
2019

Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

JAKE YEUNG

Présentée le 18 janvier 2019

Thèse N° 8893

Tissue-specific circadian transcriptional regulation

Prof. B. Deplancke, président du jury
Prof. F. Naef, directeur de thèse
Prof. J. Hogenesch, rapporteur
Prof. E. van Nimwegen, rapporteur
Prof. J. Lingner, rapporteur

à la Faculté des sciences de la vie
Unité du Prof. Naef
Programme doctoral en biotechnologie et génie biologique 





"In the fields of observation luck favors the prepared mind."

— Louis Pasteur

"Beware of finding what you’re looking for."

– Richard Hamming

To my parents. . .





Acknowledgements
During my PhD, I have been fortunate to have worked with the right people at the right time.

First of all, this thesis would not have been possible without my advisor Felix. He has been

more than I could have hoped for as a mentor. I am grateful for all of our discussions over the

last four years on wide topics of science and also the deep but important details. Felix, you

have taught me that treasure can be found by getting the details right. Your critical eye and

sound judgement have guided me toward paths of exciting discoveries. You inspired me to

maintain a high technical level while making the broadest impacts in science. I was always

eager to soak up knowledge and seek wisdom from your discussions. If I could have gleaned

even a tiny fraction of your wisdom and insights through osmosis over the last few years, I

would be delighted. I would also like to thank Fred and Paul for having confidence in me

to work on a variety of projects. Paul, thank you for showing me the world of sleep and for

broadening my view of biology. Fred, I benefited from your deep insights on metabolism,

physiology, and the circadian clock. Your encyclopedic knowledge of biology is inspirational.

I would also like to thank my colleagues over the years who have contributed to my growth

over the last few years, Jingkui, Cédric, Daniel, Benjamin, Saeed, Nick, Damien, Clémence, and

Eric. Our discussions have inspired many ideas. Special thanks to Sophie for helping me with

administrative tasks, taking them off my plate so I can focus on my work. I would like to thank

the facilities, both experimental and computational, for providing expertise and insights to

technical problems.

I would like to give special thanks to Jérome for a fruitful collaboration over the last few

years. Your bold thinking and ability to sense the right experiments to do have benefited me

greatly. I owe you a debt of gratitude for all of your work. Thank you also to Charlotte for

letting me in on your experiments and inspiring new ways of thinking about dynamics with

your experimental designs. Thank you Maxime for your work and analysis, which revealed

treasure where I was unable to find on my own.

I would like to thank my family and friends both here and abroad for support over the years.

Last but certainly not least, I would like to thank Bingqing for going on this journey with me

these last several years. You have given me structure in my life and allowed me to focus on the

important things. Thank you for interweaving your life with mine. Together this bond makes

us stronger.

Lausanne, 23 August 2018 Jake Yeung

i





Abstract
Circadian rhythms in physiology and behavior evolved to resonate with daily cycles in the

external environment. In mammals, organs orchestrate temporal physiology over the 24-hour

day, which requires extensive gene expression rhythms targeted to the right tissue. Although

a core set of gene products oscillate across virtually all cell-types, gene expression profiling

across tissues over the 24-hour day showed that rhythmic gene expression programs are tissue-

specific. We highlight recent progress in uncovering how the circadian clock interweaves with

tissue-specific gene regulatory networks involving functions such as xenobiotic metabolism,

glucose homeostasis, and sleep. This progress hinges on not only comprehensive experi-

mental approaches but also computational methods for multivariate analysis of periodic

functional genomics data. This thesis first explores how circadian gene expression is regulated

across tissues. Second, we investigate how dynamic chromatin interactions underlie circa-

dian gene transcription, core clock functions, and ultimately behavior. Third, we elucidate

how the temporal transcriptome in mouse cortex responds to sleep deprivation. Finally, we

discuss perspectives on extending the knowledge of the circadian clock in mice to human

chronobiology.

Key words: systems chronobiology, chromatin interactions, gene regulation, feeding-

fasting cycles, sleep-wake cycles
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Résumé
Les rythmes circadiens de la physiologie ont évolué pour correspondre aux cycles quotidiens

de l’environnement externe. Chez les mammifères, les organes orchestrent la physiologie tem-

porelle sur une journée de 24 heures, ce qui nécessite des rythmes d’expression génique dans

le bon tissu. Bien qu’un ensemble de base de produits génétiques oscillent dans pratiquement

tous les types de cellules, le profil d’expression génétique dans différents tissus au cours des 24

heures a montré que certains programmes d ?expression de gènes rhythmiques sont spécifique

à des tissus.. Nous mettons en évidence les progrès récents dans la découverte de l’imbrica-

tion de l’horloge circadienne avec les réseaux de régulation génique spécifiques aux tissus

impliquant des fonctions telles que le métabolisme xénobiotique, l’homéostasie du glucose et

le sommeil. Ce progrès repose non seulement sur des approches expérimentales complètes,

mais aussi sur des méthodes informatiques pour l’analyse multivariée des données pério-

diques sur la génomique fonctionnelle. Cette thèse explore d’abord comment l’expression des

gènes circadiens est régulée à travers les tissus. Deuxièmement, nous étudions comment les

interactions de la chromatine dynamique sous-tendent la transcription des gènes circadiens,

les fonctions de base de l’horloge et, en fin de compte, le comportement. Troisièmement,

nous expliquons comment le transcriptome temporal dans le cortex de souris répond au

traitement de privation de sommeil. Enfin, nous discutons des perspectives d’extension de la

connaissance de l’horloge circadienne chez la souris à la chronobiologie humaine.

Mots clefs : systems chronobiology, chromatin interactions, gene regulation, feeding-

fasting cycles, sleep-wake cycles
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1 Introduction

Overview of the thesis

The thesis begins with an introduction that uses ideas and text that are discussed in a review

paper in revision. References in this section to Yeung et al. and Mermet et al. highlight how the

work in this thesis fits into the current challenges of chronobiology (Yeung et al., 2018; Mermet

et al., 2018). This section concludes with three broad questions tackled in the thesis. After the

introduction are three papers investigating regulation of gene regulatory dynamics. The first

paper (Yeung et al., 2018) focuses on tissue-specific regulation. The second paper (Mermet

et al., 2018) goes into details on the role of chromatin interactions in regulating the circadian

clock. And the third paper, under preparation, explores how perturbing oscillatory gene

expression by a short sleep deprivation treatment can reveal insights into how dynamic gene

expression is regulated in the mouse cortex. The thesis concludes with the broad significance

of my work and outstanding questions for the field.

1.1 Circadian rhythms at all scales of biological organization

Many organisms exhibit rhythms in behavior and physiology that are synchronized to the

daily cycles in the environment (Bell-Pedersen et al., 2005). This internal circadian rhythm

(period length of around one day) resonates with daily cycles, predicting and adapting to

external cues such as light abundance and food availability (Schibler et al., 2015). Competition

experiments in cyanobacteria suggest that this resonance enhances fitness (Ouyang et al.,

1998). In mammals, a genetically encoded molecular clock oscillates in virtually every cell

of the body (Takahashi, 2017). These clocks are synchronized to an internal body rhythm

set by the master pacemaker, located in the suprachiasmatic nucleus (Hastings et al., 2018).

Chronobiology researchers study how 24-hour periodicity in external signals is dynamically

integrated at all scales of biological organization, from gene expression to behavior, promising

to yield new insights on how temporally structured external signals such as artificial light,

unconventional meal times, and drug therapies dynamically interact with circadian rhythms
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Chapter 1. Introduction

in physiology (Roenneberg and Merrow, 2016).

1.1.1 Mammalian circadian timing is organized as a hierarchy of distributed clocks

In mammals, the circadian timing system is organized as a hierarchy of oscillators, containing

a master clock and peripheral clocks. The master clock, located in the suprachiasmatic

nucleus (SCN), establishes rhythms in behavior by synchronizing peripheral clocks, located

outside of the SCN, through systemic signals such as hormones, body temperature, and

direct innervation (Mohawk et al., 2012). As insinuated by their name, circadian rhythms

(‘circa diem’ means ‘approximately a day’) do not have a period of exactly 24 hours but differ

between species (Bell-Pedersen et al., 2005), individuals as well as age (Czeisler et al., 1999).

For example, the free-running circadian period for humans is longer than 24 hours while for

the mouse is shorter. Therefore, the circadian timing cannot measure 24 h with accuracy

(although it is very precise) but is periodically synchronized to the environment by externals

cues. These rhythmic cues are called zeitgebers. A prominent one is external sunlight light,

which synchronizes the central clock in the SCN to geophysical time. Other zeitgebers include

external temperature and feeding-fasting rhythms, which contribute to entrainment of clocks

in tissues outside of the SCN (Damiola et al., 2000; Saini et al., 2011).

1.1.2 The molecular components of the circadian clock

Single-cell analyses have shown that circadian oscillations rely on a cell-autonomous clock

that is genetically encoded, suggesting that potentially every cell in the body resonates with

environmental time (Nagoshi et al., 2004). A widespread, though not necessarily definitive,

model of the mammalian circadian clock consists of interlocked transcriptional and trans-

lational feedback loops that regulate the expression of core clock genes (Dibner et al., 2010).

The genetic components and regulation of the circadian clock have been discussed in several

excellent reviews (Takahashi, 2017; Mohawk et al., 2012; Dibner et al., 2010). Briefly, activat-

ing transcription factors (TFs) drive expression of many genes, including its own repressors,

which decreases the accumulation of activating TFs and subsequently its repressors. The

low accumulation of negative TFs derepress the activating TFs and a new cycle begins. A

simplified diagram of two interlocked negative feedback loops is shown in Figure 1.1. Core

clock transcription factors BMAL1 and CLOCK heterodimerize (BMAL1-CLOCK) and activate

transcription of genes containing E-box (enhancer box) cis-regulatory elements. Important

targets of BMAL1-CLOCK are the core clock genes, Period (Per1, Per2, Per3) and Cryptochrome

(Cry1, Cry2), whose protein products (CRY-PER complexes) directly abrogates the transcrip-

tional activity of BMAL1-CLOCK (Lowrey and Takahashi, 2004). Additionally, BMAL1-CLOCK

activates transcription of another clock gene Rev-erba, whose protein product binds to ROREs

(ROR response elements) and thus inhibits transcription of the Bmal1 gene (Partch et al., 2014).

These transcriptional and translational negative feedback loops establish the circadian clock

(Yoo et al., 2004).

2
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CLOCK BMAL1

period and cryptochrome genes

PER CRY

PER CRY

Rev-erba

CLOCK BMAL1

Bmal1 

REV-ERBa

Rev/ROR elements

E-box element

E-box element

Figure 1.1 – Simplified diagram of the molecular clock. Two interlocking feedback loops
robustly oscillate with a circadian period (∼24 hours). Transcription factors (TF) CLOCK and
BMAL1 bind to E-box elements (a TF binding motif) and activate the expression of many
genes, including its own repressors. One set of repressors are period and cryptochrome genes,
which are translated and subsequently abrogates the activity of the CLOCK:BMAL1 complex.
A second loop, consisting of REV-ERBa, directly binds to RORE (also a TF binding motif) and
represses the transcription of the gene, Bmal1 (also known as Arntl), which codes for the
positive TF.

Extensive studies mutating different components of the clock in mouse have identified

a wide range of period phenotypes. A comprehensive table in a review by Ko and Takahashi

summarizes clock mutants and their period phenotypes (Ko and Takahashi, 2006). For exam-

ple, Cry1 knockout (KO) mice show a 1-hour shorter period while Cry2 KO mice show a 1-hour

longer period. Bmal1 KO mice are arrhythmic. These studies show that the circadian clock

relies on a complex molecular architecture.

1.2 The function of the circadian clock is tissue-specific

Although this molecular clock ticks in virtually all cells of the body (Dibner et al., 2010), early

transcriptome profiling studies around the clock in different mouse tissues have found that

rhythmic gene expression is highly tissue-specific (Storch et al., 2002). How this clock is used

3



Chapter 1. Introduction

in different cell types and tissues to regulate diverse physiological processes is at the core of

contemporary chronobiology. Daily rhythms in cell-type specific functions are pervasive. For

example, recent work showed that fibroblasts exhibit circadian rhythm in actin dynamics,

allowing wound healing to be more efficient during the active versus resting phase (Hoyle

et al., 2017). Size of liver cells, its protein accumulation, and ribosome number oscillate over

the 24-hour day (Gerber et al., 2013; Sinturel et al., 2017), making metabolism and xenobiotic

detoxification more efficient when animals are active and feed. Macrophages exhibit circadian

rhythm in cytokine production (Keller et al., 2009), which may improve response against

bacterial infections.

Intriguingly, disrupting the clock in different tissues can lead to opposite phenotypes (Bass

and Lazar, 2016). For example, pancreas-specific ablation of the clock leads to hyperglycaemia

(Marcheva et al., 2010) while liver-specific ablation leads to hypoglycaemia (Lamia et al., 2008).

Alternatively, tissue-specific rescue of the clock in whole-body knockouts can also reveal

surprises. For example, whole-body Bmal1 KO mice have increased non-rapid eye movement

(NREM) sleep, and restoring Bmal1 expression specifically in skeletal muscles can rescue the

amount of NREM sleep, although not the timing (Ehlen et al., 2017). These tissue-specific

phenomena are likely underpinned by tissue-specific rhythmic gene expression signatures.

Indeed, a high-resolution circadian gene expression atlas across twelve organs has shown

that mRNA abundances oscillate mostly in an organ-specific manner (Zhang et al., 2014),

indicating that the circadian clock regulatory network interweaves with tissue-specific gene

regulatory mechanisms.

1.3 Regulatory mechanisms underlying tissue-specific rhythmic gene

expression

The molecular circadian clock and systemic signals likely contribute to tissue-specific rhyth-

mic gene expression (Hughes et al., 2012; Kornmann et al., 2007) (Figure 1.2A). What are the

regulatory mechanisms? Liver has been a productive model to study temporal gene regulation

across multiple omics data types, from transcriptional (Le Martelot et al., 2012; Sobel et al.,

2017; Trott and Menet, 2018), post-transcriptional (Luck et al., 2014), translational (Atger et al.,

2015), to post-translational (Mauvoisin et al., 2017; Robles et al., 2017; Wang et al., 2017).

Extending such analyses to multiple tissues will uncover general principles of how tissues

physiologically interact with each other and with the circadian clock.

1.3.1 Interactions between tissue-specific transcription factors and clock regula-
tors

Recently, temporal RNA-seq analysis of multiple mouse tissues suggested that interactions

between tissue-specific and a clock transcription factor (TF) underlies tissue-specific rhythmic

transcription regulation (Yeung et al., 2018) (Figure 1.2B). The binding of a tissue-specific
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A
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Figure 1.2 – Generation of tissue-specific rhythms. (A) Scheme of how external rhythmic
cues entrain circadian rhythms across tissues. The central clock, located in the suprachi-
asmatic nucleus of the hypothalamus, takes light from the environment and synchronizes
clocks in peripheral tissues through by regulating locomotor activity and feeding rhythms as
well as through systemic signals such as hormones and metabolites. Peripheral tissues, such
as kidney, heart, and liver, orchestrate rhythms in tissue physiology, such as sodium home-
ostasis, carbohydrate metabolism, and blood pressure, respectively. (B,C) Examples of how
tissue-specific rhythmic gene expression can be generated transcriptionally. (B) Interactions
between tissue-specific and clock transcription factors (TFs) can generate tissue-specific gene
expression. For example, a gene can be rhythmically transcribed in one tissue but not in others
by the presence or absence of a tissue-specific TF, which renders a nearby clock TF binding
site accessible. (C) Different tissues can regulate rhythmic transcription of a gene by using
different alternative promoters. In this example, the rhythmically transcribed promoter is
used in liver but not in other tissues. A rhythmically transcribed gene is shown with a sinusoid,
flat transcription is shown with a flat horizontal line.
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TF may render the local chromatin region more accessible, increasing the affinity of clock

TFs to their respective binding sites. For example, liver-specific rhythmic gene expression

has been found to be enriched for liver-specific DNase-I hypersensitive sites containing

binding sites for both liver-specific and clock TFs (Yeung et al., 2018). Direct protein-protein

interactions between clock and other transcriptional regulators may also regulate rhythmic

gene expression in a tissue-specific manner. For example, co-immunoprecipitation studies

examining interactions of mouse nuclear receptors (NR) with CRY1 found that one-third of

mouse NRs, some of which were expressed in a tissue-specific manner such as PXR and CAR

(which regulates xenobiotic detoxification in liver) interact with CRY1 (Kriebs et al., 2017;

Lamia et al., 2011). Another mechanism generating specificity in transcription dynamics is

alternative promoter usage, where one transcript is rhythmically transcribed while the other is

not, which explains a fraction of tissue-specific rhythmic transcript abundances (Figure 1.2C)

(Yeung et al., 2018). Further analyses estimating the frequency of each mechanism that defines

the rhythmic transcriptome will clarify which regulatory modes are most prevalent.

1.3.2 Rhythmic systemic signals can drive tissue-specific rhythms in gene expres-
sion

Generally, it is still unclear how rhythmic systemic signals such as hormones and metabolites

can drive responses of varying magnitudes or amplitudes, and also activate different down-

stream pathways depending on the tissue context (Bass and Takahashi, 2010) (Figure 1.2A).

One explanation is that signaling molecules such as hormones act in a tissue-specific manner;

for example, fibroblast growth factor hormones regulate bile acid homeostasis in liver but

contribute to thermogenesis in brown adipose tissue (Owen et al., 2015). Temporal profiles

of serum concentrations could also differ across the body; for example, human IL-6 levels

in cerebrospinal fluid versus plasma show distinct rhythms and peaked at different times

of day (Agorastos et al., 2014), suggesting that dynamics in permeability of the blood-brain

barrier can regulate distribution of cytokines across the body (Pan and Kastin, 2017). Thus

tissue-specific decoding of systemic signals or local variation in ligand concentrations can

induce transcription factor activities that oscillate in one tissue but not others.

1.3.3 Integrating temporal analysis of WT mice with clock-deficient mutants

Since rhythmic gene expression in organs can be generated through systemic cues as well

as by the local clock (Hughes et al., 2012; Kornmann et al., 2007; Lamia et al., 2008), study

designs incorporating wild-type (WT) and clock-deficient mutants allow clock-dependent

and independent mechanisms to be distinguished (Atger et al., 2015), as demonstrated in a

study of WT and Bmal1 KO clock mutants in liver and kidney (Yeung et al., 2018).

6



1.4. Statistical analysis of rhythms

1.4 Statistical analysis of rhythms

1.4.1 Multivariate and modular analysis of rhythmic gene expression

Many genome-wide descriptions of circadian or diurnal rhythmicity have considered genes

one at a time, and typically in one or few conditions (Hutchison et al., 2015). To assess

rhythmic gene expression in a given condition, parametric (Atger et al., 2015; Fisher, 1929) and

non-parametric (Hughes et al., 2010; Hutchison et al., 2015; Thaben and Westermark, 2014)

methods have been used to statistically test, for each gene, whether a measured temporal

pattern shows evidence for rhythmicity compared to a null model (e.g. flat gene expression in

time).

Today, an increasing number of datasets include multiple conditions, such as multiple

tissues, genotypes, feeding conditions, or combinations thereof (Korenčič et al., 2014; Atger

et al., 2015; Zhang et al., 2014). Analysis methods that integrate oscillatory patterns across

multiple conditions could reveal novel patterns not easily identified from standard analyses.

One approach that extends classic tests to two conditions is the Chow test (Chow, 1960).

Beyond two conditions, there is the model selection method, where multi-condition data is

fit to a set of models representing combinations of rhythmic and non-rhythmic outcomes

across the conditions. The best model is identified by balancing goodness of fit and model

complexity, such as the Bayesian Information Criterion (Figure 1.3A) (Atger et al., 2015).

Another area of interest is constructing low-dimensional representations of periodic data

across tissues. One method, complex-valued singular value decomposition (cv-SVD), extends

conventional real-valued SVD analysis to periodic data. cv-SVD can identify gene sets with

large 24-hour amplitudes and phase shifts across many conditions (Figure 1.3B, details in

Section 2.3) (Yeung et al., 2018). For example, modules of genes with coherent phase and

amplitude relations, which occurs often in chronobiology datasets, can be adequately captured

in low-dimensional complex-valued representations. Other methods, such as Zeitzeiger

(Hughey et al., 2016), can identify sparse sets of genes that oscillate across conditions which

has been successfully applied to a NanoString assay, called BodyTime, to predict internal

circadian time from blood monocytes (Wittenbrink et al., 2018). Interestingly, new methods

such as Oscope and CYCLOPs can now reconstruct cyclic dynamics from unlabeled data.

This enables identifying oscillating genes in datasets without explicit time labels, such as in

large-scale human tissue gene expression datasets (Anafi et al., 2017; Leng et al., 2015; Ruben

et al., 2018).

1.4.2 Higher harmonics

Although 24-hour rhythms contribute the largest temporal variance in circadian datasets

across tissues, 12-hour rhythms (also classified as ultradian rhythms) are often the second

largest (Hughes et al., 2009; Yeung et al., 2018). Methods that include linear combinations of

higher harmonics can systematically analyze ultradian dynamics, defined as a period length

7
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shorter than a day (Costa et al., 2013; Zhu et al., 2017). In liver, clock-dependent (Cretenet

et al., 2010; Westermark and Herzel, 2013) and independent (Zhu et al., 2017) mechanisms

of 12-hour rhythms have been studied. Mechanisms include pairs of clock TFs (Westermark

and Herzel, 2013), or ultradian regulation of stress response pathways such as the unfolded

protein response in the endoplasmic reticulum (Cretenet et al., 2010). Some of these ultradian

rhythms consist of two peaks of mRNA expression per day, which interestingly, revert to

24-hour rhythms in clock mutants (Atger et al., 2015; Cretenet et al., 2010; Hughes et al.,

2009), indicating that the two peak times are differentially controlled by the clock and feeding

cycles. Extending the analysis of higher harmonics to multiple tissues may reveal interactions

between tissue-specific TFs with regulators of ultradian rhythmicity.

1.4.3 Cell-type heterogeneity

The degree of cell type heterogeneity and structure varies from tissue to tissue (Han et al.,

2018; Yang et al., 2014), which needs to be considered if this heterogeneity changes over time

(Scheiermann et al., 2013). Certain immune cell types, such as T-cells and macrophages,

are recruited to tissues in a circadian manner (Keller et al., 2009; Scheiermann et al., 2012),

suggesting that cellular heterogeneity within tissues could fluctuate over the day. When

studying circadian oscillations in cytosine modifications, such cellular heterogeneity were

taken into account as potential confounding factors (Oh et al., 2018).

1.4.4 Rhythmic gene expression in humans

Recently, an increasing number of gene expression datasets of human tissue samples have

become available (Ardlie and Guigó, 2017), most of which are sampled without explicit regard

to the time of day. Interestingly, it is possible to predict internal circadian time in gene

expression in humans by computationally assigning time labels to unlabeled samples using

different statistical learning approaches (Anafi et al., 2017; Hughey et al., 2016; Leng et al.,

2015; Ruben et al., 2018; Wittenbrink et al., 2018). For example, knowledge in mice about

which genes are rhythmically transcribed and in which tissues can provide prior information

for analyzing rhythms in human tissue gene expression data, under the assumption that

rhythmicity in mRNA expression profile is sufficiently conserved across mammalian evolution

(Anafi et al., 2017).

1.4.5 Dynamic responses to acute perturbations

Novel experimental designs may motivate analyses beyond fitting periodic functions. For

example, studies have shown that sleep deprivation alters expression of clock genes (Franken

et al., 2007). But what are the dynamics of gene expression during and after sleep deprivation?

How quickly does the system adapt to a new environment? Is the response tissue-specific? How

do these transient dynamics apply to other environmental inputs such as feeding patterns
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(Acosta-Rodríguez et al., 2017)? Most circadian studies use periodic functions to fit gene

expression data. However, the mentioned situations require us to think beyond periodic

functions and investigate other dynamics that may occur during perturbations (we look

at an example of this in Chapter 4). These temporal dynamics in gene expression may be

accompanied by dynamics in other gene regulatory layers. We focus on chromatin interactions

as a regulatory layer underlying circadian transcription and behavior.

1.4.6 Mapping chromatin interactions

The conformation and organization of chromatin in the nucleus is known to be important

for the control of gene regulation (Pombo and Dillon, 2015), particularly gene transcription.

Chromatin conformation capture (3C) technique (Dekker et al., 2002) and its high-throughput

variants, such as 4C (Simonis et al., 2006), 5C (Nora et al., 2012), Hi-C (Lieberman-Aiden

et al., 2009), and ChIA-PET (Zhang et al., 2013), as well as orthogonal techniques such as GAM

(Beagrie et al., 2017) and SPRITE (Quinodoz et al., 2018), have revealed the spatial organization

of the genome. An emerging picture is that interphase chromosomes are organized in a hier-

archy of structural layers (Gibcus et al., 2018). At the largest scale, there are multi-megabase

compartments A and B. A compartments are generally gene rich and transcriptionally ac-

tive while B compartments are gene poor and transcriptionally repressed (van Steensel and

Belmont, 2017). Generally, the compartment A occupies a central nuclear position while

compartment B associates with the nuclear lamina (Bouwman and de Laat, 2015). Within

these compartments, at sub-megabase scale, the chromatin is organized as topologically asso-

ciating domains (TADs). At the TAD scale, genes show maximal enrichment of coexpression

during differentiation from embryonic stem cells, compared to other genomic scales (Zhan

et al., 2017). TAD boundaries are often demarcated by binding of cohesion and CTCF proteins

oriented in a convergent manner (de Wit et al., 2015). At a fine scale, promoter-enhancer

contacts allow transcription factors to regulate distal (often less than 100 kb away) target

genes (Gibcus and Dekker, 2013). Generally, TAD interactions are fairly stable across cell-types

(Dixon et al., 2012), whereas sub-TAD interactions can be cell-type specific as well as dynamic

(Phillips-Cremins et al., 2013).

1.4.7 Chromatin interactions and the circadian clock

1.4.8 Dynamic chromatin interactions in cell culture models

What are the circadian dynamics in the spatial organization of the genome? The first studies

applying 4C in the circadian context used cell line models. One study using mouse embryonic

fibroblasts to evaluate chromatin contacts to the promoter of Dbp, a clock output gene,

reported circadian fluctuations in inter-chromosomal contacts (Aguilar-Arnal et al., 2013).

Another study found that the Pard3 locus was rhythmically recruited in the nuclear lamina in

a human colon cancer cell line (HCT116) (Zhao et al., 2015). However, these models have not

studied the dynamics of promoter-enhancer looping and whether such interactions may have

10
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a function in the core clock.

1.4.9 Tissue-specific and dynamic chromatin interactions in tissues

Recent in vivo work showed that sub-TAD interactions play a role in circadian gene expression

by connecting gene promoters with enhancers (Beytebiere et al., 2018; Kim et al., 2018; Mermet

et al., 2018; Xu et al., 2016; Yeung et al., 2018). For example, tissue-specific promoter-enhancer

interactions enable the circadian clock to regulate gene expression in a tissue-specific manner

(Yeung et al., 2018) (Figure 1.4A), and such regulation can also be dynamic over the course

of the day (Figure 1.4B). Moreover, 4C-seq performed around the clock focusing on a core

clock gene, Cry1, and a clock-output gene, Gys2, demonstrated dynamic rhythms in promoter-

enhancer contacts coinciding with rhythms in the active enhancer mark, H3K27ac (Mermet

et al., 2018). As revealed by 4C-seq experiments in Bmal1 KO, these contacts lost rhythmicity in

mice without a functioning clock. Moreover, CRISPR-Cas9 deletion of the contacted intronic

Cry1 enhancer in mice indicated that the contact rhythms shortens the period of the locomotor

activity (Mermet et al., 2018), revealing the dynamic function of a noncoding DNA element

that propagates from chromatin interactions, gene expression, to locomotor activity. A Hi-C

study performed at two time points in the liver reported chromatin interactions at the sub-TAD

scale, which could be dynamic or stable over time (Kim et al., 2018). Consistently, a study

employing ChIA-PET argued that promoters of rhythmically active genes form stable contact

with enhancers (Beytebiere et al., 2018). It will be interesting to investigate why dynamic

transcription of some genes is accompanied by dynamic chromatin looping, while other genes

exhibit static looping.

1.4.10 Dynamic chromatin interactions and transcription

Recent studies in cell culture showed that promoter-enhancer looping influence transcrip-

tional parameters such as burst fraction (fraction of active transcription sites in each nucleus,

which is related to burst frequency) or burst size (Bartman et al., 2016; Kalo et al., 2015; Senecal

et al., 2014). Combined live imaging and smRNA FISH studies to investigate molecular mecha-

nisms found that targeted acetylation of promoter histones increases burst frequency while

not affecting burst size. (Nicolas et al., 2018). In liver tissue, bursts in gene transcription have

been characterized using smRNA FISH (Bahar Halpern et al., 2015). Combining smRNA FISH

with functional genomics assays such as 4C-seq and measurements of chromatin H3K27ac

have uncovered how promoter-enhancer looping influences transcriptional bursting in vivo

(Mermet et al., 2018). In particular, deleting an enhancer element using CRISPR-Cas9 demon-

strated that disrupting promoter-enhancer looping decreases burst fraction and shortens the

period of locomotor activity (Figure 1.4C).

How promoter-enhancer looping in single-cells leads to bursts of gene transcription re-

mains unknown. Are promoter-enhancer contacts preceding initiation of transcriptional

bursts, or what are the time delays between the two events? Current techniques such as sm-
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Figure 1.4 – Chromatin interactions as a regulatory layer underlying circadian gene expres-
sion and behavior. (A) Tissue-specific chromatin interactions can regulate clock TFs to bind
in a tissue-specific manner. Here, the clock TF binding site is accessible in liver but not in
kidney, shown as open and closed chromatin, respectively. (B) Dynamic chromatin interac-
tions underlie circadian transcription of rhythmic genes such as the core clock gene Cry1.
Clock object represents a clock TF. Rectangle represents an enhancer element. (C) Deleting a
non-coding DNA element downstream of Cry1 in mouse (mutant named Cry1∆e) decreases
chromatin interactions between promoter and enhancer, reduces burst fraction (fraction of
active transcription start sites per nucleus, which is related to burst frequency), and shortens
the period in locomotor activity. Simplified cartoon of two actograms indicate a shorter period
of locomotor activity in Cry1∆e) versus WT under free-running conditions. During entrained
conditions (12-hours light, 12-hours dark, shown as white and black rectangles at the top), the
mice are active (activity level in black) during lights off and inactive during lights on. During
free-running conditions (in complete darkness), the period of locomotor activity depends on
the genotype, which can be calculated by the slope of the red line.
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RNA FISH can detect transcriptional bursting in vivo by analyzing snapshots of RNA molecules

across many cells (Bahar Halpern et al., 2015). But monitoring the same cells to determine

the relative timing of promoter-enhancer contacts with transcriptional bursting remains chal-

lenging. In the context of molecular clocks, linking gene regulation and transcription at single

cells will uncover how noisy gene expression is regulated to produce robust pacemakers at the

tissue and organism level.

1.5 Specific questions addressed in thesis

This thesis tackles three questions related to the regulation of dynamic, and more specifically

temporal gene expression. First two focus on circadian biology; the third relates to sleep.

1. How does the circadian clock regulate gene expression in a tissue-specific manner?

• What fraction of variance in multi-tissue circadian gene expression data is of

temporal or tissue-specific origin?

• What transcriptional mechanisms underlie tissue-specific circadian gene expres-

sion?

• How do tissue-specific chromatin landscapes regulate circadian gene expression?

2. What is the role of chromatin interactions in regulating circadian gene expression and

circadian rhythms?

• Are circadian dynamics in gene expression accompanied by dynamics in promoter-

enhancer looping?

• Do dynamics in promoter-enhancer looping require the circadian clock?

• Does dynamics in promoter-enhancer looping regulate circadian gene transcrip-

tion and period of locomotor activity?

3. How does diurnal gene expression respond to acute perturbations such as sleep depri-

vation?

• What are the gene expression dynamics in response to acute sleep deprivation in

mouse cortex?

• How do the sleep homeostat and circadian processes contribute towards gene

expression output?

• What are possible transcriptional regulators underlying sleep-wake dynamics?
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2 Transcription factor activity rhythms
and tissue-specific chromatin in-
teractions explain circadian gene
expression across organs

2.1 Introduction

This chapter investigates transcriptional mechanisms underlying diurnal gene expression

rhythms that can be regulated in a tissue-specific manner. The work has been published in

Genome Research 2018 under the Creative Commons license and is reproduced here. The main

text as well as supplemental figures are below. Due to the size of supplemental tables, these

are not attached but can be found on the open online version of the Genome Research article.

No changes were made to the main text or supplemental figures, which was downloaded from

doi:10.1101/gr.222430.117.

The pursuit to uncover transcriptional mechanisms underlying tissue-specific circadian

gene expression involved developing and applying a variety of computational and statistical

methods. Some of these methods are specific to the problem I tackled while others may

be broadly applied to other problems. Here, I will go into more detail of some methods

which I think may be of use in other gene expression analysis projects: model selection for

identifying different combinations of rhythms across conditions, complex-valued singular

value decomposition, and GO term analysis around the clock.

2.2 Extended methods: model selection with Zellner’s g−priors

2.2.1 Enumerating harmonic regression models to identify possible combinations
of rhythms across tissues

This chapter relies on identifying whether gene expression oscillates in no tissues, one tissue,

or a combination of tissues. We use a model selection approach to select the combination of
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tissues that fit the data while penalizing for model complexity (i.e., the number of parameters).

To illustrate an example, we take the case of two tissues (|c|=2) (Figure 2.1). The most

complex model (i.e. most parameters) corresponds to each tissue having its own rhythmic

parameters β1,c , β2,c in addition to the intercepts αc .

M f : Yt ,ci =αci +β1,ci cos(ωt )+β2,ci sin(ωt )+ε, (2.1)

where i = 1,2 denote the index of tissues.

The restricted model, meaning both tissues are flat, would have only the intercept parame-

ters
(
αc1 ,αc2

)
:

Mr : Yt ,ci =αci +ε. (2.2)

For two tissues, there will be 3 intermediate models, each with 4 parameters. The first two

models
(
MI1 , MI2

)
capture the case where a gene is rhythmic in a single tissue (tissue-specific)

and a shared model
(
MI3

)
captures the case where a gene is rhythmic in both tissues with the

same rhythmic parameters

MI1 : Yt ,ci =
αci +β1,ci cos(ωt )+β2,ci sin(ωt )+ε i = 1

αci +ε i = 2

MI2 : Yt ,ci =
αci +ε i = 1

αci +β1,ci cos(ωt )+β2,ci sin(ωt )+ε i = 2

MI3 : Yt ,ci =αci +β1 cos(ωt )+β2 sin(ωt )+ε. (2.3)

The shared model MI3 is notable because it is distinct from the full model M f . MI3 forces

both tissues to have the same amplitude and phase, whereas M f may have tissue-dependent

rhythms. From the point of view of gene regulation, MI3 (shared model, same rhythm) has

a simpler explanation than M f (full model, different rhythms), and we therefore explicitly

distinguish these two cases.
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Figure 2.1 – Illustration of number of models for the case of two tissues. For two tissues,
there are five rhythmic models. Importantly, we allow the tissues to share rhythms, which
reduces the number of parameters in the model if the rhythm is synchronized across tissues.

2.2.2 Selecting models by the Akaike Information Criterion (AIC), the Bayesian
Information Criterion (BIC), and Bayes Factors

After having enumerated the possible rhythmic models, the final step is to fit each model

and identify which is the best model, based on the fit of the data as well as the complexity

of the model. Typically, we seek to find a model Mγ that minimizes a penalized negative

log-likelihood score

Sγ =−2ln
(
L̂γ

)+pγF (2.4)

where pγ is the number of parameters for model γ. F = 2 for AIC and F = ln(n) for BIC.

lnL̂γ is the maximized value of the log loglikelihood. That is, L̂ = p(Y |θ̂, Mγ where θ̂ are the

parameter values that maximize the likelihood function.

Although AIC and BIC provide straightforward approaches to selecting the best models,

they both have their drawbacks. AIC can be shown to be an inconsistent estimator (i.e.

probability of selecting true model does not go to 1 as sample size goes to infinity) (Yang, 2005).

BIC can be derived as a Laplace approximation (obtained by finding the mode of the posterior

distribution and then fitting a Gaussian centered at the mode) to Bayes factors, which may not

always be appropriate, especially for small number of samples (Berger et al., 2003; George and

Foster, 2000).

An alternative approach is to evaluate the posterior probabilities of the models, which can

be expressed through the Bayes factor K between a candidate model γ and a base model b. In

linear regression models, this Bayes factor K form has a convenient closed-form solution in
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the g-prior method (Equation 2.11).

p(Mγ|Y ) = p(Mγ)p(Y |Mγ)∑
γ′ p(Mγ′ )p(Y |Mγ′ )

= p(Mγ)K (Mγ:Mb )∑
γ′ p(Mγ′ )K (M ′

γ:Mb ) (2.5)

where the base model Mb contains only the intercepts, α. A key component from Equation

2.5 is the marginal likelihood of the data given the model:

p(Y |Mγ) = ∫
Θγ

p(Y |~θγ, Mγ)p(~θγ|Mγ)d~θγ, (2.6)

which requires integrating over the parameters of the model and setting a prior on each

of the parameters. For parameters that are common to all models, we may set an improper

prior, such as Jeffrey’s prior, which is defined up to an arbitrary multiplicative constant. For all

other parameters, it is advised to avoid improper priors because the arbitrary constant does

not factor out in the posterior calculation.

In linear regression models, the model parameters θ̂ can be written as intercept and

regression coefficients, α and ~β, respectively. The data Y with n data points can be modeled

in a linear regression model with Gaussian noise ε∼ N (0,σ2):

Y = ~1nα+Xγβγ+ε (2.7)

A computationally efficient prior for linear regression models is the "g-prior" (Zellner,

1986), defined as

p(α,σ2|Mγ) = 1
σ2 , βγ|σ∼ N

(
0, gσ2

(
XT X−1

))
. (2.8)

The scalar g controls the spread of the prior in the parameters. Larger g tends to favor

parsimonious models (i.e. few large parameters), while smaller g tends to favor saturated

models. Note that this prior is related to more standard Bayesian linear regression with

Gaussian distribution for coefficients and inverse gamma distribution for the variance:

p(~β,σ2) ∼ N
(
~β0,σ2V0

)
IG

(
σ2|a0,b0

)
(2.9)
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and setting a0 = b0 = 0, corresponding to an uninformative prior for σ2 and to set w0 =
0 and V0 = g (XT X)−1. This reduces the problem to a single hyperparameter, g , and has

straightforward closed-form solutions for calculating the Bayes factor, which is helpful for

model selection (Liang et al., 2008).

There are many strategies for specifying g as extensively discussed by Liang et al. (2008).

We will select a specific value for g based on how we expect the data should behave based on

assumptions from circadian biology.

The marginal likelihood is then given in closed form:

p(~Y |Mγ, g ) = Γ((n−1)/2)p
π

n−1p
n
‖~Y − ~̄Y ‖−(n−1) (1+g)

n−1−pγ
2(

1+g
(
1−R2

γ

)) n−1
2

. (2.10)

The Bayes factor K (Mγ : Mb) of model Mγ with respect to a base model Mb can expressed

as the ratio of their marginal likelihoods:

K (Mγ : Mb)|g = (1+g)
n−1−pγ

2(
1+g

(
1−R2

γ

)) n−1
2

, (2.11)

where R2
γ = 1−

∑
i (yi−ȳ)2∑
i (yi−ŷ)2 is the coefficient of determination for model γ, a goodness of fit

measurement that can easily be calculated. n is the number of data points.

In this chapter, we apply Equation 2.10 directly by selecting g , which controls the penalty

on model complexity. To guide our choice of g , we make an assumption pertinent to circadian

biology: slight differences in the amplitude and phase of core clock genes between tissues

should still be considered to yield shared rhythms. To achieve this, we choose g with sufficient

tolerance to amplitude and phase differences (which may depend on the experiment and

technology) such that most of the condition-wide oscillations are incorporated into the shared

model (rather than the full model). Plotting the 24h spectral power of genes in the shared

model as a function of g allows us to identify the beginnings of a plateau. We interpret this

point to be the g value whereby most core clock genes are included in the shared model

(Figure 2.2). In our liver and kidney RNA-seq dataset, we found that g = 1000 provided

biologically interpretable outputs.
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Figure 2.2 – Spectral variance as a function of g . For each g , we calculated the 24-hour
variance by taking the sum of the 24-hour variance across genes assigned to model that
shares a rhythm across all conditions. Note that near g = 1000, the variance begins to plateau,
suggesting the additional genes that are included g > 1000 may likely be noise rather than
robust amplitudes.

2.3 Extended methods: complex-valued singular value decomposi-

tion

Here, we seek to project temporal gene expression across tissues onto lower projections in

order to visualize and summarize high-dimensional data across tissues and time. Circadian

datasets across tissues often contain correlation structures that can be represented in lower

dimensions. For example, many core circadian clock and clock outputs genes oscillate syn-

chronously in nearly all tissues. This projection is useful as a genome-wide exploration tech-

nique (analogous to principal component analysis) or as a downstream analysis of clusters of

genes identified using model selection. We found that complex-valued singular value decom-

position (cv-SVD) to have useful properties that were biologically interpretable. Chronobiology

datasets that sample multiple tissues or conditions over the 24-hour day can be represented

by a matrix of complex values where the values represent amplitude (we define it here as

min-to-max magnitude rather than mean-to-peak to simplify biological interpretation) and
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phase (time at peak expression) for each gene and each condition. This complex number can

be calculated by the 24-hour Fourier component corresponding to an angular frequency of

ω= 2π
24 (we checked that the 24-h represents the largest temporal component in Yeung et al.

by breaking down the temporal variation into all Fourier components, which showed that

the largest temporal component comes from 24-hour rhythms, followed by 12-hours). This

approximation works well for genes that are can be modeled by cosine and sines such as in

models M f , MI1 , MI2 , MI3 in Equation 2.1 and 2.3.

Since we expect the temporal variance to be well approximated by the 24-hour Fourier

space
(∑

t yt (t )− ȳ(t )
)2 ≈ |Yω24 |2, we project

Yg ,c,ω24 =
∑

t Yg ,c,t (t )eiω24t , (2.12)

whereω24 = 2π
24 . This projection works well on genes that have temporal signals that can be

modeled well by a sine wave of period 24 hours. This approximates the dataset to a complex-

valued matrix of G rows and C columns. Each complex-valued element Yg ,c corresponds to

the amplitude and phase of gene g in condition c. Because many rhythms may be shared

across conditions, we can decompose Yg ,c,ω24 by standard singular value decomposition (SVD)

into sample space (eigentissues) and tissue sapce (eigensamples), which are also complex

values, and the first few singular values should provide a low-dimensional representation of

the data. We can then visualize and summarize the eigentissues and eigensamples in the

24-hour Fourier space by noting that |Yg ,c,ω24 | corresponds to the amplitude and Arg(Yg ,c,ω24 )

corresponds to the phase of gene g and tissue c. The amplitude and phase can be naturally

visualized in polar coordinates; the radial distance representing amplitude and the phase

angle representing time at peak expression.

The SVD technique factorizes Yg ,c,ω24 =UΣV ∗, where V ∗ is the complex conjugate of V . U

and V are unique eigensamples and eigengenes, and are defined up to a unit-phase factor eiφ.

To simplify interpretation, we set the phase of the tissue space such that the tissue with the

largest amplitude has phase 0 and amplitude 1. Correspondingly, the gene space would be

interpreted as the amplitude and phase of the largest amplitude tissue. To get the amplitude

and phase of genes in another tissue, one would simplify add and multiply the phase and

amplitude, respectively, of the loadings for that tissue with the gene space.

2.4 Extended methods: Gene ontology (GO) analysis around the clock

From our model selection process, we identify a set of genes (a module) that have rhythms in a

specific combination of tissues (e.g., genes that oscillate in liver but not in kidney). This module

have gene expression rhythms that peak at different times of day. One useful downstream

analysis is to ask whether certain Gene Ontology (GO) terms are enriched at different times

21



Chapter 2. Transcription factor activity rhythms and tissue-specific chromatin
interactions explain circadian gene expression across organs

of day. To extend GO term analysis to the 24-hour day, I used foreground genes as genes in

the module that are within a time window [t −3, t +3] and expressed genes in the dataset as

background genes. For each t ∈ (1,2,3, ...,24) I calculated a p-value for enrichment using classic

Fisher’s exact test, as implemented by TopGO package in R. This outputs p-value enrichment

over time, which can then be visualized in a polar plot.

Example code can be found on GitHub: https://github.com/naef-lab/CyclicGO.

2.5 Contributions

I did all the computational methods and analyses in this project. Jérome Mermet did all the 4C-

seq experiments. RNA-seq experiments were performed by Julien Marquis, Aline Charpagne,

and Céline Jouffe.
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Temporal control of physiology requires the interplay between gene networks involved in daily timekeeping and tissue

function across different organs. How the circadian clock interweaves with tissue-specific transcriptional programs is poorly

understood. Here, we dissected temporal and tissue-specific regulation at multiple gene regulatory layers by examining

mouse tissues with an intact or disrupted clock over time. Integrated analysis uncovered two distinct regulatory modes un-

derlying tissue-specific rhythms: tissue-specific oscillations in transcription factor (TF) activity, which were linked to feeding-

fasting cycles in liver and sodium homeostasis in kidney; and colocalized binding of clock and tissue-specific transcription

factors at distal enhancers. Chromosome conformation capture (4C-seq) in liver and kidney identified liver-specific chro-

matin loops that recruited clock-bound enhancers to promoters to regulate liver-specific transcriptional rhythms.

Furthermore, this looping was remarkably promoter-specific on the scale of less than 10 kilobases (kb). Enhancers can con-

tact a rhythmic promoter while looping out nearby nonrhythmic alternative promoters, confining rhythmic enhancer ac-

tivity to specific promoters. These findings suggest that chromatin folding enables the clock to regulate rhythmic

transcription of specific promoters to output temporal transcriptional programs tailored to different tissues.

[Supplemental material is available for this article.]

A mammalian internal timing system, known as the circadian
clock, orchestrates temporal physiology in organs to anticipate dai-
ly environmental cycles (Dibner and Schibler 2015). Individual
cells within organs contain a molecular oscillator that, together
with rhythmic systemic signals such as hormones, temperature,
and feeding behavior, collectively drive diurnal oscillations in
gene expression and physiology (Lamia et al. 2008; Reinke et al.
2008; Cho et al. 2012; Vollmers et al. 2012). Remarkably, the circa-
dian clock impinges on many gene regulatory layers, from
transcriptional and post-transcriptional processes, translation effi-
ciency, to translational and post-translational processes (Mermet
et al. 2016).

Transcriptome analysis of different cell types and tissues has
highlighted the breadth of tissue-specific transcriptional regula-
tion (Merkin et al. 2012; Yue et al. 2014). However, physiological
processes are dynamic at the timescale of hours and often under
circadian control, such as hormone secretion, drug and xenobiotic
metabolism, and glucose homeostasis (Takahashi et al. 2008).
Adding the temporal dimension to tissue-specific gene regulation
is needed for an integrated understanding of physiology.

Chronobiology studies have shown that tissues utilize the cir-
cadian clock to drive tissue-specific rhythmic gene expression
(Storch et al. 2002; Korenčič et al. 2014; Zhang et al. 2014), presum-

ably to schedule physiological functions to optimal times of day.
Indeed, genetic ablation of the circadian clock in different tissues
can lead to divergent pathologies, such as diabetes in pancreas-
specific Bmal1 knockout (KO) and fasting hypoglycemia in liver-
specific Bmal1 KO, suggesting that the clock interweaves with
tissue-specific transcriptional programs (Bass and Lazar 2016),
but howdiurnal and tissue-dependent regulatory landscapes inter-
act to generate tissue-specific rhythms is poorly understood.

Results

Contributions of tissue, daily time, and circadian clock

to global variance in mRNA expression

To estimate the respective contributions of tissues, daily time, and
circadian clock to global variance in gene expression, we analyzed
available temporal transcriptomes across 11 tissues in WT mice
(Zhang et al. 2014) and generated temporal RNA-seq data of liver
and kidney from Bmal1 KO mice and WT littermates
(Supplemental Tables S1, S2; Methods). The Zhang et al. data set
was obtained under dark–dark (DD), ad libitum feeding, sampled
every 2 h. The liver and kidney Bmal1 KO and WT data sets were
obtained under light–dark (LD), night-restricted feeding condi-
tions, sampled every 4 h.

To avoid mixing different experimental designs (e.g., tempo-
ral resolution and number of repeats) (Deckard et al. 2013; Li et al.

5These authors contributed equally to this work.
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cation date are at http://www.genome.org/cgi/doi/10.1101/gr.222430.117.
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2015), we analyzed these data sets separately. We performed prin-
cipal component analysis (PCA) on the entire set of conditions (11
tissues × 24 time points) to obtain an unbiased overview into the
contributions of tissue- and time-specific variance.Most of the var-
iance concerned differences in expression between tissues (Fig. 1A;
Supplemental Fig. S1A–D). Temporal variance, in particular, 24-h
periodicity, was present among a group of principal components
carrying lower amounts of variance (Fig. 1A; Supplemental Fig.

S1E–G). Focusing on genome-wide temporal variation within
each tissue, we found that 24-h rhythms constituted the largest
contribution of temporal variance, followed by 12-h rhythms,
which were close to background levels for many tissues (Fig. 1B;
Hughes et al. 2009). We thus focused the rest of our analysis on
24-h rhythms.

We analyzed the peak-to-trough amplitudes (hereafter also re-
ferred to as fold change) of 24-h rhythmic transcripts. Metabolic

tissues, notably liver, brown fat, and skel-
etal muscle exhibited more (on the order
of 100 transcripts) intermediate- to high-
amplitude (between two- and 10-fold)
transcript rhythms. Brain tissues showed
virtually no rhythmic transcripts above
fourfold (Fig. 1C). In liver and kidney of
Bmal1 KOmice, the number of rhythmic
mRNAs was reduced by threefold com-
pared to WT littermates. This effect in-
creased for larger amplitudes. Few
transcripts in tissues of Bmal1 KO oscil-
lated by more than 10-fold (Fig. 1D).
Thus, a functional circadian clock is re-
quired for high-amplitude transcript
rhythms across diverse tissues, while sys-
temic signals regulate lower amplitude
rhythms that persist in clock-deficient
liver (Hughes et al. 2012; Atger et al.
2015; Sobel et al. 2017) and kidney
(Nikolaeva et al. 2012).

Combinatorics of rhythmic transcript

expression across tissues and genotypes

We reasoned that identifying sets of
geneswith shared rhythms across subsets
of tissues would allow finding underly-
ing regulatory mechanisms. We devel-
oped a model selection (MS) algorithm
extending harmonic regression (Fisher
1929) to classify genes into modules
sharing rhythmic mRNA profiles across
subsets of tissues (Fig. 2A; Methods).
Phase (time of peak) and amplitude
(log2 fold change) relationships between
genes and tissues are summarized using
complex-valued singular value decom-
position (SVD) (Fig. 2B; Methods). We
appliedMS to the 11 tissues, which iden-
tified gene modules involving rhythmic
mRNA accumulation in nearly all tissues
(tissue-wide) (Fig. 2C), in single tissues
(tissue-specific), or in several tissues
(tissue-restricted) (examples shown in
Fig. 2D; Supplemental Fig. S2A; Supple-
mental Table S3).

The tissue-widemodule contained a
set of both clock- and system-driven
rhythmicmRNAs, as determinedby com-
paring Bmal1 KO data in liver and kidney
(Fig. 2C, left). Moreover, these transcripts
oscillated in synchrony across all tissues
and peaked at fixed times of day,

Figure 1. Contribution of tissue, daily time, and circadian clock to global variance inmRNA expression.
(A) Principal component analysis (PCA) across 11 WT tissues sampled over 2 d. PC1 and PC2 show
clustering of samples by tissues; each point represents a tissue sample (see key) at a specific time point
(not labeled). (Inset) Loadings for PC13 and PC17 for the liver samples labeled with circadian time
(CT), showing temporal variation along an elliptic path. Labels indicate CT time; samples that are 24 h
apart are in the same color. (B) Fractions of temporal variance in each tissue explained by 24- and 12-
h periods, obtained by applying spectral analysis genome-wide for each tissue. Dotted horizontal lines
represent the expected background level, assuming white noise. (C,D) Cumulative number of rhythmic
genes (P < 0.01, harmonic regression) with log2 fold change larger than the value on the x-axis. (C)
Analysis on 11 WT tissues. (D) Analysis on four conditions: Bmal1 KO mice and WT littermates in liver
and kidney.
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Figure 2. Combinatorics of rhythmic transcript expression across tissues and genotypes. (A) Schema for the model selection (MS) algorithm to identify
rhythmic gene expression modules across tissues. Temporal transcriptomes of different tissues represented as a three-dimensional array (left). Gene mod-
ules are probabilistically assigned among different combinations of 24-h rhythms across tissues (e.g., tissue-specific or tissue-wide rhythms schematically
shownon right). (B) Genemodules are summarized by the first component of complex-valued singular value decomposition (SVD) to highlight phase (peak
time shown as the clockwise angle) and amplitude (log2 fold change shown as the radial distance) relationships between genes (gene space) and between
tissues (tissue space). SVD representation is scaled such that the genes show log2 fold changes, while tissue vectors are scaled such that the highest am-
plitude tissue has length of 1 and a phase offset of 0 h. (C–E) MS applied to 11WT tissues. (C) SVD representation of tissue-widemRNA rhythms from the 11
tissues. Genes are labeled as system-driven (blue) or clock-driven (red) according to the comparison of the corresponding temporal profiles in Bmal1 KO
andWT littermates. (D) Examples of anti-phasic rhythms (brown fat andmuscle, n = 20, first SVD component explains 81% of variance), and tissue-specific
rhythms (liver, n = 846, first SVD component explains 59% of variance). Representative genes with large amplitudes are labeled. (E) Number of transcripts
showing rhythms (P-value < 0.01, harmonic regression) in different numbers of tissues, in function of increasing peak to trough amplitudes on the x-axis. x-
axis: average log2 fold change calculated from the identified rhythmic tissues. (F,G) MS applied to Bmal1 KO andWT littermates in liver and kidney. (F ) SVD
representation of clock- (top, n = 991, 83% of variance) and system-driven (bottom, n = 1395, 84% of variance) liver-specific rhythms. (G) Number of tran-
scripts showing clock- (solid) or system-driven (dotted) rhythms (P-value < 0.01, harmonic regression) in liver (red), kidney (blue), or both (magenta).
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although their amplitudes varied between tissues, with brain re-
gions showing the smallest amplitudes (Fig. 2C, right). The clock
drove synchronized oscillations at high amplitudes, notably clock
genes (e.g., Arntl, Npas2, Nr1d1,2; note that Arntl and Nr1d1,2 are
also named Bmal1 and Rev-erba,b, respectively), clock output genes
(e.g., Dbp, Nfil3), and cell cycle regulators (Cdkn1a and Wee1)
(Matsuo et al. 2003; Gréchez-Cassiau et al. 2008). Interestingly,
clock genes Per1,2 continued to oscillate in Bmal1 KO in multiple
tissues, extending previous studies in liver (Kornmann et al.
2007). Other clock-independent oscillations included mRNAs of
heat- and cold-induced genes, such as Hspa8 and Cirbp (Morf
et al. 2012; Gotic et al. 2016), that peaked 12 h apart near CT18
and CT6 (CT: circadian time; CT0 corresponds to subjective dawn
and start of the resting phase; CT12 corresponds to subjective
dusk and start of the activity phase), concomitantly with highs
and lows in body temperature rhythms (Refinetti and Menaker
1992).

Tissue-restricted modules contained rhythmic transcripts
that peaked in synchrony, such as in liver and kidney, orwith fixed
offsets, such as the nearly 12-h shifted rhythms in brown fat and
skeletal muscle (Supplemental Fig. S3A). Overall, transcripts with
large amplitudes (FC > 8) oscillated in either a few tissues (three
or less) or tissue-wide (eight or more) (Fig. 2E).

To distinguish clock- and system-driven mRNA rhythms, we
applied the MS algorithm to the liver and kidney transcriptomes
in WT and Bmal1 KO mice (Fig. 2F; Supplemental Fig. S3B;
Supplemental Table S4). This separation identified clock- and sys-
tem-driven modules that oscillated in liver but were flat in kidney
(Fig. 2F), as exemplified by mRNAs of Lipg and Lpin1 (Supplemen-
tal Fig. S2B). Indeed, both transcripts oscillated inWT liver with ro-
bust amplitudes, peaking near ZT11, but were flat in kidney (ZT:
Zeitgeber time; ZT0 corresponds to onset of lights-on; ZT12 corre-
sponds to onset of lights-off). However, in Bmal1 KO, Lpin1 con-
tinued to oscillate, while Lipg was flat.

Summarizing, we found that shared clock-driven mRNA
rhythms, which contained core clock and clock-controlled genes,
oscillated with significantly larger amplitudes than system-driven
genes (Fig. 2G, magenta solid versus dotted). Similarly, clock-driv-
en liver-specific mRNA rhythms also oscillated at higher ampli-
tudes compared with system-driven mRNA rhythms (Fig. 2G, red
solid versus dotted). On the other hand, kidney-specific clock-
and system-driven transcripts oscillated with comparable ampli-
tudes (Fig. 2G, blue solid versus dotted) and were less numerous
overall, which could reflect the distinct cell types constituting
the kidney (Lee et al. 2015). The uncovered diversity of clock-
and system-driven mRNA rhythms involving distinct combina-
tions of tissues hints at complex transcriptional or post-transcrip-
tional regulation.

Oscillatory TF activity in one tissue but not others

can drive tissue-specific mRNA rhythms

We focused on WT and Bmal1 KO liver and kidney to identify
rhythmic TF activities underlying clock- and system-driven
tissue-specific mRNA rhythms. We first analyzed liver-rhythmic
genes driven by systemic signals (n = 1395, MS) (Fig. 3A), which
were associated with feeding and fasting rhythms (Gene
Ontology analysis around the clock) (Methods). Indeed, ribosome
biogenesis was up-regulated most strongly during the first 6 h of
the feeding phase (from ZT12 to ZT18) (Jouffe et al. 2013;
Chauvin et al. 2014), while insulin signaling was down-regulated
during first 6 h of the fasting phase (from ZT0 to ZT6)

(Ravnskjaer et al. 2013), consistent with daily responses to nutri-
ent fluctuations in liver (Sinturel et al. 2017).

To infer rhythmic TF activities thatmay underlie thesemRNA
rhythms, we applied a penalized regression model (MARA)
(Balwierz et al. 2014) that integrates TF binding site predictions
near promoters withmRNAaccumulation. TF analysis of thismod-
ule notably identified TFs related to insulin biosynthesis and glu-
coneogenesis, such as MAFB (Matsuoka et al. 2003) and EGR1
(Matsuoka et al. 2003; Shen et al. 2015), whose activities peaked
at ZT11 and ZT3, respectively (Fig. 3B; Supplemental Fig. S4A).
Integrating temporal activities of candidate TFs with RNA-seq
and our previously described temporal nuclear protein data set
(Wang et al. 2017), we found that rhythmic activity of MAFB
and EGR1was supported by rhythmicmRNAabundance, followed
by rhythmic nuclear protein abundance (Fig. 3B; Supplemental
Fig. S4B), likely reflecting the delayed protein abundance after
mRNA accumulation (Mermet et al. 2016).

Next, we analyzed clock-driven transcripts oscillating specifi-
cally in the kidney (n = 156, MS) (Fig. 3C), among which sodium
ion and organic anion transporters peaked near ZT12 and ZT0, re-
spectively. The up-regulation of sodium ion transporters in kidney
during the behaviorally active phase may underlie clock-depen-
dent increase of sodium excretion (Nikolaeva et al. 2012).
Similarly, the up-regulation of organic anion transporters during
the resting phase may explain increased transport activity for pre-
cursors of gluconeogenesis, such as pyruvate and lactate, during
fasting (Stumvoll et al. 1998; Ekberg et al. 1999). TF analysis pre-
dicted TFCP2 to regulate mRNAs that peaked during the resting
phase (Fig. 3D; Supplemental Fig. S4C). The predicted TFCP2 activ-
ity was anti-phasic with Tfcp2 mRNA abundance, suggesting a re-
pressive activity, consistent with the ability of TFCP2 to recruit
histone deacetylase HDAC1 (Kim et al. 2016).

Finally, liver-specific clock-driven rhythmic transcripts (n =
991, MS) were comprised of genes associated with glucose metab-
olism (enriched at ZT18), such as Gck and Ppp1r3b (Kelsall et al.
2009; Oosterveer and Schoonjans 2014), as well as lipid, cholester-
ol, and bile acid metabolism genes (enriched at ZT2), such as
Elovl3, Insig2, Hsd3b7, and Cyp8b1 (Fig. 3E; Shea et al. 2007; Le
Martelot et al. 2009; Guillou et al. 2010; Sayin et al. 2013).
Predicted activity of ELF oscillated and peaked near ZT3 inWT liver
butwas flat inBmal1KO (Fig. 3F; Supplemental Fig. S4D; Fang et al.
2014). Interestingly, mRNA abundance of Elf1, as well as its nucle-
ar protein abundance, also oscillated in WT, supporting Elf1 as a
potential regulator of oscillating transcriptions peaking near ZT6.

Colocalized binding of clock- and liver-specific TFs drives

liver-specific mRNA rhythms

To further dissect liver-specific clock-driven rhythms, we reasoned
that accessible chromatin regions specific to the liver could harbor
regulatory sites for clock TFs, which could then regulate mRNA
rhythms liver-specifically. ComparingDNase I hypersensitive sites
(DHSs) in liver and kidney (DNase-seq data from ENCODE) (Yue
et al. 2014),we found that liver-specific clock-drivengeneswere en-
riched with liver-specific DHSs (within 40 kb of promoters), com-
pared to system-driven as well as nonrhythmic genes (Fig. 4A).
Using TF binding site predictions underlying these liver-specific
DHSs, we applied MARA to predict rhythmic TF activities that ex-
plain gene expression of this module (Supplemental Fig. S5A). In
WT liver, the predicted activity of RORE oscillated with robust am-
plitudes andpeakednear ZT21. RORE activity becamehigh and flat
in Bmal1 KO liver, consistent with loss of REV-ERB expression and
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consequently de-repression of REV-ERB target genes (Fig. 4B, top;
Bugge et al. 2012). Activity of E-box inWT liver peaked at ZT7, con-
sistent with BMAL1:CLOCK activity (Rey et al. 2011), albeit with
weaker amplitudes compared to RORE activity, likely reflecting
fewer E-box target genes compared to RORE in this module. In
Bmal1KOmice, E-box activitywas lowand flat in liver, as expected.

Wehypothesized that cooperativity of liver-specific and clock
TFs at liver-specific DHSs can regulate liver-specific mRNA
rhythms. Pairwise analysis of TF binding sites at liver-specific
DHSs found enrichment of co-occurrence between RORE and liv-
er-specific TF motifs, FOXA2, ONECUT, and CUX2 (Fig. 4C).
Enrichment of both CUX2 and ONECUT (also named HNF6) is
consistent with ONECUT1 binding to both ONECUT and CUX2
motifs (Conforto et al. 2015). mRNAs of genes with co-occurrence
of RORE and liver-specific TF motifs peaked near ZT1, consistent
with peak RORE activity (near ZT21) preceding peak mRNA abun-
dance of REV-ERB targets (Supplemental Fig. S5B). Analysis of
ChIP-exo data sets targeting FOXA2, ONECUT1, and REV-ERBa
in liver (Wang et al. 2014; Zhang et al. 2015; Iwafuchi-Doi et al.
2016) confirmedcolocalizedTFbindingat liver-specificDHSsdistal
from clock-driven liver mRNAs such as Insig2 and Slc4a4 (Fig. 4D).

Liver-specific chromatin loops regulate liver-specific

mRNA rhythms

To test whether distally located liver-specific DHSs can contact
promoters of clock-driven liver-rhythmic genes, we selected the

promoters of Mreg, Pik3ap1, and Slc44a1 as baits for 4C-seq exper-
iments in liver and kidney harvested at the time of peak mRNA ac-
cumulation for the selected genes (Methods; Fig. 5A; Supplemental
Figs. S6A, S7A). Upstream of Mreg, the 4C-seq signal, which mea-
sures frequency of promoter-enhancer contacts (van de Werken
et al. 2012), decayed rapidly to background level in both liver
and kidney (Fig. 5B, top). Downstream from Mreg, however, the
4C-seq signal showed a tissue-dependent pattern, decaying slowly
in the liver butmore rapidly in the kidney. This difference in decay
suggests increased frequency of promoter-enhancer contacts in
the liver compared to the kidney. Indeed, differential analysis
identified liver-specific chromatin contacts 40 kb downstream
from the promoter (Fig. 5B, bottom). Overlaying the contact
data with DNase-seq, we found that liver-specific chromatin con-
tacts downstream from Mreg connected liver-specific DHSs with
theMreg promoter (Fig. 5C). Furthermore, ChIP-exo showed coloc-
alization of REV-ERBa and FOXA2 binding at liver-specific DHSs
contacting the promoters (Fig. 5C). In contrast, accessible regions
upstreamof theMreg promoter did not show liver-specific chroma-
tin contacts. The 4C-seq data thus suggest that liver-specific chro-
matin loops can recruit clock-bound distal elements to promoters
to regulate liver-specific transcriptional rhythms. Other liver-spe-
cific rhythmic transcripts, Pik3ap1 and Slc44a1, also displayed liv-
er-specific chromatin loops between promoter and liver-specific
open chromatin regions (Supplemental Figs. S6, S7). In sum, tis-
sue-specific chromatin looping can drive tissue-specific mRNA
rhythms.

Figure 3. Oscillatory TF activity in one tissue but not others can drive tissue-specific rhythms. (A) Module describing system-driven liver-specific rhythms
(n = 1395, first SVD component explains 84% of variance). Radial coordinate of the colored polygons represents enrichment of the indicated GO terms
at each time point, obtained by comparing the genes falling in a sliding window of ±3 h to the background set of all 1395 genes assigned to the module
(P-value computed from Fisher’s exact test). (B) MAFB is a candidate TF for the module in A. Predicted MAFB activity (blue), nuclear protein abundance
(orange triangles), and mRNA accumulation (gray) oscillate in WT and Bmal1 KO, with peak mRNA preceding peak nuclear protein and TF activity.
Error bars in nuclear protein, mRNA, and TF activity show SEM (n = 2). (C) Clock-driven kidney-specific module (n = 156, first SVD component explains
80% of variance). Colored polygons as in A. (D) TFCP2 is a candidate TF for the module in C. The temporal profile of predicted TFCP2 activity (blue) is
anti-phasic with Tfcp2 mRNA accumulation (gray) in WT, and both are flat in Bmal1 KO. Error bars in mRNA and TF activity show SEM (n = 2). (E)
Clock-driven liver-specific module (n = 991, first SVD explains 83% of variance). (F) ELF is a candidate TF for the module in E. The temporal profile of pre-
dicted ELF activity (blue) in WT matches that of nuclear protein abundance in liver (orange triangles), and both are delayed compared to Elf1 mRNA ac-
cumulation (gray). In Bmal1 KO, ELF activity and Elf1 mRNA are nonrhythmic. Error bars in nuclear protein, mRNA, and TF activity show SEM (n = 2).
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Figure 4. Colocalized binding of clock- and liver-specific TFs underlies liver-specific mRNA rhythms. (A) The fraction of genes containing liver-specific
DNase I hypersensitive sites (DHSs) in the clock-driven liver-specific module is higher compared with both nonrhythmic and system-driven liver-specific
modules. Error bars and P-values calculated from 10,000 bootstrap iterations. (B) Predicted temporal activities of RORE (top) and E-box (bottom) TF motifs
located within liver-specific DHSs. Error bars show standard deviation of the estimated activities. (C ) Co-occurrence of RORE with all other TFs in the
SwissRegulon database (Pachkov et al. 2007) (189 TF motifs). Positive log10 odds ratios (ORs) represent pairs of motifs enriched in the clock-driven liv-
er-specific module compared to the flat module. P-values for the motif pairs were calculated from χ2 tests applied to three-way contingency tables
(Myšičková et al. 2012). Selected pairs are in bold. (D) DNase I hypersensitivity in liver, kidney, and the corresponding differential signal (in log2 fold
change) near two representative genes (top: Insig2; bottom: Slc4a4). RORE, ONECUT1, and FOXA2 TF binding motifs (posterior probability > 0.5,
MotEvo) co-occur at liver-specific DHSs (red boxes). Predicted TF binding sites correspond to experimentally observed TF binding in publicly available
ChIP-exo data sets for REV-ERBa, ONECUT1, and FOXA2 (bottom).
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Precise promoter-enhancer contacts underlie liver-specific

mRNA rhythms

To test whether distinct chromatin loopswould form at alternative
nearby gene promoters with distinct temporal mRNA profiles,
we searched for candidate geneswhere one promoterwas rhythmi-
cally transcribed while the alternative one was nonrhythmic
(Supplemental Fig. S8). Slc45a3 has two alternative transcripts
using different promoters 8 kb apart. The shorter pre-mRNA oscil-
lated in the liver (rhythmic promoter, Slc45a3-short), while the
longer did not (flat promoter, Slc45a3-long). In kidney, neither
Slc45a3-short nor Slc45a3-long showed robust transcript rhythms
(Supplemental Fig. S9). Targeting the Slc45a3-short promoter
with 4C-seq in liver and kidney showed liver-specific chromatin
loops at three distal regions (two upstream, one downstream)
(Fig. 6A). These same regions did not form liver-specific chromatin
loops with the Slc45a3-long promoter (Fig. 6B), suggesting
that promoters 8 kb apart can contact distinct enhancers.
Overlaying 4C-seq with DNase-seq showed that these chromatin
loops link liver-specific DHSs specifically to the Slc45a3-short
promoter (Fig. 6C). These liver-specific DHSs were bound by liv-
er-specific TFs, FOXA2 and ONECUT1, and clock TF, REV-ERBa,
as shown in ChIP-seq. The 4C experiments suggest that
enhancers can contact a rhythmic promoter while looping out
nearby nonrhythmic alternative promoters, confining rhythmic
enhancer activity to specific promoters (Fig. 6D). Furthermore,
rhythmically active enhancers can contact promoters in a tis-
sue-specific manner. Thus, chromatin folding not only regulates
tissue-specific rhythms but also differentiates between closely
spaced promoters to control rhythmic transcription with spatial
precision.

Discussion

The mammalian genome encodes tran-
scriptional programs that allow the mo-
lecular clock to robustly oscillate across
diverse tissue transcriptomeswhilemain-
taining flexibility to regulate distinct
clock outputs in different combinations
of tissues. Here, we identified two regula-
tory modes underlying tissue-specific
transcript rhythms: Regulatory sequenc-
es can recruit individual TFs bearing
rhythmic activity; coordinated binding
of clock- and tissue-specific TFs can gen-
erate tissue-specific rhythms. Moreover,
we found that clock- and tissue-specific
TFs bound at distal enhancers can be re-
cruited to promoters through precise
chromatin loops.

Several of our predictions of tran-
scription regulators and regulated genes
(e.g., Egr1, Por, Upp2) corroborated with
previous analyses of independent data
sets (Yan et al. 2008; Bozek et al. 2009;
Bhargava et al. 2015). Further analysis in-
corporating outputs of enhancer activity,
such as eRNAs (Fang et al. 2014), across
multiple tissues may uncover additional
rhythmically active regulators.

Colocalized binding of clock- and
tissue-specific TFs at enhancers provides
aputativemechanismfor the clock to reg-

ulate clockoutput genes in a tissue-specificmanner. Inmouse liver,
clock TFs can colocalize with liver-specific TFs, such as FOXA2 and
ONECUT1, consistentwithmultiple TFs associatingwith liver-spe-
cific DHSs (Iwafuchi-Doi et al. 2016). Our findings are currently
based on sequence-specific DNA binding of TFs, comparison of
tissues, and ChIP-seq data sets. Further mechanistic basis for the
functional significance of colocalization couldbe gained, for exam-
ple, by using inducible knockout models for tissue-specific regula-
tors. Moreover, the observed colocalization does not exclude other
cooperative modes, such as tethering of REV-ERBa to ONECUT1
through protein-protein interactions (Zhang et al. 2015).

Our 4C analysis showed that chromatin loopingmight medi-
ate interaction between clock- and tissue-specific transcriptional
programs by recruiting clock-bound distal elements to promoters
in a tissue-specific manner. Such loops can surgically discriminate
between nearby promoters as close as 8 kb apart, suggesting a
way to separate temporal regulation of neighboring promoters. A
previous 4C study on a core clock gene enhancer proposed that co-
hesion-mediated promoter-enhancer looping can compartmental-
ize rhythmic gene expression within genomic regions spanning
150 kb (Xu et al. 2016). Here, chromatin interactions that differed
between tissues were localized to a small genomic region (<10 kb)
near promoters (<100 kb). Future studies integrating temporal data
across tissues with large-scale promoter-enhancer networks may
reveal regulatory sequences that encode promoter-enhancer com-
patibility and elucidate whether this compatibility is tissue-specif-
ic (Li and Noll 1994; Merli et al. 1996; Zabidi et al. 2014; Nguyen
et al. 2016).

While our work focused on transcriptional mechanisms,
studying other mechanisms such as post-transcriptional,

Figure 5. Liver-specific chromatin loops regulate liver-specific mRNA rhythms. (A) Temporal mRNA
profile for Mreg, a clock-driven liver-rhythmic gene. Error bars are SEM (n = 2). (B) 4C-seq profiles (sum-
mary from two replicates, each pooling two different mice) using theMreg promoter as a bait in liver and
kidney at ZT20. Data are shown in a window of ±250 kb from the bait (top). Profiles of differential con-
tacts between liver and kidney (bottom) represented as signed log P-values (regularized t-test, positive
values denote liver-enriched 4C contacts). (C) Tracks of differential 4C contacts (signed log P-values),
log2 fold change of DNase I hypersensitivity between liver and kidney, and ChIP-exo of REV-ERBa and
FOXA2. Regions of significant differential 4C contacts correspond to liver-specific DNase I hypersensitive
regions and REV-ERBa binding sites.
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translational, and post-translational processes using PRO-seq,
Ribo-seq, and proteomics data may provide additional insights.
Expanding our 24-h analysis to 12-h or other harmonics would
broaden the view of tissue-specific temporal gene expression but
may require experimental designs of higher temporal resolution
(Hughes et al. 2009; Krishnaiah et al. 2017). In sum, integrating
the temporal axis into tissue-specific gene regulation offers an in-
tegrated understanding of how tissue physiology resonates with
daily cycles in the environment.

Methods

Animal experiments

Eight- to 14-wk-old C57Bl/6 mice have been purchased from
Charles River Laboratory. Bmal1KOmice have been previously de-
scribed (Jouffe et al. 2013). Without further indications, mice are
kept under a 12-h light/12-h dark regimen and ad libitum feeding.
All animal care and handling was performed according to the
Canton de Vaud (Fred Gachon, authorization no. VD 2720) laws
for animal protection.

RNA-seq experiments

To complement the mouse liver WT and Bmal1 KO RNA-seq
data (GSE73554) (Atger et al. 2015), transcriptomes of kidneys

from Bmal1 KO and WT littermates (12-h light/12-h regimen;
night-restricted feeding) were measured from poly(A)-selected
mRNA using single-end reads of length 100. mRNA levels
were quantified using kallisto version 0.42.4 (mm10) (Bray et al.
2015).

Global temporal variance

For each tissue, we estimated the contribution of temporal vari-
ance for each gene, broken down by its Fourier components. We
calculated the background level assuming temporally unstruc-
tured data (white noise), whose magnitude (strength of the white
noise) was estimated from the mean of squared magnitudes of
Fourier coefficients that were not submultiples of 24 h (i.e., the
mean of 48-, 16-, 9.6-, 6.9-, 5.3-, 4.4-h components).

Model selection

We fitted harmonic regression models that integrated temporal
gene expression across different combinations of rhythms in dif-
ferent conditions (Atger et al. 2015). We used a g-prior for the
rhythmic parameters �b as a penalization scheme (Liang et al.
2008).We set g = 1000,whichwe found tomaximize temporal var-
iations captured in the shared rhythms model while minimizing
temporal variations captured in the flat model.

Figure 6. Precise promoter-enhancer contacts underlie liver-specific mRNA rhythms. (A,B) 4C-seq profiles for the (A) Slc45a3-short and (B) Slc45a3-long
isoforms within ±250 kb around baits targeting the two TSSs (top). Signed log P-values for differential contacts between liver and kidney (bottom) as in
Figure 5B. TSSs for Slc45a3-short and Slc45a3-long are 8 kb apart. (C) Differential 4C contacts (signed log P-values), log2 fold change of DNase I hyper-
sensitivity between liver and kidney, and ChIP-exo signal of REV-ERBa, FOXA2, and ONECUT1. Regions of significant differential contacts in Slc45a3-short
correspond to liver-specific DNase I hypersensitive regions. Yellow arrowheads in A and C show liver-specific distal contacts recruited to the Slc45a3-short
TSS. These contacts are absent for Slc45a3-long TSS (B). (D) Schematic model illustrating enhancer-promoter interactions in liver and kidney that may gen-
erate liver-specific rhythms. Yellow circles illustrate liver-active enhancers contacting the rhythmic promoter (red arrow) but not the alternative nonrhyth-
mic promoter (gray arrow). In kidney, the enhancer is not accessible, and both promoters are nonrhythmic.
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Complex singular value decomposition representation of gene and
tissue module

We first transformed the time domain to the frequency domain
corresponding to 24-h rhythms. The resulting matrix was decom-
posed using SVD; the first left-singular and first right-singular
values were visualized in separate polar plots (Supplemental
Methods).

Functional analysis by GO terms

We used Fisher’s exact test to assess statistical significance of gene
enrichment for each GO term. Foreground genes were genes with
phases within a 6-h window. Background genes were genes as-
signed to a model. For each GO term, we slid the 6-h window
with a step size of 1 h and calculated the P-value enrichment.
GO terms were chosen by visualizing significant GO terms in the
tree and choosingGO terms thatwere comparably deep in the tree.

Chromatin conformation experiments and analysis

C57Bl/6 mice were sacrificed at ZT08 and ZT20 to extract liver and
kidneys. Liver and kidney nuclei were prepared as previously de-
scribed (Ripperger and Schibler 2006) with some minor changes.
4C-seq assays were performed as in Gheldof et al. (2012). Raw
read counts for each sample were normalized by library size by
the sum of the read counts on the cis-chromosome (excluding 10
fragments around the bait). We used a weighted linear model to
fit the log10 signal around each fragment f. A Gaussian window
of standard deviation = 2.5 kb centered on f was used to incorpo-
rate signal from neighboring fragments (Supplemental Methods).
Differential contacts were estimated using t-statistics.

Data access

Raw and processed RNA-seq and 4C-seq data generated from
this study have been submitted to the NCBI Gene Expression
Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) under acces-
sion number GSE100457.
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Supplemental	 Figure	 S1	 -	 Contribution	 of	 tissue	 and	 temporal	 variance	 across	 11	

tissues	

(A)	 Fraction	 of	 total	 variance	 explained	 by	 principal	 components	 1	 to	 12.	 Colors	

represent	 the	 contribution	 of	 different	 temporal	 periods	 (Fourier	 coefficients)	 in	

each	 principal	 component.	 Components	 1	 to	 12	 show	 predominantly	 tissue	

differences.	

(B)	Sample	loadings	of	11	tissues	over	time	in	PC1.	Contribution	of	tissue	variance	

to	 the	 principal	 component	 is	 calculated	 by	 the	 sum	 of	 the	 squared	 difference	

between	tissue	mean	and	the	global	mean.		Variance	in	PC1	consists	of	mostly	tissue	

variance.		

(C)	Scatterplot	of	gene	 loadings	 from	PC1	and	PC2.	Genes	with	 large	PC1	 loadings	

are	mainly	brain-specific	genes.	

(D)	mRNA	abundance	across	tissues	and	time	of	a	brain-specific	GABA	transporter,	

Slc6a1.		

(E)	idem	as	A,	for	principal	components	13	to	100.	

(F)	Liver	loadings	over	time	for	PCs	13	to	21.	Contribution	of	temporal	variance	to	

the	principal	component	is	calculated	by	the	sum	of	the	squared	difference	between	

each	time	point	and	the	tissue	mean.		

(G)	Analysis	of	24h	rhythmicity	of	liver	loadings	over	time	(PC1	to	PC25,	harmonic	

regression).	 Inset:	 Amplitude	 (radial	 coordinate)	 and	 phase	 (clockwise	 angle)	 of	

liver	loadings	in	PC1	and	PC25.		
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Supplemental	Figure	S2	–	Temporal	profiles	of	mRNA	accumulation	across	tissues	and	

in	clock-disrupted	conditions	

(A)	 Examples	 of	 genes	whose	 expression	 is	 rhythmic	 in	 different	 combinations	 of	

tissues.	 Flat	 indicates	 nonrhythmic	 tissues.	 Rhythms	 can	 be	 further	 classified	 as	

clock-	or	system-driven	by	analysis	in	WT	and	Bmal1	KO	data,	shown	in	(B).		

(B)	 Examples	 of	 tissue-specific	 (Lipg,	 Lpin1)	 and	 tissue-wide	 (Dbp,	 Cirbp)	 genes	

whose	 oscillations	 can	 be	 clock-dependent	 (Lipg,	 Dbp)	 or	 –independent	 (Lpin1,	

Cirbp)	manner.		
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Supplemental	 Figure	 S3	 –	 Modules	 of	 rhythmic	 gene	 expression	 across	 different	

subsets	of	tissues	

(A)	Heatmaps	for	the	modules	corresponding	to	genes	rhythmic	in	different	subsets	

of	tissues.	Each	rectangle,	demarcated	by	white	vertical	lines,	represents	normalized	

mRNA	 accumulation	 over	 48	 hours	 (red	 denotes	 low	 expression,	 green	 denotes	

high)	 for	 each	 gene	 in	 module	 (y-axis)	 in	 a	 single	 tissue.	 Schematic	 of	 the	

combination	of	tissues	in	which	genes	are	rhythmic	are	shown	above	each	heatmap.	

For	 clarity,	 genes	 in	 tissue-wide	module	 (bottom)	are	 filtered	 for	amplitudes	with	

average	log2	fold	change	greater	than	0.8.		

(B)	 Heatmaps	 representing	modules	 of	 liver-	 and	 kidney-rhythmic	 genes	 that	 are	

driven	by	the	local	clock	or	systemic	cues.		
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Supplemental	Figure	S4	 -	TF	 regulators	associated	with	 tissue-specific	 rhythmic	gene	

expression	

(A)	 Predicted	 activities	 of	 TF	motifs	 associated	with	 system-driven	 liver-rhythmic	

module	(left).	

(B)	 Predicted	 TF	 activity	 (solid	 line),	 nuclear	 protein	 abundance	 (if	 available,	

triangles),	 and	mRNA	 accumulation	 (dotted)	 oscillate	 in	 both	WT	 and	Bmal1	KO.	

Error	bars	in	nuclear	protein,	mRNA,	and	TF	activity	are	SEM	(n=2).	

(C,D)	Predicted	activities	of	TF	motifs	associated	with	clock-driven	kidney-rhythmic	

(C),	and	clock-driven	liver-rhythmic	(D)	module	represented	by	the	first	component	

of	complex-valued	SVD.	Motifs	with	z-score	>	1.25	are	shown.	Candidate	TFs	shown	

in	Figure	4B,D,F	are	displayed	in	bold.	
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Supplemental	Figure	S5	–	Liver-specific	accessible	 regions	harboring	clock	TF	binding	

sites	underlie	clock-driven	liver-specific	rhythms	

(A)	 Activities	 of	 TF	 motifs	 associated	 with	 clock-driven	 liver-rhythmic	 module,	

predicted	using	TF	binding	site	occurrences	at	liver-specific	DHSs.			

(B)	 Genes	 containing	 RORE	 (red)	 or	 co-occurrence	 of	 RORE	 and	 liver-specific	 TF	

(ONECUT1,	 CUX2,	 or	 FOXA2,	 dark	 red)	 in	 clock-driven	 liver-rhythmic	 module.	

mRNA	 abundances	 of	 genes	with	 liver-specific	DHSs	 harboring	RORE	motifs	 peak	

approximately	3	hours	after	peak	RORE	activity.	

	 	



0.0

0.5

1.0

1.5

0

10

−200 −100 0 100 200

−200 −100 0 100 200

Position relative to bait (kb)

Position relative to bait (kb)

Liver

Kidney

A

B

C

D

WT Bmal1 KO

ZT

Lo
g2

 m
R

N
A 

ab
un

da
nc

e

WT Bmal1 KO

Liver Kidney

Pik3ap1

Pik3ap1

Supplemental Figure S6

ZT08

0

1

2

3

4

5

0 5 10 15 20 0 5 10 15 20

100 kb mm9
41,350,000 41,400,000 41,450,000

Tm9sf3
Tm9sf3

Pik3ap1

Pik3ap1
AK087295

1 -

0 _
1 -

0 _
1.9 -

-0.5 _
20 -

-5 _

DNase-I

4C 

lo
g 

 4
C

 s
ig

na
l

10

−l
og

  (
pv

al
ue

)
(li

ve
r -

 k
id

ne
y)

10



	

Supplemental	 Figure	 S6	 -	 Chromatin	 loops	 between	 liver-specific	 enhancers	 and	

promoter	of	Pik3ap1	

(A)	Temporal	mRNA	abundance	profiles	of	Pik3ap1	in	liver	and	kidney	of	mice	with	

(left)	and	without	(right)	a	 functioning	clock.	Nuclei	were	extracted	from	WT	liver	

and	kidney	from	4	mice	at	ZT8	to	perform	4C-Seq.		

(B)	4C-Seq	profiles	(summary	from	2	samples,	each	pooled	from	2	mice)	using	the	

Pi3kap1	promoter	as	a	bait	in	liver	and	kidney	within	a	window	of	500	kb.	

(C)	Profiles	of	differential	 contacts	 for	 liver	versus	kidney,	 shown	as	 signed	 log	p-

values	(regularized	t-test,	positive	values	show	liver-enriched	4C	contacts).	

(D)	Tracks	of	differential	contacts	(signed	log	p-values),	DNAse-I	hypersensitivity	in	

liver,	kidney,	and	their	log2	fold	change.	Regions	of	significant	differential	contacts	

correspond	to	liver-specific	DHS	regions.	
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Supplemental	 Figure	 S7	 -	 Chromatin	 loops	 between	 liver-specific	 enhancers	 and	

promoters	of	Slc44a1	transcript	

(A)	Temporal	mRNA	abundance	profiles	of	Slc44a1	in	liver	and	kidney	of	mice	with	

(left)	and	without	(right)	a	 functioning	clock.	Nuclei	were	extracted	from	WT	liver	

and	kidney	from	4	mice	at	ZT20	to	perform	4C-Seq.		

(B)	4C-Seq	profiles	(summary	from	2	samples,	each	pooled	from	2	mice)	using	the	

Slc44a1	promoter	as	a	bait	in	liver	and	kidney	within	a	window	of	500-	kb.	

(C)	Profiles	of	differential	contacts	between	liver	versus	kidney,	shown	as	signed	log	

p-values	(regularized	t-test,	positive	values	show	liver-enriched	4C	contacts).	

(D)	Tracks	of	differential	contacts	(signed	log	p-values),	DNAse-I	hypersensitivity	in	

liver,	kidney,	and	their	log2	fold	change.	Regions	of	significant	differential	contacts	

correspond	to	liver-specific	DHS	regions.		
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Supplemental	 Figure	 S8	 -	 Correlations	 of	 alternative	 transcript	 start	 site	 (TSS)	 usage	

and	tissue-specific	rhythms	in	mRNA	accumulation	

(A)	 Scatterplot	 of	 alternative	 promoter	 usage	 versus	 log2	 fold-change	 (FC)	 of	

rhythmic	 tissues.	 Alternative	 TSS	 usage	 defined	 by	 calculating	 the	 Euclidean	

distance	of	transcript	expression	in	tissues	with	rhythmic	transcript	versus	tissues	

with	nonrhythmic	transcripts.	

(B)	Example	of	alternative	TSS	usage	in	rhythmic	gene	expression.	RNA-Seq	of	Ddc	

at	CT34	shows	that	rhythmic	tissues	(liver	and	kidney)	use	an	upstream	promoter	

whereas	nonrhythmic	tissues	use	a	downstream	promoter.		
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Supplemental	 Figure	 S9	－ 	 Liver	 and	 kidney	 use	 different	 TSSs	 in	 Slc45a3,	 a	 clock-

driven	liver	transcript	

Temporal	 abundance	 profiles	 of	 two	 transcripts	 of	 Slc45a3	 in	 liver	 and	 kidney	 of	

mice	 with	 and	 without	 a	 functioning	 clock.	 Slc45a3-short	 isoform	 is	 rhythmic	

specifically	 in	 the	 liver;	 Slc5a3-long	 isoform	 is	 not	 robustly	 rhythmic	 in	 liver	 or	

kidney.	

	



Chapter 2. Transcription factor activity rhythms and tissue-specific chromatin
interactions explain circadian gene expression across organs

2.6 Conclusion and perspectives

This paper investigates transcriptional regulatory modes that allow diurnal gene expression to

be tissue-specific. Our study reveals that the circadian clock is embedded into tissue-specific

regulatory networks. Tissue-specific chromatin interactions can establish this regulation,

allowing circadian clock transcription factors to regulate a gene in a tissue-specific manner.

In fact, genes that oscillate with 24-hour rhythm in all tissues are a small minority compared

tissue-specific or tissue-restricted oscillations.

One mode by which the clock can embed into tissue-specific regulatory networks is through

tissue-specific chromatin interactions. Our data suggest that circadian clock transcription

factors (TFs) can bind to tissue-specific enhancers, which allow clock TFs to regulate gene ex-

pression oscillations in a tissue-specific manner through promoter-enhancer looping. Further

questions and extensions for understanding tissue-specific circadian gene expression include:

1. Incorporate mean expression to comparisons of oscillatory gene expression across

tissues.

2. Extend method to 12-hour rhythms.

3. Investigate post-transcriptional regulation underlying tissue-specific gene expression
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3 Clock-dependent chromatin topology
modulates circadian transcription
and behavior

3.1 Introduction

This chapter looks into the circadian dynamics of promoter-enhancer looping and the function

of rhythmically active enhancers in gene transcription as well as circadian locomotor activity.

The work has been published in Genes & Development, 2018 under the Creative Commons

license and is reproduced here. The main text as well as supplemental figures are attached.

Due to the size of supplemental tables, they are not attached but can be found on the online

version of the Genes & Development article. No changes were made to the main text or

supplemental figures, which were downloaded from doi:10.1101/gad.312397.118.

3.2 Contributions

Jérome Mermet did the 4C-seq and RNA-seq experiments, with help from Céline Jouffe,

Damien Nicolas, and Daniel Mauvoisin. I performed the analysis of the 4C-seq, RNA-seq, and

ChIP-seq data, with help from Kyle Gustafson and Felix Naef in the initial stages of the project.

Clémence performed and analyzed the smRNA-FISH experiments, with some help from me in

the analysis. Yann Emmenegger from the Paul Franken lab performed the locomotor activity

experiments.
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The circadian clock in animals orchestrates widespread oscillatory gene expression programs, which underlie 24-h
rhythms in behavior and physiology. Several studies have shown the possible roles of transcription factors and
chromatin marks in controlling cyclic gene expression. However, how daily active enhancers modulate rhythmic
gene transcription in mammalian tissues is not known. Using circular chromosome conformation capture (4C)
combined with sequencing (4C-seq), we discovered oscillatory promoter–enhancer interactions along the 24-h cycle
in the mouse liver and kidney. Rhythms in chromatin interactions were abolished in arrhythmic Bmal1 knockout
mice. Deleting a contacted intronic enhancer element in the Cryptochrome 1 (Cry1) gene was sufficient to com-
promise the rhythmic chromatin contacts in tissues. Moreover, the deletion reduced the daily dynamics of Cry1
transcriptional burst frequency and, remarkably, shortened the circadian period of locomotor activity rhythms. Our
results establish oscillating and clock-controlled promoter–enhancer looping as a regulatory layer underlying cir-
cadian transcription and behavior.

[Keywords: circadian rhythms; chromatin topology; promoter–enhancer loops; DNA regulatory elements; transcriptional
bursting]

Supplemental material is available for this article.
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The circadian clock, encoded in a core genetic network,
governs rhythms in behavior and physiology (Schibler
et al. 2015), such as nocturnal activity inmice and oscilla-
tions in carbohydrate and lipid metabolism in the liver
(Bass and Lazar 2016). This clock also orchestrates the dai-
ly rhythmic synthesis of thousands of transcripts by im-
pinging on multiple gene regulatory layers (Zhang et al.
2014). These rhythmic transcripts often coincide with
rhythms in chromatin modifications, DNA accessibility,
enhancer activity, and transcription factor (TF) binding
at promoter-proximal and promoter-distal regions (Mer-
met et al. 2017; Takahashi 2017), suggesting that chroma-
tin interactions play a role in regulating circadian gene
expression.
Chromatin architecture in the nucleus is organized over

multiple scales (Dekker et al. 2013). At the fine scale, this
organization involves the interactions between gene pro-

moters and enhancer DNA elements through promoter–
enhancer looping (Fulco et al. 2016). The remodeling of
such DNA contacts and the accompanying dynamics of
transcriptional responses have been investigated in the
context of signal-dependent gene induction, cell differen-
tiation, and developmental transitions (Palstra et al. 2003;
Ghavi-Helm et al. 2014; Kuznetsova et al. 2015). Howev-
er, little is known about the dynamics of DNA looping
along the recurring daily 24-h cycle and the consequences
on clock-dependent gene expression in animals.
Cell culture models investigating genes of interest have

suggested that nuclear compartmentalization modulates
cyclic gene expression (Zhao et al. 2015) and that oscilla-
tory contacts between gene promoters and genomic
regions on trans chromosomes accompany rhythmic
mRNA expression (Aguilar-Arnal et al. 2013). Recently,
we described tissue-specific chromatin interactions selec-
tively associated with rhythmically expressed clock out-
put transcripts (Yeung et al. 2018), but, in general, the
circadian dynamics of DNA interactions, including their4These authors contributed equally to this work.
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regulation of core clock function and control of circadian
gene expression, remain an open question. Indeed, rhyth-
mic transcription could be regulated over an established
static promoter–enhancer network (Ghavi-Helm et al.
2014; Xu et al. 2016), or, conversely, the clock could drive
dynamic promoter–enhancer looping for high-amplitude
daily oscillations in transcription.

Here we monitored promoter–enhancer contacts of a
core clock and metabolic clock output gene across time
and genotypes in mouse tissues and discovered that con-
tact frequencies oscillated along the 24-h cycle. In ar-
rhythmic Bmal1 knockout animals, these oscillations
were abolished. Deletion in mice of an enhancer that
was rhythmically recruited to the Cryptochrome 1 (Cry1)
promoter led to a short period phenotype in locomotor
activity. Moreover, this deletion compromised rhythmic
chromatin topology in the liver and led to reduced peak
Cry1 mRNA expression levels. Finally, single-molecule
RNA fluorescent in situ hybridization (smRNA-FISH)
showed that the abolished rhythmic chromatin contact
reduced the daily dynamics of Cry1 transcriptional burst
frequency.

Results

Rhythmic local chromatin interactions in mouse livers

We focused on two genes representing key temporally reg-
ulated hepatic functions: a gene essential for the core cir-
cadian oscillator, Cry1 (Griffin et al. 1999; van der Horst
et al. 1999), and a liver-specific clock-controlled gene,
Glycogen Synthase 2 (Gys2) (Doi et al. 2010), which

encodes the rate-limiting enzyme in hepatic glycogen syn-
thesis (Irimia et al. 2010). These transcripts are rhythmi-
cally expressed in the liver at opposite times of day,
Cry1 peaking during the night at Zeitgeber time 20
(ZT20) and Gys2 peaking during the day at ZT08 (with
ZT0 corresponding to lights on and ZT12 corresponding
to lights off) (Supplemental Fig. S1A). Using circular chro-
mosome conformation capture (4C) combined with se-
quencing (4C-seq) (Gheldof et al. 2012), we estimated
the interaction frequencies of DNA bait fragments placed
near the transcription start sites (TSSs) of Cry1 and Gys2
versus the entire genome in livers of wild-type mice col-
lected at ZT08 and ZT20 (n = 4 per time point). 4C-seq
signals around the Cry1 and Gys2 TSSs decayed to back-
ground levels following a power law (Supplemental Fig.
S1B,C; Supplemental Table S1; Sanborn et al. 2015) and
did not exceed background on trans chromosomes (Sup-
plemental Fig. S1D,E; Supplemental Table S1). The high
proportion of chromatin interactions within the first
2 Mb surrounding the baits on the cis chromosome
(Cry1 TSS: 41% of total cis contacts at ZT08 and 46% at
ZT20;Gys2 TSS: 54% at ZT08 and 57% at ZT20) indicat-
ed thatCry1 andGys2 regulatory contacts were contained
within this signal-rich region (Sanyal et al. 2012). To com-
pare 4C-seq profiles across conditions, we normalized the
data and applied locally weighted multilinear regression
(LWMR), which uses a Gaussian window (σ = 2500 kb)
centered on each fragment for local smoothing (Materials
and Methods). For Cry1, the 4C-seq profiles after LWMR
were similar between ZT08 and ZT20 except in a region
downstream from the Cry1 promoter, where the contact
frequency was increased at ZT20 (Fig. 1A). While the

A

B C

Figure 1. Rhythmic chromatin interactions
in mouse livers. (A) 4C-seq data (LWMR
summarizes n = 4 animals per group) in a
2-Mb genomic region surrounding Cry1 at
ZT08 and ZT20. (B) 4C-seq signals in a
200-kb genomic region surrounding Cry1 at
ZT08 and ZT20. (Bottom tracks) Z-score
and signed −log10(p) show rhythmic con-
tacts between the promoter region and
the intronic region. (Black) Cry1 TSS bait
(P < 10−16 at peak); (brown) Cry1 intron1
bait (P < 10−8 at peak). (C ) Same as B, target-
ing the Gys2 promoter. (Bottom tracks)
Same as B for Gys2 TSS bait (P < 10−4 at
peak). (Brown) Gys2 exon8 bait (P < 10−18

at peak). Vertical dotted lines show the posi-
tions locally of maximal differential chro-
matin interactions.
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differential signal covered the entire Cry1 locus, the larg-
est difference was localized—peaking 26 kb downstream
from the TSS in the first Cry1 intron—and highly signifi-
cant (P < 5.5 × 10−17 at the peak) (Fig. 1B, bottom tracks,
vertical dotted line at the left). A secondary peak was ob-
served near the 3′ end of the Cry1 transcript.
To further validate the time-dependent contacts, we

placed a bait at the +26-kb intronic site (reciprocal 4C-
seq). The reciprocal 4C-seq confirmed the increased con-
tact frequency with the Cry1 promoter region at ZT20
compared with ZT08 (Fig. 1B bottom tracks, brown solid
line; Supplemental Fig. S2A). In fact, the reciprocal differ-
ential signal peaked 7 kb upstream of the Cry1 TSS, a site
that was also differentially contacted by theCry1TSS bait
(P < 1.9 × 10−9) (Fig. 1B, bottom tracks, vertical dotted line
at the right; Supplemental Fig. S2A; Supplemental Table
S1). Thus, these 4C-seq data in the liver suggested dynam-
ic contacts between the Cry1 promoter and the +26-kb
intronic site as well as the −7-kb upstream site. Since
Cry1 mRNA accumulated rhythmically in the kidney
(Supplemental Fig. S3A), we also performed 4C-seq in kid-
neys. Consistent with the liver data, these sites were also
recruited to the Cry1 promoter more frequently at ZT20
than at ZT08 (Supplemental Fig. S3B,C).
Opposite to Cry1, the Gys2 promoter contacted an in-

tragenic region more frequently at ZT08 versus ZT20
(Fig. 1C), with a peak 21 kb downstream from the TSS
in exon 8 (P < 8.7 × 10−5 at peak) (Fig. 1C, bottom tracks,
black solid line, vertical dotted line at the left), consistent
with its anti-phasic rhythmic mRNA accumulation (Sup-
plemental Fig. S1A). This significant differential signal
was validated by reciprocal 4C-seq using the exon 8 as
bait (P < 2.3 × 10−19 at peak) (Fig. 1C, bottom tracks, brown
solid line, vertical dotted line at the right; Supplemental
Fig. S2B). In the kidney, whereGys2mRNAaccumulation
was constant and low, this differential signal was absent
(Supplemental Fig. S3D–F). Thus, both gene promoters
formed DNA loops with neighboring intragenic regions
in cis that coincided with the timing of the respective
peaks in Cry1 and Gys2 mRNA expression.

The dynamics of chromatin topology depend on BMAL1

To test whether these dynamic contacts depended on a
functional circadian clock, we performed 4C-seq in the
livers of clock-deficient animals (Bmal1 knockout) in
which Cry1 and Gys2 lost rhythmic expression and were
constantly expressed at high and low levels, respectively
(Supplemental Fig. S4A,B). In Bmal1 knockout, the Cry1
+26-kb intronic and −7-kb upstream regions contacted
the promoter at comparable frequencies at ZT20 and
ZT08, suggesting static chromatin loops (Fig. 2A,B). For
Gys2, the profile between the exon 8 region and the pro-
moter was also static (Fig. 2C,D). Comparing wild-type
and Bmal1 knockout at both time points revealed that
for Cry1, the loop was locked in a closed conformation
(Supplemental Fig. S4C, constitutively high frequencies),
and forGys2, it was locked in an open conformation (Sup-
plemental Fig. S4D, constitutively low frequencies).
Thus, the closed and open states of DNA loops concurred

with high and low transcription, respectively (Supplemen-
tal Fig. S4, cf, A,C and B,D). We note that these 4C profiles
suggested a BMAL1-independent interaction upstream of
Gys2 (Fig. 2C, lower panels), but this effect was less robust
compared with the BMAL1-dependent intragenic looping.
As a negative control, we targeted theHoxd4 locus, which
is a transcriptionally silent region in the adult liver. As ex-
pected, chromatin contact profiles at the Hoxd4 locus re-
mained static over time in both wild-type and Bmal1
knockout livers (Fig. 2E; Supplemental Fig. S4E). These
data thus showed that rhythmic loops in Cry1 and Gys2
depended on the clock TF BMAL1.

Rhythmic DNA loops connect gene promoters
with daily active enhancers

To characterize the interacting genomic regions, we inte-
grated temporal data on DNase-I hypersensitivity sites
(DHSs) with ChIP-seq (chromatin immunoprecipitation
[ChIP] combined with high-throughput sequencing) data
for RNA polymerase II (Pol II), the activity-related chro-
matinmarkH3K27ac (Sobel et al. 2017), and rhythmically
active TFs (Rey et al. 2011; Zhang et al. 2015). This al-
lowed us to assess whether the rhythms in DNA contacts
coincided with rhythms in activity-related chromatin
marks. For Cry1, RNA Pol II and H3K27ac signals peaked
near ZT20 (Fig. 3), while, forGys2, they peaked near ZT08
(Fig. 4). However, while RNA Pol II signals extended
throughout the gene bodies, H3K27ac signals were spa-
tially confined around the largest differential contact pre-
cisely at sites marked with DHSs. Furthermore, both the
26-kb downstream intronic site and the 7-kb upstream
site of the Cry1 TSS contained a RORE-responsive ele-
ment (RRE) and were bound by the circadian TFs REV-
ERBα and RORγ (Fig. 3; Supplemental Table S4; Zhang
et al. 2015). In mouse fibroblasts, the intronic RRE is re-
quired for proper timing of Cry1 expression (Ukai-Tade-
numa et al. 2011). The interacting Gys2 exon 8 site was
bound by the clock regulator BMAL1 at ZT06 (Rey et al.
2011) and by REV-ERBα at ZT10 (Fig. 4). This indicated
that DNA contacts connected local rhythmically active
enhancer elements with the promoters of Cry1 andGys2.

Deleting the Cry1 intronic enhancer in mice shortens
the circadian locomotor period

To study the function of the rhythmic chromatin interac-
tions, we generated a mouse strain (Cry1Δe) with a 300-
base-pair (bp) deletion covering theCry1 intronic enhanc-
er (Supplemental Fig. S5A,B). We measured spontaneous
locomotor activity in constant darkness and observed
that Cry1Δe animals had an endogenous circadian period
that was significantly shorter (P < 1.1 × 10−5, t-test) by 15
min compared with wild-type littermates (Fig. 5A; Sup-
plemental Fig. S5C,D). Such period shortening is in the
range of classic short period core clock mutants such as
Per1 (Cermakian et al. 2001) and Clock (Debruyne et al.
2006). As Cry1 loss of function shortens the circadian pe-
riod by 1.2-h (van der Horst et al. 1999), our noncoding
DNA deletion suggests a Cry1 hypomorph.
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Expression of Cry1, clock, and clock output genes
is perturbed in Cry1Δe

To investigate the link between the deletion, promoter–
enhancer looping, and Cry1 expression in livers and
kidneys, we first generated temporal RNA sequencing
(RNA-seq) data in Cry1Δe and wild-type littermates un-
der an entraining light–dark cycle. The transcriptomes
in Cry1Δe and wild-type littermates were comparable
overall in both tissues (Supplemental Fig. S6A). While
Cry1 mRNA levels remained rhythmic in both geno-
types, likely driven by further regulatory sites (e.g., the
TSS and −7-kb sites), the peak expression at ZT20 was
significantly reduced by 27% in the livers (15% in the
kidneys) of Cry1Δe animals compared with wild type
(Supplemental Fig. S6B). Quantifying the intronic reads
as a proxy for transcription showed that Cry1 transcrip-
tion was also phase-advanced in Cry1Δe animals (Supple-
mental Fig. S6C). Moreover, CRY1 protein abundance in
the liver was lower in Cry1Δe compared with wild type,
consistent with a reduction in mRNA levels (Supple-
mental Fig. S6D,E).

As is known in chronobiology, entraining a short period
circadian oscillator by an external light–dark cycle leads
to a phase advance of internal timing markers (Aschoff
and Pohl 1978). This predictionwas confirmed in the tran-
scriptome data. Indeed, core clock and clock-controlled
genes (Supplemental Table S5) were phase-advanced by,
on average, 30 min in the livers of Cry1Δe animals com-
pared with wild type (P < 0.01 binomial test) (Supplemen-

tal Fig. S6F), withCry1 showing the largest phase advance
(P = 0.011 for livers; P = 0.047 for kidneys, bootstrap test)
(Supplemental Fig. S6B).

The Cry1Δe mutation disrupts rhythmic chromatin
topology

Next, we explored the dynamics of chromatin topology
along the 24-h cycle in liver sampled every 4 h in wild
type and Cry1Δe (n = 3 per time point). First, we con-
firmed oscillatory chromatin interactions in Gys2 in
wild type. Indeed, the Gys2 promoter rhythmically re-
cruited the +21-kb enhancer, peaking near ZT08 in
both the TSS bait and exon 8 bait (P < 10−6 at the peak
harmonic regression) (Supplemental Fig. S7A–C). As neg-
ative control, the Hoxd4 bait measured around the clock
did not show oscillatory contacts (Supplemental Fig.
S7D). For Cry1 wild type, the frequency of contacts be-
tween the promoter and the +26-kb enhancer signifi-
cantly oscillated, peaking near ZT20 (P < 10−8 at the
peak) (Fig. 5B–D; Supplemental Fig. S8A,B). In contrast,
in Cry1Δe, the contact frequencies in this region were
lower at all time points compared with wild type, and
the oscillation was compromised (Fig. 5B–D; Supplemen-
tal Fig. S8A,B). Finally, we also estimated chromatin con-
tacts for a bait placed at the −7-kb upstream enhancer
(Fig. 1B, bottom tracks, vertical dotted line at the right),
showing oscillation in contact frequency peaking around
ZT20 with the +26-kb intronic enhancer in wild type but

CA
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Figure 2. The dynamics of chromatin to-
pology depend on BMAL1. (A, top) 4C-seq
signal targeting Cry1 from the livers of
Bmal1 knockout mice at ZT20 versus
ZT08 shows loss of rhythms in chromatin
interactions. (Bottom) Z-score and signed
−log10(p) of differential 4C-seq signal
(ZT20–ZT08) in wild-type versus Bmal1
knockout. Vertical lines show BMAL1-de-
pendent rhythmic contacts. (B) Z-score in
a 2-Mb genomic region surrounding Cry1
in wild-type versus Bmal1 knockout. (C )
Same as in A but for Gys2 bait. (D,E)
Same as in B but for Gys2 (D) and Hoxd4
(E) baits. B andD show that the BMAL1-de-
pendent rhythmic contacts are localized
within 100 kb of the bait.
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nonrhythmic and overall lower contact frequency in
Cry1Δe (Supplemental Fig. S8C,D). Decreased contact
frequency in Cry1Δe mice indicates that the RRE-con-
taining 300-bp fragment drives the promoter–enhancer
loop.
Overall, these data demonstrate robust rhythmic chro-

matin topology for Cry1 and Gys2, where the frequency
of enhancer–promoter contacts is modulated with time
of day. Furthermore, deleting a localized noncoding
DNA enhancer element (300 bp) in the Cry1 gene could
disrupt such rhythms.

The Cry1 intronic enhancer modulates transcriptional
burst frequency

To analyze whether the Cry1 intronic enhancer modu-
lates transcription, we estimated transcriptional parame-
ters by smRNA-FISH against Cry1 pre-mRNA in the
livers of wild-type and Cry1Δe animals at ZT08 and
ZT20 (Fig. 6A). Mammalian promoters are irregularly
transcribed (transcriptional bursting), as characterized by
the burst size and burst frequency (Suter et al. 2011; Bahar
Halpern et al. 2015). Taking into account the ploidy of

Figure 3. The rhythmic Cry1 loop connects the promoter with a H3K27ac-marked enhancer. The Cry1 genomic region containing
4C-seq signals from Cry1 TSS at ZT08 (red) and ZT20 (blue) and Z-score (ZT20–ZT08) in wild-type livers. RNA Pol II loadings
(ChIP-seq), H3K27ac mark (ChIP-seq), and DNase-I signal are from Sobel et al. (2017). Temporally averaged signals and temporal sig-
nals of each mark are plotted. Colored bars represent peak times according to the color legend at the top right; black signifies no
rhythm (Materials and Methods). BMAL1 ChIP-seq signal is from Rey et al. (2011), and REV-ERBα and RORγ ChIP-seq signals are
from Zhang et al. (2015).
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liver nuclei (Supplemental Fig. S9A–D), smRNA-FISH
showed that Cry1 burst fraction (fraction of active tran-
scription sites in each nucleus, which is proportional to
the burst frequency per allele) was 2.2-fold higher at
ZT20 compared with ZT08 in wild type (Fig. 6B). Impor-
tantly, the burst fraction was reduced by 28% in Cry1Δe
animals at ZT20 (Fig. 6B). In contrast, the burst intensity
(proportional to the burst size) was similar in all condi-
tions (Fig. 6C). Thus, the lowered Cry1 mRNA levels in
Cry1Δe at ZT20 can be quantitatively explained by the re-
duced burst fraction. In sum, dynamic enhancer loops
modulate transcriptional bursting in mammalian tissues
(Bartman et al. 2016; Fukaya et al. 2016); in particular,
rhythmic DNA loops involving clock enhancers control
burst frequency while maintaining burst size.

Discussion

In animals, developmental transitions occurring on the
time scales of days have been shown to involve remodeled
DNA contacts and promoter–enhancer loop formation
(Noordermeer et al. 2014). While such dynamics are typi-
cally irreversible, we here discovered that chromatin to-
pology in mouse tissues can be locally (100 kb, in cis)
plastic, exhibiting temporal dynamics that are regulated
by daily time and the circadian oscillator and thus recur
within a 24-h period. While previous work in cell culture
reported dynamic chromatin contacts on larger genomic
scales, notably between the Dbp gene and DNA regions
on trans chromosomes (Aguilar-Arnal et al. 2013), the
genes analyzed here did not show rhythmic chromatin

Figure 4. The rhythmicGys2 loop connects the promoter with a H3K27ac-marked enhancer. TheGys2 genomic region containing 4C-
seq signals from theGys2TSS at ZT08 (red) and ZT20 (blue) andZ-score (ZT20–ZT08) in wild-type livers. RNA Pol II loadings (ChIP-seq),
H3K27acmark (ChIP-seq), and DNase-I signal are from Sobel et al. (2017). Temporally averaged signals and temporal signals of eachmark
are plotted. Colored bars represent peak times according to the color legend at the top right; black signifies no rhythm (Materials and
Methods). The BMAL1ChIP-seq signal is fromRey et al. (2011), and theREV-ERBα andRORγChIP-seq signals are fromZhang et al. (2015).
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interactions on such scales. We then showed genetically
that these rhythmic DNA contacts depend on the clock
protein BMAL1 and, in the case ofCry1, a 300-bp intronic
RRE-containing enhancer sequence.
How is BMAL1 involved in the formation of these dy-

namic loops? In the case of Gys2 in Bmal1 knockout
mice, the loop is constitutively open, andGys2mRNAex-
pression is constitutively low.Combinedwith the binding
of BMAL1 at the looping site, these data strongly argue for
a direct involvement of BMAL1. For Cry1, the activator
RORγ and the repressor REV-ERBα bind to the Cry1
intronic enhancer at the expected peak (ZT20) and trough
(ZT08) activities, as is typical of functional RREs.Wenote
that while the expression of the RRE-binding repressors
Rev-Erbα/β is low in Bmal1 knockout, the corresponding
activator Rorγ is constitutively high (Atger et al. 2015).
Therefore, the constitutively closed Cry1 loop in the
Bmal1 knockout most likely reflects an indirect effect
via perturbedREV-ERB andROR activities. This is further
corroborated by the constitutively open state of the Cry1
promoter–enhancer loop in Cry1Δe mice, showing chro-
matin interactions that are constantly below wild-type
trough levels, indicating that loop-promoting factors (for
example, RORs) act within the 300-bp element. There-
fore, our data suggest a canonical mechanism of enhanc-
er–promoter looping by which sequence-specific TFs

help recruit transcription complexes, which facilitate
the function of Pol II at core promoters (Levine and Tjian
2003).
To investigate the effects of the dynamic looping on

transcriptional parameters, we complemented bulk
4C-seq and RNA-seq experiments with single-molecule
transcript analysis in situ, which revealed that the abol-
ished rhythmic chromatin contact in Cry1Δe mice
reduced Cry1 transcriptional burst frequency. These re-
sults in mammalian tissues contribute to our current
understanding of how enhancer loops modulate transcrip-
tional bursting (Bartman et al. 2016; Fukaya et al. 2016). In
particular, we showed that rhythmically active clock en-
hancers can increase burst frequency while not changing
burst size.
The ablation of theCry1 noncoding regulatory element

even led to a short period phenotype in locomotor activi-
ty.While noncoding genetic variation in humans has been
associated recently with circadian clock-related and sleep
phenotypes (Allebrandt et al. 2010; Hu et al. 2016), no
demonstration of such variation on circadian transcrip-
tion or behavior has yet been provided. Indeed, previously
characterizedmutations impactingmammalian circadian
behavior have concerned protein-coding regions (Vita-
terna et al. 1994; Toh et al. 2001). Here, we provided evi-
dence that noncoding regulatory elements within the

BA
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Figure 5. Deleting the Cry1 intronic en-
hancer in mice shortens the period of the
clock and disrupts oscillations in Cry1 pro-
moter–enhancer contact frequencies. (A)
The circadian period of spontaneous loco-
motor activity is significantly different be-
tween Cry1Δe and wild-type littermates.
The mean period and standard deviation
were calculated from 16 wild-type and 15
Cry1Δe littermates. P = 1.1 × 10−5, t-test.
(B) 4C-seq signal for Cry1 TSS bait over
time in livers (LWMR summarizes n = 3 an-
imals per group; gray shade shows ±stan-
dard error) in wild-type versus Cry1Δe
littermates. Vertical lines show the +26-
kb intronic enhancer. (C ) 4C-seq signal
over time adjacent to the intronic enhanc-
er. (D) log2 fold change and −log10(p) from
rhythmicity analysis of 4C-seq signal over
time. P < 10−8 at peak, LWMR, χ2 test. Frag-
ments with P< 0.01 are colored by time of
peak contact frequency (color legend is
shown at the right).
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core circadian regulatory network can drive dynamic pro-
moter–enhancer looping, modulate temporal transcrip-
tion, and regulate circadian locomotor behavior.

Materials and methods

Animal and ethics statement

All animal care and handling were performed according to Can-
ton de Vaud laws for animal protection (authorization VD2801
[Frédéric Gachon] and VD3109 [Félix Naef]). All experiments
were performed onmales between 8 and 10wkold.Bmal1knock-
out animals were described previously in Jouffe et al. (2013).

Mouse genome editing by direct knockout using CRISPR–Cas9

Px-330 plasmids targeting upstream of and downstream from the
Cry1 intron1 regulatory region were injected into pronuclei and
then transplanted into B6D2F1 pseudopregnantmice at the Ecole
Polytechnique Fédérale de Lausanne (EPFL) Transgenic Core Fa-
cility (http://tcf.epfl.ch). Pups from the first generation (F0) were
then screened for the deletion using the PCR primers indicated
in Supplemental Table S2. F0 animals of interest were back-
crossed on C57/BL6J wild-type mice, and F1 animals were
screened for transmission of themutation. Heterozygous animals
were crossed together to obtain all genotypes of interest. The Eth-
ical Committee of the State of Vaud Veterinary Office, Switzer-
land, approved all experiments.

Nucleus purification and fixation

Immediately after sacrifice, 5 mL of 1× PBS was perfused through
the spleen to flush blood from the liver. Livers and kidneys from
individual animals were homogenized and fixed in 4 mL of 1×
PBS, including 1.5% formaldehyde, for 10 min at room tempera-
ture. The cross-linking reaction was stopped by adding 25 mL of
ice-cold stop reaction buffer (2.2 M sucrose, 150 mM glycine, 10
mM HEPES at pH 7.6, 15 mM KCl, 2 mM EDTA, 0.15 mM sper-
mine, 0.5mMspermidine, 0.5mMDTT, 0.5mMPMSF) to theho-
mogenates andwas kept for 5min on ice.Homogenateswere then

loaded on top of 10 mL of cushion buffer (2.05 M sucrose, 10%
glycerol, 125 mM glycine, 10 mM HEPES at pH 7.6,15 mM KCl,
2 mM EDTA, 0.15 mM spermine, 0.5 mM spermidine, 0.5 mM
DTT, 0.5 mM PMSF) and centrifuged at 105g for 45 min at 4°C.
Nuclei were washed twice in 1× PBS and immediately frozen.

4C-seq

4C template preparation 4C templates were prepared as in Ghel-
dof et al. (2012). Nuclei were resuspended in 1mL of a buffer con-
taining 10 mM Tris-HCL (pH 8.0), 10 mM NaCl, 0.2% NP-40,
and 1× protease inhibitor cocktail (Complete Mini EDTA-free
protease inhibitor cocktail; Sigma-Aldrich); kept for 15 min on
ice; and washed twice with 1× DpnII buffer (New England Biol-
abs). Thirty million nuclei were resuspended in 1× DpnII buffer
(New England Biolabs) containing 0.1% SDS and incubated for
10 min at 65°C. Triton X-100 was added to 1% final concentra-
tion. Chromatin was digested overnight with 400 U of DpnII
(New England Biolabs) at 37°C with shaking. After heat inactiva-
tion, digestion efficiency was evaluated by both DNA visualiza-
tion on agarose gels and quantitative PCR using primer pairs
covering multiple restriction sites. Chromatin was then ligated
with 3000 U of T4 DNA ligase (New England Biolabs) in an 8-
mL final volume for 4 h at 16°C plus 1 h at room temperature.
The cross-linking reaction was reverted by the addition of
50 µL of 10 mg/mL proteinase K and incubation overnight at
65°C. DNA was purified by multiple phenol/chloroform extrac-
tions, resuspended in TE buffer (pH 8.0) containing RNase A,
and incubated for 30 min at 37°C. Ligation efficiency was evalu-
ated by loading DNA on an agarose gel. Libraries were digested
with 1 U of NlaIII per microgram of template (New England Biol-
abs) overnight at 37°C, and digestion was controlled by visualiza-
tion on an agarose gel. After heat inactivation, digested products
were ligated with 2000 U of T4 DNA ligase (New England Biol-
abs) for 4 h at 16°C in a 14-mL final volume. Circularized prod-
ucts were purified and resuspended in TE buffer (pH 8.0). 4C
templates were prepared in four biological replicates in wild-
type mouse livers and kidneys and three biological replicates
in the livers of Bmal1 knockout and Cry1Δe and wild-type litter-
mates (Supplemental Table S1).

A B C

Figure 6. The oscillatory Cry1 promoter–enhancer loop modulates Cry1 transcriptional bursting. (A) smRNA-FISH against Cry1 pre-
mRNA in the livers of wild-type (top) andCry1Δe (bottom) animals at ZT08 (left) and ZT20 (right). Burst fractions (B) and burst intensities
(C )measured from images of smRNA-FISHperformed againstCry1 pre-mRNA inCry1Δe (dashed) andwild-type (solid) livers atZT08 (red)
andZT20 (blue). Burst fraction is the number of active transcription sites in each nucleus divided by the ploidy. (B,C ) Shown are themeans
and standard errors over nuclei collected and pooled from two animals in each of the four conditions (individual animals are analyzed in
Supplemental Fig. S9C,D). n = 2191wild-type ZT08 nuclei; n = 983Cry1ΔeZT08 nuclei; n = 2150wild-type ZT20 nuclei; n = 1473Cry1Δe
ZT20 nuclei. In B, (∗) P < 0.05; (∗∗∗) P < 0.001, t-test. In C, differences between genotypes are not significant.
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Inverse PCR and sequencing in wild-type and Bmal1 knockoutmouse liv-
ers and kidneys Six-hundred nanograms of 4C template was used
for PCR amplification using Sigma-Aldrich long-template PCR
system with bait-specific inverse primers conjugated to Illumina
sequencing adaptors (primer sequences are in Supplemental Ta-
ble S3) in a final volume of 50 µL in the following PCR program:
2 min at 94°C followed by 30 cycles of 15 sec at 94°C, 1 min at
55°C, and 3 min at 68°C and a final extension of 7 min at 68°C.
PCR were performed in parallel reactions with 6 × 100 ng of tem-
plate for each sample. PCR products were purified with the
AMPure XP beads system (Beckman Coulter), and amplification
profiles were analyzed by fragment analyzer and then sequenced
on Illumina HiSeq 2000 machines using single-end 100-bp read
length.

Inverse PCR and sequencing in the livers of Cry1Δe and wild-type litter-
mates Six-hundred nanograms of 4C template was used for PCR
amplification using Sigma-Aldrich long-template PCR system
with two-step PCR system from Illumina. Bait-specific inverse
primers conjugated to Illumina sequencing adaptors (primer se-
quences are in the Supplemental Table S3) were used in a first
PCR reaction in a final volume of 50 µL with the following pro-
gram: 2 min at 94°C followed by 20 cycles of 15 sec at 94°C, 1
min at 55°C, and 3 min at 68°C and a final extension of 7 min
at 68°C. PCRs were performed in parallel reactions with 6 × 100
ng of template for each sample. PCR products were purified
with the AMPure XP beads system (Beckman Coulter). Purified
products were pooled and used as the template of a second PCR
reaction with Nextera XT index kit version2 primers (FC-131-
2004) in a final volume of 50 µL with the following program: 2
min at 94°C followed by 10 cycles of 15 sec at 94°C, 1 min at
55°C, and 3 min at 68°C and a final extension of 7 min at 68°C.
PCR products were purified with the AMPure XP beads system
(Beckman Coulter) and then sequenced on NextSeq 500 ma-
chines using single-end 75-bp read length.

4C-seq analysis

Preprocessing computational methods Demultiplexed Fastq files
weremapped to themouse genome (mm9) using Bowtie2with de-
fault HTSstation parameters (http://htsstation.epfl.ch). Since
each restriction fragment contained two mapping sites (two
ends of the fragment), the fragment scorewas computed as the av-
erage of the number of reads per mapping site.

Quality control of 4C-seq data Samples with ≥75% of restriction
fragments without any counts in a window of ±1 Mb upstream
of and downstream fromeach baitwere not analyzed (Supplemen-
tal Table S1). The first five fragments upstream of and down-
stream from the bait (10 total) were not considered in the
analysis because they mostly contained partially digested and
self-ligated products.

Normalization and LWMR We follow amethod developed recently
in Yeung et al. (2018) with minor modifications. Briefly, raw read
counts for each sample were library size-rescaled by the normal-
ized sum of the read counts on the cis chromosome (excluding 10
restriction fragments around the bait). To control the variability
of low signals, in subsequent analyses, the fragment counts c in
each sample were log transformed using the variable

Y = log10
c
P
+ 1

( )
,

with P = 500. A weighted linear model was then fit locally using
a Gaussian window (σG = 2500 bp) centered on the fragment of

interest. For each position, nearby 4C-seq signals (Y ) were mod-
eled with fragment effects ai and condition effects bj (which can
be time, tissue, or genotype). In LWMR, these parameters were
estimated by minimizing the weighted sum S of squared residu-
als across replicates r: S = argmina,bΣi,j,rWi,j(Yi,j,r− ai− bj)

2, with
weights Wi,j defined as Wi,j =wg,i ×ws,j, where wg,i is the Gauss-
ian smoothing kernel at position i, and ws,j is a condition weight
based on the number of samples with nonzero counts on frag-
ment i. Specifically, we used ws = 0.5, 1.5, 2.5, 3.5, or 4.5 for frag-
ments with zero, one, two, three, or four replicates showing
nonzero counts, which down-weighs positions with high drop-
out rates. To estimate the statistical significance for differential
contacts (for example, ZT20 vs. ZT08), we propagated the esti-
mated uncertainty (standard errors for locally weighted regres-
sion) in the corresponding b values to calculate Z-scores and
used regularized t statistics with n – p degrees of freedom
(DOF; n is the number of data points within window, and p is
the number of parameters). For the analysis of 24-h rhythmicity
in contacts (weighted harmonic regression), we proceeded anal-
ogously by propagating the uncertainty in the bs for the six time
points to that in the squared 24-h Fourier coefficient and used
the χ2 test with two DOF (owing to the real and imaginary
parts). For each set of samples, we computed the regularized re-
sidual variance as

s̃2 = ŝ2 + s2
min exp −

�b
bs

( )
,

with ŝ2 as the estimator of the squared residuals, �b as the esti-
mated signal across samples, and bs = log10(2). s2

min prevents ar-
tificially small variance from positions of high dropout rates
and is estimated from the distribution of s̃2 across all fragments.
σmin ranges from 0.06 to 0.16 (same units as Y ), depending on
the bait (Supplemental Table S1).

H3K27ac and RNA Pol II ChIP-seq and DNase-I-seq analysis

Bam files from GSE60578 (Sobel et al. 2017) were analyzed in ge-
nomic regions ±1 Mb from the 4C-seq baits. There, read counts
were binned in 500-bp intervals and normalized by the library
size. The amplitude and phase of the log2 read counts of each of
the three signals were calculated for each bin after applying a run-
ning average of seven bins (three bins upstream, three bins down-
stream, and one bin in the center) to smooth the signal. Obtained
rhythmic amplitudes and phases were comparedwith differential
4C-seq signals. The rhythmic signal in each bin [phase, ampli-
tude, and −log10(p)] was mapped to a color using the hue, satura-
tion, and value (HSV) color scheme. Hue h was defined by the
phase of the oscillation, with blue as ZT0. The saturation s was
set to 1. The value v was set to a color if both amplitude Xa and
−log10(p) Xp were beyond thresholds ka = 1,kp = 4.5; otherwise,
the color was set to black. To obtain smooth transitions, v was
calculated using a Hill function with Hill coefficient n = 5 and

v = mini[(a,p)
− log (xi)5

k5
i − log (xi)5

( )
.

For TF-binding site predictions (Supplemental Table S4), we used
weight matrices of TFs defined by SwissRegulon (Pachkov et al.
2007; http://swissregulon.unibas.ch/fcgi/sr/downloads).

RNA-seq in the livers and kidneys of Cry1Δe and wild-type littermates

Parts of the livers and kidneys from the animals used for temporal
4C-seq experiments were frozen in liquid nitrogen immediately
after sacrifice. Organs were homogenized in 4 M guanidine thio-
cyanate, 25 mM sodium citrate, 1% β-mercaptoethanol, and 0.2
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M sodium acetate. Nucleic acids were extracted with phenol:
chloroform:isoamylalcohol, and RNA was precipitated with 4
M LiCl. RNA concentration and purity were measured using
nanodrop, and the quality was controlled by fragment analyzer.
Poly-A-selected RNA was sequenced on NextSeq 500 machines
using single-end 75-bp read length. mRNA levels were quantified
using kallisto version 0.42.4 (mm10) (Bray et al. 2016).

RNA-seq in the livers and kidneys of Bmal1 knockout and wild-type mice

To complement the mouse liver wild-type and Bmal1 knockout
RNA-seq data (GSE73554), transcriptomes of kidneys from
wild-type animals were measured following the same protocol
as in Atger et al. (2015). mRNA levels were quantified using the
same method as in Atger et al. (2015).

Circadian period estimation in Cry1Δe animals
and wild-type littermates

Estimation of the circadian period was performed as in Diessler
et al. (2017). Briefly, 8- to 10-wk-old males were single-caged
and kept under 12 h/12 h light/dark cycle for 14 d and switched
to constant darkness for 21 d. During the 5 wk of the experiment,
the locomotor activity was recorded with passive infrared sen-
sors. Data were sampled with 5-min resolution and analyzed us-
ing the χ2 periodogram function in the ClockLab software
(ActiMetrics). Food and water were available ad libitum during
the entire experiment.

Western blotting

Liver cytoplasmic extracts were prepared as described previously
(Jouffe et al. 2013). Protein extract concentrationswere quantified
using a BCA protein assay kit (Thermo Fisher Scientific), and 20
µg of liver protein extract was resolved by SDS-PAGE using stan-
dard procedures. Densitometry analyses of the blots were per-
formed using the ImageJ software. Naphtol blue and black
staining of the membranes was used as a loading control and
served as a reference for normalization of the quantified values.
CRY1 antibody (1/500) was from Abcam (ab104736).

smRNA-FISH on mouse liver sections

Parts of the livers from the same animals used in the 4C-seq and
RNA-seq were collected, immediately embedded in O.C.T. com-
pound (Tissue-Tek, Sakura-Finetek USA), and snap-frozen. The
RNA-FISH was done on 8-µm cryosections using a RNAscope
probe for Cry1 pre-mRNA (Cry1_intron1, catalog no. 500231) ac-
cording to the manufacturer’s instructions for the RNAscope
fluorescent multiplex assay (Advanced Cell Diagnostics). Nuclei
were counterstainedwithDAPI, and sectionsweremountedwith
ProLong Gold anti-fade mountant (Molecular Probes).

Microscope image acquisition, quantification, and ploidy assignment

The sections were imaged using a Leica DM5500 wide-field mi-
croscope equipped with a CCD camera (DFC 3000) for fluores-
cence (Leica Microsystem) and a motorized stage. Z-stacks were
aquired (0.2 µm between each Z position, 40 images per frame)
with an oil immersion 63× objective. The images were quantified
using ImageJ. To detect the fluorescent RNA-FISH spots, a Lapla-
cian filter was applied on amaximal projection, and localmaxima
were computed. Transcription site fluorescent intenstities (burst
size) were quantified on the sum projection of the nine best-fo-
cused stacks per image. Total transcription site signals were com-

puted using a mask of 3 × 3 pixels. Nuclei were detected using
filters, thresholding, and watershed transformation. Ploidy (2N,
4N, or 8N) was assigned to the nuclei based on their diameter
(Bahar Halpern et al. 2015). A four-component Gaussian mixture
model was fitted to the diameter distribution (package “mix-
tools” in R). Nuclei with a probability of >0.7 to belong to one
of the three inferred populations with the smallest means were
assigned to 2N, 4N, and 8N, respectively. The Gaussian distribu-
tion with the largest variance captured outliers in nucleus diam-
eters (>15–18 µm) and were discarded. Burst fraction was
calculated as the number of active transcription sites in each nu-
cleus divided by its estimated ploidy, and these fractions were
then averaged over the entire populations of nuclei (Fig. 5B,C).
For Supplemental Figure S10C, wemodeled the number of active
transcription sites with genotype-dependent slopes and com-
pared it with a reduced model without a genotype effect (lme4
function in R, likelihood ratio test). For Supplemental Figure
S10D, wemodeled themean intensity of intronic dots with geno-
type-dependent intercepts and compared it with a reducedmodel
with a single intercept.

Data availability

Raw and processed sequencing data generated from this study
(4C-seq and RNA-seq) have been submitted to Gene Expression
Omnibus under accession number GSE101423.
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Note added in proof

While this manuscript was in review, similar 24-h rhythmic pro-
moter–enhancer chromatin interactions at the Cry1 locus were
reported (Kim et al. 2018).
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Supplemental	 Figure	 1:	 4C-seq	 signal	 on	 cis	 and	 trans	on	 baits	 targeting	1	

Cry1	and	Gys2.	(A)	Temporal	Cry1	and	Gys2	mRNA	accumulations	in	mouse	liver	2	

(Atger	et	al.,	2015)	(reads	per	kilobase	per	million,	RPKM);	error	bars:	standard	3	

deviation	 (SD)	 of	 two	 animals;	 red	 and	 blue	 dashed	 lines:	 4C-seq	 time	 points.	4	

(B,C)	4C-seq	counts	density	vs.	genomic	position	from	Cry1	TSS	(B)	and	Gys2	TSS	5	

(C)	for	each	biological	replicate	at	ZT08	(red)	and	ZT20	(blue)	in	the	WT	mouse	6	

liver.	 Dashed	 lines:	 power-law	 fit.	 α	 are	 decay	 exponents.	 Insets:	 cumulative	7	

counts	on	the	cis	chromosome	from	the	bait	position	to	chromosome	end.	Black	8	

vertical	line	shows	1	Mb	from	bait.	(D,	E)	Cry1	TSS	(D)	and	Gys2	TSS	(E)	4C-seq	9	

counts	density	on	trans	chromosomes.	10	

	11	

	 	12	
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Supplemental	 Figure	 2:	 Validation	 of	 rhythmic	 chromatin	 interactions	 at	13	

Cry1	and	Gys2	by	targeting	their	respective	enhancers.	 (A,B)	4C-seq	signals	14	

from	 the	Cry1	 intron1	bait	 (A)	and	Gys2	exon8	bait	 (B)	 in	mouse	 liver	at	ZT08	15	

(red)	and	ZT20	(blue)	and	the	corresponding	Z-score	(ZT20-ZT08)	and	signed	–16	

log10(p)	 in	a	genomic	window	of	2	Mb.	Largest	differential	 signal	occurs	at	 the	17	

promoter	 region	of	 the	 respective	 genes.	Vertical	 arrows	 show	 location	of	 bait	18	

relative	to	TSS	of	the	respective	gene.	19	

	20	

	 	21	
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Supplemental	 Figure	 3:	 4C-seq	 in	 kidney	 show	 rhythmic	 chromatin	22	

interactions	at	Cry1	TSS	but	not	at	Gys2	TSS.	23	

(A)	Cry1	mRNA	profile	in	WT	mouse	liver	(black)	(Atger	et	al.,	2015)	and	kidney	24	

(red);	error	bars:	SD	of	two	animals.	(B)	4C-seq	signal	from	Cry1	TSS	bait	in	WT	25	

kidney	at	ZT08	(red)	and	ZT20	(blue)	 in	a	genomic	window	of	200	kb.	Vertical	26	

lines	for	Cry1	show	rhythmic	contacts	in	kidney	and	liver.	Z-score	(ZT20	vs	08)	27	

and	signed	–log10(p)	for	rhythmic	contacts	in	liver	(black)	and	kidney	(red).	(C)	28	

Same	as	(B)	using	a	2	MB	window.	(D)	same	as	(A)	for	Gys2	mRNA.	(E)	same	as	29	

(B)	 for	Gys2	TSS.	Vertical	 lines	 for	Gys2	 show	contacts	 that	are	 static	 in	kidney	30	

but	rhythmic	in	liver.	(F)	same	as	(C)	for	Gys2	TSS.	31	

	32	

	 	33	
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Supplemental	 Figure	 4:	 Dynamics	 of	 chromatin	 topology	 depends	 on	34	

BMAL1.	(A,B)	Cry1	(A)	and	Gys2	(B)	mRNA	profile	 in	WT	and	Bmal1	KO	mouse	35	

liver	 along	 the	 diurnal	 cycle	 from	 (Atger	 et	 al.,	 2015);	 error	 bars:	 SD	 of	 two	36	

animals.	(C,D)	4C-seq	signals	from	Cry1	TSS	(C)	and	Gys2	TSS	(D)	bait	in	WT	and	37	

Bmal1	 KO	 livers	 at	 ZT08	 and	 ZT20.	 Vertical	 lines	 show	 BMAL1-dependent	38	

rhythmic	contacts.	(E)	4C-seq	signals	from	negative	control	region	Hoxd4	in	WT	39	

and	Bmal1	KO	livers	show	static	chromatin	topology.	Bottom:	Z-score	(ZT20	vs	40	

08)	and	signed	–log10(p)	for	WT	and	Bmal1	KO	for	Hoxd4.	41	

	42	

	 	43	
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Supplemental	 Figure	 5:	 Deleting	 Cry1	 intronic	 enhancer	 in	 vivo	 shortens	44	

the	 free-running	 period	 and	 phase	 advances	 clock	 and	 clock-controlled	45	

genes.	(A)	Genome	browser	view	showing	the	CRISPR-Cas9	mediated	deletion	of	46	

the	 Cry1	 intronic	 enhancer	 in	 mouse	 (Cry1Δe).	 The	 evolutionary	 conserved	47	

300bp	 deletion	 (red	 square)	 covers	 the	 DHS	 containing	 a	 RRE	 described	 in	48	

mouse	 fibroblasts	 (Ukai-Tadenuma	 et	 al.,	 2011)	 within	 the	 H3K27ac	 marked	49	

intronic	 region.	 Note	 that	 this	 sequence	 is	 as	 conserved	 as	 Cry1	 exonic	50	

sequences.	(B)	Agarose	gel	showing	the	deletion.	(C-D)	Actograms	showing	the	51	

spontaneous	 locomotor	 activity	 recorded	 for	 14	 days	 in	 12	 hours/12	 hours	52	

light/dark	 (LD)	 cycles	 followed	 by	 21	 days	 in	 constant	 darkness	 (DD)	 in	 a	53	

representative	WT	(C)	and	a	Cry1Δe	animal	(D).		54	

	55	

	 	56	
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Supplemental	 Figure	 6:	Deleting	 Cry1	 intronic	 enhancer	 in	 vivo	 shortens	57	

phase	advances	the	clock	and	clock-controlled	genes.	58	

(A)	 PCA	 analysis	 of	 temporal	 RNA-seq	 data	 in	 the	 liver	 (left	 panel)	 and	 the	59	

kidney	(right	panel)	of	Cry1Δe	and	WT	littermates.	Right:	color	code	for	ZT	time.	60	

(B)	 Cry1	 mRNA	 profile	 (in	 Transcripts	 Per	 Million,	 TPM)	 in	 liver	 (black)	 and	61	

kidney	(red)	of	Cry1Δe	(dashed	line)	and	WT	(solid	line)	littermates.	Error	bars:	62	

SD	of	3	animals.	At	ZT20,	Cry1	mRNA	 levels	are	significantly	different	between	63	

WT	versus	Cry1Δe	 for	 liver	 and	kidney	 (respectively	p=0.045	 and	p=0.0037,	 t-64	

test).	 Cry1	 mRNA	 is	 phase	 advanced	 in	 Cry1Δe	 versus	 WT	 (p=0.011	 and	65	

p=0.0047	 for	 liver	 and	 kidney,	 respectively,	 bootstrap	 test).	 (C)	 Cry1	 intronic	66	

reads	around	the	clock	 for	WT	and	Cry1Δe	mice.	The	oscillations	 in	WT	versus	67	

Cry1Δe	 are	 significantly	 different	 (p=0.0063,	 F-test	 test)	 (D,E)	 Temporal	68	

expression	of	CRY1	protein	in	the	liver	cytoplasm	of	WT	and	Cry1Δe	littermates.	69	

Western	blot	 (D)	and	quantification	of	CRY1	relative	abundance	normalized	by	70	

the	Naptho	blue	black	coloration	of	the	membranes	(E).	CRY1	shows	a	decreased	71	

protein	 abundance	 in	Cry1Δe	 (p=0.02,	 F-test).	 (F)	 Differential	 phase	 between	72	

Cry1Δe	versus	WT	in	 liver	and	kidney.	Genes	selected	 for	core-clock	and	clock-73	

controlled	 transcripts	 (p<0.01,	 harmonic	 regression	 in	 both	 liver	 and	 kidney)	74	

based	on	Gene	Ontology	(GO)	annotation	indicated	in	table	S5.	75	

	76	

	77	

	78	

	 	79	
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Supplemental	 Figure	 7:	 4C-seq	 around	 the	 clock	 at	Gys2	TSS	 and	 at	Gys2	80	

exon8	demonstrates	rhythmic	chromatin	topology.	81	

(A-B)	4C-seq	signals	(LWMR	summarizing	n=3	animals	per	condition)	from	Gys2	82	

TSS	(A)	and	exon8	(B)	baits	across	time.	Right:	4C	signal	over	time	at	oscillatory	83	

chromatin	 contacts.	 (C)	 Statistical	 significance	 of	 rhythmic	 amplitudes	 of	84	

rhythmic	contacts	(p	<	10-7	for	TSS	and	exon8,	chi-squared	test).	Fragments	with	85	

p<0.01	 are	 colored	 by	 their	 time	 of	 peak	 contact	 frequency	 according	 to	 color	86	

legend	(right).	(D)	4C-seq	around	the	clock	on	negative	control	region,	Hoxd4,	in	87	

WT	animals	shows	static	chromatin	topology.	88	

	89	

	 	90	
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Supplemental	 Figure	 8:	 Deleting	 the	 Cry1	 intronic	 enhancer	 disrupts	91	

rhythmic	 chromatin	 topology.	 (A)	 4C-seq	 signals	 (LWMR	 summarizing	 n=3	92	

animals	 per	 condition)	 from	Cry1	TSS	 bait	 across	 time	 in	WT	 (top	 panel)	 and	93	

Cry1Δe	 livers	 (middle	 panel).	 (B)	 Statistical	 significance	 of	 amplitudes	 of	94	

rhythmic	 contacts	 (chi-squared	 test,	 bottom	 panel)	 for	 Cry1	TSS	 and	 Cry1Δe	95	

baits.	Fragments	with	p<0.01	are	colored	by	their	time	of	peak	contact	frequency	96	

according	 to	 color	 legend	 (right).	 (C)	 Idem	as	 (A)	 targeting	 the	RRE	 bait	 -7	 kb	97	

upstream	Cry1	TSS	(Cry1	upstream)	(D)	Idem	as	(B)	for	Cry1	upstream.	Vertical	98	

lines	 show	 rhythmic	 promoter-enhancer	 interactions	 that	 are	 disrupted	 in	99	

Cry1Δe	liver.	Vertical	arrows	show	location	of	the	bait	relative	to	the	Cry1	TSS.	100	

	101	

	 	102	
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Supplemental	Figure	9:	smRNA-FISH	against	Cry1	pre-mRNA	in	WT	versus	103	

Cry1Δe	 livers.	 (A)	 Size	 distribution	 of	 nuclei	 for	 a	 representative	 animal.	104	

Colored	 curves	 show	 fitted	 Gaussian	 mixture	 model	 corresponding	 to	105	

populations	with	2N,	4N,	8N	ploidy.	(B)	Fraction	of	nuclei	for	each	animal	(n=2	106	

per	 condition)	 assigned	 to	 different	 ploidy.	 (C)	Number	 of	 active	 transcription	107	

sites	(TSs)	averaged	per	animal	 increases	with	ploidy.	At	ZT20,	Cry1Δe	animals	108	

show	 reduced	number	 of	 TSs	 compared	 to	WT:	 lines	 show	mixed	 effect	 linear	109	

model	with	genotype-dependent	slopes	(p(H0:equal	slopes)=0.00014,	F-test);	at	110	

ZT08,	the	slopes	are	not	different	(p=0.84).	(D)	Active	TS	intensity	averaged	per	111	

animal	 shows	 comparable	 intensity	 across	 ploidy	 and	 conditions:	 lines	 show	112	

mixed	effect	model	with	genotype-dependent	intercepts,	 intercept	comparisons	113	

at	 both	 ZT08	 (p(H0:equal	 intercept)=0.53,	 F-test)	 and	 ZT20	 (p=0.41)	 are	 not	114	

significant.	115	

	 	116	
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Supplemental	Table	1:	Distribution	of	4C-seq	counts	on	the	genome.	Sheet	117	

1:	Distribution	of	4C-seq	raw	counts	for	each	bait	and	each	biological	replicate	in	118	

the	 genome.	 Exponent	 of	 the	 power-law	 fit	 is	 indicated.	 Sheet	 2:	𝜎"#$	used	 to	119	

regularize	the	residual	variance	for	each	bait.	120	

Supplemental	Table	2:	Sequences	of	CRISPR-Cas9	RNA	guides.	Sequences	of	121	

CRISPR-Cas9	RNA	guides	targeting	upstream	and	downstream	the	Cry1	intronic	122	

enhancer	element.	The	sequence	of	the	PCR	primers	used	to	screen	the	deletion	123	

is	indicated.	124	

	125	

Supplemental	Table	3:	4C-seq	primers.	Sequence	of	the	PCR	primers	used	for	126	

the	inverse	PCR	step	during	4C-seq	libraries	preparation.	127	

	128	

Supplemental	Table	4:	Motif	 counts.	List	 of	motif	 counts	 for	 TF	motifs	 from	129	

SwissRegulon.	 TFBS	 site	 count	 probabilities	 calculated	 using	Motevo.	 Genomic	130	

coordinates	from	mm9	annotations.		131	

	132	

Supplemental	Table	5:	GO	term	annotation.	List	of	GO	term	annotation	used	133	

to	 analyze	 temporal	 RNA-seq	 data	 in	 the	 liver	 and	 kidney	 of	 Cry1Δe	 and	WT	134	

littermates.	135	

	136	



Chapter 3. Clock-dependent chromatin topology modulates circadian transcription and
behavior

3.3 Conclusion and perspectives

This study establishes dynamic chromatin interactions as a novel regulatory layer underlying

circadian gene expression and behavior. By performing 4C-seq around the 24-hour day, we

find that the proper timing of Cry1 gene expression depends on a distal enhancer located in

the first intron. We establish the function of this distal enhancer by deleting the Cry1 enhancer.

Looking at single-cell transcription with smRNA FISH, we link this deletion with changes in

transcriptional bursting, specifically the burst frequency but not burst size. Finally, we find

a behavioral phenotype from mice with the deleted enhancer; the period of the circadian

locomotor activity was decreased by 15 minutes. This 15 minutes is expected because deleting

the entire Cry1 gene shortens locomotor activity by approximately 1.2 hours (Ko and Takahashi,

2006).

1. How are the chromatin conformation data relate to what is happening at the single cells?

Does transcription occur immediately after a promoter-enhancer contact?

2. How do we incorporate publicly available Hi-C datasets onto our study to predict more

loci with circadian dynamics?

86



4 Dynamic gene expression and regula-
tion from circadian and sleep-wake
processes in the mouse cortex

4.1 Introduction

This collaborative project with the Franken lab at the University of Lausanne investigates the

gene expression dynamics in response to acute sleep deprivation. The computational analysis

of RNA-seq profiles also use model selection, as in Yeung et al. 2018 but the models go beyond

simply periodic functions. We use the EEG data to predict sleep-wake processes. We use a

model selection framework to distinguish between sleep-wake and cosine dynamics as well as

interactions between the two. Surprisingly, we find that core clock genes are sensitive to sleep

deprivation; their amplitudes become damped for at least 48 hours after sleep deprivation

treatment. Overall, our results highlight surprising dynamics underlying how the circadian

clock embeds into gene regulatory networks regulating sleep/wakefulness.

This chapter is a manuscript in preparation and should be kept confidential.

4.2 Contributions

Charlotte Hor conceived the project, performed the RNA-seq, ATAC-seq, and EEG experiments,

with help from Yann Emmenegger and Jeffrey Hubbard. I developed the theoretical and

computational framework for analyzing the temporal dataset. I analyzed the RNA-seq data,

with help from Charlotte Hor and Maxime Jan. Maxime Jan analyzed the ATAC-seq data over

time to identify genomic loci with dynamic ATAC-seq signal. I analyzed the ATAC-seq data to

identify transcription factor binding motifs linked to gene expression dynamics.

87
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Abstract 

The timing and quality of sleep are thought to be regulated by the interaction of two 

processes. First, a sleep homeostat accumulates pressure for sleep during wake, and is 

relieved during sleep; second, the circadian timekeeping mechanism sets preferential 

times for sleep intervals. Although studies have implicated sleep-wake driven and 

circadian clock genes in the regulation of sleep, a systematic survey of how sleep and 

time-of-day govern gene expression dynamics and its underlying transcriptional 

regulation has not been established. Here, we sleep-deprived mice for 6 hours and 

tracked sleep-wake history, gene expression, and chromatin accessibility over more 

than 48 hours. Integrating the electroencephalography (EEG) data with RNA-seq and 

ATAC-seq, we developed a model selection framework to systematically infer gene 

expression dynamics that are driven by sleep-wake, time-of-day, or interactions of the 

two processes. From our model selection, we found that sleep-wake history, as 

measured by EEG, explained the largest fraction of variance, followed by rhythmic 

gene expression that was unaffected by sleep deprivation (SD). Remarkably, we found 

that the majority of circadian clock genes oscillated with damped amplitudes following 

SD, suggesting that circadian gene expression can adapt to perturbations. This damping 

was sustained for more than 48 hours after exposure. Sleep-wake driven dynamics in 

gene expression were accompanied by dynamics in chromatin accessibility sites. Open 

chromatin regions of immediate early genes were enriched for serum response factor 

(SRF) binding motifs. Furthermore, the predicted dynamics in SRF motif activity 

explained the upregulation of expression for many immediate early genes during SD. 

Our findings indicate that sleep-wake history and time-of-day interact to output diverse 

transcriptional dynamics in response to sleep deprivation.  
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Introduction 

 

Sleep regulation is classically viewed as the interaction of sleep homeostatic process 

and circadian process (Paul Franken 2013). The sleep homeostat increases pressure for 

sleep during wake and releases pressure during sleep. This sleep need can be monitored 

by electroencephalogram (EEG)-derived variable delta power (Mongrain et al. 2010). 

Although the timing at which sleep preferentially occurs is modulated by the circadian 

process, this time-of-day modulation does not affect the need for sleep. Arrhythmic 

mice with lesioned suprachiasmatic nuclei (SCN) still maintain the quantitative 

relationship between sleep-wake distribution and EEG delta power during NREM sleep 

(Trachsel et al. 1992). 

 

The circadian clock is encoded through negative feedback loops that generate robust 

oscillations even in constant conditions (Takahashi 2017). This ubiquitous oscillator is 

involved in a variety of physiological processes such as metabolism, blood pressure, 

wound healing, and locomotor activity (Lamia et al. 2011; Zuber et al. 2009; Hoyle et 

al. 2017; Mermet et al. 2018). Surprisingly, although lesioning the SCN of mice did not 

affect homeostatic sleep need, Cry1/Cry2 double knockout mice, which are also 

arrhythmic, showed increased time in NREM sleep, suggesting the molecular clock also 

regulates sleep (Wisor et al. 2002). Thus, both the circadian and sleep-homeostatic 

processes both contribute to sleep timing and sleep-wake distribution. 

 

Changes in gene expression can be dependent or independent of what time of day the 

sleep perturbation took place (Maret et al. 2007; T Curie et al. 2013), which is consistent 

with the two-process model of sleep homeostasis (Paul Franken 2013). Under this 

model, the homeostatic process (Process S) tracks the time spent awake and thus the 

sleep need, while the circadian process (also referred to as Process C) modulates the 

timing of sleep with regards to time of day. Therefore, under normal conditions where 

environmental changes occur periodically and predictably, the expression of genes 

displaying a nycthemeral (i.e., rhythm with a period of 24-hours) rhythm can be 

regulated by either of these processes or both in combination.  
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Sleep deprivation (SD) experiments allow to uncouple/disentangle the sleep homeostat 

from circadian processes (P. Franken and Dijk 2009). In fact, SD beginning at the dark-

to-light transition will cause mice to stay awake during a time when they normally sleep. 

Thus, sleep-wake driven genes will respond acutely to SD whereas dynamics that are 

robust to SD will be comparable to control mice. Studies comparing gene expression 

levels during SD with controls have identified many differentially expressed genes 

(Maret et al. 2007; Mongrain et al. 2010; Paul Franken et al. 2007; T Curie et al. 2013; 

Diessler et al. 2018). However, assessing the many possible dynamics requires 

comparing beyond time-matched control conditions. Sampling during and after SD and 

analyzing the entire time course can reveal rich dynamic processes. Thus, identifying 

the regulatory contributions from the sleep homeostat and circadian clock require 

considering gene expression dynamics along a sufficiently long time-course.  

 

Here, we measured gene expression and chromatin accessibility in adult C57BL6/J 

mice before, during, and over 48 hours following one 6-hour session of total sleep 

deprivation (SD), as well as 7 days after the intervention. This time course can then be 

compared with a baseline control day. We also report a long-term electro-

encephalographic (EEG) recording of vigilance states and correlates of sleep need over 

the same time interval. 

 

Our analysis integrates EEG, transcriptome, and chromatin accessibility data over 78 

hours sampled at least every 6 hours. Analyzing the entire time series using both 

unsupervised and supervised methods, we find that the largest group of gene expression 

dynamics come from a sleep-wake driven process, which could be modeled from the 

EEG data. We also find unexpected diversity of gene expression dynamics. Notably, 

the (peak to trough) amplitudes of most core clock gene expressions, such as Arntl, 

Nr1d1, and Nr1d2, were prolongedly damped after SD, suggesting that SD can have 

long-term effects on gene expression dynamics in the cortex beyond the initial 

treatment. Our time course data also reveal interactions between the sleep homeostat 

and time-of-day processes. Combining both the sleep homeostat and time-of-day allows 

genes to respond with larger fold changes relative to baseline compared to genes that 

are only sleep-wake driven. These gene expression dynamics are accompanied by 

dynamics in chromatin accessibility. Finally, we find sleep-wake driven activity of 

serum response factor (SRF) underlies the gene expression dynamics of many 
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immediate early genes previously implicated in sleep response, such as Arc, Egr2, Fos, 

and Junb.  

 

Materials and Methods 

Animals 

C57BL/6J male mice were purchased from Charles River France (Lyon, France) and 

allowed to habituate to our sleep study facility for 2-4 weeks prior to habituation to the 

experimental setting, and the experimentation. Animals were kept in accordance to the 

Swiss Animal Protection Act, and all experimental procedures were approved by the 

local veterinary authorities (Authorization nb. VD3037). 

 

Surgery and EEG recording 

The EEG cohort consisted of 6 male C57BL/6J mice 10-12 weeks at the time of SD. 

Surgical implantation of electrodes, EEG recording and data collection were performed 

according to our standard procedure (Mang and Franken 2012). EEG was recorded 

from 2 days prior to SD (which were averaged to constitute a 24-hour baseline) until 7 

days after SD. Electrophysiological signals were captured at 2000Hz, transformed from 

analog to digital, and downsampled and stored at 200Hz (EMBLA A10 and 

Somnologica-3; Medcare Flaga; Thornton). Sleep and wake states were annotated 

according to established criteria based on the properties of the EEG and EMG signals 

(Mang and Franken 2012). To determine spectral composition, EEG signals (0 to 90 

Hz) underwent a discrete Fourier transformation, using a window of 4-seconds 

(Hamming function), to determine power spectral density. Delta power (1-4Hz) was 

extracted for NREM epochs and averaged across the experiment. To counteract 

differences in absolute EEG power between individuals, power spectral density for each 

0.25 Hz bin was expressed as a percentage of the 2 baseline days from ZT8-12, when 

NREM delta power is lowest. SD and recovery time points were compared to baseline 

by means of a t-test. 

 

Sleep deprivation and tissue collection 

Mice for tissue collection were divided into two experimental cohorts, sleep deprived 

(SD) and non-sleep deprived (controls, or Ctr). After a one-week habituation to the 

experimental setting, at the age of 11-12 weeks, the SD mice were sleep-deprived by 

gentle handling for 6 hours starting at light onset (Zeitgeber time ZT0-ZT6) as 
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described in (Mang and Franken 2012), and allowed to recover according to the tissue 

collection schedule. Mice were anesthetised with isoflurane prior to decapitation. 

Cortex was rapidly dissected and flash frozen in liquid nitrogen. NSD mice were 

sacrificed at ZT0, ZT3, ZT6, ZT12, ZT18 of the first day of experimentation (samples 

T0-T18), serving as a baseline day (BL). SD mice were sacrificed at the same time of 

day on Recovery Day 1 (R1, samples T24-T42), at ZT0, ZT6, ZT12, ZT18 on Recovery 

Day 2 (R2, samples T48-66), as well as ZT0 and ZT6 on the 3rd day (samples T72-78), 

see Figure 1A. Finally, two groups of mice were allowed to recover for 7 days after SD, 

before being sacrificed at ZT0 and ZT6 (samples T192-198). We refer to each time 

point in hours from the start of the baseline day (T0), with sleep deprivation occurring 

from T24 to T30. In the analysis, samples at T0 and T24 were assigned evenly across 

two different batch runs of ZT0 NSD.  We collected 3-4 replicates per time point and 

condition, and 8 replicates of ZT0 NSD. 

 

Tissue processing and sequencing library preparation 

Frozen cortex of each individual was ground in liquid nitrogen and stored at -80°C until 

further use. Total RNA was extracted using the miRNeasy kit (Qiagen; Hilden, 

Germany) following the manufacturer's instructions.  

RNA-seq libraries were prepared using 1000 ng of total RNA and the Illumina TruSeq 

Stranded mRNA reagents (Illumina; San Diego, CA, USA) on a Sciclone liquid 

handling robot (PerkinElmer; Waltham, MA, USA) using a PerkinElmer-developed 

automated script.  Libraries were sequenced on the Illumina HiSeq 2500 sequencer, 

producing >36 million (median 55 million) single-end 100 bp reads.  

ATAC-seq was performed with minor modifications from (Jason D Buenrostro et al. 

2015). 100'000 nuclei were treated with 2.5 µl Tagment DNA enzyme (Nextera DNA 

Sample Preparation Kit, Illumina) in transposition buffer (10mM Tris Base, 5mM 

MgCl2, 10% DMSO, pH 7.6, adapted from (Wang et al. 2013)) at 37°C for 30 minutes, 

followed by cleanup on a Qiagen Minelute column. Fragments >1kb in size were 

removed using AmpureXP beads (Beckman Coulter Life Sciences; Indianapolis, IN, 

USA) using 0.6X and 1X volumes. DNA fragments were subjected to 11 cycles of PCR 

amplification with Nextera index primers (Illumina) and NEBNext High Fidelity 2X 

PCR Master Mix (New England Biolabs; Ipswich, MA, USA). PCR reactions were 

cleaned up with one volume AmpureXP beads, quantified by Qubit (ThermoFisher 

Scientific; Waltham, MA, USA) and quality controlled by Fragment Analyzer 
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(Advanced Analytical Technologies; Ankeny, IA, USA). Libraries were sequenced on 

the Illumina HiSeq 2500 sequencer, producing >25 million (median 41 million) 50 bp 

paired-end reads per sample after removal of duplicate and mitochondrial sequences. 

Due to sequencing failure, the ATAC-seq data of two out of three replicates of T66 

were excluded from the analysis. 

 

Sequencing data analysis 

Transcript abundance was quantified by kallisto version 0.43.0 (Bray et al. 2016) using 

the GRCm38 reference transcriptome (mm10) and the parameters --single -l 100 

-s 20 -b 100. The abundances were further processed using sleuth version 0.29.0 

(Pimentel et al. 2017), starting with merging transcript abundance into gene counts. We 

applied a detection cutoff of 5.5 on the mean gene counts across samples in the time 

series, yielding a set of 13'842 expressed genes which were used for further analysis. 

Batch effects were corrected by ComBat (R package sva_version 3.25.4 (Leek et al. 

2012)). 

 

ATAC-seq reads were aligned to the mouse genome (mm10) using bowtie2 (Langmead 

and Salzberg 2012) in paired-end mode, with the parameters recommended for open 

chromatin (--very-sensitive --maxins 2000 --no-mixed --no-discordant). 

Duplicate sequences were removed using samtools rmdup (Li et al. 2009).  

 

Differential gene expression 

To identify genes displaying a statistically significant effect over time, we used a 

likelihood ratio test implemented by sleuth version 0.29.0 (Pimentel et al. 2017), 

comparing a full model of time plus batch effects with a null model (no time effect) 

plus batch effects. We used FDR-adjusted p-value of 0.001 to identify 3461 statistically 

significant genes, which were used in the clustering and modeling analysis. 

 

mRNA profile clusters 

To uncover temporal patterns of mRNA abundance, we performed k-means clustering 

on statistically significant temporal gene expression (3461 genes). For a range of 

number of clusters, k, we calculated the within cluster variation as the sum of the 

Euclidean distance between data points and their assigned cluster centroids and 
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empirically chose k=10 as a balance between variance explained and generalizability 

of each cluster. Mean –log10(p-value) and effect sizes across genes in each cluster are 

represented as shaded rectangles above each plotted cluster, p-values are calculated 

from likelihood ratio test.  

 

mRNA time course analysis 

We used a model selection approach to classify temporal log mRNA abundance	𝑚 𝑡  

of expressed genes into the scenarios described in Results. The models can be expressed 

as stated below. For models 3, 5 and 6, sleep-wake history was used to model the 

synthesis rate of mRNA as the S process (P Franken, Chollet, and Tafti 2001) using 

EEG data from n=15 C57BL/6J mice (this study and (Diessler et al. 2018)). 

 

1: Flat model with constant 𝜇	and noise 𝜖 (flat) 

𝑚 𝑡 = 𝜇 + 𝜖  

 

2: Sinusoidal, oscillatory model with 24 h periodic rhythmic parameters 𝑎 and 𝑏 

𝑚 𝑡 = 𝜇 + 𝑎 cos(𝜔𝑡) + 𝑏 sin(𝜔𝑡) 	+ 𝜖	  (Cosine) 

Angular frequency 𝜔 = 2𝜋/24 h-1 

 

3: Sleep-wake driven model (S) 
67 8
68

= 𝑆 𝑡, 𝑈, 𝐿, 𝜏>, 𝜏? − 𝛾7BCD(𝑚 𝑡 ), where S is defined recursively: 

𝑆 𝑡, 𝑈, 𝐿, 𝜏>, 𝜏? = 	 	𝑈 − 𝑈 − 𝑆(𝑡 − 1 exp(−𝛥𝑡/𝜏>) if	awake
𝐿 + 𝑆(𝑡 − 1) − 𝐿 exp(−𝛥𝑡/𝜏?) 	if	sleep

	 with  

𝑆 𝑡O = 	𝑆O : initial value at time t= 0 

𝛥𝑡: mean period of continuous wake or sleep, defined by EEG data from 15 mice 

𝑈: asymptotic value for long periods of wake 

𝐿: asymptotic value for long periods of sleep 

𝛾7BCD: inferred degradation rate of mRNA. Slow degradation rates damp fluctuations 

from EEG data, while fast degradation rates follow the fluctuations.  

 

We solved the differential equation for 𝑚 𝑡  using the Euler method with a time step 

of 0.1 h.  
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We will call the solution of this differential equation 𝐷 𝑡, 𝛩?STTU  where 𝛩?STTU are the 

sleep parameters, 𝑈, 𝐿, 𝜏>, 𝜏?.  

 

4: Sinusoidal model with change in amplitude (A). 

𝑚 𝑡 = 𝜇 + 𝐶 𝑡 𝑎 cos 𝜔𝑡 + 𝑏 sin 𝜔𝑡 	+ 𝜖, 𝐶 𝑡 = 	1	for	t ≤ 33h
	𝑐	for	t > 33h  , where t=33 

h corresponds to 3 h after the end of sleep deprivation. Thus, in this model the amplitude 

is changed by a factor c after t = 33 h.  

 

5: Sleep-wake and oscillatory model (S+A) 

𝑚 𝑡 = 𝐷 𝑡, 𝛩?STTU + 𝑎 cos 𝜔𝑡 + 𝑏 sin 𝜔𝑡 + 𝜖, where 𝐷 𝑡, 𝛩?STTU  is the solution 

to the differential equation in the sleep model.  

 

6: Combined with change in amplitude model (S+A) 

𝑚 𝑡 = 𝐷 𝑡, 𝛩?STTU + 𝐶 𝑡 (𝑎 cos 𝜔𝑡 + 𝑏 sin 𝜔𝑡 ) + 𝜖  , where D and C are defined 

as above.  

 

7: Model with one parameter for each sampled time point (this is the most complex 

model, termed generic). 

𝑚 𝑡 = 𝛽 𝑡 + 𝜖; 𝑡 ∈ {0, 3, 6, 12, 18, 24, 27, 30, 36, 42, 48, 54, 60, 66, 72, 78} 

 

For models that are nonlinear (models 3-6) with respect to the parameters, we fitted the 

model with optim in R using the L-BFGS-B method. Linear models (models 1, 2, and 

7) were solved using the lm() function in R. The gene expression was fit in the log scale.  

 

For each gene, we estimated the posterior probability of each model by first calculating 

the Bayesian Information Criterion (BIC) scores: 

 

𝐵i = −2 ∗ 𝐿i + 𝑘ilog	(𝑛) 

 

where L is the log likelihood. A better fit will improve (decrease) the BIC, while a more 

complex model will penalize (increase) the BIC. Intuitively, an optimal model will fit 

the data while not using an excessive number of parameters. We assume the model 



	 96	

errors are independent and identically distributed following a Gaussian distribution 

with variance estimated from the fits: 

 

𝜎o =
1
𝑛 (𝑚i − 𝑚p)o

i

 

 

Exponentiating the BIC scores yields Schwarz weights 𝑤i: 

 

 

𝑃 𝑀i 𝐷 ≈ 𝑤i =
exp	(−𝐵i/2)
exp	(−𝐵u/2)u

 

 

and we then assigned each gene to the model 𝑖 corresponding to the largest 𝑤i. 

 

𝑤i assigns a probability to each model, and this probability measurement takes into 

account the number of parameters k in the model through the BIC score (i.e. complex 

models with large k are penalized by having a larger B, which would have smaller w). 

 

For comparison with previously published sleep-related gene lists, we opted to remove 

close calls between models by selecting the genes with a weight 𝑤i	in any model of at 

least 0.7, which yielded a set of 9620 confidently assigned genes.  

 

 

ATAC-seq peak detection: 

ATAC-seq data files were processed before peak calling as follows. Alignment files 

were converted into bed files and tags were extracted using bedtools version 2.26.0. 

Each tag position was shifted from +4 base pairs on the positive strand and -5 base pairs 

on the negative strand to center tags on transposase binding events as suggested by (J 

D Buenrostro et al. 2013). The peak calling was performed on pooled tags for replicates 

using Macs2 version 2.1.1 (Zhang et al. 2008) [--nomodel --shift -75 --

extsize 150], and peaks were filtered using a 0.05 FDR cutoff. Peak boundaries 

were merged between time points and conditions in order to build a common peak 

mapping reference among all samples, encompassing a total of 215'045 peaks. Finally, 

peak coverage was quantified using HTSeq version 0.6.1 for each sample using the 
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common mapping reference. A region was considered positive if it passed a q=0.05 

FDR threshold vs. random noise. As a quality control, we probed whether genes within 

accessible regions were enriched in cortex/brain tissue. To this end, we used the Bgee 

database and topAnat (Komljenovic et al. 2016) to look for significant enrichment, and 

found that the top 20 enriched tissues were all nervous system structures (FDR p-value 

< 10e-8). The proximity in the PCA of the two technical replicates at T24 attests the 

reproducibility of ATAC-seq over different batches of sequencing. 

 

ATAC-seq differential accessibility analysis: 

To identify peaks with differential accessibility, we first normalized count data using a 

TMM normalization, applied a 10 read count threshold, and used a likelihood ratio test 

implemented in edgeR. We compared chromatin accessibility of sleep deprivation 

samples (T24-198) with the corresponding ZT during baseline (T0-18, see Figure 1A). 

Thus, for differential accessibility at ZT3, we compare T27 with T3, at ZT6, T30 and 

T6, etc.   P-values were adjusted using the Benjamini & Hochberg (FDR) method 

(Benjamini and Hochberg 1995). K-means clustering was performed using k=10 

clusters.  

 

Genomic distribution of ATAC-seq peaks: 

The annotation of the detected ATAC-seq peaks was performed using PAVIS with the 

Ensembl_GRCm38/mm10 all genes reference annotation (Huang et al. 2013). 

 

Peak-to-gene expression association: 

To associate gene expression dynamics with chromatin accessibility dynamics, we used 

a pearson correlation coefficient across the samples and limited the possible association 

test within previously defined topological interaction domains (TADs), which  were 

computed from cortex tissue by (Dixon et al. 2012). TAD boundaries position were 

originally detected using the mm9 reference genome, so we converted them to mm10 

using CrossMap 0.2.6 (Zhao et al. 2014). For association statistics, we used a strategy 

similar to that implemented within FastQTL (Ongen et al. 2016). Each pair consisting 

of a peak and a gene within the same TAD were associated using the pearson correlation 

coefficient. For each gene, only the top correlation to a peak was kept. To control for 

multiple associations within a TAD and adjust nominal p-values, we used 1000 

permutations per gene and modelled the null distribution fitting a beta distribution. The 
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parameters were estimated using a maximum likelihood approach (R/MASS::fitdistr). 

Finally, a genome-wide p-value adjustment was computed using a qvalue procedure 

(R/qvalue). Of the 10894 genes mapping within a TAD, 3386 were associated to an 

ATAC-seq peak within the same TAD. 

 

Predictions of transcription factor binding site (TFBS) activity in promoters 

To predict the activity of TFBSs, we used position weight matrices of 179 mouse 

transcription factors (TFs) defined by SwissRegulon on mm9 

(http://swissregulon.unibas.ch/fcgi/sr/downloads). For each of the 179 position weight 

matrices, we scanned genomic regions (500 bp windows) 15 kb from promoters using 

MotEvo (Arnold et al. 2012). We filtered regions containing ATAC-seq counts greater 

than 0.1 RPM (reads per million mapped reads). The sitecount matrix of each motif was 

scaled across genes so that ranges in sitecounts were comparable across motifs. We 

inferred TF activity using the TF binding site predictions and the temporal mRNA 

abundance. To infer the TF activity, we applied a penalized regression model as 

previously described (Balwierz et al. 2014; Yeung et al. 2017) using an L2 norm penalty 

for regularization (ridge regression). Prior to the regression, we mean-centered the input 

matrix of temporal mRNA abundances, standardized the columns of the sitecount 

matrix (each motif across genes), and excluded genes that were assigned to the flat 

model.  

 

Motif search 

We used MEME-ChIP of the MEME suite (www.meme-suite.org) (Bailey et al. 2009) 

to search for motifs within differentially active regions.  

 

 

Results 

Study design 

We subjected mice to 6 hours of total sleep deprivation (SD), starting at light onset of 

the 12-hour light-dark cycle and collected cerebral cortex during SD and over the 

following 48 hours. We used Zeitgeber time (ZT) to indicate time since light onset. ZT0 

indicates light on while ZT12 indicates lights on. Mice are nocturnal and tend to be 

active during dark (ZT12 to ZT0/ZT24) and sleep during light (ZT0 to ZT12). A second 

group of mice was allowed to sleep ad libitum, undisturbed in another room, and 
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sacrificed at the same times of day as SD mice, serving as non-sleep deprived controls 

or baseline day (Figure 1A). We profiled gene expression by RNA sequencing of 

polyadenylated transcripts (RNAseq) and accessible portions of the genome by ATAC-

seq (J D Buenrostro et al. 2013). To characterize the behavioural response and recovery 

after SD, we recorded EEG data in a separate group of 6 mice over 9 days, including 2 

days of baseline prior to SD, the day of SD and 6 days of recovery.  

 

Behavioral response and recovery after SD 

To assess the long-term dynamics of the sleep phenotype, we quantified non-rapid eye 

movement sleep (NREMS) in 6-hour intervals, as well as hourly EEG delta power, a 

well-known correlate of sleep need (P Franken, Chollet, and Tafti 2001). We observed 

the typical distribution of sleep over 24 hours in baseline, with mice spending most of 

the time of the light period asleep, while being predominantly awake during the dark 

period (Figure 1B, bottom). Delta power in NREMS (Figure 1B, top) followed the 

amount of sleep pressure, high after spontaneous waking in the dark phase and low 

during the light phase. We also observed the well-known effects of sleep deprivation. 

NREMS rebounded during the 12 hours following SD and an increase in delta power 

immediately after the end of SD. We found that values stopped differing from baseline 

already during the second half of the dark phase after SD for NREMS, and as of 

Recovery day 2 for delta power (Figure 1B). REM sleep was affected in the same 

manner as NREMS (not shown).  

 

Principal component analysis reveals sleep-wake state as main driver of 

transcriptome dynamics 

We asked whether the fast recovery of the phenotype in the EEG data could be observed 

at the gene expression level, and whether novel dynamic patterns beyond the EEG 

dynamics could be observed. We therefore analyzed the temporal dynamics of 

transcriptomes.  

We first examined the detected fraction of our transcriptome dataset (13'842 genes) 

using principal component analysis (PCA, Figure 1C). We observed that samples 

formed three groups along the first principal component (PC1) axis. The right-most 

group clustered time points during the light phase where mice generally spend more 

time asleep, while the middle group represents time points taken during the dark phase 

of the LD cycle where mice are predominantly awake. Surprisingly, ZT3 and ZT6 
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during SD (T27 and T30) separate far from their time-matched baseline (T3 and T6) 

towards the awake group, suggesting that PC1 dynamics follow sleep-wake history 

rather than Zeitgeber time.   

 

To illustrate the sleep-wake-driven dynamics underlying PC1, we overlaid PC1 with 

the average EEG signal over time (Figure 1D).  This integration showed that sleep-

wake history explains PC1. During periods of wake, PC1 increases, while during 

periods of sleep, PC1 decreases. Importantly, the six-hour sleep deprivation period, 

PC1 reaches its maximum. PC1 thus reflects the amount of sleep prior to sample 

collection, and illustrates the impact of sleep-wake distribution on mRNA expression.  

 

No significant differences in gene expression 7 days after exposure 

We next examined the temporal dynamics of gene expression. We noted that expression 

levels on Day 7 (T192 and T198) were not significantly different from baseline at T0 

and T6 according to our differential gene expression analysis (FDR adjusted pval > 

0.05, Supplemental Figure 1A). We therefore focused our analysis and modeling to the 

baseline day 0 and recovery days 1 and 2 (T0 to T78).  

 

Clustering analysis reveals dynamics that are driven by sleep-wake history and 

also robust to sleep-wake history 

To uncover general temporal patterns in our data, we performed an exploratory analysis 

using k-means clustering. We clustered temporal expression of 3461 genes identified 

as displaying statistically significant temporal variation from T0 to T78 (FDR-adjusted 

p-value < 0.001, Methods). 

We observed distinct dynamics over 78 hours (Figure 2). Genes in clusters 1-6 

displayed an immediate response to SD, many of which showed statistically significant 

differences at T27 and T30 (p-values across genes in each cluster are summarized for 

in Figure 2). In cluster 7, the response is longer, many genes showing differences up to 

T36. Cluster 8 showed a delayed response; the largest differences occur 18 hours after 

the end of SD.  

 

Clusters 9 and 10 showed prominent 24-hour rhythm and, on average, the genes are not 

perturbed by SD (mean pvalues across genes > 0.24). However, comparing individual 
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genes at days 1 and 2 against baseline day 0 found damped rhythms after SD such as 

Arntl, Fabp7, Obscn, and Lfng. (Supplemental Figure 2). 

 

Concerning the recovery properties, clusters 1-4 showed a fast recovery, at T36 the 

expression on average has returned to baseline. By contrast, genes in clusters 5 and 6 

reverted more slowly on average, returning to baseline at T42. Genes in cluster 7 also 

displayed slow recovery, returning back to baseline levels 12 hours after peak response. 

Finally, in cluster 8 we observed a pattern compatible with a "rebound", in the form of 

an exacerbated increase at T48 following the initial downregulation at T36. By T54, 

cluster 8 has returned to baseline.  

 

Generally, we observed that SD can have three effects on dynamics relative to baseline. 

First, SD can up or downregulate expression of genes that are normally down or 

upregulated during ZT0-6 in baseline, respectively. This effect explains a significant 

variance (20%) of the transcriptome, as shown in our PCA analysis (cluster 1-6). 

Second, this down or upregulation can extend to ZT12 (cluster 7 and 8), suggesting 

slower dynamics or downstream effects from the first effect. Third, SD can dampen 24 

h periodic oscillations in mRNA abundance. 

 

Overview of identified models 

Explicitly modeling the temporal dynamics of mRNA profiles can offer advantages 

over unsupervised methods. From our downstream analysis of clusters, we devised 6 

models to explain the log gene expression dynamics of 13842 detected genes 

(Supplemental Figure 3): (1) constant flat model; (2) sleep-wake history modeled from 

the EEG data (S); (3) cosine dynamics with 24-hour rhythm (C); (3) cosine with 

amplitude change after SD (A); (5) sleep-wake + cosine (S+C); (6) sleep-wake + cosine 

with amplitude change (S+A). The parameters of the model can give useful insights to 

the underlying dynamics, competing models can be systematically compared, and 

explicit hypotheses can be tested. For example, using a sleep-wake model will unify 

dynamics that appear in separate clusters (e.g., Cluster 1 and 4 both may have genes 

that are driven by sleep-wake). The C and A models can separate dynamics that appear 

in the same cluster (e.g., Cluster 9 contains both SD-robust and SD-sensitive dynamics). 

To select competing models, we used the Bayesian Information Criterion (BIC) to 

balance model fit and model complexity (Methods). Of note, we also included a generic 
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model where the gene expression is modeled as the mean expression across replicates 

at each time point to assess the possibility of more complex dynamics not explained by 

any of the models. We found that the BIC weight w was always lower for the generic 

model than the other 6 models, meaning no genes were selected in the generic model, 

and therefore not included in subsequent analyses.   

 

For each gene, we fit temporal gene expression to 6 models (examples shown in Figure 

3A). We summarized the genes assigned to each model genome-wide (Figure 3B). We 

found that, out of all temporal models (i.e., excluding flat model, Figure 3C), sleep-

wake driven model had the most genes assigned to it (Model S Figure 3D). This large 

number of genes is consistent with our PCA and clustering analysis, where sleep-wake 

driven was also observed in the first component in PCA (Figure 1C) and in clusters 1-

6 (Figure 2) in clustering analysis.  

 

The cosine model contained the second highest number of genes (Model C, Figure 3E), 

which is consistent with the clustering analysis (cluster 9 Figure 2). We found Hif3a, 

hypoxia-inducible factor 3, as a prominent example of robust oscillations despite SD. 

This robust model suggests a significant fraction of dynamic genes is unaffected by SD.  

 

Interestingly, the cosine with amplitude change model had the third most genes, 

suggesting SD can affect dynamics beyond the 3-hour SD (Model A Figure 3B). For 

Nr1d1 (Figure 3A), the best model based on BIC (BIC weight w) was cosine with 

amplitude change, suggesting SD damped its amplitude (Figure 3A bold line). SD also 

damped the amplitude of Arntl, another core clock gene (Takahashi 2017). Surprisingly, 

we found that SD damped the amplitudes of many clock genes, suggesting that the 

circadian clock is adaptive to sleep-wake history.  

 

Finally, our approach identified more complex models involving both a sleep-wake 

plus cosine effect (Model S+C Figure 3G) or a sleep-wake plus cosine with amplitude 

change (Model S+A Figure 3H). These novel dynamics suggest a significant number 

of genes have expression dynamics that integrate sleep-wake history with time-of-day.  

 

Model parameters predict novel transcriptional dynamics  
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We found the overwhelming majority of known sleep-waken driven genes to be 

correctly assigned by our model selection method. 58 out of 61 genes previously 

described as sleep-wake driven (Mongrain et al. 2010) were fully or partially explained 

by the EEG data (Model S, S+C, S+A, Supplemental Figure 4A). Similarly, we looked 

at a list of 92 genes previous described as affected by SD (Maret et al. 2007), and found 

that 77/92 of the genes were also inferred to be affected by SD in our model select 

(Supplemental Figure 4B). These corroborations from independent datasets suggest 

that our model selection recapitulated known SD-affected genes. 

 

Analyzing sleep-wake driven genes, we found that SD can upregulate or downregulate 

genes (Figure 4A) in the sleep-wake model. The largest fold changes (log2 FC > 2.5, 

or nearly six fold) were exclusively upregulated genes. The sleep model also predicted 

an mRNA half-life which buffers fluctuations from the EEG data and calculates the 

mRNA abundance (Figure 4A) (Methods). We found that large fold changes 

corresponded to short half-lives, consistent with fast dynamics (REF here? E.g. Wang 

2018 or/and Zeisel MSB?). Finally, the fitted time constants describing the S process 

corresponding to wake tended to be longer than the one for sleep, as expected from 

mice spending more time awake than sleep (Figure 4B). Overall, the inferred 

parameters from sleep-wake driven genes were consistent with fast dynamics and 

relatively large fold changes, most of them upregulated during wake.  

 

In contrast to the sleep-wake model, the cosine dynamics are robust to SD over 78 hours. 

Analysis of the fold change and peak times from the model found that large amplitude 

oscillations tended to occur near the dark-light or light-dark transition (Figure 4C). 

Notable genes such as Sgk1, glucocorticoid regulated kinase, and Cldn5, principal tight 

junction protein in blood-brain barrier, showed 24-hour oscillations in gene expression. 

 

We found that SD can alter amplitudes in rhythms, suggesting effects that last beyond 

the initial 3 hour SD. Notable examples with damped amplitudes include circadian 

clock genes Nr1d1, Nr1d2, Arntl, and Per3 (Figure 4D, Figure 4E). This model 

contained also genes with increased amplitudes after sleep deprivation such as Erbb3, 

Eva1b, Zfp473, and Akr1cl. In sum, SD can have long-term effects lasting at least 48 

hours after sleep deprivation.  
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Finally, we found interactions between the cosine and sleep model (additive in the log 

scale). These combined models (S+C and S+A) in general allow genes to be 

upregulated or downregulated with significant fold changes compared to sleep model 

(Figure 4F left, Supplemental Figure 5A,B). This dynamic process can be coupled with 

decreased fold changes after SD (S+A model). Examples here include Per2,a gene 

shown to have complex interactions between the two processes (Thomas Curie et al. 

2013), as well as clock output genes Dbp, Nfil3, and Bhlhe41 (Supplemental Figure 5C-

F). The large proportion of core clock and clock output genes found to show 

interactions between sleep-wake history and time-of-day highlight how these two 

fundamental processes interact to generate complex temporal dynamics. On day 2, 

aggregate analysis for models S, S+C, and S+A, showed that the amplitudes are 

comparable between day 0 (Figure 4E right).  

 

Genome-wide analysis of ATAC-seq shows sleep-wake driven dynamics in 

chromatin accessibility 

We next asked which regulatory elements are involved in the response to SD, a 

compartment that has hitherto not been explored in this context. We identified a total 

of 215'045 ATAC-positive regions (read counts > 10 in at least one time point). 

Principal component analysis of accessibility levels in these regions separated samples 

by sleep-wake history (Figure 5A), consistent with the RNA-seq analysis (Figure 1C). 

 

Accessibility peaks from all time points and conditions were mainly located in intronic 

or intergenic regions (Supplemental Figure 6A). When considering only peaks that 

were differentially active at specific time points (Supplemental Figure 6B-D), the 

proportion of intergenic regions was increased, suggesting that SD influences 

accessibility of distal rather than genic or proximal elements. Genes associated with 

DAS were enriched among models involving sleep-wake dynamics (Supplemental 

Figure 6E-J) compared to all peaks at all ZT (p-values < 2e-10, chi-square test) except 

ZT12 (p-value = 0.48).  

 

To probe the general dynamics of chromatin accessibility, we performed a K-means 

clustering analysis (Figure 5B) and found sleep-wake driven dynamics. The strongest 

differential signal relative to baseline occurred during the 6h SD (T27 vs T3 and T30 

vs T6). We examined the differential accessibility at each time point after SD compared 



	 105	

to its corresponding baseline day time. 1542 peaks were differentially accessible in SD 

at ZT3 (T27, after 3h SD) and 1906 at ZT6 (T30, end of 6h SD) and 678 at ZT12 (T36, 

after 6h of recovery, (Figure 5C). Chromatin accessibility signal tended to increase 

during sleep deprivation (ZT3 and ZT6). Overall, dynamics in chromatin accessibility 

was most pronounced during sleep deprivation, and returned to baseline by 12 hours 

after SD. 

 

Chromatin accessibility correlate with gene expression dynamics 

We correlated ATAC-seq peaks to genes by calculating the Pearson correlation across 

samples (Methods). We restricted the possible peaks associated with each gene within 

topologically associated domains (TADs) defined from Hi-C data generated from the 

mouse cortex (Dixon et al. 2012). This analysis identified chromatin interactions that 

correlated with gene expression dynamics (Figure 6A-F). For example, we found Hif3a, 

a gene relatively robust to SD, with a correlated ATAC-seq peak 2 kb from the promoter 

(Figure 6C). The promoter of Ciart, a gene that has been reported to be directly 

regulated by the clock (Anafi et al. 2014), had peak with correlated dynamics, which 

appeared to have damped amplitudes on the first day after SD and a partial amplitude 

recovery in the second day. We found that ATAC-seq dynamics in mouse cortex can 

show about a fold change of about 1.5, comparable with changes in the RNA-seq data. 

In sum, gene expression dynamics can be accompanied by dynamics in chromatin 

accessibility.  

 

Activity of Serum Response Factor underlies immediate early gene expression 

To infer which transcription factors drive the gene expression dynamics, we performed 

a motif activity analysis using the MARA (Balwierz et al. 2014). Briefly, we used the 

SwissRegulon database (179 mouse TF motifs) to search for TF motifs within ATAC-

positive 500 bp bins within a distance of 15 kb of promoter of genes. We included genes 

that were assigned to any dynamic model (i.e., S, C, A, S+C, S+A). Using the sitecount 

matrix as covariates and the log gene expression as observed data, MARA uses a ridge 

regression framework to infer the temporal activity of each motif that could explain the 

gene expression data.  

 

We found the SRF motif to be the most statistically significant candidate underlying 

the temporal gene expression dataset (Figure 7A). The inferred temporal activity of 
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SRF increased during sleep deprivation and rapidly returned to baseline, suggesting 

that its activity could be predicted by the sleep-wake history of the mouse (Figure 7B). 

Indeed, our model selection method on the SRF motif activity confirmed a sleep-wake-

driven response. Furthermore, analysis of TF motifs near (<5 kb) promoters of sleep-

wake-driven genes, such as Egr2, Fos, Egr1, and Arc, predicted SRF binding sites 

(Figure 7C). These SRF binding sites corresponded to open chromatin regions in the 

cortex. SRF ChIP-seq data in fibroblasts (C Esnault et al. 2014) showed binding of SRF 

to the SRF motifs present in those genes (Figure 7C, Supplemental Figure 7A). The 

ATAC-seq signal overlapping the SRF motif and ChIP-seq data is flat over time (Figure 

7D, Supplemental Figure 7B), consistent with the regulation of many SRF target genes 

requiring cofactors (Cyril Esnault et al. 2017). SRF has previously been reported to 

regulate wake-dependent immediate early gene expression (Ramanan et al. 2005), 

consistent with SRF activity increasing during SD. In sum, our analysis suggests that 

SRF may underlie the immediate early response of many sleep-wake-driven transcripts.  

 

Discussion  

We characterized the dynamics of transcriptome and regulatory elements over time 

before, during and after a 6 hours of sleep deprivation. By integrating EEG data into 

the analysis, we developed a model selection approach to systematically identify 

modules of gene expression with distinct dynamics. This framework separated genes 

that could be explained by the EEG data (S), cosine dynamics (C), cosine with 

amplitude change (A), as well as interactions between sleep-wake and time-of-day 

(S+C and S+A). We attributed the largest gene expression variance to S dynamics, 

followed by C, A, S+C, and S+A.  

 

The EEG data explained sleep-wake gene expression dynamics. These dynamics often 

show large fold changes in baseline. During SD, gene expression responds divergently 

relative to baseline and rapidly recover to baseline within 12 hours after SD. These 

dynamics reflect the sleep-wake behavior as determined by EEG. Remarkably, the first 

principal component could be explained by the EEG data, suggesting that sleep-wake 

behavior explains the largest variance in our dataset. We inferred SRF as a potential 

transcriptional regulator underlying dynamics of immediate early genes, which are 

upregulated during SD.  
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We also found that many SRF target genes had accessibility that was open but static, 

consistent with the role of cofactors in SRF target gene regulation (Cyril Esnault et al. 

2017). Overall, we found that the largest fold changes (> 2.5) due to SD tended to come 

from SRF target genes (e.g., Arc, Egr2, Fos, Egr1, Junb, Nr4a1, Homer1), suggesting 

that SRF may play a role in sleep regulation. Our integrated analysis also found 

widespread chromatin accessibility dynamics that coupled with transcriptome, 

suggesting that sleep-wake history can alter transcription factor binding and mediate 

gene expression dynamics.   

 

In a significant fraction of genes (734 genes), SD had a prolonged effect (>48 hours 

after SD) on mRNA levels. Remarkably, clock genes These long-term effects may 

eventually recover, but our simple cosine model with amplitude change after SD 

adequately explained expression of 734 genes, suggesting that these genes did not fully 

recover back to the baseline within 48 hours. Among the 734 genes are many clock 

genes, such as Nr1d1, Nr1d2, Cry2, and Arntl. Our results demonstrate that SD can 

disrupt oscillations in circadian clock expression by damping amplitudes, and this 

damping can be sustained long after exposure.  

 

Finally, the S+C and S+A models combined EEG data with time-of-day highlight the 

interaction between sleep-wake history, sleep deprivation, and time-of-day. S+C 

allowed baseline fold changes to be modest and increase substantially during sleep 

deprivation.  

 

The S+A model incorporated an amplitude change, often damping, following sleep 

deprivation. Many clock output genes such as Dbp, Tef, Nfil3, Bhlhe41 showed damped 

oscillations after SD. This model also included complex interactions between the two 

processes, exemplified by Per2 (Thomas Curie et al. 2013). Overall, we found the 

dynamics of most clock and clock output genes to be affected by sleep deprivation, 

many of them through damping of amplitudes. These damped amplitudes persist long 

after SD. Further studies will determine exactly how this disruption effect on other parts 

of physiology, such as metabolism, or alter response in subsequent environmental 

exposures. 
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Figure 1  
Overview of experimental design, sleep-wake activity, and gene expression data. 
A. Tissue collection schedule with time from beginning of the experiment and corresponding ZT. 
White and grey bars below the timeline represent the 12h:12h light/dark cycle. Red bar: sleep 
deprivation. B. Long-term effects of sleep deprivation on NREMS delta power and quantity. 
Following a 6-hour SD (red shade), mice display a significant increase in delta power (1-4Hz; 
top), which returns to baseline levels within 6 hours. Subsequent recovery days (starting at T48) 
show no differences from baseline and persists until the end of the recording period, 6 days after 
SD (T192). Quantification of NREM sleep showed similar patterns across all recording days 
(bottom). Mean delta power values (± SEM) are expressed as the percentage of intraindividual 
deviations from the period of baseline with the lowest overall power (average across 2 days, 
ZT8-12). Blue bars represent significant differences from corresponding baseline values (t-test, 
p<0.05, n=6). C. Principal component analysis of expression of 13842 detected genes in RNA-
seq data. Parenthesis of axis label denotes fraction of variance explained by the component. 
Colors denote Zeitgeber time (ZT0 to ZT12: light period, ZT12 to ZT18: dark period). Text 
labels denote time of experiment, in hours. D. First principal component plotted over time (top). 
Temporal EEG data over time averaged across 15 mice (bottom). EEG y-axis denotes number of 
minutes awake over last 5 minutes. PC1 increases during wake and decreases during sleep.  
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Figure 2 
Clustering analysis of gene expression data reveals diverse responses to sleep deprivation. 
K-means clusters of 3461 genes (filtered with FDR adjusted pval < 0.001, likelihood ratio test). 
Blue dashed line: average of the cluster under baseline, repeated over the three days of the 
experiment. Light grey thick line: cluster average. Red shaded box: time of sleep deprivation. Grey 
shaded bar: Mean statistical significance across genes using t-test between sleep-deprived and 
baseline conditions at the same Zeitgeber time.  
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Figure 3  
Model selection identifies sleep-wake dynamics and amplitude changes. 
A: Example of model fitting on Nr1d1. Dots represent RNA level data points, the red box the SD. 
Data points and all models, listed on bottom right. Best fitting model (cosine with amp change) is 
highlighted in dark bold.. Lower bar show EEG data for minutes spent awake in 5-minute bins. B. 
Number of genes per model. C-H. Examples of 6 genes with their best fit model shown in solid 
line. 
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Figure 4 
Summary of gene modules by model parameters. 
A. Summary of log2 abundance (positive values denote increased during sleep deprivation) as a 
function of predicted mRNA half-life in the sleep-wake driven model (S). B. Time constants of S 
process show a trend where the rate of change during wake is slower than during sleep.   
C. Polar plot of log2 fold change (radial distance) and time of peak expression (clockwise angle) 
for genes in cosine model (C). 
D. Log2 fold change before (x-axis) and after (y-axis) sleep deprivation treatment for genes in 
cosine with amp change (A).  
E. Polar plot of log2 fold change before and after of selected genes with damped amplitudes.  
F. Relative change in amplitude relative to day 0 (baseline) in sleep-wake driven models. Left 
panel show relative changes for day 1, right panel for day 2. 
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Figure 5 
Dynamics in chromatin accessibility and response to sleep deprivation.  
A. PCA of heatmap of accessibility levels in SD and NSD samples at ZT6 and ZT12 (215’045 
ATAC-seq loci). B. K-means clustering analysis of ATAC-seq signal (K=10) showing sleep-wake 
driven dynamics. C. Volcano plots comparing ATAC-seq differences at T3 vs. T27 (3 hours of 
SD), T6 vs. T30 (6 hours of SD), and T12 vs T36 (6 hours after SD).  
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Figure 6  
Chromatin accessibility correlate with gene expression dynamics 
(A-F) Examples of ATAC-seq peaks with dynamics that correlate with gene expression. Plot 
titles highlight gene name and its respect model, peak location (mm10), and distance from 
promoter. The log RNA-seq (red) and ATAC-seq (blue) counts are plotted on the same y-axis. 
Solid lines represent mean across biological replicates. Dashed lines represent the baseline 
signal. Open circles are signal from individual mice.  
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Figure 7 
Serum response factor underlies immediate early gene expression dynamics. 
A. 179 TF motifs ranked by z-score that explains the temporal dynamics in the RNA-seq dataset. 
B. Inferred temporal activity of SRF. Error bars are standard deviations of the activity estimates. 
Lower bar denotes time spent awake in 5-minute bins. C. Candidate SRF target genes. RNA-seq 
(top) and ATAC-seq (bottom) signal near SRF target genes. Additional tracks: SRF motif: 
predicted SRF motif instances. SRF ChIP-seq: ChIP-seq targeting SRF from (Esnault et al. 2014). 
D. ATAC-seq (blue) and RNA-seq (red) levels over time at candidate SRF target genes. Solid lines 
represent mean across biological replicates. Open circles represent individual mice. Dashed line 
shows the baseline signal.  
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Supplemental Figure 1 
MA plot showing almost no differential expression 7 days after the beginning and end of sleep 
deprivation. 
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Supplemental Figure 2 
Examples of individual genes in cluster 9 and 10 with damped amplitudes after sleep deprivation 
treatment.  
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Supplemental Figure 3 
Schematic of the 6 models used for model selection.  
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Supplemental Figure 4 
A. Distribution of 61 sleep-wake driven genes previously identified from Mongrain et al. 2010 to 
the 6 models used in this study.  
B. Distribution of 92 previously identified to be affected by sleep deprivation from Maret et al. 
2007 to the 6 models used in this study.  
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Supplemental Figure 5 
A-B. Examples of genes in S+C model showing upregulation (A) and downregulation (B) during 
sleep deprivation.  
C-F. Examples of genes in S+A model. Clock and clock output genes show immediate response 
to sleep deprivation and damped amplitudes to after sleep deprivation. 
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Supplemental Figure 6 
A-D. Genomic features of ATAC-seq peaks. A. All peaks. B-D Peaks differentially active at T27 
vs T3 (B), at T30 vs T6 (C), and at T36 vs T12 (D).   
E-J. Distribution of models for genes associated by nearest differentially active sites (DAS). E. 
ZT3 compares T27 vs. T3. F. ZT6 compares T30 vs. T6. G. ZT12 compares T12 vs. T36. 
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Supplemental Figure 7 
Serum response factor underlies immediate early gene expression dynamics. 
A. Candidate SRF target genes. RNA-seq (top) and ATAC-seq (bottom) signal near SRF target 
genes. Additional tracks: SRF motif: predicted SRF motif instances. SRF ChIP-seq: ChIP-seq 
targeting SRF from (Esnault et al. 2014). B. ATAC-seq (blue) and RNA-seq (red) levels over time 
at candidate SRF target genes. Solid lines represent mean across biological replicates. Open circles 
represent individual mice. Dashed line shows the baseline signal. 



Chapter 4. Dynamic gene expression and regulation from circadian and sleep-wake
processes in the mouse cortex

4.3 Conclusion and perspectives

This study systematically analyzes how dynamics in the transcriptome are regulated by the

sleep homeostat (Process S), time-of-day (Process C), as well as interactions between the two.

Sleep deprivation can have complex effects on circadian gene expression. Robust oscillations

in clock and clock outputs genes become damped after sleep deprivation, and this damping

can last more than 48 hours. Thus, our results highlight that observing clock genes during

short exposures can have surprising responses. We also introduce a statistical framework to

infer the types of dynamics that occur in gene expression. Our work also motivates future

questions:

1. How do these non-periodic temporal functions manifest in other systems such as liver

and feeding?

2. What are the single-cell dynamics and are there cell-types with specific dynamics within

the cortex?

3. What underlying processes make dynamics robust or sensitive to sleep deprivation?

And is it possible to perturb or reinforce rhythms using drugs?
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5 Conclusions and Perspectives

This thesis addressed three specific questions in chronobiology:

1. How does the circadian clock regulate gene expression in a tissue-specific manner?

2. What is the role of chromatin interactions in regulating circadian gene expression and

circadian rhythms?

3. How does diurnal gene expression respond to acute perturbations such as sleep depri-

vation?

I explored the first question in Chapter 2 by studying transcriptional regulatory modes that

enable gene expression to oscillate in one tissue but not others. I developed new methods to

analyze high-dimensional data with periodic structure, namely complex-valued singular value

decomposition (cvSVD) in combination with model selection. This combination of unsu-

pervised methods (cvSVD) and supervised methods (model selection) allowed me to explore

circadian gene expression data at different levels of granularity: from whole transcriptome to

gene modules and to individual genes.

Future extensions from this study will deepen our understanding of dynamic gene regu-

lation across tissues. First, we can extend to posttranscriptional regulation to ask how the

proportions of transcriptional and posttranscriptional regulation vary across tissues. I partici-

pated in the development of methods to systematically compare proportion of genes regulated

by transcriptional and posttranscriptional regulation in mouse liver (Wang et al., 2018). Ap-

plying these methods to multiple tissues may reveal insights on dynamic gene expression of

different regulatory layers across tissues. Second, the question of how gene products from one

tissue influence gene expression in others have not been systematically explored. Inferring

dynamics of inter-tissue communication requires the analysis of temporal gene expression

data across tissues. Tissue-specific activation of ligand-receptor pathways can be predicted by

analyzing RNA-seq data of tissues, using computational frameworks such as MARA. These

predictions could then be validated by using agonists to activate candidate pathways. Moving
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Chapter 5. Conclusions and Perspectives

beyond mRNA abundance towards protein abundance and activity (e.g., protein phosphory-

lation) (Wang et al., 2017) will provide a more direct readout of pathway activation. Finally,

the 4C-seq analysis across tissues found that enhancers can contact a rhythmic promoter

while looping out nearby nonrhythmic alternative promoters, confining rhythmic enhancer

activity to specific promoters. How this specificity arises poses an intriguing open question

for future work. Scaling up this analysis to many promoters using techniques such as pro-

moter capture Hi-C (Mifsud et al., 2015) will allow different promoter structures (e.g., CpG

islands, CG content, presence of core promoter motifs) to be analyzed to infer links between

enhancer-promoter contacts and promoter sequences.

For the second question, discussed in Chapter 3, Jerome and I established chromatin

interactions as a fundamental layer that enables proper timing of the circadian clock as well

as robustness of circadian locomotor activity. Deleting a regulatory enhancer in Cry1 showed

not only disrupted 24-hour dynamics in chromatin looping, but also shortened period of

locomotor activity. The period decreased by 15 minutes, which is expected considering that

deleting the entire Cry1 gene shortens the locomotor activity by approximately 1.2 hours

(Ko and Takahashi, 2006). This study incorporated analysis at the level of single cells, whole

tissue, and behavior. Nevdertheless, how robust oscillations at the tissue level result from from

noisy gene expression in single cells, which involve promoter-enhancer interactions, remain

fascinating open questions. Single-cell technologies that combine single-molecule RNA FISH

with DNA labeling are beginning to uncover the temporal relationships between chromatin

interactions and gene expression (Chen et al., 2018). Extending these techniques to investi-

gate gene expression dynamics will elucidate how intrinsic and extrinsic noise components

influence dynamics.

Third, Chapter 4 looks beyond periodic gene expression by investigating how the plasticity

of the circadian clock responds to sleep deprivation over multiple days. This unique study

design allowed us to incorporate sleep-wake history of mice to model long-term dynamics

in gene expression. Our findings that many core clock and clock output genes have damped

amplitudes and perturbed dynamics in response to sleep deprivation suggest that clock genes

are highly adaptive to physiological states and acute environmental changes. We have gained

quantitative insights in the role of sleep homeostat and the circadian clock on gene expression

dynamics, and further investigations that include other perturbations such as feeding and

temperature would reveal the different pathways in which the circadian clock responds to

environmental signals. These other perturbations would look into other tissues such as liver

and link with how different tissues may coordinate physiology to adapt to environmental

changes. The tissue heterogeneity in the mouse cortex warrants further investigation into

the single-cell dynamics and how different cell-types may have different dynamics within

the cortex. Our findings also open up questions to whether robustness or sensitivity of sleep

deprivation could be modulated pharmacologically.

We expect advances in experimental techniques as well as in computational methods

to uncover general principles of how organisms have embraced environmental periodicity
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across all scales of biological. For example, theoretical frameworks of how rhythms in enzyme

activities, metabolic flux, and metabolites coordinate to propagate rhythms may uncover

novel insight into the regulation of temporal metabolism (Thurley et al., 2017). Assaying

enzyme activities in a high-throughput manner, which is yet not available, would enable

systematic analysis of the relationships between gene expression, protein abundance, and

enzyme activities.

While most molecular chronobiology findings have relied on studying model organisms,

there are currently exciting opportunities for human chronobiology. Genome-wide association

and candidate gene sequencing studies have reported genetic variations associated with

circadian clock-related and sleep phenotypes (Hu et al., 2016; Allebrandt et al., 2010; Shi et al.,

2017). Beyond self-reported questionnaires, temporal activity patterns or other behaviors,

such as food intake, can be directly measured through smartphone apps (Gill and Panda,

2015; Roenneberg, 2017; Aledavood et al., 2015). Time stamping assays such as the BodyTime

assay combines both computational methods and, critically, a robust experimental assay to

accurately determine internal circadian time from a blood sample (Wittenbrink et al., 2018).

Analysis of large consortia of gene expression across human tissues (Ardlie and Guigó, 2017)

can be used to discover circadian gene expression in human by applying machine learning

methods discussed above (Anafi et al., 2017; Ruben et al., 2018). Taking into account natural

variation may reveal coding and noncoding variants that affect circadian gene expression.

Noncoding variants may be associated with disruption of TF binding (Deplancke et al., 2016),

which can reveal links between genome variation and gene regulatory mechanisms under-

lying behavioral phenotypes. A first indication that non-coding DNA may have phenotypic

consequence on the mammalian circadian clock was reported in mouse (Mermet et al., 2018),

and it will be interesting to assess how this generalizes to human.
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S. A. Kay, F. J. Doyle, A. Relogio, A. Korenčič, L. Bintu, L. V. Sharova, C. C. Friedel, L. Doelken,

Z. Ruzsics, U. H. Koszinowski, R. Zimmer, D. M. Suter, C. Lee, J. P. Etchegaray, F. R. Cagam-

pang, A. S. Loudon, S. M. Reppert, N. Preitner, E. E. Hamilton, S. A. Kay, G. Rey, K. Vanselow,

R. Košir, A. C. A. Meireles-Filho, A. F. Bardet, J. O. Yanez-Cuna, G. Stampfel, A. Stark, A. S.

Hansen, E. K. O’Shea, N. Koike, A. Bugge, D. Feng, H. Cho, S. Gery, H. Reinke, A. Gerber, S. Ko-

jima, E. L. Sher-Chen, C. B. Green, C. Jouffe, P. O. Westermark, H. Herzel, M. Ukai-Tadenuma,

K. Oishi, K. Bozek, D. W. Huang, B. T. Sherman, R. A. Lempicki, M. Ohsugi, X. Luo, Y. Ikeda,

K. L. Parker, S. Mora, J. E. Pessin, S. Pikkarainen, H. Tokola, R. Kerkela, H. Ruskoaho, T. Hai,

M. G. Hartman, K. Oishi, J. S. Menet, J. Rodriguez, K. C. Abruzzi, M. Rosbash, B. Schwan-

hausser, M. S. Robles, J. Cox, M. Mann, D. Mauvoisin, Z. Ouyang, Q. Zhou, and W. H. Wong.

Timing of circadian genes in mammalian tissues. Scientific Reports, 4:1349–1354, jul 2014.

ISSN 2045-2322. doi: 10.1038/srep05782. URL http://www.nature.com/articles/srep05782.

Benoît Kornmann, Olivier Schaad, Hermann Bujard, Joseph S Takahashi, and Ueli Schibler.

System-driven and oscillator-dependent circadian transcription in mice with a conditionally

active liver clock. PLoS biology, 5(2):e34, feb 2007. ISSN 1545-7885. doi: 10.1371/journal.

pbio.0050034. URL http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.

0050034.

Anna Kriebs, Sabine D Jordan, Erin Soto, Emma Henriksson, Colby R Sandate, Megan E

Vaughan, Alanna B Chan, Drew Duglan, Stephanie J Papp, Anne-Laure Huber, Megan E

153

http://www.ncbi.nlm.nih.gov/pubmed/19955445 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2795539
http://www.ncbi.nlm.nih.gov/pubmed/19955445 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2795539
http://www.ncbi.nlm.nih.gov/pubmed/29439026 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5995144
http://www.ncbi.nlm.nih.gov/pubmed/29439026 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5995144
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddl207 http://academic.oup.com/hmg/article/15/suppl{_}2/R271/624758/Molecular-components-of-the-mammalian-circadian http://hmg.oxfordjournals.org/content/15/suppl{_}2/R271.full
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddl207 http://academic.oup.com/hmg/article/15/suppl{_}2/R271/624758/Molecular-components-of-the-mammalian-circadian http://hmg.oxfordjournals.org/content/15/suppl{_}2/R271.full
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddl207 http://academic.oup.com/hmg/article/15/suppl{_}2/R271/624758/Molecular-components-of-the-mammalian-circadian http://hmg.oxfordjournals.org/content/15/suppl{_}2/R271.full
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddl207 http://academic.oup.com/hmg/article/15/suppl{_}2/R271/624758/Molecular-components-of-the-mammalian-circadian http://hmg.oxfordjournals.org/content/15/suppl{_}2/R271.full
http://www.nature.com/articles/srep05782
http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.0050034
http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.0050034


Bibliography

Afetian, Ruth T Yu, Xuan Zhao, Michael Downes, Ronald M Evans, and Katja A Lamia.

Circadian repressors CRY1 and CRY2 broadly interact with nuclear receptors and modulate

transcriptional activity. Proceedings of the National Academy of Sciences of the United States

of America, 114(33):8776–8781, jul 2017. ISSN 1091-6490. doi: 10.1073/pnas.1704955114.

URL http://www.ncbi.nlm.nih.gov/pubmed/28751364http://www.pubmedcentral.nih.gov/

articlerender.fcgi?artid=PMC5565439.

Katja A Lamia, Kai-Florian Storch, and Charles J Weitz. Physiological significance of a

peripheral tissue circadian clock. Proceedings of the National Academy of Sciences

of the United States of America, 105(39):15172–7, sep 2008. ISSN 1091-6490. doi:

10.1073/pnas.0806717105. URL http://www.pnas.org/content/105/39/15172.shorthttp:

//www.ncbi.nlm.nih.gov/pubmed/18779586http://www.pubmedcentral.nih.gov/

articlerender.fcgi?artid=PMC2532700.

Katja A. Lamia, Stephanie J. Papp, Ruth T. Yu, Grant D. Barish, N. Henriette Uhlenhaut, Johan W.

Jonker, Michael Downes, and Ronald M. Evans. Cryptochromes mediate rhythmic repres-

sion of the glucocorticoid receptor. Nature, 480(7378):552–6, dec 2011. ISSN 1476-4687. doi:

10.1038/nature10700. URL http://www.nature.com/doifinder/10.1038/nature10700http:

//www.ncbi.nlm.nih.gov/pubmed/22170608http://www.pubmedcentral.nih.gov/

articlerender.fcgi?artid=PMC3245818http://dx.doi.org/10.1038/nature10700.

Gwendal Le Martelot, Donatella Canella, Laura Symul, Eugenia Migliavacca, Federica Gi-

lardi, Robin Liechti, Olivier Martin, Keith Harshman, Mauro Delorenzi, Béatrice Desvergne,

Winship Herr, Bart Deplancke, Ueli Schibler, Jacques Rougemont, Nicolas Guex, Nouria

Hernandez, Felix Naef, and the CycliX Consortium. Genome-Wide RNA Polymerase II

Profiles and RNA Accumulation Reveal Kinetics of Transcription and Associated Epigenetic

Changes During Diurnal Cycles. PLoS Biology, 10(11):e1001442, nov 2012. ISSN 1545-7885.

doi: 10.1371/journal.pbio.1001442. URL http://dx.plos.org/10.1371/journal.pbio.1001442.

Ning Leng, Li-Fang Chu, Chris Barry, Yuan Li, Jeea Choi, Xiaomao Li, Peng Jiang, Ron M

Stewart, James A Thomson, and Christina Kendziorski. Oscope identifies oscillatory genes

in unsynchronized single-cell RNA-seq experiments. Nature Methods, 12(10):947–950, aug

2015. ISSN 1548-7091. doi: 10.1038/nmeth.3549. URL http://www.nature.com/articles/

nmeth.3549http://www.nature.com/doifinder/10.1038/nmeth.3549.

Feng Liang, Rui Paulo, German Molina, Merlise A Clyde, and Jim O Berger. Mixtures of <i>g</i>

Priors for Bayesian Variable Selection. Journal of the American Statistical Association,

103(481):410–423, mar 2008. ISSN 0162-1459. doi: 10.1198/016214507000001337. URL

http://www.tandfonline.com/doi/abs/10.1198/016214507000001337.

Erez Lieberman-Aiden, Nynke L van Berkum, Louise Williams, Maxim Imakaev, Tobias Ragoczy,

Agnes Telling, Ido Amit, Bryan R Lajoie, Peter J Sabo, Michael O Dorschner, Richard Sand-

strom, Bradley Bernstein, M A Bender, Mark Groudine, Andreas Gnirke, John Stamatoy-

annopoulos, Leonid A Mirny, Eric S Lander, and Job Dekker. Comprehensive mapping

of long-range interactions reveals folding principles of the human genome. Science (New

154

http://www.ncbi.nlm.nih.gov/pubmed/28751364 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5565439
http://www.ncbi.nlm.nih.gov/pubmed/28751364 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5565439
http://www.pnas.org/content/105/39/15172.short http://www.ncbi.nlm.nih.gov/pubmed/18779586 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2532700
http://www.pnas.org/content/105/39/15172.short http://www.ncbi.nlm.nih.gov/pubmed/18779586 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2532700
http://www.pnas.org/content/105/39/15172.short http://www.ncbi.nlm.nih.gov/pubmed/18779586 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2532700
http://www.nature.com/doifinder/10.1038/nature10700 http://www.ncbi.nlm.nih.gov/pubmed/22170608 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3245818 http://dx.doi.org/10.1038/nature10700
http://www.nature.com/doifinder/10.1038/nature10700 http://www.ncbi.nlm.nih.gov/pubmed/22170608 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3245818 http://dx.doi.org/10.1038/nature10700
http://www.nature.com/doifinder/10.1038/nature10700 http://www.ncbi.nlm.nih.gov/pubmed/22170608 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3245818 http://dx.doi.org/10.1038/nature10700
http://dx.plos.org/10.1371/journal.pbio.1001442
http://www.nature.com/articles/nmeth.3549 http://www.nature.com/doifinder/10.1038/nmeth.3549
http://www.nature.com/articles/nmeth.3549 http://www.nature.com/doifinder/10.1038/nmeth.3549
http://www.tandfonline.com/doi/abs/10.1198/016214507000001337


Bibliography

York, N.Y.), 326(5950):289–93, oct 2009. ISSN 1095-9203. doi: 10.1126/science.1181369.

URL http://www.ncbi.nlm.nih.gov/pubmed/19815776http://www.pubmedcentral.nih.gov/

articlerender.fcgi?artid=PMC2858594.

Phillip L Lowrey and Joseph S Takahashi. Mammalian circadian biology: elucidating

genome-wide levels of temporal organization. Annual review of genomics and human

genetics, 5:407–41, jan 2004. ISSN 1527-8204. doi: 10.1146/annurev.genom.5.061903.

175925. URL http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3770722{&}tool=

pmcentrez{&}rendertype=abstract.

S Luck, K Thurley, P F Thaben, and P O Westermark. Rhythmic degradation explains and

unifies circadian transcriptome and proteome data. Cell Rep, 9(2):741–751, 2014. doi:

10.1016/j.celrep.2014.09.021. URL http://www.ncbi.nlm.nih.gov/pubmed/25373909.

Biliana Marcheva, Kathryn Moynihan Ramsey, Ethan D. Buhr, Yumiko Kobayashi, Hong

Su, Caroline H. Ko, Ganka Ivanova, Chiaki Omura, Shelley Mo, Martha H. Vitaterna,

James P. Lopez, Louis H. Philipson, Christopher A. Bradfield, Seth D. Crosby, Lellean

JeBailey, Xiaozhong Wang, Joseph S. Takahashi, and Joseph Bass. Disruption of the

clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Na-

ture, 466(7306):627–631, jul 2010. ISSN 0028-0836. doi: 10.1038/nature09253. URL

http://www.nature.com/articles/nature09253.

Daniel Mauvoisin, Florian Atger, Loïc Dayon, Antonio Núñez Galindo, Jingkui

Wang, Eva Martin, Laetitia Da Silva, Ivan Montoliu, Sebastiano Collino, Francois-

Pierre Martin, Joanna Ratajczak, Carles Cantó, Martin Kussmann, Felix Naef,

and Frédéric Gachon. Circadian and Feeding Rhythms Orchestrate the Diurnal

Liver Acetylome. Cell Reports, 20(7):1729–1743, aug 2017. ISSN 22111247. doi:

10.1016/j.celrep.2017.07.065. URL http://www.ncbi.nlm.nih.gov/pubmed/28813682http:

//www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5568034http://linkinghub.

elsevier.com/retrieve/pii/S2211124717310586.

Jérôme Mermet, Jake Yeung, Clémence Hurni, Daniel Mauvoisin, Kyle Gustafson, Céline Jouffe,

Damien Nicolas, Yann Emmenegger, Cédric Gobet, Paul Franken, Frédéric Gachon, and

Félix Naef. Clock-dependent chromatin topology modulates circadian transcription and

behavior. Genes & development, mar 2018. ISSN 1549-5477. doi: 10.1101/gad.312397.118.

URL http://www.ncbi.nlm.nih.gov/pubmed/29572261.

Borbala Mifsud, Filipe Tavares-Cadete, Alice N Young, Robert Sugar, Stefan Schoenfelder,

Lauren Ferreira, Steven W Wingett, Simon Andrews, William Grey, Philip A Ewels, Bram Her-

man, Scott Happe, Andy Higgs, Emily LeProust, George A Follows, Peter Fraser, Nicholas M

Luscombe, and Cameron S Osborne. Mapping long-range promoter contacts in human

cells with high-resolution capture Hi-C. Nature Genetics 2015 47:6, 47(6):598, may 2015.

ISSN 1546-1718. doi: 10.1038/ng.3286. URL https://www.nature.com/articles/ng.3286.

Jennifer A Mohawk, Carla B Green, and Joseph S Takahashi. Central and peripheral circadian

clocks in mammals. Annual review of neuroscience, 35:445–62, jan 2012. ISSN 1545-4126.

155

http://www.ncbi.nlm.nih.gov/pubmed/19815776 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2858594
http://www.ncbi.nlm.nih.gov/pubmed/19815776 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2858594
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3770722{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3770722{&}tool=pmcentrez{&}rendertype=abstract
http://www.ncbi.nlm.nih.gov/pubmed/25373909
http://www.nature.com/articles/nature09253
http://www.ncbi.nlm.nih.gov/pubmed/28813682 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5568034 http://linkinghub.elsevier.com/retrieve/pii/S2211124717310586
http://www.ncbi.nlm.nih.gov/pubmed/28813682 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5568034 http://linkinghub.elsevier.com/retrieve/pii/S2211124717310586
http://www.ncbi.nlm.nih.gov/pubmed/28813682 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5568034 http://linkinghub.elsevier.com/retrieve/pii/S2211124717310586
http://www.ncbi.nlm.nih.gov/pubmed/29572261
https://www.nature.com/articles/ng.3286


Bibliography

doi: 10.1146/annurev-neuro-060909-153128. URL http://www.pubmedcentral.nih.gov/

articlerender.fcgi?artid=3710582{&}tool=pmcentrez{&}rendertype=abstract.

Emi Nagoshi, Camille Saini, Christoph Bauer, Thierry Laroche, Felix Naef, and Ueli Schibler.

Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained

oscillators pass time to daughter cells. Cell, 119(5):693–705, nov 2004. ISSN 0092-8674.

doi: 10.1016/j.cell.2004.11.015. URL http://www.sciencedirect.com/science/article/pii/

S0092867404010542.

Damien Nicolas, Benjamin Zoller, David M Suter, and Felix Naef. Modulation of transcriptional

burst frequency by histone acetylation. Proceedings of the National Academy of Sciences of

the United States of America, page 201722330, jun 2018. ISSN 1091-6490. doi: 10.1073/pnas.

1722330115. URL http://www.ncbi.nlm.nih.gov/pubmed/29915087.

Elphège P. Nora, Bryan R. Lajoie, Edda G. Schulz, Luca Giorgetti, Ikuhiro Okamoto, Nicolas

Servant, Tristan Piolot, Nynke L. van Berkum, Johannes Meisig, John Sedat, Joost Gribnau,

Emmanuel Barillot, Nils Blüthgen, Job Dekker, and Edith Heard. Spatial partitioning of the

regulatory landscape of the X-inactivation centre. Nature, 485(7398):381–385, apr 2012.

ISSN 0028-0836. doi: 10.1038/nature11049. URL http://www.nature.com/doifinder/10.

1038/nature11049.

Gabriel Oh, Sasha Ebrahimi, Matthew Carlucci, Aiping Zhang, Akhil Nair, Daniel E. Groot,

Viviane Labrie, Peixin Jia, Edward S. Oh, Richie H. Jeremian, Miki Susic, Tenjin C. Shrestha,
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