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Abstract

The thesis presented hereby proposes as a general objective the estimation of forest inventory
parameters (e.g. trunk location, height, basal area, crown area, species, etc..) from the combination
of Airborne Laser Scanning (ALS) and Hyperspectal Imaging (HI). The research is centered around
three main topics: the development of new individual tree segmentation algorithms, the assessment
of direct and indirect dendrometry methods, tree species classification based on ALS and HI
features. A common dependency of these topics is the availability of reliable reference datasets
for the calibration and validation (error assessment) of algorithms. This requirement is addressed
with the development of an interactive software application and procedures to facilitate the manual
extraction of trees and visual identification of species from ALS points clouds. The results of this
research can be useful to the operational domain in several ways: providing tools and procedures to
characterize areas that are not covered by field inventories (e.g. private forests, low accessibility
areas), act as a decision support (e.g. preparing plot maps, identifying priority intervention zones,
etc.) when planning field surveys or logging, improving the integration of field and remote sensing
measurements for forest inventories.

Keywords: Airborne Laser Scanning (ALS), LiDAR, forest inventory, tree modeling, point cloud
segmentation, machine learning, Hyperspectral Imaging (HI)

Résumé

La thèse présentée ici propose comme objectif général l’estimation des paramètres d’inventaire

forestier (p. ex. position du tronc, hauteur, surface terrière, surface de la couronne, espèces, etc.)

à partir de la combinaison de Relevés altimétriques par Laser Aéroporté (RLA) et d’Imagerie

Hyperspectrale (IH). La recherche s’articule autour de trois thèmes principaux: le développement

de nouveaux algorithmes de segmentation d’arbres individuels, l’évaluation de méthodes de den-

drométrie directe et indirecte, la classification d’espèces basée sur les caractéristiques du RLA

et de l’IH. Une dépendance commune de ces sujets est la disponibilité de données de référence

fiables pour la calibration et la validation (évaluation des erreurs) des algorithmes. Cette exigence

est abordée par le développement d’une application interactive et de procédures pour faciliter

l’extraction manuelle des arbres et l’identification visuelle des espèces à partir des nuages de

points issus de RLA. Les résultats de cette recherche peuvent être utiles au domaine opérationnel

de plusieurs façons: fournir des outils et des procédures pour caractériser les zones qui ne sont

pas couvertes par les inventaires de terrain (p. ex. forêts privées, zones à faible accessibilité),

agir comme support décisionnel (p. ex. préparation de plan de situation, identification de zones

d’intervention prioritaire, etc) lors de la planification des relevés de terrain ou des coupes, améliorer

l’intégration des mesures de terrain et de télédétection dans les inventaires forestiers.

Mots clés: Relevés altimétriques par Laser Aéroporté (RLA), LiDAR, inventaires forestiers,

modélisation des arbres, segmentation de nuages de points, apprentissage automatique, Imagerie

Hyperspectrale (IH)
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1. Introduction

This chapter introduces the context and objectives of the thesis. It also provides the basic
technical background required to understand the presented work. It is structured in the
following way:

1.1 introduces the role of remote sensing in forest monitoring and management in the
current global and Swiss contexts. It also summarizes the research questions, the
objectives and the outreach activities/products of the thesis.

1.2 introduces general notions about forest inventories and their use in Switzerland.

1.3 presents the Airborne Laser Scanning technique (ALS).

1.4 presents the Airborne Hyperspectral Imaging technique (AHI).

1.1 Rationale and organization

1.1.1 Context

Forests are a fundamental component of terrestrial ecosystems. They constitute diverse and
irreplaceable habitats for a large part of living organisms. Forests also provide invaluable ecosystem
services including oxygen production, carbon sequestration, water filtering, climate regulation,
protection against avalanches, erosion and desertification. The exploitation of forest timber and
non-timber resources brings direct economic benefits (FAO, 2016; Radkau, 2012). Forests also
have an important social, spiritual and therapeutic role in human societies. Yet, in many regions,
they are unmonitored, unprotected or poorly managed. The unwillingness or inability to enforce
protection and setup sustainable management policies are the main reasons for this situation. The
problem is reinforced by the fact that many developed countries with rich forest resources are not
able to successfully exploit them, instead relying on wood products from countries with lower
exploitation costs and less stringent work or environmental regulations. Finally, because of Earth’s
rapidly changing climate, a better characterization of forest ecosystems is required to identify
vulnerabilities and possibility mitigate irreversible damage.
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Remote sensing can help improve this situation by providing timely and objective surveys
over large forest extents at a low cost (Finer et al., 2018; Waser et al., 2017a; White et al., 2016;
Eitel et al., 2016; FAO, 2016; Wulder et al., 2012; McRoberts and Tomppo, 2007). From global
spaceborne missions to local drone flights, remote sensing technologies are now routinely used to
map forests with unprecedented detail. Information derived from these maps can be used across all
decision scales, from local forest managers to strategic policy makers, for research, management,
conservation and commercial activities. For example, using satellite images, Hansen et al. (2013)
created a global interactive map of forest change starting from year 2000 to nowadays, objectively
quantifying massive degradation in tropical areas. Mascaro et al. (2014) suggested that with only
5% of the funding pledged to reduce carbon emissions in the tropics, all tropical forests could be
mapped with Airborne Laser Scanning (ALS), potentially greatly improving biomass measurement
and habitat modeling. In the United States, Snyder (2012) estimated the potential yearly business
benefit derived from elevation data to be 62 million U.S. dollars for forest resources management
alone and 159 million for planing and response to wildfires.

The possibility to accurately measure the 3D geometry of forest landscapes is particularly
valuable, because it allows among other things to characterize terrain topography, canopy height,
forest stratification, growth rates and wood volume (biomass). Aerial photogrammetry, Synthetic
Aperture Radar (SAR) and laser scanning all provide this capacity, but the latter technique is
currently the most suitable for forests (St-Onge et al., 2008; Sexton et al., 2009; White et al., 2013b;
Vastaranta et al., 2013). Current ALS systems, however, do not capture detailed radiometric or
texture characteristics which can help distinguish structurally similar species and diagnose leaf
health. In this regard, airborne multispectral and especially hyperspectral imaging is complementary
to ALS.

In North America and Europe, many national and regional mapping agencies now acquire high
resolution imagery and elevation models on a regular basis. Commonly and sometimes openly,
this data is provided as a basic geospatial service to other public and private users. However, data
availability by itself is insufficient to fully leverage the use of remote sensing in forestry. Successful
integration lies in the ability to analyze the raw data, extract useful information and communicate it
in a format that can support and improve existing workflows and decisional procedures.

With its difficult to access mountain forests, large amount of private plots, high timber exploita-
tion costs, varying environmental agency budgets, strong regulations and minimal intervention
silviculture practices (selection cutting), Switzerland is a prime example of challenging manage-
ment conditions. In Switzerland, field inventories still provide the bulk of forest measurements
used for planning. However, these operations are work intensive, expensive, restricted to accessible
areas and biased by subjectivity and observer skills. These conditions, coupled with the availability
of high quality data, are strong incentives to investigate the use of remote sensing in support of
traditional forestry. Moreover, because inventories are a nodal procedure in both forest science
and management, their improvement can be considered a priority research topic. Overall, the
new measurement and data processing techniques, the survey of previously unexplored forest
environments, the accumulated observations, and the need for regular benchmarking and replication
experiments provide a steady supply of research questions.
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1.1.2 Objectives

In direct relation with the above rationale, using remote sensing techniques, this thesis aims to
replicate three fundamental operations of traditional field inventories: locating trees, measuring
their diameter and identifying their genus/species. Formally, this can be translated into several
research questions:

• How and under which conditions can Airborne Laser Scanning (ALS) and Hyperspectral
Imaging (AHI) be used to map forest characteristics at the individual tree scale (i.e. tree
location, diameter and genus/species)?

• How can the reliability of such maps be quantified?

• What is the relative value of ALS and AHI to support current forest inventory needs?

These research questions are investigated by following a set of core scientific and technical
objectives:

• The development of a novel workflow and tool to visually interpret ALS point clouds

and interactively extract tree models to create a large and reliable reference dataset. This
development is also a common dependency for the calibration and validation (error assess-
ment) of automatic individual tree segmentation, species classification and stem diameter
estimation algorithms.

• The development of a new specification to store individual tree attributes in the ASPRS

LAS format.

• The development of new individual tree segmentation algorithms with a particular emphasis
on deciduous broadleaf forests.

• The development of a rigorous framework to assess the performance of individual tree

segmentation algorithms.

• The development of a new method to directly estimate stem diameter and taper from
high density ALS point clouds.

• the development of tree species classificationmethods to classify the main tree genus/species
encountered in Swiss forests from ALS and AHI.

1.1.3 Outreach

Finally, a strong emphasis was put on the transfer of technical know-how to the operational domain
(i.e. forest and geomatic state services). This requirement was addressed in the following ways:

• The development of open source software and tutorials for ALS data analysis - the Digital
Forestry Toolbox (Parkan, 2017a) - based on the Matlab/Octave programming language.

• The open distribution of a benchmark dataset composed of several thousand reliable 3D
tree models extracted from high density ALS point clouds.

• The coordination of an interstate work group with Marc Riedo (Neuchâtel) and Dr. Gilles

Gachet (Vaud) involving about 30 participants from the public and private forestry, re-

mote sensing and geomatics sectors. Yearly group meetings were organized for technical

knowledge transfer and end-user requirement analysis.

• Direct data and information exchanges with private and public organizations active in

forestry, for example though presentations in continuing education workshops (Fortbildung

Wald und Landschaft - FoWaLa).

• Creation and maintenance of a website dedicated to explaining and promoting the use of

ALS in forestry.
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1.2 Forest inventories

Forest inventories are the primary monitoring operation to assess the state of forests. They aim at
quantifying the economic, security, protective, sanitary and ecological characteristics of forests
at a given time. A review of the main forest inventory parameters and measurement techniques
currently in use is provided in table 1.1 and figure 1.1. In Switzerland, inventories are conducted by
various public and private organizations at different spatial scales and time frequencies:

• The National Forest Inventory (NFI) is conducted by the Swiss Federal Institute for Forest,
Snow and Landscape Research (WSL) and the Federal Office for the Environment (FOEN).
The first NFI was finished in 1985 and subsequent NFI have been updated approximatively
every ten years (1985, 1995, 2006, 2017). The fifth NFI was started in 2018 and is currently
underway. The first NFI was conducted over 12000 plots distributed on a 1x1 km grid
(systematic sampling) covering the whole country, further NFI significantly reduced the
amounts of plots and increased reliance on aerial photo interpretation. Field data collection
and aerial image interpretation are conducted following rigorous measurement procedures
published by WSL (Düggelin and Keller, 2017; Ginzler et al., 2005).

• TheCantonal (state) forest inventories are conducted by state forest services using different

sampling approaches (systematic, stratified random).

• Sanitary inventories (Sanasilva) have been conducted by WSL yearly since 1985. These

inventories cover a sample of about 1100 trees distributed across Switzerland and are used to

characterize defoliation, foliage color, growth and various other sanitary attributes.

• Private forest plot inventories are conducted by state forest services or by private firms

mandated by the owner.

• Research plot inventories are the most detailed and are generally conducted by WSL

(Schaub et al., 2011). They are used for long term monitoring of forest ecosystems.

• Urban tree inventories are conducted in some cities (e.g. Geneva, Lausanne) by park

services in public areas. In some cases, they are updated systematically at each intervention

(cut or plantation).

The aforementioned inventories are completed by a systematic registration of sylvicultural

interventions (cutting or planting).

Currently, the integration of remote sensing in the NFI is mostly limited to stereo photointerpre-

tation of high resolution visible (VIS) and near infrared (NIR) imagery. The main applications of

this approach are the determination of coniferous/deciduous proportions, forest type (structure),

height estimation and forest/stand edge delineation (Barrett et al., 2016). Recently, Waser et al.

(2017b) also developed a country-wide coniferous/deciduous map using a combination of VIS/NIR

imagery and ALS derived canopy height models.

At the sub-national level, the integration of remote sensing in inventories is very variable and mostly

dependent on personal forester skills/interests. Foresters do not receive systematic training on how

to integrate remote sensing products in their workflow and exposure to such techniques remains

episodic.

With national ALS and high resolution RGB imagery acquisition campaigns currently underway,

it can be expected that both national and sub-national forest inventories will further increase reliance

on remote sensing in the near future. It can also be expected that the current systematic sampling

scheme will evolve towards stratified sampling, to reduce field work.
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Figure 1.1: Main inventory forest parameters measured at the individual tree scale.

Table 1.1: Main forest inventory parameters and direct measurement methods.

Tree scale Plot scale Measurement methods

Stem position Stem density [ha-1]

GNSS positioning, compass and metric tape,
reference grid materialization, total station,

terrestrial/aerial laser scanning,
aerial photointerpretation

Total / bole
height [m]

Height statistics
(sd, max., min., mean)

Hypsometer, terrestrial/aerial laser scanning,
aerial photointerpretation

Basal area [m2] Total basal area [m2/ha]
Diameter tape, caliper, Biltmore stick,

relascope, terrestrial/aerial laser scanning

Taper [cm/m] -
Diameter tape, caliper, Biltmore stick,

terrestrial/aerial laser scanning

Volume [m3] Total volume [m3/ha]
terrestrial/aerial laser scanning,

destructive sampling

Crown spread Plot limits
Measurement tape, aerial photointerpretation,

terrestrial/aerial laser scanning

Species Species distribution
Field observation,

aerial photointerpretation
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1.3 Airborne laser scanning

Airborne Laser Scanning (ALS), also called airborne LiDAR, is a remote sensing technique which
produces high resolution 3D models of the land surface. ALS systems generally include four
components:

• an aircraft which can be manned or remotely operated. It precisely follows planned flight
trajectories to fully cover the area of interest with overlapping scan swaths.

• a laser scanner used to measure the range (R) between the sensor and the surface. Current
laser ranging uses either direct (time of flight) or indirect (phase shift) measurements to
determine the distance to the target. The former method is generally used for long range
measurements and the latter for short to medium ranges. A mechanism continuously rotates
the laser to generate a scan pattern (which may differ between instruments), allowing it to
sample a swath of the land surface.

• a differential Global Navigation Satellite System (GNSS) receiver used to measure the
exact position (X, Y, Z) of the aircraft.

• an Inertial Measurement Unit (IMU) used to measure the orientation (attitude) angles
(roll, pitch, yaw) of the aircraft and to improve GNSS derived positions (integrated sensor
orientation).

ALS works by emitting high frequency (typically hundreds of kHz) light pulses (usually in the
infrared or green domain) towards the land surface and measuring the intensity of the reflection as
a function of time (waveform). Peaks (also called echoes) in the return signal of each pulse corre-
spond to locations where the laser beam intersected an object (cf. figure 1.2). By simultaneously
measuring the scan angle (θ ) and the range (R), it is possible to determine the 3D position of these
intersections (reflection peaks) relative to the sensor. These peaks can be then characterized in
terms of amplitude and width. Moreover, since the accurate location and orientation of the aircraft
are continuously measured by GNSS/IMU navigation, the laser intersection point coordinates can
also be determined in an absolute spatial reference frame.

The interaction of the laser with the atmosphere and surface can be modeled by the RaDAR/Li-
DAR range equation (Vain and Kaasalainen, 2011; Kashani et al., 2015):

Pr

D2
r ηatmηsysσPt

4πR4β 2
t

(1.1)

σ
4π

Ω
ρAt (1.2)

where:

Pr is the received power [W];
Pt is the transmitted power [W];
Dr is the aperture diameter [m];
ηatm is the atmospheric transmittance;
ηsys is the system transmittance;
σ is the effective target cross-section [m2];
R is the range from sensor to target [m];
βt is the width of the laser beam [m];
Ω is the scattering solid angle [sr];
ρ is the reflectance of the target;
At is the area of the target [m2].
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Thus, ALS produces a collection of georeferenced waveforms (i.e. continuous representation)
and dense 3D point clouds (i.e. discrete representation). Current long range ALS systems routinely
attain sub-decimetric point position accuracy. Moreover, ALS is theoretically able to measure the
reflectance of a target (cf. equation 1.1). However, in practice accurately estimating all of the
parameters affecting reflectance is very difficult and the measured value can generally only be
interpreted in a relative sense.

Although it preserves only part of the original measurement, the 3D point cloud representation
is the most commonly used, because it requires much less storage space and is computationally
less expensive to process. From a practical point of view, it can also be noted that software to
process full waveform data is currently relatively scarce compared to what is available to handle
discrete data. After acquisition, the points are usually classified into several standard land cover
categories (e.g. ground, water, buildings, high vegetation) defined by the American Society of
Photogrammetry and Remote Sensing (ASPRS), using a combination of automatic and manual
classification procedures. The final dataset is generally stored and distributed using the binary
ASPRS LAS format (American Society for Photogrammetry and Remote Sensing, 2013).

Most of the currently operational ALS systems are manufactured by RIEGL, Teledyne Optech,
Leica Geosystems and Velodyne.

Figure 1.2: Airborne Laser Scanning (ALS) basics. Background ALS data is a courtesy of the state
of Neuchâtel.
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The following paragraphs provide a brief review of the main ALS acquisition parameters that
are important for forest characterization. Several authors (e.g. Næsset (2005); Hyyppä et al. (2005);

Ørka et al. (2010); Disney et al. (2010); Jakubowski et al. (2013a); White et al. (2013a); Hovi et al.

(2016)) have investigated the influence of acquisition conditions on products derived from ALS, we

refer the reader to their work for further details.

The following parameters influence ALS data characteristics and should be considered when

analyzing forest areas:

• the phenological phase of the vegetation;

• the instrument and flight parameters (e.g. pulse repetition rate, scan angle, flying height,

aircraft speed);

• the processing of the full waveform signal (echo intensity in particular).

The phenological phase determines the penetration distance of the laser through the canopy

and thus influences the vertical distribution of the echoes (cf. figure 1.3). The presence of leaves

reduces the penetration distance resulting in poor sampling of the structures underlying the canopy

(i.e. branches, stem, terrain). This can also induce significant errors in terrain modeling which

then propagate to tree height estimates. In leaf-off acquisitions, differential canopy opacity can be

exploited to map persistent and deciduous species, because the opacity difference affects the number

of echoes per pulse and their intensity (Liang et al., 2007). The strong opacity of coniferous canopies

results in fewer and more intense echoes, while the weak opacity of deciduous canopies results in

numerous lower intensity echoes. This contrast is further increased by the strong reflectance of

photosynthetic pigments in the near infrared wavelength used by most ALS systems.

Figure 1.3: Effects of the phenological phase on ALS point distribution.

Combined with the phenological phase, the point density will determine how much structural

detail is observable. This parameter is dependent on the flight configuration (height, speed, swath

overlap), instrument settings (transmitted energy, pulse repetition rate, number of echoes per pulse,

digitization of the waveform) and post-processing (e.g. filtering of the points). The lower the

point density, the greater the reliance on interpolation, when calculating elevation models (terrain,

surface and canopy height). Point density is often inhomogeneous, either because of voluntary

changes in resolution (e.g. a differentiation between urban, rural and / or mountainous areas), or
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because of the variability of scan swath overlap. It can also be pointed out that very high point

densities (> 100 points / m2) make it possible to directly measure stem diameter in the point cloud

without resorting to allometric estimates (cf. chapter 4.4). Point density has also been shown to be

positively correlated with tree species classification performances (Li et al., 2013).

The flying height of the aircraft and the scan angle of the laser beam determine the distance

between the sensor and the observed surface. Associated with the divergence of the laser beam, this

distance in turn determines the size of the projected footprint on the target surfaces. Decreasing

the flying height reduces the footprint (concentrates the energy of the pulse) and generally allows

better laser penetration through the canopy, but reduces the likelihood of having multiple echoes.

Conversely, increasing the flying height widens the footprint (diffuses the energy of the pulse)

which increases the probability of obtaining multiple echoes. Finally, the planimetric and altimetric

accuracy of the 3D points is inversely proportional to the flying height.

The last important parameter is the processing of the full waveform signal and in particular the

echo intensity. Proper calibration of echo intensity ensures comparability of measurements made

under different conditions (e.g. flying height, topography, different instruments). It is particularly

important for analysis related to foliage persistence and species classification. However, rigorous

calibration / correction of intensity requires relatively complex modeling (Höfle and Pfeifer, 2007;
Kashani et al., 2015) which is rarely implemented in practice. Only the correction related to the
distance between the sensor and the observed surface is sometimes applied.

Considering the importance of these parameters, the implementation of an optimal acquisition
protocol and the standardization of metadata, like the steps undertaken by the North American
forest and geological services (Heidemann, 2014; White et al., 2013a; Gatziolis et al., 2008) would
ensure better integration of ALS into Swiss forestry.

Current and near future developments in ALS include new low-cost high performance sensors
(e.g. flash LiDAR) and aircrafts (in particular unmanned). New ALS systems are able to produce
very dense 3D point clouds (> 100 points / m2) which offer a lot of potential for work at the
individual tree scale including direct stem diameter estimation (Jaakkola et al., 2017) and derivation
of inner crown characteristics (Harikumar et al., 2017b). Multispectral ALS sensors such as
the Optech Titan (triple wavelength) and Riegl VQ-1560i-DW (dual wavelength) also provide
additional features that could help land cover and tree species characterization (Vauhkonen et al.,
2013; Hopkinson et al., 2016; Yu et al., 2017; Axelsson et al., 2018).
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1.4 Airborne hyperspectral imaging

Airborne Hyperspectral Imaging (AHI) is a remote sensing technique which is used to measure

how materials interact with solar radiation (light). More specifically, AHI is used to estimate for a

given surface the fraction of incoming solar radiation that is reflected as a function of wavelength; a

property called reflectance and designated by the greek letter ρ (cf. figure 1.4).

The distinction between multispectral and hyperspectral sensors is not precisely defined. How-

ever, generally speaking, hyperspectral sensors have a number of bands at least an order of mag-

nitude above multispectral sensors, typically in the 50-300 range. Another distinction is spectral

resolution (bandwidth); hyperspectral sensors have narrow bands (a few nanometers wide), while

multispectral sensors tend to have broader bands (tens of nanometers wide). AHI systems generally

include the following components:

• an aircraft which can be manned or remotely operated.

• a hyperspectral camera used to measure solar radiation reflected off the observed surface.

The reflected light passes through the camera lens and different regions of the spectrum are

separated with a dispersive prism/grating or a series of optical bandpass filters. The individual

filtered light bands are then redirected to an array of photosensitive elements. These elements,

which can be either semiconductor Charge Coupled Devices (CCD) or Complementary Metal

Oxide Semiconductors (CMOS), convert the separated light bands into a digital signal. The

configuration of the photosensitive element array may vary, with the most common being

along track (pushbroom) and across-track (whiskbroom) linear arrays, and less commonly

snapshot (staring) arrays. Hyperspectral cameras require rigorous laboratory and/or in flight

calibration with reference targets of known reflectance and regular measurement consistency

checks.

• a solar (irradiance) photometer used to measure incoming solar radiation. It may be

located either near the observed surface (on the ground) or on the aircraft.

• (Optionally) a differential Global Navigation Satellite System (GNSS) receiver used to

measure the exact position (X, Y, Z) of the aircraft.

• (Optionally) an Inertial Measurement Unit (IMU) used to measure the orientation (attitude)

angles (roll, pitch, yaw) of the aircraft and to improve GNSS derived positions (integrated

sensor orientation).

Accurate measurement of reflectance is complicated, because the characteristics of light that

arrive at the sensor depend on many factors, including the surface geometry, the illumination angle

and the viewing angle (for non-Lambertian surfaces). For a given surface, the effect of these factors

can be physically modeled and corrected with a Bidirectional Reflectance Distribution Function

(BRDF) defined for each wavelength. In practice however, detailed physical BRDF modeling of

the observed surface is often too complex to be carried out and simpler empirical BRDF correction

procedures are applied instead (Schlerf and Atzberger, 2006a). In addition to BRDF corrections,

an atmospheric correction is applied to compensate light scattering and absorption by particles

and gases present in the atmosphere (Gao et al., 2009). Geometric correction (orthorectification)

is also applied to remove lens distortion and perspective effects. This step involves removing

radial/tangential distortions and projecting the images onto a 3D model of the observed surface

(obtained by photogrammetry or by an auxiliary technique such as ALS). Finally, georeferencing is

applied to position the images in an absolute spatial reference system. If GNSS/IMU navigation

was available on the aircraft, direct georeferencing is possible. Otherwise, indirect georeferencing

using Ground Control Points (GCP) or spatial co-registration with other imagery is used. The

direct and indirect approaches can also be combined to improve image georeferencing accuracy

(McGlone et al., 2013).
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Several AHI acquisition parameters are critical for vegetation analysis:

• the phenological phase influences leaf geometry, pigmentation, nutrient content and water

content. Most studies use hyperspectral data that was acquired during full leaf deployment

periods. However, the effect of phenology at time of acquisition on spectral separability of

species has not been extensively investigated, with only a limited number of studies (Key

et al., 2001a; Dennison and Roberts, 2003; Voss and Sugumaran, 2008; Hill et al., 2010;

Hesketh and Sánchez-Azofeifa, 2012; Somers and Asner, 2013, 2014; Nikopensius et al.,

2015; Richter et al., 2016) and no consensual conclusions on a single optimal observation

time. The use of multi-temporal acquisitions has been shown to be useful for tree species

and health characterization (Key et al., 2001a; Liu et al., 2006; Hill et al., 2010; Richter et al.,

2016; Tigges et al., 2013).

• the illumination conditions. Since AHI relies entirely on natural illumination, it is strongly

affected by shadowing and atmospheric effects. To reduce shadows and illumination intensity

variation, acquisitions are preferably conducted when the sun is at its highest elevation and

the sky is clear or fully overcast. Sunlit observations have been shown to help spectral

separability of species (Leckie et al., 2005; Clark et al., 2005; Puttonen et al., 2009).

• the spatial resolution, also called Ground Sampling Distance (GSD), which is essentially

constrained by flying height, aircraft speed and instrument design. Measured reflectance has

been shown to be dependent on observation scale for vegetation (Williams, 1991; Roberts

et al., 2004; Clark et al., 2005). Spatial resolutions similar to or larger than tree crown

sizes necessarily induces spectral mixing. Systematic investigations of the effects of spatial

resolution for forest analysis are scarce (Rahman et al., 2003; Nijland et al., 2009; Roth et al.,

2015). It has also been suggested that the resolution should not exceed half the size of the

target object (tree crown) size (Hengl, 2006) (i.e. at least four pixels per crown). On the other

hand, Nagendra and Rocchini (2008) have argued that using pixels smaller than individual

tree crowns increases the variability of the spectral signatures of species when aggregated

at the crown scale (thus making species identification more difficult). However, there is no

clear consensus on this issue and it has also been shown that finer spatial resolutions could

provide better tree species spectral separability (Clark et al., 2005; Baldeck et al., 2015). The

optimal spatial resolution may depend on the application (Aplin, 2006; Stoy et al., 2009).

• the spectral resolution (bandwidth), the number and location of bands determine how well

the reflectance spectra is sampled. Subtle discriminative spectral features might not be

observable with broad bands and/or insufficient sampling of the different spectral regions.

• the quality of georeferencing and geometric correction (orthorectification) is particularly

important because it ensures adequate co-registration with other datasets (e.g. field surveys,

ALS). AHI images used for vegetation analysis should be orthorectified using a surface

model (not a terrain model).

• the quality of the BRDF correction influences that variability of the reflectance maps and

ability to conduct species classification (Korpela et al., 2011).

Current operational AHI systems are mostly developed and used in the realm of research. Such

systems include the Carnegie Airborne Observatory (CAO), the Airborne Visible / Infrared Imaging

Spectrometer (AVIRIS), the Compact Airborne Spectrographic Imager (CASI) and the Airborne

Prism Experiment (APEX). Several commercial manufacturers, including HySpex, Headwall

Photonics (e.g. Nano-Hyperspec VNIR, Micro-Hyperspec SWIR), Integrated Spectronics (e.g.

HyMap), Specim (e.g. AISA Eagle, AisaFENIX) also provide AHI systems. Due to scarce

commercial service availability, processing complexity and high costs, it is unclear if AHI will be

adopted in forestry in the near future in the same way as ALS. Forestry applications might instead

rely on less expensive and more available very high resolution RGB and/or multispectral imagery.
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(a) A hyperspectral image consists in a stack of reflectance bands each covering a different part of the light

spectrum. Looking at the reflectance of a single pixel across all bands provides the spectral signature of the

observed surface.

(b) True color composite image (red: 650 nm,

green: 540 nm, blue: 440 nm) over the Boudry

area (Neuchâtel, Switzerland) obtained with the

APEX hyperspectral sensor.

(c) False color composite image (red: 800 nm,

green: 650 nm, blue: 540 nm) over the Boudry

area (Neuchâtel, Switzerland) obtained with the

APEX hyperspectral sensor.

Figure 1.4: Airborne Hyperspectral Imaging (AHI) basics.



2. Data

This chapter presents the study sites, remote sensing data characteristics and describes the

creation of a novel reference dataset used across the thesis. It is structured in the following

way:

2.1 provides an overview of forest characteristics and ALS/AHI remote sensing data

availability in Switzerland. It also presents the location of the sites studied. Due to its

voluminous format, the detailed metadata about study sites and remote sensing data is

reported in the appendix.

2.2 presents the workflow used to create a novel reference dataset of 3D tree models

extracted from ALS data. The content of this section is adapted from Parkan (2017b)

and Parkan et al. (2018).

2.3 reviews important sampling considerations.

2.1 Overview

Forests cover about one third of Switzerland. Their composition and structure vary between regions,

mostly influenced by environmental conditions and sylvicultural practices. Switzerland can be

divided into three distinct geographic regions:

• the Jura mountain chain in the North which culminates at 1720 m (Le Crêt de la Neige,

France). It is characterized by mixed forests in lower stages, coniferous dominated forests

and woodland pastures in the upper part.

• the Plateau located between the Jura and the Alps (altitude ranging from about 400 to 600

m). It is characterized by mixed and deciduous forests.

• the Alps in the South which culminate at 4810 m (Mont Blanc, France). In this region, the

strong altitude gradient and many valleys provide are wide range of environmental conditions.

The high average altitude means that most species in this region are coniferous.
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Tree species encountered in Switzerland are typical of European temperate and alpine forests

with beech (Fagus sylvatica), Norway spruce (Picea abies), silver fir (Abies alba), sessile oak

(Quercus petraea), pedunculate oak (Quercus robur), larch (Larix decidua), Scots pine (Pinus

sylvestris) and ash (Fraxinus excelsior) being the most frequently observed and also those that have

the highest commercial value. Several exotic species have been introduced for the timber industry,

the most noticeable being the Douglas fir (Pseudotsuga menziesii).

Since year 2000, ALS data has been acquired regularly over swiss cantons, with varying

acquisition parameters (cf. appendix E.1). Most of the swiss ALS data has a point density greater

than 10 points/m2 and some of the most recent datasets have densities which can reach 80 points/m2

in flight line overlap areas. Leaf-off acquisitions have generally been favored to obtain a better

sampling of the terrain, but a significant fraction of acquisitions have also been acquired with leafs.

ALS data is well integrated in state geomatic services and currently reacquired every 4 to 6 years.

In July 2014, medium resolution (2.7-3 m) AHI data was acquired with the Airborne Prism

EXperiment (APEX) hyperspectral sensor over Lausanne and Boudry (cf. appendix D.1), for the

purpose of this study. AHI is not currently used by any state service and renewal of AHI data is not

planned in the near future.

The main criteria used to select the forest survey sites were ALS acquisition dates (leaf-off data

was favored), point density (high was favored) and field survey availability. Secondary criteria were

diversity of topographic (altitude, slope, aspect) and biological characteristics. Figure 2.1 illustrates

the spatial distribution of the study sites, tables in appendix B.1, E.1 and D.1 present the field, AHI

and ALS survey metadata. Pictures of selected sites are also presented in appendix C.1.

Figure 2.1: Geographic context and map of selected inventory sites in Switzerland. The asterisk

next to the site name indicates if it is covered by hyperspectral data. 1: Versoix, 2: Sauvabelin*, 3:

Benenté*, 4: Jorat south*, 5: Gésiaux*, 6: La Brévine, 7: Couvet, 8: Cortaillod D4*, 9: Boudry

D20*, 10: Boudry D19*, 11: Boudry D1*, 12: Chambrelien*, 13: Rochefort*, 14: Bevaix*, 15:

Grosszinggibrunn, 16: Ottmarsingen, 17: Sihlwald, 18: Oberaegeri, 19: Dischma. Background

terrain elevation data courtesy of the Swiss Federal Office of Topography (swisstopo).
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2.2 Creation of a benchmark ALS dataset

This section is adapted from Parkan (2017b) and Parkan et al. (2018). It presents a novel reference

ALS dataset composed of several forest inventory sites across Switzerland. The dataset is repre-

sentative of central European temperate broadleaf, mixed and coniferous forests. Individual trees

were manually delineated from point clouds to produce a set of detailed 3D reference segments.

These segments were then geometrically characterized (height, crown area and volume) and were

matched with field surveys to assign Diameter at Breast Height (DBH) and species attributes.

The workflow used to create derivative products from ALS data typically involves a combina-

tion of area (stand) or object (tree) based segmentation, classification and regression (allometric

modeling) algorithms. A critical aspect of this workflow is quantitative error assessment. This

step is generally accomplished by comparing the output of an algorithm to reference values. These

reference values may be either simulated or measured with a reliable independent method (typically

visual interpretation and/or an intensive field survey).

Simulation could theoretically allow to explore the effects of different ALS acquisition parame-

ters and provide perfect reference datasets. However, modeling the interactions between physical

(e.g. topography, atmosphere, surface reflectance, illumination), biological (e.g. stem density,

crown diameter distribution, clustering, layering, tree architecture) and sensor (e.g. flying height

and speed, pulse repetition rate) related parameters is very complex. The Discrete Anisotropic

Radiative Transfer (DART) physical model (Gastellu-Etchegorry et al., 2015), for example, attempts

to fully integrate all these parameters. Simpler models have also been used successfully to validate

segmentation algorithms. Wang et al. (2011), for example, modeled ALS data by sampling a set of

simple 3D geometric primitives (ellipsoids) with different sampling densities, location accuracies,

ranging accuracies, and volumetric backscatter probabilities. Similarly, Zhang et al. (2014) set up a

library of 3D tree templates (extracted from an ALS point cloud) and then used point processes

to model plots with different stem density and crown overlap. Calders et al. (2018) developed a

reconfigurable virtual forest stand based on Terrestrial Laser Scanning (TLS) derived tree models.

When compared to simulated ALS datasets, the use of independent measurements as a reference

is currently much more widespread. Benchmark studies have been periodically conducted to com-

pare algorithm performance using a common dataset and error assessment framework (Kaartinen

et al., 2012a; Vauhkonen et al., 2012; Eysn et al., 2015; Wang et al., 2016b). Recent benchmark

datasets, however, lack high density leaf-off data, full-waveform data and 3D tree (crown) bound-

aries. Some organizations have deployed efforts to openly distribute ALS, field survey data and

validation procedures (e.g. NEW technologies for a better mountain FORest timber mobilization -

NewFOR1, National Ecological Observatory Network - NEON2, Harvard Forest). Nonetheless, the

number of available benchmark datasets customized for forest research remains relatively small

when compared to what is found in other research communities (e.g. computer vision, machine

learning).

Yin and Wang (2016) reviewed qualitative and quantitative error assessment procedures used in

remote sensing for forest inventories. They divided the procedures into three categories: summary

metrics (e.g. tree detection rate), position accuracy metrics (e.g. stem location accuracy) and

attribute accuracy metrics (e.g. dendrometric attributes, species). For each category, they evaluated

the strengths and weaknesses of different indices. They concluded that quality assessment could

be improved by combining multiple assessment techniques and indices, using optimal sampling

schemes when creating validation datasets, using multiscale evaluation (tree and plot scales) and

conducting sensitivity analysis. The same authors also noted that 3D crown boundary delineation

accuracy has generally been ignored in existing studies and underlined the need of high-quality

reference data for benchmark studies. Overall, the inherent reference dataset differences and lack

1NewFOR, [http://www.newfor.net/], accessed January 23, 2018.
2NEON, [http://www.neonscience.org/data-collection], accessed January 23, 2018.
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of standardization in error assessment procedures also means that the results of different studies are

often difficult to compare (Zhen et al., 2016).

The novel dataset presented here addresses these error assessment problems by providing a

reliable individual tree segmentation. The dataset also has potential uses beyond the validation of

algorithms. It can for example be used to simulate different forest configurations, by removing or

duplicating tree models and reconfiguring their spatial arrangement. Such simulated forests can

in turn be used with high performance tree detection and classification algorithms (such as deep

neural networks) that require very large training datasets. By adding variable amounts of noise to

the individual tree models, the dataset can also be used to assess the effect of segmentation quality

and to train tree species classification algorithms to handle poor segmentation (Ko et al., 2016). The

dataset can also be used to create accurate allometric models. The procedures and tool developed to

create the dataset can also be used to prepare detailed and accurate individual tree maps for research

or trainings plots, without relying on surveyor expertise.

2.2.1 ALS data preparation

All ALS point clouds were converted to the LAS 1.4 format defined by the American Society for

Photogrammetry and Remote Sensing (2013). Point data formats 6 and 7 (same as 6 with the

addition of RGB colors) were used. The standard LAS 1.4 classification definition was applied to

each dataset and non vegetation classes (except terrain) were removed (cf. appendix F.1). When

present, the overlap points were preserved and the associated overlap bit was set in the classification

record.

A coordinate transformation to the local Swiss reference frame LV95 was applied to the

original 3D point clouds, when necessary. This system is composed of the CH1903+ (EPSG:2056)

planimetric and LHN95 altimetric reference frames. The metadata for this coordinate reference

system was stored in the Variable Length Records (VLR) of the LAS files. The 3D point clouds

were then clipped to the extent of the survey sites.

In many cases, the state services that mandate ALS acquisitions are only interested in geometric

information and do not require the full waveforms and/or derived attributes such as amplitude, pulse

width or pulse deviation. Thus, it is frequent that delivered ALS data only contains a generic 16 bit

"intensity" attribute with little or no metadata on how it was processed or how the value should be

interpreted. Nonetheless, some information regarding intensity processing was obtained by directly

contacting data providers and instrument manufacturers.

Many LiDAR instruments have a high dynamic range meaning the ratio of the minimum and

maximum measurable intensity (also called amplitude) value is very large and may span several

orders of magnitude (Riegl Laser Measurement Systems, 2017). Thus, it is common to use decibel

units (i.e. a logarithmic scale) to represent the intensity:

I dB 10 log10
P

Pre f

(2.1)

where:

Pt is the transmitted power [W];

Pre f is the minimum detectable power [W].

A relatively standard procedure found across LiDAR software is to apply a scale and offset

transformation to the original intensity values to fit the 16 bit (0-65535) storage range used in the

LAS format. The scaled value can be unscaled, using the following formula:

vu

vmax vmin vs

65535
vmin (2.2)
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where:

vu is the unscaled value;

vs is the scaled value;

vmax is the maximum value;

vmin is the minimum value.

Using this procedure, the data acquired with the RIEGL LMS-Q1560 was scaled using a

minimum value of -20.0 dB and a maximum value of 15.0 dB. Thus, for example, a value of 24’000

in the LAS file can be unscaled using:

vu

15 20 24000

65535
15 2.182 dB (2.3)

Another relatively common procedure is to apply a correction for the sensor to target range by

applying the formula described in Luzum et al. (2004):

In I
r

rre f

2

(2.4)

where:

In is the normalized intensity;

I is the raw intensity;

r is the range between the sensor and the point;

rre f is an arbitrary constant reference range (1000 m was used here).

Riegl LiDAR software allows exporting either the amplitude (range dependent value) or a range

corrected value called reflectance to the "intensity" LAS field. For the datasets acquired with the

Riegl LMS-Q1560 (cf. appendix E.1), the intensity stored in the LAS files is the reflectance (i.e.

range independent value) scaled to a 16 bit range (0-65535) (Riegl Laser Measurement Systems,

2017). For datasets acquired with the Optech ALTM Gemini (cf. appendix E.1), the data provider

has indicated that the raw intensity was corrected for range dependence using the formula described

in Luzum et al. (2004). No information was obtained about the intensity processing of data acquired

with the Riegl LMS-Q680i, Riegl LMS-Q780 and Trimble AX60.

Thematic attributes were stored directly in the LAS 1.4 files. To identify individual tree

segments, a 32 bit Locally Unique Identifier (LUID) extra field was added to the point record. The

"user_data" field was used to store phenology flags (0 = no leafs, 1 = partial leaf deployment, 2

= full leaf deployment). The LAS 1.4 specification provides a mechanism (called LAS Domain

Profile) which allows the definition of custom records for domain specific applications (such as

forestry). This mechanism was used to store the dendrometric attributes in the Extended Variable

Length Records (cf. table G.1).
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2.2.2 Manual segmentation

Using a custom Matlab based interactive application, each tree was manually delineated from the

3D point clouds by iteratively cropping out points until only the region (tree) of interest remained

(cf. figure 2.2). As points were cropped out, the view was progressively zoomed in and rotated as

necessary, to help identification of finer details. Horizontal cross-sections at different heights were

also employed in some cases, to distinguish adjacent or interlocking structures. Multiple features

were used to delineate and identify individual trees:

• Spacing between crowns was particularly useful in low density plots and in some older

broadleaf forests where individual trees exhibit crown shyness;

• Intensity difference between structures within the tree; larger opaque structures (stem,

large branches) and photosynthetically active parts typically result in higher echo intensity.

This feature was also useful in mixed forest to discriminate deciduous and persistent foliage;

• When available, color helped to discriminate foliage persistence types;

• Prior knowledge about the tree shape and color (Oester, 2003; Johnson, 2006; Sayn-

Wittgenstein, 1978) of different species;

• High resolution drone aerial photography was acquired on some of the sites to help

species identification;

• Field survey maps which indicated the location, diameter and species of individual trees.

The accuracy of stem positions was highly variable depending on the type of field survey and

ranged from sub-metric for scientific research plots to sub-decametric for non-research plots.

Field survey data originated from private inventories, long term monitoring and research

plots (Schaub et al., 2011) and forest educational/training plots (Junod and Ammann, 2018).

The above indicators were insufficient to unambiguously delineate all tree shapes. Thus, some

of the observations included in the dataset were flagged as ambiguous (e.g. suspicion of multiple

trees, strongly interlocking branches, no match with field survey). These ambiguous observations

were excluded from the counts provided in the introduction and in appendix E.1. In some areas,

individual tree shapes could not be delineated at all, due to clutter and/or low point densities.

When the tree species could not be determined with certainty, only a visual distinction between

angiosperms and gymnosperms was conducted.

Manual segmentation of CHM has previously been used to validate segmentation algorithms

(e.g. Heinzel et al. (2011)). However, to the best of the author’s knowledge, manual segmentation

of the point cloud over large extents has not been used previously for this purpose. This approach

also has several potential practical applications in precision forestry; for example creating detailed

reference maps to support field operations like inventories or timber marking (cruising). In this

context, the use of direct visual interpretation is interesting, because it is much easier to implement

than automatic segmentation algorithms and allows a quick and reliable identification of zonal (e.g.

forest edge, deciduous/persistent ratio), structural (stratification) and point (e.g. tree/stem position

and height) features. It could also be used as a complement and eventually replace current aerial

stereo photointerpretation procedures used in the national forest inventory.
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(a) Step 0, time: 0 s (b) Step 4, time: 9 s (c) Step 8, time: 17 s

(d) Step 15, time: 30 s (e) Step 35, time: 75 s (f) Step 44, time: 110 s

Figure 2.2: Side and top view of a manual tree segmentation sequence in 44 steps (duration 110

s). The black circle represents the outline of the original sample area. The red polygon represents

the convex outline of the remaining subset of points after each cropping step. The points are

progressively removed from the sample until only the region of interest remains. The points are

colored by return intensity to simplify the distinction of deciduous/coniferous crown edge limits,

large branches and stems.
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(a) Plot top view. (b) Plot oblique view.

(c) Individual tree samples (side and top view).

Figure 2.3: Central part of the ALS based virtual survey at the Boudry D20 site (Neuchâtel).

Topological coloring (Welsh and Powell, 1967) of the point cloud is used to visually differentiate

adjacent trees in sub-figures (a) and (b). A shaded terrain model helps to provide contrast and

highlights topographic features (e.g. roads, ditches, skid trails). To avoid visual clutter, only

surveyed trees are displayed.

2.2.3 Characterization

All the manually delineated segments were characterized by several geometric attributes (stem

position, height, crown volume and area). Depending on the spatial point distribution within the

segments, the stem position was determined using either the base, apex or centroid xy coordinate as

a proxy and projecting it onto the terrain model (cf. figure 2.4). The tree height was computed as

the distance between the stem position and the apex of the segment (cf. figure 2.5a). The crown area

and volume were respectively derived from the 2D and 3D single region concave hulls (α shapes)

(Edelsbrunner and Mücke, 1994) of the segments (cf. figures 2.5b and 2.5c). The resulting stem

positions and associated geometric attributes were then exported to GIS software (Quantum GIS)

in order to match them with previously established field survey maps of stem position, diameter

and species. The matching was based on spatial proximity, height-diameter coherence and species
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traits (cf. figure 5.3). This step allowed to assign a diameter at breast height (1.3 m above ground)

and species to most of the 3D segments.

No uncertainty estimate is available for the diameter. This value can be affected by observer bias

and measurement technique (e.g. caliper, diameter tape, terrestrial laser scanner). Studies on

diameter measurement differences resulting from observer bias have generally reported relatively

small errors. For example, Omule (1980) reports a bias of 0.09%, Elzinga et al. (2005) reports

that 1.9% of observations had a diameter difference 10%, Luoma et al. (2017) report standard

deviations ranging from 1.3% to 1.9%. In this regard, the asynchronous collection of field and ALS

data is a much more significant source of diameter uncertainty, with a time shift of up to 4 years in

the dataset (cf. appendices B.1 and E.1).

Observations from two of the sites (Benenté and Ottmarsingen) were used to compare field

and ALS measured tree positions and heights. To match the two sets of observations (field and

ALS), a simple algorithm was used. A match occurs, if an ALS observation is within a 2.5 m

horizontal distance and 20% height difference from a field observation. In cases where multiple

ALS observations fulfill these criteria, the closest (in terms of 3D euclidean distance between tree

tops) is retained. The comparison results are reported in table 2.1 and maps of the matched trees

are presented in figures 2.6 and 2.7.

Table 2.1: Differences between ALS and field measured positions and heights for the Benenté and

Ottmarsingen sites.

Position Height

Site Matches
Bias

2σ [m]
RMSE [m]

Bias

2σ [m]

Rel. Bias

2σ

Benenté 144
0.81

0.61 m
2.68 m

-1.85

3.87 m

-0.08

0.12

Ottmarsingen 89
1.14

0.75 m
3.06 m

0.39

6.11 m

0.02

0.16

It has been reported that the difference between ALS and field measured tree heights is generally

within 1.5 m (Andersen et al., 2006). Thus, the differences reported in table 2.1 are consistent

with previous studies. When comparing ALS and field measured tree heights, it is important to

keep in mind that accurate field measurement of height is difficult (in particular for tall trees)

and may contain a significant amount of error. Moreover, as noted previously, the field and ALS

measurement did not occur at the same time. Thus, results of the above height comparison should

not be interpreted as an accuracy assessment but rather as a coarse validation of coherence.

The accuracy of crown edge delineation was not evaluated, as no reference field measurements

were available for this attribute. Moreover, crown edge limits are notoriously difficult to measure

accurately in the field for large trees (in particular for those with asymmetric crowns).



30 Chapter 2. Data

(a) The mean XY position of

points located in the lower 50

cm of the segment (root point) is

used as a stem proxy.

(b) The mean XY position of

points located in the upper 50

cm of the segment (apex point)

is used as a stem proxy.

(c) Neither the root nor the apex

is well defined, so the mean XY

position of all points located in

the segment (centroid point) is

used as a stem proxy.

Figure 2.4: Estimating the stem position. Depending on the 3D segment geometry, three different

stem position proxies can be used (i.e. root, apex, centroid). The proxy point (orange dot) is then

projected onto the terrain model, to obtain the estimated stem position (red dot).
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(a) The tree height is estimated from the distance

(red line) between the root point (stem proxy) and

the apex (highest) point.

(b) The tree volume is estimated from the single

region 3D alpha shape (in green) of the XYZ point

coordinates

(c) The tree area is estimated from the single region

2D alpha shape (in green) of the XY point coordinates.

Figure 2.5: Geometric attributes derived from the 3D segments.
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Figure 2.6: Matching of field and ALS tree positions for the Benenté site. Note that only field mea-

surements where the tree height was available were used to assess height and position differences.
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Figure 2.7: Matching of field and ALS tree positions for the Ottmarsingen site. Note that only

field measurements where the tree height was available were used to assess height and position

differences.
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2.3 Sampling strategy

In many forest settings, tree species and height frequency distributions are imbalanced (i.e. presence

of dominant species and non-uniform height/shape distributions). If this imbalance is not taken

into account, models become overly adapted to the most frequent species/height classes and

do not generalize well to other species/height classes. Consequently, this leads to an overly

optimistic or pessimistic error assessment. Commonly used strategies to mitigate the effect of

imbalanced species/height distributions include oversampling minority classes or undersampling

majority classes, introducing classification/regression weights (costs) inversely proportional to class

frequencies, working with variables aggregated by class (Duncanson et al., 2015; Jucker et al.,

2016). For classification algorithms that optimize hyper-parameters based a performance metric,

using a metric that takes into account the classification score on each class (e.g. average precision)

rather than the overall accuracy can also help mitigate the effects of class imbalance.

Additionally, a standard procedure to improve model generalization is to train the classifica-

tion/regression model on a subset of the observations and validate it on the remaining observations.

This procedure can be repeated multiple times with different training and validation subsets (i.e.

cross-validation) and the error metrics can be averaged to provide a more robust error assessment.

For classification and regression problems, during the setup of the training and validation sets,

grouping of observations by species and height stratification is necessary. This ensures that the

training and validation sets have approximately the same height distributions for each species and

that the classification model is able to handle all height classes. Additional stratification may be

applied. For example stratifying the samples by segment shape quality has been shown to reduce

the classification error (Ko et al., 2016).

Scale and location dependent features can inadvertently be discriminative for species identifica-

tion within a sample, even though these feature are not discriminative for the overall population. A

typical case where such a problem would arise is if trees for a given species were all sampled in an

even aged stand. Thus, in the presence of imbalanced height/shape distributions, particular care

should be taken to use features that are independent of scale. However, this is not a requirement if

the full range of height/shape variability is uniformly distributed in the training/validation sets for

each species. Finally, when reporting the results, the error metrics may be stratified (e.g. by species,

height, diameter, social class, region, etc) to provide a more detailed diagnosis of performance.

2.4 Synthesis

In this chapter, an overview of the data and forest environment considered in this work was

presented. The following contributions were made:

• A novel ALS dataset containing over 5000 manually delineated 3D tree models including

observations from multiple sensors and at different forest sites across Switzerland. The

dataset has multiple research applications including the simulation of different forest configu-

rations, the rigorous validation of segmentation algorithms, development of genus/species

classification models and calibration allometric models.

• An extended variable length record specification (cf. Appendix G.1) for the ASRPS LAS

point cloud format to store forest inventory attributes at the individual tree scale directly

in the file. This specification is a practical solution to store and distribute forest inventory

parameters directly with 3D tree models (point clouds) in a single self-contained unit.
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This chapter covers the topic of individual tree segmentation from ALS data. It is structured

in the following way:

3.1 introduces the topic and describes the state of the art.

3.2 proposes a rigorous error assessment framework to evaluate the performance of

individual tree segmentation methods.

3.3 presents a novel graph-based tree segmentation method called geodesic voting. The

content of this section is adapted from Parkan and Tuia (2015).

3.4 presents a novel ensemble method used to estimate segmentation error and improve

tree shape delineation in coniferous forest. The content of this section is adapted from

Parkan and Tuia (2018).

3.5 presents a novel stem detection method called layered morphological analysis.

3.1 State of the art

Individual tree segmentation is a bottleneck problem for many forestry related applications including

dendrometry (e.g. height, diameter at breast height, basal area, crown spread), tree species

classification and forest stand delineation. The main difficulties associated with this problem

arise from the potentially complex spatial configuration of trees in forest environments. This

includes tree crown adjacency or intersection, heterogeneity of shape within and across species,

significant changes in shape with age and canopy layering (understory vegetation). Individual tree

segmentation methods rely (often implicitly) on several assumptions:

• the spacing between individual trees and/or their spatial distribution;

• the outer/inner shape/structure of trees (e.g. structural opacity, vertical growth, pointy top,

minimum/maximum crown area, minimum/maximum height, branch size distribution, etc);

• the radiometric properties of trees and their parts (e.g. echo intensity, reflectance, color).



36 Chapter 3. Individual tree segmentation

By combining these assumptions, it is possible to define a set of clustering rules that can be

used to merge similar parts and split dissimilar parts of the data. The strength of the assumptions

regarding tree characteristics varies between algorithms. Strict assumptions may reduce commission

errors and lead to good performances in forests with low shape variability. Conversely, algorithms

that do not rely on strict assumptions tend to perform better in more structurally diverse forests,

often at the cost of more commission errors. In practice, a balance between prior assumptions

and adaptability is often desirable. Most segmentation methods also require some level of manual

parameter tuning which generally affects the trade-off between detection/delineation recall and

precision (cf. section 3.2). Overall, some desirable characteristics of a tree segmentation algorithm

are:

• simplicity (e.g. easy implementation, limited number of parameters, minimal parameter

tuning);

• adaptability to different crown geometries;

• ability to segment vegetation in all forest strata;

• provision of a measure of segmentation uncertainty (e.g. by allowing fuzzy membership

for intersecting crowns).

• small computational complexity and running times on large areas

Unsurprisingly, many well established data clustering algorithms (e.g. K-means, DBSCAN,

hierarchical clustering, mean-shift, graphs-cuts, etc) have been applied directly or in a modified

form to the problem of individual tree segmentation (Koch et al., 2014; Zhen et al., 2016; Lindberg

and Holmgren, 2017). Often, these algorithms require an initial solution which is then iteratively

optimized according to the clustering rules. This initial solution can be random or it can be based

on preliminary detection of tree proxies (i.e. stem, top, centroid). In the latter case, different

approaches for deciduous and persistent tree species may be required. Many deciduous species

form a relatively flat canopy with many local irregularities and indistinct tree tops. On the other

hand, species with persistent foliage often form canopies with distinct tree tops. Canopy opacity

is also an important factor to consider when designing a segmentation algorithm. Opacity can

be related to the phenological phase and/or the type of foliage (deciduous/persistent). In leaf-

on conditions, a representative sampling of the branching structure is usually not possible with

long range ALS. This is particularly the case with young or sparse coniferous forests (e.g. in

woodland pastures) where self-pruning is limited and dense branching occurs from the ground up.

Conversely, in leaf-off conditions, ALS can sample most of the tree structure and thus provide a

better characterization of branching configuration (e.g. stem position, branch size distribution).

Divide and conquer approaches have been used to reduce the complexity of forest structures

and subsequently apply segmentation to each of the partitions separately. For example, partitioning

point clouds according to horizontal layers (strata) and processing each of the layers separately has

been shown to be an effective approach to deal with understory trees (Wang et al., 2008a; Rahman

et al., 2009; Duncanson et al., 2014; Paris et al., 2016; Hamraz et al., 2017).

Most of the current individual tree segmentation algorithms belong to one of three categories,

depending on the data representations they use:

• Raster algorithms which convert the raw point cloud to 2D (e.g. canopy height model) or 3D

gridded models (e.g. voxel model). Methods that use only the CHM have the disadvantage

of excluding all the sub-canopy information contained in the original dataset and are affected

by canopy height errors (especially in sloped terrain). This category of algorithms has been

the most widely investigated, in the past decade. A list of such algorithms is provided in

table 3.1;

• Vector algorithms which use of all the raw information but tend to be more computationally
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intensive. A list of such algorithms is provided in table 3.2;

• Mixed representation algorithms which generally attempt to combine the advantages of

raster and vector representations, but do not necessary exploit the full structural information

available in the point cloud. A list of such algorithms is provided in table 3.3;

Special mention should also be made of a subcategory of segmentation algorithms which

focuses exclusively on the detection of stems. Most of the stem detection methods found in recent

scientific literature were developed for terrestrial laser scanning. However, with the increasing

availability of high density ALS, some of these stem detection methods are now also applicable

to ALS. Similarly to full tree segmentation algorithms, methods to detect stems are difficult to

categorize precisely as they often combine different approaches including:

• Fitting 3D lines to the point cloud with RANSAC (Reitberger et al., 2009; Lamprecht et al.,

2015);

• Fitting circles, ellipse, cylinders to horizontal cross-sections of the point cloud with RANSAC,

simple/robust least squares or Hough transforms (Simonse et al., 2003; Aschoff and Spiecker,

2004; Bienert et al., 2007; Maas et al., 2008; Moskal and Zheng, 2011; Lindberg et al., 2012;

McDaniel et al., 2012; Olofsson et al., 2014; Wang et al., 2016a; Wieser et al., 2017; Cabo

et al., 2018; Calders et al., 2018);

• Using local spatial covariance features and/or surface normals. A frequently used approach

is applying a local Principal Component Analysis (PCA) and computing eigenvalue based

indices (e.g. ratio of first over sum of second and third eigenvalues) to identify local linearity

or planarity (Lalonde et al., 2006; Liang et al., 2012; Xia et al., 2015; Lamprecht et al., 2015;

Wang et al., 2016a; Amiri et al., 2017; Burt, 2017; Wang et al., 2018);

• Clustering based on spatial separation (Bienert et al., 2007; Maas et al., 2008; Brolly and

Király, 2009; Yao et al., 2011; McDaniel et al., 2012; Fritz et al., 2013; Lu et al., 2014;

Lamprecht et al., 2015; Shendryk et al., 2016; Amiri et al., 2017; Bock et al., 2017; Cabo

et al., 2018);

• Morphological operations on voxels (Heinzel and Huber, 2016);

• Graph based analysis (Gorte and Winterhalder, 2004a; Côté et al., 2009; Bucksch et al., 2014;

Parkan and Tuia, 2015);

• Projected point density analysis (Rahman and Gorte, 2009; Wang et al., 2016a)

• Laser pulse timing analysis (Bock et al., 2017)

• Radiometric properties analysis, e.g. reflectance, echo width (Yao et al., 2011; Lu et al.,

2014; Shendryk et al., 2016; Wang et al., 2018)

Comparing the results of segmentation algorithms reported in separate studies is difficult,

because of significant differences in data characteristics, types of forest and error assessment

protocols. In particular, the vast majority of individual tree segmentation studies do not validate the

3D shape of segments and instead only consider tree position, height and sometimes crown extent.

Several benchmarking studies have been conducted to compare a limited set of algorithms using

common datasets and error assessment procedures (Larsen et al., 2011; Kaartinen et al., 2012b;

Vauhkonen et al., 2012; Jakubowski et al., 2013b; Eysn et al., 2015; Dalponte et al., 2015; Wang

et al., 2016b; Pirotti et al., 2017). However, no algorithm has been shown to perform well across

all forest types (Zhen et al., 2016) and the development of a universally adaptable algorithm is an

ongoing research area.

Near future developments in individual tree segmentation are likely to make more use of 3D

structural and radiometric information (e.g. from multispectral LiDAR and/or simultaneous photo

acquisitions). It can also be expected that tree segmentation and characterization using deep learning
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algorithms trained on manually delineated point clouds and/or simulated tree/forest models will be

investigated.

Table 3.1: Selected raster algorithms for individual tree segmentation from ALS data.

Algorithm Multi-strata Reference

Region growing Hyyppa et al. (2001)

Parabolic surface fitting Persson et al. (2002)

Parabolic surface fitting Holmgren et al. (2003a)

Multiscale region merging Brandtberg et al. (2003)

Variable window size

tree top detection
Popescu and Wynne (2004)

Region growing Solberg et al. (2006)

Watershed Chen et al. (2006)

Spatial wavelet analysis Falkowski et al. (2006)

Watershed and

region merging
Koch et al. (2006)

Watershed Kwak et al. (2007)

Multiscale template matching Korpela et al. (2007)

Gaussian template

matching
Pirotti (2010)

Watershed with morphological

corrections
Heinzel et al. (2011)

Watershed with morphological

corrections
Ene et al. (2012)

Correlation surface analysis

and region merging
Holmgren and Lindberg (2013)

Elevation contour

analysis
Tang et al. (2013)

Spoke wheel Liu et al. (2013)

Watershed and

shape correction
Zhang et al. (2014)

Fishing Net Dragging Liu et al. (2015)

Graph based clustering Strîmbu and Strîmbu (2015)

Elevation contour

analysis
Wu et al. (2016)

Horizontal cross-section

analysis
Zhao et al. (2017a)

Constrained region growing

(using multispectral ALS)
Naveed and Hu (2017)

Gradient orientation

clustering
Dong et al. (2018)
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Table 3.2: Selected vector algorithms for individual tree segmentation from ALS data.

Algorithm Multi-strata Reference

Normalized graph cut X Reitberger et al. (2007)

Delaunay triangulation Alexander (2009)

Skeletonization based on

graph-reduction
X Bucksch et al. (2009)

Active contour and

hill climbing
Ke et al. (2010b)

Adaptive region growing

and merging
Lee et al. (2010)

Paraboloid surface

fitting with RANSAC
Tittmann et al. (2011)

Modified single

linkage clustering
Li et al. (2012)

Mean-shift X Ferraz et al. (2012)

Normalized graph cut X Yao et al. (2012)

Normalized graph cut

and mean shift
X Yao et al. (2013)

Layered K-means clustering X Kandare et al. (2014)

Modified single

linkage clustering
Lu et al. (2014)

Bayesian template fitting Lahivaara et al. (2014)

3D ellipsoid fitting X Lindberg et al. (2014)

Multiscale point cloud

analysis
X Vega et al. (2014)

Geodesic vote X Parkan and Tuia (2015)

Adaptive mean shift X Ferraz et al. (2016)

Layered vertical profile

analysis
X Hamraz et al. (2016)

Adaptive mean shift X Xiao et al. (2016)

Adaptive mean shifts X Hu et al. (2017b)

Normalized graph cut X Hu et al. (2017a)

Supervoxel clustering Xu et al. (2018)
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Table 3.3: Selected mixed representation algorithms for individual tree segmentation from ALS

data.

Algorithm Multi-

strata
Reference

K-means clustering Morsdorf et al. (2004)

Region growing Tiede et al. (2005)

Density of high points

and watershed
Rahman and Gorte (2008)

Layered hierarchical

morphological analysis
X Wang et al. (2008b)

Paraboloid surface fitting

with RANSAC
Tittmann et al. (2011)

Layered marker controlled

watershed
X Duncanson et al. (2014)

Voxel space morphological

analysis
X Mongus and Žalik (2015)

Layered and compartmentalized
clustering

X Paris et al. (2016)

Layer stacking X Ayrey et al. (2017)
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3.2 Error assessment framework

The segmentation error indicates how well a procedure is able to partition data into individual tree

instances. Quantifying this error is particularly important when working at the tree scale, because it

influences the quality of the derived features/predictors used in subsequent analysis (e.g. regression

and classification). The reporting of error across publications on individual tree segmentation is

very variable in form. Many authors validate their results based only on the horizontal position

difference of tree proxies (e.g. tree tops) relative to reference positions. Others combine positional

and tree height difference criteria. A smaller subset of authors validate the segmentation based

on the 2D overlap of segmented and reference tree crown boundaries. However, the validation

of the 3D shape of trees has generally been ignored (Zhen et al., 2016). As a consequence, the

results obtained in different studies are often not comparable. To address this problem, a rigorous

framework for 3D segment validation is proposed in this section.

The segmentation error can be characterized in terms of:

• The stem position error (cf. table 3.4) which quantifies the distance to the reference tree

position.

• The shape delineation error (cf. table 3.4) which quantifies how similar the tested and

reference tree shapes are in terms of relative height, area and volume difference.

Reporting stem position errors without associated shape delineation errors can be deceptive, as

segments may still have strongly erroneous shapes which may preclude further analysis. Thus, to

be counted as a correct detection (true positive), a segment should fulfill both stem position and

shape delineation quality criteria (cf. figure 3.1). First, its stem proxy should be located within a

maximum horizontal distance εxy,max from the reference position. The maximum tolerable stem

position error εxy,max (cf. figure 3.2) can either be a fixed value (e.g. empirically determined based

on stem density) or it can be a variable value. In the latter case, the following formula may be used:

εxy,max

f

2
DBH εxy,re f εxy,als (3.1)

where:

f is the stem cross section eccentricity factor;

DBH is the Diameter at Breast Height;

εxy,re f is the estimated planimetric error of the reference stem position;

εxy,als is the estimated planimetric error of the laser scanning points.

Equation 3.1 takes into account the possible cumulation of field and ALS measurement errors.

It is also important to note that stems are often sampled irregularly on a single side with most ALS

systems, although overlapping scan swaths or dual laser systems may sample stems on multiple

sides (possibly allowing direct measurement of stem diameter).

Second and more importantly, the tested segment shape should spatially overlap with the

reference shape. Formally, the correct detection rate d can be defined as:

d

N

i 1

IC εxy,i,εh,i ,...

N
0,1 (3.2)

Where N is the total number of segments and IC is the indicator function which determines if

segment i is correct:
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IC εxy,εh, ...
1 if εxy εxy,max AND εh εh,max AND ...

0 otherwise
(3.3)

The IC function may contain multiple shape quality criteria. In addition to the height error, area,

volume and point pattern overlap metrics should be included in IC (cf. table 3.4). Point pattern

overlap metrics (JP, r, p, F) are sensitive to point density. Thus, they can be misleading when

points are distributed non-homogeneously within a segment (for example within flight line overlap

bands). Conversely, area (JA) and volume (JV ) overlap metrics are insensitive to inhomogeneous

point density, but are affected by the location of each individual point (boundary defects). Thus, for

a given segment, area/volume overlap errors will often be larger than point pattern overlap errors

(cf. figure 3.3).

Based on the number of True Positives (nT P), False Negatives (nFN), False Positives (nFP), common

detection metrics such as recall (r), precision (p) and F-score (F) can be computed:

r
nT P

nT P nFN

0,1 (3.4)

p
nT P

nT P nFP

0,1 (3.5)

F 2
p r

p r
0,1 (3.6)

The interpretation of these detection metrics is provided in figure 3.6.

xy
xy,max

h

(a) Correct

xy
xy,max

h

(b) Incorrect

xy
xy,max

h

(c) Incorrect

True Positive 

(correct segmentation)

False Negative

(over-segmentation)

False Positive

(under-segmentation)

Reference stem position

(xref, yref)

Predicted stem position

(xpred, ypred)

Figure 3.1: Correct and incorrect tree detection cases. Combined stem position and shape delin-

eation errors determine if the detection is correct.
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(a) Side view of a stem detection (b) Top view of a stem detection

Figure 3.2: Stem position error modeling.

Figure 3.3: Difference between the point pattern overlap (JP) and the area overlap (JA) computed

with the Jaccard coefficient (intersection over union). Area and volume overlap metrics are more

sensitive to shape boundary defects.
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A very important aspect of individual tree segmentation is characterizing the difficulty of the

problem. Clearly, the difficulty is related to local structural complexity and is not the same for a

sparse woodland pasture than for a dense tropical forest. Essentially, in dense settings, there is

more potential for tree shape/edge confusion.

(a) Complex setting: dense, multi-layered, uneven-

aged, mixed species (e.g. selection cutting).

(b) Simpler setting: sparse, single-layered, even-

aged, pure species (e.g. woodland pasture)

Figure 3.4: Schematic examples of forest environments with different structural complexity.

One way of quantifying the segmentation difficulty is by examining the spatial adjacency

(cluttering) of trees. More specifically, given a labeled point cloud, where each unique label defines

a segment (tree), the following approach can be used:

1. Remove scan overlap swaths from the point cloud and/or resample the point cloud using a

regular 3D grid, to obtain an approximately homogeneous point density (cf. figure 3.5a).

2. For each point i in the point cloud, find all points located within radius RA (including self)

and compute the fraction of these points that have a different label than the one of point i.

This fraction is called the adjacency factor and is designated by the symbol fA,i (cf. figure

3.5b). The search radius RA is set empirically and should be sufficiently large to ensure that

in a given forest setting, any segment with an aggregated adjacency factor close to zero can

unambiguously be delineated.

3. Aggregate the point scale adjacency factor at the segment (tree) scale by consecutively

computing their respective average or any other aggregation function (cf. figures 3.5c and

3.5d). At the plot scale, both the average and the standard deviation of the aggregation index

can be used to characterize the overall difficulty of segmentation.

fA,i

NA,i

j 1

IA Li,L j

NA,i

0,1 (3.7)

Where NA,i is the number of points located within radius RA of point i and IA is the indicator

function which determines if the label Li of point i is different than the label L j of point j:

IA Li,L j

1 if Li L j

0 otherwise
(3.8)
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In a sparse forest settings, trees have a low adjacency factor and a simple distance-based

clustering algorithm such as single linkage or density based clustering (DBSCAN) may perform

well for segmentation. Conversely, the same algorithm may perform poorly in dense settings. Thus,

stratifying the segmentation scores according to the adjacency factor helps to interpret algorithm

performance.

Tree adjacency is probably the most determinant factor of segmentation difficulty, but it is not

the only one. Tree shape diversity, can also add complexity to the problem. Thus, a complementary

metric to assess segmentation difficulty could be a tree shape dissimilarity index. Such an index

could quantify coarse shape dissimilarity (e.g. simply combining height and crown area attributes)

or it could use more sophisticated shape comparison approaches (Veltkamp, 2001; Cardone et al.,

2003). Moreover, the visibility of the stem and of the apex is an important factor contributing to

segmentation difficulty.
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(a) Individual reference tree segments (topological

coloring).

(b) Adjacency factor at the point scale using RA = 2

m. Note that the factor increases near crown edges.

(c) Adjacency factor at the segment (tree) scale. The

mean was used as an aggregation function.

(d) Adjacency factor at the segment (tree) scale. The

fraction of points with adjacency factor larger than

zero was used as an aggregation function.

Figure 3.5: Adjacency factor for tree segments from the Boudry D1 reference site.
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Table 3.4: Stem position and shape delineation error metrics.

Metric Formula Interpretation

Stem position

error
εxy xp xr

2 yp yr
2

Horizontal distance

between reference xr,yr

and predicted xp,yp stems

Height error εh |hp hr|
Difference

between reference (hr)

and predicted (hp) height

Point wise

Jaccard index
JP

nT P

nT P nFN nFP
0,1

Relative overlap between

reference and predicted

point pattern

(cf. figure 3.3)

Area wise

Jaccard index

JA
Ai

Au
0,1

Ai: area of the intersection

Au: area of the union

Relative area overlap

between the reference

and predicted single

region 2D α shape

(cf. figure 3.3)

Volume wise

Jaccard index

JV
Vi

Vu
0,1

Vi: volume of the intersection

Vu: volume of the union

Relative volume overlap

between the reference

and predicted single

region 3D α shape

(cf. figure 3.3)

Recall

(Producer’s Accuracy)
r nT P

nT P nFN
0,1

Tendency to completely

include points (sensitivity)

(cf. figure 3.7)

Precision

(User’s Accuracy)
p nT P

nT P nFP
0,1

Tendency to correctly

include points

(cf. figure 3.7)

F score F 2 p r
p r

0,1

Harmonic mean of r and p.

The harmonic mean is used

instead of the simple

mean, because it

penalizes extreme values

more
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In the context of tree or stem detection, the following interpretation of recall and precision can

be made (cf. figure 3.6):

• Low recall: the algorithm is failing to detect a lot of existing trees.

• High recall: the algorithm is detecting most or all of the existing trees but may also be

detecting non-existing trees.

• Low precision: the algorithm is detecting many non-existing trees.

• High precision: the algorithm is detecting mostly or only existing trees.

Recall

High Low

P
re
ci
si
o
n

High

Low

Figure 3.6: Interpretation of recall and precision metrics for tree detection. Symbols:

True Positive, False Positive, © False Negative
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In the context of tree shape delineation, the following interpretation of recall and precision can

be made (cf. figure 3.7):

• Low recall: the tested segment is failing to include a lot of points that belong to the reference

segment.

• High recall: the tested segment includes most or all of the points that belong to the reference

segment, but may also include points that do not belong to it (false positives).

• Low precision: the tested segment includes many points that do not belong to the reference

segment (false positives).

• High precision: the tested segment includes mostly or only points that belong to the reference

segment (true positives).

The combination of high precision and low recall is called over-segmentation. Inversely, the

combination of low precision and high recall is called under-segmentation.

Recall

High Low

P
re
ci
si
o
n

High

Low

Figure 3.7: Interpretation of recall and precision metrics for tree delineation. Symbols:

True Positive, False Positive, © False Negative
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3.3 Tree segmentation with geodesic voting

In this section, an algorithm to extract individual deciduous trees (in leaf-off conditions) from

high-density discrete return ALS data is presented and its performance is evaluated under different

forest configurations. The method is based on quantifying the topological hierarchy of different

tree structures (i.e. from trunk to leaf) within a K nearest neighbour graph derived from the ALS

point cloud. This section expands the work presented in Parkan and Tuia (2015) with new study

sites, a more rigorous segmentation error assessment, modifications to the method, a parameter

sensitivity analysis and a more detailed discussion.

3.3.1 Description

The proposed method is based on the following assumptions:

1. forests and trees can be represented as (directed) acyclic graphs.

2. the set of shortest paths (geodesic graph) linking each tree node to the terrain within the

graph representation derived from the point cloud can be used as approximations of real

branching structures.

3. the nodes which are part of central structures (i.e. trunks, main branches) are more frequently

traversed by terrain-linking geodesics than other nodes.

Hypotheses 1 and 3 are implicit. Hypothesis 2 is biologically justifiable, considering that

natural selection has tended to maximize metabolic capacity and internal efficiency by respectively

maximizing the exchange surface areas and minimizing transport distances (Leopold, 1971; West

et al., 1999a,b). Such tree-like energy minimizing structures are observed across nature; for example

in the food gathering patterns used by some ants (Deneubourg et al., 1989), slime molds path finding

(Tero et al., 2007), vascular tissues, neural networks, hydrological drainage bassins, and lightning

(Bejan, 2000). The analogy between graph representations and botanical trees is so apparent that

mathematicians reuse botanical terms to describe some types of graphs. Thus, a connected acyclic

graph is called a tree and a graph whose connected component are all trees is called a forest. In

addition to being inherently well adapted to botanical tree representation, graphs have been studied

extensively and many descriptors have been developed to characterize them. Interestingly, some of

these descriptors such as the branching order (Horton, 1945; Strahler, 1952), the branching angles

(Honda and Fisher, 1978; Bayer et al., 2013), the branch lengths (Honda and Fisher, 1979; Bayer

et al., 2013), the bifurcation ratios (Oohata and Shidei, 1971; Whitney, 1976; Borchert and Slade,

1981) and the fractal (self similarity) dimension (Zeide, 1991; Lorimer et al., 1994; West et al.,

1999a; Godin and Ferraro, 2010) have a meaningful botanical interpretation and may be used to

differentiate species (Ferraro and Godin, 2000). Thus, there exists both functional and structural

justifications to employ geodesic graph based methods in tree segmentation.

Unsurprisingly, algorithms based on geodesic graphs have found applications for both artistic

rendering and accurate structural reconstruction of trees from 3D point clouds. In this regard,

much attention has been directed to reconstruct single tree structures from dense 3D point clouds

often collected with a terrestrial laser scanner (Gorte and Winterhalder, 2004b; Gorte and Pfeifer,

2004; Xu et al., 2007; Bucksch et al., 2009, 2010; Yan et al., 2009; Côté et al., 2009; Preuksakarn

et al., 2010; Livny et al., 2010; Gatziolis et al., 2010; Xu and Mould, 2012; Delagrange et al.,

2014; Hu et al., 2017a). However, there has been little investigation on using geodesic graphs for

simultaneous segmentation of multiple trees in forest environments (Parkan and Tuia, 2015; Tao

et al., 2015; Shendryk et al., 2016; Méndez et al., 2016).

The method we propose quantifies the topological importance of the different branching

structures which compose individual trees. More specifically, for each graph node it assigns a

centrality value which can be used to differentiate high hierarchy structures (i.e. trunk, main

branches) from lower hierarchy structures (i.e. small branches, leaves). This indexing can then be
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used to discriminate the location of individual trunks and assign lower hierarchy structures to each

of these trunks through connectivity (connected component analysis).

The intuition to use the frequency at which a network node is located on the shortest path

linking pairs of other nodes as an indicator of topological centrality was popularized by Freeman

(1977) who developed a set of node centrality measures. One of the measures described in Freeman

(1977) is the partial betweenness - an index commonly employed to identify important nodes

within communication networks. This index is defined in the following way. Given a node pk in a

graph and an unordered pair of nodes (source and destination) pi, p j where i j k, the partial

betweenness bi j pk of pk with respect to (pi,p j) is:

bi j pk

gi j pk

gi j

0, if pi and p j are unconnected
(3.9)

where:

gi j pk is the number of geodesics linking pi and p j that contain pk;

gi j is the number of geodesics linking pi and p j.

Thus, bi j pk can be considered as the probability that pk is located on a randomly selected

geodesic linking pi and p j. The terminology used in Freeman (1977) was expanded by Rouchdy

and Cohen (2013) who coined the terms "geodesic voting score" or "geodesic density" to designate

gi j pk . This terminology is used in the remainder of this section.

The algorithm proposed here is specifically designed for ALS and differs from the biomedical

image segmentation method described by Rouchdy and Cohen (2013) in several ways. First, the

geodesic density at each node (gi j pk ) is based on the K-NN graph and not on the optimization of

a flow potential function. Secondly, the method described here does not require the manual input

of an initialization point by the user. Third, the introduction of multiple (randomly scattered) end

points is not required, we use a single source point (tie node). Moreover, the characteristics of the

3D data we are considering differ largely from 3D biomedical imagery. ALS point clouds have

a relatively low and non-uniform resolution (point density diminishes when nearing the terrain).

Additionally, the forest environment is composed of multiple unconnected tree structures.



52 Chapter 3. Individual tree segmentation

Algorithm

The key steps of the method are illustrated in figure 3.8. Below follows a detailed description of

each step:

(a) Setup the vegetation, terrain and tie nodes (cf. figure 3.8a).

1 Create a Digital Terrain Model (DTM) with horizontal resolution dxy (e.g. dxy = 0.5 m).

2 Merge the DTM and vegetation points to form pi.

3 (Optional) Apply the vertical scaling factor fv to the z coordinate of the points, to

penalize the horizontal displacement of geodesics.

4 Add a global source node p j (tie node).

(b) Build the K-NN graph (cf. figure 3.8b).

1 Construct the vegetation to vegetation and terrain to vegetation K Nearest Neighbor

(K-NN) graphs separately and merge them.

2 (Optional) Apply a weighing function to the graph edges. Such a function can for

example be used to penalize paths that pass through long edges and can improve

structural reconstruction. A function of the form w L L 1 a can be used, where L

is the length of the edge in meters and a is an exponent larger than 1. Note that graph

edge weighing has also been used in Shendryk et al. (2016).

3 Extract the largest connected component in the graph (i.e. remove disconnected parts

of the graph).

4 Within the graph adjacency matrix, add equally weighted edges from all terrain nodes

to the tie node.

(c) Compute geodesics linking each node (pi) to the tie node (p j) using Dijkstra’s shortest

path algorithm (Dijkstra, 1959) (cf. figure 3.8c).

(d) Compute the geodesic density gi j pk at each node k (cf. figure 3.8d).

(e) Identify individual trees (cf. figure 3.8e).

1 Identify all the root nodes (i.e. those on the DTM) within geodesics, excluding the tie

node.

2 Remove roots which are linked with too few nodes, by thresholding the geodesic

density (voting), i.e. gi j pk gmin.

3 Assign geodesics to their respective root nodes.

4 Merge adjacent trees based on a separation distance criterion dad j.

5 (Optional) Filter erroneous points by applying additional geometric criteria.

(f) Compute the branching order (cf. figure 3.8f) and other graph descriptors.

Parameters

dxy Raster DTM resolution (nominal value: 0.25 m);

K Number of nearest neighbors used to build graph (nominal value: 15);

fv Vertical scaling factor (nominal value: 1);

a Edge weight exponent (nominal value: 2);

gmin Minimum geodesic density (nominal value: 30);

dadj Minimum stem separation distance (nominal value: 0.75 m).
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(a) Setup the vegetation nodes

(●), terrain nodes (■) and tie

node (♦).

(b) Build the K-NN graph and

set equal weights for all terrain

to tie edges.

(c) For each node, compute

geodesic from the tie node.

(d) Compute geodesic density at

each node. Identify individual

trunks by thresholding geodesic

density of terrain nodes.

(e) Remove terrain nodes and

find connected components

linked to trunks, to separate

individual trees.

(f) Compute the branching order.

Figure 3.8: Main steps in the individual tree segmentation. Adapted from Parkan and Tuia (2015).
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Characterization of the branching hierarchy

The method produces a graph for each tree. Each point has an associated relative geodesic density

(b) which can be used to reveal different levels of branching hierarchy (cf. figure 3.14). The graph

representation can also be used to characterize the branching order with the Horton-Strahler number

(cf. figure 3.9).
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(a) Conceptual example of the Horton-Strahler num-

ber.

(b) The Horton-Strahler number computed for an

individual tree segment.

Figure 3.9: The Horton-Strahler number can be used to characterize the branching structure of

trees.

Correcting under-segmentation

Under-segmentation can be detected and reduced by using the ratio of the geodesic and linear

distances as a measure of shape uncertainty (cf. figure 3.10). Each point within a segment can be

filtered with the following equation:

Ri

DG,i

DL,i

(3.10)

IF Ri

1 if Ri ρ

0 otherwise
(3.11)

where:

DG,i is the geodesic distance between point i and the root of its assigned segment;

DL,i is the linear distance between point i and the root of its assigned segment;

IF is the indicator function which determine if a point i is valid (IF Ri 1) or not

(IF Ri 0);

ρ is the maximum allowed value of R for a point to be included in a segment.

The value of ρ can be estimated by examining the probability distribution of R for the reference

(manually delineated) deciduous trees (cf. figure 3.11). In the considered study sites, most of the
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R values range from 1.03 to 1.1. This range of values is valid in dense forests, however it can be

expected that R can be larger in lower density forests or when considering isolated trees with more

prominent lateral branching.

(a) Conceptual example of the geodesic to linear

distance ratio.

(b) Under-segmentation example in the Benenté site.

Points with R 1.15 are colored in yellow and indi-

cate potential outliers in the segment.

Figure 3.10: The ratio (R) between the geodesic and linear distance from a point to its root can be

used to identify erroneous points (in case of under-segmentation) and detect segments that require a

posteriori shape correction.

(a) Probability distribution of the distance ratio for

all sites.

(b) Boxplots of the distance ratio for each study site.

Outliers are not shown.

Figure 3.11: Distribution of the geodesic and linear distances ratio (R) computed on the reference

(manually delineated) trees (deciduous only).
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3.3.2 Results

The method was applied to the Versoix, Sauvabelin, Benenté and Boudry D1 sites. These sites

were selected because they are broadleaf deciduous dominated forests covered by high density

leaf-off ALS data. The Versoix, Benenté and Boudry sites also have a coniferous understory layer.

Since a fully labeled point cloud is required for 3D shape validation, simulated forest plots were

created by considering only labeled trees from these sites. In other words, the simulated plots were

identical to the real plots, but they contained only labeled high vegetation (manually delineated

trees), unlabeled low vegetation (< 1 m) and terrain points. Moreover, to assess the influence of

understory coniferous trees on segmentation performance, two simulation subsets were created for

each of the four study sites: one including all species, the other with only deciduous species.

To evaluate the effect of vertical scaling and edge weight exponent, a full factorial sensitivity

analysis (cf. figure 3.13) was conducted on the simulated pure deciduous forest sites. The effect

of the adjacency factor on the correct detection rate (recall) was also evaluated (cf. figure 3.12).

Finally, the effect of correction for under-segmentation was examined (cf. table 3.9).

The proposed method was validated using the nominal parameters suggested in section 3.3.1

and compared to local maxima detection and marker controlled watershed segmentation (Meyer

and Beucher, 1990; Meyer, 1994; Soille, 2013). The local maxima detection (which also provided

markers for the watershed segmentation) was applied to 0.5 m resolution raster Canopy Height

Models (CHM) derived from the 3D point clouds and smoothed using a Gaussian 3x3 lowpass filter.

It used a height (h) dependent search radius (r) defined by:

r h 1 0.25 log max
h

h,1 (3.12)

The comparison of the two methods is reported in tables 3.5-3.6 for segmentation and in tables

3.7-3.8) for stem detection. Qualitative examples of segmentation with geodesic vote for the Boudry

and Versoix study site are presented in figures 3.14 and 3.15.

Figure 3.12: Correct detection rate as a function of adjacency factor (all sites combined). Correct

detection criteria: εxy 2 m, εh 2 m, JP 0.5.
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(a) Detection F-score for the Versoix site. (b) Delineation F-score for the Versoix site.

(c) Detection F-score for the Sauvabelin site. (d) Delineation F-score for the Sauvabelin site.

(e) Detection F-score for the Benenté site. (f) Delineation F-score for the Benenté site.

(g) Detection F-score for the Boudry D1 site. (h) Delineation F-score for the Boudry D1 site.

Figure 3.13: Detection and delineation F-score as a function of vertical scaling and graph edge

weight exponent. Correct detection criteria: εxy 2 m, εh 2 m, JP 0.5. All the other segmenta-

tion parameters are fixed, i.e. dxy = 0.25 m and kNN = 15.



Table 3.5: Detection and delineation performance of geodesic voting versus marker controlled watershed segmentation for deciduous and coniferous trees.

For delineation scores the mean and standard deviation are reported. Correct detection criteria: εxy 2 m, εh 2 m, JP 0.5. Note that the delineation

scores are computed on the correctly detected tree only, which explains why they are systematically high. The best performing method is indicated with an

asterisk.

Detection Delineation

Site Obs. fA Method p r F p r F JP JA JV

Versoix 372 0.5 0.22
Geodesic vote*

Watershed

0.57

0.23

0.62

0.26

0.59

0.24

0.87 0.14

0.86 0.13

0.92 0.1

0.86 0.14

0.88 0.9

0.84 0.1

0.8 0.14

0.74 0.15

0.75 0.16

0.68 0.16

0.72 0.19

0.61 0.21

Sauvabelin 171 0.35 0.2
Geodesic vote*

Watershed

0.62

0.07

0.53

0.09

0.57

0.08

0.85 0.14

0.87 0.14

0.89 0.11

0.81 0.11

0.85 0.09

0.83 0.08

0.75 0.13

0.72 0.13

0.75 0.14

0.67 0.12

0.7 0.17

0.64 0.17

Benenté 699 0.38 0.26
Geodesic vote

Watershed*

0.19

0.32

0.09

0.25

0.12

0.28

0.86 0.16

0.89 0.14

0.9 0.13

0.91 0.12

0.86 0.11

0.89 0.1

0.78 0.18

0.81 0.16

0.73 0.21

0.8 0.17

0.69 0.24

0.76 0.21

Boudry D1 535 0.47 0.25
Geodesic vote*

Watershed

0.31

0.18

0.3

0.19

0.3

0.18

0.81 0.16

0.8 0.15

0.93 0.1

0.84 0.14

0.85 0.1

0.8 0.1

0.76 0.16

0.68 0.15

0.77 0.15

0.68 0.16

0.72 0.18

0.61 0.18

Overall 1777 0.44 0.25
Geodesic vote*

Watershed

0.38

0.22

0.31

0.22

0.34

0.22

0.85 0.15

0.86 0.15

0.91 0.11

0.87 0.13

0.87 0.1

0.85 0.11

0.78 0.15

0.76 0.16

0.75 0.16

0.74 0.17

0.71 0.19

0.68 0.21



Table 3.6: Detection and delineation performances of geodesic voting versus marker controlled watershed segmentation for deciduous trees only. For

delineation scores the mean and standard deviation are reported. Correct detection criteria: εxy 2 m, εh 2 m, JP 0.5. Note that the delineation scores

are computed on the correctly detected tree only, which explains why they are systematically high. The best performing method is indicated with an asterisk.

Detection Delineation

Site Obs. fA Method p r F p r F JP JA JV

Versoix 301 0.46 0.2
Geodesic vote*

Watershed

0.81

0.26

0.8

0.37

0.8

0.31

0.9 0.12

0.9 0.1

0.93 0.09

0.83 0.15

0.91 0.08

0.85 0.1

0.84 0.13

0.76 0.15

0.77 0.16

0.68 0.16

0.75 0.19

0.62 0.2

Sauvabelin 171 0.35 0.2
Geodesic vote*

Watershed

0.6

0.07

0.52

0.09

0.56

0.08

0.85 0.14

0.87 0.14

0.89 0.1

0.81 0.11

0.86 0.09

0.83 0.08

0.76 0.13

0.72 0.13

0.75 0.14

0.67 0.12

0.71 0.17

0.64 0.17

Benenté 271 0.38 0.21
Geodesic vote*

Watershed

0.36

0.19

0.18

0.32

0.24

0.24

0.82 0.17

0.91 0.1

0.94 0.1

0.81 0.15

0.86 0.12

0.85 0.1

0.78 0.18

0.75 0.15

0.74 0.21

0.7 0.17

0.72 0.23

0.65 0.19

Boudry D1 268 0.26 0.19
Geodesic vote*

Watershed

0.7

0.19

0.57

0.38

0.63

0.25

0.88 0.14

0.92 0.1

0.95 0.08

0.8 0.16

0.9 0.1

0.84 0.1

0.84 0.15

0.74 0.15

0.8 0.16

0.69 0.17

0.79 0.18

0.67 0.17

Overall 1011 0.37 0.21
Geodesic vote*

Watershed

0.66

0.19

0.52

0.31

0.58

0.24

0.88 0.14

0.91 0.11

0.93 0.09

0.82 0.15

0.89 0.09

0.85 0.1

0.82 0.14

0.75 0.15

0.77 0.16

0.69 0.16

0.75 0.19

0.64 0.19
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Table 3.7: Comparison of stem detection performance with geodesic voting and local maxima

detection for deciduous and coniferous trees. Correct detection criteria: εxy 2 m. obs: number of

observations, p: precision, r: recall, F : F-score, εxy: mean and standard deviation of stem position

error. The best performing method is indicated with an asterisk.

Site Obs. Method p r F εxy m

Versoix 372
Geodesic vote*

Local maxima

0.84

0.52

0.91

0.59

0.87

0.55

0.26 0.29

1.17 1.01

Sauvabelin 171
Geodesic vote*

Local maxima

0.97

0.17

0.83

0.23

0.89

0.2

0.32 0.22

1.4 0.86

Benenté 699
Geodesic vote

Local maxima*

0.7

0.56

0.35

0.45

0.47

0.5

0.66 0.58

0.98 1.22

Boudry D1 535
Geodesic vote*

Local maxima

0.65

0.46

0.64

0.49

0.64

0.47

0.53 0.5

1.03 1.08

Overall 1777
Geodesic vote*

Local maxima

0.75

0.47

0.6

0.47

0.67

0.47

0.45 0.46

1.07 0.56

Table 3.8: Comparison of stem detection performance with geodesic voting and local maxima

detection for deciduous trees only. The best performing method is indicated with an asterisk.

Site Obs. Method p r F εxy m

Versoix 301
Geodesic vote*

Local maxima

0.97

0.46

0.94

0.65

0.95

0.54

0.2 0.14

1.19 1

Sauvabelin 171
Geodesic vote*

Local maxima

0.96

0.17

0.83

0.23

0.89

0.2

0.32 0.22

1.4 0.86

Benenté 271
Geodesic vote*

Local maxima

1

0.36

0.5

0.59

0.67

0.45

0.27 0.19

1.31 0.86

Boudry D1 268
Geodesic vote*

Local maxima

0.91

0.33

0.74

0.65

0.82

0.44

0.3 0.23

1.17 0.92

Overall 1011
Geodesic vote*

Local maxima

0.95

0.34

0.75

0.56

0.84

0.42

0.26 0.19

1.23 0.47
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Table 3.9: Detection and delineation performances before and after correcting under-segmentation

(for deciduous trees only).

Detection Delineation

Site Obs. fA p r F p r F JP JA JV

Versoix 301

0.46

0.2

0.81 0.8 0.8

0.9

0.12

0.93

0.09

0.91

0.08

0.84

0.13

0.77

0.16

0.75

0.19

Versoix

(corrected)
" " 0.79 0.77 0.78

0.94

0.09

0.84

0.14

0.88

0.08

0.79

0.13

0.7

0.16

0.68

0.18

Sauvabelin 171

0.35

0.2

0.6 0.52 0.56

0.85

0.14

0.89

0.1

0.86

0.09

0.76

0.13

0.75

0.14

0.71

0.17

Sauvabelin

(corrected)
" " 0.41 0.36 0.38

0.93

0.09

0.69

0.12

0.78

0.07

0.64

0.1

0.64

0.1

0.56

0.12

Benenté 271

0.38

0.21

0.36 0.18 0.24

0.82

0.17

0.94

0.1

0.86

0.12

0.78

0.18

0.74

0.21

0.72

0.23

Benenté

(corrected)
" " 0.53 0.27 0.36

0.85

0.14

0.81

0.12

0.81

0.09

0.7

0.13

0.66

0.14

0.6

0.15

Boudry D1 268

0.26

0.19

0.7 0.57 0.63

0.88

0.14

0.95

0.08

0.9

0.1

0.84

0.15

0.8

0.16

0.79

0.18

Boudry D1

(corrected)
" " 0.39 0.31 0.35

0.97

0.05

0.67

0.1

0.79

0.07

0.66

0.1

0.63

0.11

0.61

0.11
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(a) All the labeled points.

(b) Labeled points with b 0.03.

(c) Labeled points with b 0.5.

Figure 3.14: Individual tree segments obtained with geodesic voting on the Boudry D1 site

(deciduous trees only). Thresholding the relative geodesic density (b) reveals different branching

hierarchies.
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(a) All the segments (topological coloring)

(b) Example segments obtained with the algorithm. Side (first row) and top (second row) view.

(c) The corresponding manually delineated reference segments. Side (first row) and top (second row) view.

Figure 3.15: Individual tree segments obtained with geodesic voting on the Versoix site
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3.3.3 Discussion

The results systematically show that the geodesic vote algorithm performs better (cf. tables 3.5, 3.6,

3.7, 3.8) in pure deciduous forests with a moderate adjacency factor (cf. figure 3.12). Thus, the

presence of coniferous trees in the understory significantly reduces segmentation performance. This

is not a surprising result, as the algorithm was not designed to handle coniferous trees. Removing

the coniferous trees from the simulated mixed forest plots has a double effect: a reduction of the

spatial adjacency factor (i.e. lower density) and a reduction of trees which do not have a well

sampled stem and branching structures.

When considering only stem detection (cf. tables 3.7 and 3.8), the performances are generally

high for the pure deciduous forest plots (overall F-score = 0.84). With only a few cases of false pos-

itive detections, the algorithm can be considered reliable for stem detection. The large performance

differences between the stem detection (cf. tables 3.7, 3.8) and full shape delineation performances

(cf. tables 3.5, 3.6) also illustrate the importance of conducting an error assessment based on the 3D

shape delineation and not just on the tree position/height/surface when characterizing segmentation

performance. The comparison with marker controlled watershed segmentation also shows that

geodesic vote has a much higher rate of correct detections both for full tree detection (cf. tables 3.5,

3.6) and stem position detection (cf. tables 3.7, 3.8).

The parameter sensitivity analysis shows that the edge weight exponent a 2 systemically

produces better segmentation performances, although the improvement is only marginal on some

sites. The effect of vertical scaling is less clear and is more site dependent. Generally speaking,

a moderate amount of vertical scaling (> 0.75) seems to be beneficial. As it can be seen on the

Benenté site, reducing the vertical scale below 0.5 can help improve the segmentation when lower

parts of the stem have not been well sampled.

The correction for under-segmentation is detrimental to the segmentation performance on all

sites except Benenté. This can be explained by the fact there are many trees with missing stems on

this site. Thus, applying the correction is only recommendable when frequent under-segmentation

is observed.

The main advantages of the geodesic vote algorithm are its direct applicability to the ALS point

cloud, its robustness to noisy points, its relatively good resilience to density down sampling, the

fact that no normalization of the point cloud with respect to the terrain is required and its ability

to directly provide information on branching hierarchy. Its main drawbacks are the necessity to

use high density point clouds acquired in leaf-off conditions, its tendency to split large trunks

into separate trees (i.e. false positives) and its inapplicability to evergreen (e.g. coniferous) trees.

It can also be noted that applying the algorithm to large areas requires splitting the point cloud

into overlapping tiles and processing each tile separately. The resulting segmented tiles can than

be merged to reconstitute the original point cloud. This method also highlights the potential of

leaf-off acquisitions to characterize deciduous forests at the individual tree scale. In the past, leaf-on

conditions have often been favored because most forestry applications were based on the creation

of raster CHM for which information about the tree branching structure is not required.

There are several possible modifications and additional processing steps that could be applied

to the algorithm to potentially improve its performance. The preliminary filtering of deciduous

trees (i.e. removing all coniferous trees including those located in the understory) with a classifica-

tion/clustering (cf. chapter 5) algorithm is very likely to improve the results. The point elevation

could be normalized with respect to the terrain and the algorithm could be iteratively reapplied

using a series of multilevel terrain planes (considering at each iteration only the points located

above the plane). This modification could possibly solve the problem of poor sampling in lower

parts of the stems. More sophisticated graph edge weight functions could be used (for example

integrating intensity, echo width, color). Finally, more advanced a posteriori filtering approaches

could be used, for example based on shape probability indexes.
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3.4 Evaluating and improving segmentation with ensemble filtering

This section presents a method to estimate and improve individual tree segmentation error based on

the ensemble theory framework. It is adapted from Parkan and Tuia (2018).

Errors in individual tree shape delineation propagate in further processing steps (e.g. timber

volume, biomass and species prediction), so it is important to quantify them. However, the

majority of segmentation algorithms do not directly provide any information about shape delineation

uncertainty. Instead, the evaluation of shape delineation accuracy is usually done by comparing the

segmentation with an independently produced and reliable reference (e.g. manual segmentation

and/or field surveys). However, this approach is limited by the low availability of individual tree

shape reference data over large areas. For this reason, 3D shape delineation accuracy is very

often not evaluated in individual tree segmentation studies (Yin and Wang, 2016). Even though

independent tree shape validation data may not be available, quantifying segmentation uncertainty

is still necessary. One possible solution is to use algorithms which compare observed values with

model based expectations (geostatistics for example model spatial autocorrelation as function of

range). In addition to providing a prediction uncertainty, these methods also typically produce

better predictions, because they incorporate prior knowledge about the investigated phenomenon.

In the context of segmentation, such approaches involve modeling the spatial distribution and/or

the shape of trees based on prior botanical and ecological knowledge. Many tree species exhibit

an increase in crown geometry variability (heteroscedasticity) as a function of age (height) and

environmental conditions. However, some coniferous species (such as Spruce and Fir) exhibit less

geometric variability and are generally easier to model. For this reason, model based segmentation

algorithms are generally better suited for coniferous forests.

In this section, a method which models tree shape probability directly from the ALS data (i.e.

without the need for a predefined model) is described. The method uses the ensemble learning

(model averaging) framework (Schapire, 1990; Breiman, 1996; Kuncheva, 2004). An ensemble

is a group of segments which share similar (geometric and radiometric) features. We make the

hypothesis that segments in an ensemble can be considered as noisy instances of the same tree

shape template. By comparing all shape instances within an ensemble, inconsistencies between

the shapes can be detected and an estimate of a probable underlying tree shape is obtained. The

proposed method depends on several assumptions:

• Tree top geometric features can be used as proxies of overall tree shape.

• Tree crowns exhibit approximate radial symmetry.

• Tree growth is approximately vertical.

3.4.1 Description

The proposed methods starts with a set of individual tree segments (obtained with any generic

segmentation algorithm, such as marker controlled watershed (Meyer and Beucher, 1990; Meyer,

1994; Soille, 2013)). Each segment is then characterized by a set of descriptive (geometric and

radiometric) features and matched with similar segments to form ensembles (groups). Within each

ensemble, the 3D alpha shapes (concave hulls) (Edelsbrunner and Mücke, 1994) derived from

the point cloud segments are mutually overlaid to detect common regions and determine shape

probability. A threshold is then applied to the probability, to filter out erroneous points from the

initial segmentation.

The five main steps of the method are summarized in figure 3.16 and each step is explained in the

following subsections. The method was implemented in Matlab r2016b using custom functions

part of which were included in the Digital Forestry Toolbox (Parkan, 2017a).
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0 1 Pr > Prmin

Pr

STEP 3

Build similar
shape ensemble

STEP 4

Compute shape
probability

STEP 5

Filter points by 
thresholding probability

STEP 2

Compute upper
crown features

STEP 1

Initial
Segmentation

Shapes 1..N

Figure 3.16: Main steps used to compute shape probability and subsequently filter the initial

segment shape.

Step 1 - Initial segmentation

A 0.4 m resolution raster Canopy Height Model (CHM) is first derived from the classified 3D point

clouds (for the three sample sites). The CHM is smoothed using a Gaussian 6x6 lowpass filter.

Tree top (local maxima) detection is then performed using a variable radius (r) convolution window

defined by a function of the pixel metric height (h):

r h 0.5 0.25 log max
h

h,1 (3.13)

The local maxima are merged and the highest point is retained, if separated by less than the 3D

adjacency distance defined by function dad j h :

dad j h min
h

0.5 0.5 log max
h

h,1 ,4 (3.14)

The choice of a logarithmic variable radius in eq. 3.13 and 3.14 is based on the observed

relationship between upper crown radius and tree height in the region of interest. However, this

relationship may vary significantly between forest types (Duncanson et al., 2015) and other variable

radius functions such as those proposed in Pitkänen et al. (2004); Popescu and Wynne (2004); Chen

et al. (2006) may be used in place of eq. 3.13 and 3.14.

The detected local maxima (cf. figure 3.17a) are subsequently used as markers (i.e. seed points) in

watershed segmentation (Meyer and Beucher, 1990; Meyer, 1994; Soille, 2013) to label individual

tree crowns (cf. figure 3.17b). The CHM labels are then assigned to their nearest 3D points,

to obtain a 3D labeled point cloud. The presence of partial tree crowns would bias the shape

probability estimates. Thus, segments located within 10 m of the edge of the point cloud are

excluded. For the same reason, the segmentation parameter values (regardless of the segmentation

algorithm) should be set to avoid over-segmentation.
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(a) (b)

Figure 3.17: (a) Tree top detection results with variable size convolution window. (b) Raster CHM

segmentation obtained with the marker controlled watershed algorithm.

Step 2 - Computing upper crown features

In order to compare and group tree shapes in step 3, a set of descriptive features is required. Thus,

the total height h, upper crown (i.e. points located in the upper 15% of the crown) convex volume

v and median return intensity i (normalized by the [0.05, 0.95] quantile range) are computed for

each segment. These upper crown features were chosen because for trees with a conical shape, they

are less affected by poor segmentation than features that describe the lower parts of segments (cf.

figure 3.18a).

(a) (b)

Figure 3.18: (a) The total height (h), the 3D convex alpha shape (in red) volume (v) and the median

intensity (i) of points located in the top 15 % of the tree crown are used as features because they are

less affected by poor segmentation. (b) The single region 3D alpha shape (outlined in blue) derived

from the point cloud segment.
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Step 3 - Building shape ensembles (grouping similar segments)

First, the XYZ point coordinates of each segment i are normalized so that the segment origin is

vertically aligned with the tree top:

XYZ
i

norm XYZ i J XYZ
i

root (3.15)

where:

N is the number of points in segment i;

XYZ
i

norm is a Nx3 matrix containing the normalized 3D point coordinates of segment i;

XYZ i is a Nx3 matrix containing the original 3D point coordinates of segment i;

XYZ
i

root is a 1x3 matrix containing the root coordinate of the segment i (i.e. the projection of

the tree top on the terrain model);

J is a Nx1 vector of ones.

This coordinate normalization is required to overlay (stack) all shapes within an ensemble.

Then, the single region 3D alpha shape (Edelsbrunner and Mücke, 1994) (cf. figure 3.18b) of each

segment is computed and any holes in the shape are filled. Subsequently, ensembles (cf. figure

3.19) are constructed by grouping segments which share similar geometric and radiometric features

(computed at step 2). Formally, given a segment i with total height hi, upper crown convex volume

vi and upper crown median intensity ii, all segments j with j 1 Nsegments which fulfill the

criteria listed in table 3.10 form the ensemble i.

Table 3.10: Criteria used to create ensembles (groups) of similar segments.

Feature Criteria

Total height hi 0.5 h j hi 1.15

Upper crown

convex hull volume
vi v j 1.2 vi

Upper crown

median intensity
ii 0.2 irange i j ii 0.2 irange

The tolerances in terms of height, upper crown volume and median intensity differences used

when matching segments are set empirically. There is a trade-off between these margins and the

ensemble sizes. Tighter tolerances result in smaller ensembles and thus larger datasets are needed

to reach the minimum required ensemble sizes.
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(a) (b)

Figure 3.19: Example of an ensemble containing 69 overlaid segments with similar features. Dense

point areas indicate high shape probability. (a) Side view (b) Top view

Step 4 - Computing shape probability

The shape probability is defined as the number of times a point was included in the alpha shapes of

the ensemble divided by the ensemble size N (i.e. number of matching segments), as illustrated in

figure 3.20. For each set of points P0 which form a segment, the shape probability Pr P0 S0..N is

given by:

Pr P0 S0..N

N
i 0 P0 Si

N
if N Nmin

0 otherwise
(3.16)

where:

Si is the alpha shape of segment i;

S0..N is the set of N alpha shapes with features similar to S0;

N is the number of segments in the ensemble i;

Nmin is the minimum number of segments per ensemble required to compute a reliable shape

probability (10 was used here).

Thus, regions which are common to many alpha shapes in the ensemble obtain higher probability

scores than regions that are only visible in few segments.
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Not a subset ( )

Subset ( )

P0  S 0 P0  S 1 P0  S 2 P0  S N

0 1

Alpha shape (Si)

Figure 3.20: Each point cloud segment P0 is overlaid with the S0..N alpha shapes of similar segments

(including itself). Regions of the point cloud segment which occur more frequently inside S0..N

obtain a higher shape probability. Thus, inconsistencies between the shapes in the ensemble can be

detected.

Step 5 - Filtering

The points from the initial segments can be filtered by applying a threshold (Prmin) to the shape

probability. The filtered point subset is defined by:

IF Pri

1 if Pri Prmin

0 otherwise
(3.17)

where:

IF is the indicator function which produces the filtered point subset;

Pri is the shape probability associated with each point in segment i;

Prmin is the minimum probability required to retain a point in the segment.

An optimal value of Prmin can be set by visually examining the effect of applying different

threshold values to a (height stratified) sample of the segments.

3.4.2 Results

In this section, the ensemble filtering method is applied to the Brévine study site and its performance

is evaluated according to the error assessment framework presented in chapter 3.2.

The unfiltered (initial) and filtered shapes were compared to the manually delineated reference

shapes. The delineation performance (cf. figure 3.1) was evaluated (for detected trees only) in terms

of recall r, precision p, F-score F and Jaccard index J (also called Intersection over Union IoU).

The correct detection rate (d), which is equivalent to the detection recall (r), was computed as the

proportion of segments with a delineation JP > 0.5 (i.e. a segment is considered to be detected if

more than half of its points overlap with the reference points).
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The detection metric and the median of each delineation metric (except F score) for different

values of Prmin are presented in figure 3.21. The same metrics for Prmin 0.25 are also reported in

table 3.11 stratified by height category. Figure 3.22 provides boxplots of the delineation metrics.

Figure 3.24a illustrates the resulting probability map, figure 3.24b provides examples of individual

tree shape probability and figure 3.24c shows the resulting filtered segments.

A one-sided Wilcoxon signed-rank test was used to compare the delineation before and after

filtering with Prmin 0.25. This test was chosen because the before/after delineation scores are

dependent and not normally distributed. In this test, the alternate hypothesis is that the score values

after filtering minus those before filtering come from a distribution with a median greater than

0. Using a 0.5% (i.e. α 0.005) significance level, the alternate hypothesis was accepted for all

the delineation scores except recall. In other words, these delineation scores were significantly

higher after filtering. The associated p-values of the comparison tests were p : 1.2176 10 68, r : 1,

F : 1.4491 10 6, JP : 2.4291 10 6, JV : 9.6308 10 7, JA : 4.7761 10 16.

Figure 3.21: Sensitivity of the median validation scores to Prmin. Notice that the delineation scores

are undefined when the detection rate reaches 0.
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Table 3.11: Comparison of detection and median delineation performance before and after filtering

the segments with Prmin 0.25. Scores were rounded to the nearest second decimal. obs: number

of observations, d: detection rate, p: precision, r: recall, F : F-score, JP: pointwise intersection over

union, JV : volumewise intersection over union, JA: areawise intersection over union.

Detection Delineation

height [m] obs. d p r F JP JV JA

0 h 10 118
no filter

filter

0.58

0.49

0.65

0.92

0.96

0.83

0.74

0.84

0.58

0.73

0.47

0.65

0.58

0.73

10 h 20 182
no filter

filter

0.57

0.51

0.60

0.93

0.94

0.81

0.71

0.81

0.55

0.69

0.48

0.64

0.53

0.71

20 h 454
no filter

filter

0.59

0.51

0.68

0.95

0.96

0.84

0.75

0.87

0.60

0.76

0.51

0.69

0.56

0.77

Overall 754
no filter

filter

0.58

0.51

0.65

0.94

0.96

0.83

0.74

0.85

0.58

0.74

0.49

0.67

0.56

0.75

Figure 3.22: Boxplots of delineation scores before and after filtering the segments with Prmin 0.25.

All the delineation scores except recall are significantly higher after filtering. It can also be noted

that the filtering reduces the score spread.
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(a)

(b)

Figure 3.23: (a) False color composite (Red channel = ALS intensity rescaled to 0-1 range, Green

channel = aerial image Red, Blue channel = aerial image Green) oblique view of the ALS point

cloud (high vegetation only). (b) Side (first row) and top (second row) view of manually delineated

tree examples.
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(a)

(b)

(c)

Figure 3.24: (a) Shape probability map (high vegetation only). (b) Side (first row) and top (second

row) view of shape probability for six example segments. Notice that segment n 3 has null

probability. This is explained by the fact it is a particularly high tree and there was an insufficient

number of similar trees to form a reliable ensemble. (c) Filtered segments using Prmin 0.25.
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3.4.3 Discussion

The results indicate that the proposed method can produce an estimate of tree shape delineation

uncertainty. Shape probability at the point scale can be aggregated at the segment scale to produce a

mean or median shape probability providing information on individual segment shape uncertainty.

In the presented study case, when using Prmin values ranging from 0.1 to 0.6, the Jaccard index

scores are improved with a peak at Prmin 0.25. The precision score is increased and the recall

score is reduced for all values of Prmin. The detection rate is also reduced for all values of Prmin.

This reduction in detection rate is due to the definition which requires Ioup 0.5 for a segment to

be counted as a correct detection. The better delineation scores obtained after filtering are due to

the combined effect of removing erroneous points and discarding segments with Ioup 0.5.

For practical applications over large areas, it is sufficient to compute ensembles based on a

subset of the area which includes most of the tree shape variability and a sufficient amount of

redundant shape examples. By thresholding the resulting shape probability, a set of tree shape

templates are produced. New segments (i.e. outside the sample area) can then be matched (i.e.

using upper crown features) and compared with their most similar shape template to produce an

estimate of their segmentation uncertainty.

The proposed ensemble based filtering method has several advantages. The segmentation/shape

uncertainty estimate can be improved by adding additional observations to the ensembles. The

method is adaptive because it does not rely on predefined allometric rules or 3D model templates.

Moreover, although marker controlled watershed was used to produce the segmentation, any other

automatic or manually delineated segments could be used instead in the first step. Finally, the

method does not require high ALS point densities.

The main drawbacks of the method are its dependency on specific coniferous tree shapes, the

need to use datasets with multiple examples of similar trees and the computational cost. Most

of the computation time is used to compute the single region alpha shapes (~23%) and the shape

probability inclusion tests (~74%). The total time to apply the method for the three sites used in

this study was ~30 minutes. This computation time may be reduced by sub-sampling the point

cloud (i.e. lowering density) and using fixed values of α when computing the alpha shapes.

Further improvements could involve classification and separation of deciduous and coniferous

trees, before running the algorithm. This separation step could be accomplished using ALS

data alone using intensity (leaf-off), opacity (leaf-off) and/or shape features, for example with the

approach described in Liang et al. (2007). The method is conditioned by the segmentation algorithm

employed in step 1. In the current implementation, marker controlled watershed segmentation is

used, thus points located in crown intersection regions cannot be allocated to a tree with certainty.

This limitation could be improved by using a more sophisticated segmentation algorithm working

a the inner crown level. Additional features could be included to improve the segment grouping

step. These could include RGB or multispectral indices (e.g. from multiple wavelength LiDAR),

geometric features (e.g. crown base height, convexity, surface area, projected area, etc). In

particular, the addition of crown base height (which can be estimated for example with the approach

used in Duncanson et al. (2014)) to the list of grouping features used at step 3 could possibly

improve the shape uncertainty estimate beneath the crown base. Also, since it is assumed that

coniferous trees exhibit approximate vertical radial symmetry, additional shape instances could

be generated artificially by simply rotating the segments around the vertical (Z) axis. Finally, the

alignment of segments could be improved by using a more elaborated co-registration algorithm.

The segmentation and filtering procedure could theoretically be repeated and detected trees removed

at each iteration until no more detectable trees were left in the point cloud. Finally, the method

may also be employed to automatically create 3D tree shape templates which can be used in other

processing routines.
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3.5 Stem detection with layered morphological analysis

3.5.1 Description

Tree crown extent is generally not measured in operational forest inventories and for many forestry

applications the measurement of stem characteristics (diameter, height, taper) is sufficient. More-

over, tree crown shapes may evolve rapidly and their accurate delineation from ALS data can be

difficult. Finally, high density ALS acquisitions which sample the stems with enough points to

allow direct diameter measurement are becoming commonplace. For theses reasons, it can be

interesting to ignore tree crown delineation and investigate stem detection as a standalone problem.

This section describes a simple and efficient algorithm which is able to detect individual

tree stems from ALS point clouds acquired in leaf-off conditions. The method relies on several

assumptions:

• most trees have an approximately vertical growth;

• most stems are approximately linear;

• due to their large diameter relative to the laser footprint, stems have a higher probability of

generating last returns (echoes) in leaf-off acquisitions. Although this observation is valid for

most long range ALS acquisitions, it is dependent on flying height and laser beam divergence.

The proposed method is based on the morphological analysis of horizontal cross-sections

(layers) sampled at regular height intervals. Splitting the point cloud into a set of horizontal

cross-sections and clustering the points in each layer separately is a form of divide and conquer

approach. It has been used for individual tree segmentation and has delivered promising results

(Wang et al., 2008a; Moskal and Zheng, 2011; Tang et al., 2013; Kandare et al., 2016; Zhao et al.,

2017b; Ayrey et al., 2017). The main advantages of layered clustering approaches is that they can

generally handle multiple forest strata (under-story trees) and irregular crown geometries.

Segmentation algorithms that employ this approach rely on the same basic idea: the separability

of individual trees is much better above and/or below the crown intersection/adjacency height. Due

to the large inter-tree spacing in these upper/lower layers, simple algorithms such as hierarchical

clustering, kmeans, connected component analysis and DBSCAN generally work well to identify

individual tree locations. These initial (reliable) clusters can subsequently guide the segmentation

process across the more cluttered layers. The resulting set of 2D clusters can then be combined to

produce 3D clusters.

Each cross-section can either be processed directly in its raw vector representation or it can be

converted into a raster. The latter representation generally allows faster and less computationally

intensive processing.

The method exploits the fact that point densities are higher near the tree stems, an observation

first made by Rahman et al. (2009). This phenomenon is further increased when considering only

last returns, as larger branches and stems have a higher probability of completely intercepting

the laser beam. The core principle of the proposed method is to identify clusters (connected

components) in horizontal cross-sections, compute their centroids, and create a centroid density

image by accumulating the centroids computed in each layer. This centroid density image can then

be thresholded to identify the locations of individual stems.
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Algorithm

The key steps of the method are illustrated in figure 3.25. Below is a detailed description of each

step:

(a) Normalize the point elevation relative to the terrain elevation (cf. figure 3.25a).

(b) Filter the points (cf. figure 3.25b).

1 Apply a vegetation class filter

2 Apply a last return filter

3 Apply an acquisition date filter (leaf-off)

4 Apply a minimum height filter

5 (Optional) Apply other filters (e.g. reflectance, color, etc...)

(c) Initialize the centroid density image to zero

(d) Split the point cloud into a series of overlapping horizontal cross-sections with thick-

ness w (cf. figure 3.25c).

(e) For each layer, apply the following steps: (cf. figures 3.25d and 3.25e).

1 Rasterize the layer points to create a 2D boolean image, using raster resolution dxy.

2 Close small gaps with morphological closing (using a circular structuring element with

radius r1)

3 Fill holes (flood filling)

4 Identify connected components

5 Compute the area (Ai), perimeter (Pi) and circularity (Ci
4πAi

P2
i

) of each connected

component

6 Filter components by imposing a maximum area (Amax) and minimum circularity (Cmin)

7 Compute the centroid pixel of each filtered component and create a boolean image

containing only the centroid pixels

8 Buffer the centroid boolean image with morphological dilation (using a circular struc-

turing element with radius r2)

9 Add the centroid boolean image to the density image (cf. figure 3.25f)

(f) Apply a threshold (ρ) to the centroid density image to create a boolean mask (cf. figure

3.25g) and buffer it with morphological dilation (using a circular structuring element with

radius r3).

(g) Label the connected components in the boolean mask (cf. figure 3.25h).

(h) Transfer the labels from the connected components to the unfiltered point cloud (cf.

figure 3.25i).

(i) Determine stem positions by computing the median of XY coordinates in lower parts of

the stem (cf. figure 3.25i).

Parameters

dxy Raster resolution (nominal value: 0.4 m);

dz Vertical step (nominal value: 0.5 m);

w Layer thickness (nominal value: 1 m);

ρ Density threshold (nominal value: 5 m);

Amax Maximum object area (nominal value: π 4 m2);

Cmin Minimum object circularity (nominal value: 0.7);

r1,r2,r3 Circular structuring element radius (nominal values: 1 m, 0.5 m, 0.5 m).
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(a) Normalize the elevation of unfiltered point cloud. (b) Filter the point cloud (only last returns, leaf-off,

vegetation class, min/max height)
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(c) Sample points that are located within vertical distance w/2 above or below the cross-section plane.

(d) Rasterize the layer points to create a boolean image.

(e) Apply morphological operations to detect and filter region centroids.
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(f) Centroid density image. (g) Boolean mask obtained by thresholding the cen-

troid density image.

(h) Connected components detection in the boolean

mask.

(i) Detected stem positions in the unfiltered 3D point

cloud

Figure 3.25: Main steps in individual tree stem detection with layered morphological analysis.
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3.5.2 Results

Since a fully labeled point cloud is required for validation, simulated forest plots were created by

selecting only labeled trees in several sites of the reference (manually delineated) dataset presented

in chapter 2.2. In other words, the simulated plots were identical to the real plots, but they contained

only labeled high vegetation (manually delineated trees), unlabeled low vegetation (< 1 m) and

terrain points.

A full factorial parameter sensitivity analysis was conducted on the Sauvabelin, Versoix, Boudry

D20, Boudry D1, Rochefort and Sihlwald sites, to evaluate the effect of raster resolution (dxy),

vertical step (dz), cross-section thickness (w) and centroid density threshold (ρ) on the detection

score. These sites were selected because they have different topographic and/or forest characteristics.

The effects of varying maximum object area, circularity threshold and structuring element radius

were not evaluated. Four values (levels) were tested for each parameter, thus 256 ( 44) runs of

the algorithm were necessary for each site to evaluate all possible combinations (cf. table 3.12).

Parameter values that consistently produced the best detection scores (i.e. 90% F-score quantile)

were subsequently used as a nominal baseline in a one-at-time sensitivity analysis (cf. figure

3.26). The latter analysis was conducted on a smaller subset on the study sites (Versoix, Rochefort,

Sihlwald).

The proposed method was validated using the nominal parameters suggested in section 3.5.1 and

compared to local maxima detection. The local maxima detection was applied to 0.5 m resolution

raster Canopy Height Models (CHM) derived from the 3D point clouds and smoothed using a

Gaussian 3x3 lowpass filter. It used a height (h) dependent search radius (r) defined by:

r h 1 0.25 log max
h

h,1 (3.18)

The comparison of the two methods is reported in table 3.13 and a qualitative example of results

obtained with the proposed method is shown in figure 3.27.

Table 3.12: Optimal parameter values and corresponding detection scores obtained using a full

factorial setup. The mean and standard deviation of parameter values that produced a detection

F-score above the 90% quantile of all F-scores are reported. Correct detection criteria: εxy 2 m.

Parameters Scores

Site Obs. dxy [m] w [m] dz [m] ρ [m] p r F

Versoix 372
0.2

0

1.2

0.6

0.6

0.3

5.5

0.6

0.89

0.06

0.74

0.02

0.81

0.03

Sauvabelin 171
0.5

0.3

1.1

0.5

0.6

0.3

5.8

0.5

0.91

0.05

0.64

0.02

0.75

0.01

Boudry D20 312
0.6

0.2

1.2

0.5

0.5

0.3

5.3

0.9

0.98

0.02

0.86

0.03

0.92

0.01

Boudry D1 535
0.4

0.2

0.8

0.3

0.6

0.3

4.9

1

0.84

0.08

0.58

0.05

0.68

0.01

Rochefort 377
0.7

0.1

1.4

0.5

0.6

0.3

5.4

0.7

0.91

0.04

0.74

0.02

0.81

0.01

Sihlwald 1416
0.7

0.1

1.1

0.5

0.5

0.3

5.6

0.3

0.91

0.04

0.81

0.02

0.86

0.01
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Table 3.13: Comparison of stem detection results using the proposed morphological analysis

method and local maxima with variable search window size. The following nominal parameter

values were used for the proposed method: (dxy 0.4 m, w 1 m, dz 0.5 m, ρ 5 m). Correct

detection criteria: εxy 2 m. Scores were rounded to the nearest second decimal. Obs: number of

observations, p: precision, r: recall, F : F-score, εxy: mean and standard deviation of stem position

error. The best performing method is indicated with an asterisk.

Site Obs. fA Method p r F εxy m

Versoix 372 0.54 0.22
Morpho. Analysis*

Local maxima

0.97

0.52

0.59

0.55

0.73

0.55

0.32 0.4

1.17 1

Sauvabelin 171 0.35 0.2
Morpho. Analysis*

Local maxima

0.97

0.17

0.68

0.23

0.8

0.2

0.42 0.28

1.4 0.86

Benenté 699 0.38 0.26
Morpho. Analysis*

Local maxima

0.9

0.56

0.36

0.45

0.51

0.5

0.49 0.48

0.98 1.22

La Brévine 874 0.4 0.27
Morpho. Analysis

Local maxima*

0.74

0.98

0.37

0.66

0.49

0.79

0.82 0.52

0.36 0.65

Couvet 256 0.38 0.25
Morpho. Analysis

Local maxima*

0.71

0.96

0.5

0.65

0.59

0.78

0.7 0.53

0.51 0.87

Boudry D20 312 0.25 0.2
Morpho. Analysis*

Local maxima

0.98

0.62

0.9

0.54

0.94

0.58

0.29 0.26

1.09 0.96

Boudry D19 320 0.27 0.26
Morpho. Analysis*

Local maxima

0.96

0.54

0.76

0.49

0.85

0.51

0.34 0.3

1.06 1.07

Boudry D1 535 0.47 0.25
Morpho. Analysis*

Local maxima

0.92

0.46

0.55

0.49

0.69

0.47

0.49 0.44

1.03 1.08

Chambrelien 224 0.14 0.17
Morpho. Analysis*

Local maxima

0.98

0.51

0.93

0.58

0.95

0.54

0.23 0.23

1.04 1.06

Rochefort 287 0.25 0.22
Morpho. Analysis*

Local maxima

0.93

0.38

0.76

0.44

0.84

0.41

0.42 0.34

1.1 1.08

Ottmarsingen 127 0.25 0.17
Morpho. Analysis*

Local maxima

0.97

0.11

0.87

0.24

0.92

0.15

0.35 0.35

1.32 1.04

Sihlwald 1416 0.39 0.22
Morpho. Analysis*

Local maxima

0.96

0.37

0.73

0.68

0.83

0.48

0.2 0.28

1.14 1.02

Oberaegeri 308 0.48 0.24
Morpho. Analysis

Local maxima*

0.68

0.97

0.4

0.76

0.5

0.85

0.61 0.61

0.59 0.8
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(a) Detection sensitivity to the raster resolution dxy

(b) Detection sensitivity to the band width w

(c) Detection sensitivity to the vertical step dz

(d) Detection sensitivity to the centroid density ρ

Figure 3.26: One-at-a-time parameter sensitivity for the Versoix (left), Rochefort (center) and

Sihlwald (right) sites.
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(a) The point cloud with elevation normalized relative to the terrain.

(b) Labeled stems.

Figure 3.27: Individual stems detected with the layered morphological analysis on the Boudry D20

site (raw data). Topological coloring is used to distinguish adjacent stems.
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3.5.3 Discussion

The results show that the method is generally precise (low false positive detection rate), but may fail

to detect a significant fraction of the stems. The best performances are observed on sites with many

mature trees (high forests) and few understory trees (i.e. Sauvabelin, Boudry D20, Boudry D19,

Chambrelien, Rochefort, Ottmarsingen, Sihlwald). The method also outperforms local maxima

detection on all sites except La Brévine, Couvet and Oberaegeri. These three sites are dominated

by coniferous trees with stems not apparent in the point cloud and thus particularly well suited for

local maxima detection and poorly suited for stem detection.

The full factorial analysis shows that tuning the raster resolution dxy may improve the detection

results locally. This could be explained by the different stem densities and slopes on the tested

sites. More specifically, finer raster resolutions may improve results when stem density is high and

coarser resolution may improve the results when the slope is high (e.g. Rochefort). The one-at-time

sensitivity analysis shows that the most critical parameters are the raster resolution dxy and the

centroid density ρ . Since the bandwidth w and vertical step dz parameters do not influence the

results very much, it is advantageous to set them to high values to decrease the processing time.

Since the size range of the detected objects in the cross-sections can be modulated with the

Amax parameter, the algorithm is able to detect not only stems, but also the medial axis of trees that

do not have a visible stem (e.g. young coniferous trees). This also means that the method can also

be used to filter elements of a target size within a point cloud. Such filtering could be useful as a

preprocessing step in other segmentation methods (e.g. geodesic vote).

The main advantages of this method are its simplicity, its independence of point density (since

the point cloud is raterized), fast running times, low commission error rates and small positioning

error. Its main drawback are its dependency on leaf-off ALS acquisitions, its inability to detect

strongly inclined and/or poorly sampled stems.

Some possible improvements include: adding preliminary filtering steps (e.g. threshold on the

echo width), adding a post-processing step to identify faulty segments (e.g. fitting a linear/quadratic

model with robust least squares or RanSAC and checking the fit error).
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3.6 Synthesis

In this chapter, a state of the art on individual tree and stem segmentation was first conducted.

It revealed several shortage areas which require improvements or which have not been inves-

tigated extensively: the segmentation of trees/stems in general and in multi-layered deciduous

and mixed forests in particular, the rigorous validation of the 3D shape of tree segments (absent

from all the studies identified by the author), the standardization of problem difficulty and error

quantification/reporting. Based on these premises, the following contributions were made:

• A rigorous error assessment framework to validate the 3D shape of tree segments.

• A simple procedure to objectively quantify the difficulty of tree segmentation problems in

point clouds.

• A novel individual tree segmentation algorithm called geodesic voting based on a graph

representation of the ALS point cloud. The 3D shape of the individual tree segments produced

by the algorithm was validated by comparing it to manual delineation. This validation in

simulated pure deciduous forest showed that the algorithm had a generally good stem

detection rate (F-score between 67% and 95%) and a reliable delineation accuracy for 36% to

81% depending on test sites. The algorithm also systematically outperformed the commonly

used marker controlled watershed segmentation algorithm. In the presence of coniferous

trees in the dataset, the detection rate decreased significantly leading to the conclusion that a

preliminary separation of deciduous and coniferous trees could be beneficial for segmentation

when using this algorithm.

• A novel method to estimate segmentation uncertainty, produce tree shape templates and

improve individual tree segmentation based on the ensemble learning framework. Essentially,

the method combines many error-containing tree segments to estimate the true underlying

tree shape. The method was validated on the Brévine study site and it was shown that it can

be used to compensate for undersegmentation, in particular for tree with radial symmetry.

• A novel method to detect individual tree stems. This simple method based on the morpholog-

ical analysis of point cloud horizontal cross-sections was tested on different study sites. The

validation showed that it was able to achieve a detection F-score between 49% and 94% and

systematically outperformed local maxima detection in complex forest settings.
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This chapter covers the topic of stem diameter estimation from ALS data. It is structured in

the following way:

4.1 introduces the topic and describes the state of the art.

4.2 describes the error assessment framework used to evaluate the performance of stem

diameter estimation methods.

4.3 presents a replication study of the method proposed in Jucker et al. (2016) on the

reference dataset described in chapter 2.

4.4 presents and evaluates a novel method to directly measure stem taper in ALS point

clouds.

4.1 State of the art

Stem Diameter at Breast Height (DBH) is one of the most important and commonly used metrics

in forestry. When combined with other characteristics (e.g. tree species, height, taper, crown

diameter), it can be used to infer important variables such as wood volume and biomass. Moreover,

the proven link between the increase in atmospheric carbon dioxide and global climate change

has been a strong incentive to investigate the carbon cycle and to accurately quantify the carbon

storage capacity of forests (Patenaude et al., 2005; Pan et al., 2011; Saatchi et al., 2011; Reich,

2011; Baccini et al., 2012; Calders et al., 2015).

Many approaches have been proposed to estimate DBH with remote sensing. For this purpose,

the ability to accurately measure 3D forest geometry is critical and essentially limits the applicable

techniques to photogrammetry, Synthetic Aperture Radar (SAR) and LiDAR. The latter option is

currently the most suitable (St-Onge et al., 2008; Sexton et al., 2009; White et al., 2013b; Vastaranta

et al., 2013). Approaches to estimate tree diameter from structural remote sensing data can be

divided in two general categories:

• The indirect estimation of diameter from auxiliary geometrical variables at the tree scale (e.g.
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height, crown diameter, crown volume) or plot scale (e.g. crown coverage, height percentiles)

and environmental variables (e.g. altitude, resource availability). This is currently by far the

most frequently used approach. Its disadvantage is that it requires field surveys to collect

DBH measurements for calibration.

• The direct measurement of diameter based on a partial or full geometric modeling of the

tree branching structure from a point cloud. This approach does not require field surveys

(except for validation).

For the indirect approach, it is necessary to determine how the stem diameter changes in

proportion to other dimensions (e.g. height, crown width) with growth and environmental factors.

The concept of relative growth of different tree parts/dimensions was probably known for a very

long time by foresters and its use in silviculture in the form of yield tables has been documented

from the 18th century (Pretzsch, 2009). Through empirically investigation on the productivity of

experimental forest plots, foresters gradually developed predictive growth and yield models that

could be integrated in planning. However, the underlying physiological mechanisms and properties

of these scaling models did not become a scientific paradigm before the beginning of the 20th

century, when the topic was formalized under the name allometry. At that time, it was proposed

(Dubois, 1897; Lapicque, 1907; Thompson, 1917; Huxley et al., 1932; Kleiber, 1932) that many

biological scaling relations can be modeled mathematically with a power law of the form:

y b xk (4.1)

Or its equivalent logarithmic form:

log y k log x log b (4.2)

where:

y is the dependant variable;

x is the independant variable;

b is a proportionality coefficient;

k is an allometric exponent.

Subsequently, allometry became the subject of reinterpretation and debate among biologists

(Gould, 1966; Niklas, 1994; Gayon, 2000). In this context, the study of plant allometry gave rise to

several theories attempting to explain structural and functional growth mechanisms. Shinozaki et al.

(1964) suggested that a tree could be modeled as a bundle of pipes (linking the stem base to the leafs)

acting as both mechanical support and conductive vessels. Their theory provided some insights

into possible causes of tree shape and linked leaf size to sap wood area. It has been extended,

reinterpreted and contested since its proposal (Lehnebach et al., 2018). Halle et al. (1978) developed

23 models describing the growth patterns and shape (which they called architecture) of all known

tree species. More recently, in an attempt to explain the evolutionary origins of allometric scaling,

West et al. (1997) argued that it is a consequence of the structural fractal self-similarity and space

filling characteristics of vascular organisms. The authors suggested that there exists a universal

allometric exponent k 3 4 which governs processes across functional scales from individual cells

to ecosystems (West et al., 1999b; Enquist et al., 1999; Enquist and Niklas, 2001; Enquist, 2002).

One implication of this theory is that allometric scaling is not related to environmental conditions.

However, this theory has repeatedly been shown to be inconsistent with empirically evidence and

not generalizable as originally claimed (Agutter and Wheatley, 2004; Kozłowski and Konarzewski,

2004; Li et al., 2005; Kozłowski and Konarzewski, 2005; Muller-Landau et al., 2006; Coomes,

2006; Pretzsch, 2006; Russo et al., 2007; Coomes et al., 2011; Lines et al., 2012; Rüger and Condit,

2012; Bentley et al., 2013; Muller-Landau et al., 2016).
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Despite the large corpus of research on this topic, there is currently no consensus theory that

is able to universally and accurately explain the structural development and allometric scaling

of trees. For practical purposes, the most commonly used approaches in forestry remain simple

allometric functions obtained by regression analysis of field and/or remote sensing measurements.

A large number of such models have been proposed for different tree species and/or regional

environmental conditions (Picard et al., 2012). In 2013, the Food an Agriculture Organization

(FAO) and the French Agricultural Research Center for International Development (CIRAD) created

GlobAllomeTree (Henry et al., 2013); an online repository of global tree allometric models.

Even though they are a practical solution, allometric models should be used with caution as

they may be subject to large uncertainties due to sampling bias and error in the field or remote

sensing data used to calibrate them. In this regard, Duncanson et al. (2015) showed that allometric

models based on small sample sizes were biased in temperate forests. Based on this finding,

Jucker et al. (2016) compiled a global database of field and remote sensing tree observations which

was subsequently used to create a generic allometric model (using height and crown diameter as

predictors). The parameters of their model can be adapted to different forest types and biogeographic

regions to produce unbiased diameter and biomass estimations. The results obtained by Jucker et al.

(2016) were later confirmed in a replication study by Dalponte et al. (2018b).

Indirect diameter estimation from ALS data has been investigated extensively, using both

individual tree based (e.g. Chen et al. (2007); Peuhkurinen et al. (2007); Vauhkonen et al. (2010);

Yu et al. (2011); Dalponte et al. (2011); Allouis et al. (2013); Lo and Lin (2013); Bucksch et al.

(2014); Gonzalez-Benecke et al. (2014); Duncanson et al. (2015); Paris and Bruzzone (2016)) and

area (plot) based (e.g. Means et al. (2000); Næsset (2002); Holmgren et al. (2003b); Gobakken

and Næsset (2004); Popescu and Wynne (2004); Næsset (2004); Næsset et al. (2005); Gobakken

and Næsset (2005); Thomas et al. (2006); Maltamo et al. (2006); Jensen et al. (2006); Hollaus et al.

(2007); Mehtätalo et al. (2007); Anderson et al. (2008); Thomas et al. (2008); Straub et al. (2009);

Maltamo et al. (2009); Hollaus et al. (2009a); Lindberg et al. (2010); Ioki et al. (2010); Monnet

et al. (2011); Magnussen et al. (2012); Luther et al. (2014); Bouvier et al. (2015); Kankare et al.

(2015); Wu et al. (2015)). Plot based approaches are an alternative to individual tree allometry.

With this type of approach, the diameter distribution or total basal area of the forest plot is estimated

by multiple regression on area descriptors (e.g. canopy coverage, ALS point height quantiles,

proportion of deciduous and coniferous trees). Yu et al. (2010); Peuhkurinen et al. (2011) conducted

a comparison of area based and tree based approaches to estimate forest plot attributes and found

that both produced similar results. Lindberg and Hollaus (2012) on the other hand, reported that

better results were obtained with area based approaches. Finally, Yu et al. (2010) suggested that

increased ALS point density would likely improve estimations obtained with tree based approaches.

The influence of different regression methods used to fit diameter prediction models to tree/plot

scale observations has also been evaluated. Dalponte et al. (2011) compared the performance

of simple linear regression, linear and non linear Support Vector Regression (SVR) and found

that all three methods produced similar results for area based approaches. Monnet et al. (2011)

reached a similar conclusion, when comparing the performances of linear regression and SVR for

predicting forest characteristics at the plot scale. They suggested that more complex regression

methods like SVR could be more robust when dealing with a small number of training observations.

Comparing the results of different studies is difficult, due to diversity of environments covered,

prediction methods and error assessment procedures. The fact that many authors only report

absolute errors also hinders comparison. Most studies report diameter prediction errors in the

5-40% range. However, it remains unclear how generalizable these results are and under which

conditions (forest type, total basal area, stem count, topography, ALS point density, etc) they can

be considered sufficiently reliable for operational forestry use.
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The direct measurement of stem diameter from 3D point clouds is a much more recent develop-

ment than allometric modelling. It is based on a partial or full 3D geometric reconstruction of the

tree branching structure. This structural modeling typically involves fitting geometric primitives

(e.g. circles, cylinders, ellipses) to subcomponents (stem, branches) of the tree or meshing the

boundary points (e.g. with alpha shapes or splines). The most commonly used approach is circle

fitting with either (robust) least squares regression, Random Sample Consensus (RanSaC) or Hough

transform (cf. tables 4.1 and 4.2). The effect of different fitting methods has been investigated

and most of them produce similar results (Pueschel et al., 2013; Koreň et al., 2017; Liu et al.,

2018; Liang et al., 2018). Because most of the tree shape has to be sampled with points, direct

stem measurement is only applicable to high density point clouds (> 100 points / m2) preferably

acquired in leaf-off conditions. Thus, it has almost exclusively been investigated over small areas

using data from static or mobile Terrestrial Laser Scanning (TLS) which is typically orders of

magnitude denser than ALS data. Most of the studies conducted with TLS report that the stem

diameter measured in the point cloud is very close or equivalent to the reference field measurement.

Thus, TLS can be considered sufficiently reliable for operational stem geometry measurement

(Liang et al., 2018). As discussed in chapter 3.2, the environment in which methods are tested

plays a leading role in determining their performance and general applicability. In this regard,

environments with large spacing between stems (e.g. urban, even-aged high forests) and trees

with linear stems are much easier to process; methods tested in these environments may not be

transferable to more complex forest settings.

Recently, the combined commercial availability of Unmanned Aerial Vehicles (UAV) and small

lightweight LiDAR sensors (e.g. Riegl VUX-1, Velodyne HDL-32E and VLP-16) has allowed the

development of new intermediate range ALS systems. Data produced by these systems has point

densities similar to TLS over much larger areas (several tens of hectares) and has been successfully

used for direct measurement of stem diameter (Chisholm et al., 2013; Jaakkola et al., 2017; Brede

et al., 2017; Wieser et al., 2017). Very little attention has been given to direct diameter measurement

from the much more commonly available long range ALS data. One reason for this is the low

availability of ALS data with sufficiently high point density below the canopy. Another reason is

the prevalence of leaf-on ALS acquisitions which often hinders analysis of the stem geometry. Only

two published studies could be found on this topic. The first study by Bucksch et al. (2014) uses

as skeletonization algorithm to determine the medial axis (center) of the stem and subsequently

measures its radius by computing the distance between the ALS points and the medial axis. They

evaluate their method on 18 simulated trees (75 points / m2) and 34 real trees manually extracted

from point clouds produced with the FLI-MAP 400 instrument. They report a RMSE = 5 cm on

the simulated dataset and RMSE = 11.6 cm on the real one. They also indicate that the mean

stem diameter of the real trees is 40 cm, which means they obtain a relative error around 25%.

More recently, Harikumar et al. (2017a) proposed a method to find the anchor points (i.e. where

branches meet the stem) of coniferous branches and subsequently estimate stem diameter based on

a non-linear least squares fitting of a 3D cone to the void central region delimited by the branch

anchors. They tested their approach on 100 trees extracted from a high density ALS point cloud

(50-200 points / m2). They reported a MSE = 32.8 cm and a MAE = 4.98 cm, which based on the

interpretation of their graphs, translates to a relative error around 10% (the authors do not explicitly

present the diameter distribution of the studied trees, nor the relative error metrics). Interestingly,

the method proposed by Harikumar et al. (2017a) does not rely on ALS points along the stem

beneath the crown height (points below 50% of the tree height are removed). However, it is only

applicable to coniferous trees with fully linear stems.

With the steady increase in point densities observed in ALS surveys, it can be expected that

direct diameter measurement will be more generally applicable and could complement or replace

allometric estimations in the near future.
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Table 4.1: Selected publications on tree geometry modeling and direct stem diameter measurement

from ALS data.

Algorithm Parts Reference

Single circle fitting

(least squares)
Partial stem Chisholm et al. (2013)

Distance to

structural skeleton
Partial stem Bucksch et al. (2014)

Multiple circle fitting

(least squares)
Partial stem Jaakkola et al. (2017)

Single circle fitting

(least squares)
Partial stem Brede et al. (2017)

Single cylinder fitting

(least squares)
Partial stem Wieser et al. (2017)

Single cone fitting

(non-linear least squares)

Full stem

(coniferous only)
Harikumar et al. (2017a)
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Table 4.2: Selected publications on tree geometry modeling and direct stem diameter measurement

from TLS data.

Algorithm Parts Reference

Circle fitting

(Hough transform)
Partial stem Simonse et al. (2003)

Single cylinder fitting

(least squares)
Partial stem Hopkinson et al. (2004)

Multiple cylinder fitting

(least squares),

B-Spline fitting

Full stem,

main branches
Pfeifer et al. (2004)

Multiple cylinder fitting

(least squares)
Full stem Thies et al. (2004)

Multiple circle fitting

(least squares)
Full stem Henning and Radtke (2006)

Multiple circle fitting

(least squares)
Full stem Bienert et al. (2007)

Single circle/cylinder fitting

(least squares)
Partial stem Brolly and Király (2009)

Single cylinder fitting

(least squares)
Partial stem Moskal and Zheng (2011)

Multiple cylinder fitting

(least squares)
Full tree Dassot et al. (2012)

Voxel-based cross-section

morphological analysis

Full stem,

main branches
Vonderach et al. (2012)

Multiple cylinder fitting

(robust regression, Tukey)
Full stem Liang et al. (2012)

Single cylinder fitting

(RanSaC)
Partial stem Fritz et al. (2013)

Multiple cylinder fitting

(least squares)
Full tree Raumonen et al. (2013)

Single circle fitting

(RanSaC)
Partial stem Olofsson et al. (2014)

Multiple Cylinder fitting

(non-linear least squares)
Full tree Hackenberg et al. (2014)

Multiple cylinder fitting

(RanSaC)
Full stem Wang et al. (2016a)

Multiple cylinder fitting

(least squares)
Full tree Chen et al. (2018)
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4.2 Error assessment framework

The regression error indicates how well a model is able to predict a continuous variable (e.g.

diameter, biomass) from descriptive variables. Some of the most commonly used regression

performance metrics (Congalton and Green, 2008) are provided in table 4.3.

No single metric can be used to unambiguously characterize model performance. Average model

performance metrics such as the widely used RMSE should be accompanied by complementary

dimensioned metrics such a the Mean absolute Error (MAE) and Bias and dimensionless metrics

such as the relative bias and correlation coefficient. The reporting of relative (scaled, dimensionless)

error metrics is particularly important because it allows comparison of results from different studies

and datasets. These metrics should also be accompanied by correlation and bias graphs to help

interpret performances

Table 4.3: Regression performance metrics. xp,i is the ith predicted value, xr,i is the ith reference

value, σp is the standard deviation of the predicted values, σr is the standard deviation of the

reference values

Metric Formula Interpretation

Root-Mean-Square

Error
RMSE 1

N

N

i 1

xp,i xr,i
2

Unsigned quadratically

weighted error (dimensioned)

Mean Absolute

Error
MAE 1

N

N

i 1

|xp,i xr,i|
Unsigned error

(dimensioned)

Bias Bias 1
N

N

i 1

xp,i xr,i
Signed error

(dimensioned)

Relative bias Rel. Bias 1
N

N

i 1

xp,i xr,i

xr,i

Signed error

(dimensionless)

Correlation

coefficient
r

cov xr,xp

σrσp
1,1

Signed strength of

linear relationship

between the reference and

predicted values

Regression line

slope
a r

σp

σr
0,1

A slope close to 1

means a low bias
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4.3 Indirect diameter estimation

In this section, observations from all the study sites are used to estimate the diameter at breast

height with a general allometric model, using the approach proposed by Duncanson et al. (2015)

and Jucker et al. (2016). This approach is chosen because it has been shown to work well across a

wide range of forest types.

4.3.1 Description

The approach models the relation between the DBH and the area of the 2D longitudinal bounding

box (i.e. height multiplied by crown diameter) of a tree. To compensate the non-uniform diameter

distribution in the sample, observations are grouped into 50 logarithmic categories (diameter bins)

and variables are averaged within each category. A log transformation is then applied to the

averaged variables, so that a linear model can be adjusted (cf. equation 4.3):

log DBH α β log H CD ε (4.3)

The diameter is then predicted with equation 4.4:

DBH eα β log H CD e
σ2

2 (4.4)

where:

α is the intercept parameter of the linear model;

β is the slope parameter of the linear model;

ε is the regression error;

DBH is the diameter at breast height [cm];

H is the the tree height [m];

CD is the crown diameter [m] estimated from the area Ac of the crown’s 2D single region

concave hull with (CD 2 Ac

π );

σ2 is the estimate of the regression error variance (regression mean square error). This term

replaces the ε found in the log form.

Figure 4.1: Sequence of Silver fir (Abies alba) tree profiles illustrating the non-linear relation

between DBH and height. ALS data is from the Brévine study site.
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When considering different sub-groupings (e.g. biome, taxonomy, diameter, etc), it is often the

case that frequency distributions of observations are imbalanced. In other words, some groups may

be over or under represented in different diameter categories. Figure 4.2 illustrates this problem,

using observations from the reference dataset presented in chapter 2. If the group size imbalance

is not taken into account when partitioning observations into training and test sets, the model

parameters and the error metrics risk being biased in favor of the most represented group.

To compensate for this undesired effect when calibrating composite (i.e. non-group specific)

models, the variables of equation 4.3 are computed separately for each group and are subsequently

averaged. Thus, equation 4.3 can be reformulated into:

N

i 1

log DBHi

N
α β

N

i 1

log Hi CDi

N
ε (4.5)

where:

DBHi is the diameter at breast height [cm] of observations in group i;

Hi is the tree height [m] of observations in group i;

CDi is the crown diameter [m] of observations in group i;

N is the number of groups considered in the composite model;

Figure 4.2: Diameter distributions for the four most frequent genus in the benchmark dataset. Note

the imbalanced frequency distributions in terms of diameter categories as a function of genus.
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4.3.2 Results

Only oak (Quercus sp.), beech (Fagus sp.), fir (Abies sp.) and spruce (Picea sp.) trees with a DBH

ranging from 10 to 90 cm were considered in the analysis, because they are the most frequent in the

reference dataset (cf. chapter 2).

Monte-Carlo cross-validation with 500 runs was used to determine the parameter (α , β , σ )

values of equation 4.5 and to evaluate the prediction errors. In this procedure, at each run, a

diameter stratified fraction (2/3) of the observations is randomly selected to train the model and

the rest of the observations (1/3) are used for validation (error assessment). Since the partition

is random, the same observations can occur multiple times in different runs. To compensate the

effect of imbalanced diameter group sizes (cf. figure 4.2), average error metrics were computed for

each diameter group, at each run. Finally, the parameter values and error metrics of the 500 runs

were subsequently summarized in terms of mean and spread. This analysis was conducted for three

different taxonomic ranks:

• Rank 1 (R1) - composite model considering all genus, cf. table 4.4 and figure 4.3

• Rank 2 (R2) - composite models for each division (angiosperms, gymnosperms), cf.

table 4.5 and figure 4.4

• Rank 3 (R3) - specific models for each genus (Quercus, Fagus, Abies, Picea), cf. tables

4.6-4.7 and figures 4.5-4.6

The performances of these allometric models were subsequently compared, to evaluate the

effect of including taxonomic information on the DBH prediction (cf. table 4.8). Using the mean

parameter values obtained with Monte-Carlo cross-validation, diameter predictions were obtained

for all observations. Then, a two-sided Wilcoxon signed-rank test was used to determine if the

difference between the R1 or R2 and R3 diameter predictions has a zero median (i.e. the null

hypothesis). Using a 0.1% (i.e. α 0.001) significance level, the null hypothesis was rejected for

all the predictions (with p-values systematically smaller than 10 6). This means that the inclusion

of taxonomic information when calibrating the model has a significant effect on the prediction.

A two-sided Wilcoxon signed-rank test was also used to determine if the difference between

the predicted and reference diameters has a zero median (i.e. the null hypothesis). Using a 0.1%

(i.e. α 0.001) significance level, the null hypothesis was rejected for all the predictions (with

p-values systematically smaller than 10 2), meaning that a bias exists in the diameter predictions.

Looking a the error metrics, indeed a small relative bias ranging from -1% to 7% can be observed

for all the predictions (cf. tables 4.4-4.7).
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Table 4.4: Composite model considering all genus. Average regression parameter values and error

metrics based on 500 runs of Monte-Carlo cross validation. The dispersion of the scores is indicated

by 2σ .

Parameters Scores

Group Ntrain Ntest

α

2σ

β

2σ

σ

2σ

RMSE

2σ [cm]

Bias

2σ [cm]

Rel. bias

2σ

r2

2σ

All 2224 1109

-0.24

0.24

0.75

0.04

0.143

0.04

8.59

0.7 cm

0.2

0.74 cm

0

0.04

0.98

0

Figure 4.3: DBH regression error considering all available observations, using the average model

parameter values from table 4.4. First row: correlation between predicted and reference diameter.

Second row: boxplots of relative bias for 5 cm diameter categories.
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Table 4.5: Composite models for each division (angiosperms, gymnosperms). Average regression

parameter values and error metrics based on 500 runs of Monte-Carlo cross validation. The

dispersion of the scores is indicated by 2σ .

Parameters Scores

Group Ntrain Ntest

α

2σ

β

2σ

σ

2σ

RMSE

2σ [cm]

Bias

2σ [cm]

Rel. bias

2σ

r2

2σ

Angiosperms 1195 596

-0.74

0.24

0.82

0.04

0.187

0.114

9.19

2.18 cm

1.53

2.84 cm

0.06

0.18

0.94

0.16

Gymnosperms 1029 513

-0.19

0.2

0.76

0.04

0.127

0.03

7.53

0.52 cm

-0.88

0.86 cm

0

0.04

0.97

0.02

(a) Angiosperms (b) Gymnosperms

Figure 4.4: DBH regression error considering all available observations, using the average model

parameter values from table 4.5. First row: correlation between predicted and reference diameter.

Second row: boxplots of relative bias for 5 cm diameter categories.
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Table 4.6: Specific models for oak (Quercus sp.) and beech (Fagus sp.). Average regression

parameter values and error metrics based on 500 runs of Monte-Carlo cross validation. The

dispersion of the scores is indicated by 2σ .

Parameters Scores

Group Ntrain Ntest

α

2σ

β

2σ

σ

2σ

RMSE

2σ [cm]

Bias

2σ [cm]

Rel. bias

2σ

r2

2σ

Quercus 296 147

0.04

0.28

0.72

0.04

0.115

0.076

6.21

2.26 cm

0.37

2.86 cm

0.01

0.1

0.94

0.12

Fagus 899 449

-0.79

0.26

0.81

0.04

0.168

0.09

7.18

1.62 cm

-0.36

2.52 cm

0.02

0.16

0.94

0.16

(a) Quercus sp. (b) Fagus sylvatica

Figure 4.5: DBH regression error considering all available observations, using the average model

parameter values from table 4.6. First row: correlation between predicted and reference diameter.

Second row: boxplots of relative bias for 5 cm diameter categories.
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Table 4.7: Specific models for fir (Abies sp.) and spruce (Picea sp.). Average regression parameter

values and error metrics based on 500 runs of Monte-Carlo cross validation. The dispersion of the

scores is indicated by 2σ .

Parameters Scores

Group Ntrain Ntest

α

2σ

β

2σ

σ

2σ

RMSE

2σ [cm]

Bias

2σ [cm]

Rel. bias

2σ

r2

2σ

Abies 594 296

0.06

0.14

0.71

0.02

0.136

0.018

6.6

0.56 cm

-0.7

0.92 cm

0.01

0.04

0.96

0.02

Picea 435 217

-0.57

0.34

0.84

0.06

0.14

0.05

7.96

0.92 cm

-0.59

1.76 cm

-0.01

0.1

0.97

0.02

(a) Abies alba (b) Picea abies

Figure 4.6: DBH regression error considering all available observations, using the average model

parameter values from table 4.7. First row: correlation between predicted and reference diameter.

Second row: boxplots of relative bias for 5 cm diameter categories.



Table 4.8: Error metrics for models calibrated at different taxonomic ranks. R1: composite (all), R2: division specific (Angiosperm or Gymnosperm), R3:

genus specific. The parameter values used are the mean values obtained in cross-validation. The error metrics are based on all the observations. The best

scores are indicated by the bold font and an asterisk (*).

RMSE [cm] Bias [cm] Rel. Bias r2

Genus R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3

Quercus 7.89* 10.88 8.11 -3.91 -8.25 3.31* -0.09* -0.2 0.09* 0.97 0.98* 0.97

Fagus 11.19 8.71 7.74* 7.52 3.13 -1.19* 0.26 0.12 0* 0.98 0.98 0.98

Abies 6.97 6.73* 6.74 -3.18 0.3 -0.01* -0.07 0.02* 0.03 0.97* 0.97* 0.96

Picea 8.98 8.09* 8.28 -5.31 -2.09 -0.97* -0.11 -0.02* -0.02* 0.98 0.98 0.98
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4.3.3 Discussion

The diameter prediction results are comparable (relative bias close to zero and 0.96 r2 0.98)

to those reported in Duncanson et al. (2015), Jucker et al. (2016) and Dalponte et al. (2018b).

Interestingly, the high geometric quality of the manually delineated trees does not seem to improve

stem diameter estimates, when compared to the results obtained in Dalponte et al. (2018b). This

might be a consequence of the increase in tree crown area variability as a function of height

(Heteroscedasticity).

There are several significant differences in the analytical approach and data used here, when

compared to the work of Jucker et al. (2016) or Dalponte et al. (2018b). In the article by Jucker

et al. (2016), observations are grouped (stratified) by biome and division (angiosperm/gymnosperm)

when applying the regression, but the effect of possibly imbalanced species group sizes in each

biome or division is not explicitly taken into account. Similarly, this effect was not taken into

account by Dalponte et al. (2018b) when calibrating their composite (non group-specific) models.

The dataset sizes and stem diameter ranges are also different: Jucker et al. (2016) use a global

dataset (108’753 observations) with DBH ranging from 1 cm to more than 200 cm, most of the

DBH observations (17’438 observations) used in Dalponte et al. (2018b) range from 5 to 50 cm, we

use a much smaller dataset (3’333 observations) with DBH ranging from 10 to 90 cm. It can also

be noted that Jucker et al. (2016) and Dalponte et al. (2018b) both use 90% of the data for training

and only 10% for validation, while 2/3 and 1/3 are used here.

Most of the models show a negative bias for small (< 20 cm) and large (> 80 cm) diameters. It

is unclear if this bias is a limitation of the allometric model itself or if it is due to the small sample

sizes in these diameter categories. However, looking closely at the correlation plots in Jucker et al.

(2016) and Dalponte et al. (2018b), a similar negative bias can be observed for small diameters, but

not for large ones which seems to indicate that the bias observed here could be due to the small

number of observations in the extreme diameter categories.

Using data from boreal and temperate forests, Dalponte et al. (2018b) found that locally

calibrated species-specific allometric models did not perform significantly better than composite and

regionally calibrated allometric models. The results obtained here are not in complete agreement

with the finding of Dalponte et al. (2018b). In particular, it was found that the bias changes

significantly between composite (R1), division specific (R2) and genus specific (R3) models and in

this regard the latter models tended to produce the best results. This difference was not apparent

when comparing the performances of the models using RMSE and r2, with a difference in RMSE

less than 2 cm and almost identical r2. Here again, it remains unclear if this difference in bias could

be due to the relatively small sample size used for calibration and validation or if it is an intrinsic

limitation of the model. A definitive conclusion on the relative performance of R1, R2, R3 level

models could possibly be made by repeating the analysis with additional observations.
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4.4 Direct diameter measurement

This section presents a novel stem taper fitting method adapted to leaf-off high density ALS data.

The method relies on preliminary segmentation of individual trees or stems (cf. chapter 3).

4.4.1 Description

Reliably measuring stem diameter and taper from long range ALS data is challenging for several

reasons:

• The stem is sampled with a low number of points. Compared to TLS which may sample

a single stem with thousands of measurements, long range ALS typically only samples a

stem with several tens of measurements. This implies there is a low number of redundant

observations.

• The measured points on the stem often have an non-uniform spatial distribution. Ideally,

to identify the outer boundary of the stem, the points should be distributed uniformly around

the stem circumference and along its lengths. However, due to a multitude of acquisition

factors (e.g. occlusion, scan pattern, scan swath overlap), points are generally not uniformly

distributed.

• The point position error may be high relative to the diameter of the stem. Although many

ALS systems are able to routinely achieve sub-decimeter position errors, this value might

vary considerably depending on acquisition conditions (Habib et al., 2009; Goulden and

Hopkinson, 2010).

• The presence of a significant amount of non-stem points (outliers) in the input segment.

Individual tree or stem segmentation is a prerequisite for stem diameter and taper measure-

ment. However, segmentation methods often do not produce perfect results and a significant

amount of non-stem elements (e.g. branches, low vegetation, parts of other trees) may still be

present in the result. In other words, the input segment may have a low signal (stem points)

to noise (non-stem points) ratio.

Despite these limiting factors, it is interesting to investigate the possibility of using long range

ALS data for direct diameter measurement, because most of the near future ALS collected over

large forest areas can be expected to have similar characteristics. Moreover, some long range

ALS datasets already have point densities above 100 points per m2 suitable for direct diameter

measurement.

Directly measuring stem diameter and taper from a point cloud requires fitting geometric

primitives (e.g. circle or ellipse) to subcomponents of the tree (e.g. stem, branches) or meshing

(e.g. with alpha shapes or splines) the boundary points. Meshing approaches are able to reconstruct

the tree shape with high accuracy, but they require very high point densities and homogeneous

sampling of the tree structure. On the other hand, methods that fit geometric primitives can deal

with a considerable amount of sampling inhomogeneity and lower point densities. For this type of

approach, the use of robust methods to fit geometric primitives is generally necessary, when dealing

with a low signal to noise ratio.

Tree stem geometry can be complex and may vary considerably depending on multiple factors

such as species, age and environment. However, for many practical purposes and for the proposed

taper fitting method, the following geometric simplifications are assumed:

• Approximate stem linearity. Many stems and in particular several coniferous species have

an approximately linear stem. Heliophyte (i.e. shade intolerant) species (e.g. Pinus sylvestris)

will often have distorted stems, but may still have a significant fraction of their stem that is

linear.
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• Approximate vertical growth. The growth direction of plants is governed by gravity (grav-

itropism) and incoming light (phototropism), both of which promote vertical growth for

structural and light access reasons respectively. Heliophyte (i.e. shade intolerant) species

(e.g. Pinus sylvestris) are more prone to have tilted stems.

• Approximate circularity of stem cross-sections. This assumptions is generally true for

coniferous species, but less adequate for deciduous (Matérn, 1956; West, 2013).

• Approximate linear taper. This assumption is not valid at the base of the stem and above

the crown base height, but generally applicable in between (Larsen, 2017).

Mathematically, these assumptions imply that the taper and medial axis curve of the stem can

be approximated with a polynomial of degree n:

p x c0 c1x ... cnxn (4.6)

where:

ci is the coefficient for degree i;

x is the independent variable (e.g. diameter).

It can be assumed that n 1 for the taper model and 1 n 3 for the medial axis model.

Moreover, the tolerable amount of stem non-linearity and tilt can be controlled by setting constraints

on the coefficients ci of the medial axis polynomial. Similarly, the DBH and taper ranges can also

be constrained based on a priori knowledge about probable stem geometry.

Following this premise, a novel taper fitting method based on the Random Sample Consensus

(RanSaC) algorithm is proposed. RanSaC is a robust model fitting method first described by

Fischler and Bolles (1981). It has been successfully applied to tree modeling in the past; for

example Reitberger et al. (2007) used it to detect linear structures in individual tree segments and

Olofsson et al. (2014) used it to detect circles in TLS cross-sections. Generally speaking, RanSaC

is used when the ratio of inlier observations is too low to obtain reliable results with less robust

methods such as least-squares regression. It works by iteratively sampling the minimum subset of

observations required to calibrate a model (e.g. 3 points for a circle) and computing the number of

observations that conform to this candidate model (i.e. inliers) according to a predefined tolerance.

The sampling is repeated until all combinations have been tested or a maximum number of iterations

is reached. The number of iterations required to find suitable model parameters can be estimated

with equation 4.7, if the approximate proportion of outliers is known:

Niter

log 1 p

log 1 1 e s
(4.7)

where:

Niter is the number of required iterations (i.e. number of random draws);

p is the desired probability of drawing a sample with only inliers;

s is the minimum number of observations required to calibrate the model (e.g. 3 for a

circle);

e is the proportion of outliers.

After the maximum number of iterations is reached, the model parameters that result in the

most inliers are retained. The following subsection explains how RanSaC is applied to address the

problem of fitting the stem medial axis, diameter and taper simultaneously.
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Algorithm

The key steps of the method are illustrated in figures 4.7 to 4.9 and explained below:

(a) Isolate an individual tree or stem from a 3D point cloud (cf. chapter 3).

(b) Normalize the height of the tree/stem points relative to the elevation of the root point

(i.e. intersection of stem base and terrain).

(c) Filter the points located in the sampling height range hmin,hmax , cf. figure 4.7a.

(d) Find all unique combinations of three points (triplets) separated by a vertical distance

less than or equal to w. Each of these point triplets is projected on a horizontal plane

and defines a circle which is potentially part of the stem boundary (cf. figure 4.9a).

(e) Compute the geometric quality index of each circle (cf. figure 4.8). This index provides

an indication of reliably on the circle fit and is conceptually similar to the (covariance) error

ellipse used to model the expected error of a least squares adjustment.

(f) Filter the circles based on the quality index, emptiness, a priori knowledge about stem

diameter and taper ranges in the region (cf. figures 4.9b and 4.7b).

1 Exclude circles that do not fulfill a minimum geometric quality constraint Qmin.

2 Exclude circles that do not fulfill the diameter range constraint dmin,dmax .

3 Exclude circles that contain points further than εE from the boundary (within the vertical

domain defined by the three points). This takes into account possible non-circularity of

the stem and error in point positions.

(g) Simultaneously fit the medial axis and taper models with RanSaC (cf. figure 4.9c):

1 Randomly select (without repetition) a pair of circles that fulfill the taper tmin, tmax

and DBH range constraints dmin,dmax .

2 Find all circles with a diameter that fit these constraints within relative tolerance εD.

3 Randomly select nA 1 circles among the taper inliers and fit the medial axis model

(polynomial of degree nA) to them (x and y coordinates are fitted independently).

4 Count the number of circle centers that are located within a horizontal distance εA from

the fitted medial axis model (i.e. number of inliers).

5 Repeat steps 1-4 until all possible combinations of nA 1 circles have been tested or

the maximum number of iterations (Niter) is reached.

6 Retain the set of circles that comply with the best fit.

(h) Check if the inlier circles cover at least length L of the stem. This is done by dividing

the stem into equidistant (0.5 m) bins and counting how many bins contain an inlier circle.

(i) Compute the refined taper and DBH by using a least squares adjustment of diameter as a

function of height on the set of inlier circles.

Parameters

nA Degree of the polynomial used to model the stem medial axis (nominal value: 2);

w Maximum vertical separation of point triplets (nominal value: 2 m);

Qmin Minimum circle geometric quality (nominal value: 0.5);

hmin,hmax Sampling height range (nominal values: 0,15 m);

dmin,dmax Diameter range (nominal values: 0.3,1 m);

tmin, tmax Taper range (nominal values: 0,0.015 );

εA Absolute tolerance on medial axis fit (nominal value: 0.05 m);

εD Relative tolerance on circle diameter fit (nominal value: 0.15 m);

εE Relative tolerance on circle emptiness (nominal value: 0.85 m);

Niter Maximum number of RanSaC iterations (nominal value: 3000);

L Length of the stem covered by inlier circles (nominal value: 5 m);



106 Chapter 4. Diameter estimation

(a) For each point i, circles are fitted to the points

in the interval hi w 2,hi w 2 . This process is

repeated for all points between hmin and hmax and all

unique circles are retained.

(b) Above: circles obtained with all point triplet

combinations within hi w 2,hi w 2 . Below:

circles after applying the geometric quality, diameter

and emptiness constraints.

Figure 4.7: Circle fitting example.

(a) Q 1 (b) Q 0.73 (c) Q 0.25

Figure 4.8: Examples of point triplet geometric quality Q. The index Q is equal to twice the ratio

of the inscribed circle radius (ric) to the circumscribed circle radius (rcc), i.e. Q 2 ric

rcc
. Values of Q

close to 1 (equilateral triangle) indicate that the circle is well defined. The geometric quality index

Q is conceptually similar to the (covariance) error ellipse used to model the expected error of a

least squares adjustment.
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(a) All circles. (b) Subset of circles obtained after applying the ge-

ometric quality, diameter, taper and emptiness con-

straints.

(c) At each iteration, RanSaC randomly selects nA 1 circles (black dots) that define a taper (first row) and

medial axis curve (second row). The candidate stem geometry model that results in the most inlier circles

(bright red) according to chosen tolerances on εA, εD, and εE is retained.

Figure 4.9: Simultaneous stem medial axis and taper fitting.
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4.4.2 Results

The proposed method was tested on a simulated stem and on real ALS data from the three study

sites (Boudry D20, Boudry D19, Chambrelien) with the highest point density ( 70 m-2). For the

ALS simulation, a simple model (cf. figure 4.10) is used in which points on and around the stem

boundary are defined by:

x h xA h r h cos θ ε

y h yA h r h sin θ ε
(4.8)

where:

h is the height above ground level, h 0,15 m;

θ is an angle, θ 0,2π .

The medial axis of the stem is modeled as a second degree polynomial:

xA h 0.012 h2 0.043 h

yA h 0
(4.9)

The taper is modeled with a linear function and additional points are randomly added around the

stem surface to simulate non-stem elements:

r h
0.008 h 0.5 for stem points (inliers)

0.008 h 0.5 rN for non-stem points (outliers)
(4.10)

with rN randomly sampled from the continuous uniform distribution on the interval 0,1.5 :

rN U a 0,b 1.5 (4.11)

The ALS point position error ε is modeled as a random variable with a Gaussian distribution:

ε N µ 0, σ2 0.0025 (4.12)

Finally, equations 4.8 are evaluated with N random values of h and θ , considering a fraction f

of stem points (inliers) and 1 f of non-stem points (outliers) in equation 4.10.

(a) N = 200, f = 1 (b) N = 200, f = 0.75 (c) N = 200, f = 0.5

Figure 4.10: Side view of simulated stems with different inlier point fractions.
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A full factorial performance sensitivity analysis was used to evaluate the combined effect of:

• point density, N 75,150,300 ;

• fraction of stem (inlier) points, f 0.5,0.75 ;

• radial sampling homogeneity (only points with θ 0,θmax are considered), θmax π,2π .

The stem measurement algorithm was repeated 100 times for each combination of factor levels

(with a new simulation at each iteration), using the nominal parameter values suggested in section

4.4.1. The mean results on the simulated data are reported in figure 4.11.

(a) Measurement rate, θmax = 2π (b) Measurement rate, θmax = π

(c) Mean RMSE [m], θmax = 2π (d) Mean RMSE [m], θmax = π

(e) Mean bias [m], θmax = 2π (f) Mean bias [m], θmax = π

Figure 4.11: Diameter measurement sensitivity for simulated stems.
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The performance of the algorithm was also evaluated on individual trees from the reference

ALS dataset presented in chapter 2. The same nominal parameters as previously were used, except

for the maximum number of iterations which was set to Niter 5000. The corresponding results

are reported in table 4.9 and figure 4.12. Qualitative examples are illustrated in figure 4.13.

Table 4.9: Direct stem DBH measurement results. Nobs is the total number of observations, Nm is

the number of stems that could be measured by the algorithm, Nv is the number of stems used for

validation (i.e. where both field and ALS based measurements were available).

Site Nobs
Nm

(%)

Nv

(%)
RMSE [cm] MAE [cm] Rel. bias r2

Boudry D20 312
116

(37%)

46

(15%)
8.7 cm 5.6 cm 0 0.7

Boudry D19 320
50

(16%)

24

(8%)
6.4 cm 4.4 cm 0.1 0.81

Chambrelien 224
65

(29%)
- - - - -

Overall 856
231

(27%)

70

(8%)
8 cm 5.2 cm 0.03 0.75

(a) Correlation. (b) Relative bias.

Figure 4.12: Diameter prediction errors for all available observations.
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(a) DBH = 56 cm (b) DBH = 67 cm

(c) DBH = 53 cm (d) DBH = 44 cm

Figure 4.13: Qualitative examples of stem models fitted to ALS points. The fraction of the stem

where circles could be adjusted is indicated in red.
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4.4.3 Discussion

The results on the simulated stems indicate that the algorithm can handle a considerable amount of

outliers, as long as the point density is high (N > 150 / stem) and the radial sampling is homogeneous

(θmax 2π). Under these conditions the method consistently measured (> 92% of the time) the

stem diameter with a 4-6 cm mean RMSE and a 0-2 cm mean bias. Decreasing the quality of the

data, by simultaneously increasing the outlier ratio ( f 0.5) and diminishing the number of points

(N = 75), resulted in lower measurement rates (31%) and an increase in RMSE (0.09 m). Reducing

the radial sampling θmax to π significantly affected the capacity of the algorithm to accurately

measure the stem. Under these conditions, only half of the points are considered (N 2) and they

are all distributed on the same side of the stem, which means there is a low probability that the

algorithm’s constraints are met.

On the real ALS data, the results indicate that the algorithm is able to measure about 25% of

the stems. The algorithm was able to measures trees down to 30 cm DBH, but typically has higher

measurement rates for larger diameters. The average error on DBH (MAE = 5.2 cm, RMSE = 8

cm, Rel. Bias = 0.03) is generally within the the uncertainties related to ALS and field surveys.

These performances are slightly better than those obtained with allometric models 4.3. Note, that

the evaluation of the method is based on relatively small validation set (70 observations).

This approach is advantageous because, unlike allometric models, it does not rely on field

surveys (except for validation). The implementation is flexible and may be modified in a number of

ways. First, the initial circle detection can be substituted with any other appropriate circle, ellipse,

or other cross-section shape fitting methods (e.g. circular Hough transform, linear or non-linear

least squares adjustment). The area of the cross-section can be used as the dependent variable in

the taper equation, instead of the circle diameter. Both the medial axis and taper functions can also

be changed to use different models. The main disadvantage of the method is its computation time

( 1-2 sec per tree) and reliance on random sampling of points. The latter is related to the use of

RanSaC which may produce different results at each run and which does not use all the data when

adjusting the model.

Steps to improve the results and increase the processing speed include: preliminary filtering of

points that are likely to be on the stem surface (e.g. by using last returns only and/or applying a

stem detection algorithm), using the curvilinear distance to the base of the stem instead of the 2D

vertical distance (height) could improve results for trees that are heavily tilted and indirect diameter

estimates with generic allometric models (cf. section 4.3) could be used to constrain the taper more

tightly.
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4.5 Synthesis

In this chapter, a state of the art on stem diameter estimation from ALS data was conducted.

It was found that most methods to estimate stem diameter from ALS rely on allometry (i.e.

indirect estimation from auxiliary geometric variables such as height or crown diameter) and that

direct measurements of diameter/taper in long range ALS point clouds has not been extensively

investigated. Based on this observation, two topics were investigated:

• The allometric diameter estimation method proposed by Jucker et al. (2016) was modified

to take into account imbalanced species frequencies and its performance was evaluated on

the benchmark dataset presented in chapter 2.2. It was shown that species-specific and

non-specific models performed similarly in terms of RMSE and r2, but produced different

biases when evaluated on single species. RMSE values smaller than 10 cm were consistently

obtained and no large systematic bias was observed. It can be concluded that the approach is

applicable in an operational context, given a reliable individual tree crown segmentation. The

advantage of the allometric approach is its simplicity and its applicability to low density point

clouds. Conversely, the reliance on individual tree shape delineation is the main limitation

of the approach because errors in the crown diameter or height of segments will propagate

to the DBH estimation. Upscaling of the DBH at the plot scale also depends on the quality

of the tree detection (precision and recall). Finally, with this approach identification of the

species may be required to improve DBH predictions (in terms of bias at least) in some cases.

• A novel direct diameter and taper measurement method from high density (> 70 points /

m2) ALS point clouds was presented. The method is based on simultaneously fitting a stem

curve and taper model to the point cloud using RanSAC. Validation on simulated and real

trees extracted from ALS point clouds showed that the method is able to handle a significant

amount of noise and could predict the diameter of about 25% of trees with a diameter larger

than 30 cm. An overall RMSE of 8 cm, MAE of 5.2 cm and r2 were achieved. This type of

direct measurement approach will be increasingly relevant, given the improving availability

of high density ALS data. The main advantage of this method is that it only depends on the

detection of stems (not the full tree shape) and does not require the species to be identified. Its

main disadvantage is its reliance on sufficient sampling of the stem structure (which requires

high density point clouds preferably acquired in leaf-off conditions) and computational

complexity.





5. Tree species classification

This chapter covers the topic of tree species classification based on ALS and AHI derived

features. It is structured in the following way:

5.1 introduces the topic and describes the state of the art.

5.2 describes the error assessment framework used to evaluate the performance of classifi-

cation methods.

5.3 describes individual genus/species characteristics in terms of structural and spectral

separability.

5.4 presents a tree species classification workflow based on ALS derived features only.

5.5 presents a tree species classification workflow based on AHI derived features only.

5.6 presents a tree species classification workflow based on combined ALS and AHI

derived features. It also summarizes the overall performance of different ALS/AHI

feature combinations and classifiers.

5.1 State of the art

The mapping of forest canopy characteristics over large areas has a history which coincides with

the development of remote sensing technology. Thematic mapping of forest canopies has important

applications including the conservation of areas with high species richness and/or rare species, the

identification of biological habitat suitability, the quantification of biomass and timber volume by

species, the detection of invasive neophytes, the evaluation of tree health (e.g. disease, water stress,

nutrient deficiencies) and the localization of areas most vulnerable to natural disasters (e.g. forest

fires, landslides). Of course, the quality of these thematic maps directly depends on the ability to

reliably measure and analyze the structural and biological characteristics of forests. In particular,

the capacity to differentiate tree functional traits and ultimately individual species is central. Early

approaches to map canopy characteristics relied entirely on photo-interpretation and the mapping

quality depended on the qualifications and experience of the interpreter. Photo-interpretation
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consists in the analysis of texture, shape, color and spatial context of single or diachronic images

(Boutin et al., 1953; Heller et al., 1964; Avery, 1969; Sayn-Wittgenstein, 1978; Hershey and Befort,

1995; Oester, 2003). If pairs of overlapping images are available, the relative height of trees can

also be estimated with a stereoscope. Photo-interpretation was the main operational approach

for large area forest mapping until the early 2000’s and it is still actively used in some national

forest inventories (in Switzerland for example). Following the pervasive adoption of digital sensors

and computers, photo-interpretation is being progressively replaced by more efficient mapping

techniques which can be automated and are not affected by individual bias. Most of these forest

mapping techniques rely heavily on new active remote sensing technologies (such as airborne laser

scanning or synthetic aperture radar) and digital photogrammetry which can accurately measure the

forest’s 3D structure. In this context, the combination of different remote sensing techniques and

computational tools to improve forest mapping has become a popular research topic (cf. tables 5.2

to 5.7). Complementary information on tree structure and reflectance may be obtained with multi-

sensor (e.g. laser scanner and multi/hyperspectral imager) or single sensors (multi/hyperspectral

laser scanner, multi/hyperspectral photogrammetry) surveys. Currently, the combination of airborne

laser scanning and multi/hyperspectral imaging is the most widely investigated solution and it

has been shown to be effective for tree species and health mapping (Torabzadeh et al., 2014; Xu

et al., 2015; Fassnacht et al., 2016; Kukkonen et al., 2018). Thanks to active research communities,

ALS/AHI equipment and funding availability, the forests in developed countries have received

significant attention (in particular Scandinavian taiga, European broadleaf forests and Puget lowland

forests). Inter-tropical regions have received much less attention, even-though they are much richer

in terms of biodiversity and more threatened by degradation.

Airborne and spaceborne multispectral imaging has been used extensively to map tree species.

Its main advantage is availability and relatively low cost. However, because it generally has only

a few bands with low spectral resolution (i.e. wide bands), it has less discriminative power when

compared to hyperspectral imaging which provides a quasi continuous sampling of the spectra with

many narrow bands. The interest in using the latter technology to identify single species comes

from the fact that many species have subtle spectral features (a few nanometers wide) which can

only be detected when considering adjacent narrow spectral bands. Some regions of the spectra in

particular (cf. figure 5.1) provide information about biochemical properties such as leaf pigment

concentration (e.g. chlorophyll, carotenes, xanthophylls, anthocyanins), water and dry matter

contents (e.g. cellulose, lignin). The relative presence of these components can help discriminate

species and evaluate tree health (Kumar et al., 2002). With multi/hyperspectral imaging, the spatial

extent of pixels is generally larger than individual leafs or needles, so spectral signatures also

contain information about canopy structural properties such a leaf area index and crown density

(Schlerf and Atzberger, 2006b; Zheng and Moskal, 2009). Commonly used features to discriminate

vegetation from multi/hyperspectral reflectance data include:

• Raw reflectance values of selected bands (based on known species traits);

• Transformed reflectance values after applying a Principal Component Analysis (PCA),

Maximum Noise Fraction (MNF) (cf. (Green et al., 1988)), standard normal variate transform

(Barnes et al., 1989) or other techniques to increase the signal to noise ratio.

• First or second derivatives of the raw or transformed reflectance signal (Demetriades-Shah

et al., 1990; Tsai and Philpot, 1998);

• Narrow and broad band vegetation indices (Broge and Leblanc, 2001; Silleos et al., 2006;

Stagakis et al., 2010; Garbulsky et al., 2011; Pettorelli, 2013);

• Temporal change of any of the above (due to phenology, growth, death, disease).

These features may be computed at pixel or object scales (e.g. tree crown, forest stand). In the

latter case, a preliminary segmentation of the image is necessary (cf. chapter 3).
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Figure 5.1: Important spectral regions for vegetation analysis. Visible (400-700 nm): strong

absorption by leaf pigments (chlorophyll a and b, carotenes, xanthophyll). Red edge (690-720

nm): strong reflectance increase, Near infrared (700-1300 nm): strong reflectance, Mid infrared

(1300-2500 nm): strong absorption by water and several compounds (e.g. cellulose, lignin).

Airborne laser scanning has also been used extensively for tree species mapping. Its ability

to differentiate tree species is dependent on acquisition parameters such as phenogical phase,

instrument and flight parameters (e.g. pulse repetition rate, scan angle, flying height, aircraft speed)

and processing of the full waveform signal (cf. chapter 1.3). There a several broad categories of

descriptive features that can be derived from raw ALS data (Koenig and Höfle, 2016; Fassnacht
et al., 2016; Lin and Hyyppä, 2016; Shi et al., 2018b):

• Spatial point pattern statistics (e.g. density, spacing between points, height distribution).

• Radiometric statistics (e.g. intensity/amplitude distribution).

• Opacity statistics (e.g. echo ranks, counts and width distribution)

• Temporal change of any of the above (due to phenology, growth, death, disease).

Moreover, if individual tree segmentation (cf. chapter 3) is applied, the tree structure can be

described explicitly in terms of:

• External crown features (e.g. height, volume, surface, surface-area, convexity, roughness,

fractal dimension).

• Internal crown features (e.g. branch density, branch lengths, branch order, branch diameter,

branching angles, lacunarity).

• Temporal change of any of the above (due to phenology, growth, death, disease).

External crown characteristics can be derived though volumetric representations of the point

cloud such as alpha shapes (Edelsbrunner and Mücke, 1994) or voxels. Some internal crown
characteristics may be estimated by examining the return intensity (amplitude), echo-width and
fraction of different echo ranks or counts (e.g. fraction of last returns). Other internal crown features
may be derived from a graph representation (Parkan and Tuia, 2015) or by further subdividing
the tree segment into subcomponents (Harikumar et al., 2017b). However, it should be noted that
computing internal crown features require extensive sampling of the branching structure (preferably
in leaf-off conditions), thus restricting their use to very high density ALS.
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The creation of thematic maps (e.g. genus, species, healthy/dead, etc) from ALS and/or AHS

derived features involves the use of classification models. Of particular interest here is the use of

statistical learning (also known as machine learning). Unlike deterministic methods which require

an explicit definition of the classification model, statistical learning methods are able to learn a

model and predict classes based on data derived features alone. The use of these statistical learning

methods requires:

• The definition of distinct thematic classes of interest (e.g. genus, species, health). If they

are known, these classes may be assigned explicitly to observations (i.e. labeling) by an

expert prior to training the classification algorithm (i.e. supervised learning). Conversely,

they may be assigned by the algorithm itself, if they are unknown (i.e. unsupervised learning).

A less commonly used family of classification algorithms is able to train on a minimal set of

labeled observations combined with unlabeled observations (i.e. semi-supervised learning).

• The definition of a minimal set of discriminative features (i.e. descriptive variables) that

allows an unambiguous differentiation of classes. This set of features may be defined based

on expert knowledge, it may be obtained from a list of predefined generic features using

automatic feature selection techniques (Guyon and Elisseeff, 2003) or it may be learned from

the raw data by feature learning algorithms.

• For some methods (e.g. support vector machines), the definition of similarity metrics

(kernel functions) which are used to compare feature values is necessary.

Due to their superior performance and because the target classes are general known, supervised

learning algorithms are by far the most commonly used for the classification of tree species.

Technically speaking, the supervised learning process works by statistically evaluating the similarity

between features characterizing the unlabeled and labeled data. A classification model is produced

by assigning a weight to each of the features as a function of the discriminatory information they

bring to distinguish labeled samples. For example, a feature related to green color intensity would

likely be assigned a large weight, when attempting to discriminate deciduous and broadleaf trees in

leaf off conditions. The main advantages of models produced with supervised learning is that they

can be continuously improved by the addition of new training samples and they do not require any a

priori assumptions about the weights of descriptive features. Currently, the main supervised learning

algorithms applied to tree species classification are: Support Vector Machines (SVM), Random

Forests (RF), Quadratic/Linear Discriminant Analysis (Q/LDA), Maximum Likelihood Estimation

(MLE), K-Nearest Neighbors (KNN), Artificial Neural Networks (ANN) and Convolutional Neural

Networks (CNN). Example usage of these algorithms is provided in table 5.1. The respective

suitability and performances of these algorithms are being actively researched (Vyas et al., 2011;

Ørka et al., 2012; Dalponte et al., 2012; Féret and Asner, 2013; Ghosh et al., 2014b; Omer

et al., 2015; Deng et al., 2016; Zhang et al., 2016b; Ballanti et al., 2016; Raczko and Zagajewski,

2017; Piiroinen et al., 2017; Tuominen et al., 2018). Thanks to their ability to handle non-linear

classification problems and to their ease of use, Random forests and Support Vector Machine are

currently the most popular and have been shown to have similar performances (Ørka et al., 2012;

Dalponte et al., 2012; Ghosh et al., 2014b; Ballanti et al., 2016; Piiroinen et al., 2017) with SVM

slightly surpassing RF in some cases (Deng et al., 2016; Raczko and Zagajewski, 2017). The use of

convolutional neural networks for tree detection and species classification has not been extensively

investigated, but initial results indicate that it is a promising approach (Guan et al., 2015; Li et al.,

2016; Cheang et al., 2017; Zou et al., 2017; Han et al., 2017; Hamraz et al., 2018; Ayrey and Hayes,

2018; Trier et al., 2018; Ko et al., 2018).

Overall, a large part of the work load when using supervised statistical learning methods is the

creation of relevant discriminant features from the raw data, the definition of adequate similarity

metrics and the labeling of a large number of training samples. This last point is generally the
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most tedious, since it is a manual process, often the result of repeated visual interpretation and/or

field observations. For this purpose, the use of crowd sourced (collaborative) labeling approaches

to produces very large numbers of labeled samples could be an interesting solution. A form of

parsimonious crowd sourcing could also be employed, through the use of active learning methods

which only require the labeling of a minimal set of examples (Persello et al., 2014). In addition

to the critical characteristics of ALS and AHI data presented in chapter 1.3 and 1.4, several forest

characteristics also influence the difficulty of classification including:

• The number of different thematic classes.

• The number of individuals for each thematic class and the fraction of observations used for

calibrating the model (Baldeck and Asner, 2014).

• The number of different age classes which relates to the diversity of height and shape

(Buddenbaum et al., 2005; Nordkvist et al., 2012; Hovi et al., 2016).

• The spectral and structural separability of the considered classes.

• Differences in reflectance characteristics within a class due to local environmental conditions,

phenological phase, genetic differences, damage.

• Differences in structural characteristics within a class due to local environmental conditions,

phenological phase, genetic differences, damage.

Due to these differences, comparing the results of tree species classification in different studies

is difficult and should be done with attention to details.

Table 5.1: Main supervised classification algorithms used for tree species detection/classification.

Algorithm Usage references

Random Forests (RF)

(Breiman, 2001)

Ørka et al. (2012), Dalponte et al. (2012),

Yu et al. (2014), Ghosh et al. (2014b),

Ballanti et al. (2016), Piiroinen et al. (2017),

Shen and Cao (2017), Dechesne et al. (2017)

Support Vector Machines (SVM)

(Vapnik (1995),

Schölkopf et al. (2002))

Liu et al. (2011), Ørka et al. (2012),
Dalponte et al. (2012), Féret and Asner (2013),

Ghosh et al. (2014b), Baldeck et al. (2015),

Omer et al. (2015), Matsuki et al. (2015)

Ballanti et al. (2016), Lin and Hyyppä (2016),

Piiroinen et al. (2017)

Artificial Neural Networks (ANN)
Féret and Asner (2013), Omer et al. (2015)

Raczko and Zagajewski (2017)

Quadradic/Linear Discriminant

Analysis (Q/LDA)

Holmgren and Persson (2004a), Brandtberg (2007),

Ørka et al. (2007), Kim et al. (2009),

Puttonen et al. (2009), Suratno et al. (2009),

Ørka et al. (2012), Féret and Asner (2013),

Lindberg et al. (2014), Hovi et al. (2016)

Convolutional Neural Networks (CNN)

(LeCun et al., 2015)

Guan et al. (2015), Li et al. (2016),

Cheang et al. (2017), Zou et al. (2017),

Han et al. (2017), Hamraz et al. (2018),

Ayrey and Hayes (2018), Trier et al. (2018)



Table 5.2: Selected publications covering tree classification based on airborne laser scanning and/or multi/hyperspectral

imaging. The terrestrial ecoregion classification follows the global map of Olson et al. (2001). Abbreviations: DR = discrete

return, FW = full waveform, MS = multispectral, HS = hyperspectral, Sp. = number of individually classified species, Gr. =

number of classified groups (e.g. broadleaf/coniferous, genera, associations).

.

Ecozone Ecoregion Reference
ALS Imaging Classes

DR FW MS HS Sp. Gr.

Palearctic
Scandinavian and

Russian taiga

Korpela et al. (2007) X X 2 1

Ørka et al. (2007) X 3 -

Liang et al. (2007) X - 2

Säynäjoki et al. (2008) X X 1 1

Vauhkonen et al. (2009) X 2 1

Tooke et al. (2009) X X 1 1

Ørka et al. (2009) X - 2

Puttonen et al. (2009) X X 3 -

Heikkinen et al. (2011) X 3 -

Nordkvist et al. (2012) X X - 7

Ørka et al. (2012) X X 2 1

Ørka et al. (2013) X X X 2 1

Dalponte et al. (2013) X X 3 1

Dalponte et al. (2014) X X 2 1

Schumacher and Nord-Larsen (2014) X X - 2

Yu et al. (2014) X 3 -

Lin and Hyyppä (2016) X 4 -

Hovi et al. (2016) X 3 -

Yu et al. (2017) X 3 -

Tuominen et al. (2017) X 14 -

Blomley et al. (2017) X 3 -

Trier et al. (2018) X X 3 -



Table 5.3: Selected publications covering tree classification based on airborne laser scanning and/or multi/hyperspectral

imaging. The terrestrial ecoregion classification follows the global map of Olson et al. (2001). Abbreviations: DR = discrete

return, FW = full waveform, MS = multispectral, HS = hyperspectral, Sp. = number of individually classified species, Gr. =

number of classified groups (e.g. broadleaf/coniferous, genera, associations).

.

Ecozone Ecoregion Reference
ALS Imaging Classes

DR FW MS HS Sp. Gr.

Palearctic

Western European

broadleaf forests

Buddenbaum et al. (2005) X - 6

Reitberger et al. (2006) X - 2

Reitberger et al. (2008b) X - 2

Waser et al. (2008) X 5 -

Waser et al. (2010) X 8 -

Heinzel and Koch (2011a) X 6 2

Waser et al. (2011) X X 9 -

Heinzel and Koch (2012) X X X 4 -

Yao et al. (2012) X 2 -

Engler et al. (2013) X 6 -

Ghosh et al. (2014a) X X 5 -

Fassnacht et al. (2014) X 7 -

Torabzadeh (2016) X X 7 1

Sommer et al. (2016) X X 13 -

Bruggisser et al. (2017) X 3 -

Dechesne et al. (2017) X X - 6

Raczko and Zagajewski (2017) X 5 -

Shi et al. (2018b) X 6 -

Shi et al. (2018a) X X 5 -

Sarmatic mixed forests

Holmgren and Persson (2004a) X 2 -

Persson et al. (2004) X X 2 1

Holmgren et al. (2008) X X 2 1

Dinuls et al. (2012) X X 5 -

Lindberg et al. (2014) X 5 1



Table 5.4: Selected publications covering tree classification based on airborne laser scanning and/or multi/hyperspectral

imaging. The terrestrial ecoregion classification follows the global map of Olson et al. (2001). Abbreviations: DR = discrete

return, FW = full waveform, MS = multispectral, HS = hyperspectral, Sp. = number of individually classified species, Gr. =

number of classified groups (e.g. broadleaf/coniferous, genera, associations).

.

Ecozone Ecoregion Reference
ALS Imaging Classes

DR FW MS HS Sp. Gr.

Palearctic

Alps conifer and mixed forests

Dalponte et al. (2009) X X 20 3

Hollaus et al. (2009b) X 3 -

Dalponte et al. (2012) X X X 6 2

Kandare et al. (2017) X X 4 1

Kukunda et al. (2018) X X 2 -

Atlantic mixed forests

Geerling et al. (2007) X X - 8

Hantson et al. (2012) X X 6 -

Van Coillie et al. (2014) X 7 -

Laslier et al. (2017) X 8 -

English Lowlands beech forests

Koukoulas and Blackburn (2005) X X 3 1

Hill et al. (2010) X 6 -

Lee et al. (2016) X X 6 1

Central European mixed forests
Tigges et al. (2013) X 8 -

Richter et al. (2016) X 10 -

Changjiang Plain evergreen forests
Cao et al. (2016) X 6 -

Shen and Cao (2017) X X 5 -

Manchurian mixed forests
Liu et al. (2011) X X 5 -

Dian et al. (2015) X 5 -

Pannonian mixed forests
Immitzer et al. (2012) X 10 -

Verlič et al. (2014) X X 5 -

Po Basin mixed forests
Dalponte et al. (2008) X X 20 -

Barilotti et al. (2009) X - 2



Table 5.5: Selected publications covering tree classification based on airborne laser scanning and/or multi/hyperspectral

imaging. The terrestrial ecoregion classification follows the global map of Olson et al. (2001). Abbreviations: DR = discrete

return, FW = full waveform, MS = multispectral, HS = hyperspectral, Sp. = number of individually classified species, Gr. =

number of classified groups (e.g. broadleaf/coniferous, genera, associations).

.

Ecozone Ecoregion Reference
ALS Imaging Classes

DR FW MS HS Sp. Gr.

Palearctic

Taiheiyo evergreen forests
Sasaki et al. (2012) X X 10 5

Matsuki et al. (2015) X X 16 -

Huang He Plain mixed forests Li et al. (2015) X 4 -

Nihonkai montane deciduous forests Deng et al. (2017) X X 13 -

Northeast Spain and South France Mediter. forests Dunford et al. (2009) X 4 1

Pyrenees conifer and mixed forests Sheeren et al. (2011) X 12 -

Nearctic

Puget lowland forests

Kim et al. (2009) X - 2

Jones et al. (2010) X X 11 -

Jones et al. (2011) X X 9 -

Vaughn et al. (2011) X 3 -

Vaughn et al. (2012) X 5 -

Zhang et al. (2016b) X X 7 -

Liu et al. (2017) X X 15 -

Eastern forest-boreal transition
Li et al. (2013) X 4 -

Ko et al. (2013) X 3 -

Appalachian mixed mesophytic forests
Key et al. (2001b) X 4 -

Brandtberg (2007) X 3 -

California interior chaparral and woodlands
Ballanti et al. (2016) X X 8 -

Zhou et al. (2017) X 3 1

Central tall grasslands
Sugumaran and Voss (2007) X X 9 -

Voss and Sugumaran (2008) X X 7 -



Table 5.6: Selected publications covering tree classification based on airborne laser scanning and/or multi/hyperspectral

imaging. The terrestrial ecoregion classification follows the global map of Olson et al. (2001). Abbreviations: DR = discrete

return, FW = full waveform, MS = multispectral, HS = hyperspectral, Sp. = number of individually classified species, Gr. =

number of classified groups (e.g. broadleaf/coniferous, genera, associations).

.

Ecozone Ecoregion Reference
ALS Imaging Classes

DR FW MS HS Sp. Gr.

Nearctic

Southeastern conifer forests

(Nearctic)

Pu and Landry (2012) X 4 4

Zhang et al. (2013) X X - 7

New England-Acadian forests Anderson et al. (2011) X X 1 -

Allegheny Highlands forests Ke et al. (2010a) X X 4 1

South Central Rockies forests Suratno et al. (2009) X 4 -

Appalachian-Blue Ridge forests Fang et al. (2018) X X 4 -

California montane chaparral and woodlands Alonzo et al. (2014) X X 29 -

Canadian Aspen forests and parklands Bork and Su (2007) X X - 6

Sierra Nevada forests Swatantran et al. (2011) X X 4 2

Texas blackland prairies Zhang and Qiu (2012) X X 40 -

Upper Midwest forest-savanna transition Liu and Wu (2018) X X 3 1

Afrotropic
Zambezian and Mopane woodlands

Cho et al. (2010) X X 10 -

Colgan et al. (2012) X 15 -

Cho et al. (2012) X X X 5 1

Naidoo et al. (2012) X X 8 1

Sarrazin et al. (2012) X X 4 -

Baldeck et al. (2014) X X 15 -

Eastern Arc forests Piiroinen et al. (2017) X X 31 -



Table 5.7: Selected publications covering tree classification based on airborne laser scanning and/or multi/hyperspectral

imaging. The terrestrial ecoregion classification follows the global map of Olson et al. (2001). Abbreviations: DR = discrete

return, FW = full waveform, MS = multispectral, HS = hyperspectral, Sp. = number of individually classified species, Gr. =

number of classified groups (e.g. broadleaf/coniferous, genera, associations).

.

Ecozone Ecoregion Reference
ALS Imaging Classes

DR FW MS HS Sp. Gr.

Neotropic

Isthmian-Atlantic moist forests

Clark (2005) X X 7 -

Clark and Roberts (2012) X 7 -

Baldeck et al. (2015) X X 3 -

Alto Paraná Atlantic forests Ferreira et al. (2016) X X 8 -

Isthmian-Pacific moist forests Graves et al. (2016) X X 20 1

Tumbes-Piura dry forests Baena et al. (2017) X 3 -

Australasia

Brigalow tropical savanna
Moffiet et al. (2005) X - 4

Lucas et al. (2008) X X 8 -

Southeast Australia temperate forests Zhang and Liu (2013) X 2 -

Northland temperate kauri forests Pham et al. (2016) X X 1 -

Oceania Hawaii tropical moist forests

Asner et al. (2008) X X 4 -

Féret and Asner (2012) X X 9 -

Féret and Asner (2013) X X 17 12

Indo-Malaya Himalayan subtropical broadleaf forests Karna et al. (2015) X X 6 -
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5.2 Error assessment framework

The classification error indicates how well an algorithm is able to correctly assign discrete classes

(e.g. species, healthy/diseased, live/dead) to observations (Congalton and Green, 2008; Sokolova

and Lapalme, 2009). The error can be evaluated at the point or tree scale. In both cases, the

assessment procedure involves the construction of a confusion matrix (cf. figure 5.2) and the

computation of performance metrics (cf. table 5.8). The interpretation of the confusion matrix is

the primary mean of error assessment, while generic scores (such as overall accuracy and kappa

scores) should be regarded as partial summary metrics that should not be interpreted independently.

Prediction

C. 1 C. 2 ... C. N

R
ef
er
en

ce C. 1 n1,1 n1,2 ... n1,N

... ... ... ... ...

C. N nN,1 nN,2 ... nN,N

Figure 5.2: Multi-class confusion matrix. Abbreviations: C: class, N: total number of classes, nobs:

number of observations, ni, j the number of times point/tree with class i was assigned to class j.

Table 5.8: Multi-class classification performance metrics.

Metric Formula Interpretation

Overall Accuracy
OA

N

i 1

ni,i

nobs
0,1

Overall performance ignoring

class occurrence frequencies

Kappa coefficient

K
po pe

1 pe
1,1

observed accuracy po:

po OA

expected accuracy pe:

pe
1

n2
obs

N

i 1

N

j 1

ni, j

N

j 1

n j,i

Overall performance considering

class occurrence frequencies

(comparison to chance

class assignment)

Recall

(Producer’s Accuracy)

for class i

r i
ni,i

N

j 1

ni, j

0,1 Tendency to detect (sensitivity)

class i among N classes

Precision

(User’s Accuracy)

for class i

p i
ni,i

N

j 1

n j,i

0,1
Fraction of the detected class i

occurrences that

were correctly assigned

F score

for class i
F i 2

p i r i

p i r i
0,1 Harmonic mean of r and p.

Average Precision

(Average Accuracy)
p 1

N

N

i 1

p i 0,1 Average of per class precisions
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5.3 General tree characteristics

The following section presents some general structural and spectral separability characteristics for

the main tree genus/species encountered in Swiss forests.

5.3.1 Structural separability

Many trees have a distinct structure (cf. tables 5.9 to 5.10) which can vary significantly depending

on age and growth conditions (i.e. shape plasticity). When measuring trees with ALS, their

structural characteristics affect the laser beam by locally modifying the opacity of space. Depending

on the size of the laser beam’s cross-section (typically 10-30 cm for long range ALS) and the

size of the intercepted structure, the beam may be partially or totally reflected. In essence, this

means that large/opaque structures have a higher probability of generating a single return per laser

pulse (or a last return) and a high return intensity (cf. figures 5.3 to 5.5). This is apparent for

example with the dense branching and foliage of persistent coniferous trees or with large stems

or branches. Conversely, the thin branches of a birch tree scanned in leaf off conditions are more

likely to generate multiple returns per pulse with a low return intensity.

Table 5.9: General tree shapes characteristics for selected persistent foliage species encountered

in Switzerland (Johnson, 2006; Fischesser et al., 2008). Note that these should be considered as

trends rather than absolute identification criteria.

Latin

name

Vernacular

name
Foliage Characteristics

Pseudotsuga menziesii Douglas fir Persistent

Crown: dense, radial symmetry

Tip: pointy

Stem: long, straight

Branching: horizontal

Max. Height: 60 m

Abies alba Silver fir Persistent

Crown: dense, radial symmetry

Tip: pointy (flat on large trees)

Stem: long, straight

Branching: horizontal

Max. Height: 60 m

Picea abies Norway spruce Persistent

Crown: dense, radial symmetry

Tip: pointy (flat on large trees)

Stem: long, straight

Branching: horizontal

Max. Height: 60 m

Pinus sylvestris Scots pine Persistent

Crown: sparse, radial assymetry

Tip: broad

Stem: curved

Max. Height: 40 m
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Table 5.10: General tree shapes characteristics for selected deciduous foliage species encountered

in Switzerland (Johnson, 2006; Fischesser et al., 2008). Note that these should be considered as

trends rather than absolute identification criteria.

Latin

name

Vernacular

name
Foliage Characteristics

Larix decidua Larch Deciduous

Crown: dense

Tip: pointy

Stem: long, straight

Branching: vertical

Max. Height: 40 m

Fagus sylvatica European beech Deciduous

Crown: dense

Tip: broad

Stem: straight

Branching: forked

Max. Height: 40 m

Quercus sp. Oak Deciduous

Crown: dense

Tip: broad

Branching: sinuous

Max. Height: 25-35 m

Castanea sativa Chestnut Deciduous

Crown: dense

Tip: round dome

Max. Height: 30 m

Fraxinus excelsior European ash Deciduous

Crown: open, sparse

Tip: broad

Stem: straight

Branching: vertical, forked

Max. Height: 35 m

Acer sp. Maple Deciduous

Crown: dense

Tip: broad, pyramidal

Max. Height: 20-30 m

Betula pendula Birch Deciduous

Crown: sparse

Tip: pointy

Stem: straight

Branching: thin

Max. Height: 25 m

Tilia cordata Lime Deciduous

Crown: dense

Tip: round dome

Stem: straight

Branching: arched

Max. Height: 35 m
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Pseudotsuga

menziesii

Abies alba Picea abies Pinus sylvestris

Larix decidua Fagus sylvatica Quercus petraea Castanea sativa

Fraxinus excelsior Acer

pseudoplatanus

Betula pendula Tilia cordata

Figure 5.3: Examples (side and top view) of frequently encountered species. The color represents

laser return intensity (leaf-off acquisition). Note that the crowns of deciduous species have a

low return intensity and that opaque or large structures (stems, main branches) have a high return

intensity. The relative height scale is given by the human silhouette (1.8 m high) next to each tree.
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Pseudotsuga

menziesii

Abies alba Picea abies Pinus sylvestris

Larix decidua Fagus sylvatica Quercus petraea Castanea sativa

Fraxinus excelsior Acer

pseudoplatanus

Betula pendula Tilia cordata

Figure 5.4: Examples (side and top view) of frequently encountered species. Only last returns

are represented (leaf-off acquisition). Note that the primary (large diameter) branches and stems

of deciduous species are apparent. The relative height scale is given by the human silhouette (1.8 m

high) next to each tree.
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Pseudotsuga

menziesii

Abies alba Picea abies Pinus sylvestris

Larix decidua Fagus sylvatica Quercus petraea Castanea sativa

Fraxinus excelsior Acer

pseudoplatanus

Betula pendula Tilia cordata

Figure 5.5: Examples (side and top view) of frequently encountered species. Only single returns

are represented (leaf-off acquisition). Note that the primary (large diameter) branches and stems

of deciduous species are apparent. The relative height scale is given by the human silhouette (1.8 m

high) next to each tree.
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5.3.2 Spectral separability

Spectral separability is a measure of dissimilarity between pure reflectance signatures (also called

endmembers) that can help identify regions of the spectra useful for tree genus/species discrim-

ination. Extracting the pure reflectance signatures of individual genus/species can be done with

different approaches: the analysis of sampled leafs with a field or laboratory spectrometer, auto-

matic endmember extraction methods (Plaza et al., 2002, 2004; Veganzones and Grana, 2008) or

pure pixel isolation using a land cover map (i.e. where each cover class defines a unique spectral

endmember, e.g. soil, water, tree species, unknown, etc) in a multi/hyperspectral image. Due to

unavailability of field spectra and the uncertainty of automatic endmember extraction methods in

the presence of highly similar endmembers, pure pixel isolation using a land cover map was used in

this work. The extents of trees manually delineated from high density ALS point clouds (cf. chapter

2.2) served as a reference land cover map which was overlaid on the hyperspectral image. Based on

this overlay, a pixel purity index indicating the fractional abundances of land cover classes in each

pixel was computed and the median reflectance signatures of tree genus/species were subsequently

determined from the purest pixels (cf. figure 5.7). The main steps of this procedure are summarized

below and illustrated in figure 5.6:

1. Label individual tree crowns in the forest canopy with a genus/species class (cf. figure

5.6b) to create a reference map (cf. chapter 2.2). Tree crowns manually labeled in high

density ALS data were used for this purpose (cf. chapter 2.2). The fraction of mixed class

pixels depends on the shape (area, perimeter, branch density) of the tree crowns, the spacing

between crowns and the homogeneity of species in the canopy layer. Thus, when working

with coarse resolution pixels, to increase the fraction of pure class pixels, it is preferable to

collect pixel samples in dense single species stands.

2. Create a coarse resolution label image (i.e. same resolution as the hyperspectral image) by

rasterizing the labeled point cloud. Each pixel is assigned the label of the majority class of

ALS points in its extent (cf. figure 5.6c).

3. Create a fine resolution label image (i.e. 1/4 resolution of the hyperspectral image) by

rasterizing the labeled point cloud. Each pixel is assigned the label of the majority class of

ALS points in its extent (cf. figure 5.6d).

4. Compute the class purity index defined in equation 5.1 for each pixel of the hyperspectral

image.

5. Compute the mean or median reflectance signatures of each class of interest, uisng only pixels

with a purity above a chosen level (85% was used here). The resulting median reflectance for

nine genus/species of interest is present in figure 5.7.

Pi

Ci

Ni

(5.1)

where:

Ci is the number of fine pixels located in the coarse pixel i that are labeled with the majority

class;

Ni is the number fine pixels located in the coarse pixel i.

This procedure assumes that the ALS derived genus/species reference map and hyperspectral

image are spatially co-referenced. For this reason, it is imperative that the hyperspectral image be

orthorectified using a surface modeled (preferably derived from the considered ALS data) and that

it is co-registered with the reference land cover map. This was the case for the Airborne Prism

Experiment (APEX) (Itten et al., 2008) imagery used in this study (cf. appendix D.1).
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Looking at the spectral signature of individual genus/species in figure 5.7, two characteristics

are apparent. First, deciduous species generally have a larger reflectance than coniferous species, in

the near infrared region (Williams, 1991). Second, there is large inner species/genus reflectance vari-

ability (particularly in the near infrared region). In addition to measurement artifacts (illumination,

shadowing, instrumental noise), the spectral reflectance within a species may vary considerably

and depends on many biophysical factors including genetic differences, soil moisture, nutrient

availability and health (Zhang et al., 2006; Castro-Esau et al., 2006; Jensen, 2007; Papeş et al.,

2013; Danusevicius et al., 2014). The similar reflectance signatures of different species combined

with the high within species variability result in a low spectral separability. In particular, it has

been reported in previous studies that coniferous species generally have lower spectral separability

than deciduous species (Roberts et al., 2004; Leckie et al., 2005; van Aardt and Wynne, 2007; Trier

et al., 2018). One way of quantifying spectral separability is by computing a Separability Index

(SI) which considers the ratio of the between and within class reflectance variabilities at different

wavelengths (Somers and Asner, 2013):

SI
µ1,i µ2,i

1.96 σ1,i σ2,i

(5.2)

where:

µ1,i is the mean reflectance of class 1 at wavelength i;

µ1,i is the mean reflectance of class 2 at wavelength i;

σ1,i is the standard deviation of the reflectance of class 1 at wavelength i;

σ2,i is the standard deviation of the reflectance of class 2 at wavelength i.

This index assumes that the reflectance at given wavelength is normally distributed and that

the one-sided 95% confidence interval (which explains the 1.96 factor) is representative of within

class variability (Somers et al., 2010). It is conceptually similar to the signal to noise ratio or the

inverse coefficient of variation. This index provides an initial indication about regions of the spectra

which may be used to differentiate pairs of species. The spectral separability of the considered

genus/species is illustrated in figure 5.9. As could be expected, deciduous have a large separability

with coniferous species, but the separability of species within each of these groups is generally low

(< 0.2). The spectral regions with the best separability are in the blue (< 460 nm), near-infrared and

mid-infrared ranges, although there is a large variability in the separability index depending on the

considered species pairs.
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(a) ALS point cloud colored by height [m]. (b) ALS point cloud segments colored by

genus/species class. Only labeled points are repre-

sented.

(c) Majority genus/species class at coarse raster

resolution (= AHI resolution).

(d) Majority genus/species class at fine raster reso-

lution (= 0.25 AHI resolution).

(e) False color AHI composite. (f) Class purity index.

Figure 5.6: Pixel genus/species class purity index computation (pixel dimensions: 2.76 x 2.76 m).
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(a) Pseudotsuga menziesii (b) Abies alba (c) Picea abies

(d) Pinus sylvestris (e) Larix decidua (f) Fagus sylvatica

(g) Quercus sp. (h) Fraxinus excelsior (i) Acer sp.

Figure 5.7: Spectral signatures for nine selected tree genus/species (mixed age classes) obtained

with the APEX sensor in July 2014. The red line indicates the median reflectance for pixels with a

class purity above 85%. The lower 5% and upper 95% quantile limits are represented by the gray

areas. The number of pixel samples N used to produce the signature is indicated in the upper left

corner of each graph.
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Pseudotsuga

menziesii

Abies

alba

Picea

abies

Pinus

sylvestris

Larix

decidua

Fagus

sylvatica

Quercus

sp.

Fraxinus

excelsior

Acer

sp.

True color composite

(red: ρ650, green: ρ540,

blue: ρ440)

False color composite

(red: ρ800, green: ρ650,

blue: ρ540)

False color composite

(red: carotenoid, green:

chlorophyll, blue: water

content)

Figure 5.8: Three different color composites for nine selected tree genus/species (mixed age classes)

obtained with the APEX sensor in July 2014. The colors are based on the median values of pixels

with a class purity above 85%. The last color composite (on the right) combines an estimation of

carotenoid content CAR ρ 1
515 ρ 1

565 ρ780, chlorophyll content CHL ρ 1
550 ρ 1

780 ρ780 and

water content W 1
ρ1193

ρ1126
(cf. Gitelson et al. (2006); Schneider et al. (2017)).
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(a) Pseudotsuga menziesii (b) Abies alba (c) Picea abies

(d) Pinus sylvestris (e) Larix decidua (f) Fagus sylvatica

(g) Quercus sp. (h) Fraxinus excelsior (i) Acer sp.

Figure 5.9: Spectral separability for nine selected tree genus/species (mixed age classes). Broadleaf

and coniferous species (except larch) have mutually the highest separability index.
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5.4 ALS based classification

This section present genus/species classification based only on features derived from ALS acquired

in leaf-off ALS acquisitions (cf. Appendix E.1). It illustrate the classification of several commonly

encountered genus/species (Abies alba, Picea abies, Pseudotsuga menziesii, Pinus sylvestris, Larix

decidua, Fagus sylvatica, Quercus petraea/robur, Fraxinus excelsior, Acer sp.).

5.4.1 Description

As a first step, ALS measurements conducted in leaf-off conditions and trees with a height larger

than 4 m were selected. Leaf-off acquisitions simplify the differentiation of deciduous and conifer-

ous trees, and also provides a better sampling of the tree branching structure. Trees smaller than 4

m were not considered because they are typically sampled with too few points and/or do not have

a distinct structure in the point cloud. To ensure reasonable training/test dataset sizes, the oaks

(Quercus petraea, Quercus robur) and the maples (Acer platanoides, Acer pseudoplatanus) were

grouped at the genus taxonomic level.

Because the ALS data was acquired with different sensors that produce different intensity ranges,

the 1% and 99% quantile range for a given sensor were rescaled to the 0-1 range. Subsequently, the

observations were grouped by species and partitioned using stratified sampling, so that the training

(40%) and validation (60%) sets contain roughly the same height frequency distributions within

each group (cf. figure 5.10). Two sets of descriptive features were used 5.11): one set contained

only scale invariant (relative) features and the other set contained all features. This was done in a

effort to reduce the risk of obtaining overly optimistic predictions due to the non-uniform tree size

(height, volume) frequency distributions between species in the sample (cf. chapter 2.3). To avoid

missing dependency issues, a directed graph representation of feature relations (e.g. the crown

radius depends on the concave area which in turn depends on the concave hull) was created and the

computation order was determined through topological sorting of the graph nodes (with depth first

search).

Figure 5.10: Height probability distributions for the 40% training (upper row) and 60% validation

(lower row) sets, after class grouping and stratified sampling.

The Random Forest (RF) classification algorithm (Breiman, 2001; Belgiu and Drăguţ, 2016) was

chosen to predict species, because of its strong ability to handle non-linear classification problems,

its embedded capacity to provide feature ranking, its ease of use and its efficient implementations.

It has also been shown to provide similar performances than other state of the art methods such as
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Support Vector Machines (SVM) (Ørka et al., 2012; Dalponte et al., 2012; Ghosh et al., 2014b;

Ballanti et al., 2016; Piiroinen et al., 2017). The RF was configured to use 600 decision trees with a

minimum leaf size of 1. To estimate feature importance, the values of each feature were randomly

permuted in the out-of-bag observations and the average decrease in the classification margin (i.e.

the difference between the predicted probability for the correct class and the maximum predicted

probability for incorrect classes) was computed (cf. figure 5.14). A minimal set of features was

then selected by using recursive feature elimination (i.e. recursively removing the feature with the

least weight and retraining the RF model, until the prediction kappa score decreased significantly).

The workflow described above is summarized in figure 5.11.

Table 5.11: ALS derived features used for species classification. Abbreviations: σ : Standard

deviation, cv: Coefficient of variation, κ : Kurtosis, γ1: Skewness, Q p : Quantile for probability p.

Category Features
Scale

invariant

External

shape

Total Height

Variances of the three principal components (PCA)

Convex (Aconv) and concave (Aconc) hull 2D areas

Convex (Vconv) and concave (Vconc) hull volumes

Convex (SAconv) and concave hull (SAconc) surface areas

Convexity ( SAconc

SAconv
) X

Convex hull lacunarity ( Vconv Vconc

Vconv
) X

Convex and concave specific surface ( SAconv

Vconv
and SAconc

Vconc
) X

Aspect ratio 2
height

Aconv

π ) X

Point

pattern

Number of points

Number of points on the convex (Nconv) and concave (Nconc) hulls

Fraction of points on the convex ( Nconv

Ntot
and concave Nconc

Ntot
) hulls X

Normalized height statistics

(σ , cv, Q 0.25 , Q 0.5 , Q 0.75 , Q 0.9 , κ , γ1)
X

Intensity
All and First return intensity statistics

(σ , cv, Q 0.25 , Q 0.5 , Q 0.75 , Q 0.9 , κ , γ1, max)
X

Opacity

Fraction of first/last/single returns X

Convex and concave point density ( Ntot

Vconv
and Ntot

Vconc
) X

Median opacity (return number / number of returns) X



140 Chapter 5. Tree species classification

Figure 5.11: ALS classification workflow. Note that zhe same worklfow was used
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To evaluate the robustness of the classifier to segmentation error, it was also trained and

validated on a set of tree segments with degraded quality. The following approach was used to

simulate segmentation error (cf. figure 5.12):

1. Select an individual tree segment (cf. figure 5.12a). Here the manually delineated segments

presented in chapter 2.2 are used.

2. Add some random noise to the points in the segment. The amount of segmentation error can

be controlled by setting the amount of noise (cf. figure 5.12b). Five different levels of noise

were used: 0 m, 1.5 m, 3 m, 4.5 m, 6 m.

3. Randomly select a fraction f (empirically set to 15% here) of the points in the segment (cf.

figure 5.12c).

4. Compute the single region alpha shape (Edelsbrunner and Mücke, 1994) of the randomly

selected points (cf. figure 5.12d).

5. Select the points of the complete point cloud that are located within the alpha shape (i.e. all

points, not only those of the considered segment), cf. figure 5.12e. Examples of the simulated

segmentation error are illustrated in figure 5.13.

To avoid overly optimistic predictions, all quality levels of a given segment were either assigned

to the training or the test set.

(a) Select

segment.

(b) Add noise. (c) Randomly

sample 15% of

points.

(d) Compute

alpha shape of the

random sample.

(e) Select all

points of the full

point cloud

located in the

alpha shape.

Figure 5.12: Simulation of the segmentation error.

Figure 5.13: Side and top view of a tree with increasing amounts of simulated segmentation error.

The color represents laser return intensity (leaf-off acquisition). The relative height scale is given

by the human silhouette (1.8 m high) next to each tree.
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5.4.2 Results

The classification was validated using the framework presented in section 5.2. The feature rankings

and final sets of selected features are provided in figure 5.14. The class confusion matrices obtained

with the Random Forest algorithm using all features and scale invariant features only are reported

in tables 5.12 and 5.13. The performances of the classification when trained and evaluated with

simulated segmentation error are reported in tables 5.14 to 5.15.

(a) Initial estimation of feature importance for all features. After recursive feature elimination and re-ranking

at each iteration, the following set of 11 features was selected: Fraction of first returns, fraction of last

returns, total height, 75% height quantile, 50% first returns intensity quantile, 50% single return intensity

quantile, convexity, fraction of points on the convex hull, convex specific surface, intensity standard deviation,

intensity skewness, intensity standard deviation, 90% intensity quantile.

(b) Initial estimation of feature importance for scale invariant features only. After recursive feature elimination

and re-ranking at each iteration, the following set of 13 features was selected: Fraction of first returns,

fraction of last returns, 50% intensity of first returns quantile, fraction of points on the convex hull, convex

specific surface, intensity standard deviation, aspect ratio, 75% height quantile, 50% height quantile, 50%

single return intensity quantile, intensity skewness, convexity, 90% intensity quantile.

Figure 5.14: To estimate feature importance, the values of each feature were randomly permuted in

the out-of-bag observations and the average decrease in the classification margin (i.e. the difference

between the predicted probability for the correct class and the maximum probability predicated for

incorrect classes) was computed. Note that a random control feature (ranked last in the importance

estimate) was introduced.



5.4 ALS based classification 143

Table 5.12: Class confusion matrix and classification scores for the validation set (60%) with no

segmentation error using all ALS features. Abbreviations: A. a.: Abies alba, P. a.: Picea abies,

P. m.: Pseudotsuga menziesii, P. s.: Pinus sylvestris, L. d.: Larix decidua, F. s.: Fagus sylvatica,

Q.: Quercus sp., F. e.: Fraxinus excelsior, A.: Acer sp.

Prediction

A. a. P. a. P. m. P. s. L. d. F. s. Q. F. e. A. Recall

A. a. 605 37 5 7 0 3 0 0 0 0.92

P. a. 31 329 5 4 0 1 1 0 0 0.89

P. m. 6 9 78 0 0 0 0 0 0 0.84

P. s. 7 5 0 177 0 0 0 0 0 0.94

L. d. 0 0 0 1 122 4 2 0 0 0.95

F. s. 1 4 0 0 8 759 12 7 8 0.95

Q. 0 2 0 0 3 2 237 4 3 0.94

F. e. 1 1 0 0 1 3 13 39 1 0.66

R
ef
er
en

ce

A. 0 0 0 0 0 6 5 6 10 0.37

Precis. 0.93 0.85 0.89 0.94 0.91 0.98 0.88 0.7 0.45 OA = 0.91

K = 0.89

Table 5.13: Class confusion matrix and classification scores for the validation set (60%) with no

segmentation error using scale invariant ALS features only.

Prediction

A. a. P. a. P. m. P. s. L. d. F. s. Q. F. e. A. Recall

A. a. 604 38 4 8 0 3 0 0 0 0.92

P. a. 30 328 4 5 0 1 3 0 0 0.88

P. m. 9 8 75 1 0 0 0 0 0 0.81

P. s. 7 5 0 177 0 0 0 0 0 0.94

L. d. 0 1 0 0 121 4 3 0 0 0.94

F. s. 1 2 0 0 9 759 18 6 4 0.95

Q. 0 4 0 0 4 4 234 3 2 0.93

F. e. 0 2 0 0 1 4 15 35 2 0.59

R
ef
er
en

ce

A. 0 0 0 0 0 7 5 5 10 0.37

Precis. 0.93 0.85 0.9 0.93 0.9 0.97 0.84 0.71 0.56 OA = 0.91

K = 0.89
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Table 5.14: Class confusion matrix and classification scores for the validation set (60%) with

simulated segmentation error using all ALS features. Abbreviations: A. a.: Abies alba, P. a.:

Picea abies, P. m.: Pseudotsuga menziesii, P. s.: Pinus sylvestris, L. d.: Larix decidua, F. s.: Fagus

sylvatica, Q.: Quercus sp., F. e.: Fraxinus excelsior, A.: Acer sp.

Prediction

A. a. P. a. P. m. P. s. L. d. F. s. Q. F. e. A. Recall

A. a. 3612 243 1 24 0 31 16 0 2 0.92

P. a. 192 1891 26 45 11 41 16 3 1 0.85

P. m. 41 37 470 9 1 0 0 0 0 0.84

P. s. 39 38 0 1027 19 4 6 0 1 0.91

L. d. 2 13 0 11 719 12 8 9 0 0.93

F. s. 26 52 0 16 54 4474 68 70 34 0.93

Q. 10 12 0 9 35 33 1371 29 7 0.91

F. e. 11 9 0 5 11 35 71 200 12 0.56

R
ef
er
en

ce

A. 2 7 0 4 4 58 28 35 24 0.15

Precis. 0.92 0.82 0.95 0.89 0.84 0.95 0.87 0.58 0.3 OA = 0.89

K = 0.87

Table 5.15: Class confusion matrix and classification scores for the validation set (60%) with

simulated segmentation error using scale invariant ALS features only.

Prediction

A. a. P. a. P. m. P. s. L. d. F. s. Q. F. e. A. Recall

A. a. 3607 239 6 29 1 28 18 0 1 0.92

P. a. 185 1889 25 52 11 37 25 2 0 0.85

P. m. 48 46 454 9 1 0 0 0 0 0.81

P. s. 40 33 2 1026 23 4 5 0 1 0.9

L. d. 2 11 1 13 712 17 17 1 0 0.92

F. s. 28 55 0 15 54 4456 97 56 33 0.93

Q. 17 11 0 9 44 33 1371 20 1 0.91

F. e. 9 13 0 3 13 31 99 175 11 0.49

R
ef
er
en

ce

A. 2 7 0 3 4 60 30 30 26 0.16

Precis. 0.92 0.82 0.93 0.89 0.83 0.95 0.82 0.62 0.36 OA = 0.89

K = 0.86
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5.4.3 Discussion

Overall high classification scores were obtained (OA = 0.91, K = 0.89) and the classifier performed

well for all genus/species except ash (Fraxinus Excelsior) and maple (Acer sp.). The poor scores

obtained for these two classes is at least partially imputable to the low number of available

training samples. The classification of ash trees bears an additional difficulty, because due to their

open crown (which lets light penetrate) and their preference for humid areas, they are frequently

colonized by ivy (Hedera helix) which changes the shape and opacity characteristics of the tree

(e.g. the persistent foliage of Ivy increases the amount of high intensity echos). The confusion

matrices (cf. tables 5.12 and 5.13) indicate that the separation of deciduous and persistent foliage

with leaf-off ALS is highly successful, with OA and K scores above 0.98. This indicates that

preliminary separation of deciduous foliage before segmentation or integration of information

on foliage persistence during the segmentation process could be a potential approach to improve

individual tree delineation (cf. chapter 3).

The classification of segments with simulated error produced remarkably good results, only

slightly lower (OA = 0.89, K = 0.86-0.87) than what is obtained when using error free segments. It

has been shown indirectly by Ko et al. (2016) that the Random Forest classifier can effectively handle

a moderate amount of tree segmentation error, if representative examples of different segmentation

quality are used in the training phase. The results obtained here confirm and enhance this finding

independently, using a simulation approach which allows explicit control over segmentation error.

By allowing the creation of many erroneous training examples, the approach may be used to train

genus/species classifiers that are more robust to segmentation error.

The feature ranking shows that intensity and opacity (echo rank distributions) metrics are among

the most important features to differentiate species and no difference in performance was observed

when using only scale invariant features. Shape related features are less important, which can be

explained by the shape variability observed within a species. In particular, due to crown plasticity

(Purves et al., 2007; Pretzsch, 2014; Jucker et al., 2015), shape variability tends to increase as a

function of age (heteroscedasticity), making it a less distinctive feature. The important of non-shape

features is in accordance with findings previously reported by Holmgren and Persson (2004b),

Korpela et al. (2009), Ørka et al. (2009), Suratno et al. (2009), Shi et al. (2018b). This fact can also

be linked to the importance of amplitude and echo width features reported in studies which use

full waveform LiDAR for species classification (e.g. Reitberger et al. (2008a); Heinzel and Koch

(2011b)). One possible interpretation of this result is that the intensity and opacity features are

related to the branch size (diameter) distribution within a tree. Stems and large branches (or opaque

structures like evergreen coniferous branches) have a higher probability of completely intercepting

the laser beam (thus generating more last returns) than small branches.

Comparison of these results with existing work is difficult, because of the small number of

studies which consider the same species, employ data with similar characteristics and report the

same error metrics. Moreover, a significant number of studies do not report performances per

species and/or combine multiple types of data (e.g. multi/hyperspectral imagery and ALS) without

analyzing the performance of single sensor classification. In this regard, the most comparable work

found in the corpus was by Heinzel and Koch (2011b) (6 classes, OA = 59 %), Lindberg et al.

(2014) (6 classes, OA = 0.71), Torabzadeh (2016) (8 classes, K = 0.76) and Shi et al. (2018b) (6

classes, OA = 0.6-0.62, K = 0.49-0.51).

Possible improvements in the analysis include the addition and evaluation of other features,

adding more observations in poorly represented species and/or age classes, evaluating other classifi-

cation algorithms.
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5.5 AHI based classification

In this section, the nine genus/species of interest presented previously are identified by analyzing

hyperspectral imagery.

5.5.1 Description

The analysis presented here is based on hyperspectral imagery acquired in July 2015 (leaf-on)

with the Airborne Prism Experiment (APEX) system (cf. appendix D.1). The dataset covers

study sites around the Boudry (Neuchâtel) and Lausanne (Vaud) sectors. It is composed of several

orthorectified images corresponding to different flight lines with a variable 2.6 to 3 m Ground

Sampling Distance (GSD). It has 285 narrow bands (< 5 nm VIS/NIR, < 10 nm SWIR) covering

the 400 to 2500 nm spectral range.

Pixels corresponding to individual tree crowns were sampled by overlaying the manually

delineated tree crown extents (only for canopy trees) presented in chapter 2.2 to the hyperspectral

images. Then, a pixel purity index (cf. 5.3.2) was computed and pixels with a class purity larger

than 0.5, a Normalized Difference Vegetation Index (NDVI) larger than 0.5 and part of crowns

with at least 4 pixels were selected. Moreover, shaded pixels were detected and removed with the

simple blue-green indicator (i.e. shadow if ρ446 ρ544) proposed in Trier et al. (2018). Erroneous

reflectance bands in the dark blue (< 430 nm) and null reflectance bands in the atmospheric water

vapor absorption regions (around 1320-1390 nm and 1770-1930 nm) were also removed. Then,

several sets of descriptive features were computed from the reflectance signatures at the pixel and

crowns scales (i.e. average of pixel scale values in each crown):

• The Principal Component Analysis (PCA) scores of the raw and standard normal variate

transformation of reflectance (i.e. for each reflectance pixel i, subtract the mean of i and

divide by the standard deviation of i, cf. Barnes et al. (1989)). The PCA is a linear

transformation which produces a new set of bands which are decorrelated and ordered by

decreasing explained variance.

• The Maximum Noise Fraction (MNF) scores (Green et al., 1988) of the raw and standard

normal variate transformation of reflectance. The MNF is a linear transformation where the

variables (features) are first decorrelated with a first PCA, followed by a statistical noise

whitening transformation. A second PCA is then applied to the noise-whitened variables.

The result is a new set of bands ordered by decreasing signal to noise ratio.

• Vegetation Indices (VI) from established lists (Sims and Gamon, 2002; Stagakis et al., 2010)

and custom simple band ratio indices based on apparent separability of the reflectance

signatures (cf. figure 5.7)

Two alternatives were tested to aggregate pixel level classification at the crown scale: averaging

feature values (i.e. before classification) or averaging class probabilities (i.e. after classification).

Both approaches resulted in similar performances and only results for the former approach are

detailed in the following subsections.

Subsequently, the observations were grouped by species and partitioned at the crown level

using stratified sampling, so that the training (50%) and validation (50%) sets contain roughly the

same crown size (i.e. number of pixels per crown) frequency distributions within each group (cf.

figure 5.15). This partitioning was done at the crown level to avoid model over-fitting and to ensure

different age categories were represented in both sets. Thus, the pixels of a given tree crown were

either all in the training set or all in the validation set, but not in both.

Then, two different statistical classifiers were evaluated to predict the genus/species: the

Random Forest (Breiman, 2001) and the Support Vector Machine (Vapnik, 1995; Schölkopf et al.,

2002). In a first stage, for each complete set of features, an initial classification was conducted

with the random forest algorithm using 600 decision trees and a minimum leaf size of 1. To
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estimate feature importance, the values of each feature were randomly permuted in the out-of-bag

observations and the average decrease in the classification margin (i.e. the difference between the

predicted probability for the correct class and the maximum predicted probability for incorrect

classes) was computed. Based on this initial feature ranking, recursive feature elimination was

used to discard non-informative features in each of the feature sets. It was determined that the first

30 (out of 255) components of PCA, the 20 (out of 255) first components of the MNF transform

and 15 (out of 96) vegetation indices (cf. table 5.16) were sufficient to model class differences.

The final selection of vegetation indices covered all major leaf pigments (chlorophyll, carotenoids,

anthocyanin) and water content. Then, the random forest classifier was reapplied to the training

data, using each of the pruned feature sets. Using each of the features sets, separate models were

trained at the pixel and crown scales. Finally, classification performances were evaluated using the

framework presented in section 5.2 (cf. table 5.18). The workflow described above is summarized

in figure 5.16.

Figure 5.15: Number of pixels per crown probability distributions for the 50% training (upper row)

and 50% validation (lower row) sets, after class grouping and stratified sampling.

In a second stage, the SVM classifier (using the libsvm implementation by Chang and Lin

(2011)) was evaluated on the two best performing sets of pruned features. The SVM is a binary

classifier which uses functions called kernels to quantify similarity between observations. De-

pending on its form, the kernel function can also serve to map variables to a new space were they

potentially become linearly separable. Within this new space, the SVM then attempts to find a

hyperplane that maximizes the distance (allowing some slack) between the two labeled classes.

Both the linear and Radial Basis Function (RBF) kernels were tested. The first kernel produces a

linear classification boundary while the second produces a non-linear classification boundary. The

hyperparameters of the SVM (i.e. the regularization parameter C that penalizes misclassification

and the γ parameter which defines the width of the RBF kernel) were optimized using a grid search

where different parameter value combinations were evaluated with 5-fold cross-validation on the

training data. Moreover, to mitigate the effect of class imbalance, misclassification costs inversely

proportional to the class occurrence frequencies were imposed. Since SVM is a binary classifier, a

pairwise (one-versus-one) classification setup was used to distinguish all classes. As previously,

class predictions were made on validation data at the pixel and crown scales and the performances

were evaluated.



Table 5.16: Vegetation indices automatically selected from the list in Stagakis et al. (2010) and custom indices with recursive feature elimination using

Random Forest. The ranking was obtained with the Random Forest by randomly permutating the out-of-bag observations and computing the average decrease

in the classification margin (i.e. the difference between the predicted probability for the correct class and the maximum predicted probability for incorrect

classes).

Category Name Formula Source Ranking

Leaf

pigments

Green Vegetation Index (GVI)
ρ682 ρ553

ρ682 ρ553
Gandia et al. (2004) 15

Greenness Index (GI)
ρ554

ρ677
Zarco-Tejada et al. (2005) 14

Simple Ratio
ρ685

ρ655
Zarco-Tejada et al. (2003) 2

Simple Ratio
ρ750

ρ700
Gitelson and Merzlyak (1997) 5

Simple Ratio
ρ860

ρ780
- 10

Plant Pigment Ratio (PPR)
ρ550 ρ450

ρ550 ρ450
Metternicht (2003) 13

Red Edge Inflection Point (REIP) 700 40
0.5 ρ670 ρ780 ρ700

ρ740 ρ700
Guyot et al. (1988) 9

Carotenoid Reflectance Index (CRI) 1
ρ510

1
ρ550

Gitelson et al. (2002) 3

Anthocyanin Reflectance Index (ARI) ρ800
1

ρ550

1
ρ700

Merzlyak et al. (2003) 7

Photochemical Reflectance Ratio (PRR)
ρ531

ρ570
Zheng and Chen (2017) 4

Max reflectance wavelength

between 980 and 1165 nm
argmaxρ ρ980 1165 - 6

Max reflectance wavelength

between 1165 and 1330 nm
argmaxρ ρ1165 1330 - 8

Water

content

EWT 1
ρ1193

ρ1126
Underwood et al. (2003) 1

Floating Water Band Index (fWBI)
ρ900

minρ ρ920 980
Peñuelas et al. (1993) 11

Water Band Index (WBI)
ρ900

ρ970
Peñuelas et al. (1993) 12
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Figure 5.16: AHI classification workflow. Note that the same workflow was used at the pixel and

crown scales.
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5.5.2 Results

The overall classification scores obtained with the RF and SVM classifiers at the pixel and crown

scales are reported in table 5.17. Detailed per class scores and confusion matrices for the best

classifier and feature set are reported in tables 5.18 (pixel scale) and 5.19 (crown scale).

Table 5.17: Overall genus/species classification scores using AHI derived features (after feature

selection at the pixel scale (6418 observations) and crown scale (753 observations). Abbreviations:

OA: Overall Accuracy, K: kappa, p: average of per class precisions, r: average of per class recalls,

F: average of per class F-scores.

Scores

Classifier Features Scale OA K r σ p σ F σ

RF

PCA of raw

reflectance

Pixel

Crown

0.77

0.82

0.73

0.8

0.67 0.24

0.73 0.29

0.7 0.18

0.73 0.29

0.67 0.22

0.72 0.28

PCA of norm.

reflectance

Pixel

Crown

0.78

0.82

0.74

0.79

0.67 0.26

0.72 0.28

0.7 0.2

0.72 0.28

0.67 0.23

0.72 0.28

MNF of raw

reflectance

Pixel

Crown

0.82

0.83

0.79

0.81

0.72 0.26

0.75 0.25

0.73 0.23

0.76 0.24

0.72 0.24

0.75 0.23

MNF of norm.

reflectance

Pixel

Crown

0.83

0.85

0.8

0.82

0.74 0.22

0.78 0.21

0.75 0.2

0.79 0.16

0.74 0.2

0.78 0.18

VI
Pixel

Crown

0.74

0.75

0.69

0.71

0.61 0.26

0.65 0.24

0.61 0.26

0.65 0.21

0.61 0.26

0.65 0.22

MNF of norm.

refl. and VI

Pixel

Crown

0.83

0.85

0.8

0.83

0.74 0.21

0.79 0.21

0.75 0.19

0.80 0.14

0.75 0.19

0.78 0.17

SVM

(linear)

MNF of norm.

reflectance

Pixel

Crown

0.8

0.84

0.76

0.81

0.70 0.24

0.76 0.24

0.71 0.20

0.77 0.18

0.70 0.22

0.76 0.22

MNF of norm.

refl. and VI

Pixel

Crown

0.8

0.83

0.77

0.8

0.69 0.25

0.75 0.24

0.71 0.22

0.77 0.18

0.70 0.24

0.76 0.22

SVM

(RBF)

MNF of norm.

reflectance

Pixel

Crown

0.82

0.85

0.79

0.82

0.72 0.23

0.76 0.25

0.74 0.19

0.77 0.22

0.73 0.21

0.76 0.24

MNF of norm.

refl. and VI

Pixel

Crown

0.81

0.84

0.78

0.82

0.72 0.21

0.74 0.29

0.73 0.21

0.74 0.29

0.72 0.2

0.74 0.29
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Table 5.18: Class confusion matrix and classification scores for the validation set (50%) using AHI

features (20 first MNF of normalized reflectance) at the pixel scale (6442 observations) and

RF classifier. Abbreviations: A. a.: Abies alba, P. a.: Picea abies, P. m.: Pseudotsuga menziesii, P.

s.: Pinus sylvestris, L. d.: Larix decidua, F. s.: Fagus sylvatica, Q.: Quercus sp., F. e.: Fraxinus

excelsior, A.: Acer sp.

Prediction

A. a. P. a. P. m. P. s. L. d. F. s. Q. F. e. A. Recall

A. a. 411 9 4 53 26 39 54 6 1 0.68

P. a. 2 376 30 112 31 6 2 6 4 0.66

P. m. 7 26 893 14 40 0 0 0 2 0.91

P. s. 1 18 4 659 36 4 5 0 0 0.91

L. d. 1 22 37 19 578 2 4 12 2 0.85

F. s. 23 31 53 40 22 1299 57 5 1 0.85

Q. 23 0 8 23 21 19 1007 10 10 0.9

F. e. 3 3 7 5 30 0 0 129 6 0.7

R
ef
er
en

ce

A. 2 2 4 13 10 0 0 8 10 0.2

Precis. 0.87 0.77 0.86 0.7 0.73 0.95 0.89 0.73 0.28 OA = 0.83

K = 0.8

Table 5.19: Class confusion matrix and classification scores for the validation set (50%) using AHI

features (20 first MNF of normalized reflectance) at the crown scale (753 observations) and

RF classifier.

Prediction

A. a. P. a. P. m. P. s. L. d. F. s. Q. F. e. A. Recall

A. a. 81 2 0 8 1 5 9 0 0 0.76

P. a. 0 64 2 17 6 1 0 1 1 0.7

P. m. 0 3 72 1 0 0 0 0 0 0.95

P. s. 1 1 0 114 3 1 1 0 0 0.94

L. d. 0 3 2 2 69 0 0 0 0 0.91

F. s. 0 3 4 5 2 128 7 1 1 0.85

Q. 5 0 1 3 2 2 93 0 0 0.88

F. e. 0 0 1 0 2 0 0 14 1 0.78

R
ef
er
en

ce

A. 0 0 1 1 0 0 0 3 2 0.29

Precis. 0.93 0.84 0.87 0.75 0.81 0.93 0.85 0.74 0.4 OA = 0.85

K = 0.82
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Table 5.20: Class confusion matrix and classification scores for the validation set (50%) using AHI

features (20 first MNF of normalized reflectance) at the pixel scale (6442 observations) and

SVM RBF classifier. Abbreviations: A. a.: Abies alba, P. a.: Picea abies, P. m.: Pseudotsuga

menziesii, P. s.: Pinus sylvestris, L. d.: Larix decidua, F. s.: Fagus sylvatica, Q.: Quercus sp., F. e.:

Fraxinus excelsior, A.: Acer sp.

Prediction

A. a. P. a. P. m. P. s. L. d. F. s. Q. F. e. A. Recall

A. a. 437 5 2 43 12 60 39 3 2 0.72

P. a. 11 391 32 95 18 13 2 5 2 0.69

P. m. 13 26 872 11 41 15 2 0 2 0.89

P. s. 24 36 3 594 33 25 12 0 0 0.82

L. d. 2 28 39 17 561 17 6 5 2 0.83

F. s. 30 32 39 24 22 1340 40 4 0 0.88

Q. 54 2 7 12 15 55 966 3 7 0.86

F. e. 8 1 8 1 28 17 0 112 8 0.61

R
ef
er
en

ce

A. 8 3 3 9 10 2 0 6 8 0.16

Precis. 0.74 0.75 0.87 0.74 0.76 0.87 0.91 0.81 0.26 OA = 0.82

K = 0.79

Table 5.21: Class confusion matrix and classification scores for the validation set (50%) using AHI

features (20 first MNF of normalized reflectance) at the crown scale (753 observations) and

SVM RBF classifier.

Prediction

A. a. P. a. P. m. P. s. L. d. F. s. Q. F. e. A. Recall

A. a. 85 2 0 7 1 5 6 0 0 0.8

P. a. 2 63 2 18 4 1 0 1 1 0.68

P. m. 0 3 72 1 0 0 0 0 0 0.95

P. s. 1 6 0 109 2 0 3 0 0 0.9

L. d. 0 4 1 0 68 1 1 0 1 0.89

F. s. 2 5 3 3 1 131 5 1 0 0.87

Q. 4 0 0 1 1 2 97 0 1 0.92

F. e. 1 0 1 0 2 0 1 12 1 0.67

R
ef
er
en

ce

A. 1 0 0 1 1 0 1 2 1 0.14

Precis. 0.89 0.76 0.91 0.78 0.85 0.94 0.85 0.75 0.2 OA = 0.85

K = 0.82
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5.5.3 Discussion

Overall, the best set of features to distinguish genus/species was the 20 first MNF components. The

was no clear performance gain of adding VI to MNF components. This is consistent with multiple

studies on tree species classification which report that dimensional reduction with PCA or MNF

is beneficial and sometimes sufficient to produce good classification results (Ghosh et al., 2014b;

Fassnacht et al., 2014; Torabzadeh, 2016; Lee et al., 2016; Dabiri and Lang, 2018) without relying

on more complex procedures.

Predictions at the crown scale were systematically better than at the pixel scale, highlighting the

importance of taking into account the spatial structure of the image and the usefulness of individual

tree segmentation. Although the higher scores obtained at object level do not indicate a better

performance of the classification algorithm per se, but rather are a consequence of the averaging

effect when aggregating multiple observations.

Consistent with previous studies (Ørka et al., 2012; Dalponte et al., 2012; Ghosh et al., 2014b;

Ballanti et al., 2016; Piiroinen et al., 2017), the RF and SVM classifiers produced similar results,

with the highest kappa scores (at the crown scale) ranging from 0.82 (RF) to 0.84 (SVM-RBF).

Oak (pedunculate and sessile), European beech and Douglas fir systematically obtained the

highest classification scores with precision and recall in the 0.8-0.95 range. Norway spruce and

silver fir were frequently misidentified as other species (silver fir with Oak and spruce with Scots

pine). This is consistent with other studies that report difficulties in separating coniferous species

(Roberts et al., 2004; Leckie et al., 2005; van Aardt and Wynne, 2007; Trier et al., 2018). Since

observations were collected in mixed forests, part of the misidentification may also be imputed to

corrupt labeling related to image orthorectification and/or georeferencing errors. This hypothesis

however cannot be easily verified because of the relatively coarse resolution of the imagery (2.5-3

m) which precludes fine coregistration with a DSM or high resolution RGB image. To reduce the

problems related to mis-registration of ALS derived crown extents and AHI, a solution would be to

collect pixel samples in pure forest stands (which may be problematic for some species that do not

occur in large groups). The low scores obtained for ash and maple should not be considered reliable,

as they are based on very small training samples and also because other studies (Torabzadeh, 2016;

Dabiri and Lang, 2018) have reported high success rates in identifying these species.

As discussed previously, comparing the results obtained here with those in other studies is

complicated due to differences in data characteristics, considered species and analytical approach.

Similar studies on multispectral or hyperspectral based species classification are listed in table 5.22

for reference. Interestingly, some of these studies (Engler et al., 2013; Immitzer et al., 2012; Waser

et al., 2014, 2010, 2008) that use high spatial resolution (< 1m) multispectral data were able to

achieve similar performances than those using hyperspectral data. This may indicate that, at least for

a limited set of tree species, the lack of spectral information may be compensated by a high spatial

resolution (which provides more information on texture). Keeping in mind that the comparison is

not fully relevant, the performances obtained here (OA = 86, K = 0.84) can be considered on par

with other recent studies. This confirms the ability of the APEX system to differentiate common

European trees at least at the genus level on a limited number of genus/species. However, additional

testing on a larger dataset (also including different geographic regions) would be necessary for

conclusive results on a more extensive number of species representative of the true diversity of

European forests.

Basic improvements to the analysis presented here include adding observations in under

represented classes (ash and maple) and using finer spatial resolution hyperspectral imagery. More

advanced improvements could include the use of spectral unmixing procedures (Somers and Asner,

2013, 2014) and at the pixel scale smoothing (regularisation) the genus/species class map with a

conditional random field (cf. Dechesne et al. (2017)) using the class probabilities from the RF or

SVM classification.
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Table 5.22: Selected multispectral and hyperspectral based tree species classification studies similar

(northern European palearctic, 5-13 species) to the one presented in this section. The performances

reported here are based on the use of the multi/hyperspectral imagery only, even though some of the

studies also use ALS. If multiple sites were present in the study, scores for the one with the most

species was selected. The generic OA and K scores are the highest values reported in the studies

and indicate general trends; they are not sufficient to reliably compare the performances of studies.

Sensor Bands GSD Classes OA K Reference

Leica

ADS40-SH52
4 0.5 m 6 0.72 0.65 Engler et al. (2013)

Leica RC30

+ Leica ADS40
4 0.25 m 5 - 0.86 Waser et al. (2008)

Z/I Imaging

DMC
4 0.2 m 8 0.88 0.86 Waser et al. (2010)

WorldView-2
8 2 m 10 0.84 0.81 Immitzer et al. (2012)

8 2 m 7 0.83 0.79 Waser et al. (2014)

Daedalus 1268

ATM
11 2 m 6 0.71 0.63 Hill et al. (2010)

AISA Eagle 126 1 m 8 0.74 0.66 Dalponte et al. (2012)

HyMAP 125 4 m 5 0.82 0.77 Ghosh et al. (2014b)

HySpex

VNIR-1600
160 1.6 m 13 (6) 0.8 - Sommer et al. (2016)

HySpex

(VNIR + SWIR)
416 1-2 m 5 0.69 0.59 Shi et al. (2018a)

AISA DUAL

(Hawk + Eagle)

367 3 m 7 0.92 - Fassnacht et al. (2014)

367 2 m 10 0.75 - Richter et al. (2016)

APEX

286 - 7 0.7 0.61 Van Coillie et al. (2014)

285 2 m 8 - 0.75 Torabzadeh (2016)

288 3.35 m 5 0.77 0.72 Raczko and Zagajewski (2017)

288 2.5 m 6 0.85 0.8 Dabiri and Lang (2018)

288 2.6 - 3 m 9 0.86 0.84 This study (2018)
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5.6 Combined ALS and AHI classification

In this section, the ALS and AHI features presented in sections 5.4 and 5.5 are combined at the tree

scale to identify genus/species. An overall performance comparison of different ALS/AHI feature

combinations and classifiers is also conducted (cf. table 5.23).

5.6.1 Description

The combination of ALS and AHI allows an integral description of the tree in terms of structure

and foliage biophysical characteristics. Here, different combinations of ALS and AHI features

are tested to determine their relative value for species identification at the tree scale. The tested

descriptive features were described in chapters 5.4 and 5.5. They include:

• the 10 scale variant ALS features presented in chapter 5.4.

• the 36 scale invariant ALS features presented in chapter 5.4.

• the 20 first components (averaged at the crown scale) of the Maximum Noise Fraction

transform applied to the normalized AHI reflectance spectra (cf. chapter 5.5).

• the 15 vegetation indices (averaged at the crown scale) obtained by recursive feature elimina-

tion on a list of indices found in literature (cf. chapter 5.5).

The number of observations covered by AHI limits the size of the combined ALS-AHI dataset

to 1513 observations (out of 6699 covered by ALS). The same grouping and stratified partitioning

used in section 5.5 is applied here. That is, the observations are grouped by species and partitioned

using stratified sampling, so that the training (50%) and validation (50%) sets contain roughly the

same crown size (i.e. number of pixels per crown) frequency distributions within each group (cf.

figure 5.15).

Both the Random Forest (RF) and the Support Vector Machine (SVM) classifiers are evaluated.

The former is evaluated on all feature set combinations and the later is only evaluated on the single

sensor and combined sensor features which obtained the best results with RF.
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Figure 5.17: Combined ALS and AHI classification workflow.
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5.6.2 Results

The classification was validated using the framework presented in section 5.2. The overall classi-

fication scores obtained with the RF and SVM classifiers for different combinations of ALS and

AHI features at the crown scales are reported in table 5.23. Detailed per class scores and confusion

matrices for the best classifier and feature setw are reported in tables 5.24 and 5.25.

Table 5.23: Comparison of overall genus/species classification scores using different combinations

of ALS and AHI derived features. Abbreviations: OA: Overall Accuracy, K: kappa, p: average

of per class precisions, r: average of per class recalls, F: average of per class F-scores, SI: Scale

Invariant, SV: Scale Variant, MNF: Maximum Noise Fraction, VI: Vegetation Indices, #: Number

of features.

Features Scores

Classifier AHI ALS # OA K r σ p σ F σ

RF

- SV + SI 46 0.89 0.88 0.82 0.19 0.82 0.17 0.81 0.18

- SI 36 0.9 0.89 0.82 0.22 0.84 0.18 0.81 0.21

MNF - 20 0.85 0.82 0.78 0.21 0.79 0.16 0.78 0.18

MNF + VI - 35 0.85 0.83 0.79 0.21 0.80 0.14 0.78 0.17

MNF SV + SI 46 0.93 0.92 0.90 0.09 0.88 0.16 0.89 0.13

MNF + VI SV + SI 81 0.93 0.92 0.90 0.09 0.89 0.15 0.89 0.12

MNF SI 56 0.95 0.94 0.93 0.06 0.90 0.14 0.91 0.10

MNF + VI SI 71 0.95 0.94 0.93 0.06 0.89 0.17 0.90 0.12

SVM

(linear)

- SI 36 0.90 0.88 0.72 0.41 0.70 0.40 0.71 0.41

MNF - 20 0.84 0.81 0.76 0.24 0.77 0.18 0.76 0.22

MNF SI 56 0.95 0.94 0.88 0.18 0.88 0.18 0.88 0.18

SVM

(RBF)

- SI 36 0.91 0.89 0.74 0.40 0.82 0.31 0.73 0.39

MNF - 20 0.85 0.82 0.76 0.25 0.77 0.22 0.76 0.24

MNF SI 56 0.95 0.94 0.91 0.10 0.90 0.15 0.90 0.13
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Table 5.24: Best class confusion matrix and classification scores for the validation set (50%) using

AHI (MNF) and ALS (SI) features at the crown scale with the RF classifier. Abbreviations: A.

a.: Abies alba, P. a.: Picea abies, P. m.: Pseudotsuga menziesii, P. s.: Pinus sylvestris, L. d.: Larix

decidua, F. s.: Fagus sylvatica, Q.: Quercus sp., F. e.: Fraxinus excelsior, A.: Acer sp.

Prediction

A. a. P. a. P. m. P. s. L. d. F. s. Q. F. e. A. Recall

A. a. 102 1 0 3 0 0 0 0 0 0.96

P. a. 4 80 4 4 0 0 0 0 0 0.87

P. m. 0 5 71 0 0 0 0 0 0 0.93

P. s. 4 0 0 117 0 0 0 0 0 0.97

L. d. 0 0 0 0 75 0 1 0 0 0.99

F. s. 0 0 0 0 1 144 3 1 2 0.95

Q. 0 0 0 0 1 1 102 1 1 0.96

F. e. 0 0 0 0 0 0 1 15 2 0.83

R
ef
er
en

ce

A. 0 0 0 0 0 1 0 0 6 0.86

Precis. 0.93 0.93 0.95 0.94 0.97 0.99 0.95 0.88 0.55 OA = 0.95

K = 0.94

Table 5.25: Best class confusion matrix and classification scores for the validation set (50%) using

AHI (MNF) and ALS (SI) features at the crown scale (753 observations) with the SVM (RBF)

classifier

Prediction

A. a. P. a. P. m. P. s. L. d. F. s. Q. F. e. A. Recall

A. a. 103 0 0 3 0 0 0 0 0 0.97

P. a. 6 80 3 3 0 0 0 0 0 0.87

P. m. 1 3 71 1 0 0 0 0 0 0.93

P. s. 3 3 0 115 0 0 0 0 0 0.95

L. d. 0 0 0 0 76 0 0 0 0 1

F. s. 0 0 0 0 2 145 1 1 2 0.96

Q. 0 0 0 0 0 1 105 0 0 0.99

F. e. 0 0 0 0 0 1 0 14 3 0.78

R
ef
er
en

ce

A. 0 0 0 0 0 1 1 0 5 0.71

Precis. 0.91 0.93 0.96 0.94 0.97 0.98 0.98 0.93 0.5 OA = 0.95

K = 0.94
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5.6.3 Discussion

By combining the AHI and ALS feature sets, most of the genus/species could be identified

reliably, with a maximum overall accuracy of 0.95, kappa of 0.94 and average F-score of 0.9. The

combination of ALS and AHI features systematically produced better predictions then any single

sensor feature set. The gain in prediction performance brought by the combination was ~4-5% in

terms of overall accuracy and kappa, ~10% in terms of average precision, recall and F-score. The

RF and SVM (RBF) produced similar performances, here again confirming was has been reported

in previous studies (Ørka et al., 2012; Dalponte et al., 2012; Ghosh et al., 2014b; Ballanti et al.,

2016; Piiroinen et al., 2017).

The fir-oak and spruce-pine confusions that occurred when using only AHI, were suppressed

by adding ALS features to the model. The only class that remained poorly identified was maple, as

reported in previous sections, likely due to the insufficient number of available observations rather

than poor structural/spectral separability.

ALS features alone produced better predictions than AHI features alone, in terms of overall

accuracy and kappa scores (~5% higher), but had similar (~3-4% higher) performances in terms of

average precision, recall and F-score. These results are consistent with the analysis conducted in

chapter 5.4.2 which used ALS features only on a larger dataset and which obtained very similar

results. As reported in chapter 5.4.3, the addition of scale dependent ALS features did not improve

the classification. At this point, it should also be noted, that ALS has a major advantage over AHI

with regard to the number of trees that can be detected/characterized because AHI does not cover

the forest understory, potentially missing a large fraction of the trees.

Regarding the AHI feature sets, the addition of vegetation indices did not improve the classifi-

cation and simply using the first 20 components of the maximum noise transform of normalized

reflectance produced the best results, as noted previously in chapter 5.5.3.

Summary scores and basic metadata of selected similar studies are provided for reference in

table 5.26. They should be interpreted carefully as the analytical approach and data characteristics

are different across studies. Nonetheless, the comparison indicate that the results obtained here are

in line with recent similar studies.

An alternative option to analysis at the tree scale is to conduct the entire analysis using AHI

and ALS features at the pixel level (e.g. Torabzadeh (2016)), avoiding the need for individual tree

segmentation. This simplified approach, which was not investigated here, may provide species

distribution information at the canopy level and answer some operational requirements.

An improvement could be to simultaneously conduct segmentation and classification, by

integrating the AHI features into the individual tree segmentation process. As noted in chapter

5.5, an other improvement could be the application of probabilistic smoothing to the class map as

proposed in Dechesne et al. (2017).



Table 5.26: Selected combined multi/hyperspectral and ALS based tree species classification studies similar (northern European palearctic, 5-13 species) to

the one presented in this section. If multiple sites were present in the study, scores for the one with the most species was selected. The generic OA and K

scores are the highest values reported in the studies and indicate general trends; they are not sufficient to reliably compare the performances of studies.

M/HI ALS Score

Sensor Bands GSD Sensor Density Classes OA K Reference

Leica ADS40 SH52

Leica RC30
4 0.25-0.5 m Various 0.8 m-2 7 0.76 0.7 Waser et al. (2011)

AISA Eagle 126 1 m Optech ALTM 3100C 0.5 m-2 8 0.83 0.77 Dalponte et al. (2012)

CASI–1500 13 0.5 Optech Gemini 4 m -2 5 0.98 0.97 Dinuls et al. (2012)

HySpex

VNIR-1600
160 1.6 m Riegl LMS-Q680i 25-30 m-2 13 (6) 0.91 - Sommer et al. (2016)

AISA Fenix 361 1.2 m Leica ALS-50 II 6 m -2 7 0.92 0.9 Lee et al. (2016)

HySpex

(VNIR + SWIR)
416 1-2 m Riegl LMS-Q680i 70 -2 5 0.84 0.74 Shi et al. (2018a)

APEX
285 2 m

Riegl LMS-Q560

LMS-Q680i
20, 40 m-2 8 - 0.93 Torabzadeh (2016)

288 2.6 - 3 m
Optech Gemini

Riegl LMS Q1560
30-70 m-2 9 0.95 0.94 This study (2018)



5.7 Synthesis 161

5.7 Synthesis

In this chapter, a state of the art on tree species classification from ALS and AHI data was conducted.

It revealed that most studies have focused on palearctic and nearctic ecozones and have usually

considered less than 10 genus or species. Studies that attempt to map forest species composition at

the individual tree scale using both ALS and AHI in environments similar to Switzerland remain

relatively scarce and are often based on small datasets with uncertain segmentation quality. Based

on this premise, three approaches to identify nine commonly encountered genus/species were

investigated:

• An approach to classify tree genus/species at the crown scale using discrete return ALS

features (from different sensors) was evaluated and good performances (OA = 0.91, K =

0.89), in par with other state of the art studies, were obtained. Lower performances were

obtained for ash and maple and it was suspected that this was at least in part due to the small

number of observations available for these classes. Both scale variant and scale invariant

features were tested with no conclusive evidence that the inclusion/exclusion of scale variant

features affected the performance. Metrics related to structural opacity, such as echo ranking

distribution and intensity were found to be the most discriminative. A novel method to

simulate individual tree segmentation error and evaluate its effect on species classification

was also developed and evaluated. The approach demonstrated that it is possible to train the

Random Forest classifier to identify species from segments containing significant delineation

error and still obtain good predictions.

• An approach to classify tree genus/species using AHI features (from the APEX sensor) at the

pixel and crown scale was evaluated. SVM and RF classifiers were evaluated and produced

similar results. Relatively good performances were achieved at both scales (Pixel: OA = 0.83,

K = 0.8, Crown: OA = 0.85, K = 0.82). Higher performances were systematically obtained

at the crown scale underlining the importance of taking into account information about the

extent of individual tree crowns (and the utility of segmentation). Different sets of feature

combinations (PCA, MNF, VI) were tested and the best performing model simply employed

the 20 first components of the MNF transform.

• The combination of ALS and AHI derived feature for tree genus/species at the crown scale

was evaluated. As previously, SVM and RF classifiers were evaluated and produced similar

results. It was found that combining the two sets of features systematically improved the

performances (by about ~5% in tems of OA and K, ~10% in terms of average F-score) and

provided a high overall performance (OA = 0.95, K = 0.94) in line with similar state of the

art studies. The best performances were obtained by combining the 20 first MNF of the AHI

and the scale invariant features from ALS.
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Insights

Throughout this thesis, the capacity of Airborne Laser Scanning (ALS) augmented with Hyper-

spectral Imaging (AHI) to describe forests at the individual tree scale was investigated. Going back

to the research questions and technical objectives formulated in the introduction, the following

conclusions can be drawn:

How and under which conditions can Airborne Laser Scanning (ALS) and Hyperspectral

Imaging (AHI) be used to map forest characteristics at the individual tree scale?

These research questions were investigated by attempting to fulfill three fundamental require-

ments of forest inventories, using ALS and AHI: locating trees, measuring their diameter and

identifying their genus/species. Technical solutions to address each of these requirements - some

built upon existing work and others entirely novel - were proposed and validated. In chapter 2,

it was shown how visual interpretation of ALS point clouds can be used to accurately determine

the position and characteristics of individual trees. An interactive application was developed and

used to extract several thousand detailed 3D tree models which subsequently served to calibrate

and validate segmentation, regression and classification algorithms. This approach can also be

employed to prepare detailed maps of small plots (e.g. long term research plots, growth and yield

plots, training plots) without any surveying skills. In chapter 3, two new algorithms for individual

tree delineation and stem detection in ALS data were presented. Special emphasis was put on

pure deciduous broadleaf forests in which it is more difficult to locate individual trees due to

their relatively flat canopy. In these types of forests, good stem detection and tree delineation

performances were obtained with high density ALS (> 70 per m2) acquired in leaf-off conditions.

However, the accurate localization and delineation of tree shapes across all environments and in

particular in multi-layered mixed forest remains an unsolved problem with currently no universal

solution. It can also be noted that delineating the exact shape of trees may not always be required

and that just detecting the stems may be sufficient for some applications. In chapter 4, methods to

estimate stem diameter through allometry and direct measurement in the ALS point cloud were

presented. The allometric approach is based on a modified state of the art method and the direct
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measurement approach (which also estimates taper) is novel. Both approaches are able to predict

diameter with about 10% error. However, the allometric approach requires that individual tree

height and crown extent be determined, while the direct measurement approach only requires

stem detection. It also has the advantage of not relying on knowledge about the species. With the

increasing availability of high density ALS (including from unmanned systems), it can be expected

that direct measurement of stem geometry will become more relevant in the near future. In the

meantime, indirect allometric methods can provide valuable information on DBH, but is conditioned

by the delineation performances of individual tree segmentation algorithms. Finally, in chapter 5,

eight out of nine tree species commonly found in Switzerland could be successfully identified using

a combination of ALS and AHI derived features. Using ALS alone a maximum overall accuracy

of 91% and a Kappa score of 89% were obtained. It was found that non-structural ALS features

(such as echo ranking and intensity distributions) played the most important role in discriminating

genus/species, confirming previously reported observations. It was also determined, through a

novel error simulation approach, that a moderate amount of individual tree segmentation error

did not affect the ALS based classification performance very much if the classifier was trained on

error-containing observations. Using moderate resolution (2.5-3 m) AHI acquired in leaf-on (July)

conditions, a maximum overall accuracy of 0.85% and a kappa score of 0.82% were obtained at the

crown scale. Systematically higher scores were obtained at the crown scale versus the pixel scale,

once again highlighting the importance of individual tree segmentation. The combination of ALS

and AHI data increased the classification scores by about ~5%. It was suspected that the two poorly

identified species, ash and maple, had an insufficient number of observations to reliably calibrate the

classification models and the reported performances for these two species should not be considered

reliable. Based on the work conducted here, to support forest inventories at the individual tree scale,

it is recommended to acquire high density (> 100 points per m2) ALS in leaf-off conditions and to

ensure echo intensity is calibrated/corrected adequately. Under these conditions, the probabilities of

locating, determining the diameter and identifying the species of individual trees can be considered

high for trees in the upper and intermediate canopy layers. It is also recommended that any future

work should focus on improving individual tree delineation and/or stem detection in complex

multi-layered forests which is a prerequisite for tree scale inventories and which has not yet reached

operational readiness.

How can the reliability of remote sensing derived forest inventory maps be quantified?

It is important that practitioners using ALS derived products for inventory purposes be provided

with a reasonable estimate of their reliability. However, reading through the vast number of

publications on remote sensing of forests, a lack of standardization in the reporting of errors and

the quantification of problem difficulty (e.g. detecting trees in dense tropical forests is much harder

than in a sparse woodland pasture) is apparent. In particular, the performance metrics used to

characterize tree segmentation algorithms do not necessarily coincide with reality and are hardly

comparable between studies. This thesis attempted to address part of the problem by describing

and using a rigorous error assessment framework which compares automatic segmentation to a

reliable manual segmentation in terms of 3D shape. It is suggested that an indication of 3D shape

(delineation) quality, which has been mostly ignored in segmentation studies, should be included in

future studies and/or forest maps. Using a simulated forest dataset, a simple method to quantify the

difficulty of individual tree segmentation problems in terms of spatial adjacency was also proposed.

A novel method (called ensemble filtering) to estimate segmentation error without field surveys

and/or manually delineated tree crowns was also developed and provides a practical alternative to

estimate the quality of segmentation in coniferous forests.
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What is the relative value of ALS and AHI to support current forest inventory needs?

For the classification of the nine considered species, the benefit of adding descriptive features

derived from the APEX AHI to ALS was about 5% in terms of overall accuracy and kappa,

about 10% in terms of F-score. The addition of AHI features also helped resolve several species

confusion cases (ash in particular). In this regard AHI has a significant value, but it was determined

that high density ALS (> 70 points per m2) acquired in leaf-off conditions already provides

sufficient information to reliably identify seven of the nine considered species. Moreover, for the

determination of basic forest inventory metrics at the tree scale (in particular stem location and

DBH), the AHI does not bring any added value. Thus, if a single sensor solution had to be chosen

(e.g. for economic or availability reasons), the author would suggest ALS. If a multi-solution was

to be recommended in the current state of affairs, high spatial resolution multispectral imagery

(down to 10 cm), which is already available operationally, may be a more adequate and lightweight

solution than AHI. Such imagery is capable of providing detailed information on canopy texture

which may be used in place of detailed spectral information. It is also important to note that

the validity of this conclusion could be shorted lived, as new low cost hyperspectral sensors may

become available in the near future.

Perspectives

The short time span of this thesis has been a pivotal period, with data acquisition, analysis and

interpretation means evolving significantly; bringing new opportunities and challenges along the

way. Several expected developments should be underlined:

• ALS is becoming a mainstream product in national land surveys. Because of its ability to

acquire high resolution data over large areas (several hundred km2 per flight), it will continue

to play a leading role in the characterization of forests, in the years to come. Data from

new multispectral LiDAR sensors (Optech Titan, Riegl VQ-1560i-DW) will also be more

common in forestry applications, for example to improve tree species identification (Budei

et al., 2018; Axelsson et al., 2018; Dalponte et al., 2018a; Yu et al., 2017; Ahokas et al., 2016).

Within the next decade, single flight coverage and point density may be further extended

when photon counting and Geiger mode LiDAR reach commercial maturity (Harding et al.,

2011; Swatantran et al., 2016; Stoker et al., 2016; Wästlund et al., 2018).

• Unmanned aerial vehicles already provide a practical and low cost solution to support forest

monitoring up to several hundreds of hectares (Torresan et al., 2017; Zhang et al., 2016a;

Tang and Shao, 2015; Paneque-Gálvez et al., 2014). A series of current or near-future

developments will further increase their ubiquity in forest surveys: improvements in battery

energy storage capacity, availability of vertical take-off and landing (VTOL) fixed wing

airframes, better navigation with multi-constellation (GPS, GLONASS, Galileo, BeiDou) and

dual-frequency GNSS chips (e.g. Broadcom BCM47755) previously restricted to high grade

surveying equipment, small and lightweight active 3D sensing capabilities using waveform

LiDAR or time-of-flight cameras (flash LiDAR).

• In late 2018, two spaceborne LiDAR missions, the Ice, Cloud, and land Elevation Satellite

2 (IceSat-2) and the Global Ecosystem Dynamics Investigation (GEDI) will start mapping

canopy height at the global scale. These systems will complete the capabilities of passive

optical satellites (e.g. Landsat-8, Sentinel-2) and will help monitor global forest carbon

stocks. Maps based on this type of data will play a central role in substantiating forest

degradation reports and verifying the effectiveness of conservation measures as required

by the United Nations framework for Reducing Emissions from Deforestation and forest

Degradation (REDD+).
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• Improvements in the navigation, depth sensing and computation capabilities of consumer

grade mobile devices will also benefit operations during local forest inventories. More

accurate and faster positioning under canopies will help correlate field observations with

remote sensing data. The addition of embedded or external depth sensors to mobile devices

will also allow live measurement of 3D structures and preliminary studies have already

demonstrated possible applications of such sensors in forest inventories (Hyyppä et al.,

2017; Tomaštík et al., 2017; Huang et al., 2018). Finally, advanced image processing

and classification capabilities embedded in the mobile devices will help with automatic

identification of species and disease diagnosis from pictures (Joly et al., 2016).

• Mobile terrestrial surveying instruments that use integrated navigation (GNSS, IMU, LiDAR)

for Simultaneous Localization and Mapping (SLAM) may eventually replace the more bulky

static terrestrial laser scanners (Tang et al., 2015; Ryding et al., 2015; Qian et al., 2016;

Bauwens et al., 2016).

• Digital interactive representations of forests will allow for easier communication, planning

and execution of maintenance and exploitation tasks. Immersive virtual or augmented reality

devices could for example be used for training purposes (e.g. virtual timber marking).

• high performance object detection and classification algorithms based on the deep learning

paradigm have emerged and their application is diffusing in all research domains including

forest remote sensing. In particular, 2D and 3D convolutional neural networks are showing

promising performances for individual tree detection and might bring a decisive answer to a

problem which has been tackled for two decades without any universal solution (Ayrey and

Hayes, 2018; Windrim and Bryson, 2018).

Overall, effective remote sensing solutions are being developed to answer forest mapping

requirements at the local, regional and global scales. However, in this constantly expanding and

diversifying technological landscape, transmitting remote sensing skills or providing simple turn

key solutions to forest practitioners remains problematic. With thousands of scientific publications

investigating the benefits of remote sensing for forestry, but few practical software tools and tutorials

available to field foresters, the adoption pace is relatively slow. Perhaps, the single most important

point to improve this situation is a better integration of the forestry and remote sensing (surveying)

communities, so that knowledge and skills can be shared.
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Appendix



A Site geography, topography and forest characteristics

Table A.1: Site geography, topography and forest characteristics

ID Name Lat., Lon. Alt. Slope Aspect Structure Management

1 Versoix
46.29685 N,
6.13021 E

445 m 0-5 -
High forest
(mixed)

N/A

2 Sauvabelin
46.53656 N,
6.63655 E

640 m 15-20 WSW
High forest
(deciduous)

Safety
maintenance

3 Benenté
46.58351 N,

6.65808 E
808 m 0-5 -

High forest

(deciduous)
Preserve

4 Jorat south
46.57971 N,

6.65589 E
790 m 5-15 W

High Forest

(coniferous)
N/A

5 Gésiaux
46.55536 N,

6.65342 E
760 m 0-5 -

High forest

(coniferous)
Preserve

6 La Brévine
46.96035 N,

6.50852 E
1153 m 5-15 ESE

High forest

(mixed)

Selection

cutting

7 Couvet
46.92006 N,

6.64495 E
846 m 10-15 NNW

High Forest/Uneven-aged

(mixed)

Selection

cutting

8 Cortaillod
46.94523 N,

6.81218 E
536 m 5-10 E

High forest

(mixed)

Selection

cutting

9 Boudry D20
46.95635 N,

6.81163 E
598 m 5-10 E

Uneven-aged stand

(mixed)

Selection

cutting

10 Boudry D19
46.95906 N,

6.81268 E
554 m 10-20 WNW

Uneven-aged stand

(mixed)

Selection

cutting

11 Boudry D1
46.96568 N,

6.82346 E
580 m 0-5 -

High forest

(mixed)

Group-selection

cutting

12 Chambrelien
46.96679 N,

6.81613 E
650 m 5-10 SE

High forest

(mixed)

Group-selection

cutting

13 Rochefort
46.97115 N,

6.82152 E
598 m 30 NE / SW

High forest

(mixed)

Selection

cutting

14 Bevaix
46.93305 N,

6.80317 E
610 m 10-15 SE

High Forest

(mixed)

Selection

cutting

15 Grosszinggibrunn
47.51003 N,

7.66426 E
410 m ~10 NNW

High forest

(deciduous)

Selection

cutting

16 Ottmarsingen
47.39887 N,

8.22677 E
500 m 15-20 SSE

High Forest

(mixed)

Selection

cutting

17 Sihlwald
47.25096 N,

8.55908 E
630 m 5-15 NE

High Forest/Uneven-aged

(mixed)
Preserve

18 Oberaegeri
47.15412 N,

8.695 E
940 m 10-15 S

High forest

(coniferous)

Selection

cutting

19 Dischma
46.77061 N,

9.8769 E
1832 m 35-40 NE

High Forest

(coniferous)

Selection

cutting



B Field survey metadata

Table B.1: Field survey metadata.
Abbreviations: AbAl: Abies alba, Ac: Acer sp., AcPs: Acer pseudoplatanus, CaBe: Carpinus betulus, FaSy:
Fagus sylvatica, FrEx: Fraxinus excelsior, LaDe: Larix decidua, PiAb: Picea abies, PrAv: Prunus avium, PiSy:
Pinus sylvestris, PsMe: Pseudotsuga menziesii, Qu: Quercus sp., QuPe: Quercus petraea, QuRo: Quercus

robur, SoAu: Sorbus aucuparia, TiCo: Tillia cordata.
CCS: Centre de Compétence en Sylviculture (http://www.waldbau-sylviculture.ch). WSL: Eidg.

Forschungsanstalt für Wald, Schnee und Landschaft

ID Name Date
Density

ha-1
Basal area

m2/ha

Main

species
Source

1 Versoix 2012 337 31.8 QuPe (73.3 %), PiAb (15.7 %), CaBe (8 %) CCS

2 Sauvabelin Feb. 2015 168 40 FaSy (57.3 %), QuRo (29.9 %), PrAv (5.7 %) CCS

3 Benenté Mar. 2015 359 45.2 AbAl (55.7 %), FaSy (39.4 %), PiAb (4.4 %) WSL

4 Jorat south - - - - -

5 Gésiaux - - - - -

6 La Brévine Oct. 2015 382 28.4 AbAl (37.9 %), PiAb (33 %), FaSy (28.4 %) CCS

7 Couvet Dec. 2015 263 33
AbAl (74.1 %), PiAb (10.3 %), FaSy (7.6 %),

Ac. (4.2 %))
CCS

8 Cortaillod May 2016 270 23.3

FaSy (14.9 %), LaDe (% 14.6), PiAb (12.2 %),

Ac. (12 %), FrEx (10.9 %), Qu. (9.3 %),

AbAl (7.7 %), TiCo (6.6 %), PiSy (5.9 %)

CCS

9 Boudry D20 Sep. 2013 449 44.3
FaSy (35.1 %), PsMe (21.6 %), AcPs (13.7 %),

AbAl (4.7 %), LaDe (4.3 %)
CCS

10 Boudry D19 Mar. 2012 348 40.8

AbAl (25.8 %), FaSy (19.6 %), FrEx (15.7 %),

PiAb (11.5 %), PiSy (9.4 %), QuPe (5.4 %),

AcPs (4.5 %)

CCS

11 Boudry D1 Jan. 2013 321 29.9 AbAl (52.2 %), QuPe (29.5 %), FaSy (15.9 %) CCS

12 Chambrelien - - - - -

13 Rochefort - - - - -

14 Bevaix - - - - -

15 Grosszinggibrunn Oct. 2014 271 28.2
FaSy (46.4 %), CaBe (22 %), Ac (13 %),

Qu (6.4 %), FrEx (6.1 %)
WSL

16 Ottmarsingen Mar. 2015 184 45.6 FaSy (88.2 %), PiAb (9.6 %) WSL

17 Sihlwald Nov. 2015 301 36.9 FaSy (79.9 %), AbAl (8.6 %), PiAb (6.6 %) WSL

18 Oberaegeri Nov. 2009 684 56.7 PiAb (40.9 %), AbAl (40.7 %), FaSy (16.3 %) WSL

19 Dischma Sep. 2016 387 74.5 PiAb (77.2 %), LaDe (14 %), SoAu (8.6 %) WSL



C Study site pictures

(a) Versoix (Genève), Photo from April 7, 2018.

(b) Sauvabelin, (Vaud) photo from December 10, 2016.

(c) Benenté (Vaud), photo from December 4, 2016.

(d) Cortaillod (Neuchâtel), photo from December 26, 2016.

(e) Boudry division 20 (Neuchâtel), photo from December 26, 2016.

(f) Boudry division 19 (Neuchâtel), photo from December 26, 2016.

(g) Boudry division 1 (Neuchâtel), photo from December 26, 2016.

Figure C.1: Pictures of survey sites.



D AHI survey metadata

Table D.1: APEX airborne hyperspectral imaging metadata. Abbreviations: RF: Random Forest, SVM: Support
Vector Machine.

Sensor Type Dispersive push broom
Bands 285
Range 400 - 2500 nm
Spectral resolution < 10 nm (SWIR), 5 nm (VIS/NIR)

Acquisition Dates 18.07.2014
Flight time (local) 12h38 - 13h01
Flying height (AGL) 4880 m
Flight lines Two lines per sector (Boudry and Lausanne)
Aircraft Dornier Do 228

Processing Geometric correction Orthorectification based on direct
georeferencing with LiDAR DSM
(Boudry, 2010 / Lausanne 2012)

Atmospheric correction Default settings ENVI software which uses
the MODTRAN4 radiation transfer model

Spectral smoothing Default settings in Colibri software

Delivery Provider VITO (Belgium)
Date 23.03.2015
Format IMG (BSQ), ENVI header files (HDR)
Spatial resolution* 2.6 - 3.0 m
Geolocation accuracy < 2 m

* The contract requested a spatial resolution of 1.75 m. However, due to poor flight planning by Vito, the optimal
flying altitude was not granted by air traffic control and the aircraft had to fly higher than anticipated resulting in
a coarser resolution product.



E ALS survey metadata

Table E.1: ALS survey metadata. AGIS: Aargauische Geografische Informationssystem, OIT: Office d’Informations sur le Territoire (Vaud), SITN: Système d’Information

du Territoire Neuchâtelois, ARE: Amt für Raumentwicklung (Zürich), AGBL: Amt für Geoinformation (Basel-Landschaft), GKZ: Geoportal Kanton Zug, WSL: Eidg.

Forschungsanstalt für Wald, Schnee und Landschaft, SITG: Système d’Information du Territoire à Genève .

ID Name Sensor
Flight date(s)

(phenology)

Point

density [m-2]

Intensity

norm.

RGB

color

Segments

(Total)

Segments

(Incl. diameter)

Segments

(Incl. species)
Source

1 Versoix
Riegl

LMS-Q1560

February 19, 2017

(leaf off)
46 Yes No 375 261 262 SITG

2 Sauvabelin
Optech

ALTM Gemini

March 10 / 11, 2012

(leaf off)
39 Yes No 133 103 103 OIT

3 Benenté
Optech

ALTM Gemini

March 10 / 11, 2012

(leaf off)
33 Yes No 700 421 453 OIT

4 Jorat south
Optech

ALTM Gemini

March 10 / 11, 2012

(leaf off)
33 Yes No 357 0 350 OIT

5 Gésiaux
Optech

ALTM Gemini

March 10 / 11, 2012

(leaf off)
33 Yes No 126 0 95 OIT

6 La Brévine
Riegl

LMS-Q1560

May 5, 2016

(leaf off)
31 Yes Yes 896 371 370 SITN

7 Couvet
Riegl

LMS-Q1560

May 4-5, 2016

(leaf off)
31 Yes Yes 238 159 159 SITN

8 Cortaillod
Riegl

LMS-Q1560

March 26 / May 4, 2016

(leaf off / on)
33 Yes Yes 158 78 89 SITN

9 Boudry D20
Riegl

LMS-Q1560

March 26 / May 4, 2016

(leaf off / on)
70 Yes Yes 319 124 229 SITN



Table E.2: ALS survey metadata (continued from previous page). AGIS: Aargauische Geografische Informationssystem, OIT: Office d’Informations sur le Territoire

(Vaud), SITN: Système d’Information du Territoire Neuchâtelois, ARE: Amt für Raumentwicklung (Zürich), AGBL: Amt für Geoinformation (Basel-Landschaft), GKZ:

Geoportal Kanton Zug, WSL: Eidg. Forschungsanstalt für Wald, Schnee und Landschaft, SITG: Système d’Information du Territoire à Genève .

ID Name Sensor
Flight date(s)

(phenology)

Point

density [m-2]

Intensity

norm.

RGB

color

Segments

(Total)

Segments

(Incl. diameter)

Segments

(Incl. species)
Source

10 Boudry D19
Riegl

LMS-Q1560

March 26 / May 4, 2016

(leaf off / on)
71 Yes Yes 321 117 168 SITN

11 Boudry D1
Riegl

LMS-Q1560

March 26, 2016

(leaf off)
40 Yes Yes 509 344 381 SITN

12 Chambrelien
Riegl

LMS-Q1560

March 26 / May 4, 2016

(leaf off / on)
77 Yes Yes 219 0 145 SITN

13 Rochefort
Riegl

LMS-Q1560

March 26 / May 4, 2016

(leaf off / on)
35 Yes Yes 372 0 71 SITN

14 Bevaix
Riegl

LMS-Q1560

March 26 / May 4, 2016

(leaf off / on)
70 Yes Yes 176 0 176 SITN

15 Grosszinggibrunn
Optech

ALTM Gemini

June 12, 2012

(leaf on)
11 Yes No 328 182 181 AGBL

16 Ottmarsingen
Riegl

LMS-Q680i

March 27 / 28, 2014

(leaf off)
29 N/A No 123 92 92 AGIS

17 Sihlwald
Trimble

AX60

March 10, 2014

(leaf off)
41 N/A No 1317 1166 1161 ARE

18 Oberaegeri
Optech

ALTM Gemini

November 13, 2012

(leaf off)
20 Yes No 302 204 204 GKZ

19 Dischma
Riegl

LMS-Q780

August 5 / 6, 2015

(leaf on)
28 N/A No 312 207 207 WSL



F ALS point classification

Table F.1: Standard LAS 1.4 point classification for point data record formats 6-10. Adapted from
the American Society for Photogrammetry and Remote Sensing (2013).

Class number Description Note

0 Created, never classified Removed

1 Unclassified Removed

2 Ground Preserved

3 Low vegetation 0 height 0.5 m

4 Medium vegetation 0.5 height 3 m

5 High vegetation height 3m

6 Building Removed

7 Low point (noise) Removed

8 Reserved Removed

9 Water Removed

10 Rail Removed

11 Road surface Removed

12 Reserved for ASPRS Definition Removed

13 Wire – Guard (Shield) Removed

14 Wire – Conductor (Phase) Removed

15 Transmission Tower Removed

16 Wire-structure Connector (e.g. Insulator) Removed

17 Bridge Deck Removed

18 High Noise Removed

19-63 Reserved for ASPRS Definition Removed

64-255 User definable Removed



G Custom forestry EVLR specification

Table G.1: Custom forestry EVLR specification for ASPRS LAS files. Only items with an asterisk (*) are filled
in the benchmark dataset.

Item Description Record ID Format (bits) Unit Example

LUID* Locally Unique Identifier 5000 single (32) - 42

UUID* Universally Unique Identifier 5001 quadruple (128) -
44c190e694384c7b
ba7ca0e59396c58c

Stand ID Stand Identifier 5002 uint16 (16) - 10

Reserved Reserved for identifiers 5003-5009 - - -

X* X coordinate of stem proxy 5010 double (64) m 2552299.30

Y* Y coordinate of stem proxy 5011 double (64) m 1200754.62

Z* Altitude of root 5012 double (64) m 595

Location Proxy*
Tree location proxy:

root (1), centroid (2) or apex (3)
5013 uint8 (8) - 1

Diameter*
Diameter at breast

height (1.3 m)
5014 uint16 (16) cm 11

Total height*
Distance from root

to apex point
5015 uint16 (16) cm 1613

Bole height
Distance from root

to crown base
5016 uint16 (16) cm -

Bole angle
Bole angle rounded to

nearest degree
5017 uint8 (8) degree -

Bole straightness
Linearity indicator

(sinuose / straight length))
5018 uint8 (8) - -

Total projected area*
Area of single region (no holes)

concave hull containing all xy points
5019 single (32) m2 -

Total Volume*
Volume of single region (no holes)

concave hull containing all xyz points
5020 single (32) m3 -

Crown projected area
Area of single region (no holes)

concave hull containing crown points
5021 single (32) m2 -

Crown volume
Volume of single region (no holes)

concave hull containing crown points
5022 single (32) m3 -



Table G.2: Custom forestry EVLR specification for ASPRS LAS files (continued). Only items with an asterisk
(*) are filled in the benchmark dataset.

Item Description Record ID Format (bits) Unit Example

Reserved
Reserved for geometric

attributes
5023-5040 - - -

IPNI* International Plant Name Index ID 5041 char(12) (96) - 609009-1

Social rank
Social rank according to Nyland (2016):

dominant (1), codominant (2),
intermediate (3), overtopped (4)

5042 uint8(8) - 3

Ivy flag* Ivy presence flag 5043 uint8 (8) - 1

Dead flag* Dead tree flag 5044 uint8 (8) - 0

Reserved
Reserved for biological
and ecological attributes

5045-5060 - - -

Ambiguity flag*
Flag indicating if tree delineation

is uncertain/unreliable
5061 uint8 (8) - 0

Time stamp*
Initial tree creation

time stamp in serial date format
5062 double (64) s 736810.833413958

ColorIndex Color index 5063 uint8 (8) - 2

Reserved
Reserved for survey or

display attributes
5064-5070 - - -
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