

0

e−ruc(λ) du

]
.

The first part of the right-hand side of this equation is the standard searching

value function. The second term corresponds to the present value of the costs.

51



Chapter 2. Slow Arbitrage

Integrating this equation results in,

[r + λΦ(k∗ − 1)]VS(λ) = λ

[∫ k∗−1

0

V (m+ 1)p(m) dm− c(λ)

]
.

At this stage one can rely on both steady-state and non-steady state analyses. The

first type of analysis regards the agents as perfectly rational; they internalize the

fact that their own decisions have an impact on the equilibrium realization since

they all solve the same problem. In that case an equilibrium is defined as a triplet

(k∗,Λ, λ∗∗) that solves equations (2.4) and (2.8) and satisfies,

∂V (s;λ)

∂λ
≡ −λ

[∫ k∗−1

0

V (m+ 1)p(m) dm− c(λ)

]
Φ(k∗ − 1)−[∫ k∗−1

0

V (m+ 1)p(m) dm− c(λ) + λ
∂

∂λ

(∫ k∗−1

0

V (m+ 1)p(m) dm− c(λ)

)]
×

[r + λΦ(k∗ − 1)] = 0.

On the other-hand, the non-steady-state type of analysis builds on the assumption

that agents believe they have no impact on the equilibrium, in particular that the

cross-sectional distribution is fixed. Here the equilibrium is defined as a triplet

(m∗,Λ, λ∗) which simultaneously solves equations (2.4) and (2.8) and satisfies,

∂V (s;λ)

∂λ
≡
[∫ k∗−1

0

V (m+ 1)p(m) dm− c(λ)− ∂

∂λ
c(λ)× λ

]
[r + λΦ(k∗ − 1)]−

λ

[∫ k∗−1

0

V (m+ 1)p(m) dm− c(λ)

]
Φ(k∗ − 1) = 0.

While the first approach is consistent, λ∗∗ can never be solved in closed-form, which

is not true for λ∗. Therefore, I discuss that case and assume a linear functional

form for the searching costs (c(λ) = κλ). Under these assumptions the optimal
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intensity results in,

λ∗ =

√
r2 + κ−1rΦ(k∗ − 1)

∫ k∗−1

0
V (m+ 1)p(m) dm− r

Φ(k∗ − 1)
. (2.11)

This suggests, empirically, that the intensity at which arbitrageurs search for

opportunities is roughly proportional to 1/
√
κ.

2.3 Cash-in-the-Market-Pricing

In this section I explore a simple extension of the model where some agents sell

their assets to cover their sudden need for cash. Those assets are eventually split

and consumed by all the respective buyers.

2.3.1 Generalities

I study an economy populated by two classes of agent. There is a unit continuum

of sellers (the seekers of capital), each born with one asset which has a constant

intrinsic value of a. For any of these agents a sudden need of cash occurs as the

first jump of a Poisson process, of intensity η. There is one (independent) Poisson

process for each seller. When a seller faces financial distress, they sell their asset,

consume the proceeds and disappear. The buyers (or the liquidity providers) that

have allocated their capital to that particular market, pool their capital, buy and

consume the asset and return to searching. To justify this behaviour I recall that

buyers never face financial distress. Therefore, they can keep the asset until the

market recovers and sell it at its fair value (however, it is simpler to assume that

the market recovers immediately after the buyers purchase the asset). At the same

time new sellers are born at a rate of η making the measure of sellers constant over
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time. There is a measure A of buyers (the providers of capital). Each of them is

endowed with one dollar. I define M as the measure of buyers that have allocated

their capital in a market. Thus, A −M is the measure of buyers that are still

searching. Buyers meet a seller at a rate λ and decide whether to stay or keep

searching further. From the law of large numbers for independent random matching

the total meeting rate between buyers and sellers is Λ ≡ λ(A−M). Given k, the

quantity of capital present in a market, the buyers in that market each receive

a/k. When new sellers are born, I assume that each receives some money, drawn

from an arbitrary exogenous distribution. Therefore, depending on the money a

seller has, they can keep a fraction of the asset and sell it when the market for that

particular asset has recovered.

Once I feed these parameters into the model, the main primitives that affect the

equilibrium are η, λ, r and A. I recall that they are respectively, the intensity at

which a financial distress occurs and a new seller is born, the intensity at which an

individual buyer searches, the rate of return of the risk-free asset and the measure

of buyers. Normalizing A to one and recalling that buyers provide capital if and

only if k, the quantity of capital invested in a particular market, is lower than k∗−1,

an endogenous threshold, an equilibrium is characterized by the usual conditions

discussed in the previous section. When I further assume that the profit function

is given by π(k) = a/k, which is consistent with the economy under investigation

in that section, the value that a buyer associates with being in a market with

aggregate capital k is provided in the following proposition.

Proposition 2.5 Given π(k) = a/k, V (k), the value that a buyer associates with
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being in a market with aggregate capital k, satisfies,

V (k) = C(k + bk∗ − kc)× ξk−1 +
η

r + η
(VS − 1)+

a

∆

[
L(ξ−1, 1, k) + ξk log

(
r + η

r + η + Λ

)]
,

(2.12)

where,

ξ =(r + η + Λ)/Λ,

∆ =(r + η + Λ)/η,

C(x) =
η

r + η
π(x)ξ1−x − a

∆
ξ1−x

[
L(ξ−1, 1, x) + ξx log

(
r + η

r + η + Λ

)]
,

L(z, s, a)6 =
∞∑
n=0

zn

(n+ a)s
.

Solving for the equilibrium leads to important statistics which are reproduced in

Figures 2.9 and 2.10. First of all, the optimal threshold, as it was the case for

linear profit functions, is a monotonic decreasing function of the search intensity.

As capital mobility improves sellers receive less. The welfare loss, shown in Figure

2.10, reaches a minimum which is not located in λ =∞, breaking down the common

belief that perfect capital mobility is (always) the first-best outcome.

2.3.2 Government Interventions

In the following lines I extend the model and allow the redistribution of wealth

from buyers to sellers through taxation. My intention is to contribute to the

literature on fire sales of assets by discussing policy maker interventions, mainly

6This function is known as the Lerch Transcendent function.
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Figure 2.9: Cash-in-the-market-pricing: stationary distribution and welfare loss

The figures bellow have the following parameters: A = 1, η = 2, r = .05, a = 10.
The profit function is given by π(k) = a/k. In the first panel the solid blue line
shows the stationary cross-sectional distribution for an arbitrary individual search
intensity satisfying 0 ≤ λ ≤ ∞. The dotted blue line represents the no-search
regime CDF, while dashed-dotted blue line is the fast search regime. The second
graph shows the magnitude of the welfare loss.
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through the search channel. I am particularly interested in rescue packages offered

by government institutions, which guarantee toxic assets in significant proportions.

To this end I assume that the profit function generalizes to π(k) = a/(b+ k), where

b is the proceed of the taxation to sellers. I investigate the situation when buyers

are free to fix their search intensity, yet once they choose it they must stick with it.

On top of that, policy makers tax the search process at a constant rate c(λ), which

is for simplicity assumed to be equal to κλ. Accordingly, the entire proceeds of

taxation equals (A−M)× c(λ), since only buyers who are currently searching pay

56



2.3. Cash-in-the-Market-Pricing

Figure 2.10: Cash-in-the-market-pricing: main statistical properties

The figures bellow have the following parameters: A = 1, η = 2, r = .05, a = 10.
The profit function is given by π(k) = a/k. The top-left plot shows the aggregate
intensity, Λ. The top-right panel shows the fraction of the measure of agents, who
have their capital in a market at that moment. The bottom left panel illustrates the
value associated with searching. The last diagram shows the endogenous threshold
k∗.
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taxes. I assume that this capital is transmitted uniformly to all sellers (except to

those which have k ≥ k∗). In consequence, every seller receives,

b ≡ κΛ

ηΦ(k∗)
.

The value that a buyer associates with being in a market with aggregate capital k,

V (k), is provided in the following proposition.

Proposition 2.6 Given π(k) = a/(b+ k), V (k), the value that a buyer associates
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Figure 2.11: Cash-in-the-market-pricing: the case with taxes

The figures bellow have the following parameters: A = 1, η = 2, r = .05, a = 10.
The profit function is given by π(k) = a/(b+ k). This is an extension of the model
that allows for the redistribution of wealth from buyers to sellers through taxation.
The constant b is the proceeds of the taxation to sellers. The top-left plot shows
the magnitude of the welfare loss. The top-right panel shows the fraction of the
measure of agents who have their capital in a market at that moment. The bottom
left panel illustrates the endogenous search intensity. The last diagram shows the
endogenous threshold k∗.
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with being in a market with aggregate capital k, satisfies,

V (k) = C(k + bk∗ − kc)× ξk−1 +
η

r + η
(VS − 1)+

a

∆

[
L(ξ−1, 1, b+ k)− ξkL(ξ−1, 1, b)

]
,

(2.13)
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where, ξ, ∆ and L(z, s, a) are defined in Proposition 2.5 and,

C(x) =
η

r + η
π(x)ξ1−x − a

∆
ξ1−x [L(ξ−1, 1, b+ x)− ξxL(ξ−1, 1, b)

]
.

This case is shown in Figure 2.11. The top-left plot exhibits the magnitude of

the welfare loss with respect to κ, the marginal cost of searching (the tax rate).

When κ = 0 the individual search intensity, represented in the bottom-left plot,

is infinite, corresponding to the perfect capital mobility regime. On the contrary,

when κ =∞ the regime is so costly that buyers do not search, leading to λ = 0.

The endogenous threshold k∗ follows the analogue pattern, which is also true for

the measure of buyers searching and for those who already met a seller. While the

precise level of tax rate that minimize welfare loss is not very important per se,

the shape of the dead weight loss function provides very important implications for

policy makers. Indeed, the optimal tax rate might be hard to reach in practice,

mainly because of parameter uncertainty. However, the slope of the welfare loss

function is significantly larger, in absolute value, for rates under the optimal tax

rate compared to the slope beyond the optimal tax rate. This suggests that, under

parameter uncertainty, taxing too much will cause less welfare loss than the reverse.

Therefore a policy maker, under parameter uncertainty, fixing a tax rate on search

technology, should always tax more rather than less.

2.4 Concluding remarks

In this paper I design a dynamic model where financially constrained agents are

searching for an investment opportunity and once they find one decide whether

or not they should invest. I use a simple extension of the model to show that

this framework can provide interesting predictions and, more importantly, can
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be used to explore a wide range of economic inquiries. After conjecturing that

one agent’s decision to enter depends on the aggregate capital in this market,

I find that the steady-state cross-sectional distribution of markets, for a given

threshold, satisfies a linear difference equation and is therefore unique and stable.

Furthermore, I show that the dynamic programming problem that pins down this

barrier, which depends on the cross-sectional distribution, is also characterized

by a linear difference equation. Eventually, the equilibrium is achieved when one

simultaneously solves for the cross-sectional distribution and the threshold. This

step, though it relies on numerical methods, still allows almost all the parts of the

model to be expressed in closed-form.

With my model I show that an economy characterized by perfect capital mobility

is not always desirable. When searching is not allowed, the economy performs

very badly; there are no markets for liquidity and no benefits from trade, since

there are no means of exchange. As searching frictions vanish, investors coordinate

without difficulty. In this regime the optimal strategy of agents is to spread across

the entire universe of markets and, since there are no search frictions, they can do

this easily. Surprisingly, the first-best outcome is not necessarily achieved when

searching frictions vanish.

Finally, I explore a simple extension of the model and discuss the fire sale of

assets. After allowing for the redistribution of wealth from buyers to sellers through

taxation, I show that a simple tax scheme on search technology provides an original

solution for the financing of government interventions and to stimulate buyers to

set search intensity at its first-best level.
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2.A Proofs

Proof of Proposition 2.1. The stationary cross-sectional distribution satisfies

the following difference equation,

Φ(k) =
η

η + Λ
F (k) +

Λ

η + Λ
Φ(k − 1). (2.14)

Moreover,

Φ(k∗ − bk∗c) =
η

η + Λ
F (k∗ − bk∗c).

By iterating equation (2.14) forward Φ(k∗ − 1) can be rewritten as follows,

Φ(k∗ − 1) =
η

η + Λ

bk∗c−1∑
j=0

(
Λ

η + Λ

)j
× F (k∗ − j − 1).

Using equation (2.4) and substituting M , this equation becomes P(Φ(k∗ − 1)) = 0

where,

P := Φ(k∗ − 1)[Φ(k∗ − 1) + A+ η/λ]bk
∗c−

[Φ(k∗ − 1) + η/λ]

bk∗c−1∑
j=0

Aj[Φ(k∗ − 1) + A+ η/λ]bk
∗c−j−1 × F (k∗ − j − 1).

(2.15)

Notice that P(0) < 0. Then, let us make a change of variable and define z =

Φ(k∗ − 1) + A+ η/λ. This equation can be rewritten as follows,

zbk
∗c+1−(A+η/λ)zbk

∗c−
bk∗c−1∑
j=0

Ajzk−jF (k∗−j−1)+

bk∗c−1∑
j=0

Aj+1zk−j−1F (k∗−j−1) = 0.
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After changing the index of each sum, this equation becomes P∗(z) = 0 where,

P∗ := zbk
∗c+1 − zbk∗c[A+ η/λ+ F (k∗ − 1)]+

bk∗c−1∑
j=1

Ajzk−j[F (k∗ − j)− F (k∗ − j − 1)] + AkF (0).
(2.16)

Descartes’ sign rule implies that this equation has at most two positive real roots.

Notice further that P∗(1 + η/λ + A) > 0 which implies that P(1) > 0. Because

P has at most two positive real roots and P(0) < 0 < P(1), Φ∗(k∗ − 1) is the

only real root of P such that 0 < P(Φ∗(k∗ − 1)) < 1 (i.e. since Φ∗(k∗ − 1) is the

probability of the realization of an event, it must be between 0 and 1). Hence, each

k∗ is associated with exactly one stationary cross-sectional distribution. �

Proof of Proposition 2.2. Treated directly in Section 2.2. �

Proof of Proposition 2.3. The uniqueness of the cross-sectional distribution is

guaranteed (thanks to Proposition 2.1). Hence, Φ(k∗ − 1) = 0 is the only real

root of polynomial (2.15) when λ→∞. Since Λ = ηA
Φ(k∗−1)+ η

λ
, the limit of Λ when

Φ(k∗ − 1) → 0 and λ → ∞ is ∞. Finally, equation (2.9) follows by multiplying

equation (2.7) with A−M .

�

Proof of Proposition 2.4. Treated directly in Section 2.2.3.1. �

Proof of Proposition 2.5. Follows from Proposition 2.6. �

Proof of Proposition 2.6. Let us substitute equation (2.13) into equation 2.5.
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Equation 2.5 can be rewritten as follows,

(r + η + Λ)V (k)− ΛV (k + 1) = η[π(k)− 1 + VS].

Firstly, notice that C(k) = C(k + 1) ∀k. Hence,

(r + η + Λ)C(k + bk∗ − kc)× ξk−1 − ΛC(k + 1 + bk∗ − k − 1c)× ξk = 0.

Secondly,

(r + η + Λ)
η

r + η
(VS − 1)− Λ

η

r + η
(VS − 1) = η(VS − 1).

Thirdly,

a

∆
ξkL(ξ−1, 1, b) [(r + η + Λ)− Λξ] = 0.

Then, let us recall that L(ξ−1, 1, b+k) =
∑∞

n=0
ξ−n

n+b+k
, which implies that L(ξ−1, 1, b+

k + 1) = ξ
[
L(ξ−1, 1, b+ k)− 1

b+k

]
. Therefore,

a

∆

[
(r + η + Λ)L(ξ−1, 1, b+ k)− ΛL(ξ−1, 1, b+ k + 1)

]
= ηπ(k).

Finally, since k + bk∗ − kc = k ∀k > k∗ − 1,

V (k + bk∗ − kc) = V ∗(k) =
η

r + η
(π(k) + VS − 1), ∀k > k∗ − 1.

�

63





3 Sequential Competition and

Innovation

There is not a day goes by without a passionate debate concerning Big Tech

companies; while the main concern of governments seems to be related to social

justice, a growing worry is associated with the consequences that large firms have on

consumer welfare; nowadays these big entities engage in the serial acquisition of start-

ups to preclude the entrance of competitors in their markets. Accordingly, I build a

dynamic model where firms are endowed with a search technology used for designing

new products that are subject to linear price-inverse demand function. Thanks to

the relative tractability of my framework I compute many important statistics in

closed-form. Then I show that the rise of large entities is part of a natural mechanism

where giants emerge from the ashes of their predecessors. Though the actions of

large technological companies impair welfare in the short-run, their consequences

in the long-run seem negligible, suggesting a laissez-faire approach in which orga-

nizations engaging in these types of misconduct simply disappear in the long-term.
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3.1 Introduction

It has been a little while since the dominance of the “Big Tech ” companies, such

as Facebook, Amazon, Apple, Netflix and Alphabet, seems to pose a problem

for governments.1 While the main concerns here are related to social justice

with respect to traditional taxpayers and wealth redistribution across countries a

growing worry is that these large entities, which are embarking on a large scale

serial acquisition of start-ups, do that to preclude the entrance of competitors into

their markets. Hence, the aim of this paper is twofold. Firstly, it is essential to

understand whether the rise of the giants is part of a natural mechanism. Secondly,

I debate the consequences that large firms have on consumer welfare and whether

they really threaten the economy.

I create a dynamic model where firms are endowed with a search technology which

they use for creating new products and study the firm-size distribution conditional

on sequential competition. The economy is populated by a unit continuum of

risk-neutral agents and a continuum of markets. Agents can either be entrepreneurs

or employees. Each entity develops new technologies; upon finding a product

they enter sequentially into the market for that product and compete strategically,

taking into account the actions of their incumbents and the strategies of their

(potential) new entrants. Despite the fact that there is no growth in my model,

every product becomes obsolete eventually and is replaced by a newer version,

making my model adopt the paradigm of Schumpeter’s creative destruction; at

Poisson times, a measure η of new markets appears, making a measure η of actual

products obsolete. At this instant all of these “mature” markets pay a profit to

1For instance a report made public by the European Commission on the 21st of September 2017
underlines that a fair and efficient tax system in the European Union for the digital market
is one of its top priorities; this report stresses the fact that technology corporations paid, on
average, less than half the tax of traditional firms.
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all the firms that are competing in each of these markets. The profit function

depends both on the aggregate supply in that market and the individual supply. I

assume that the price-inverse demand function depends linearly on the aggregate

supply. Furthermore, I suppose that within a market goods are homogenous and

companies all share the same marginal costs. These assumptions make the model

easily tractable and the stationary cross-sectional distribution of quantities in each

market solvable in closed-form.

Finally, an important feature for firms to grow (and for the firm-size distribution

to be realistic) is to assume that the search technology increases (linearly) with

the entities’ size; large corporations have access to more talented people, benefits

from customers’ spillovers and have more resources to finance the research and

development phase of new products. With these assumptions the firm-size process

belongs to the class of birth-death processes, which makes the aggregate matching

rate and the firm-size distribution solvable in closed-form. Due to the overall

tractability of my model I can compute some important statistics related to the

concentration within and across markets, to markups and the continuation value

of firms. All these implications can be tested empirically.

My model suggests that the rise of large entities belongs to a natural mechanism;

the firm-size distribution is a mixture of a power law and a distribution with

exponential decay. My results indicate that the closest the search intensity is

from the obsolescence rate, the largest is the aggregate intensity and the greater

the consumer welfare is. Although this prediction seems puzzling, sequential

competition implies that each entity behaves as a monopolist facing a residual

demand curve. When the search intensity is larger, the measure of firms is smaller

(because companies are larger), but consumers are better off because the average
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number of entities in each market is larger. Finally, I discuss the case with entry

costs and show that my argument still applies.

This paper is structured as follows: Section 3.3 presents the model and its main

consequences, Section 3.4 derives the main implications. Finally, I summarize the

main results and present my conclusions in Section 3.5.

3.2 Related Literature

My paper is associated with the literature on Stackelberg Competition (SC), which

started with von Stackelberg (1934) and includes, for example, Robson (1990),

He et al. (2007) and Julien (2011). Interestingly, Anderson and Engers (1992)

show that when the price-inverse demand function is linear each firm behaves

as a monopolist facing a residual demand curve inherited from its predecessors.

This article also demonstrates that this result can be extended to a wide class of

demand functions (i.e. the exponential demand functions). In Etro (2008) the

author examines a market in which a firm has a first-mover advantage over other

competitors and entry in that market is endogenous; the behaviour of the leader

is very different from a traditional SC model. Instead of being concerned with

the reaction of competitors to its own choices it now cares about the effect of

its choices on the entry decision. In particular, the leader becomes significantly

more aggressive. Lastly, Julien et al. (2011) shows that under linear demand and

constant marginal costs firms operate as myopic rational agents; the number of

potential followers is deliberately ignored in the decision process and strategies

are the same, irrespective of where a firm is in the hierarchy. My paper builds on

these articles and provides a mechanism to make the quantity of competitors in
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a market endogenous. In addition, I compute in closed-form some concentration

measures implied by SC.

To that extent my paper belongs to the recent field on the relationship between

markups and the labour share. Notably Autor et al. (2017) is an empirical paper

that relates the rise of giant firms with a fall in the aggregate labour share. The

authors test several implications of that hypothesis and find evidence that some

mechanisms at work favour the most productive firms, leading to an increase in

product-market concentration, which translates into a reduction of the labour

share. Related to this Loecker and Eeckhout (2017) take the rise in markups as

given and derive a series of macroeconomic implications that should result from

that. In particular, they show that the rise in markups has a negative effect on the

labour share, capital share and low skilled wages. My model shows that when the

economy is converging to a distribution with larger tails, markups should increase

in unison with a fall in the aggregate labour share, which is consistent with these

observations.

A significant part of my analysis relates to the literature on firm-size dynamics,

which started with the seminal work of Hopenhayn (1992). In his paper, Hopenhayn

designed a dynamic stochastic model which characterizes processes for entry and

exit and for individual firms’ outputs and employment. He investigates the long-run

properties of the economy and in particular, size, age, profits and the value of

companies. This article has been followed by a large amount of literature on

firm-size distribution, which includes for instance Gabaix (2009), Luttmer (2010),

Luttmer (2011) and Gabaix (2016). Most of these papers are refinements of

Hopenhayn’s article and generate more realistic predictions. However, the majority

of these articles belong to the class of expanding variety models where markups

are constant, which is far from reality. In addition these models cannot account for
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creative destruction, in which economic growth is driven by new entities replacing

incumbents (i.e. Acemoglu (2008)). My framework contributes to this literature

by providing a new approach for modeling firm growth. Importantly, it explicitly

models markups and pricing strategies through sequential competition.

Finally, my model belongs to the literature on search and matching frictions which

is based on Diamond (1982) and includes Burdett and Vishwanath (1988), Stahl

(1989) and Duffie et al. (2005). The paper which is the most closely related to mine

is probably Luttmer (2006). This article designs a model of search and matching

between consumers and firms. Given some specific conditions (i.e. the population

of consumers grows at a positive rate and the mean rate at which incumbent firms

gain customers is positive) the model is able to generate a firm-size distribution

which has a Pareto-like right tail which is consistent in the data. What makes

my framework very different is that I do not model consumers explicitly; instead,

my economy is formed by a continuum of markets which are subject to linear

price-inverse demand functions. Because of this I can discuss markups which are

constant in Luttmer’s paper.

3.3 Model

3.3.1 The entrepreneurs’ decision

Time is continuous. The economy is populated by a measure A of agents and a

unit continuum of segmented markets i ∈ [0, 1]. An entrepreneur can set up a firm

by finding a valuable idea (i.e. a market). The arrival of an idea is random and

comes at a cost; as long as entrepreneurs pay a flow utility cost κ, they will find

a market after an exponentially distributed waiting time with mean 1/λ. Firms
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enter sequentially into market i and behave strategically, taking into account the

strategies of entrants. Firm j finds a market with a search intensity λt,j. Upon

finding a market firm j has to decide which quantity to supply. I assume that there

are no barriers to entry, nor fixed costs. Each market is characterized by a linear

inverse demand function, Pi(Qi) = ai−bQi, where Qi is the total quantity produced

in this market. Each firm located in market i produces a homogenous product and

competes in quantities, submitting a quantity of qi,j. Thus, the aggregate supply

in market i is the sum of all individual productions, Qi =
∑J

j=0 qi,j. When firms

choose their production level qi,j they must stick with it. Profits in market i are

collected at the event of a Poisson jump, distributed with intensity η. Then, the

market disappears. When this event occurs every firm in market i consumes their

profit πj(qj, Qi) = qj× [ai−bQi−c], where c is the marginal cost.2 In the meantime,

new markets appear at the same rate η so that the measure of markets remains

constant. From the law of large numbers for independent random matching the

total meeting rate is Λ(t) := A×
∫
R+ λ(t)dFt. For any given market firms arrive

in the event of a Poisson jump. Thus, if the previous aggregate production in the

market i was Qi it jumps to Qi + q∗(Qi). Finally, I assume that ai, the intercept of

the demand function in market i, is distributed over [c, ā], ā > c. This formulation

is equivalent to assuming that markets are born with some initial quantity q0 drawn

from Fq0(x) := (ā−x)/b (i.e. a uniform random variable distributed over [c/b, ā/b]).

Nevertheless, since the latter formulation is more tractable I use this approach

in my calculations along with the first formulation (i.e. the heterogeneity of the

intercept of the demand function). To show the equivalence of both formulations

in general let us rewrite the inverse demand function as follows,

D(q, q0) = ā− bq0︸ ︷︷ ︸
:=ai

−bq.

2Which I assume to be the same across all markets and firms.
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Since ai is linearly related to q0, the probability distribution function (PDF) of q0

is a translation of the PDF of ai.

3.3.2 Market Structure

Firms compete sequentially as discussed in von Stackelberg (1934); when a firm

enters into a market they take the present supply as given and choose their quantity

by taking into account the strategy of potential entrants. An equilibrium, if it

exists, is therefore a Subgame Perfect Equilibrium. In contrast to Etro (2008) a

firm that discovers a market will always enter if it can; because there are no fixed

costs, an incumbent willing to prevent the entrance of a competitor has to produce

q = (ai − c)/b, which makes that strategy a zero-profit investment. Furthermore,

not only will the firm make a profit but they can also search faster.3 Because at

the market level firms enter randomly the profit of the ith firm, conditional on the

entrance of l entities, equals,

πj(qj,Qi) = qj ×
[
ai − b

(
j−1∑
k=1

qk +
I∑

k=j+1

ρkqk + qj

)
− c
]

︸ ︷︷ ︸
:=markup in market i

,

where ρk is the probability that entity k enters. The first part is the quantity

produced by firm j and the rest is the markup at the time this market pays off.

Some papers, such as Anderson and Engers (1992), show that this problem can

be solved for a wider class of demand functions as long as the marginal cost is

constant. Hence, solving this problem by backward induction leads to the next

proposition.

Proposition 3.1 (Stackelberg Competition) The subgame perfect Nash equi-

3This assumption is relaxed at the end of the paper.
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librium of the Stackelberg Competition game with search frictions is entirely

characterized by the following strategy; upon finding a market with production

Q−j, the entrant produces,

q∗i,j(Q−j) =
ai − c− bQ−j

2b
.

3.3.3 Markets Dynamics

Let us define a = ā−c, where a is the demand intercept, c is the marginal cost and ā

is the upper limit of the support of F (x). The stationary cross-sectional distribution

of quantity produced across all markets is given by p(q), to be determined in

equilibrium. Letting pt(q) be the PDF at an instant t, the measure of markets with

aggregate production Q ≤ q is given by,

Φt(q) :=

∫ q

0

pt(x)dx.

This equation is piecewise; from 0 to a
2b

there are no interactions between the search

channel and the heterogeneity of the demand function, since a firm would never

produce less than a
2b

when Q = 0. Accordingly, the dynamics of the cross-sectional

distribution for q ∈ [0, a
2b

] satisfies,

Φ̇t(q) = η[F (q)− Φt(q)]− ΛΦt(q), (3.1)

where the dot stands for the time derivative. From a
2b

to a
b

the search channel

interacts with the demand heterogeneity. A firm that finds a market with an

aggregate quantity Q ∈ [ a
2b
, a
b
] will set its own production according to Proposition
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3.1. Hence, the dynamics of the measure of markets with Q ≤ q is given by,

Φ̇(q) = ηF (q)− (Λ + η)Φ(q) + ΛΦ(2q − a/b), (3.2)

where the dynamic is very similar to equation (3.1), except that there is a measure

Λ[1 − Φ(2q − a/b)] of markets which are contacted and still obey the condition

Q ≤ q. The first term on the right-hand side of equation (3.1) reflects that at every

instant a measure η of new markets appear. Meanwhile ηΦt(q) is the measure of

markets which pay off. Upon finding a market a firm chooses its individual supply;

the post-meeting aggregate production Qi results from summing up q∗i,j(Qi,−j)

with Qi,−j. It is worth noting that because prices are defined on the positive real

line, 0 < Q < a/b. In the long term Φ̇t(q) = 0 and it follows that the stationary

distribution satisfies the functional equation,

Φ(Q) =
η

η + Λ
F (Q) +

Λ

η + Λ
Φ(2Q− a/b)1{Q≥ a

2b
}. (3.3)

This functional equation falls into the class of Schröder’s Equation. Lemma 3.1

establishes how to solve an Abel Equation which clarifies how to solve Schröder’s

Equation.

Lemma 3.1 (Abel Equation) Let f(x) = a+ bx and h(c) = 0. Then,

h(x) = log

(
a+ x(b− 1)

a+ c(b− 1)

)
/ log(b),

is the only function that satisfies the Abel Equation,

h(f(x)) = h(x) + 1.
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For the cross-sectional distribution of markets: c = 0, the intercept equals −a/b

and the slope equals 2. Hence, Lemma 3.2 builds on Lemma 3.1 to solve the

Schröder’s Equation.

Lemma 3.2 (Schröder’s Equation) Let f(x) = a+ bx and h(c) = 0. Then,

g(x) = sh(x), h(x) := log

(
a+ x(b− 1)

a+ c(b− 1)

)
/ log(b),

is the only function that satisfies the Schröder’s Equation,

g(f(x)) = sg(x).

From that point I further assume that F (x) = (b/a)x, though equation 3.3 admits

a unique distribution. After substituting F (x) the next proposition establishes

the functional form of the stationary cross-sectional (cumulative) distribution of

markets with aggregate production Q ≤ q, Φ(q).

Proposition 3.2 (Stationary Distribution) The stationary cross-sectional (cu-

mulative) distribution of markets with aggregate production Q ≤ q satisfies,

Φ(q) =

[
Λ

η − Λ
− 2Λη

(η + Λ)(η − Λ)

b

a
g(q)

]
×
(
η + Λ

Λ

)α(q)−α(g(q))

+

b

a

η

η − Λ
q − Λ

η − Λ
,

(3.4)

where,

α(x) =
log
(
1− x b

a

)
log(2)

,

g(x) =2b−α(x)c
(
x− a

b

)
+
a

b
.
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Figure 3.1 shows this distribution for different levels of aggregate intensity. What

Figure 3.1: Stationary cross-sectional distribution of markets

This figure shows the stationary cross-sectional distribution of markets Φ(x) with
aggregate supply Q ≤ x. Each object is computed with different levels of aggregate
intensity, ranging from its lower bound := ηλ0A

η+2λ0
(when λ→ 0) to its upper bound

:= ηA (when λ → η). It appears that the higher Λ the lower Φ(x) is. Thus,
Φ(x; Λ1) second order stochastically dominates Φ(x; Λ2), with Λ1 > Λ2.

remains is the analysis of the stability and the uniqueness of this fixed point. Since

equation 3.3 is a difference equation uniqueness is guaranteed. Then, the next

proposition establishes that the stationary distribution is unique and globally stable

as long as the aggregate intensity Λ only depends on time.

Proposition 3.3 (Global Stability) When Λ(t), the aggregate intensity, con-
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verges to a unique fixed point Φt(q), the measure of markets with Q ≤ q, converges

globally to a unique distribution (i.e. the one that satisfies equation (3.3)).

3.3.4 Firm-Size Dynamics

This model allows firms to grow as a function of the number of markets in which

they are competing. The search intensity of firm j at time t, λt,j is a function of

the number of markets Nt,j in which this firm is present. It is defined as follows,

λt,j :=

 λNt,j, λ < η for Nt,j > 0,

λ0 for Nt,j = 0.
(3.5)

This parameterization generates spillovers on the size of a firm; the larger a firm

the bigger its research and development unit and the faster its contact rate. Since

each market independently pays off with intensity η, the intensity at which firm j,

competing in N markets, sees one of its markets pay off is given by η ×N . This

process is shown in Figure 3.2. When a firm is not competing in any market the

entrepreneur is alone and searches at a rate λ0. Since this firm cannot receive

profits from markets in which it is not competing the state space is bounded above

zero. Then, given that a firm is competing in one market, it must hire one employee

and can search at a total rate of λ. If the market in which this firm is competing

pays off before it finds a new market this firm would have to fire its employee.

Hence, the entrepreneur would be alone again. Otherwise, this firm would be

competing in two markets. Finally, each market pays off independently at rate η.

Thus the total rate is η×N when a firm competes in N markets. The process that

characterizes the number of markets in which a firm is competing is therefore a

birth-death process (BDP). The infinitesimal generator is given by the following
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matrix,

Q :=



−λ0 λ0

η −(η + λ) λ

2η −2(η + λ) 2λ

3η −3(η + λ) 3λ

. . .
. . .

. . .

Nη −N(η + λ) Nλ


.

Figure 3.2: Firms’ size process

This figure underlines the main mechanisms behind the firms’ size process.
Entrepreneurs start by searching for an idea at a rate λ0. Once they find one they
transform it into a final product, hire one employee and search for a new idea with
a searching intensity λ. At this stage they can either find a new idea, transform it
into a final product, hire a new employee and search at a new intensity 2× λ, or
see their product become obsolete. In the last case they must fire one employee.
This mechanism can then be transposed for any size of firm.

0 1 2 3 n− 1 n n+ 1

λ0 λ λ× 2 λ× (n− 1) λ× n

η × (n+ 1)η × nη × 3η × 2η

The Backward Kolmogorov (BK) equation satisfies Ṗ = QP(t). Using the fact

that P(0) = Q, the explicit solution of the BK equation can be formally rewritten

as P(t) = eQt =
∑∞

n=0
Qntn

n!
. Given an initial firm-size distribution F0 the time t
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cross-sectional distribution equals,

Ft = P(t)× F0. (3.6)

Importantly, the time t average intensity at which firms find markets is given

by Λ(t) = λ0ft(0) + λ
∑∞

i=1 i × ft(i), where ft(i) is element i + 1 of vector Ft.

Consequently, the joint dynamics of firm-size and market supply for an initial

distribution of firms F0 and markets Φ0 satisfies equations (3.1)-(3.6). Since the

firm-size process is an infinite state continuous-time Markov chain, matrix Q is

of infinite dimensions. To avoid this problem I assume that N is bounded bellow

some threshold N̄ . Hence, I replace the very last diagonal element with −N̄η

instead of −N̄(η + λ), which makes the cross-sectional distribution sum to one.

Then, when N̄ is chosen to be large enough, this procedure allows the process to

be simulated easily and does not distort it. Figure 3.3 exhibits the dynamics of the

important statistics produced by the model. The top panel shows the aggregate

search intensity for different levels of λ0. The bottom panel plots the measure

of firms competing in the economy as time passes. Importantly, there is a large

reduction in the number of firms with time. While the average firm size increases

this effect is counterbalanced by the reduction of the number of firms. This means

that if entrepreneurs innovate at a faster pace than the rate at which products

become obsolete (λ0 > η) an economy in which entrepreneurs do not hire leads to

a higher aggregate search intensity.

3.3.5 The Long-Run Economy

Using standard results in the birth-death process literature I characterize the

stationary distribution in the next proposition.
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Figure 3.3: The dynamics of the model’s main statistical properties

The upper figure shows the dynamics of the aggregate intensity and the lower figure
shows the measure of firms against time. I have assumed that when t = 0 the
economy is populated by entrepreneurs only (i.e. P(n > 0) = 0). This explains why
the measure of firms is monotonically decreasing over time. On the other hand, as
the average firm size grows the average search intensity increases. Nevertheless, this
effect is counterbalanced by the reduction of the number of firms. This behaviour
is shown in the upper diagram.
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Proposition 3.4 The stationary firm-size distribution is given by,

F∞ = 〈f∞(0), f∞(1), f∞(2), · · · 〉,
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where,

f∞(0) = 1/S,

f∞(i) = λ0

ηS

(
λ
η

)i−1 (
1
i

)
, i > 0,

S = 1 + λ0

η

∑∞
i=1

(
λ
η

)i−1
1
i

= 1− λ0

λ
log
(

1− λ
η

)
<∞.

Figure 3.4 shows the firm-size distribution for different levels of λ. Thanks to

Proposition 3.4 the long-run average matching intensity converges to,

λ̄∞ =
λ0

S

η

η − λ.

Because the measure of workers is constant the measure of firms J is strictly smaller

than A. In particular, the aggregate intensity must satisfy λ̄∞× J . Proposition 3.4

implies that the labour force required by the model has to be
∑∞

i=0 f∞(i)×(i+1) =

1 + λ0

S(η−λ)
. However, recalling that the measure of workers is constant and equals

A, the measure of firms J is given by A×
(

1 + λ0

S(η−λ)

)−1

, which implies that the

long-term aggregate intensity satisfies,

Λ̄∞ =
Aηλ0

λ0 + S(η − λ)
.

Hence, an economy with large firms has a smaller measure of entities.

3.3.6 Value Functions in Equilibrium

Bellman’s principal of optimality implies that the value function for a firm that

supplies quantity x in a market with aggregate supply Q satisfies,

V (Q, x) = E
[
e−r(τη∧τΛ)

{
1{τη≤τΛ}(a− bQ)x+ 1{τη>τΛ}V

(
a+ bQ

2b
, x

)}]
.
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Figure 3.4: Probability mass function: number of competitors per market

This figure shows the probability distribution function of the number of competitors
per market given the search intensity λ. When this quantity is zero a match is
not possible, resulting in a delta function at zero. When firms search with strictly
positive intensity the number of competitors per markets rises quickly. Nevertheless,
the figure makes it clear that a search intensity near zero is not a desirable outcome
for consumers; competition between firms is almost not present. Even worse, most
of the markets have no firms providing a supply function. As search intensity rises
inefficiencies vanish.

Here, τη denotes the time at which this specific market matures. Similarly, τΛ is the

time at which a new firm finds this market. A firm competing in this market faces

two different events; either a new firm enters, or this market matures. Thus, the

expectation is computed with respect to the distribution of the minimum between
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τη and τΛ := τη ∧ τΛ. Then, the indicator function 1{τη≤τΛ} corresponds to the

probability that the market matures before any other firms enter multiplied by the

corresponding payoff (the agent collects the profits, [a− bQ]x). The second part is

essentially the same; 1{τη>τΛ} accounts for the probability that one firm discovers

this market before it pays off. When this event occurs the total quantity supplied

in this market jumps by q∗(Q) = a−bQ
2b

. After integrating both sides with respect

to the distribution of τη ∧ τΛ, this equation becomes,

(r + η + Λ)V (Q, x) = η(a− bQ)x+ ΛV

(
a+ bQ

2b
, x

)
. (3.7)

Here, I use the fact that Q+q∗(Q) = a+bQ
2b

. The boundary condition is V (a/b, x) = 0.

Equation (3.7) has a unique solution which is discussed in Proposition 3.5. Impor-

tantly, the boundary condition used here implies that only the non-homogenous

part of the functional equation matters.

Proposition 3.5 The value function of firm j producing qi,j in market i with total

supply Qi, is given by,

V (Qi, qi,j) =
aη

r + η + Λ/2

[
1− b

a
Qi

]
× qi,j. (3.8)

Figure 3.5 shows the continuation value against the individual and the aggregate

supply. In order to find the value associated with searching VS one must recall

that the search intensity is provided by equation (3.5). In other words, the value
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Figure 3.5: Value associated with competing in a market

This figure shows the value of competing in a market which depends on Q, the
aggregate supply in this market and q, the individual supply.
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of searching depends on the number of markets in which the firm is competing.

Accordingly, it must satisfy,

VS(N) = E

[
e−r(τλ(N)∧τη×N)

{
1{τλ(N)>τη×N}VS(N − 1) +

1{τλ(N)<τη×N}VS(N + 1)

}]
, N ≥ 1,

(3.9)
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and VS(0) = E [e−rτλ0VS(1)]. Here, τλ(N) denotes the time at which firm j,

competing in N markets, finds market N + 1. Upon finding a market a firm

produces the quantity q∗(Q) = a−bQ
2b

, making the total production in this market

jump from Q to a+bQ
2b

. Otherwise, τη×N denotes the time at which one market of

firm j pays off. After some algebra equation (3.9) becomes,

[
r + (λ+ η)×N

]
VS(N) = λ×NVS(N + 1) + η ×NVS(N − 1). (3.10)

When N = 0 the value associated with searching satisfies (r + λ0)VS(0) = λ0VS(1);

these firms receive the continuation value of competing in one market, discounted at

a rate adjusted by the entrepreneur’s search intensity. When N is large this equation

is well approximated by the following second order linear difference equation with

constant coefficients,

VS(N + 1)− λ+ η

λ
VS(N) +

η

λ
VS(N − 1) = 0.

The solution of this equation is VS(N) = AxN1 +BxN2 , where x1 = η/λ > 1, x2 = 1

and A and B are two constants. Hence, when N is large the following relation

holds,

log[VS(N)] = c+ log(x1)N,

where c is a constant. Figure 3.6 shows the continuation value associated with

searching. The value associated with searching increases exponentially with

N , which can be interpreted as the number of employees in the research and

development unit. Finally, let us define nj := 〈Qj,1, Qj,2, · · · , Qj,N〉 ∈ RN,1,

the vector of the aggregate supply in each market firm j is competing in and

xj := 〈qj,1, qj,2, · · · , qj,N〉 ∈ RN,1 the vector of its individual production. Then, the
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Figure 3.6: Value associated with searching with n employees

This figure shows the value associated with searching with n employees. While the
approximation is not exact, I show in this paper that the log of this function is
approximately linear with a slope of log(x1), where x1 = η/λ.
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continuation value of a firm FV : RN,2 → RN,1 is given by,

FV (nj,xj) = VS(Nj) +
N∑
i=1

V (Qj,i, xj,i).
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3.4 Implications of the Model

Given my characterization of the steady-state equilibrium above, it is possible to

derive many objects analytically. In this section I use my model as a laboratory and

focus on analytical results that are important to the literature. In Section 3.4.1 I

follow a market and characterize the probability distribution function of the number

of firms competing in a given market. Equipped with this object I can discuss

how competitors share the market and how this competition structure affects the

consumer welfare. I also relate these statistics with some of the exogenous variables

which are, for instance, the search intensity λ and η the rate at which products

are rolled over. In Section 3.4.2 I follow a firm and discuss the stationary firm size

distribution implied by my model and also discuss the consequences of having large

firms in an economy.

3.4.1 Following Markets

Since every market represents consumption needs it becomes apparent that some

of these will not be supplied with any products. The structure of the model makes

it clear that once we know Q0 and Q we can deduce the number of firms in that

market. Nevertheless, it is more interesting to infer the probability distribution

function given Q only. Thus, one can use that function ex ante to characterize any

expected variables related to markets.

Claim 3.1 The probability that i firms are competing in market j is given by,

P (N = i) :=
η

Λ

(
Λ

η + Λ

)i+1

.

This PDF is independent of the functional form of F (x). The probability P (N = 0)
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corresponds to the likelihood that a market has no current supplier. Similarly, the

probability P (N = 1) corresponds to the likelihood that customers in a market

face a monopolist, etc. One can easily characterize the vector of market shares

[a1, · · · , aN ] in a particular market.

Claim 3.2 The market share of the ith > 0 firm is given by,

ai :=
1

2− 21−N

(
1

2

)i−1

.

A corollary of Proposition 3.1 is that the market share decreases geometrically.

Nevertheless, since the shares must sum up to one, one must adjust a1 such that

this equality is satisfied. Equipped with this I can obtain a measure reflecting

the market concentration; the Herfindhal index is an intuitive metric fulfilling this

purpose which is defined as the sum of the squared market shares.

Claim 3.3 The Herfindhal index in a market with N > 0 firms is given by,

H(N) := a2
1

N∑
i=1

(
1

4

)i−1

.

Combining the probability distribution function discussed here with the cross-

sectional distribution of markets I can find a new distribution reflecting, ex ante,

the measure of markets with exactly N firms competing in it. Then, associating

this with a concentration index I obtain the expected concentration across the

whole market space, which is shown in Figure 3.7. Finally, I compute two additional

important distributions in closed-form.

Claim 3.4 (ΦM(x) and Φq∗(x)) The cross-sectional distribution of markups ΦM
t (x)

is defined as P(a − bX ≤ x) = P
(
X ≥ a−x

b

)
= 1− Φt

(
a−x
b

)
. The cross-sectional
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Figure 3.7: The model’s implied aggregate intensity and Herfindahl index

The figure shows different statistics from the model. The first panel plots the
aggregate intensity, which is a strictly monotonic increasing function of λ in the
range (0, η). The lower panel shows the expected Herfindahl index, which is a
measure of the competition in a market. Here I compute this quantity for all
markets and weight these indexes by their respective probabilities. As might also
be expected this quantity is decreasing with λ.
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distribution of individual supply per market Φq∗

t (x) is defined as P
(
a−bX

2b
≤ x

)
=

P
(
X ≥ a

b
− 2x

)
= 1− Φt

(
a
b
− 2x

)
.

The function ΦM
t (x) characterizes the measure of markets where the markup m is

bounded bellow x. Written differently, there is a measure ΦM
t (x) of markets with
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markups m ≤ x. It is worth noting that markups are the same for all the firms

that are competing in the same market. This is the case because marginal cost is

constant across all markets and for all firms. The function Φq∗

t (x) characterizes

the distribution of the reaction function of firms; when a firm finds a market its

aggregate quantity is distributed according to Φt(x). Since the optimal response of

the entrant is to produce q∗(x), the distribution of the reaction before knowing the

exact aggregate market supply x is drawn from Φq∗

t (x).

3.4.2 Following Firms

The framework discussed in this paper enables me to model the firm-size process

explicitly; Section 3.3.4 treats this problematic in greater detail. The fact that

the size of firms follows a birth-death process renders possible the calculations of

the firm-size distribution in closed-form. I recall that the meeting rate of a firm

competing in n markets equals λ× n. Alternatively, n can be interpreted as the

number of employees working in that firm.

Claim 3.5 (Firm-size) The probability that a firm has i employees is proportional

to,

(
λ

η

)i−1(
1

i

)
, i > 0.

Importantly, the model predicts that above a critical size, which depends on how

close η and λ are to each other, the behaviour of the firm-size distribution changes

dramatically; the firm-size distribution is a mixture of a power law with a unit

exponent (a Zipf law) when i is small and an exponential distribution when i is

large. The closer λ is from η the longer the distribution behaves like a power law.

Nevertheless, for a stationary distribution to exist, λ must be smaller than η. Hence,
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the distribution will always behave like an exponential distribution when i is large;

a larger λ will simply delay the change of regime. Figure 3.8 consists of two plots;

the upper panel shows the firm-size distribution for different levels of the search

intensity λ. Since η is fixed, the higher λ the longer it takes for the exponential

part to come into play. The second panel illustrates the firm-size distribution when

η ≈ λ; here the power law clearly dominates the exponential part. Hence, as long

as λ is maintained close to η the endogenous firm-size distribution is consistent with

what is seen in the data. The question then arises “When do large firms appear

larger than the others?”. Is it when λ is small or when λ ≈ η? It turns out that

the higher λ the larger large firms compared to average-sized firms. This relation is

illustrated in Figure 3.9, which is computed by normalizing the average size of large

firms (above xth percentile) by the average size. For 0 < λ < η, the probability of

n being larger than x is, P(n ≥ x) = λ0

λS

∑∞
i=x

(
λ
η

)i
1
i
. Therefore I can find x by

solving the fixed-point equation P(n ≥ x) = 1− xth. Then the average firm size of

the firms that are above the xth percentile equals λ0

λS

∑∞
i=x

(
λ
η

)i
1+1
i

. After some

algebra the average firm size of the top firms becomes,
(
λ
η

)x
L(λ/η, 1, x).

Claim 3.6 The ratio of the average size of large firms normalized by the average

size of all firms satisfies,

η

η − λL
−1(λ/η, 1, x).

where L(z, s, a) :=
∑∞

k=1
zk

(a+k)s
is the so-called Lerch Transcendent function and x

satisfies P(n ≥ x) = 1− xth.

When λ is zero there are only two types of firm; either the entrepreneur is alone,

or the firm has one employee, which implies that the largest firms have at most
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Figure 3.8: The model’s implied stationary firm-size distribution

This figure shows the stationary firm-size distribution for different levels of λ. As
discussed in this paper, the function behaves proportionally to a power law for low
i and proportionally to an exponential distribution when i is large. The second
plot treats the case when λ = 0.9999η.
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two workers. Taking the percentile high enough the average firm size above that

threshold is two while the average firm size equals η+2λ0

η+λ0
.

3.4.3 The Model With Fixed-Costs

In this paper I design a model where firms do not face fixed costs upon entering a

market. This assumption makes the model highly tractable since the strategy of
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Figure 3.9: The model’s implied ratio of the largest firms to the average-sized
firm

This figure shows the model’s implied ratio of the largest firms to the average-sized
firm for different levels of λ. As discussed in this paper, this function behaves
proportionally to a power law for low i and proportionally to an exponential
distribution when i is large. The second plot treats the case when λ = 0.9999η.
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entrants is relatively trivial, as exhibited in Proposition 3.1. Thus, a firm invests in

these projects that only have positive net present value. Though this assumption

is fairly realistic in the Tech area, it is less so in other fields. Accordingly, I will

discuss what occurs when this assumption is relaxed.
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3.4.3.1 Generalities

When fixed costs are introduced into the model incumbents have to take into

consideration the impact of their strategies on the entry decision of potential

competitors. In Etro (2008) the entry decision is endogenous and the behaviour

of the leader is very different from the traditional behaviour. Instead of being

concerned with the reaction of competitors to its supply the leader focuses on the

entry decision and becomes significantly more aggressive. This paper shows that

when goods are homogeneous and marginal costs are constant the leader finds it

optimal to increase output until no rivals want to enter. Here, because entrants

show up only with some probabilities incumbents will behave somewhere in between

these two scenarios. Moreover, I also need some conditions on the level of the fixed

costs c which are discussed in Assumption 3.1.

Assumption 3.1 (Nontrivial solution) c ≤
(
a
4

)2 1
b
.

In order to guarantee the existence of a nontrivial solution (when c > 0) I need

Assumption 3.1 to hold. To see why assume it does not; then, q∗∗ := a
b
− 2
√
bc >

q∗ := a
2b

. Thus, an incumbent that chooses the monopoly quantity is guaranteed

never to face entrants. Hence, given Assumption 3.1 holds, let us further assume for

illustrative purposes that at most three firms can enter in market i and the value

associated with searching does not matter (the case with VS is treated separately

later). Additionally, let us call the first firm to enter A, the second B and the

third C. Firm C will always act as discussed earlier and produce q∗(Q) = a−bQ
2b

,

Q = qA + qB. However, if Q ≥ Q∗ := a
b
− 2
√

c
b
, then q∗(Q) ≤ 0. Hence, firm

C chooses q∗ = 0. Building on this B has the option to preclude the entrance

of C by choosing q∗∗ := a−qA
b
− 2
√

c
b
, where qA is the quantity produced by A.

In this case the profit of firm B is π∗∗B = 2(a − bqA)
√

c
b
− 5c. If B chooses not
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to prevent C from entering B chooses q∗ := a−bqA
2b

and makes an expected profit

of π∗B := (a−bqA)2

4b

(
1− 1

2
ρ
)
− c. Therefore, B will choose q∗ if π∗B ≥ π∗∗B and q∗∗

otherwise. Let us assume now that B do not preclude the entrance of C; then

A can allow other firms to enter by choosing q∗ = a
2b

or preclude entrants from

joining with q∗∗ = a
b
− 2
√

c
b
. However, the actions of B must be consistent (i.e. A

chooses its quantity by presuming B will not preclude C). Lastly, in the case that

B does not let C enter, A can preclude B from entering as well by choosing q∗∗. If

A chooses not to do so its quantity must be consistent with the behaviour of B.

Thus, A chooses q∗∗∗ := a
2b

+ ρ
1−ρ
√

c
b
> q∗4. What matters here is that, conditional

on the behaviour of its followers, A will produce at least the monopolist quantity q∗

(which corresponds almost one-to-one to the no fixed-costs model). If A precludes

competitors from entering into the market consumers will immediately receive Q∗,

which makes them strictly better off. Alternatively, the leader can also presume

that one of its followers could enter and itself saturate the market. Here again

consumers are better off since q∗∗∗ > q∗.

When leaders always preclude the entrance of their followers the dynamics of the

cross-sectional probability mass function (PMF) of markets satisfies5,

ṗt(0) = η − (η + Λ)pt(0),

ṗt(Q
∗) = Λpt(0)− ηpt(Q∗).

Hence, the stationary PMF is given by,

p(0) = η
η+Λ

,

p(Q∗) = Λ
η+Λ

.

4It is worth noting that in a three firm model as long as b ≤ 1 the leader will always preclude the
entrance of its followers knowing that the 2nd firm will exclude the 3rd.

5Assuming no heterogeneity across markets.
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Therefore, the higher the search intensity the higher the consumer surplus. Building

on Sections 3.3.4 and 3.3.5, a firm finding a market has a probability p(Q∗) that

it is already saturated. Thus, the search intensity at which a firm finds a non-

saturated market is λt,j×p0. Substituting that rate into the infinitesimal generator

of the birth-death process the aggregate search intensity Λ satisfies,

Λ̄∞ =
Aηλ0 × p0

λ0 × p0 + S(η − λ× p0)
, S = 1− λ0

λ
log

(
1− λ× p0

η

)
.

3.4.3.2 Impact of Searching on the Equilibrium Strategy

In this section I discuss a model where firms only produce in non-saturated markets;

if joining a market is a positive NPV project, the firm enters. If the entry costs are

higher than the benefits associated with joining that market the firm abstains from

starting production. Alternatively, firms could take into consideration that joining

a market that would not appear profitable at first can be optimal; by growing,

the value associated with searching increases. Hence, the decision to enter is no

longer static; it depends on the number of markets the firm is competing in. If

VS(N) ≥ VS(N + 1)− c the firm does not enter. Nevertheless, if the gain associated

with entering that market covers the entry cost, the firm will join. When a firm

uses this strategy small firms are more affected by fixed costs than large firms.

Since VS(N) behaves approximately as xN1 , any N larger than log
(

c
x1−1

)
/ log(x1)

would make a firm of that size always willing to enter, no matter the loss that will

materialize. On the other hand an entrepreneur would not adopt this strategy.

In this alternative economy the number of active firms is even smaller. This

problematic is reinforced when large firms can influence the entrance costs; by

setting it higher their decision to enter is not affected, while small firms are even
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more reluctant to enter. Hence, large firms tend to over invest while small firms are

inactive. In my framework the economy is not impacted by such deadweight costs.

Moreover, since the measure of active firms is larger consumers end up better off.

This discussion clarifies how bad anti-competitive practices are and in particular

dumping. It is worth noting that when this behaviour is banned my framework is

more realistic and, because the law prohibits dumping, it is consistent to assume

that such strategies cannot be part of any equilibrium outcome.

3.5 Concluding Remarks

In this paper I design a dynamic model where firms are endowed with a search

technology which they use for creating new products. Firms compete sequentially

in segmented markets, taking into account the strategies of potential entrants to

determine their respective actions. Assuming a linear price-inverse demand function,

homogenous goods and constant marginal costs make the model easily tractable

and the stationary cross-sectional distribution of quantities in each market solvable

in closed-form. With these assumptions the firm-size process belongs to the class

of birth-death processes, which make the aggregate matching rate and the firm-size

distribution solvable in closed-form as well. Building on this framework I can

compute many objects of potential interest such as some measures of concentration

within and across markets, the cross-sectional distribution of markups or the

continuation value of firms. All these implications are discussed in great detail and

can be tested empirically.

My paper tackles the problematic of large companies and, specifically, the conse-

quences that they have on consumer welfare. My model suggests that the rise of

large entities is part of a natural mechanism; the firm-size distribution will always
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be a mixture of a power law and a distribution with exponential decay. My results

clearly advocate that the closest λ is to η, the largest is the aggregate intensity.

Hence, the fatter the tails the greater the consumer welfare. At first, this result

might seem surprising. Indeed, companies grow by cannibalizing others; if the

measure of firms is small one can expect corporations to act as a monopolist. It

turns out that under sequential competition, as modeled here, each entity behaves

as a monopolist facing a residual demand curve. Therefore, they all operate like

monopolists and hope no one else will join. The only credible way for incumbents

to preclude the entrance of opponents is to saturate the market, which is even

better for consumers. Thus, though the measure of firms is smaller, consumers

are better off when the matching rate increases, because the average number of

entities in each market is larger. With fixed costs, the reasoning still applies though

the intuition is slightly different; consumers are better off because the measure of

saturated markets increases with the aggregate search intensity.

In general, one sees entry costs as an anti-competitive toolkit that is used in order

to keep opponents outside of their respective markets. While this statement is true

my model shows that it is not necessarily at the expense of consumers. Indeed, with

sequential competition the only way for the incumbent to preclude the entrance

of rivals is to adopt a strategy that makes the reservation value associated with

joining that market lower than their reservation value. Here, the incumbent has to

choose a quantity that would immediately saturate the market (no one would have

entered beyond that point, no matter the structure of the market).

Finally, a question raised initially was related to whether big technological compa-

nies are impairing consumer welfare. While these companies spend large amounts of

capital for acquiring start-ups it is fair to see this strategy as a way to preclude the

entrance of potential competitors. Though in the short-run this behaviour is indeed
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problematic my model suggests that the firm-size distribution and specifically the

rise of large corporations is a natural mechanism. Down scaling these entities will

result in other rivals taking their dominant place. More importantly, if Amazon,

Facebook and Co. acquire start-ups with the aim of maintaining their relative

position they can only expand at a suboptimal growth rate and will eventually be

replaced by organizations that have not engaged in these types of misconduct.
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3.A Proof

Proof of Proposition 3.1. Let N ≥ 1 be the number of firms competing in i.

Moreover, Qi,j is the quantity produced in market i before firm j enters. Assume

firm j enters and knows no other firm will join that market afterwards. Then, the

profit function of firm j in market i is,

πj(qi,j, Qi,j) = qi,j(a− b[qi,j +Qi,j]).

Firm j chooses qi,j := argmaxπj(qi,j, Qi,j). Rearranging the first-order condition

(FOC), the optimum is q∗i,j(Qi,j) =
a−bQi,j

2b
. Moreover, because πj is a second order

polynomial uniqueness is guaranteed and it is sufficient to show that
∂2πj(qi,j ,Qi,j)

∂q2
i,j

< 0

to prove that q∗i,j is a maximum, which is true since it equals −b < 0. Now, take

firm j − 1. This is the very last firm which joined market i before firm j. Firm

j − 1 chooses its strategy without knowing if firm j will find that market or not.

The profit function of firm j − 1 in market i satisfies,

πj−1(qi,j−1, Qi,j−1) = qi,j−1(a− b[qi,j−1 +Qi,j−1 + ρqi,j]), Qi,j = Qi,j−1 + qi,j−1,

where ρ is defined as the probability that firm j enters (in this model it equals

Λ/(η + Λ)). Substituting q∗i,j(Qi,j), the profit function can be rewritten as follows,

πj−1(qi,j−1, Qi,j−1) = qi,j−1

(
1− ρb

2

)
(a− b[qi,j−1 +Qi,j−1]),

Accordingly, the optimal strategy of firm j−1, taking into account firm j’s strategy,

is to produce,

q∗i,j−1(Qi,j−1) =
a− bQi,j−1

2b
.
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Finally, take firm n which entered just before firm n+1. Firm n chooses its optimal

quantity without knowing if firms ≥ n would eventually enter or not. The profit

function of firm n in market i satisfies,

πn(qi,n, Qi,n) = qi,n(a− b[qi,n +Qi,n + qi,n+1]).

Substituting q∗i,n+1(Qi,n) the profit function can be rewritten as follows,

πn(qi,n, Qi,n) = qi,n

(
1− ρb

2

)
(a− b[qi,n +Qi,n]).

Accordingly, the optimal strategy for firm n, taking into account the strategy of all

following firms is to produce,

q∗i,n(Qi,n) =
a− bQi,n

2b
.

This confirms what Anderson and Engers (1992) show: when the price-inverse

demand function is linear each firm behaves as a monopolist facing a residual

demand curve inherited from its predecessors. However, one must also consider a

strategy in which incumbents choose their supply in order to prevent the entrance

of new firms. Because I assumed that there are no fixed costs, the only quantity

that would make a new entrant not willing to enter is when q = a/b, which makes

the incumbent’s profit equal to zero. Thus, this strategy will never be adopted in

equilibrium since it makes them worse off. �

Proof of Lemma 3.1. Let x = ψ(y) and f(x) = ψ(y + 1). Substituting x and

f(x) into h(f(x)) = h(x) + 1, Abel shows that this equation can be rewritten as,

psi(y + 1) = f(ψ(y)). Using f(x) = a + bx and substituting successively y + 1,
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y + 2, etc., the previous equation becomes,

ψ(y + n) = a
n−1∑
i=0

bi + bnψ(y).

Letting y = 0 and ψ(0) = c, this equation becomes ψ(y) = a
∑y−1

i=0 b
i + byc, which

must be equal to a+ bx. Taking the reciprocal of that function leads to,

h(x) =
log
(
a+x(b−1)
a+c(b−1)

)
log(b)

.

�

Proof of Lemma 3.2. Taking the base s logarithm of g(f(x)) = sg(x) on both

sides, this equation becomes h(f(x)) = h(x) + 1, which is the Abel equation

discussed in Lemma 3.1. Thus, Lemma 3.1 implies g(x) = sh(x). �

Proof of Proposition 3.2. The homogenous part of equation 3.3 is a Schröder’s

Equation. Using Lemma 3.2, the solution of that equation is,

ΦG(q) = C ×
(
η + Λ

Λ

)α̃(q)

, α̃(x) =
log(x− a/b)

log(2)
− 1.

Similarly, the inhomogeneous part of equation 3.3 is solved by the particular

solution,

ΦP (q) =
b

a

η

η − Λ
q − Λ

η − Λ
.

The uniqueness of the Abel Equation guarantees the uniqueness of equation (3.3).

The treatment of the boundary condition is slightly more complex since there is

one condition for each quantity q0 (the initial quantity in a particular market).
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Thus, the path of the aggregate quantity in that market can only take values on

the set {Q(q0)}i∈{0,1,··· ,imax}, where Q(q0) = (2i−1)a+bq0
2ib

and imax are to be defined.

In other words, when computing the constant one must bear in mind that there

is exactly one path for each q0 ∈ [0, a
2b

[. For instance, take Qmax ≡ b
a

= 10 and

QF = 8. I recall that the optimal strategy is to produce q∗(Q) = a−bQ
2b

. Therefore,

knowing that Q+ q∗(Q) must equal Q′, we can find Q := 2×Q′ − a/b. Given i,

the number of firms in the market, Q is simply,

Q(i) = 2i ×Q′ − (2i − 1)
a

b
. (3.11)

Using this one knows there are at most two firms in my example; the new firm

produces 2 = q∗(Q), while the first firm produces 4 = q∗(Q(2)), which leads to

q0 = 2 > 0. Hence, using the appropriate boundary condition the constant C must

satisfy the following equation,

η

η + Λ

b

a
2 = C ×

(
η + Λ

Λ

)α̃(2)

+
b

a

η

η − Λ
2− Λ

η − Λ
,

which is the same for any market that can reduce to q0 = 2 (i.e. Q ∈ {2, 6, 8}). I

show in the following lines that it is possible to automate this procedure. Let us

choose i ≥ 0 such that i satisfies the following inequality,

2i − 1

2i
a

b
≤ Q ≤ 2i+1 − 1

2i+1

a

b
.

Then, the maximal number of firms competing in a market with total quantity

Q is i. In general, finding i with respect to Q simply requires to take the floor

function of the following functional equation,

h(f(Q)) = h(Q) + 1, f(Q) =
a+ bQ

2b
. (3.12)
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The unique solution of this Abel equation is h(x) = − log(1−xb/a)
log(2)

= −α(x). Thus,

equation (3.11) can be rewritten as follows g(x) = 2b−α(x)cx − (2b−α(x)c − 1)a
b
.

Finally, α̃(x) returns an imaginary part. It can be rearranged as follows,

α̃(x) =
log
(
−a
b

)
log(2)︸ ︷︷ ︸
/∈ R

+
log
(
1− x b

a

)
log(2)

− 1︸ ︷︷ ︸
≡α(x)

,

which still returns an imaginary part. Nevertheless, once plugged into the cross-

sectional distribution the complex part cancels out. �

Proof of Proposition 3.3. First of all I recall that the cross-sectional distribution

is a piecewise function. For x ∈
[
0, a

2b

]
, Φt(x) satisfies,

Φ̇t(x) = ηF (x)− (η + Λ(t))Φt(x). (3.13)

This is a first-order linear differential equation. I conjecture that Λ is a function of

time only and later verify that this is true. Thus, the stability of Φt(x) can be treated

under the assumption that Λ(t) = Λ (I could alternatively write Λ :=
∫ t

0
Λ(u)du).

Thus, the solution of (3.13) is given by,

Φt(x) =
η

η + Λ
F (x) + c(x) exp[−(η + Λ)t],

where c(x) is a function that depends only on x. As t → ∞, Φt(x) → Φ(x), if

η + Λ > 0, which is true by construction. Assuming now that 3a
4b
≥ x ≥ a

2b
, the

cross-sectional distribution satisfies,

Φ̇t(x) = ηF (x)− (η + Λ(t))Φt(x) + Λ(t)Φ(2x− a/b). (3.14)

Since 2x− a/b ≤ a
2b

, Φt(2x− a/b) = η
η+Λ

F (2x− a/b) + c(2x− a/b) exp[−(η + Λ)t].
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Therefore, using the assumption made above equation (3.14) can be rewritten as

follows,

Φ̇t(x) = ηF (x)−(η+Λ)Φt(x)+Λ

[
η

η + Λ
F (2x− a/b) + c(2x− a/b) exp[−(η + Λ)t]

]
.

This is a first-order linear differential equation, where the non-homogenous part

is a function of x only and an exponential of t, with the same exponent as in

the homogenous part. Thus as t → ∞, Φt(x) → Φ(x), if η + Λ > 0. Hence

the function Φt(x), for x ∈
[
a
2b
, 3a

4b

]
has a unique stationary distribution, which

is globally attractive. By applying the same argument iteratively, it follows that

Φt(x), x ∈ (0, a/b) can be rewritten as a first-order linear differential equation,

where the condition regarding stability is reduced to η + Λ > 0. Therefore, I

conclude that the cross-sectional distribution of markets has a unique fixed point

which is globally stable. �

Proof of Proposition 3.4. The firm-size process is a so-called birth-death pro-

cess (BDP). Using standard results coming from this area, a BDP with infinitesimal

generator Q defined as,

Q :=



−λ0 λ0

η1 −(η1 + λ1) λ1

η2 −(η2 + λ2) λ2

. . .
. . .

. . .

ηN −(ηN + λN ) λN


,

has a unique stationary distribution if and only if the following condition is satisfied;

S = 1 +
∞∑
i=1

∏i−1
j=0 λj∏i
j=1 η1

<∞.
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Using my generator this condition can be rewritten as,

S = 1 +
λ0

η

∞∑
i=1

(
λ

η

)i−1
1

i
= 1− λ0

λ
log

(
1− λ

η

)
<∞.

When this condition is satisfied it is again standard in the BDP literature that the

cross-sectional distribution can be rewritten as the one presented in Proposition

3.4. �

Proof of Proposition 3.5. The homogenous part of equation 3.7 is a Schröder’s

Equation. Using Lemma 3.2 the solution of that equation is,

ΦG(Q) = C ×
(
r + η + Λ

Λ

)−α(Q)

, α(x) =
log
(
1− x b

a

)
log(2)

.

Similarly, the inhomogeneous part of equation 3.7 is solved by the particular

solution,

ΦP (Q, q) =
aη

r + η + Λ/2

[
1− b

a
Q

]
× q.

Then the treatment of the boundary condition implies that C = 0 for all paths

and thus Φ(Q, q) = ΦP (Q, q). �
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Duffie, D., Gârleanu, N., and Pedersen, L. H. (2007). Valuation in over-the-counter

markets. The Review of Financial Studies, 20(6):1865–1900.

Duffie, D. and Strulovici, B. (2012). Capital mobility and asset pricing. Economet-

rica, 80(6):2469–2509.

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates

of the variance of united kingdom inflation. Econometrica, 50(4):987–1007.

Engle, R. F. and Bollerslev, T. (1986). Modelling the persistence of conditional

variances. Econometric Reviews, 5(1):1–50.

Etro, F. (2008). Stackelberg competition with endogenous entry. The Economic

Journal, 118(532):1670–1697.

Fama, E. F. and French, K. R. (1992). The cross-section of expected stock returns.

The Journal of Finance, 47(2):427–465.

109



Chapter 4. Bibliography

Fama, E. F. and French, K. R. (1993). Common risk factors in the returns on

stocks and bonds. Journal of Financial Economics, 33(1):3–56.

Fama, E. F. and MacBeth, J. D. (1973). Risk, return, and equilibrium: Empirical

tests. Journal of Political Economy, 81(3):607–636.

Frazzini, A. and Pedersen, L. H. (2013). Betting against beta. Journal of Financial

Economics, 48(3):261–297.

French, K. R., Schwert, G. W., and Stambaugh, R. F. (1987). Expected stock

returns and volatility. Journal of Financial Economics, 19(1):3–29.

Gabaix, X. (2009). Power laws in economics and finance. The Annual Review of

Economics, 1:255–293.

Gabaix, X. (2016). Power laws in economics: An introduction. The Journal of

Economic Perspectives, 30(1):185–206.

Glosten, L. R., Jagannathan, R., and Runkle, D. E. (1993). On the relation between

the expected value and the volatility of the nominal excess return on stocks. The

Journal of Finance, 48(5):1779–1801.

He, X., Prasad, A., Sethi, S. P., and Gutierrez, G. J. (2007). A survey of stackelberg

differential game models in supply and marketing channels. J Syst Sci Syst Eng,

16(4):385–413.

Hedegaard, E. and Hodrick, R. J. (2016). Estimating the risk-return trade-off with

overlapping data inference q. Journal of Banking and Finance, 67(1):135–145.

Hopenhayn, H. A. (1992). Entry, exit, and firm dynamics in long run equilibrium.

Econometrica, 60(5):1127–1150.

Hugonnier, J., Lester, B., and Weill, P.-O. (2016). Heterogeneity in decentralized

asset markets.

Julien, L. A. (2011). A note on stackelberg competition. The Journal of Economics,

103(2):171–187.
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