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Abstract
Program synthesis was first proposed a few decades ago, but in the last decade it has gained

increased momentum in the research community. The increasing complexity of software has

dictated the urgent need for improved supporting tools that verify the software’s correctness,

and that automatically generate code from a formal contract provided by the programmer,

along with a proof of the generated code’s correctness. In addition, recent technological

developments have provided tools that have enabled researchers to revisit the synthesis

problem. The recent rise of SMT solvers has given synthesis tools a reliable and automated

way to verify synthesized programs against contracts. The introduction of counter-example

guided inductive synthesis has provided researchers with a flexible synthesis algorithm that

they can adapt according to their specific domain.

In this dissertation, we develop new algorithms to synthesize recursive functional programs

with algebraic data types from formal specifications and/or input-output examples. We

manage to scale beyond the reach of other similar tools to synthesize nontrivial functional

programs, with a focus on data structure transformations.

First, we address the problem of precisely specifying the desired space of candidate programs,

described by context free grammars (CFGs). We implement and evaluate a method for reduc-

ing the program space by describing axioms of the target language and other domain-specific

restrictions on the level of the CFG, without explicitly generating and rejecting undesirable

programs. We provide a method that extracts a program model from a corpus of code and

that builds a probabilistic CFG from it. We showcase the usefulness, both individually and in

tandem, of these methods.

Second, we develop an algorithm to efficiently traverse a possibly unbounded space of can-

didate programs generated from a probabilistic CFG. This algorithm is an implementation

of the A* best-first search algorithm on the derivation graph generated from the CFG, with a

number of domain-specific optimizations. We evaluate the efficiency of the algorithm as well

as the effectiveness of the optimizations.

Finally, we describe a program repair framework that locates and fixes bugs in erroneous

functional programs. Our novel fault localization technique detects erroneous snippets with

concrete execution and eliminates false positives by analyzing dependencies between execu-

tion traces. After the erroneous code snippet is discovered, a modified version of our synthesis

algorithm generates fixes for it by introducing modifications to the original erroneous code.

Keywords: functional programming, program synthesis, program repair, formal grammars
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Résumé
La synthèse de programmes a été proposée il y a déjà quelques décennies, mais elle a récem-

ment gagné en popularité dans le milieu de la recherche. La complexité toujours croissante

des logiciels impose un besoin urgent pour de meilleurs outils de développement qui véri-

fient la validité de ceux-ci, et qui génèrent automatiquement une implémentation à partir

de contrats formels fournis par le développeur, ainsi qu’une preuve de la validité du logiciel

généré. De plus, de récents développements techniques ont permis aux chercheurs de revisiter

le problème de la synthèse de programmes. L’essor des solveurs SMT a fourni aux outils de

synthèse un moyen robuste et automatique de vérifier les programmes synthétisés contre

leur spécification. L’apparition de la synthèse inductive guidée par contre-exemples a fourni

aux chercheurs un algorithme de synthèse flexible qui peut être adapté à chaque domaine

spécifique.

Dans cette dissertation, nous développons de nouveaux algorithmes pour synthétiser des

programmes fonctionnels récursifs sur des types algébriques de données à partir de spécifi-

cations formelles et/ou d’exemples d’entrées-sorties. Nos algorithmes surpassent la portée

d’outils similaires et parviennent à synthétiser des programmes non triviaux avec un accent

sur les transformations de structures de données.

Tout d’abord, nous abordons le problème de la spécification précise de l’espace de recherche

de programmes candidats, que nous décrivons à l’aide de grammaires non contextuelles

(CFGs). Nous implémentons et évaluons une technique de réduction de l’espace de recherche

en décrivant certains axiomes du langage ciblé ainsi que d’autres restrictions spécifiques au

domaine particulier directement au niveau de la grammaire non contextuelle. Ceci nous évite

d’avoir à explicitement construire puis rejeter des programmes indésirables. Nous fournissons

une méthode qui extrait un modèle de programme d’un corpus de code, et qui génère une

grammaire non contextuelle stochastique à partir de celui-ci. Nous démontrons l’utilité de ces

deux techniques à la fois individuellement et en tandem.

Ensuite, nous développons un algorithme pour visiter efficacement un ensemble potentielle-

ment infini de programmes générés à partir d’une grammaire non contextuelle stochastique.

Cet algorithme est une implémentation de l’algorithme A* sur le graphe de dérivations généré

à partir de la grammaire, augmenté de plusieurs optimisations spécifiques au domaine. Nous

évaluons la performance de l’algorithme et l’efficacité des optimisations.

Finalement, nous décrivons un système de réparation de programmes qui localise et corrige

les erreurs contenues dans des programmes fonctionnels erronés. Notre technique novatrice

de localisation d’erreurs détecte les fragments erronés à l’aide d’exécutions concrètes puis
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élimine les faux positifs en analysant les dépendances entre les différentes traces. Une fois

le fragment coupable identifié, une version adaptée de notre algorithme de synthèse résout

l’erreur en modifiant le code erroné originel.

Mots-clefs : programmation fonctionnelle, synthèse de programme, réparation de pro-

gramme, grammaires formelles
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Introduction

Software development is the process of translating human intention into computer code.

As humans and computers process completely different languages (if indeed the human

has managed to express their intention with language), this process is tedious, error prone,

and largely inaccessible to non-experts. Fortunately, the gap has been decreasing with the

development of programming languages, as they are steadily becoming more high-level, i.e.,

closer to human thinking.

Despite this improvement, the core principle of programming remains the same: a qualified

programmer has to manually translate their intentions (“what” needs to be done) into a

computer algorithm (“how” it needs to be done). The ultimate goal in the field of program

synthesis is to bridge this gap, by offering tools that translate the intention of the programmer

into code executable by a machine. Intention is expressed by some form of specification

that involves the input and desired output of the program. In these early stages of the field’s

development, most systems accept specification that is itself expressed in a formal language,

as opposed to a natural language. When a synthesis system generates a candidate solution, it

tries to verify its correctness. The verification procedures vary across systems.

Although some core ideas for program synthesis were expressed already in the 1960s [Gre69,

MW71], the research field has become much more active in roughly the last decade, following

two major developments: the development and wide adoption of satisfiability-modulo-theory

(SMT) solvers and the introduction of counter-example directed inductive synthesis (CEGIS).

SMT solvers are automated theorem provers operating on specific logical theories. They

attempt to prove or disprove that a logical formula is satisfiable by applying a set of decision

procedures and heuristics; if the answer is positive, a satisfying assignment is produced as

a certificate. SMT solvers have proven quite effective in solving many verification queries

generated by synthesis, but more importantly, they are part of CEGIS. CEGIS is a synthesis

algorithm that uses concrete inputs to accelerate the exploration of a space of candidate

synthesis solutions, and to efficiently test those candidates for correctness. CEGIS is the heart

of many synthesis systems and will be discussed in more detail in Chapter 3.

Our main goal in this dissertation is to synthesize recursive functional programs over un-

bounded datatypes. More specifically, we explore techniques that improve the efficiency of

synthesis by reducing the set of solution candidates, as well as by accelerating the exploration
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of this set. The language we handle is Turing-complete, which makes the synthesis problem

in our context harder compared to other works focusing on less expressive fragments. In

contrary, our choice of a functional language makes our programs easier to model and reason

about due to the absence of mutable state and side-effects.

The specification for synthesis tasks we handle can be given as a logical predicate, a set of

input-output examples, or a combination thereof.

Input-output examples map a finite subset of inputs to their corresponding outputs. Other

inputs are free to be mapped to any output. For example, suppose we want to synthesize

an algorithm which sorts a list of integers in ascending order. We could partially specify this

algorithm with the following set of input-output examples:

List() → List()

List(1) → List(1)

List(1,2) → List(1,2)

List(3,2,1) → List(1,2,3)

Logical predicates are a more general form of specification and can be used to constrain an

infinite number of inputs and outputs. A logical predicate which specifies the above problem

could be

∀ i,o. content(o) == content(i) && isSorted(o),

where i,o are the input and output lists of the function respectively, content is a function which

computes a set containing a list’s elements, and isSorted a boolean function which checks if a

list is sorted.

Input-output examples are often easier to write, and also to reason about formally, since they

involve only finite sets of values. In contrast, general logical predicates can constrain the

output for more inputs, leading more often to the desired synthesis solution. In between these

extremes lie symbolic examples, that map a possibly infinite family of inputs to corresponding

outputs. List sorting could be partially specified with symbolic examples by constraining an

infinite set of small lists as follows:

∀a,b,c.

List() → List()

List(a) → List(a)

List(a,b) → List(a,b)

List(c,b,a) → List(a,b,c)

Our techniques are general enough to handle all types of specifications, but some behave

better for certain types.

In this dissertation, we build on the Leon deductive synthesis framework [KKKS13, Kne16].

Given a synthesis problem, Leon applies on it a series of deductive synthesis rules in an effort
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to reduce it to other, simpler problems. The successive application of synthesis rules creates a

tree of subproblems that Leon explores to solve the initial synthesis problem. At the leaves

of the tree lie problems that cannot be profitably decomposed further; these problems are

dispatched by so-called closing rules. The most important closing rule enumerates and tests

candidate programs taken from a program space described by a context-free grammar, until it

finds a satisfactory solution.

Contributions. In this dissertation, we make the following contributions:

• We present a set of updates to the Leon deductive synthesis system.

– We extend the notion of the path condition of a synthesis problem. In previous

work, a path condition is a predicate on available variables that is known to be

true from the context of the problem. In this dissertation, we expand it to include

variable bindings and guides. Guides are predicates without logical meaning which

convey syntactic information about the problem; this information made available

for deductive rules to use during synthesis.

We modify the set of deductive synthesis rules of Leon to utilize such path condi-

tions, and give examples of programs that become solvable with this extension.

– We extend the input language that Leon can handle by adding to it some lightweight

object-oriented features and showing how to desugar them to a purely functional

language.

– We introduce symbolic examples as a new form of specification. Symbolic exam-

ples are input-output examples whose inputs contain abstract values that can be

referenced in their output.

• We present term grammars, which are context-free grammars or probabilistic context-

free grammars whose nonterminal symbols correspond to a program type, optionally

decorated with additional information. Term grammars are used in Leon to describe

sets of programs that are candidate solutions to a synthesis problem. Those sets can be

explored by specific deductive rules to discover a solution to the synthesis problem.

Term grammars were already a part of Leon. In this thesis, we give a more thorough pre-

sentation of the different flavors of term grammars we use, and introduce the following

novelties:

– We introduce aspect grammars. Aspects are a technique to enrich a given term

grammar with additional information. This information may encode expected

normal forms of terms in the target language or constraints expected to hold in a

given context. Examples of these applications are, respectively, encoding that the

+ operator should have non-zero operands, and that generated terms have to be

bound by a specific maximum size.
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Each aspect is associated with a transformer between sets of grammar rules. When

we attach an aspect to a nonterminal symbol, its production rules are transformed

by the aspect’s transformer. An advantage of aspects is their modularity: they can

be developed separately from the base grammar, and can then be attached to its

nonterminals as needed.

– We introduce generic grammars containing generic production rules, that can be

parameterized by type parameters. Generic production rules can express, for

instance, that a nonterminal List[A] corresponding to a type parametric list can

expand to either an empty or a nonempty list of the same type (Nil[A] or Cons[A]).

After instantiating its type parameters with concrete types, a generic rule becomes

a regular rule and is appended to the other rules of the same nonterminal.

• We describe two term enumeration algorithms that explore a set of programs described

by a term grammar to discover a program satisfying the specification of a synthesis

problem. Both algorithms are instantiations of CEGIS.

The first is an evolution of the Symbolic Term Exploration algorithm presented in pre-

vious work on Leon. It explores terms in order of increasing size. We improve the

performance of the algorithm by more eagerly eliminating erroneous programs with

concrete execution.

The second algorithm is called Probabilistic Term Enumeration (PTE) and operates

with probabilistic grammars. PTE represents derivations of its input term grammar

with a graph, where an edge corresponds to an expansion of a rule of the grammar. It

explores this graph in order of descending probability, using the A* best-first search

algorithm. We incorporate a number of domain-specific optimizations into PTE and

experimentally showcase their usefulness. By using probabilities, best-first search and

our optimizations, the algorithm quickly arrives to the programs that are more likely to

be correct solutions.

• We describe a procedure that discovers and repairs bugs in functional programs. In

the repair problem, we are given a function with correct specification but incorrect

implementation, and aim to replace parts of this function with newly synthesized code

such that the specification is satisfied.

– We develop a novel fault localization process that isolates the bug in specific

control flow branches of the program. This process uses traces of tests that fail the

specification to discover which branches of the program are responsible for the

bug.

– As part of fault localization, we develop a trace (or test) minimization procedure

that filters out erroneous traces whose failure can be attributed to a subtrace. This

way, we avoid localizing on branches which are themselves correct, but contain a

recursive call invoking an erroneous branch.
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– After localizing the error, we deploy a variant of synthesis, called similar term

exploration, to suggest possible fixes. Similar term exploration generates snippets

similar to the original erroneous code by inserting to it small variations. It uses

synthesis as described above, but with grammar that describes variations to the

original program term. This grammar is implemented with an aspect. If similar

term exploration fails, we disregard the original snippet and fall back to regular

synthesis.

Outline. The rest of this dissertation is organized as follows:

• In Chapter 1, we first present the synthesis problem. We then give an overview of the

Leon deductive synthesis system, including its input language, its deductive synthesis

rules, and examples of its operation.

• In Chapter 2, we provide an extensive presentation of the flavors of term grammars used

to represent program spaces in Leon. Term grammars are used by the term enumeration

algorithms of Chapter 3.

• In Chapter 3, we present and evaluate the two term enumeration algorithms used by

the deductive rules of Leon described in Chapter 1.

• In Chapter 4, we develop a repair system which localizes bugs in functional programs,

then uses the synthesis techniques described in the previous chapters to generate fixes

for those bugs.

• In Chapter 5, we present an overview of related work in the field of synthesis and repair.

• Finally, we conclude this dissertation in Chapter 6.
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1 Deductive Synthesis and the Leon
Framework

In this dissertation, we improve the effectiveness of synthesis techniques through insights into

efficient construction and exploration of program spaces. We use the Leon formal methods

framework, specifically its deductive synthesis and repair modules, as a framework in which

we incorporate our ideas.

This chapter presents a combination of preexisting and original work. Sections 1.2.3, 1.3.1,

as well as parts of Section 1.5.6 as indicated, expand on novel work appearing in a previous

publication [KKK16] by the author of this dissertation and others. The same is true for sections

1.2.4 and 1.4.3 [KKK15]. The content of Section 1.4.4 first appears in this dissertation. The rest

of the chapter presents previous work on synthesis in Leon [KKKS13, Kne16, BKKS13].

1.1 Overview of Leon

Leon is a formal methods framework operating on a functional subset of the Scala language

[BKKS13], as well as lightweight imperative and object-oriented extensions (the latter of which

is presented in this work). Leon started as a verifier for recursive functional programs [SKK11,

VKK15] and evolved into a versatile formal methods system including modules for termination,

synthesis [KKKS13], repair [KKK15], and resource bound verification and inference [MK14,

MKK17].

The frontend of Leon uses the Scala parser and type checker, then translates Scala ASTs into

its own ASTs. Whereas Scala ASTs are mostly syntactic, Leon’s ASTs are semantic trees, for

instance, they differentiate between different arithmetic expressions, or methods (defined in

classes) and functions (defined in objects/modules). Then, a preprocessing phase follows,

which desugars the additional imperative and object-oriented language features into the core

functional language. Such features include while-loops, mutable local variables, method calls,

and constrained class hierarchies. Additionally, preprocessing instruments certain expressions

with additional verification checks. For instance, Leon adds assertions that check that divisors

of divisions are not zero, and that maps are defined on every accessed key.
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The frontend is followed by one of the different modules of Leon according to the options

chosen, such as termination analysis, verification or synthesis. All modules interact with an

SMT-based verifier for recursive functional programs. Specifically in synthesis, the verifier is

used to verify the correctness of candidate solutions. For simplicity, we assume that the Leon

verifier exposes a single query named LEONSMT(φ), that will examine the satisfiability of the

logical formula φ with three possible results: either UNSAT, UNKNOWN or SAT(m). The latter

also returns a model m that is a mapping from the free variables of φ to values such that φ is

satisfied.

The verification and termination parts of Leon have lately evolved into the Inox [Ino] and Stain-

less [Sta] projects. Compared to Leon, Inox and Stainless use more modular implementation

techniques that allow the different components of the system, including different recognized

languages, to be developed separately, without invasive changes to the core of the system.

Inox implements the core verification functionalities for recursive higher-order functions and

interfaces with the SMT solver, whereas Stainless builds on top of it to implement verification

and termination for programs taken from a growing fragment of Scala. It is future work to

integrate the synthesis and repair modules of Leon with this new infrastructure.

In this dissertation, we focus on the synthesis and repair modules of Leon. From now on,

when we refer to Leon, we usually mean solely its synthesis and repair modules.

In the rest of this chapter, we present illustrative examples of problems that Leon can solve,

we introduce the synthesis problem, and outline the techniques we use to solve it. Repair will

be discussed in detail in Chapter 4.

1.2 Examples of Synthesis Problems

1.2.1 Distinct Number

We first illustrate the basic features of the Leon synthesis framework through this simple

numeric example, that asks for a natural number distinct from two given natural numbers:

def distinct(x: BigInt, y: BigInt): BigInt = {
require(x ≥ 0 && y ≥ 0)
???[BigInt]

} ensuring { res ⇒
res ≥ 0 && res != x && res != y

}

The distinct function has two arguments of type BigInt, the type of mathematical (unbounded)

integers in Scala. The require clause introduces a precondition that constrains the inputs

of the function to be natural numbers. The ensuring clause introduces a postcondition, a

predicate that constrains the input and desired output of the function. The variable res in

the postcondition binds to the function’s result. ??? represents a typed synthesis hole that
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the synthesizer has to fill with an implementation. Note that all synthesis constructs are

executable: require and ensuring are regular Scala function defined in the Scala standard

library, whereas a synthesis hole can be evaluated with runtime constraint solving [KKKS13,

KKS12], although this is not guaranteed to succeed.

After compiling the input file, the synthesizer takes around one second to produce the follow-

ing output, that is then verified by the Leon verifier:

def distinct(x: BigInt, y: BigInt): BigInt = {
require(x ≥ BigInt(0) && y ≥ BigInt(0))
x + (y + BigInt(1))

} ensuring { (res : BigInt) ⇒
res ≥ 0 && res != x && res != y

}

1.2.2 Sorted List Insertion and List Sorting

In this next example, we define a synthesis problem with algebraic data types (ADTs).

sealed abstract class List[T] {
def content: Set[T] = this match {

case Nil() ⇒ Set()
case Cons(h, t) ⇒ Set(h) ++ t.content

}
}
case class Cons[T](h: T, t: List[T]) extends List[T]
case class Nil[T]() extends List[T]

def isSorted(list: List[BigInt]): Boolean = list match {
case Cons(x1, t@Cons(x2, _)) ⇒ x1 < x2 && isSorted(t)
case _ ⇒ true

}

def insert(in: List[BigInt], v: BigInt): List[BigInt] = {
require(isSorted(in))
???[List[BigInt]]

} ensuring { (out : List[BigInt]) ⇒
(out.content == in.content ++ Set(v)) && isSorted(out)

}

We first define a linked list as a polymorphic ADT in Scala. Note that the List defines a method

content; this is part of an object-oriented extension for Leon and will be desugared into a

function. We then define the notion of (strict) sortedness on such lists (isSorted function).
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Our synthesis task this time is to synthesize a function that inserts an element in the correct

position in a sorted list. Note that the precondition and postcondition of insert demand that

both the input and output lists be sorted. Since we impose strict sortedness (that is, we use

strict inequality to compare elements), the new element should not be inserted if it is already

contained in the list.

After approximately 30 seconds, Leon comes up with the following solution:

def insert(in : List[BigInt], v : BigInt): List[BigInt] = {
require(isSorted(in))
in match {

case Nil() ⇒ List(v)
case Cons(h, t) ⇒

val rec = insert(t, v)
if (h == v) rec
else if (h < v) Cons[BigInt](h, rec)
else Cons[BigInt](v, Cons[BigInt](h, t)) }

} ensuring {
(out : List[BigInt]) ⇒

out.content == in.content ++ Set[BigInt](v) && isSorted(out) }

Leon begins solving the problem by pattern matching on the input variable in. In the Cons
case, it first computes the result of a recursive call to insert invoked on the tail of the list,

and uses its value in the code following. Although recursive calls can potentially introduce

non-termination to the synthesized function, this recursive call does not, as tail is structurally

included in the original argument in. Given the recursive call, the Cons branch is solved with a

comparison between the two visible integer variables head and v that creates three separate

branches, each of which is solved individually.

After synthesizing the insert function, Leon can use it to synthesize the insertion sort algorithm:

def insertionSort(in: List[BigInt]): List[BigInt] = {
choose { (out: List[BigInt]) ⇒

out.content == in.content && isSorted(out) }
}

// Solution:
def insertionSort(in : List[BigInt]): List[BigInt] = {

in match {
case Nil() ⇒ List[BigInt]()
case Cons(h, t) ⇒ insert(insertionSort(t), h) }

} ensuring { (out : List[BigInt]) ⇒
out.content == in.content && isSorted(out)

}
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1.2.3 Run-Length Encoding

In the subsequent, more complicated example, we synthesize the run-length encoding of

a functional list. A run-length encoding compresses a list by grouping together multiple

consecutive appearances of the same element. The returned list consists of pairs (i ,e), where

i the number of consecutive appearances of element e. For example, List(a, a, a, b, c, c) is

encoded as List( (3,a), (1,b), (2,c) ).

We present two separate versions of the problem: In the first version, we specify encode by its

inverse function decode, along with a function that constrains legal encodings:

def decode[A](l: List[(BigInt, A)]): List[A] = {
def fill[A](i: BigInt, a: A): List[A] = {

if (i > 0) a :: fill(i − 1, a)
else Nil[A]()

}
l match {

case Nil() ⇒ Nil[A]()
case Cons((i, x), xs) ⇒

fill(i, x) ++ decode(xs)
}

}

def legal[A](l: List[(BigInt, A)]): Boolean = l match {
case Nil() ⇒ true
case Cons((i, _), Nil()) ⇒ i > 0
case Cons((i, x), tl@Cons((_, y), _)) ⇒

i > 0 && x != y && legal(tl)
}

def encode[A](l: List[A]): List[(BigInt, A)] = {
???[List[(BigInt, A)]]

} ensuring {
(res: List[(BigInt, A)]) ⇒

legal(res) && decode(res) == l
}

Leon is able to synthesize the following solution for the problem in around 25 seconds:

def encode[A](l : List[A]): List[(BigInt, A)] = {
l match {

case Nil() ⇒
Nil()

case Cons(h, t) ⇒
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encode[A](t) match {
case Nil() ⇒

List((BigInt(1), h))
case Cons(h1 @ (h_1, h_2), t1) ⇒

if (h == h_2) {
Cons[(BigInt, A)]((h_1 + BigInt(1), h_2), t1)

} else {
Cons[(BigInt, A)]((BigInt(1), h), Cons[(BigInt, A)](h1, t1))

} } } }

In the second version of the problem, we specify the desired functionality with symbolic

examples. Symbolic examples are introduced by the passes construct in the postcondition of

a function. An acceptable synthesis solution must satisfy every provided symbolic example

for every instantiation of its symbolic values. We discuss symbolic examples in more detail in

Section 1.4.3.

def encode[A](l: List[A]): List[(BigInt, A)] = {
???[List[(BigInt, A)]]

} ensuring {
(res: List[(BigInt, A)]) ⇒

(l, res) passes {
case Nil() ⇒ Nil()
case Cons(a, Nil()) ⇒

List((1,a))
case Cons(a, Cons(b, Nil())) if a == b ⇒

List((2,a))
case Cons(a, Cons(b, Cons(c, Nil()))) if a == b && a == c ⇒

List((3,a))
case Cons(a, Cons(b, Cons(c, Nil()))) if a == b && a != c ⇒

List((2,a), (1,c))
case Cons(a, Cons(b, Cons(c, Nil()))) if a != b && b == c ⇒

List((1,a), (2,b))
case Cons(a, Cons(b, Nil())) if a != b ⇒

List((1,a), (1,b)) } }

Leon comes up with the same solution as the other variation of the problem, in a time varying

from 12 to 41 seconds depending on its configuration.

This benchmark was not synthesizable with previous versions of Leon. Improvements that

made it possible include a new approach to introducing recursive function calls (Section 1.5.6),

the optimization of the existing term enumeration algorithm in Leon (Section 3.2), as well as

the development of a new such algorithm (Section 3.3).
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1.2.4 Repairing Heap Merging

We conclude this section by displaying an example of repair with Leon. We will discuss repair

further in Chapter 4.

The following example is a fragment from a benchmark which implements leftist max-heaps.

The full benchmark can be found in Appendix C.2. A bug has crept in the indicated line of the

heap merge algorithm: The correct heap l2 has been swapped for l1. Leon’s repair module is

able to locate and fix this error within a few seconds.

sealed abstract class Heap {
. . .

def content : Set[BigInt] = this match {
case Leaf() ⇒ Set[BigInt]()
case Node(v,l,r) ⇒ l.content ++ Set(v) ++ r.content }

}
case class Leaf() extends Heap
case class Node(value: BigInt, left: Heap, right: Heap) extends Heap

def hasHeapProperty(h : Heap) : Boolean = . . .

def hasLeftistProperty(h: Heap) : Boolean = . . .

def heapSize(t: Heap): BigInt = . . .

private def makeN(value: BigInt, left: Heap, right: Heap) : Heap = {
require(hasLeftistProperty(left) && hasLeftistProperty(right))
if(left.rank ≥ right.rank) Node(value, left, right)
else Node(value, right, left)

} ensuring { res ⇒ hasLeftistProperty(res) }

private def merge(h1: Heap, h2: Heap) : Heap = {
require(

hasLeftistProperty(h1) && hasLeftistProperty(h2) &&
hasHeapProperty(h1) && hasHeapProperty(h2) )

(h1,h2) match {
case (Leaf(), _) ⇒ h2
case (_, Leaf()) ⇒ h1
case (Node(v1, l1, r1), Node(v2, l2, r2)) ⇒

if(v1 ≥ v2) makeN(v1, l1, merge(r1, h2))
else makeN(v2, l1, merge(h1, r2)) } // Bug: l1 instead of l2

} ensuring { res ⇒
hasLeftistProperty(res) && hasHeapProperty(res) &&
heapSize(h1) + heapSize(h2) == heapSize(res) &&
h1.content ++ h2.content == res.content }

13



Chapter 1. Deductive Synthesis and the Leon Framework

1.3 The Synthesis Problem

In this section, we formally define the synthesis problem.

Let φ = φ(ā, x) be the specification of a programming task, specifying a relation between a

tuple of input parameters ā and an output variable x. φ can be given as a logical predicate, a

set of input-output examples, a reference implementation, or a combination thereof. Also,

let Π be the path condition for the problem, a predicate on the input parameters satisfied by

hypothesis. In Section 1.3.1 we will extend the notion of path condition. Also, let T be a term

in the target language. The free variables of both Π and T have to be subsets of ā.

The synthesis problem asks for a constructive solution for the formula

∃T.∀ā.
[
Π→φ[x �→ T ]

]
(1.1)

In other words, we want to find an expression T such that, when we replace every occurrence

of the output variable x in the specification φ by T , the formula Π→φ becomes valid.

We will write such a synthesis problem for short as

�ā
〈
Π�φ

〉
x� . (1.2)

If we want to expand the input parameter tuple, we can write

�a1, a2, . . . , an
〈
Π�φ

〉
x� or �

〈
Π�φ

〉
x� ,

depending on whether the tuple is nonempty or not.

A solution to the synthesis problem is a pair 〈P | T 〉, where P is a precondition that constrains

the domain of the solution, and T is the synthesized term. If 〈P | T 〉 is a solution to Equation 1.2,

we will write

�ā
〈
Π�φ

〉
x�
 〈P | T 〉 (1.3)

For example, take the synthesis problem with an input parameter a, where we are searching

for an integer whose double is a. The synthesizer could come up with the solution a/2, which

is only valid when a is even:

�a 〈 true �2 · x == a〉 x�
 〈a%2 == 0 | a/2〉

Of course, we would like P to be as weak as possible, ideally true. In fact, the version of Leon

presented in this dissertation solves all of our benchmarks using only rules that return true as

a precondition.
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1.4. Input Language

1.3.1 Path Conditions

The notion of path condition was first defined by King in the context of symbolic execution

[Kin76] to capture information about input variables that is known to hold in a specific control

flow path. Similarly, in synthesis we use path conditions to capture known information about

the inputs of a synthesis problem. In this dissertation, we use we use an extended notion of

path condition compared to King.

A path condition in this dissertation is a conjunction of any number of three types of clauses,

as described by the following grammar:

Π ::= true | e ∧ Π | w (e) ∧ Π | (v ← e) ∧ Π

v ::= a Scala identifier

e ::= a Scala expression that type-checks in its context

w ::= a finite set of witness symbols

The semantics of these clauses (excluding the trivial path condition true) is respectively the

following:

• A predicate on the input parameters that is satisfied by hypothesis.

• An instance of a witness. A witness is a predicate with no logical meaning (equivalent

to true), whose purpose is to track syntactic information. This information is used

during both synthesis and repair. For example, 
 is a witness pronounced guide. Writing


[
f (a)

]∧Π denotes a path condition containing the guide f (a).

• A binding of a fresh variable to an expression. (v ← e)∧Π binds v to e and appends this

information to the path condition Π. As an example, when introducing a recursive call

invoking the function under synthesis, we bind its value to a variable. The synthesizer

uses bound variables similarly to input parameters in ā, though the two categories are

handled differently in some ways.

We write bound(Π) to refer to variables bound in Π.

1.4 Input Language

We now describe the input language accepted by Leon. This language is a subset of Scala, con-

sisting of a core functional language, as well as some additional extensions that get desugared

away after parsing. As mentioned before, we use the Scala compiler (Scala version 2.11.8) to

initially parse and type check input code.

The core functional language of Leon is called PureScala [BKKS13]. PureScala corresponds

to an ML-like subset of Scala. It contains pure recursive functions operating on integral

types, booleans, and ADTs. Apart from standard functional language features, PureScala

provides formal contracts and synthesis constructs. Leon internally analyzes and synthesizes

15



Chapter 1. Deductive Synthesis and the Leon Framework

programs only in PureScala; all other language components get desugared before invoking the

synthesizer. Also, the synthesis component of Leon is constrained to the first-order fragment

of PureScala.

In Section 1.4.4 we introduce a lightweight object-oriented extension to PureScala, which

introduces a simple form of class hierarchies with methods and fields. Leon also accepts

another extension to PureScala called XLang [BKKS13, Bla17], which introduces a set of im-

perative features that are also desugared into functional code. XLang is not described in this

dissertation.

1.4.1 Syntax of PureScala

In Figure 1.1 we give the grammar describing the syntax of PureScala [BKKS13]. Nonterminal

symbols are shown in italic font, while terminal symbols are shown in bold font. The syntax

is approximate, as we do not account for operator precedence, or Scala syntax nuisances

involving necessary braces, etc.

A program is a sequence of compilation units, each of which contains a package declaration, a

sequence of imports and a sequence of object (module) or class definitions. Modules contain

functions or classes. Classes define ADTs: abstract classes define types and case classes define

ADT constructors. Case classes can only extend abstract classes. A case class that does not

extend another class defines a type as well as a constructor. Functions can have pre- and

postconditions. Expressions describe, among others, errors –which must be unreachable–

and asserts –whose argument must be provably true–, literals, variables and local variable

definitions, function (lambda) calls and definitions, function (def-definition) calls, match and

passes constructs –the latter of which introduces symbolic examples–, set and map operations,

type checks and casts, field accesses, and finally synthesis constructs. We emphasize again

that the synthesis component of Leon is constrained to the first-order fragment of PureScala.

Type checks (isInstanceOf) are acceptable in a purely functional context because they are

equivalent to a simple pattern matching-based check. Type casts (asInstanceOf) are only

acceptable if they can be proven to be safe. When invoked for verification, Leon will emit

proof obligations for type casts, similarly to those for asserts and errors. Field accesses are

safe because they are only allowed by the Scala type checker if they are well-typed. passes
introduces symbolic examples and is only allowed as a top-level conjunct in a postcondition.

1.4.2 Synthesis Constructs

The task of the synthesizer is to substitute each nondeterministic choice operator choose in

the program with an expression that matches its specification. The second synthesis construct,

namely the synthesis hole ???, is syntactic sugar for choose. Intuitively, choose defines its

specification locally, whereas the specification for hole is computed from the specifications of

the function.
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program ::= unit+

unit ::= packageDef? import∗ ocDef∗

packageDef ::= package 〈 id . 〉∗ id
import ::= import 〈 id . 〉∗ 〈 id | _ 〉

ocDef ::= objectDef | classDef
objectDef ::= object id { 〈 fDef | classDef 〉∗ }

fDef ::= funDef
classDef ::= abstract class id tparams

| case class id tparams (〈 param 〈 , param 〉∗ 〉?) 〈 extends id tparams 〉?
funDef ::= def id tparams (〈 param 〈 , param 〉∗ 〉?) : type = {

〈 require( expr ) 〉?
expr

} 〈 ensuring { id ⇒ expr } 〉?
param ::= id : type

expr ::= error( stringLit ) | assert( expr, stringLit ); expr
| id | literal | (expr) | val id = expr ; expr
| expr (〈 expr 〈 , expr 〉∗ 〉?) | (〈 id 〈 , id 〉∗ 〉?) ⇒ expr
| qid 〈 [ type 〈 , type 〉∗ ] 〉? (〈 expr 〈 , expr 〉∗ 〉?)
| if ( expr ) { expr } else { expr }
| expr 〈 match | passes 〉 {case+ }
| expr binop expr | unop expr
| ( expr , expr 〈 , expr 〉∗) | expr._n
| Set[ type ] (〈 expr 〈 , expr 〉∗ 〉?) | expr .size
| expr .contains( expr ) | expr .subsetOf( expr )
| Map[ type, type ] (〈 expr 〈 , expr 〉∗ 〉?) | expr .isDefinedAt( expr )
| expr .isInstanceOf[ type ] | expr .asInstanceOf[ type ]
| expr . id | choose ( expr ) | ??? [ type ]

binOp ::= == | && | || | → | + | - | * | / | %
| ≤ | ≥ | < | > | & | | | < < | > > | > > > | ++ | --

unOp ::= - | !
n ::= 1 | 2 | . . .

type ::= BigInt | Int | Boolean | Set[ type ]
| Map[ type , type ]
| qid 〈 [ type 〈 , type 〉∗ ] 〉 ?

case ::= pattern 〈 if expr 〉? ⇒ expr
pattern ::= id | 〈 id @ 〉? _ | 〈 id @ 〉? literal

| 〈 id @ 〉? ( pattern 〈 , pattern 〉∗ )
| 〈 id @ 〉? qid (〈 pattern 〈 , pattern 〉∗ 〉?)

literal ::= 0 | 1 | . . . | BigInt(0) | BigInt(1) | . . .
| true | false | () | ’a’ | ’b’ | . . . | stringLit

stringLit ::= "stringChar∗"
tparams ::= 〈 [ id 〈 , id 〉∗ ] 〉?

qid ::= 〈 id . 〉? id

Figure 1.1 – Syntax of PureScala
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Chapter 1. Deductive Synthesis and the Leon Framework

def f(...): T = {
require(pre)
C (???1,???2, . . . , ???n)

} ensuring (x ⇒ post)

→

def f(...): T = {
require(pre)
val (h1,h2, . . . ,hn) = choose { (h′

1,h′
2, . . . ,h′

n) ⇒
val x = C (h′

1,h′
2, . . . ,h′

n)
post

}
C (h1,h2, . . . ,hn)

} ensuring (x ⇒ post)

Figure 1.2 – Desugaring of synthesis holes

Figure 1.2 presents the desugaring of a function body with holes into one with choose con-

structs. In the figure, C is the body of the function defined as an expression context containing

holes ???1,???2, . . . , ???n .

1.4.3 Symbolic Examples

Writing a complete logical specification for a synthesis problem, if indeed such a meaningful

specification exists, can often be a tedious task. In these cases, it is often helpful to express

intent through input-output examples; however, input-output examples are often incomplete

specification and result in ambiguity in the generated solutions.

Consider trying to specify a function that computes the size of a functional list. On the one

hand, we do not know a specification simpler than the function’s implementation. On the

other hand, we would need numerous input-output examples to adequately constrain the

generated solutions.

For instance, given the input-output pairs {Nil()→0, Cons(0, Nil())→1}, a satisfying solution

is

def size(l: List): BigInt = l match {
case Nil() ⇒ 0
case Cons(h, t) ⇒ 1 + h

}

One fundamental problem here is that there is no way to communicate that every list of the

same size should be mapped to the same output. We could keep adding examples to the

specification until we constrain the output enough to obtain the correct solution, but this

would be tedious.

To solve this problem, we propose the use of symbolic examples [KKK15]. Symbolic examples

are a form of specification between regular (concrete) input-output examples and full logical

specification. Symbolic examples can contain abstract values as part of their input, which can

be referenced in the output.
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((a1, . . . , an), x) passes {
case p1 ⇒ v1

. . .
case pk ⇒ vk

}

�

val in = (a1, . . . , an)
val x ′ = x
in match {

case p1 ⇒ x ′ == v1

. . .
case pk ⇒ x ′ == vk

case _⇒ true
}

Figure 1.3 – Definition of passes in Scala

In the case of the size function, a set of symbolic examples could be

(1) Nil()→0, (2) Cons(x, Nil())→1 and (3) Cons(x, Cons(y, Nil()))→2. To define symbolic ex-

amples in Scala, we introduce a built-in construct we call passes, that uses Scala’s pattern

matching and partial functions:

def size(l: List): BigInt = ??? ensuring { res ⇒
(l, res) passes {

case Nil() ⇒ 0
case Cons(_, Nil()) ⇒ 1
case Cons(_, Cons(_, Nil())) ⇒ 2 } }

passes is executable and defined in terms of default Scala expressions as shown in Figure 1.3.

We can use wildcard patterns to avoid naming values we will not use in the output. Leon

enforces that the left-hand side of passes is a pair consisting of a tuple of input variables and

the output variable. In the special case where we have no variables or wildcards in the patterns

of passes, it corresponds to common input-output examples.

1.4.4 Object-Oriented Extension

In Figure 1.4 we give the syntax for an object-oriented syntax extension for PureScala. As this

fragment is desugared away by the frontend of Leon, before any other modules apply, it can be

used in programs directed to any Leon module, notably synthesis, repair and verification. It

was motivated by a desire to handle a larger fragment of the Scala language to give developers

the opportunity to write more natural Scala code. An example of the use of this extension is

the Heap type defined in Appendix C.2.

The features introduced in this extension are, in order of appearance in Figure 1.4, fields as

an alternative to functions, extended class definitions which can contain field and method

definitions and where abstract classes can extend other abstract classes, field definitions,

this object references, class field dereferences, and method invocations. The extended class

definitions allow for type hierarchies to resemble trees, whose leaves are case classes and
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fDef ::= funDef | fieldDef
classDef ::= abstract class id tparams 〈 extends id tparams 〉? 〈 { fDef∗ } 〉?

| case class id tparams (〈 param 〈 , param 〉∗ 〉?) 〈 extends id tparams 〉?
〈 { fDef∗ } 〉?

fieldDef ::= 〈 lazy 〉? val id : type = {
〈 require( expr ) 〉?
expr

} 〈 ensuring { id ⇒ expr } 〉?
expr ::= . . . | this | expr . id

| expr . id 〈 [ type 〈 , type 〉∗ ] 〉? (〈 expr 〈 , expr 〉∗ 〉?)

Figure 1.4 – Syntax modifications for object-oriented extensions

inner nodes are abstract classes. When we refer to “field definitions” in classes, we mean val
definitions in the body of a class and not constructor arguments (that correspond to ADT

fields).

This small additional subset gets desugared into PureScala in a preprocessing step in Leon,

before synthesis is invoked. During this desugaring step, the tree-like type hierarchy described

above is reduced to ADT definitions. Expressions involving type checks and casts are also

transformed to correspond to the new type structure. Additionally, method definitions and

calls are reduced to function definitions and calls. Fields are transformed similar to methods

and are handled in Leon as functions with zero parameters.

The process described bellow is capable of handling fields that are implemented or overriden

in subclasses as constructor arguments, as indicated in the following class definitions:

abstract class A { val f: BigInt = 0 }
case class B(override val f: BigInt) extends A

We next detail the operation of the desugaring of the object-oriented features. In the actual

implementation, some of these changes are postponed to later phases of Leon, but we present

them here as one coherent process. As a running example, consider the program of Figure 1.5.

(1) The root of each defined type hierarchy is mapped to a type definition in PureScala.

The leaves (case classes) of such a hierarchy are mapped to constructor definitions.

Intermediate abstract classes in the type hierarchy are not maintained. In the example

of Figure 1.5, note that the original type hierarchy has been desugared into a type named

A with constructors B, D and E.

Case classes that are also roots of a type hierarchy are maintained and correspond both

to a type and a constructor definition, as mentioned Section 1.4.1.

(2) Each class field/method definition m, including those in subclasses, is mapped to a
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1 // Original
2 abstract class A {
3 val fld: BigInt
4 def fun(p: BigInt): BigInt }
5 case class B(override val fld: BigInt) extends A {
6 def fun(p: BigInt): BigInt = 0 }
7 abstract class C extends A {
8 def fun(p: BigInt): BigInt = this.fld + p }
9 case class D() extends C {

10 override val fld: BigInt = 0
11 override def fun(p: BigInt): BigInt = this.fld + p + 1 }
12 case class E() extends C {
13 override val fld: BigInt = 42
14 def anotherFun(p1: BigInt) = fld + p1 + 1 }
15

16 // Desugared
17 abstract class A
18 case class B(fld : BigInt) extends A
19 case class D() extends A
20 case class E() extends A
21

22 def fld(thiss : A): BigInt = thiss match {
23 case b @ B(fld1) ⇒
24 fld1
25 case d @ D() ⇒
26 BigInt(0)
27 case e @ E() ⇒
28 BigInt(42) }
29

30 def fun(thiss : A, p : BigInt): BigInt = thiss match {
31 case b @ B(fld) ⇒
32 BigInt(0)
33 case d @ D() ⇒
34 fld(d) + p + BigInt(1)
35 case e @ E() ⇒
36 fld(e) + p }
37

38 def anotherFun(thiss : A, p1 : BigInt): BigInt = {
39 require(thiss.isInstanceOf[E])
40 fld(thiss.asInstanceOf[E]) + p1 + BigInt(1) }

Figure 1.5 – Desugaring of an object-oriented program
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function f with an additional argument a0 which represents the receiver object (this).

The type of a0 is always the root of the type hierarchy. The type parameters of f are

the type parameters of m plus the type parameters of the class C that defines m. In the

example, note the signature of fun, fld and anotherFun, the latter of which was originally

defined in subclass E.

The f function is assigned a body composed from the body of m in all subclasses.

This body contains a top-level match expression which emulates dynamic dispatch by

dynamically checking the type of a0 and invoking the appropriate version of the method.

Observe the bodies of fun and fld in the example.

The body of f is built bottom-up starting from the leaves of the type hierarchy. We

will label T the desugaring transformation that builds up f . T (m,C ) takes as input the

method m being transformed and the class C currently being analyzed, and returns

a pair of (cases, total). cases is a tuple of match-cases, containing one match-case for

each subclass of C , including C itself. These cases each give the result of the function

if a0 is found at runtime to be of the corresponding class. total is a boolean value

signifying whether cases totally covers the definition of expr for C and all its subclasses.

The functionality of total will become clear below.

The effect of T depends on the kind of the current class C being analyzed.

If C is a case class,

• If C does not define m, i.e., m is defined in a superclass or on a different branch of

the type hierarchy, then T (m,C ) = ((), false). In the example, this will happen while

analyzing fun for class E.

• If C defines m as a method/field, then T (m,C ) = (case C ( f ′
1, . . . , f ′

n) ⇒ mC , true),

where f ′
i are identifiers corresponding to the fields fi of C , and mC is the body of

m in C with the following modifications:

– this is substituted by a0.

– this. fi or, equivalently, a reference to field fi , is substituted by f ′
i (the respec-

tive binder in the pattern).

In the example, this happens when transforming fun for D.

• If C defines m as an ADT constructor field f , then

T (m,C ) = (case C (_, . . . , f , . . . ,_) ⇒ f , true). In the example, this happens when

transforming fld for B.

If C is an abstract class, let t̄ be the tuple of the outputs of T when invoked on the

subclasses of C .

• If total = true for every t ∈ t̄ , then the definition of m in C , even if present, gets

overriden in every subclass, so the current definition is irrelevant. Therefore,

T (m,C ) = (cases, true), where cases are all the cases in t̄ . In the example, this

happens when desugaring fun for A.
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• If total = false for some t ∈ t̄ , and m is not defined in C , then T (m,C ) = (cases, false)

with cases defined as above. In the example, this happens when desugaring

anotherFun for C.

• Finally, if total = false and C defines m, this definition will be used by default for

subclasses that do not override m. In this case, T (m,C ) = (cases, true), where cases

are all the cases in t̄ with the additional appended cases (case b : Csub ⇒ mCsub ) for

every Csub subclass of C that does not define an element in the tuple t̄ . Here, b is

a fresh identifier, and mCsub is the body of m in Csub with any references to this
substituted for b. In the example, this happens when desugaring fun for C.

(3) A precondition is added to each generated function f constraining it to the classes

it was originally defined in. In the example, this is required only in the definition of

anotherFun.

(4) Each type check isInstanceOf[A] for an intermediate abstract class A is transformed to a

disjunction of type checks (isInstanceOf[C1] || . . . || isInstanceOf[Ck ]), where Ci are

the case-class subclasses of A.

Each type cast with asInstanceOf[A] to an abstract class A is removed. Note that it is safe

to remove those casts. If A is a class hierarchy root, then the cast is redundant. If A is an

intermediate class, then the cast could only serve to access a field/method defined in

subclass A. But this definition has now been mapped to a function defined on the type

hierarchy root, which makes the type cast redundant. Note that the discrepancy between

the domains of the original method/field and the resulting function is compensated by

the precondition added to said function.

(5) Invocations of the form o.m(ā) are substituted by function calls of the form f (o, ā). Field

dereferences of the form o.m are substituted by function calls of the form f (o). Finally,

generated functions are added to the program, and method/field definitions in classes

are removed.

1.5 Deductive Synthesis

In this section, we discuss the details of how Leon employs deductive synthesis to solve synthe-

sis problems. Given a synthesis problem, Leon applies on it a series of deductive synthesis

rules in an effort to either solve it outright, or reduce it to other, simpler problems. The suc-

cessive application of synthesis rules creates a directed acyclic search graph whose source

is the initial synthesis problem. The system explores this graph to find solutions to the syn-

thesis problem. Each node of the graph corresponds either to a synthesis problem or a rule

instantiation, the latter of which is explained in the next section.
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1.5.1 Rule Instantiation

Given a synthesis problem, Leon tries to instantiate on it all available rules. A rule instantiation

suggests a way to decompose the problem. Some rules cannot be instantiated on a given

problem, and some can be instantiated in multiple distinct ways, each of which results in a

different decomposition.

As an example, suppose we are given some synthesis problem

�a,b
〈
true �φ

〉
x� (1.4)

where a,b: BigInt. An applicable rule would be INEQUALITY SPLIT – INPUT, that breaks down

the problem to three subproblems based on the result of the comparison between two integral

values. In fact, three separate instantiations of this rule would be available: “INEQUALITY SPLIT

– INPUT between a and 0”, “INEQUALITY SPLIT – INPUT between b and 0” and “INEQUALITY

SPLIT – INPUT between a and b”. Each one suggests a different decomposition of the synthesis

problem.

For each applicable instantiation, we create a node in the synthesis search graph, and we

connect those nodes with edges from the node corresponding to the problem. If one of the

rule instantiations results in a solution, the synthesis problem is solved. Therefore problem

nodes constitute so-called OR-nodes of the graph.

1.5.2 Application of a Rule Instantiation

Each rule instantiation applied to the initial problem returns a tuple of subproblems whose

solutions, if found, can be combined into a solution to the initial problem. If one of the

subproblems fails to produce a solution, the whole rule application fails. In the example of

Equation 1.4, if we apply the rule instantiation “INEQUALITY SPLIT – INPUT between a and 0”,

the generated subproblems would be �a,b
〈

a < 0�φ
〉

x�, �a,b
〈

a > 0�φ
〉

x� and

�b
〈
true �φ[a �→ 0]

〉
x�.

When applying a rule instantiation, we create a new node in the synthesis search graph for

each subproblem, and connect those nodes with edges from the rule instantiation. Since

all subproblems must be solved for the instantiation to return a solution, rule instantiations

constitute so-called AND-nodes of the search graph.

In the case where the set of subproblems generated by a rule application is nonempty, the

rule is called a decomposition rule. In the case where the set is empty, the problem is called a

closing rule: it will immediately either return a solution to the problem or fail. In theory, a rule

could manifest either as a decomposition or closing rule based on the number of generated

subproblems in a specific application, but in practice, each rule in Leon always abides to

one of the two categories. An application generating a single subproblem can be seen as a

simplification rule.
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1.5.3 Solution Composition

If all subproblems of a rule instantiation successfully return a solution, the partial solutions are

composed to produce a solution to the initial problem. Each rule provides its own composition

formula.

In the example of the previous sections, the rule INEQUALITY SPLIT – INPUT got instantiated

on the problem �a,b
〈
true �φ

〉
x�. From this instantiation, three subproblems were gener-

ated, namely �a,b
〈

a < 0�φ
〉

x�, �a,b
〈

a > 0�φ
〉

x� and �b
〈
true �φ[a �→ 0]

〉
x�. Assume

those problems return respectively 〈P1 | T1〉, 〈P2 | T2〉 and 〈P3 | T3〉. Then, according to the

composition formula of the rule, the solution to the initial problem would be

〈
(a < 0∧P1)∨ (a > 0∧P2)∨ (a = 0∧P3) | if (a < 0) {T1} else {if (a > 0) {T2} else {T3}}

〉
.

This example is summarized in formal notation in Figure 1.7.

In the case of a closing rule, the composition trivially returns the solution produced by the

rule.

Note that, even when all the solutions to the subproblems are not known yet, we can construct

a partial program according to the composition formulas of the instantiated rules, where the

unknown solutions have been substituted for synthesis holes. Later, when we find the solution

to a subproblem, we can substitute it in the search graph in place of the corresponding hole.

At any given point, the partial program represents the information about the solution that has

been discovered so far. This information is useful during synthesis, for instance, during term

exploration explained in Chapter 3.

1.5.4 Normalizing Rules

Some rules are labeled as normalizing and take priority over other rules. The idea is that

the consecutive application of all normalizing rules applicable to a problem will transform it

to a normal form, making the application of the other rules more effective and predictable.

Every normalizing rule generates exactly one subproblem. An example of a normalizing rule

is DETUPLE INPUT, which breaks down an input parameter of a tuple type to its elements.

1.5.5 Synthesis Rules as Inference Rules

We can summarize the effect of a synthesis rule on a problem with an inference rule. The

conclusion of the rule is a synthesis problem along with its computed solution, whereas the

premises of the rule are any logical formulas. Often the premises will be the solutions to other

problems, which are the subproblems generated by the rule.

The rule in Figure 1.6 can be read as: “The synthesis problem (a) can be decomposed into

subproblems (b) and, given the solutions (c) of the subproblems, can be solved with (d)”. As a
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�ā1
〈
Π1 �φ1

〉
x1�

(b)

 〈P1 | T1〉 (c)

�ā2
〈
Π2 �φ2

〉
x2�

(b)

 〈P2 | T2〉 (c)

�ā
〈
Π�φ

〉
x�

(a)

 〈P | T 〉

(d)

Figure 1.6 – Generic synthesis rule as inference rule

INEQUALITY SPLIT – INPUT

�a,b
〈

a < 0�φ
〉

x�
 〈P1 | T1〉 �a,b
〈

a > 0�φ
〉

x�
 〈P2 | T2〉
�b

〈
true �φ[a �→ 0]

〉
x�
 〈P3 | T3〉

�a,b
〈
true �φ

〉
x�
〈

(a < 0∧P1)∨ (a > 0∧P2)∨ (a = 0∧P3) | if (a < 0) {T1} else {if (a > 0) {T2} else {T3}}
〉

Figure 1.7 – Composition example of Section 1.5.3

concrete example, in Figure 1.7 we give the decomposition of the example of Section 1.5.3.

1.5.6 Definition of Synthesis Rules

In this section, we present all synthesis rules that are used by the Leon framework. They are

summarized in figures 1.8 to 1.11. More specifically, Figure 1.8 defines Leon’s normalizing

rules, figures 1.9 and 1.10 describe the so called splitting rules, that decompose a problem

based on pattern matching or the result of some boolean test, and finally, Figure 1.11 gives

a sketch of a term exploration rule, which is the main closing rule of Leon. Leon transforms

and filters user-provided and generated input-output examples along rule instantiations; this

effect is not displayed in rule definitions for reasons of readability.

All rules except INTRODUCE RECURSIVE CALLS were already introduced in previous work on

Leon. In this dissertation, we modify some of them to handle bound variables, as explained

below.

Ground. The GROUND rule is a normalizing rule that is invoked whenever there are no input

variables. In this case, the synthesis problem is reduced to an existential query that can be

directly dispatched to the Leon solver. If the solver returns SAT(m), the solution is the value of

m for the output variable x. If it returns UNSAT, there is no solution to the problem and the

rule does not apply. Note that, since GROUND is a normalizing rule, if it is applicable to a given

problem, it will be the only applicable rule. Therefore its failure implies that the problem is

not solvable.
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1.5. Deductive Synthesis

GROUND

LEONSMT(φ) = SAT(m)

�
〈
Π�φ

〉
x�
 〈 true | m(x)〉

INTRODUCE RECURSIVE CALLS

�ā
〈
Π∧ (r ec ← f (e1, . . . ,e ′i , . . . ,en)) ∧⇓[

f (e1, . . . ,e ′i , . . . ,en)
]
�φ

〉
x�
 〈P | T 〉

e ′i ∈ argsSmaller(ei ,Π)

�ā
〈⇓[

f (e1, . . . ,ei , . . . ,en)
]∧Π�φ

〉
x�
 〈P | T 〉

UNUSED INPUT

a ∈ ā a ∉ FV (Π) a ∉ FV (φ) �ā \ a
〈
Π�φ

〉
x�
 〈P | T 〉

�ā
〈
Π�φ

〉
x�
 〈P | T 〉

ONE-POINT

x ∉ FV (e) e does not contain recursive calls

�ā 〈Π� x == e〉 x�
 〈true | e〉

UNCONSTRAINED OUTPUT

x ∉ FV (φ) x : T e = sv[T ]

�ā
〈
Π�φ

〉
x�
 〈true | e〉

DETUPLE INPUT – TUPLE

a ∈ ā a : (T1, . . . ,Tn) a1 : T1, . . . , an : Tn are fresh variables
�(ā \ a)∪a1 . . . an

〈
Π[a �→ (a1, . . . , an)]�φ[a �→ (a1, . . . , an)]

〉
x�
 〈P | T 〉

�ā
〈
Π�φ

〉
x�
 〈val (a1, . . . , an) = a; P | val (a1, . . . , an) = a; T 〉

DETUPLE INPUT – CASE CLASS

a ∈ ā a : C C ( f1 : T1, . . . , fn : Tn) is a case class constructor
a1 : T1, . . . , an : Tn are fresh variables

�(ā \ a)∪a1 . . . an
〈
Π[a �→C (a1, . . . , an)]�φ[a �→C (a1, . . . , an)]

〉
x�
 〈P | T 〉

�ā
〈
Π�φ

〉
x�
 〈val C (a1, . . . , an) = a; P | val C (a1, . . . , an) = a; T 〉

DETUPLE BOUND VARIABLE – TUPLE

a ∈ bound(Π) a : (T1, . . . , Tn) a1 : T1, . . . , an : Tn are fresh variables
�ā

〈
Π∧a1 ← a._1∧ . . .∧an ← a._n�φ

〉
x�
 〈P | T 〉

�ā
〈
Π�φ

〉
x�
 〈val (a1, . . . , an) = a; P | val (a1, . . . , an) = a; T 〉

DETUPLE BOUND VARIABLE – CASE CLASS

a ∈ bound(Π) a : C C ( f1 : T1, . . . , fn : Tn) is a case class constructor
a1 : T1, . . . , an : Tn are fresh variables

�ā
〈
Π∧a1 ← a. f1 ∧ . . .∧an ← a. fn �φ

〉
x�
 〈P | T 〉

�ā
〈
Π�φ

〉
x�
 〈val C (a1, . . . , an) = a; P | val C (a1, . . . , an) = a; T 〉

Figure 1.8 – Normalizing synthesis rules
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INEQUALITY SPLIT – INPUT

a1 ∈ ā a2 ∈ ā ∪bound(Π)∪ {0} a1, a2 : T T ∈ {Int,BigInt}
�ā \ a1

〈
Π[a1 �→ a2]�φ[a1 �→ a2]

〉
x�
 〈P1 | T1〉

�ā
〈
Π∧a1 > a2 �φ

〉
x�
 〈P2 | T2〉 �ā

〈
Π∧a1 < a2 �φ

〉
x�
 〈P3 | T3〉

P ′ = a1 == a2 ∧P1 ∨a1 > a2 ∧P2 ∨a1 < a2 ∧P3

�ā
〈
Π�φ

〉
x�
 〈

P ′ | if (a1 == a2) T1 else if (a1 > a2) T2 else T3
〉

INEQUALITY SPLIT – BOUND

a1 ∈ bound(Π) a2 ∈ bound(Π)∪ {0} a1, a2 : T T ∈ {Int,BigInt}
�ā

〈
Π∧a1 == a2 �φ

〉
x�
 〈P2 | T2〉

�ā
〈
Π∧a1 > a2 �φ

〉
x�
 〈P2 | T2〉 �ā

〈
Π∧a1 < a2 �φ

〉
x�
 〈P3 | T3〉

P ′ = a1 == a2 ∧P1 ∨a1 > a2 ∧P2 ∨a1 < a2 ∧P3

�ā
〈
Π�φ

〉
x�
 〈

P ′ | if (a1 == a2) T1 else if (a1 > a2) T2 else T3
〉

GENERIC TYPE SPLIT – INPUT

a1 ∈ ā a2 ∈ ā ∪bound(Π) a1, a2 : T T is a type variable
�ā \ a1

〈
Π[a1 �→ a2]�φ[a1 �→ a2]

〉
x�
 〈P1 | T1〉

�ā
〈
Π∧a1 �= a2 �φ

〉
x�
 〈P2 | T2〉 P ′ = a1 == a2 ∧P1 ∨a1 �= a2 ∧P2

�ā
〈
Π�φ

〉
x�
 〈

P ′ | if (a1==a2) {T1} else {T2}
〉

GENERIC TYPE SPLIT – BOUND

a1 ∈ bound(Π) a2 ∈ bound(Π) a1, a2 : T T is a type variable
�ā

〈
Π∧a1==a2 �φ

〉
x�
 〈P1 | T1〉

�ā
〈
Π∧a1 �= a2 �φ

〉
x�
 〈P2 | T2〉 P ′ = a1 == a2 ∧P1 ∨a1 �= a2 ∧P2

�ā
〈
Π�φ

〉
x�
 〈

P ′ | if (a1==a2) {T1} else {T2}
〉

INPUT SPLIT

a ∈ ā a : Boolean �ā \ a
〈
Π[a �→ true]�φ[a �→ true]

〉
x�
 〈P1 | T1〉

�ā \ a
〈
Π[a �→ false]�φ[a �→ false]

〉
x�
 〈P2 | T2〉

�ā
〈
Π�φ

〉
x�
 〈

a ∧P1 ∨¬a ∧P2 | if (a) {T1} else {T2}
〉

BOUND VARIABLE SPLIT

a ∈ bound(Π) a : Boolean
�ā

〈
Π∧a�φ

〉
x�
 〈P1 | T1〉 �ā

〈
Π∧¬a�φ

〉
x�
 〈P2 | T2〉

�ā
〈
Π�φ

〉
x�
 〈

a ∧P1 ∨¬a ∧P2 | if (a) {T1} else {T2}
〉

Figure 1.9 – Splitting synthesis rules
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ADT SPLIT – INPUT

a ∈ ā a : T T is an ADT with constructors C1( f11, . . . , f1k1 ), . . . , Cn( fn1, . . . , fnkn )
ai j , i ∈ [1,n], j ∈ [1,ki ] are fresh variables

a1 =C1(a11, . . . , a1k1 ) �(ā \ a)∪a11 . . . a1k1

〈
Π[a �→ a1]�φ[a �→ a1]

〉
x�
 〈P1 | T1〉

. . .
an =Cn(an1, . . . , ankn ) �(ā \ a)∪an1 . . . ankn

〈
Π[a �→ an]�φ[a �→ an]

〉
x�
 〈Pn | Tn〉

T = (a match { case C1(a11, . . . , a1k1 ) ⇒ T1 . . . case Cn(an1, . . . , ankn ) ⇒ Tn })
P = (a match { case C1(a11, . . . , a1k1 ) ⇒ P1 . . . case Cn(an1, . . . , ankn ) ⇒ Pn })

�ā
〈
Π�φ

〉
x�
 〈P | T 〉

ADT SPLIT – BOUND

a ∈ bound(Π) a : T
T is an ADT with constructors C1( f11, . . . , f1k1 ), . . . , Cn( fn1, . . . , fnkn )

ai j , i ∈ [1,n], j ∈ [1,ki ] are fresh variables
a1 =C1(a11, . . . , a1k1 )

�ā
〈
Π∧a.isInstanceOf[C1]∧a11 ← a. f11 ∧ . . .∧a1k1 ← a. f1k1 �φ[a �→ a1]

〉
x�
 〈P1 | T1〉

. . .
an =Cn(an1, . . . , ankn )

�ā
〈
Π∧a.isInstanceOf[Cn]∧an1 ← a. fn1 ∧ . . .∧a1kn ← a. fnkn �φ[a �→ an]

〉
x�
 〈Pn | Tn〉

T = (a match { case C1(a11, . . . , a1k1 ) ⇒ T1 . . . case Cn(an1, . . . , ankn ) ⇒ Tn })
P = (a match { case C1(a11, . . . , a1k1 ) ⇒ P1 . . . case Cn(an1, . . . , ankn ) ⇒ Pn })

�ā
〈
Π�φ

〉
x�
 〈P | T 〉

Figure 1.10 – ADT splitting synthesis rules

TERM EXPLORATION

T = EXPLORE(�ā
〈
Π�φ

〉
x�)

�ā
〈
Π�φ

〉
x�
 〈true | T 〉

Figure 1.11 – Sketch for term exploration rule

argsSmaller (i : Int, i > 0∧Π) = {i −1}
argsSmaller (i : Int, i < 0∧Π) = {i +1}
argsSmaller (i : BigInt, i > 0∧Π) = {i −1}
argsSmaller (i : BigInt, i < 0∧Π) = {i +1}
argsSmaller (CT ( f1, . . . , fn) : T, Π) =⋃{

{ fi } ∪ argsSmaller( fi ,Π) | fi : T
}

argsSmaller (v, Π) =� otherwise

Figure 1.12 – Computing smaller arguments for recursive calls
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Chapter 1. Deductive Synthesis and the Leon Framework

Recursive Calls. When synthesizing programs with recursive functions, a synthesis system

needs to generate recursive calls to the function under synthesis, while guaranteeing that

these calls will not introduce non-termination. In Leon, this is the responsibility of the rule

INTRODUCE RECURSIVE CALLS defined in Figure 1.8. This rule binds a fresh variable rec to a

recursive call to the function under synthesis, and appends the binding to the path condition.

To make sure that no non-termination is introduced, the rule has to choose suitable arguments

for this call. This is achieved by tracking sets of safe arguments in the path condition with a

witness called terminating [KKK15, Kne16]. Terminating is written ⇓[] and takes a function

call as argument, for example, ⇓[
f (ē)

]
.

INTRODUCE RECURSIVE CALLS scans the path condition for clauses of the form ⇓[
f (ē)

]
, and

generates recursive calls such that exactly one argument is smaller than the respective argu-

ment in ē, and all other arguments remain the same. When generating the initial synthesis

problem, a terminating clause with the formal arguments of the function under synthesis

is appended to the path condition. Notice that those arguments might be transformed by

synthesis rules and thus will not always syntactically coincide with the formal arguments. Ad-

ditionally, further terminating clauses might be added to the path condition by synthesis rules.

In fact, INTRODUCE RECURSIVE CALLS appends to the path condition terminating clauses with

the recursive calls it generates.

The “smaller argument” relation is interpreted as “closer to zero by 1” for integral types,

and as transitive structural inclusion for ADTs. Although this relation is too restrictive to

generate some specific programs, it coincides with patterns appearing often in functional

programming. The set of smaller arguments of an expression is computed by the function

argsSmaller, defined in Figure 1.12. In the definition, CT indicates a type constructor of type

T . argsSmaller will return the empty set unless the path condition passed to it (syntactically)

indicates the existence of a smaller argument. Also, in the case of an ADT constructor, we only

consider its fields fi that are of the same type as the constructor itself. This is to make sure

that the introduced call will be type-correct.

This approach cannot directly generate recursive calls where more than one argument changes;

for example, it cannot generate a recursive call to a function that updates an accumulator

while traversing a data structure. However, the rule adds the generated call to the terminating

clauses of the path condition; this new call can be used in a next step to generate calls where

an additional argument is smaller.

For instance, consider the example of Figure 1.13, which selects the first n elements of an input

list. To solve this benchmark, Leon first instantiates INEQUALITY SPLIT, followed by INTRODUCE

RECURSIVE CALLS and ADT SPLIT. After solving the resulting Nil subproblem, the “partial

solution” of Figure 1.13 is reached. At this point, INTRODUCE RECURSIVE CALLS is instantiated

again. The path condition contains the clause ⇓[
take[A](Cons[A](h, t), n − BigInt(1))

]
. This

is the call bound to rec1 before, where the variable l has been transformed by ADT SPLIT

into Cons[A](h,t). Given that argssmaller(Cons[A](h, t)) = { t }, the rule generates the desired
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1.5. Deductive Synthesis

def take[A](l: List[A], n: BigInt) : List[A] = {
require(n ≥ 0)
???[List[A]]

} ensuring { (res: List[A]) ⇒
((l, n), res) passes {

case (Nil(), _) ⇒ Nil()
case (_, BigInt(0)) ⇒ Nil()
case (Cons(a, Cons(b, Nil())), BigInt(1)) ⇒ Cons(a, Nil())
case (Cons(a, Cons(b, Nil())), BigInt(2)) ⇒ Cons(a, Cons(b, Nil()))
case (Cons(a, Cons(b, Nil())), BigInt(5)) ⇒ Cons(a, Cons(b, Nil()))
case (Cons(a, Cons(b, Cons(c, Nil()))), BigInt(2)) ⇒ Cons(a, Cons(b, Nil())) } }

// Partial solution:
def take[A](l : List[A], n : BigInt): List[A] = {

require(n ≥ BigInt(0))
if (n == BigInt(0)) {

List[A]()
} else {

val rec1 = take[A](l, n − BigInt(1))
l match {

case Nil() ⇒
List[A]()

case Cons(h, t) ⇒
???[List[A]] } } }

// Final solution
def take[A](l : List[A], n : BigInt): List[A] = {

require(n ≥ BigInt(0))
if (n == BigInt(0)) {

List[A]()
} else {

l match {
case Nil() ⇒

List[A]()
case Cons(h, t) ⇒

val rec2 = take[A](t, n − BigInt(1))
Cons[A](h, rec2) } } }

Figure 1.13 – Example of recursive call with two arguments changed
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Chapter 1. Deductive Synthesis and the Leon Framework

recursive call take[A](t, n − BigInt(1)). For the final solution, Leon simplifies away the useless

call bound to rec1.

An alternative to having a separate deductive rule to generate recursive calls would be to

generate them within term exploration, which is mentioned below. In fact, this approach was

taken in previous versions of Leon, using a similar technique to discover smaller arguments.

The benefit of our approach is that the variable bound to the result of the recursive call is

available to subsequent decomposition rules. This enables new forms of programs to be

synthesized. For example, consider the solution of the run-length example in Section 1.2.3:

in the 6th line, the result of the recursive call is used to decide how to encode the head of the

current list.

Other normalizing rules. UNUSED INPUT applies to a problem which includes an input

parameter not present in either the path condition or specification of the problem. It generates

a subproblem equivalent to the original problem, but without this input. In the rule definition,

FV is a function which returns the free variables of an expression.

ONE-POINT immediately solves a problem whose specification is of the form x == e with e as

the solution.

UNCONSTRAINED OUTPUT solves a problem whose output is not constrained in the specifi-

cation. This problem is solvable with any value of the output type, and we solve it with the

“simplest value” of this type, computed with the sv function. Note that the simplest value

might not exist, namely in the case where the type T is a type variable, or an ADT whose

constructors all include a field of a generic type. In these cases, UNCONSTRAINED OUTPUT

does not apply.

The DETUPLE rules break a composite input parameter or bound variable down to its compo-

nents, i.e., its projections if it is a tuple, or its fields if it is a case class. When decomposing an

input parameter, it is removed from the input parameter list and replaced with fresh param-

eters that correspond to its components. Appearances of the initial input parameter in the

problem are also replaced. In contrary, a bound variable cannot be eliminated. Therefore, its

components are bound to new variables and appended to the path condition instead.

Splitting rules. Splitting rules are decomposition rules that decompose the problem based

on pattern matching or a boolean test.

Each of the two INEQUALITY SPLIT rules picks two terms of the same integral type chosen

among (1) the constant 0, (2) the problem’s input parameters and (3) its bound variables.

It introduces a comparison between these two terms and generates a subproblem for each

branch of this comparison (including equality), adding the relevant clause to the path condi-

tion of each subproblem. The solution to the original problem is an three-part if-clause whose

branches are the solutions of the respective subproblems.
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In contrast to prior work [Kne16] on Leon, there are two versions of this rule: The first version

(INPUT) is applied when at least one of the compared terms is an input variable. In this case,

we can eliminate the input variable in the “equals” case by substituting it for the other term

in the comparison. This is not possible in the case where none of the expressions is an input

variable: in this case, we have to introduce an additional constraint in the path condition,

similarly to the “greater” and “smaller” cases. This is shown in the BOUND version of the rule.

In fact, each splitting rule of this section comes in two versions, similarly to INEQUALITY SPLIT.

An additional feature of splitting rules is that they try to avoid generating non-reachable

subproblems: If one of the three branches can (syntactically) be shown to be unreachable by

the problem’s path condition, the respective subproblem is not generated. This is omitted in

the inference rules for readability purposes.

The GENERIC TYPE SPLIT rules are similar to INEQUALITY SPLIT, but they apply for inputs and

bound variables of a generic type. Since a total order is not defined for generic types, these

rules generate two branches instead, one for equality and one for inequality between the

compared variables. Similarly, the INPUT SPLIT and BOUND VARIABLE SPLIT rules generate

subproblems based on the value of a boolean input or bound variable.

The most complicated splitting rules are the ADT SPLIT rules, which generate subproblems

by pattern matching on an input parameter or bound variable. Both versions generate one

subproblem for each constructor of the type of the matched variable, and they compose the

partial solutions with a pattern matching. The right-hand side of each case in this pattern

matching is the term returned by the respective subproblem. The INPUT version of the rule

introduces the binders of the pattern as new input parameters in place of the matched input.

In contrary, the BOUND version cannot eliminate the matched bound variable. Therefore, it

introduces the necessary information into the path condition of each subproblem: the precise

type of the variable is asserted, and every field of the matched variable is bound to a fresh

variable in the path condition.

Term Exploration. Eventually a problem is not able to be profitably decomposed further,

and simple closing rules such as GROUND might not apply. Therefore, synthesis assumes the

presence of a rule that is able to generate arbitrary terms in the target language and verify

them against the specification. Such a rule is sketched in Figure 1.11: If a function EXPLORE

– which we leave abstract for now – is able to find a term satisfying the specification, then

the rule succeeds with this term. If EXPLORE finds no such term, the rule fails. The approach

we follow for EXPLORE in this dissertation is based on enumerating programs derived from a

context-free grammar. In Chapter 2 we explain how we construct suitable grammars, and in

Chapter 3 we present the two variants of term exploration used in Leon.
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Figure 1.14 – Synthesis graph for sorted list insertion

1.5.7 Example of a Synthesis Graph

Figure 1.14 presents the synthesis graph corresponding to the list insertion problem of Section

1.2.2. The image is a screen capture from Leon’s online interface [Leo]. Every framed square

represents a synthesis problem, or an AND-node in the graph. Rule instantiations that do note

constitute part of the final solution are not shown, thus the OR-nodes of the synthesis graph

are not explicit in the image.

1.6 Conclusion

In this chapter, we presented an overview of deductive synthesis in Leon. After providing a

few motivating examples, we formalized the synthesis problem, including a special notion
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of path conditions. We then presented the input language handled by Leon: we presented

its purely functional component with different synthesis constructs, we implemented an

object-oriented extension, and we introduced the syntax for symbolic examples. We then

explained how deductive synthesis rules are used to break down or immediately solve a

synthesis problem. Compared to previous work in synthesis, we presented a new approach

to handle recursive calls, where the result of the recursive call is bound to a variable in the

path condition of the problem and can be used in further synthesis rules. Also, we presented a

set of updates to the deductive synthesis rules that are able to handle path conditions with

bound variables. We showed that these advances allow us to synthesize problems that are not

synthesizable with the previous versions of Leon.
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2 Term Grammars

In Section 1.5.6 we mentioned term exploration, a deductive rule capable of discovering ar-

bitrary programs that satisfy a given specification from a space of candidate programs. The

space of discoverable programs is expressed in Leon by a term grammar. A term grammar is

a context-free grammar (CFG) or a probabilistic context-free grammar (PCFG), whose non-

terminal symbols describe a set of constraints on generated expressions. Such constraints

include at minimum the type of generated expressions, but can also include additional infor-

mation. Essentially, a term grammar defines a model of the target language. This model is

sensitive to the context of the currently synthesized term: for instance, it takes into account

visible variables, functions and user-defined types. A parse tree derived from the grammar

corresponds to a program term.

Generating and manipulating term grammars is an integral part of our system, as the choice

of grammar can dramatically influence the size of the program space and the efficiency of

discovering interesting programs therein, thus affecting the effectiveness of synthesis.

Grammars with types as nonterminals, such as those defined in Section 2.1, have been used

previously in the synthesis community to represent program spaces [ABJ+13, PGGP14], as

well as in previous work on Leon. The content of Section 2.2 was first introduced in a previous

publication by the author and others [KKK16], but is formalized and thoroughly analyzed

here. Sections 2.3 to 2.7 were discussed in a previous publication by the author and others

[KRKK17].

2.1 Definition

Definition 2.1. A term grammar is a triple G = (N ,R,S ), where:

(1) N is a finite, non-empty set of nonterminal symbols, where each nonterminal N ∈N is

associated with a type TN ∈T , where T is the finite set of language types.

(2) R maps each nonterminal N to a finite set of production rules R(N ). Each production
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rule R ∈ R(N ) is a well-typed construct of the form f (N1, N2, . . . , Nk ), where f is the

top-level operator and N1, N2, . . . , Nk are the child nonterminal symbols, such that the

output types of f and N coincide: T f = TN . The rule R = f (N1, N2, . . . , Nk ) is also assigned

the type T f . It might be the case that Ni = N j for i �= j , but every appearance of a child

nonterminal is treated as a separate object, i.e., every index i appears exactly once.

(3) S ∈N is the starting symbol of the grammar.

Note that N does not necessarily coincide with the set of types of the target language; we only

require that the mapping from nonterminals to types be surjective. For grammars where the

mapping is bijective, or if we want to signify that a particular nonterminal symbol represents all

possible values of its corresponding type, we will allow a nonterminal symbol to be represented

by its corresponding type, and write TN instead of N . We call such grammars plain.

Definition 2.2. A plain grammar is a term grammar where N =T , where T is the set of types

of the target language.

We represent term grammars in common grammar notation: the m rules for nonterminal N

will be written

N ::= f(N11,N12, . . . ,N1k1)
. . .

| f(Nm1,Nm2, . . . ,Nmkm)

We use italic script for nonterminal symbols, and bold script for terminal symbols of the gram-

mar. We will use the same scripts to represent abstract entities that belong to the respective

categories. For instance, in the above, f(N11,N12, . . . ,N1k1) represents the application of an

arbitrary operator f of the target language on unknown nonterminal symbols N1i . We will call

f a terminal operator if it has 0 operands, and a nonterminal operator if it has more than 0

operands.

Generally, a CFG represents a set of words, or sequences of terminals, of the target language.

In our setting, it is more useful to think of a term grammar as representing a set of parse trees,

which correspond to abstract syntax trees (ASTs) of the target language. We can assume that

every production rule is implicitly enclosed in parentheses; this way, parse trees correspond

one-to-one to words, so we do not have to distinguish between them.

To produce a parse tree from a grammar, we perform a derivation: Starting from a node

labeled with the starting symbol as our current parse tree, we perform a series of expansions

or applications of production rules until no nonterminal symbol remains in the tree. Expand-

ing a production rule means choosing a nonterminal node N in the parse tree and a rule

R = f (N1, N2, . . . , Nk ) ∈R(N ), and substituting this leaf node N in the parse tree with a node

that contains f as label and N1, N2, . . . , Nk as children. We write EN for the set of all derivations

of a nonterminal N . We will discuss derivations more in Section 3.3.
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e ::= 0 | 1 | x | e + e | if (e) {e} else {e} | e ≤ e | e && e

0,1,x : Int

e1 : Int e2 : Int

e1 +e2 : Int

e1 :Boolean e2 : Int e3 : Int

if (e1) {e2} else {e3} : Int

e1 : Int e2 : Int

e1 ≤ e2 :Boolean

e1 :Boolean e2 :Boolean

e1 && e2 :Boolean

Figure 2.1 – A simple expression language and its type system

As an example, consider a grammar generating terms for the expression language of Figure

2.1, whose type system is also listed in the same figure. x is an available integer variable.

Int ::= 0
| 1
| x
| Int + Int

| if (Boolean) {Int} else {Int}
Boolean ::= Int ≤ Int

| Boolean && Boolean

As explained above, this is a plain term grammar, since the nonterminals Int and Boolean

correspond one-to-one to the types of the language and carry no additional information. Note

the well-typedness of the above grammar according to the type system of the language: The

productions of the nonterminal Int expand to expressions of type Int, and the productions of

Boolean expand to expressions of type Boolean. Also, all operators are applied to operands of

the expected types.

When we use grammars for synthesis, the type of the starting symbol coincides with the type

of the term we want to synthesize, i.e., the type of the output variable of the synthesis problem:

TS = Tx .

Describing generated terms of a specific category just with their type often does not capture

all information that we want the synthesizer to consider. This results in the generation of

many undesired terms, which in turn slows down the process of synthesis. Also, there is no

distinction between different terms as to which are more desirable than others. To address

these problems, in the next sections we describe other, more sophisticated variants of term

grammars.
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2.2 Aspect Grammars

The main shortcoming of plain term grammars is that they generate too many redundant terms.

For example, the grammar of Section 2.1 would generate both equivalent terms (1 + 1) + x
and 1 + (1 + x), as well as all three of x, x + 0 and x + 0 + 0.

One approach to address this problem would be to develop grammars which incorporate

knowledge about the underlying language, e.g., properties of operators. For example, we could

incorporate into the grammar the knowledge that a 0 should not be generated as an operand

of +. Given the constants 0 and 1, the operator +, and an available variable x, such a grammar

could look as follows:

Int ::= 0 | NZ

NZ ::= 1 | x | NZ + NZ

The problem with this approach is its lack of modularity: the grammar would have to be

developed in a monolithic way. This means that a small change in the design of the grammar,

e.g., adding an operator to the language or coming up with an additional optimization, would

require significant effort to implement, since all grammar optimizations would have to be

taken into account. This is especially problematic for synthesis, where the grammar has to

depend on variables, functions and user-defined types in the context of the synthesis problem.

In this section, we introduce a more effective solution to this problem. The idea is to develop a

plain grammar (where nonterminals coincide with term types) separately first, and then attach

to its nonterminals additional information we call aspects. We will write T{A} to represent a

nonterminal consisting of type T enhanced with aspect A. We can attach multiple aspects on

the same type T: T{A1}...{An }.

To compute the production rules for T{A}, we apply on the set of rules for T a transformer

�A� that is specific to A. The final set of rules for a nonterminal T{A1}...{An } is computed by

successive application of the transformers of all attached aspects Ai on the initial set of rules

for T .

Aspects can be viewed as serving two functionalities:

• Imposing normal forms on generated terms to avoid generation of redundant terms.

• Implementing other constraints we wish to impose in specific contexts. For example,

specific implementations of term exploration require that we fix the size of generated

terms, as discussed in Section 3.2. Additionally, in Section 4.5.1 we use aspects in the

context of repair to generate a set of terms containing small modifications to an given

term.

Aspects appeared in previous work by the author of this dissertation and others [KKK16] as

attributes. In this dissertation, we renamed them to aspects to avoid confusion with attribute
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grammars as defined by Knuth [Knu68].

In [PGGP14], the authors apply a similar disambiguation technique. In their case, the disam-

biguation occurs after the terms have been generated with syntactic checks on the generated

terms. In contrast, our aspects affect the grammar itself, meaning that all terms produced are

automatically good candidates. Another disambiguation technique called indistinguishability

modulo inputs [URD+13] approximates program equivalence with equivalence on a fixed set

of inputs. This technique merges more equivalent expressions than aspect grammars but has

the overhead of evaluation. We explore this technique as part of our probabilistic enumeration

algorithm in Section 3.3.

2.2.1 Example

Consider the grammar from Section 2.1:

Int ::= 0 | 1 | x
| Int + Int

| if (Boolean) {Int} else {Int}
Boolean ::= Int ≤ Int

| Boolean && Boolean

If a user requests terms for Int, they will receive, among others, the obviously undesired terms

x + 0, 0 + 0 etc. Thankfully, our system provides an aspect n that eliminates operations

with neutral elements of operands. Knowing that, the user can set the starting symbol of the

grammar to Int{n} instead. When this happens, the grammar will compute terms for Int{n} by

applying �n� on the rules for Int. The result is the following:

Int{n} ::= 0
| 1
| x
| Int{n}{¬0}+Int{n}{¬0}

| if (Boolean{n}) {Int{n}} else {Int{n}}

Observe that the new rules contain the newly encountered nonterminals Int{n}{¬0} and Boolean{n}.

The grammar must now generate rules for these symbols. ¬0 is an aspect that filters out rules

whose right-hand side is the constant 0. Like before, to generate rules for Int{n}{¬0}, the gram-

mar will start from rules for Int{n} and apply �¬0� on them.
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The rest of the grammar then looks as follows:

Int{n}{¬0} ::= 1
| x
| Int{n}{¬0} + Int{n}{¬0}

| if (Boolean{n}) {Int{n}} else {Int{n}}
Boolean{n} ::= Int{n} ≤ Int{n}

| Boolean{n}{¬c} && Boolean{n}{¬c}

Boolean{n}{¬c} ::= Int{n} ≤ Int{n}

| Boolean{n}{¬c} && Boolean{n}{¬c}

The aspect (¬c) signifies that boolean constants are disallowed, though it has no effect on this

particular grammar.

The aspect grammar above will not generate any additions with 0 as operand, and our initial

goal is achieved.

2.2.2 Formalization

An aspect grammar G = (N ,R,S ) is a context-free grammar defined in terms of a plain

grammar G0 = (N0,R0,S0) and a finite set of aspects A . Since G0 is a plain grammar, its

nonterminals coincide with the (finite) set of language types T : N0 =T . Each aspect A ∈A

is accompanied by a transformer �A�, which maps each pair (N , R̄) of a nonterminal and a set

of rules to another set of rules R̄ ′. We require that the sets R̄ and R̄ ′ are finite, and that all rules

they contain are of the same type as N .

Definition 2.3. Given a plain grammar G0 = (N0,R0,S0) and a set of aspects A , an aspect

grammar G = (N ,R,S ) is defined as follows:

• N is is the set of types T =N0 annotated with any number of aspects in A .

N = { T{A1}...{An } | T ∈T ,n ≥ 0, Ai ∈A , Ai �= A j for i �= j }.

• The definition of R(N ) depends on whether N is annotated with aspects or not:

R(T ) = R0(T )

R(T{A1}...{An }) = �An�(N ,R(N )), where N = T{A1}...{An−1}.

• S is S0 annotated with an arbitrary number of aspects, i.e., it can be chosen arbitrarily

from the set

S ∈ { S0{A1}...{An } | n ≥ 0, Ai ∈A , Ai �= A j for i �= j }.

Note that in practice we do not have to compute the production rules for every possible
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nonterminal, but only those reachable from the starting symbol.

Theorem 2.1. Aspect grammars are context-free.

Proof. Based on the definition of N and the finiteness conditions for types, aspects and

aspect transformers, N is finite.

From the definition of R, its elements have the form of rules of context-free grammars. Also,

R is finite according to the finiteness condition for aspect transformers.

Finally, the starting symbol S ∈N .

2.2.3 Definitions of Aspects

In this section, we describe several of the aspects that we define in Leon.

Neutral and Absorbing Elements

Several arithmetic and boolean operators have so-called neutral or absorbing operands that

are sources of redundancies. For example, terms such as e + 0, e / 1, or e ∗ 0 are all equivalent

to a shorter form. We eliminate these from the grammar by using an aspect n that excludes

neutral elements from operands. The use of this aspect was demonstrated by an example in

Section 2.2.1.

Formally,

�n�(N , (R1, . . . ,Rn)) = (R ′
1, . . . ,R ′

n),

where, if

Ri = f(N1, N2, . . . , Nk),

we have

R ′
i = f(N ′

1, N ′
2, . . . , N ′

k),

with

N ′
i = Ni {n}{¬C },

where C is the set of all neutral and absorbing elements of f for its i -th argument.

If C is a set of operators (possibly including nullary operators such as constants), the aspect

¬C is defined as follows:

�¬C�(N , R̄) = {
f(N1, N2, . . . , Nk) | f(N1, N2, . . . , Nk) ∈ R̄ ∧ f ∉C

}
.

Note that, apart from removing appropriate operands, n also propagates itself to the nonter-

minals in the right-hand side of the rule.
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Associative Operators

To remove redundancy caused by operator associativity, we require that all associative opera-

tors associate to the left. To impose this property, we introduce an aspect ao.

Formally,

�ao�(N , (R1, . . . ,Rn)) = (R ′
1, . . . ,R ′

n),

where, if

Ri = f(N1, N2, . . . , Nk),

we have

R ′
i = f(N ′

1, N ′
2, . . . , N ′

k),

with

N ′
i =

⎧⎨
⎩

Ni {ao}{¬ f }, if f is an associative binary operator and i = 2,

Ni {ao}, otherwise.

Similar to n, the aspect ao will, along with its main functionality, propagate itself to the

nonterminals in the right-hand side of the rule.

Ground Terms

Our grammars should not generate ground terms for two reasons: first, because different

combinations of ground terms can end up simplifying to equivalent programs (consider 1 + 3
and 2 + 2) and second, because ground terms can be discovered much more efficiently by

the GROUND rule, that invokes only a satisfiability query on the Leon solver instead of trying

to solve the general synthesis problem of Equation 1.1 with nested quantifiers.

Let the aspect G denote that a ground term is expected, whereas ¬G that a non-ground term

is expected.

Formally, �G�(N , R̄) = R̄1 ∪ R̄2 where

R̄1 = {
f (N1{G}, N2{G}, . . . , Nn {G}) | f (N1, N2, . . . , Nn) ∈ R̄,n > 0

}
R̄2 = {

f() | f() ∈ R̄, f is a ground term
}

In other words, G maintains nonterminal operators with ground operands, and terminal

operators which are ground terms.

Also, �¬G�(N , R̄) = R̄1 ∪ R̄2 where

R̄1 = {
f (N1{G1}, N2{G2}, . . . , Nn {Gn }) | f (N1, N2, . . . , Nn) ∈ R̄,n > 0,Gi ∈

{
G ,¬G

}
,¬G ∈ {

Gi
} }

R̄2 = {
f() | f() ∈ R̄, f is not a ground term

}
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Intuitively, for nonterminal operators, ¬G imposes that at least one operand is non-ground,

and terminal operators are maintained only if they are non-ground.

When invoking term exploration with aspect grammars in synthesis, we attach ¬G to the

starting symbol of the grammar to avoid generating ground terms.

Size and Commutative Operators

In specific variants of term exploration, we want to constrain the size of generated terms.

Having assigned an arbitrary cost to every production rule in the grammar, the size or cost of

an expression is defined as the total cost of all rules expanded in its derivation.

To generate terms of a specific size, we introduce an aspect named Sized. A similar mechanism

was used in previous work [Kne16]. Sized is a parametric aspect, taking the desired size of

generated expression as a parameter. The size has to be a constant natural number and, since

only nonterminals of smaller sizes can be generated from a given sized nonterminal, the

condition of the finiteness of aspects is maintained. We will denote Sized with size s with

norm notation |s|. For instance, Int{|5|} produces only integer expressions of size 5, such as

a + b + c if all operators have size 1.

Formally,

�|s|�(N , R̄) = R̄ ′,

where for each f (N1, N2, . . . , Nn) ∈ R̄, we distinguish two cases:

• if n > 0, i.e. f is a nonterminal operator, then

f (N1{|s1|}, N2{|s2|}, . . . , Nn {|sn |}) ∈ R̄ ′

for all combinations of si > 0 such that si ze( f )+∑
si = s.

Additionally, if f is a commutative operator, we only include a rule in R ′ if ∀i < j . si ≥ s j .

As a result, only left-heavy terms are produced by the grammar (i.e., (a ∗ b) + c and

not the equivalent c + (a ∗ b)). This does not completely eliminate redundancies

introduced by commutative operators, but doing so would require more expressive

grammars, or to inspect and reject terms after they have been generated.

• If n = 0, i.e., f is a terminal operator, then f() ∈ R ′ if and only if si ze( f ) = s.

2.2.4 Comparison to other Grammar Formalisms

As shown in Theorem 2.1, aspect grammars are context-free given the finiteness conditions of

Section 2.2.2. However, for the sake of completeness, we will compare aspect grammars with

other grammar formalisms that extend context-free grammars.
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Attribute grammars were suggested by Knuth [Knu68] as a way to enhance context-free gram-

mars with context-sensitive information called attributes. Attributes are attached to the

nonterminals (syntactic categories) of the grammar and can be elements of any domain, such

is integers, booleans or ADTs. Attributes are divided into two categories: synthesized and

inherited attributes. The synthesized attributes of a nonterminal N are computed in terms of

the attributes of the child nonterminals in an expanded rule for N . Inherited attributes for a

nonterminal N are computed in terms of the attributes of the parent and sibling nonterminals

of N in an expanded rule of which N is a child nonterminal. Additionally, attribute conditions

can be defined, which are predicates on the values of the attributes. The derivation of a

sentence is valid if and only if the context-free part of the grammar is satisfied and all attribute

conditions are true. Observe that attributes are examined during parsing, as opposed to our

aspects, which are only used to compute production rules during a preprocessing stage of the

grammar. Nevertheless, our aspects can be associated with inherited attributes, as they are

computed top-down. In contrast to inherited attributes, our aspects are taken from a finite set,

and are not constrained to filtering out rules, but can implement arbitrary transformations

between rules.

Two-level grammars [vWMP+77, CU77] is another extension of context-free grammars. In-

stead of a finite set, the set of nonterminals of a two-level grammar is defined as the language

recognized by a second context-free grammar, called the metagrammar. Since the set of

nonterminals of a two-level grammar is potentially infinite, two-level grammars are very

expressive; in fact, they have been proven to be Turing-complete. This raises the question

if we would have a similar effect if we relaxed the finiteness condition for nonterminals for

aspect grammars.

Theorem 2.2. Aspect grammars without the finiteness condition for nonterminals are Turing-

complete.

Proof. Let Gu be an unrestricted grammar over alphabet Σ, with nonterminals Nu , starting

nonterminal Su , and let →Gu be the expansion relation for Gu . We will define an aspect

grammar G which recognizes the same language as Gu .

Following Section 2.2.2, define G0 as follows: N0 = {N0},R0 = �,S0 = N0, for some nonter-

minal N0. Define A = {s | s ∈ (Σ∪Nu)∗}, i.e., A coincides with the set of strings over Σ∪Nu .

Then for every s ∈A , define

�s�(N , R̄) =
⎧⎨
⎩

{s}, if s ∈Σ∗

{N0{s’ } | s →Gu s′}, otherwise
(2.1)

Note that �s� is a constant function of N and R̄ for any given s. Finally, define S = N0{Su }.

From the second line of Equation 2.1, it is easy to show by induction on →Gu that N0{s } is

derived by G if and only if s is derived by Gu . Also, from the first line of Equation 2.1, s ∈Σ∗
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is derived by G if and only if N0{s } is derived by G . Therefore, Gu and G define the same

language.

In Leon, we chose to to impose the finiteness conditions of Section 2.2.2. This way, the

resulting grammars remain context-free, which facilitates the algorithms we developed for

their exploration. At the same time, we found that they are expressive enough for the purposes

of this dissertation.

2.2.5 Implementation

In practice, the n, ao and G aspects of Section 2.2.3 are all defined in tandem. Every production

rule in the built-in grammar of Leon, and optionally in user-defined grammars (Section 2.6),

is tagged with a tag that indicates what kind of operator it represents. Every child nontermi-

nal is passed its parent’s tag, its position in its parent’s operands, as well as a ternary value

corresponding to G , ¬G , or the absence of either. Those values together constitute a com-

posite aspect incorporating the functionality of all three aspects, and is used to compute the

production rules for the annotated nonterminal.

A quantitative analysis on the effect of aspects on synthesis is presented in Section 3.4.

2.3 Probabilistic Term Grammars

Although aspect grammars capture some knowledge about a functional language, they im-

plement an “all or nothing” strategy: in a given context, every rule is either applicable or not,

with no quantitative differentiation among applicable rules. A more accurate modelling of

the target language would also require quantifying how likely it is for an expression to be

useful in a given context. To that end, in this section we introduce the use of probabilistic term

grammars to our synthesis system.

Definition 2.4. A probabilistic term grammar is a triple G = (N ,R,S ) as in Definition 2.1,

with the additional attribute that

(4) each rule R is associated with a probability pR ∈ [0,1) such that for all nonterminals N ,∑
R∈R(N )

pR = 1.

We will represent a probabilistic grammar similar to other grammars, indicating the probability

of each rule on its right-hand side:

N ::= f(N11,N12, . . . ,N1k1) (p = p1)

. . .

| f(Nm1,Nm2, . . . ,Nmkm) (p = pm)
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We require the probability of each rule to be pR < 1 (note the strict inequality). If we relax

this assumption, there are some technical difficulties in setting up the probability space, and

results such as Theorem 3.2 will need additional constraints to be true.

Given a derivation e ∈ EN , we define its probability, P (e), as the product of the probabilities of

all rules used in e. We assume that
∑

e∈EN

P (e) = 1, i.e., P (e) assign true probabilities to the parse

trees generated by the grammar. This property of probabilistic grammars is called consistency

[BT73]. In our context, the consistency of a grammar is not important: As we will see in

Section 3.3, where we discuss a probabilistic term exploration algorithm for synthesis, we use

probabilities only as a total order among parse trees, which is not affected by the sum of those

probabilities. Additionally, considering that any practical synthesis algorithm will explore a

finite number of parse trees, we could conceptually normalize the probabilities of discovered

trees by their sum, thus obtaining a consistent grammar without affecting the total order they

define.

2.4 Generic Term Grammars

Generic term grammars offer a concise way of representing operations on polymorphic types.

For this version of term grammars, types associated with nonterminals may be polymorphic,

and production rules may be parametrized by type parameters.

Definition 2.5. A generic (probabilistic) term grammar is defined according to Definition 2.1

(resp. 2.4), except clauses (1) and (2) are modified as follows:

(1) Types associated with nonterminals may be polymorphic.

(2) Each production rule R = t (N1, N2, . . . , Nk ) ∈R(N ) may additionally be parameterized

by a sequence of type parameters Ā. Those have to be a subset of the type parame-

ters of the types TN and TN1 , . . . ,TNk of the nonterminals in the rule. Rules have to be

well typed, as in Definition 2.1 (resp. 2.4). We will denote a rule parametrized by Ā as

∀Ā. N ::= t (N1, N2, . . . , Nk ).

For instance, we could describe common operations on a generic list data-structure with the

following grammar:

∀A. List[A] ::= Cons(A,List[A])
∀A. List[A] ::= Nil[A]()
∀A. A ::= List[A].head
∀A. BigInt ::= List[A].size

BigInt ::= 0

When looking for productions of a specific ground type, we instantiate generic productions

that can return that type and introduce them as normal monomorphic productions. For
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example, if we are looking for productions of List[BigInt], we consider the first two rules above

instantiated with A �→BigInt, and the third instantiated with A �→ List[BigInt].

More complications arise when type parameters are only bound in the right-hand side of a

rule, such as the fourth rule above. Such type parameters can be instantiated with arbitrary

types, which, in the presence of parametric types, can generate an infinite number of ground

productions. For example, the rule “∀A.BigInt ::= List[A].size” can be instantiated with

A = {
BigInt, List[BigInt], List[List[BigInt]], . . .

}
. This is not compatible with the definition of

term grammars, that requires types to be finite.

To solve this conflict, we abandon the theoretical completeness of the instantiation by con-

sidering only a set of reasonable types Tr during instantiation. This set of types is initialized

with all types returned by ground productions, then iteratively expanded by discovering

new return types of Tr -instantiations of generic productions. For example, starting with

Tr =
{
BigInt

}
, running one iteration yields Tr =

{
BigInt,List[BigInt]

}
. By keeping the number

of such iterations finite, we ensure that the set Tr also remains finite.

The number of discovery iterations we perform has a strong practical impact on the number of

final productions, hence on performance. On benchmarks with several generic data structures,

this discovery is typically exponential. Therefore, we need a heuristic to bound the size of

discovered types. The heuristic we found to be working reasonably as a bound for type T is an

underapproximation of the size of the smallest expression of type T .

In the case of a probabilistic grammar, we normalize the probabilities of a nonterminal after

we instantiate generic productions for it.

2.5 Built-In Grammar

The built-in grammar of Leon is a union of

• primitive operations, including arithmetic and boolean operators and constants

• operations on sets, tuples and maps

• all constants in the body of the function under synthesis

• case class constructors for ADTs defined in the program

• input and bound variables of the synthesis problem

• function calls on functions in the same module as the function under synthesis

• (optionally) recursive calls to the function under synthesis. We give the user the option

to include recursive calls in the grammar, as opposed to using the dedicated synthesis

rule that introduces them.
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The built-in grammar is not probabilistic. For term enumeration algorithms that require

probabilities, those are set to be uniform for the rules of each nonterminal.

2.5.1 Value Grammar

Leon also defines a grammar that generates only PureScala values (ground terms). This

grammar is useful, for instance, when we want to enumerate a large number of test inputs for

a given function, as is the case in Section 4.3.1. The value grammar consists of

• Small literals for the BigInt and Int types, as well as the true, false and unit literals

• Small tuple literals and small sets containing values

• Case class constructors for ADTs defined in the program whose fields are values.

2.6 Custom Grammars

The built-in grammars of Leon offer a good generic solution for any synthesis problem. How-

ever, this may not be sufficient for all applications. Firstly, the grammars are not probabilistic,

and it would be difficult to hard-code meaningful probabilities for all types. Secondly, de-

pending on the application, a user may want to provide their own specialized grammar to

model the programs they target more accurately. Therefore, we give the user the possibility to

define their own grammars. We present a Scala file format in which a user can define custom

probabilistic grammars. Additionally, as those files can be very tedious to author manually, we

provide a simple method to automatically extract a grammar file from a corpus of code.

2.6.1 Grammar Files

A grammar file represents a probabilistic term grammar in a specially formatted Scala file,

where each production rule is represented as a Scala function. Since grammars are not

used directly but go through some phases of preprocessing (instantiation of generic rules

and application of aspects) which would invalidate probabilities associated with the user-

defined rules, we defer from using probabilities directly in the grammar files. Instead, the user

associates an integer measure frequency to each function. The generated probability for each

rule is proportional to its associated measure.

Plain nonterminals. In the simplest case, nonterminals coincide with Scala types. To ex-

plain this file format, let us look at an example grammar file describing a set of simple arbitrary-

precision integer programs:

@production(10) def plus(a: BigInt, b: BigInt): BigInt = a + b
@production(5) def minus(a: BigInt, b: BigInt): BigInt = a − b

50



2.6. Custom Grammars

@production(10) def o: BigInt = BigInt(1)
@production(5) def z: BigInt = BigInt(0)
@production(20) def vBigInt: BigInt = variable[BigInt]

A function annotated with @production is treated as a grammar production rule. A rule of the

form T ::= f(T1,T2, . . . ,Tk), is represented in a grammar file as

def prodF(a1: T1, . . ., ak: Tk): T = f(a1,. . .,ak).

The function’s name is arbitrary. The annotation’s argument indicates the integer measure

associated to the rule. The relative frequencies will be computed from the absolute frequencies

during grammar preprocessing.

Note that f above can be any Scala expression that belongs to the fragment parsable by

Leon according to Section 1.4, as long as this expression refers to each function parameter

exactly once. This is consistent with Definition 2.1. This way, rules can represent arbitrarily

complicated Scala functions.

An invocation of the built-in function variable[T], for some type T, indicates the absolute

frequency of generating any variable of type T. This built-in compensates for the fact that we

do not know a priori the names of the variables available to each specific synthesis problem.

During preprocessing, this production will be instantiated to a concrete production for each

available variable of the correct type, with the probability of the variable rule distributed

equally among those variables.

For example, when synthesizing a function with two parameters (x: BigInt, y: BigInt), the

above grammar file would generate the following grammar:

BigInt ::= BigInt + BigInt (p+ = 0.2)

| BigInt - BigInt (p− = 0.1)

| 0 (p0 = 0.2)

| 1 (p1 = 0.1)

| x (px = 0.2)

| y (py = 0.2)

Grammars with aspects. It is possible attach aspects to custom grammar rules. Rather than

giving the aspects directly, the user annotates the rules with the set of tags used by the default

grammar to compute aspects, as mentioned in Section 2.2.5. The system will then compute

the aspects based on those tags and operand positions as explained in Section 2.2.5. The tags

are attached to rules with the @tag Scala annotation. For example, @tag("commut") indicates

that the tagged function corresponds to a rule with a top-level commutative operator, which is

taken into account, for example, by the Sized aspect of Section 2.2.3.
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Annotated nonterminals. In Section 2.1 we left the definition of grammar nonterminals

open as long as they are mappable to types. With this in mind, custom grammars offer the

possibility to annotate nonterminals with additional custom information. This is useful if a

user wants to express restrictions on generated expressions that are not expressible by the

provided aspects and do not want to develop a new aspect.

An annotated nonterminal is represented in a grammar file with an implicit class. Implicit

classes in Scala always take a single (constructor) parameter and automatically define a

coercion from the type of their argument to their own type. For example, the program

implicit class C(i: Int) { def foo = i + 1 }
println(42.foo)

will print 43 to the standard output. We utilize this functionality to skip repeating the definition

of the nonterminal in every rule and make the grammar file more readable. The type of the

constructor argument is the type associated with the nonterminal in the term grammar.

Annotated nonterminals are annotated in grammar files with the @label Scala annotation.

For example, suppose a user wants to manually specify that the grammar of Section 2.6.1

should not generate 0 operants for +, as well as in the second position of -. This can be handled

by aspects, but can also be captured with the following annotated grammar:

BigInt ::= BigInt-Toplevel (p = 1.0)

BigInt-Toplevel ::= BigInt-Nonzero (p = 0.8)

| 0 (p = 0.2)

BigInt-Nonzero ::= BigInt-Nonzero + BigInt-Nonzero (p1 = 0.25)

| BigInt-Toplevel - BigInt-Nonzero (p1 = 0.125)

| x (px = 0.25)

| y (py = 0.25)

| 1 (p1 = 0.125)

All nonterminals of the above grammar have type BigInt.

This grammar is represented by the following grammar file:

1 @label implicit class Nonzero(val v: BigInt)
2 @label implicit class Toplevel(val v: BigInt)
3

4 @production(1) def start(b: Toplevel): BigInt = b.v
5

6 @production(40) def nz2Bi(nz: Nonzero): Toplevel = nz.v
7 @production(10) def z: Toplevel = BigInt(0)
8

9 @production(10) def plus(a: Nonzero, b: Nonzero): Nonzero = a.v + b.v
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10 @production(5) def minus(a: Toplevel, b: Nonzero): Nonzero = a.v − b.v
11 @production(20) def vNZ: Nonzero = variable[BigInt]
12 @production(5) def oNZ: Nonzero = BigInt(1)

Observe how the implicit notation makes the grammar file less cluttered: For example, in line

6 of the above code, the term nz.v of type BigInt is coerced to Toplevel.

2.7 Extracting Grammars from Corpus

Whereas manually specifying grammars is realistic and useful for DSLs and small languages, it

would be tedious to expect a user-provided grammar for generic programming tasks, where

numerous types and operators have to be handled. To address this, we provide an automated

system to extract a grammar from a corpus of Scala programs. We provide two different

grammar extractors, described in the following paragraphs.

2.7.1 Extractor for Plain Grammars

The plain grammar extractor counts the occurrences of each operator in the corpus and

outputs a function with the corresponding frequency for each one. Literals of different values,

as well as functions of different names, count as different operators. In contrary, variable

names are not preserved, and all variables of a specific type are summarized in a single rule

invoking the variable built-in function. Generic applications of the operator (for instance, in

the case of equality) generate generic productions. Generated productions are tagged to aid

the application of aspects, as explained in the previous section.

For example, a corpus containing only the expression ((x ∗ y) ∗ 2), where x, y: BigInt, would

result in the following grammar file:

@production(1) @tag("const")
def pBigIntInfiniteIntegerLiteral0(): BigInt = BigInt(2)
@production(2) @tag("times")
def pBigIntTimes(v0 : BigInt, v1 : BigInt): BigInt = v0 ∗ v1
@production(2) @tag("top")
def pBigIntVariable(): BigInt = variable[BigInt]

The "top" tag is the default tag, which has no effect on aspect transformers.

Given available input parameters a, b, c: BigInt, The above file will generate the following

grammar:
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BigInt ::= 2 (p = 0.2)

| BigInt * BigInt (p = 0.4)

| a (p = 0.133)

| b (p = 0.133)

| c (p = 0.133)

2.7.2 Extractor for Annotated Grammars

The second extractor uses annotated grammars to extract conditional operator frequencies.

Specifically, the frequency of an operator is conditional its operand position and its parent

node in the abstract syntax tree. The assumption is that these grammars will work better

because they encode more information about the structure of programs in the target language.

For example, these grammars can encode that a 0 will never be used as an operand of a +
operator.

As an example, a corpus containing only the expression ((x ∗ y) ∗ 2) as before would produce

the following grammar file:

@label implicit class BigInt_TOPLEVEL(val v : BigInt)
@label implicit class BigInt_0_Times(val v : BigInt)
@label implicit class BigInt_1_Times(val v : BigInt)

@production(1)
def pBigIntStart(v0 : BigInt_TOPLEVEL): BigInt = v0.v

@production(1)
def pBigIntTimes(v0 : BigInt_0_Times, v1 : BigInt_1_Times): BigInt_TOPLEVEL =

v0.v ∗ v1.v

@production(1)
def pBigIntVariable(): BigInt_0_Times = variable[BigInt]

@production(1)
def pBigIntVariable(): BigInt_1_Times = variable[BigInt]

@production(1)
def pBigIntInfiniteIntegerLiteral(): BigInt_1_Times = BigInt(2)

Given an input parameters a, b: BigInt, this file corresponds to the following grammar:
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BigInt ::= BigInt{Top} (p = 1.0)

BigInt{Top} ::= BigInt{*,0 } * BigInt{*,1 } (p = 1.0)

BigInt{*,0 } | a (pa = 0.5)

| b (pb = 0.5)

BigInt{*,1 } ::= a (pa = 0.25)

| b (pb = 0.25)

| 2 (p2 = 0.5)

2.7.3 Extraction of Grammars from a Corpus of Leon Benchmarks

We ran the two grammar extractors on a corpus of programs consisting of 172 Leon verification

benchmarks, totalling a number of 15715 lines of code. This is a small corpus, but due to the

language restrictions of PureScala, at present our system cannot analyze publicly available

Scala code.

In total, we extracted 59165 expressions of 18 types. From these expressions, we filtered out

expressions of user-defined types except library types such as List, as those are not relevant for

unrelated synthesis problems. Additionally, we filtered out match-expressions, since those

are introduced by rules such as ADT SPLIT and are not meant to be generated by enumeration

rules. After this filtering, we end up with 21128 expressions. Those were then analyzed

separately by the plain and annotated grammar extractors. The plain grammar extractor

output a total of 258 rules, while the annotated output 1118 rules and 247 nonterminals

(@label implicit classes).

We evaluate the two generated grammars for synthesis in Section 3.4.

2.8 Extended Example

As a case study about how grammars are generated and processed by Leon, we look in more

depth at an example taken from synthesis of the run-length encoding benchmark of Section

1.2.3. Specifically, we pick a problem generated after the application of a few synthesis rules,

when Leon is attempting to synthesize the recursive branch of the function where the first two

elements of the list are equal.

The partial solution at this point looks as follows:

def encode[A](l : List[A]): List[(BigInt, A)] = {
l match {

case Nil() ⇒
Nil()

case Cons(h, t) ⇒
encode[A](t) match {
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case Nil() ⇒
List((BigInt(1), h))

case Cons(h1 @ (h_1, h_2), t1) ⇒
if (h == h_2) {

???[List[(BigInt, A)]] // Current synthesis problem
} else {

???[List[(BigInt, A)]]
} } } }

The position of the current problem is indicated with a comment in the code.

Figure 2.2 shows the built-in grammar for this problem before instantiating generic rules and

applying aspects. Ground productions are followed by generic productions. Since the built-in

grammar is pretty large and includes productions for types not relevant for this problem,

such as sets and maps, we have omitted productions corresponding to irrelevant types for

presentation purposes. In practice, those additional productions do not negatively influence

the performance of the system, since only nonterminals that are reachable from the starting

nonterminal are considered by our enumeration algorithms.

Note that there is an entry for lists of type A, the type parameter of the input list l. This rule is

not parametric to A, as A refers to a type parameter found in the program and thus is treated

as a type constant (Skolem constant).

A term enumeration algorithm called Symbolic Term Exploration (STE, Section 3.2) uses this

grammar to explore solutions for the problem. STE needs to explore terms by increasing size,

therefore it uses the Sized aspect. It also applies the composite aspect of Section 2.2.5, which

implements the functionality of the aspects for ground terms, neutral/absorbing elements,

and associative operators presented in Section 2.2.3. Eventually, it discovers a solution to the

problem of size 7.

Figure 2.3 shows a part of the resulting grammar after instantiation of generic rules and

application of the aspects. As a reminder, aspects are applied only on demand, depending on

which aspects the user attached to the starting symbol of the grammar. The first part of the

grammar corresponds to the starting symbol of type List[(BigInt, A)]. The first aspect attached

to it is the sized aspect for size=7. The second aspect is the composite aspect indicating

the generated expression is a top-level expression (without a parent), at position 0, and

there is no indication about its groundness. The first rule for this symbol corresponds to an

instantiation of the decode generic rule, and the rest are instantiations of the Cons generic

rule for all applicable of sizes and ground statuses. The FunCall and Cns tags indicate that the

parent of the current expression is respectively a function call and an ADT constructor. Rules

corresponding to t1 and the generic rule for Nil did not generate any rules when transformed by

the Sized aspect for this size. Next, some rules are listed corresponding to integer expressions

of size 1, namely those that are with + operators. We include a nonterminal with the empty list
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BigInt ::= 0
| 1
| BigInt + BigInt
| BigInt - BigInt
| BigInt * BigInt
| h_1

Boolean ::= false
| true
| ! Boolean
| Boolean && Boolean
| Boolean || Boolean
| BigInt < BigInt
| BigInt ≤ BigInt

List[A] ::= t
A ::= h

List[(BigInt, A)] ::= t1
∀T Boolean ::= T ==T
∀T | legal[T]( List[(BigInt, T)] )

∀T1,T2 (T1,T2) ::= (T1,T2)
∀T List[T] ::= decode[T]( List[(BigInt, T)] )
∀T | Cons[T]( T , List[T] )
∀T | Nil[T]()

Figure 2.2 – Built-in grammar before processing

of rules ε to indicate it is non-productive. Finally, the single rule for expressions of type A and

size 1 is shown.

Figure 2.4 lists the plain grammar of Section 2.7.3 for the same problem. The frequencies

depicted on the right are absolute frequencies. Generic rules have already been instantiated.

The tuple rule and its instantiation is not extracted from the corpus and has been manually

inserted. The reason the rule t for List[A] is duplicated is that the custom grammar contains

@production functions for variables of both generic types T and List[T]. Such clauses do not

make it into the grammar, because they are not grammar rules per say but rule templates

(they need a specific variable to become proper rules). Figure 2.5 shows part of the same gram-

mar after calculation of probabilities and instantiation of aspects. The negative logarithmic

probability for each rule is displayed.

Finally, Figure 2.6 shows part of the annotated extracted grammar after processing. Recall

that the difference with the previous grammar is that there is no aspect application, and the

probabilities listed are directly based on frequencies extracted from the corpus.
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List[(BigInt, A)]{|7|}{Top,0 } ::= decode[(BigInt, A)]( List[(BigInt, (BigInt, A))]{|6|}{FunCall,0,¬G})
| Cons[(BigInt, A)]( (BigInt, A){|1|}{Cns,0,¬G} ,

List[(BigInt, A)]{|5|}{Cns,1,¬G})
| Cons[(BigInt, A)]( (BigInt, A){|1|}{Cns,0,G} ,

List[(BigInt, A)]{|5|}{Cns,1,¬G})
| Cons[(BigInt, A)]( (BigInt, A){|1|}{Cns,0,¬G} ,

List[(BigInt, A)]{|5|}{Cns,1,G})
. . .

| Cons[(BigInt, A)]( (BigInt, A){|5|}{Cns,0,¬G} ,
List[(BigInt, A)]{|1|}{Cns,1,¬G})

| Cons[(BigInt, A)]( (BigInt, A){|5|}{Cns,0,G} ,
List[(BigInt, A)]{|1|}{Cns,1,¬G})

| Cons[(BigInt, A)]( (BigInt, A){|5|}{Cns,0,¬G} ,
List[(BigInt, A)]{|1|}{Cns,1,G})

. . .
BigInt{|1|}{+,0,¬G} ::= h_1
BigInt{|1|}{+,0,G } ::= ε

BigInt{|1|}{+,1,¬G} ::= h_1
BigInt{|1|}{+,1,G } ::= BigInt(1)

A{|1|}{Cns,1,¬G} ::= h

Figure 2.3 – Part of grammar of figure 2.2 after processing
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(BigInt, A) ::= ( BigInt , A ) f = 1
A ::= h f = 618

BigInt ::= - BigInt f = 28
| BigInt / BigInt f = 34
| BigInt - BigInt f = 281
| BigInt mod BigInt f = 2
| BigInt + BigInt f = 214
| BigInt % BigInt f = 19
| BigInt * BigInt f = 143
| h_1 f = 3289
| BigInt(0) f = 562
| BigInt(1) f = 375
| BigInt(-1) f = 11
| BigInt(2) f = 97

Boolean ::= Boolean && Boolean f = 1784
| true f = 476
| false f = 221
| Boolean == Boolean f = 82
| List[BigInt] == List[BigInt] f = 18
| BigInt == BigInt f = 350
| Boolean → Boolean f = 50
| BigInt ≤ BigInt f = 349
| BigInt < BigInt f = 242
| !Boolean f = 486
| Boolean || Boolean f = 139

List[(BigInt, A)] ::= Cons[(BigInt, A)] ( (BigInt, A) , List[(BigInt, A)] ) f = 62
| t1 f = 1498
| Nil[(BigInt, A)]() f = 80

List[A] ::= t f = 618
| t f = 880

List[BigInt] ::= Cons[BigInt] ( BigInt, List[BigInt] ) f = 40
| Nil[BigInt]() f = 31

∀T Boolean ::= T == T f = 22
∀T | List[T] == List[T] f = 42

∀T1,T2 (T1, T2) ::= ( T1 , T2 ) f = 1
∀T List[T] ::= Nil[T]() f = 80
∀T List[T] ::= Cons[T]( T , List[T] ) f = 62

Figure 2.4 – Plain custom grammar before preprocessing
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List[(BigInt, A)]{Top, 0 } ::= Cons[(BigInt, A)] ((BigInt, A){Cns,0,¬G} ,
List[(BigInt, A)]{Cns,1,¬G}) − log(p) = 3.35

| Cons[(BigInt, A)] ((BigInt, A){Cns,0,G} ,
List[(BigInt, A)]{Cns,1,¬G}) − log(p) = 3.35

| Cons[(BigInt, A)] ((BigInt, A){Cns,0,¬G} ,
List[(BigInt, A)]{Cns,1,G}) − log(p) = 3.35

| t1 − log(p) = 0.17
| Nil[(BigInt, A)]() − log(p) = 3.10

. . .
BigInt{+, 0, ¬G} ::= -BigInt{-, 0, ¬G} − log(p) = 5.13

| BigInt{*, 0, ¬G} * BigInt{*, 1, ¬G} − log(p) = 3.59
| BigInt{*, 0, G } * BigInt{*, 1, ¬G} − log(p) = 3.59
| BigInt{*, 0, ¬G} * BigInt{*, 1, G } − log(p) = 3.59
| BigInt{%, 0, ¬G} % BigInt{%, 1, ¬G} − log(p) = 5.52
| BigInt{%, 0, G } % BigInt{%, 1, ¬G} − log(p) = 5.52
| BigInt{%, 0, ¬G} % BigInt{%, 1, G } − log(p) = 5.52
| BigInt{mod, 0, ¬G} mod BigInt{mod, 1, ¬G} − log(p) = 7.77
| BigInt{mod, 0, G } mod BigInt{mod, 1, ¬G} − log(p) = 7.77
| BigInt{mod, 0, ¬G} mod BigInt{mod, 1, G } − log(p) = 7.77
| BigInt{-, 0, ¬G} - BigInt{-, 1, ¬G} − log(p) = 2.83
| BigInt{-, 0, G } - BigInt{-, 1, ¬G} − log(p) = 2.83
| BigInt{-, 0, ¬G} - BigInt{0, 1, G } − log(p) = 2.83
| BigInt{/, 0, ¬G} * BigInt{/, 1, ¬G} − log(p) = 4.94
| BigInt{/, 0, G } * BigInt{/, 1, ¬G} − log(p) = 4.94
| BigInt{/, 0, ¬G} * BigInt{/, 1, G } − log(p) = 4.94
| h_1 − log(p) = 0.37

BigInt{+, 0, G} ::= -1 − log(p) = 2.33
| 2 − log(p) = 0.10

Figure 2.5 – Part of plain custom grammar after preprocessing
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List[(BigInt, A)]{Top, 0 } ::= Cons[(BigInt, A)] ((BigInt, A){Cns,0} ,
List[(BigInt, A)]{Cns,1}) − log(p) = 3.28

| t1 − log(p) = 0.09
| Nil[(BigInt, A)]() − log(p) = 3.02

List[(BigInt, A)]{Cns, 1 } ::= Cons[(BigInt, A)] ((BigInt, A){Cns,0} ,
List[(BigInt, A)]{Cns,1,¬G}) − log(p) = 3.66

| t1 − log(p) = 0.57
| Nil[(BigInt, A)]() − log(p) = 0.89

. . .
BigInt{+, 0} ::= BigInt{-, 0} - BigInt{-, 1} − log(p) = 2.70

| BigInt{*, 0} * BigInt{*, 1} − log(p) = 2.82
| BigInt{+, 0} + BigInt{+, 1} − log(p) = 2.82
| h_1 − log(p) = 0.29
| BigIng(1) − log(p) = 2.82

BigInt{+, 1} ::= BigInt{*, 0} * BigInt{*, 1} − log(p) = 2.79
| h_1 − log(p) = 0.93
| BigIng(1) − log(p) = 0.64
| BigIng(2) − log(p) = 5.02
| BigIng(3) − log(p) = 5.02

Figure 2.6 – Part of annotated custom grammar after preprocessing

2.9 Conclusion

In this chapter, we presented an overview of different variants of term grammars that are

used in Leon to describe program spaces. Those variants include probabilistic and generic

grammars, as well as aspect grammars, a new technique to modularly describe the basic

structure of a grammar and prior knowledge on the underlying language’s operators. We

showed the built-in grammar of Leon, in contrast with user-defined grammars, described in a

Scala file with special annotations. We provide a system which can extract such a grammar

from a corpus of code, and use it on a small corpus of Leon verification benchmarks.
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3 Term Exploration

As mentioned in Chapter 1, Leon synthesis relies on a deductive synthesis rule capable of

discovering a term from a space of candidate terms and verifying its correctness. In this

chapter, we present two instantiations of such rule. The first one, called Symbolic Term

Exploration [KKKS13, Kne16], operates on term grammars without probabilities, and explores

terms in order of increasing size. The second one, which we call Probabilistic Top-Down Term

Enumeration or just Probabilistic Term Enumeration (PTE), operates on probabilistic term

grammars and explores terms in order of decreasing probability. Both rules are based on the

counterexample-guided inductive synthesis (CEGIS) framework, which we briefly present

next.

Parts of this chapter appeared in previous work by the author of this dissertation and others

[KKK16, KRKK17].

3.1 Counter-Example Guided Inductive Synthesis

Counter-example guided inductive synthesis (CEGIS) is a widely used framework to describe

program synthesis algorithms [SLTB+06, GJTV11]. Recall that the problem of synthesis is

summarized by Formula (1.1): ∃T.∀ā.
[
Π→ φ[x �→ T ]

]
. The main technical difficulty with

finding a T satisfying this formula is the universally quantified “∀ā”, where the input variables

ā can range over a large, or even potentially infinite domain. CEGIS circumvents this difficulty

by approximating the universal quantification for all inputs with finite quantification over a

set of known inputs that grows as the exploration advances.

We present CEGIS in Algorithm 3.1. At each step, the algorithm maintains a finite set A of

concrete input examples. It is parameterized by two sub-procedures, Search and Verify.

In the Search phase, the algorithm finds an expression T that satisfies the specification for the
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Algorithm 3.1: CEGIS(�ā
〈
Π�φ

〉
x� , A).

Repeat forever:

(1) Let T = Search(ā, A,Π,φ, x).

(2) Let res=Verify(ā,Π,φ, x,T ).

(3) If res= VALID, then return T .

(4) Otherwise, if res= INVALID(ācex), update A := A∪ {ācex}.

current set of concrete inputs ā or, formally,

∧
ā∈A

Π→φ[x �→ T ]. (3.1)

Observe that, for a specific choice of ā ∈ A, determining whether a given T satisfies require-

ment (3.1) reduces to simply evaluating the resulting expression. Often, the strategy for

implementing Search is to enumerate all candidate expressions, in some order, until a suitable

answer is found.

In Verify, we check whether the candidate expression T works for all inputs ā by sending

the formula ∀ā. Π→ φ[x �→ T ] to the Leon verifier. If it does, we have found a satisfactory

solution and the algorithm terminates. If not, Verify will provide a new input point for which

the candidate program fails, which will be appended to A and will be used to further refine the

results of Search in the next iteration of the algorithm.

One point that has to be clarified is how Verify handles recursive calls to the function under

synthesis. Verify uses a version of the function containing all known information about the

currently constructed synthesis solution. Recall that a term exploration rule is a closing rule of

the Leon deductive framework, i.e., a leaf in the synthesis search graph (see Section 1.5). At

any moment, the current graph describes the structure of the current (potentially incomplete)

synthesis solution. Verify uses this graph to reconstruct the current solution and uses it in

recursive calls.

As an example, suppose we are synthesizing the list insertion function of Section 1.2.2. For

reference, its synthesis graph is depicted in Figure 1.14. Suppose that, as we are trying to solve

the second-to-last subproblem (the h < v case), we are verifying the term rec as a potential

solution. rec is the variable bound to the introduced recursive call. At this moment, the

incomplete synthesis solution looks as follows:

def insert(in : List[BigInt], v : BigInt): List[BigInt] = {
require(isSorted(in))
in match {

case Nil() ⇒ List(v)
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case Cons(h, t) ⇒
val rec = insert(t, v)
if (h == v) rec
else if (h < v) rec // Current subproblem
else ???[List[BigInt]]

} ensuring {
(out : List[BigInt]) ⇒

out.content == in.content ++ Set[BigInt](v) && isSorted(out) }

This version of the function contains all known information about the current (incomplete)

solution, and will be used in recursive calls to the function. In this example, although the

term rec itself contains no obvious recursive calls, the formula sent to the verifier (∀h,t,v. Π→
φ[out �→ rec]) does, since Π contains the binding (rec �→ insert(t,v)).

In the following sections, we describe two implementations of term exploration based on

CEGIS, focusing on the Search procedure. The first one explores terms generated from a

grammar in order of increasing size, and incorporates techniques for improved use of con-

crete examples. The second one is one of the few synthesis procedures which incorporate

probabilities and probabilistic search into the CEGIS framework.

3.2 Symbolic Term Exploration

Symbolic Term Exploration (STE) is an adaptation of the existing algorithm of Leon and is

presented in Algorithm 3.2. It is an instantiation of CEGIS. For clarity and performance reasons,

STE does not separate the SEARCH and VERIFY steps of Algorithm 3.1.

Algorithm 3.2 takes as input a synthesis problem, a grammar G and a maximum size max

of generated terms. During the initialization phase of the algorithm, a priority queue I is

populated with input or input-output examples that are being tracked in the synthesizer,

and some additional examples that are generated on the fly. All priorities in the queue are

initialized to 0; they will be increased later as examples are used to filter out invalid programs.

Another variable P is initialized to the empty set of programs.

UNFOLD produces all derivations of the grammar G for a specific size s. This is done with

the help of the Sized aspect of Section 2.2.3: the starting symbol of the grammar is annotated

with |s|, and all derivations of G are enumerated. Observe that a grammar annotated with

Sized is never recursive, hence the generated set of programs is finite. This set of programs

P is first filtered with the current set of available tests I . This is implemented with function

CONCRETETEST in Algorithm 3.3, which we will explain later.

Every program p that passes concrete execution for all tests is sent to the verifier. Similarly

to VERIFY in the previous section, SETRECURSIVECALLS(p) makes sure recursive calls to the

function under synthesis use the current incomplete synthesis solution, including the current
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Algorithm 3.2: STE(�ā
〈
Π�φ

〉
x�, G , max)

var I ← QUEUE( initial examples )
var P ←�
for s ← 1 to max do

P ← UNFOLD(G , s)
P ← CONCRETETEST(P, I , I ,φ)
forall p ∈ P do

SETRECURSIVECALLS(p)
f ← (Π∧¬φ[x �→ p])
s ← LEONSMT( f )
switch s do

case UNSAT do
return p

case SAT(a0) do
P ← P \ {p}
I ← ENQUEUE(I , a0)
P ← CONCRETETEST(P, QUEUE(a0), I ,φ)

return FAIL

Algorithm 3.3: CONCRETETEST(P , Q, I , φ)

P ′ ←�
forall p ∈ P do

SETRECURSIVECALLS(p)
forall i ∈Q ; // by order of priority in Q
do

switch i do
case ā0 do

e ←φ[x �→ p, ā �→ ā0]

case (ā0, x0) do
e ← “p[ā �→ ā0] == x0”

if ¬EXECUTE(e) then
INCREASEPRIORITY(I , i )
break forall

P ′ ← P ′ ∪ {p}

return P ′
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term p. Then, the Leon verifier is invoked with the negation of the specification, where the

output variable has been substituted with the current term p. If the result is UNSAT, the

program is valid and is returned; otherwise, the solver returns a new counterexample which

is added to the set of examples I . The current program p is rejected and the new example is

immediately used to potentially reject more programs in P , by invoking CONCRETETEST an

additional time with a new queue containing only the new counterexample a0.

This process is repeated until the maximum term size is exceeded, at which point the algorithm

fails.

Let us now take a closer look at CONCRETETEST. It takes as input the set of programs to be

tested P , the priority queue of examples to be used Q, the main priority queue of examples

in STE I , and the problem specification φ. I is passed so we can modify the priorities of its

elements, as we will see later. First, a set of programs P ′ to be returned is initialized to the

empty set. Every program is tested against every example with concrete execution: if the

example i is an input example, we check if the specification is satisfied; if it is an input-output

example, we check that the program evaluates to the output value of the example. The latter

case corresponds to the expression in quotes. The examples are used in order of their priority

in Q. The EXECUTE function will return true if and only if its argument evaluates to true
without failing any specification, including those invoked in other functions or recursive calls

on the function under synthesis. If p passes all examples, we add it to P ′ to be returned. In

case p fails for an example i , we do not execute it on the remaining tests. Also, we increase the

priority of i in the queue I : since it was useful to reject a program, we want it to be used earlier

in the testing process. We found this optimization to be quite useful in practice.

3.2.1 Sizes of Operators

To apply the Sized aspect, we need to assign a natural number as size to every production

rule of our grammar. We do so as follows: for a non-probabilistic grammar, all sizes are equal

to 1 and for a probabilistic grammar, sizes are equal to the normalized negative logarithmic

probabilities:

size(R) = Round

( − log(pR )

minR ′∈R(NR )(− log(pR ′))

)

where NR is the nonterminal which produces the rule R and Round is the function rounding

to the nearest integer. We normalize probabilities to reduce the size of the operators, which

reduces the maximum size of terms that STE has to explore for a given benchmark. In any case,

STE was designed for non-probabilistic grammars, and we do not evaluate it for probabilistic

grammars.
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3.3 Probabilistic Top-Down Term Enumeration

In the search phase of the CEGIS loop, we want to find an expression T that satisfies the

requirement in Equation 3.1. One approach to implementing Search(ā, A,Π,φ, x) is to enu-

merate all candidate expressions, in some order, until a suitable answer is found. Algorithm 3.4

presents this approach, parametric to the Enumerate procedure. Recall that, because A is a

finite set, for a given choice of A and T , determining the satisfaction of Equation 3.1 reduces

to evaluating the conjunction and does not involve expensive calls to an SMT solver. The

enumerative SyGuS solver [ABJ+13] uses a highly optimized form of expression enumeration

in the search phase, and is currently among the most competitive SyGuS solvers.

Algorithm 3.4: Search(ā, A,Π,φ, x).Implements the search phase of the CEGIS loop by expres-
sion enumeration.

(1) Let G be the chosen term grammar, and S be the starting nonterminal of the same type
as the output variable x, i.e., TS = Tx .

(2) For each e emitted by Enumerate(G , N ):

(a) If
∧

ā∈A
[
Π→φ[x �→ e] = true

]
, return e.

(b) Otherwise, discard e and continue enumeration.

In the rest of this section, we describe an implementation of Enumerate that uses a probabilis-

tic term grammar to enumerate expressions in order of decreasing probability. This way, it can

discover the solution with the maximum probability, as well as accelerate the search process.

3.3.1 Derivation Trees

We first extend the idea of a grammar derivation into the more general notion of a partial

derivation:

ẽN ::= ?N | t(ẽN1 , ẽN2 , . . . , ẽNk ),

where R = t(N1, N2, . . . , Nk) is a derivation rule of N in G . In particular, note that partial

derivations can contain empty sub-expressions, denoted by ?N . We will sometimes omit

the type of empty subexpressions. Examples of partial derivations include “x + ?” and

“if (x ≤ ?) { x } else { ? }”. We write ẼN for the set of all partial derivations of a nonterminal

N .

Given a pair of partial derivations ẽ1 and ẽ2, we say that ẽ1 and ẽ2 are related by the expansion

relation, and write ẽ1 → ẽ2, if ẽ2 can be obtained by replacing the left-most instance of ? in ẽ1 by

an appropriate production rule. For example, if ẽ1 = x + ?, ẽ2 = x + 1, and ẽ3 = x + (? + ?),

then ẽ1 → ẽ2 and ẽ1 → ẽ3.
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Figure 3.1 – A tree of partial derivations for a PCFG

The expansion relation naturally induces a tree G on the partial derivations of a grammar G ,

as displayed in Figure 3.1. The initial node is the starting nonterminal, ?S . There is an edge

from the partial derivation ẽ1 to the partial derivation ẽ2 if they are related by the expansion

relation, ẽ1 → ẽ2. Because we can only replace the left-most instance of ?, the resulting graph

is a tree. For clarity, complete derivations are squared in the figure.

We can also speak of the probability of partial derivations: pẽ of a partial derivation ẽ is

the product of the probabilities of all production rules used to derive ẽ. Those rules are a

multiset r (ẽ), defined as follows: r (?) = � and r (t(ẽN1 , ẽN2 , . . . , ẽNk )) = R ∪⋃
i

rNi , where R =
t(ẽN1 , ẽN2 , . . . , ẽNk ). Thus, pẽ = ∏

R∈r (ẽ)
pR .

It is mathematically more convenient to speak of negative logarithmic probabilities: the cost

of a rule R is defined as − log(pR ), and the cost of a partial derivation ẽ,

cost(ẽ) =− log(pẽ ) =− ∑
R∈r (ẽ)

log(pR ), (3.2)

In Figure 3.1, the edge ẽ1 → ẽ2, produced by an instantiation of the rule R, is annotated with

the cost of the rule, − log(pR ). The sum of the weights along the path to ẽ is equal to cost(ẽ). A

main insight in this section is that each Enumerate(G , N ) can be thought of as an instantiation

of a search algorithm on this tree.
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Emit! Complete?
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Partial evaluation

No
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Rewrite 1

Expand ẽ1 {ẽ11, ẽ12, ẽ13, . . .}
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Rewrite 2

Deduplicating priority queue Q

Instantiate Q with ?

Start

Figure 3.2 – The operation of Enumerate(G , N ) in Algorithm 3.5

3.3.2 The Enumerate Algorithm

Algorithm 3.5: Enumerate(G , N ). Emits a sequence of complete derivations of N .

(1) Let π : ẼN →R≥0 be a priority function that maps derivations to non-negative real
numbers.

(2) Let Q be a priority queue of partial derivations ẽ ∈ ẼN arranged in ascending order
according to π. Initialize Q := {?N }.

(3) While Q is not empty:

(a) Let ẽ be the element at the front of Q. Dequeue ẽ.

(b) If ẽ is a complete derivation, emit ẽ.

(c) Otherwise, for every neighbor ẽ ′ such that ẽ → ẽ ′ in G , insert ẽ ′ into Q.

In this section, we present and analyze an instantiation of Enumeratebased on probabilistic

term grammars, depicted in Algorithm 3.5. It is helpful to visualize the operation of the algo-

rithm as shown in Figure 3.2. The algorithm maintains a priority queue Q of still-unexpanded

partial derivations. At each step, the algorithm dequeues the element ẽ at the front of this

priority queue and, if it is still incomplete, expands the leftmost ? with an instance of every

applicable production rule R. This results in a set of partial derivations ẽ1, ẽ2, . . . , ẽk . All of

these new partial derivations are inserted back into Q. If ẽ is already complete, it is emitted

to be further processed by Search(ā, A,Π,φ, x). If π(ẽ) = cost(ẽ) =− log(P (ẽ)), i.e., the priority

function is equal to the cost of the partial derivation, then Enumerate emulates Dijkstra’s

algorithm.

We begin analysing Algorithm 3.5 with the following invariant:

Theorem 3.1. Let Ec be the set of (complete) derivations already emitted by Enumerate(G , N ).

70



3.3. Probabilistic Top-Down Term Enumeration

Then,
∑

ẽ∈Q∪Ec

P (ẽ) = 1.

Proof. First, observe that, for all partial derivations ẽ with at least one occurrence of ?,

∑
ẽ ′s.t.ẽ→ẽ ′

P (ẽ ′) = P (ẽ). (3.3)

This follows directly from Definition 2.4. Informally, if each partial derivation ẽ is viewed as an

event resulting from the PCFG, then the partial derivations ẽ ′ obtained by a single application

of the expansion relation encode a mutually exclusive and exhaustive collection of sub-events

of ẽ.

We then have: (1) the base case: P (?) = 1, (2) inductive case #1: whenever a complete derivation

e is emitted from Q, the set Q ∪Ec is left unchanged, (3) and inductive case #2: whenever a

partial derivation ẽ is further expanded into partial derivations ẽ1, ẽ2, . . . , ẽk , the candidate

invariant continues to hold because of Equation 3.3.

Intuitively, Theorem 3.1 captures the fact that each possible complete derivation either has

already been discovered (belongs to Ec ), or is derivable from a partial derivation in Q; therefore,

the probabilities of these derivations sum to 1.

Theorem 3.2. If the priority function, π(ẽ) = cost(ẽ) = − log(P (ẽ)), then Enumerate(G , N ) re-

turns some sequence σ containing all complete derivations of N in G. Furthermore, the proba-

bility P (e) of derivations in σ is monotonically decreasing.

Proof. We begin by proving the second part of the claim. Consider a pair of partial deriva-

tions, ẽ and ẽ ′ such that ẽ → ẽ ′. Then, P (ẽ) ≥ P (ẽ ′). In other words, every derivation that is

dequeued will only enqueue derivations of lesser probabilities into Q. It therefore follows that

the sequence of partial derivations, τ, dequeued by Enumerate(G , N ) in line (a) has monotoni-

cally decreasing probability. Observe that the sequence σ of complete derivations emitted

by Enumerate(G , N ) is a sub-sequence of τ. Therefore, the probability of derivations in σ

monotonically decreases.

Now, arbitrarily choose a complete derivation e ∈ EN . We show that Enumerate(G , N ) will

eventually emit e. First, we show that if e gets enqueued in Q, it will eventually be dequeued,

by showing there are finite many derivations with probability greater than e. Let phi be the

highest probability of any production rule in G . Recall our requirement that for each rule

R, pR < 1, therefore, phi < 1. Every derivation e ′ with probability P (e ′) ≥ P (e) must contain

n ≤ log(P (e))/ log(phi) production expansions. Otherwise,

P (e ′) = ∏
R∈e ′

pR ≤ pn
hi < p log(P (e))/ log(phi)

hi = P (e)

Then, because the number of production rules is finite, there is a finite number for those

derivations.
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Given this lemma, we can prove that e is eventually emitted by a simple structural inductive

argument on the expansion relation.

The first property stated in Theorem 3.2 demonstrates the completeness of Algorithm 3.5 for

the specific choice of π, in the sense that it will eventually derive every complete derivation

(language term) that is derivable by the input grammar G . Note that, if we additionally assume

that the Verify part of Algorithm 3.1 always returns the correct result, and that the grammar G

derives at least one term that satisfies the specification φ, then the Algorithm 3.1 is complete.

The second property is an optimality property of Algorithm 3.5 in the following sense: assume

that a term satisfies the specification φ with a probability identical to the probability of

its derivation from G ; then, from the fact that the most probable complete derivations get

enumerated first, it is easy to show that the search will enumerate on average the least possible

number of complete derivations before discovering the satisfactory term.

Despite this optimality property regarding complete derivations, when using the priority

function π given above, enumeration does not scale well. The intuition can be found in the

correctness proof above: before emitting e, the enumerator must explore all partial deriva-

tions with probability bigger than P (e). The number of these derivations rapidly grows with

decreasing P (e). In addition, most of the processed partial derivations are “very incomplete”,

i.e., they contain many instances of ? and therefore are many edges away from turning into

complete derivations. Note that, with this instantiation of π, Enumerate emulates Dijkstra’s

algorithm on the graph of partial derivations. The lack of performance of this instantiation

suggests the use of other graph search algorithms, which we will now discuss.

3.3.3 Nonterminal Horizons and A* Search

When considering partial derivations ẽ, we can speak of two quantities: (1) the cost already

paid, which we have defined as cost(ẽ) =− log(P (ẽ)), and (2) the minimum cost yet to be paid,

before ẽ turns into a complete derivation. We formalize this latter quantity as the horizon,

defined (non-recursively) as

h(ẽ) = ( min
e f s.t. ẽ→∗e f

cost(e f ))−cost(ẽ), (3.4)

where e f ranges over all complete derivations reachable from ẽ. Recall the intuition for the

practical failure of Dijkstra’s algorithm: Before emitting e, we must process every partial

derivation with higher probability, and most such partial derivations ẽ ′ are themselves many

steps away from complete derivations. As the horizon encodes the distance from the partial

derivation to its nearest completion, it is natural to include it in the priority function π(ẽ). If

we define π(ẽ) = cost(ẽ)+h(ẽ), then we obtain A* search.

The important property of π(ẽ) is that it is admissible, i.e., that π(ẽ) is always less or equal

to the cost of every complete derivation descendant from ẽ. More formally, for all complete
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derivations ec reachable from ẽ,

π(ẽ) = min
ec s.t.ẽ→∗ec

cost(ec ). (3.5)

We then have the following well-known result of the A* algorithm:

Theorem 3.3. If π(ẽ) = cost(ẽ)+h(ẽ), then:

(1) The sequence of complete derivations emitted by Enumerate(G , N ), σ= e1,e2,e3, . . . con-

tains all complete derivations in EN and has monotonically decreasing probability. (This

is called the optimality property.) Additionally, the sequence of all derivations dequeued

from Q contains all derivations in EN and has monotonically decreasing probability.

(2) There exists no complete optimal algorithm A′(G , N ) that, given a complete derivation e,

will visit less nodes than A* before producing e. Those are all strictly less expensive nodes,

ẽ, such that π(ẽ) <π(e). (This is the property of optimal efficiency.)

Proof. First, we show that Enumerate(G , N ) produces all complete derivations e ∈ EN . Simi-

larly as in Theorem 3.2, we demonstrate the finiteness of the number of nodes that can be

processed in line (a) before processing e. Observe that for all nodes, ẽ, π(ẽ) ≥ cost(ẽ), and

for complete derivations e, π(e) = cost(e). Hence as before, every derivation with probability

≥ P (e) must contain at most log(P (e))/ log(phi) production expansions, and the reasoning

of Theorem 3.2 holds. Observe that the proof does not have to be constrained to complete

derivations, with which we prove the second part of the first point.

We will now show that the derivations dequeued have monotonically decreasing probabilities.

For this, first observe that for each complete derivation e, and for each of its (necessarily

incomplete) ancestors ẽ ′, π(ẽ ′) ≤π(e). For the sake of contradiction, let there be some pair e1,

e2 of complete derivations, such that P (e1) < P (e2), but Enumerate(G , N ) dequeues e1 before

e2. Both e1 and e2 are therefore reachable from the initial node ?. Consider the state of Q when

e1 is dequeued from it. It has to be the case that some ancestor ẽ ′2 is present in Q. However,

it follows that π(ẽ ′2) ≤ π(e2) < π(e1), therefore the priority queue must have made a mistake

in its ordering. It follows that the sequence of derivations dequeued by Enumerate(G , N ) has

monotonically increasing costs, or equivalently, monotonically decreasing probabilities. Note

that this means that A* visits all strictly less expensive nodes, ẽ, such that π(ẽ) <π(e) before

visiting e. Since the sequence of emitted complete derivations is a subsequence of dequeued

derivations, this proves optimality of A*.

We will now prove the last part of the theorem. Assume otherwise: Let there be an algorithm

A′(G , N ) and some node ẽ such that such that π(ẽ) < π(e), A′ does not expand ẽ before

producing e. We know ẽ has some descendant e ′ such that π(ẽ) = cost(e ′) <π(e). Because the

search space G is a tree, if A′ does not expand ẽ, it follows that it did not enumerate e ′ before

e, violating the assumption that A′ is a complete optimal enumerator.
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The first part of Theorem 3.3 states the completeness and optimality of the A* algorithm for

synthesis, similar to how Theorem 3.2 does for the Dijkstra version. However, optimality as

stated here is stronger, in the sense that less partial derivations are expanded. This is because

the priority function π chosen here is equal to the Dijkstra version for complete derivations,

but larger for partial derivations. This captures our intuition for the superiority of this priority

function over the simpler priority function used by Dijkstra’s algorithm. Furthermore, the

second part of Theorem 3.3 states the superiority of A* over all other algorithms that use the

same priority function.

3.3.4 Computing the Horizon, h(ẽ)

It can be shown that the minimum cost to be paid to complete ẽ is the sum of the minimum

costs needed to expand each of its unexpanded nodes:

h(ẽ) = ∑
?N∈ẽ

h(?N ). (3.6)

Before starting the enumerator, we therefore compute the nonterminal horizons, h(?N ), for

each nonterminal symbol N . Observe that, by definition, this simply encodes the probability

of the most likely derivation, e ∈ EN :

h(?N ) = min
e∈EN

cost(e) =−max
e∈EN

log(P (e)).

The most likely derivation can be computed efficiently with a specialization [CdlH00, NS08] of

an algorithm by Knuth [Knu77]. When applied on a grammar G = (N ,R,S ), this algorithm

runs efficiently in O(|R| · log |N |+L) time, where L is the total lenght of all rules in R [Knu77].

3.3.5 Optimizations

Eagerly discarding partial productions. Given a single input variable a, consider the syn-

thesis predicate φ given by

if (a == 5) { x == 6 }
else if (a == 7) { x == 9 }
else { x == a }

During CEGIS, say the set of concrete input points, A = {2,5,7}. For this problem, Enumerate(G , N )

will consider partial productions such as

ẽ = if (x < 6) {x} else {?}.

Observe that the conjunction
∧

a∈A φ[x �→ e] used in the CEGIS loop can be evaluated only

for complete productions e. However the partial production ẽ is already incorrect: for the
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input point a = 5, regardless of the completion of ?, ẽ will evaluate to 5, and this fails the

requirement that x == 6.

This pattern of partial productions that already fail requirements is particularly common with

conditionals and match statements. Our first optimization is therefore the partial evaluation

box shown in Figure 3.2. For each input point ā ∈ A, we partially evaluate the CEGIS predicate

Π =⇒ φ[x �→ ẽ]. If the result is false, then we discard the partial production ẽ without

processing, as we know that all its descendants will fail the synthesis predicate. Otherwise, if it

evaluates to true or unknown, then we process ẽ as usual, and insert its neighbors back into

the priority queue.

Extending the priority function with scores. We just observed that if a partial production

fails the synthesis predicate by partial evaluation, then it can be discarded without affecting

correctness. The dual heuristic optimization is to promote partial productions that definitely

evaluate to true on some input points. We do this by modifying the priority function

π(ẽ) = min(0,cost(ẽ)+h(ẽ)−c × scor e(ẽ)), (3.7)

where scor e(ẽ) is the ratio of input points on which the partial production evaluates to true
over all available input points, and c is a positive coefficient. Small positive values of c

results in an enumerator that strictly follows probabilistic enumeration, whereas large positive

values of c results in the enumerator favoring partial productions that already work on many

points. Although the use of this heuristic renders Theorem 3.3 inapplicable, we have observed

improvements in performance as a result of this optimization for benchmarks involving

conditional expressions.

Indistinguishability. Consider the partial production ẽ = if (x < 5) {x − x} else {?}, and

focus on the sub-expression x − x. This expression is identically equal to 0, and it is therefore

possible to simplify ẽ to if (x < 5) { 0 } else { ? }. If two expressions e and e ′ are equivalent,

and P (e) > P (e ′), then a desirable optimization is to never enumerate e ′. Observe that, if

properly implemented, this optimization produces exponential savings at each step of the

search: If e and e ′ are equivalent, then, for example, it follows that both e +3 and e ′ +3 are

equivalent, and only one of them needs to be enumerated to achieve completeness.

Indistinguishability [URD+13] is a technique for mechanizing this reasoning. Given a sequence

of concrete input points A = {ā1, ā2, . . . , ān}, a complete production e can be evaluated to

produce a set of output values Se = {x1, x2, . . . , xn}. During enumeration, if an expression e ′

is encountered such that for some previous expression e, Se = Se ′ , then e ′ is discarded as a

potential expansion. The original expression e can thus be regarded as the representative of

the equivalence class of all expressions whose signature is equal to Se .

In this original formulation of indistinguishability-based pruning, the enumerator worked
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bottom-up, rather than in the top-down style we consider in this dissertation. As a result, the

enumerator needs to process only complete productions, rather than the partial productions

that populate Q in our setting.

We extend this optimization to work with partial expressions, and to prune expressions in

a top-down enumerator. The idea is to replace the priority queue Q with a “deduplicating

priority queue”, with an additional feature that Q removes duplicate elements from being

dequeued. Such a queue can be implemented as a combination of a traditional priority queue

and a mutable set data structure commonly available in standard language libraries. Next,

we maintain a dictionary that maps all previously seen signatures to the representatives of

the respective equivalence classes. Every time we dequeue a partial production ẽ from Q, we

evaluate every complete sub-production esub on all input points ā ∈ A to obtain its signature

Ssub, and replace esub with the canonical representative. This forms the box labelled “Indist.

rewrite 1” in Figure 3.2.

After each partial production is expanded, we perform a second, fast indistinguishability

rewrite. This is done by maintaining a map from previously seen expressions to their canonical

representatives. Consulting this map for every complete sub-production of the children, ẽ1,

ẽ2, . . . , of the original production ẽ is much faster than evaluating them on each concrete

input point in A. There is some freedom in choosing the placement of various optimizations

in Figure 3.2: Our motivation was that the priority queue can become very large, and many

elements enqueued into the queue will never be dequeued, and that it is therefore wise to

postpone as much processing as possible to when partial productions are extracted from Q.

As would be expected, term exploration with indistinguishability scales poorly when a large

number of examples is used, due to the large amount of evaluation involved. Therefore,

we limit the number of examples automatically generated by the system when deploying

indistinguishability.

3.4 Evaluation

We evaluate synthesis on a set of benchmarks that mostly manipulate functional data struc-

tures. All benchmarks and their solutions can be found in Appendix A and B.

3.4.1 Aims

The aims of our evaluation are

(1) to evaluate and compare the efficiency of the two different algorithms presented in the

previous sections,

(2) in the case of Probabilistic Term Enumeration (PTE), to investigate which flavor of term

grammars leads faster to a solution. The first one we evaluate is the built-in grammar of

76



3.4. Evaluation

Leon described in Section 2.5. Remember that this is not a probabilistic grammar, i.e.,

all probabilities assigned to the production rules of a nonterminal symbol are equal. The

other two grammars we evaluate are probabilistic grammars extracted from a corpus of

programs, as described in Section 2.7.3.

(3) to evaluate the effectiveness of the optimizations suggested in Section 3.3.5.

3.4.2 Description of Tables

Synthesis from specification. In Tables 3.1 and 3.2, we give for each benchmark

• the total size of the program, excluding data structures defined in the default Leon

library,

• the size of the synthesized solution and

• for each of four configurations that are explained below, the time it took to synthesize

the solution, and whether the solution was verifiable with the Leon verifier. An X means

that synthesis was unsuccessful.

The difference between the two tables are the following: in Table 3.1, the Leon deductive rules

are instantiated automatically. Hence we evaluate the enumeration algorithms in tandem with

the Leon synthesis framework. In Table 3.2, deductive rules are instantiated manually, and so

the enumeration algorithms are evaluated in isolation from the deductive synthesis framework.

In both cases, the deductive rules generate the necessary if-conditions, pattern matches and

recursive calls. Therefore, the term grammars used in the enumeration algorithms do not

produce such expressions. This is true both for the built-in and extracted grammars.

We test the following four configurations:

• Symbolic Term Exploration (STE) with the built-in grammar (STE, 0)

• PTE with the built-in grammar (PTE, 0)

• PTE with plain probabilistic extracted grammar (PTE, 1) and

• PTE with annotated probabilistic extracted grammar (PTE, 2)

For all but the annotated probabilistic grammars, we inject aspects into the grammar nonter-

minals.

Synthesis by symbolic examples. Next, we test our technique on a few benchmarks where

the specification is given as symbolic examples. We ran the same configurations as above

except STE, as it is not optimized to handle these benchmarks. The results are listed in

Table 3.3.
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Evaluating optimizations. The next few tables are dedicated to individually evaluate each

optimization of Section 3.3.5, as well as aspect grammars (Section 2.2).

In Table 3.4, we compare running times of PTE with or without indistinguishability heuristic.

Benchmarks are run in automatic mode with built-in grammars. In Table 3.5, we demonstrate

the effectiveness of aspect grammars in reducing program spaces. Benchmarks are run with

STE in automatic mode. To make the effect of aspects more clear, we also indicate how many

programs were considered by STE in each configuration.

To evaluate the scores and early discarding of erroneous candidates, we have to delegate

the synthesis of if-conditions to the enumeration rules rather than the splitting rules of the

deductive framework. We took all benchmarks of Table 3.1 that need the synthesis of if-
conditions and ran in manual mode, instantiating PTE where an if-clause is required. We

used a grammar extracted from corpus but, in contrast with the previous experiments, we

did not delete if-conditions. The results are presented in Table 3.6. The timeout for this set of

benchmarks is 300 seconds.

3.4.3 Assessment of Results

Both algorithms are able to efficiently synthesize a variety of functional functions. In particular,

benchmarks like RunLength are particularly hard to solve and outside the scope of most

synthesis tools, at least when a large number of possible program components are considered.

Another tool that can solve this benchmark is the SYNQUID system [PKS16]. However, the

version of the benchmark for their system that is available online [Syn] explicitly lists the zero

and one constants as well as the successor, predecessor and equality functions as the only

primitive building blocks for arithmetic expressions. In contrast, our system explores trees

that, in addition to constants, contain general binary arithmetic operations including addition

and subtraction operators. As a result, our search space is notably larger. In our attempts,

adding components corresponding to our search space made the SYNQUID web example

timeout after the 120 second limit. A more systematic comparison of the two tools remains to

be done in the future.

To compare the two algorithms, let us look at Table 3.2. PTE clearly outperforms STE, with

BatchedQueue.dequeue being the only meaningful exception. The grammars extracted from

corpus show no significant improvement, also except BatchedQueue.dequeue. Additionally,

the annotated grammars fail to synthesize the RunLength benchmark. This is because some

combination of parent-child tree required to synthesize it was not found in the corpus. This

hints to the fact that we need a more complicated statistical model of the corpus incorporated

in our term grammars, or a bigger corpus to obtain more reliable probabilities.

In Table 3.1, where the whole deductive synthesis framework comes into play, we can see

that the advantage of PTE is less pronounced, and even performs less efficiently for some

benchmarks. The reason for that is that PTE takes more time to try to synthesize hopeless

78



3.4. Evaluation

Operation Sizes STE,0 PTE,0 PTE,1 PTE,2

Pr Sol � 
 � 
 � 
 � 

List.insert 81 3 1.5 � 0.4 � 0.4 � 0.4 �
List.delete 83 19 15.1 � 19.1 � 24.9 � 12.9 �
List.union 81 12 5.6 � 5.2 � 1.1 � 1.3 �
List.diff 113 12 9.4 � 9.7 � 1.8 � 2.3 �
List.split 104 20 3.5 � 5.5 � 1.4 � 1.6 �
List.listOfSize 58 11 3.0 � 2.5 � 5.1 � 3.2 �
SortedList.insert 114 30 21.0 ? 30.2 ? 39.1 ? 21.5 ?
SortedList.insertAlways 128 32 25.3 � 38.8 � 48.4 � 27.1 �
SortedList.delete 114 19 20.4 ? 26.2 ? 31.3 ? 39.6 ?
SortedList.union 162 12 5.9 � 6.1 � 3.1 � 6.8 �
SortedList.diff 160 12 8.1 � 9.3 � 8.7 � 11.3 �
SortedList.insertionSort 149 11 3.0 � 4.8 � 1.8 � 5.5 �
StrictSortedList.insert 114 30 25.4 � 28.5 � 32.9 � 19.6 �
StrictSortedList.delete 114 19 24.2 � 26.2 � 37.5 � 30.9 �
StrictSortedList.union 162 12 7.5 � 6.2 � 3.1 � 7.1 �
UnaryNumerals.add 66 10 5.7 � 1.0 � 1.1 � 1.3 �
UnaryNumerals.distinct 91 4 2.4 � 0.7 � 0.5 � 0.9 �
UnaryNumerals.mult 66 11 4.2 � 5.1 � 0.9 � 5.2 �
BatchedQueue.enqueue 112 26 16.7 ? 16.1 ? 12.2 ? 12.6 ?
BatchedQueue.dequeue 88 35 19.8 ? 14.5 ? 8.7 � 64.9 �
AddressBook.makeAddressBook 63 33 8.6 � 6.6 � 4.8 � 4.1 �
AddressBook.merge 126 17 20.9 ? 19.1 ? 16.8 ? X X
RunLength.encode 138 39 28.1 � 21.8 � 23.0 � X X
Diffs.diffs 83 24 9.5 � 11.7 � 9.5 � 11.3 �

Table 3.1 – Benchmarks for synthesis in automatic mode

problems which arise during instantiation of the deductive rules, whereas STE gives up faster

in those cases. It is a topic of further work to integrate the probabilistic algorithm better into

the framework to avoid this effect.

In Table 3.3, we demonstrate that Leon can also efficiently solve benchmarks where the

specification is given by symbolic or concrete examples. For example, look at the Diffs.diff
benchmark, which computes the running differences of an integer list from three examples:

def diffs(l: List[BigInt]): List[BigInt] = {
???[List[BigInt]]

} ensuring { (res: List[BigInt]) ⇒ (l, res) passes {
case Nil() ⇒ Nil()
case Cons(BigInt(55), Nil()) ⇒ List(55)
case Cons(BigInt(100), Cons(BigInt(−100), Nil())) ⇒ List(200, −100)
case Cons(BigInt(1), Cons(BigInt(2), Cons(BigInt(22), Nil()))) ⇒ List(−1, −20, 22) } }
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Operation Sizes STE,0 PTE,0 PTE,1 PTE,2

Pr Sol � 
 � 
 � 
 � 

List.insert 81 3 1.4 � 0.3 � 0.2 � 0.3 �
List.delete 83 19 5.0 � 0.8 � 0.8 � 1.1 �
List.union 81 12 2.6 � 0.4 � 0.4 � 0.5 �
List.diff 113 12 2.9 � 1.1 � 0.5 � 0.6 �
List.split 104 20 2.2 � 1.6 � 1.0 � 0.8 �
List.listOfSize 58 11 1.5 � 0.5 � 0.5 � 0.4 �
SortedList.insert 114 30 8.6 ? 7.0 ? 11.3 ? 6.4 ?
SortedList.insertAlways 128 32 12.2 � 11.6 � 11.3 � 11.5 �
SortedList.delete 114 19 11.5 ? 6.3 ? 6.2 ? 6.3 ?
SortedList.union 162 12 3.2 � 0.8 � 1.0 � 1.0 �
SortedList.diff 160 12 3.1 � 1.0 � 1.2 � 1.2 �
SortedList.insertionSort 149 11 1.8 � 0.5 � 0.8 � 0.4 �
StrictSortedList.insert 114 30 10.0 � 6.7 � 6.3 � 6.4 �
StrictSortedList.delete 114 19 10.1 � 6.5 � 6.2 � 6.4 �
StrictSortedList.union 162 12 3.7 � 0.9 � 1.2 � 1.2 �
UnaryNumerals.add 66 10 3.6 � 0.4 � 0.3 � 0.5 �
UnaryNumerals.distinct 91 4 2.3 � 0.6 � 0.8 � 1.2 �
UnaryNumerals.mult 66 11 3.2 � 0.5 � 0.5 � 0.6 �
BatchedQueue.enqueue 112 26 7.6 ? 6.4 ? 11.5 ? 11.6 ?
BatchedQueue.dequeue 88 35 7.3 ? 30.8 ? 4.0 � 7.6 �
AddressBook.makeAddressBook 63 33 4.8 � 2.0 � 2.1 � 2.4 �
AddressBook.merge 126 17 21.1 ? 29.2 ? 28.5 ? 34.4 ?
RunLength.encode 138 39 11.7 � 4.6 � 5.9 � 10.7 X
Diffs.diffs 83 24 5.2 � 3.9 � 1.9 � 4.6 �

Table 3.2 – Benchmarks for synthesis in manual mode

// Solution:
def diffs(l : List[BigInt]): List[BigInt] = {

l match {
case Nil() ⇒

List[BigInt]()
case Cons(h, t) ⇒

t match {
case Nil() ⇒

List(h)
case Cons(h1, t1) ⇒

Cons[BigInt](h − h1, diffs(t)) } } }

In the final three tables, we see that all suggested optimizations have positive impact on

synthesis. Indistinguishability reduces running times by a factor of two or more. Aspect

grammars, while having a large effect on the number of considered programs, do not display
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Operation Sizes PTE,0 PTE,1 PTE,2

Pr Sol � 
 � 
 � 

UnaryNumerals.add 63 10 2.9 � 0.5 � 0.9 �
List.append 112 12 0.7 � 0.5 � 0.9 �
Calc.eval 83 49 4.5 � 4.7 � 14.2 �
Tree.countLeaves 69 13 0.7 � 0.6 � 19.4 �
Dictionary.replace 199 26 8.4 � 2.7 � 3.1 �
Dictionary.find 138 18 1.1 � 0.9 � 1.5 �
List.diffs 93 22 12.9 � 15.9 � 10.6 �
Expr.fv 93 36 2.1 � 7.0 � 10.9 �
UnaryNumerals.isEven 46 9 2.0 � 3.4 � 3.5 �
SortedList.insert 142 30 25.6 � 40.8 � 14.1 �
UnaryNumerals.mult 86 11 8.1 � 0.7 � 8.2 �
Tree.postorder 95 15 0.9 � 1.0 � 1.7 �
List.reserve 99 13 42.3 � 0.9 � 90.7 �
RunLength.encode 207 39 41.2 � 12.2 � 28.6 �
List.take 110 19 5.5 � 3.4 � 3.9 �
List.unzip 103 24 0.8 � 0.5 � 0.9 �

Table 3.3 – Benchmarks for synthesis by example in automatic mode

the same improvement in the running time, due to the cost associated with dynamically

generating and handling more complicated grammars. Unintuitively, aspect grammars do not

combine well with PTE, so comparative results for aspects with PTE are not shown. Some of

the results of Table 3.6 are significantly worse than Table 3.2 because the system has to explore

a much larger space of programs, specifically when it comes to conditions of if-expressions, as

opposed to examining a small set produced by the deductive rules. However, Table 3.6 clearly

demonstrates the strong impact of scores when synthesizing programs with if-conditions.

This is not to say that scores would benefit every benchmark, but they work well in our setting.

3.5 Conclusion

In this chapter, we presented two term exploration algorithms. The first, named Symbolic

Term Exploration, is an evolution of a previous algorithm of Leon. It unfolds a given grammar

in order of increasing term size and exhaustively explores terms of a specific size before moving

to the next. The second, named Probabilistic Term Enumeration, creates partial derivation

trees corresponding to incomplete expressions, then completes the holes in these expressions

in best-first order. Probabilistic Term Enumeration also incorporates a number of domain-

specific optimizations. We then extensively evaluate these algorithms, as well as the described

optimizations and different variants of term grammars.
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Operation Sizes Indist. off Indist. on
Pr Sol

List.insert 81 3 0.4 0.4
List.delete 83 19 44.0 19.1
List.union 81 12 18.7 5.2
List.diff 113 12 36.0 9.7
List.split 104 20 26.8 5.5
List.listOfSize 58 11 2.3 2.5
SortedList.insert 114 30 64.8 30.2
SortedList.insertAlways 128 32 74.4 38.8
SortedList.delete 114 19 54.7 26.2
SortedList.union 162 12 20.8 6.1
SortedList.diff 160 12 35.9 9.3
SortedList.insertionSort 149 11 24.2 4.8
StrictSortedList.insert 114 30 58.9 28.5
StrictSortedList.delete 114 19 53.9 26.2
StrictSortedList.union 162 12 19.7 6.2
UnaryNumerals.add 66 10 0.9 1.0
UnaryNumerals.distinct 91 4 0.8 0.7
UnaryNumerals.mult 66 11 17.0 5.1
BatchedQueue.enqueue 112 26 52.0 16.1
BatchedQueue.dequeue 88 35 26.7 14.5
AddressBook.makeAddressBook 63 33 24.8 6.6
AddressBook.merge 126 17 29.9 19.1
RunLength.encode 138 39 72.0 21.8
Diffs.diffs 83 24 51.4 11.7

Table 3.4 – Demonstrating the effect of indistinguishability heuristic. Benchmarks are run with
PTE in automatic mode
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Operation Aspects off Aspects on

#Programs � #Programs �
List.insert 101 1.4 99 1.5
List.delete 20772 16.3 6626 15.1
List.union 2527 5.2 837 5.6
List.diff 30821 13.3 12049 9.4
List.split 649 3.4 541 3.5
List.listOfSize 613 2.7 128 3.0
SortedList.insert 26837 24.3 9688 21.0
SortedList.insertAlways 26409 27.5 9249 25.3
SortedList.delete 22042 23.8 6952 20.4
SortedList.union 2431 6.8 716 5.9
SortedList.diff 13782 12.4 4914 8.1
SortedList.insertionSort 1399 3.7 296 3.0
StrictSortedList.insert 25358 30.9 9215 25.4
StrictSortedList.delete 21409 27.5 6762 24.2
StrictSortedList.union 2405 8.0 714 7.5
UnaryNumerals.add 193 6.0 182 5.7
UnaryNumerals.distinct 637 2.6 574 2.4
UnaryNumerals.mult 3757 8.3 2947 4.2
BatchedQueue.enqueue 16630 21.4 6191 16.7
BatchedQueue.dequeue 12990 24.5 6183 19.8
AddressBook.makeAddressBook 1001 7.6 999 8.6
AddressBook.merge 7591 21.2 5646 20.9
RunLength.encode 2092 33.8 602 28.1
Diffs.diffs 9641 11.5 3306 9.5

Table 3.5 – Demonstrating the effect of aspects. Benchmarks are run with STE in automatic
mode

Operation c = 0 c = 2 c = 5 c = 10 c = 20
List.delete 5.5 3.7 2.5 2.0 1.7
SortedList.insert X 191.4 41.6 5.7 8.3
SortedList.insertAlways X 202.9 48.4 6.7 8.0
SortedList.delete 8.6 8.1 7.6 7.0 6.6
StrictSortedList.insert X X X X 33.1
StrictSortedList.delete X 4.1 2.1 1.8 1.6
BatchedQueue.dequeue X X X 146.2 128.6
AddressBook.makeAddressBook X X X X X
RunLength.encode X X X X X

Table 3.6 – Demonstrating the effect of scores in the priority function. Benchmarks are run
with PTE in manual mode
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4 Program Repair

In previous chapters, we focused on synthesis, the process of generating code implementing

a given specification. In this chapter, we change the problem setting: we assume that an

implementation for the specification exists, but it is erroneous, in that it does not satisfy the

specification for all inputs. Our task is then to identify which part of the implementation

causes this inconsistency with the specification and then suggest a patch that, when replacing

the erroneous code, will cause the specification to be satisfied for all inputs.

The key insight of our algorithm is that we can utilize the structure of the erroneous program as

a guideline during repair. This follows from the hypothesis that a programmer often has correct

insight when it comes to the high-level structure of the program, i.e., its control flow structure,

but has made some small errors in specific program branches. Therefore, if the repair system

can determine which branches cause the error, it can maintain the rest of the code and focus

on generating localized fixes for the identified branches. This reduces the problem of repair

from trying to implement the entirety of the function to generating potentially much smaller

snippets of code. In that way, repair can scale to much larger programs than our synthesizer

can handle.

After we localize the erroneous snippet, our repair system tries to generate a fix for it that

satisfies the specification. To do so, we use a modified version of the synthesis techniques

described in previous chapters that we call similar term exploration. Similar term exploration

generates small variations to the original erroneous snippet, such as swapping operands of

specific operators, adding the constant 1 to an integral expression, etc. This way, we add an

additional level of reuse of the original code, which again contributes to the scalability of our

approach to larger programs.

In the case that localization and/or similar term exploration fails, i.e., the entire program or

the localized snippet, respectively, contains no useful structural information, we can always

discard it and attempt synthesis from scratch. Synthesis can hence be viewed as a special case

of repair, where the erroneous program is the empty program.
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Part of this work was first presented in a publication by the author of this dissertation and

others [KKK15]. This author’s contributions were mainly the syntax and implementation of

symbolic examples (discussed in Section 1.4.3), test minimization, the IF-CONDITION rule and

the nondeterministic evaluator required to implement it, as well as implementation contribu-

tions throughout the system. In this dissertation, we present a more extensive evaluation of

our technique, including the use of the new Probabilistic Term Enumeration (PTE) algorithm

for test generation and similar term enumeration.

4.1 Example

As a running example, let us consider a function that computes the free variables of a term in a

simple expression language. Variables are represented with an integer identifier. The function

is specified with symbolic examples.

abstract class Expr
case class Var(i: BigInt) extends Expr
case class Unit() extends Expr
case class App(f: Expr, a: Expr) extends Expr
case class Lam(v: BigInt, b: Expr) extends Expr
case class Let(v: BigInt, vl: Expr, b: Expr) extends Expr

def fv(e: Expr): Set[BigInt] = { e match {
case Var(i) ⇒ Set(i)
case Unit() ⇒ Set[BigInt]()
case App(f, a) ⇒ fv(f) ++ fv(a)
case Lam(v, b) ⇒ fv(b) -- Set(v)
case Let(v, vl, b) ⇒ fv(vl) -- Set(v) ++ fv(b) // Bug!

}} ensuring { res ⇒
(e, res) passes {

case Var(i) ⇒ Set(i)
case App(Var(i), Var(j)) ⇒ Set(i, j)
case Lam(BigInt(0), Var(BigInt(0))) ⇒ Set()
case Lam(BigInt(0), Var(BigInt(1))) ⇒ Set(BigInt(1))
case Let(BigInt(0), Var(BigInt(0)), Var(BigInt(1))) ⇒ Set(BigInt(0), BigInt(1))
case Let(BigInt(0), Var(BigInt(1)), Var(BigInt(0))) ⇒ Set(BigInt(1))
case Let(BigInt(0), Var(BigInt(1)), Var(BigInt(2))) ⇒ Set(BigInt(1), BigInt(2)) } }

Function fv contains a bug: the variables vl and b have switched places. When invoked on this

function, Leon first locates the source of the error on the right-hand size of the Let case, and

then synthesizes the correct snippet to replace it:

e match {
case Var(i) ⇒
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Set[BigInt](i)
case Unit() ⇒

Set[BigInt]()
case App(f, a) ⇒

fv(f) ++ fv(a)
case Lam(v, b) ⇒

fv(b) -- Set[BigInt](v)
case Let(v, vl, b) ⇒

(fv(b) -- Set[BigInt](v)) ++ fv(vl) // Fix: vl and b are now switched
}

Note how Leon narrowed down the source of the bug to a specific control flow branch of the

program and left the correct portions of the program unmodified, thus reducing the effort

needed to repair the program to a small fraction of what would be required to synthesize

if from scratch. Additionally, Leon was able to synthesize a fix that is compatible with the

specification.

4.2 Overview of the Algorithm

The repair process consists of four distinct stages:

(1) Test generation, classification and minimization. We generate tests and classify them as

passing or failing. If need be, we invoke the solver to ensure that we discover at least

one failing test for each erroneous program. We then use a test minimization process

that removes false negatives from our failing test suite.

(2) Fault localization. We use the discovered failing tests and dedicated deductive repair

rules to localize the source of the error.

(3) Synthesis of an alternative solution. Having localized the error, we use a variant of

synthesis to generate an alternative code snippet that satisfies the specification. This

variant of synthesis tries to insert small modifications to the original erroneous snippet.

If this approach fails, we fall back to regular synthesis, i.e., we discard the erroneous

snippet and attempt to synthesize a correct one from scratch.

(4) Solution verification. We attempt to verify the repaired program with the Leon verifier.

Our repair framework makes the assumption that the environment of the function implemen-

tation we are trying to repair is correct. Specifically, we assume that (1) the specification of the

function under repair is correct, and (2) all functions transitively called by the function under

repair and their specifications are also correct.

In the following sections, we analyze each stage of the repair process separately, we give a

characterization of repairable programs, and we empirically evaluate our technique.
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4.3 Test Generation

Tests are an important component of our fault localization procedure, since it uses a runtime

approach based on concrete execution. Specifically, a branch of the program is characterized

as erroneous if at least one test fails after entering that branch (and some other conditions

hold, as discussed later). Therefore, it is important to generate tests that will cover every

erroneous branch, and to take measures against wrong characterization of branches.

4.3.1 Sources of Tests

We use three sources of tests in our system.

User provided input-output examples. These are the most important tests, as they are part

of the problem specification. In the case that these examples are symbolic, we generate a

number of concrete tests for each of them by enumerating concrete values for each of their

abstract patterns. For this we use the enumeration algorithm of Section 3.3 with the value

grammar defined in Section 2.5.1.

For synthesis-by-example problems (where the specification consists only of concrete input-

output examples), we disregard the next two sources of examples.

Value enumeration. We enumerate a large set of examples (currently set to 400) to have

more chances to discover one that runs the erroneous branch. These examples are filtered by

the precondition of the function. We use the same enumeration technique as in the previous

paragraph.

Solver counterexamples. If the previous two processes fail to discover a failing test, we run

the Leon verifier to discover a failing input. Of course, verification might succeed, in which

case the need for repair is refuted.

4.3.2 Test Classification

We execute the initial code on the generated tests and classify them as passing or failing

based on the result of the execution. A test is characterized as failing if, when executing

the function under repair on it, a specification is violated or an error in the code is invoked.

This may happen either immediately in the body of function under repair, or in any function

transitively called by it. In the next section, we refine this initial classification to improve the

characterisation of tests with regard to fault localization.
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4.3.3 Test Minimization

Test classification as described above can misguide repair into overestimating the number

of failing branches in the program. To illustrate this issue, let us consider another try to

implement the example of Figure 4.1. This time, the error lies in the Var case.

Assume the tests collected are (a) App(Var(0), Var(1)), (b) Lam(Var(0), Unit()), (c) Var(0),

(d) Var(1) and (e) Unit(). When fv is ran on these tests, the call graph of Figure 4.1 is generated.

A call to fv is represented by its argument. Solid borderlines stand for passing tests, dashed

ones for failing ones.

Although there are technically four failing tests, it is obvious that the failures in the App
and Lam tests should be attributed to the bug in the Var case. Generally said, inputs can

be mistakenly falsified by errors in recursive invocations of the function under repair with

different arguments.

To amend this, we run a test minimization process. As we run the function on the collected

tests, we track the arguments of each invocation of the function under repair and generate

the corresponding call graph. Tracked invocations include invocations on the collected test

inputs, as well as recursive invocations on yet unknown inputs. Those newly discovered inputs

are added to our collection of tests. We characterize all tests as passing and failing, and then

we discard each failing test that transitively invokes another failing test.

def fv(e: Expr): Set[BigInt] = e match {
case Var(i) ⇒ Set[BigInt]() // Bug
case Unit() ⇒ Set[BigInt]()
case App(f, a) ⇒ fv(f) ++ fv(a)
case Lam(v, b) ⇒ fv(b) -- Set(v)
case Let(v, vl, b) ⇒ fv(vl) ++ (fv(b) -- Set(v))

}

App(Var(0), Var(1))

Var(1)Var(0) Unit()

Lam(Var(0), Unit())

Figure 4.1 – Code and invocation graph for fv

QuickCheck [CH00, Cla12] is a testing tool for Haskell programs that also provides the option

to minimize – or, in QuickCheck’s lingo, shrink – failing inputs. However, in QuickCheck the

minimization process is based on the shape of the datatype and not the dynamic call graph

generated by the input. For example, a failed input of a list type first gets shrunk to one of its

sublists that also fails the specification; this process is repeated greedily (on the first failing

sublist) until a list is found that does not fail the specification. For custom datatypes, the

shrinking function has to be provided by the programmer, which limits the automation and

generality of this approach.
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4.4 Fault Localization

After we collect and minimize tests, we proceed to fault localization. By limiting the scope

of the error, we can focus synthesis on a smaller part of the program and increase the size of

programs we can repair. We follow a dynamic approach based on the collected failing tests.

Since we are based on concrete inputs, this process is subject to failure as discussed in Section

4.7, but we found that this technique works reliably and efficiently in practice.

Like synthesis, fault localization successively applies a sequence of rules on the initial repair

problem, taken from a set of deductive repair rules. This way, we use the same deductive

synthesis framework for both synthesis and repair. These rules aim to narrow down the scope

of the error to specific control flow branches. Note that this due to referential transparency of

the purely functional PureScala, this process is sufficient to localize the error, as we do not have

to account for mutable state possibly modified in another part of the program. Additionally,

the minimization process of Section 4.3.3 ensures that we do not attribute to a branch of the

program errors in other branches invoked in a recursive call.

During the localization process, we need to track the currently localized expression e, starting

with the whole body of the function under repair. We do this with a witness in the path

condition (see Section 1.3.1). We call this witness guide and write it as 
[e]. We add 
[e0] to

the path condition of the initial repair problem, where e0 is the whole body of the function

under repair.

The fault localization rules used by our system are all normalizing deductive rules, which

apply in priority to all other rules when the path condition contains a guide of a specific shape.

Our fault localization rules are described next. We write F for the minimized set of failing

tests.

If-Focus. Given a problem �ā
〈
[

if (c) {t} else {e}
]∧Π�φ

〉
x�, we first investigate if there

exists another condition that fixes all the failing tests. Formally, we are trying to solve the

formula

∃C (ā).∀ī ∈F . φ[x �→ if (C) {t} else {e}, ā �→ ī ]

This higher-order condition is very hard to solve analytically, hence we follow a concrete

approach: We substitute a nondeterministic boolean value ∗ for the initial condition c in the

program and execute it with a nondeterministic evaluator described in Section 4.4.1. We focus

on the condition if at least one path of the nondeterministic execution of each test succeeds.

This rule can be summarized as follows:
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IF-FOCUS-CONDITION:
∀ī ∈F . true ∈φ[x �→ if (∗ ) {t} else {e},c �→ ∗, ā �→ ī ]

�ā
〈
[c]∧Π�φ[x �→ if (x ′) {t} else {e}]

〉
x ′�
 〈P | T 〉

�ā
〈
[

if (c) {t} else {e}
]∧Π�φ

〉
x�
 〈

P | if (T ) {t} else {e}
〉

The substitution of c in the first line also applies to instances of c that are encountered in

recursive calls. Also, observe that the nondeterministic execution of φ returns a set of boolean

values as opposed to a single value. This set contains true if and only if at least one path of the

nondeterministic execution succeeded.

If focusing on the if-condition fails, we try to focus on either branch. Here, things are simpler:

if c evaluates to true for all failing tests, we will focus on the then-branch, and if it evaluates to

false we will focus on the else-branch:

IF-FOCUS-THEN:
∀ī ∈F .c[ā �→ ī ] �ā

〈
[t ]∧c ∧Π�φ
〉

x�
 〈P | T 〉
�ā

〈
[
if (c) {t} else {e}

]∧Π�φ
〉

x�
 〈
P | if (c) {T } else {e}

〉

IF-FOCUS-ELSE:
∀ī ∈F .¬c[ā �→ ī ] �ā

〈
[e]∧¬c ∧Π�φ
〉

x�
 〈P | T 〉
�ā

〈
[
if (c) {t} else {e}

]∧Π�φ
〉

x�
 〈
P | if (c) {t} else {T }

〉

If focusing on either branch also fails, we try to repair each branch separately and we reuse

the if-condition.

IF-SPLIT:
�ā

〈
[t ]∧c ∧Π�φ
〉

x�
 〈P1 | T1〉 �ā
〈
[e]∧¬c ∧Π�φ

〉
x�
 〈P2 | T2〉

�ā
〈
[

if (c) {t} else {e}
]∧Π�φ

〉
x�
 〈

(c∧P1)∨ (¬c∧P2) | if (c) {T1} else {T2}
〉

Match-Focus. Similarly to if, we will use failing tests to focus on branches of a pattern match.

Note that, since pattern matching can have more than two branches, we will not constrain

MATCH-FOCUS on one branch, but rather all branches that are executed by at least one failing

test. The rest of the branches are maintained unchanged. Our system currently cannot repair

patterns, so there is no rule for match equivalent to IF-FOCUS-CONDITION.

In the following, ci stands for the condition that the control flow reaches bi , i.e., e matches the

pattern Ci , but no previous C j for j < i . Also, v(C ) stands for the variable bindings introduced

by pattern C .
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MATCH-FOCUS:
B = {

j | ∃ī ∈F .c j [ā �→ ī ]
} ∀ j ∈ B.

[
�ā

〈
[
b j

]∧c j ∧Π∧ v(C j )�φ
〉

x�
 〈
P j | T j

〉]
B ′ = {

j | ¬∃ī ∈F .c j [ā �→ ī ]
} ∀ j ∈ B ′.

[
T j ← b j ,P j ← true

]
�ā

〈
[
e match { . . . case C j ⇒ b j . . .}

]
�φ

〉
x�
〈 ∨

(c j ∧P j ) | e match { . . . case C j ⇒ T j . . .}
〉

Val-Focus. When we encounter a local variable definition, we assume its value is correct and

focus on the body of the definition. We also bind the defined variable in the path condition:

VAL-FOCUS:
�ā

〈
[b]∧Π∧ v ← e �φ
〉

x�
 〈P | T 〉
�ā

〈
[
val v = e; b

]∧Π�φ
〉

x�
 〈
P | val v = e; T

〉

4.4.1 Nondeterministic Evaluator

The nondeterministic evaluator used for the IF-FOCUS-CONDITION rule is implemented on

top of a regular evaluator for PureScala. Instead of returning a single PureScala value, it returns

a stream of such values, computed as described next.

Most terminal operators do not introduce nondeterminism, and they return a singleton

stream containing the value they return according to their deterministic semantics. The

only operators that can introduce nondeterminism are the nondeterministic boolean value

∗ introduced by the IF-FOCUS-CONDITION rule, and the choose operator. The semantics of

the former is a stream consisting of the false and true values. For choose, the deterministic

evaluator will invoke a satisfiability query on the Leon solver and return its first solution. The

nondeterministic evaluator will generate a finite (lazy) stream of queries for the solver, each

time adding the constraint that the new returned solution cannot be identical to any previous

one.

For nonterminal operators, we compute the returned stream of values as follows: Let fop be a

metafunction describing the semantics of the n-ary operator op in terms of the semantics of

its operands, i.e.,

�op(e1,e2, . . . ,en)�= fop(�e1�,�e2�, . . . ,�en�),

then the semantics of the nondeterministic evaluator is given by the following stream compre-

hension:

�op(e1,e2, . . . ,en)�nd = {
fop(s1, s2, . . . , sn) | s1 ← �e1�nd , s2 ← �e2�nd , . . . , sn ← �en�nd

}
.
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4.5 Similar Term Exploration

When the top level of a subproblem is not a control structure, fault localization is not able

to focus further into one of its subterms. At this point, we invoke synthesis to search for an

expression that will repair the error in the focused expression.

Despite not being able to localize the fault further, we still want to utilize the structure of

the function under repair. Therefore, before invoking the full synthesis system, we invoke a

term exploration rule that enumerates expressions similar to a given initial expression. We

can use one of the term enumeration algorithms of Chapter 3, with a modified grammar that

introduces small modifications to a guide expression.

4.5.1 Similar Term Grammar

Intuitively, the grammar of similar expressions for a guide 
[e] consists of small modifications

to e, along with small productions taken from the general term grammar.

To define the similar term grammar, be begin with a regular grammar and attach to its starting

symbol a new aspect Se , where e is the given guide. Thus, T{Se } is a nonterminal symbol whose

productions will give us the terms of type T that are similar to e. Since it will always be e : T ,

we can omit the type of the nonterminal and write just Se .

If e = op(e1, . . . , en), where op is the top-level operator of e, Sop(e1, ..., en ) can be decomposed

as follows:

Sop(e1, ..., en ) ::= op(perm∗(e1, . . . , en))
| ∼e

| op( Se1, e2, . . . , en ) | . . . | op( e1, . . . , en-1, Sen )
| T{+e }{D2}

Each component introduces a different modification to e:

• perm∗ is a metafunction that computes the well-typed permutations of the arguments

of op different than the original permutation. This will repair an expression whose argu-

ments are in the wrong order. If op is a commutative binary operator, this component is

omitted.

• ∼e will give type-specific variations for e. These are

– e ±1, if e : BigInt or e : Int

– ¬e, if e : Boolean

– Instances of the other type constructors of the type of e, if op is a type constructor.

• op(Se1, e2, . . . , en ) maintains all operands of op, except it substitutes e1 by its similar

productions. This rule explores the possibility that the top-level operator is correct and
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the error lies deeper in the expression. It is a kind of fault localization within the similar

term grammar.

• The final rule T{+e }{D2} corresponds to the normal grammar productions for T , modified

by two aspects +e and D2.

+e includes the guide e to the productions as a terminal rule. Including the guide allows

the system to generate expressions with the guide as an operand. For instance, given

guide e and a unary function f in scope, it will generate f (e).

D2 is called the depth-bound aspect, and bounds the produced expressions to a depth

of 2. In general, Dk modifies production rules as follows:

– T{D0} ::= ε,

– T{D1} will maintain only the terminal rules of T and

– T{Dk },k > 1 will maintain all nonterminal rules for T , except the aspect Dk−1 will

be attached to all operands. I.e., T ::= op(T1,T2, . . . ,Tn) becomes

T{Dk } ::= op(T1{Dk−1},T2{Dk−1}, . . . ,Tn {Dk−1})

If e is an expression that cannot be decomposed, i.e., a nullary operator, the first and third

components of Se are omitted.

If we want to generate a probabilistic similar terms grammar, we attach uniform probabilities

to the rules generated for each nonterminal.

4.6 Verification

Finally, we try to verify the correctness of the function with our suggested fix by deploying the

Leon verifier. This is because the correctness of fault localization depends on the completeness

of code coverage of our selected examples, hence we might have missed some erroneous

branches during repair. When we cannot verify (or disprove) the correctness of the solution

at this step, the solution will be reported to the user as unverified, and manual inspection is

required to ensure that the suggested solution implements the intention of the programmer.

This is an innate limitation of any system that handles a Turing-complete language. We usually

find that the generated solutions for our benchmarks are the desired ones, since most of those

benchmarks are written with strong specifications.

4.7 Characterization of Repairable Programs

For a program to be successfully repaired by our algorithm, the following conditions have to

be met:

• Collected tests cover all erroneous control-flow branches of the program. This is nec-

essary since we need a failing execution for each error to localize it. With the different
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sources of tests, we found this is usually achieved for our benchmarks.

• Test minimization has to maintain at least one failing test for each bug in the function.

Recall that a failing test is maintained by minimization if all recursive calls during its

execution are passing tests. Therefore, if each failing test corresponding to a bug in the

program invokes another failing test, the minimized test suite will not uncover this bug

and will be missed by fault localization.

To demonstrate this effect, consider the following —admittedly artificial— program that

tries to compute the size of a list:

def size[A](l: List[A]): BigInt = l match {
case Nil() ⇒ −1
case Cons(_, t) ⇒ size(t) − 1

} ensuring { res ⇒ res ≥ 0 }

This program contains bugs in both the Nil and Cons branches. During minimization,

every Cons failing test will be found to invoke another failing test: if it has only one

element, it will invoke the function with the Nil argument, and if it has more than one

element, it will invoke it with a smaller Cons. Therefore, the minimized test suite will

contain only the Nil testcase, and fault localization will fail by localizing only on the Nil
branch. This will result in only the Nil branch being repaired.

This particular problem could be amended by invoking repair again on the partially

repaired program after it fails the final verification phase of our system; however, our

system is not currently configured to do that.

Given a higher number of tests and a more complicated program, it is unlikely that a

bug will coincidentally always invoke failing tests, and we did not observe this behavior

in our benchmarks.

• Fault localization has to successfully localize the bugs within the control structure of

the program. A case that would not be handled properly is an if expression whose

condition and at least one branch is wrong. Another, more realistic case, is a local

variable definition containing a bug in the value assigned to the variable.

• Synthesis has to discover a suitable fix. If the bug is small, as per our working hypothesis,

and is contained within the space of programs generated by the similar term grammar,

then the synthesis will always discover it. Otherwise, the discovery of the fix is subject to

the limitations of normal synthesis.

4.8 Evaluation

We evaluate our techniques on a set of functional programs, to each of which we manually

inserted a set of errors. Most of these programs manipulate data structures.
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First, we developed a correct version of each benchmark, including all necessary data struc-

tures and function definitions, and verified it with using Leon. Then, we generated a number

of copies of each benchmark and, for each of those copies, we picked a function definition

and manually inserted one or more errors in it. Some errors are taken from the error model

implied by the similar term grammar, while others are too extensive to be repairable by similar

term exploration. In the latter case, the system has to fall back to normal synthesis. When

running the benchmarks, we give as input to Leon the name of the function that we want to

repair. This is to avoid wasting time trying to verify every function in the program.

The evaluation results are presented in tables 4.1 and 4.2. For each benchmark, we include:

• the name of the benchmark and the function to be repaired,

• a description of the error. Errors types include: a small variation to a branch of the

program, a completely erroneous match-case, and two separate small variations in

different branches of the function.

• as an indication of the size of the benchmark, the size in AST nodes of each of (1) the

complete program, (2) the function under repair, (3) the localized erroneous branch and

(4) the fix generated by STE.

• the time spent in test collection, classification and minimization,

• For a number of configurations of Leon, the time spent for repair (including fault

localization), as well as whether or not Leon was able to prove the correctness of the

generated repair. Note that a non-verifiable repair might still capture the intention of

the programmer, and we determined that this is often the case after manual inspection

of the results.

We can use different term grammars for repair. The chosen grammar is the basis for the similar

term grammar as explained in Section 4.5.1, and is used in full synthesis when similar term

exploration fails. We evaluated the benchmarks in the following configurations:

• using Symbolic Term Exploration with built-in grammars (STE).

• using Probabilistic Term Enumeration with built-in grammars (P0). Recall that built-in

grammars are not intrinsically probabilistic and are assigned uniform probabilities for

all rules.

• using Probabilistic Term Enumeration with built-in grammars as before, but with similar

term exploration deactivated (P0-NoS).

• using Probabilistic Term Enumeration with the plain probabilistic grammar extracted

from a corpus of Leon benchmarks described in Section 2.7 (P1), and
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• using Probabilistic Term Enumeration with the annotated probabilistic grammar de-

scribed in the same section (P2).

For custom grammars, we include an additional grammar file extracted from the specific

benchmark. This serves two purposes: to include productions for locally defined types that do

not exist in the general grammar file, and to bias the grammar towards the structures utilized

more often in the benchmark. To compute the grammar probabilities, we take all grammar

files relevant for a benchmark, process them, and then compute probabilities from the integer

measures in the resulting grammar rules, as in Section 2.6. We do not use any weighting

between the general and benchmark-specific grammar files; this is an approach on which we

could improve.

We use aspect grammars for all but the last configuration. We did not use indistinguishability

for any configuration, because repairs are usually smaller in scale than full synthesis and

therefore the overhead of indistinguishability would not be justified. Also, we do not use

the separate recursive call rule, but generate safe recursive calls within term exploration. All

benchmarks and the introduced errors can be found in Appendix C.

Assessment of results. As we can see in Table 4.1, fault localization is remarkably efficient,

and usually manages to localize the error in a small subset of the function under repair. Test

collection is also efficient, taking only nine seconds at the longest, and definitely justified as a

means to improve the efficiency of repair.

Consider Table 4.2, presenting the results of running repair on each benchmark. Leon success-

fully handles a number of benchmarks, including tougher ones with more than one error or

extensive errors. The repair times are generally short and only increase significantly when the

error is extensive enough that Similar Term Exploration cannot come up with a modification

that will fix the code, after which we resort to full synthesis. One of these hard benchmarks is

the List.count benchmark of Appendix C.3, with the Cons branch being completely wrong:

def count(e: T): BigInt = { this match {
case Cons(h, t) ⇒

if (h == e) { // This branch body replaced with BigInt(0) in benchmark
1 + t.count(e)

} else {
t.count(e)

}
case Nil() ⇒

0
}} ensuring { res ⇒

res + (this − e).size == this.size
}
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Operation Error Size Test

Prg Fun Err Fix �
Compiler.desugar1 full case 676 82 3 5 1.9
Compiler.desugar2 full case 674 80 2 6 1.9
Compiler.desugar3 variation 678 84 7 7 1.5
Compiler.desugar4 variation 678 84 7 7 1.9
Compiler.desugar5 2 variations 678 84 14 14 1.9
Compiler.simplify variation 724 31 4 4 1.1
Compiler.semUntyped full case 671 78 1 4 1.1
Heap.merge1 variation 347 37 3 9 3.9
Heap.merge2 variation 347 37 1 1 3.8
Heap.merge3 variation 347 37 3 9 3.8
Heap.merge4 variation 347 37 9 15 3.4
Heap.merge5 variation 349 39 5 9 3.5
Heap.merge6 2 variations 347 37 2 2 4.1
Heap.insert variation 310 8 8 10 9.0
Heap.makeNode variation 349 16 7 5 3.7
List.pad variation 808 35 8 6 1.2
List.++ variation 718 10 3 5 1.5
List.:+ variation 750 12 1 3 1.2
List.replace variation 752 22 6 6 1.2
List.count variation 805 10 3 12 1.4
List.find1 variation 805 23 2 4 1.2
List.find2 variation 807 25 4 6 1.2
List.find3 variation 808 25 4 4 1.2
List.size variation 755 11 4 4 1.5
List.sum variation 752 11 4 4 1.8
List.- variation 752 17 1 3 2.4
List.drop variation 793 25 4 4 1.4
List.drop variation 793 23 3 5 2.0
List.& full case 752 18 4 5 1.5
List.count variation 752 8 1 12 1.4
Numerical.power variation 178 23 5 7 0.9
Numerical.moddiv variation 127 21 3 3 0.7
MergeSort.split full case 233 22 5 7 2.9
MergeSort.merge1 variation 235 33 7 11 3.9
MergeSort.merge2 variation 235 33 3 7 4.3
MergeSort.merge3 variation 233 31 5 11 3.6
MergeSort.merge4 variation 235 33 1 1 3.1

Table 4.1 – Benchmarks repaired by Leon: error types, sizes, and test generation times
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Operation STE P0 P0-NoS P1 P2

� 
 � 
 � 
 � 
 � 

Compiler.desugar1 3.6 � 2.1 � 2.6 � 2.2 � 2.7 �
Compiler.desugar2 5.3 ? 4.5 � 3.2 ? 5.7 � 3.4 �
Compiler.desugar3 3.9 � 2.0 � 3.1 � 2.1 � 2.2 ?
Compiler.desugar4 4.0 � 3.1 � 3.2 � 3.4 � 3.2 �
Compiler.desugar5 6.3 � 3.9 ? 3.9 � 3.7 ? 4.2 �
Compiler.simplify 3.4 � 1.9 � 2.5 � 1.8 � 2.8 �
Compiler.semUntyped 19.4 � 23.2 � 28.7 ? X X 5.9 �
Heap.merge1 6.1 � 5.3 � X X 5.8 � 5.3 �
Heap.merge2 3.3 � 2.4 � 2.1 � 2.1 � 2.8 �
Heap.merge3 6.2 � 5.4 � X X 5.7 � 5.7 �
Heap.merge4 5.0 � 3.9 � X X 5.2 � 4.1 �
Heap.merge5 5.8 � 7.7 � 9.7 � 6.1 � 16.6 �
Heap.merge6 4.5 � 2.8 � 2.8 � 3.1 � 3.2 �
Heap.insert 3.6 � 2.9 � 4.5 � 3.1 � 3.1 �
Heap.makeNode 6.8 � 8.3 � 5.6 � 9.5 � 8.6 �
List.pad 2.6 � 1.8 � 3.7 � 1.5 � 2.5 �
List.++ 2.8 � 1.5 � 3.1 � 1.4 � 9.4 �
List.:+ 3.6 � 1.0 � 2.0 � 1.0 � 2.7 �
List.replace 4.5 � 1.8 � 4.7 � 1.8 � 2.1 �
List.count 2.4 � 1.3 � 1.6 � 1.3 � 1.5 �
List.find1 2.7 � 1.8 � 4.3 � 1.9 � 1.9 �
List.find2 3.2 � 1.9 � 4.6 � 1.8 � 1.9 �
List.find3 3.3 � 1.8 � 3.3 � 1.8 � 1.6 �
List.size 2.5 � 1.1 � 2.2 � 1.1 � 1.4 �
List.sum 2.9 � 1.3 � 2.7 � 1.3 � 1.6 �
List.- 1.8 � 0.6 � 2.3 � 0.7 � 2.5 �
List.drop 2.9 � 1.5 � 3.8 � 1.6 � 1.4 �
List.drop 4.5 � 3.5 � 3.3 � 30.0 � 3.0 �
List.& 3.1 � 2.4 � 3.5 � 3.3 � 59.7 �
List.count 51.2 � 10.6 � 12.3 � 178.3 � X X
Numerical.power 3.4 � 1.3 � X X 1.4 � X X
Numerical.moddiv 2.1 � 1.0 � 1.3 � 0.8 � 1.4 �
MergeSort.split 3.7 � 2.7 � 9.5 � 2.8 � 9.4 �
MergeSort.merge1 3.2 � 2.6 � 7.7 � 2.5 � 2.8 �
MergeSort.merge2 6.4 � 5.6 � 5.2 � 5.5 � 6.1 �
MergeSort.merge3 3.6 � 2.5 � 6.5 � 2.4 � X X
MergeSort.merge4 2.6 � 1.8 � 1.7 � 1.8 � 1.9 �

Table 4.2 – Benchmarks repaired by Leon: localization and repair times
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Similar Term Exploration and Probabilistic Term Enumeration perform similarly with the

built-in grammar, with the latter having a significant advantage in the most challenging

benchmark (about 50 to 10 seconds). Unfortunately, the custom grammars do not perform

well. One reason for that might be that different components of the grammars do not mesh

well: the general grammar, the grammar from the repair benchmark, and the grammar of

recursive functions might be weighted in a manner that does not correspond to a reasonable

distribution of expressions.

Finally, the usefulness of similar term exploration is displayed when inspecting the second

and third configurations of Table 4.2, which are identical, except similar term exploration has

been deactivated for the latter. Benchmarks are generally slower, with 4 benchmarks being

unrepairable, and 2 additional ones generating repairs that cannot be verified by the Leon

verifier.

4.9 Conclusion

In this chapter, we presented a system capable of localizing and repairing bugs in functional

programs. The algorithm collects tests from different sources and classifies them as passing

or failing. Failing tests are filtered by a trace minimization algorithm to reject those that

can be attributed to the failure of another test. Fault localization uses the remaining failing

tests to localize the error within the control flow branches of the program. Then, a modified

synthesis algorithm suggests fixes for the discovered bugs. This algorithm uses a grammar that

generates terms similar to the original erroneous terms, and falls back to normal synthesis

if this grammar yields no solution. Finally, we characterize the programs repairable by our

algorithm and experimentally evaluate our technique.
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5.1 Synthesis Systems

Program synthesis has been a challenge in computer science since its early days (see, for

example, [MW71]). The seminal SKETCH project [SLTB+06] was the first to demonstrate the

feasibility of using modern constraint solving technology in synthesis tools, and used the

CEGIS framework to solve synthesis problems. This spawned a sizable body of research on

synthesis, materializing in a number of synthesis systems, each of which focuses on specific

aspects and forms of the problem.

SYNTREC [IQLS15] and SYNAPSE [BTGC16] use a similar approach based on user-defined

generators (or metasketches) that describe high-level, reusable patterns of computation, in

the spirit of SKETCH. The programmer interacts with the system by providing an appropriate

generator for the task at hand, which is then used by the system to synthesize a complete

program. SYNTREC validates candidate program with bounded checking, whereas SYNAPSE

uses SMT solving. These approaches scale better than Leon for some benchmarks, but require

the programmer to have significant insight into the form of the resulting program.

In SYNQUID [PKS16], the target specification is given in the form of a liquid type [RKJ08].

Additionally, the user provides the set of usable program components. The authors modify

the liquid type inference algorithm to enable top-down breakdown of a liquid type, and use

the inference rules as deductive synthesis rules. Conditionals are generated with a form of

condition abduction. Compared to Leon, SYNQUID specifications tend to be much longer and

require more insight, as the programmer needs to provide the liquid type signatures of all

intermediate components used by the synthesizer.

MYTH [OZ15] is a tool that synthesizes programs with higher-order functions, ADT applica-

tions and pattern matching. The specification is given in the form of input-output examples.

Similarly to Leon, pattern matching is handled outside the main enumeration procedure. To

ensure that no redundant terms are generated, MYTH generates terms in β-normal, η-long

form. The enumeration itself uses breadth-first search and uses refinement trees to represent
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the generated programs, a structure very similar to our own derivation trees. Compared to our

tool, MYTH cannot handle formal specifications, and the authors do not present benchmarks

with arithmetic operations other than index increment and decrements for lists.

λ2 [FCD15] is another tool which performs inductive synthesis, focusing on higher-order

functions. Similarly to us, it maintains a queue of partial expressions that in λ2 are called

hypotheses. These are gradually refined by substituting other hypotheses in place of their

holes. Open hypotheses, i.e., invocations of higher-order functions, are chosen from a fixed

list, while closed ones are generated by bottom-up enumeration. λ2 uses domain knowledge

of the behavior of higher-order combinators to push examples into the body of the combinator.

While doing so, it can filter out hypotheses that are inconsistent with those examples. This

corresponds to the optimization of Section 3.3.5, but in λ2 it does not apply for first-order

terms.

ESHER [AGK13] and LASY [PGGP14] use a set of input/output examples and a set of program

components to automatically synthesize progressively more complicated code snippets, until

one is discovered which satisfies all input-output pairs.

Another approach [FOWZ16] views an input/output example as a singleton refinement type.

A solution is satisfactory if its type is a supertype of all provided examples.

FLASHMETA [PG15] is a generic framework for synthesis-by-example. The framework provides

a fixed synthesis algorithm and can be instantiated with a specific DSL, along with weights for

its expressions and other domain-specific knowledge. The synthesizer is in dialogue with the

programmer to eliminate ambiguities in the generated programs. FLASHMETA uses version

space algebras (VSAs) [Mit81] to compactly represent spaces of programs. VSAs support

efficient operations on program spaces, such as union, intersection and ranking.

DACE [WDS17] synthesizes spreadsheet programs with an emphasis on extracting information

from ranges of cells. First, it learns a finite tree automaton (FTA) that represents a program

compatible with an input-output example. It then combines as many of those automata

as possible with FTA intersection, and introduces conditionals to combine the intersection

groups. BLAZE [WDS18] implements follow-up work based on these ideas. BLAZE constructs

an abstract finite tree automaton (AFTA), a structure similar to finite tree automaton which

operates on an abstract semantics of a provided DSL. Since the abstract semantics overap-

proximate the concrete semantics, some programs permitted by the AFTA might fail on some

examples. BLAZE uses such programs to refine the AFTA. The authors use their technique to

implement programs on string, matrix and tensor transformations.

NEO [FMBD18] is a tool that is uses equivalence module conflicts to speed up synthesis. Given

a wrong partial program P , it creates an SMT formula corresponding to the specifications of

all nodes of P , and discovers a minimal unsatisfiable core for this SMT formula. Components

whose specification implies a clause of this core will falsify the specification. They are assigned

to the same equivalence class for this conflict and not considered by synthesis.
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Perelman et al. [PGGP14] represent program spaces with custom DSLs given as context-

free grammars. Their system syntactically checks generated terms for redundancy based

on arithmetic operator laws and reject redundant terms. Contrary to their technique, our

disambiguation technique based on aspect grammars operates at the grammar level, and so

redundant terms are never generated in the first place.

Syntax-guided synthesis (SyGuS) has emerged as a common formulation and interchange

format in which to express many program synthesis problems [ABJ+13]. SyGuS format’s input

to the synthesis problem is given as a context-free grammar along with a specification in a

specified background theory. EuSolver [ARU17] and the CVC4 SMT-solver enhanced with

synthesis procedures [RKK17, RDK+15, RKT+17] are two prominent solvers in the SyGuS

domain. We would like to highlight that program synthesis and code repair within Leon is a

much more challenging problem than synthesis within SyGuS and related systems: the main

difficulties include the rich type system and algebraic data types of Scala, and the synthesis of

recursive functions.

The TRANSIT system [URD+13] and ESolver [ABJ+13] are some of the first system to enumerate

pairwise distinguishable expressions in the realm of synthesis. In contrast to Leon, those tools

enumerate expressions bottom-up. The SyGuS solver EUSolver combines indistinguishability-

based enumeration with decision-tree based condition inference [ARU17]. As mentioned

before, none of these tools can handle recursive functions or ADTs.

COZY [LTE16] synthesizes data structures from specifications of element retrieval operations.

First, it discovers an outline of the operations evoked to implement each retrieval query using

a variant of CEGIS. The discovered solutions are ranked based on their estimated performance.

Then, a suitable data structure representation is chosen for the discovered outline. The authors

use their synthesized data structures to successfully replace hand-written data structures

from a range of real-world applications. In a recent update [LET18], COZY was updated to

handle a wider range of specifications and imperative updates to the data structures. Starting

from a trivial implementation of queries and an abstract representation of data, it uses an

iterative process of concretizing the used data structures and improving synthesized queries.

Synthesized updates to data structures are incremental to improve the synthesized code’s

performance. Although COZY and Leon overlap in some of their underlying techniques, COZY

focuses on a narrower application domain and produces more complex programs within this

domain. In contrast, Leon focuses on more fundamental synthesis techniques and can handle

a wider range of problems, including recursion, arithmetic computations, and synthesis by

example.

Finally, a direction of work has been synthesizing snippets that interact with APIs. Since large

APIs are an integral part of programming, the focus of this work is shifted to higher-level code

that is mostly restricted to a series of API calls as opposed to application of primitive operations.

These tools usually require a corpus of code in the target language to construct a language

model offline, from which they extract weights which guide the synthesis algorithm. Reinking
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and Piskac [RP15] focus on repair of type-incorrect API invocations. The line of work of Gvero

et al. [GKP11, GK15, GKKP13] aims to synthesize queries to APIs in Scala/Java within an IDE

environment, using the local environment at the point of invocation of the tool (including

local variables and API functions), or, more recently, taking a free form query as input. In

[PGBG12], the input to the synthesizer is a partial expression, which can encode calls to an

unknown function on known arguments or, given an object, an invocation of an unknown

method or lookup of an unknown field of that object. A synthesis algorithm completes those

partial expressions to obtain a complete program.

5.2 Program Space Representations

Both Perelman et al. [PGGP14] and the SyGuS format [ABJ+13] use context-free grammars to

represent program spaces.

Previous versions of Leon [KKK15] represent a set of programs corresponding to a grammar

with a composite expression with boolean guards; each assignment of values to these guards

represents a program from this set.

Probabilistic context-free grammars (PCFGs) are a classical extension of context-free gram-

mars [JM08, Ch. 14]. They may be used both to model ambiguity (for applications in natural

language processing), and to model probability distributions over the generated language,

which motivates our application in accelerating code synthesis. The more recent model of

probabilistic higher-order grammars (PHOGs) [BRV16, RBV16] extends PCFGs by allowing the

expansion probabilities of a non-terminal node to depend on attributes such as node siblings

and DFS-predecessors. Experiments indicate that the PHOG model is significantly better at

predicting elements of JavaScript programs than PCFGs. Extending the probabilistic model of

our dissertation to use PHOGs instead of PCFGs is an area of future work.

With increasing availability of large open-source code repositories such as GitHub and Bit-

bucket, the statistical analysis of code corpora has become an exciting research problem. Code

repositories have been used to learn coding idioms [AS14], to automatically suggest names for

program elements [ABBS15], and to deobfuscate JavaScript code [RVK15].

The program completion tool Slang [RVY14] uses n-grams and recurrent neural networks to

predict missing API calls in code snippets. There are two main aspects which distinguish our

work from Slang: (1) the presence of hard correctness requirements in Leon in the form of

pre-/post-conditions, and (2) program synthesis in Leon is fundamentally about synthesizing

expressions rather than API call sequences, and prediction systems such as n-grams are

insufficient to create the nested recursive structure inherent in the output we produce.

The DeepCoder tool [BGB+17] uses a recurrent neural network (RNN) to predict the presence

of elements in the program being synthesized. The output of this neural network is then used

to guide a more exhaustive search over the space of possible programs.
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In recent work, Brockschmidt et al. [BAGP18] generate a missing line of imperative code from

a context consisting of the code around the line, as well as accessible variables. Similar to us,

they represent a partial synthesis solution as an incomplete AST. Every missing node in the

partial AST is assigned a probability that is a function of the parent and sibling nodes of the

node, uses of available variables in the partial solution, neighboring tokens in the resulting

code, etc. They model these probabilities with a neural network trained on a corpus of code.

Compared to our probabilistic grammars, this is a much more elaborate modelling of the

target language. However, their work does not deal with any form of specification to verify

the correctness of their synthesized snippets, and the first suggested snippet is often not the

desired one. The generated snippets are much smaller compared to Leon. Finally, a drawback

of this approach is the need of substantial additional code around the point where synthesis is

invoked.

5.3 Repair

Related work on repair for functional programs is scarce. Previous work has mostly focused on

imperative programs, without access to built-in ADTs and with greater focus on handling of

statements with side-effects.

GenProg [GNFW12] and SemFix [NQRC13] operate on C programs, enhanced with sets of

passing and failing test cases. Additional specifications in the form of assertions or designated

outputs for specific inputs are not present. Since these systems operate on imperative pro-

grams with side-effects, our fault localization technique is not applicable. Instead, those tools

employ dynamic statistical fault localization techniques. The repair strategy varies between

those tools: on the one hand, GenProg synthesizes no new statements, and instead tries to

generate repairs by swapping, deleting, or duplicating existing program statements using a

genetic algorithm. On the other hand, SemFix deploys synthesis, but unlike Leon does not use

existing code as a guide.

AutoFix-E/E2 [PWF+11, PFNM15, WPF+10] attempts to repair Eiffel programs with formal

specifications. However, those contracts are only used to automatically generate and classify

test cases, and are not used to verify repairs. AutoFix-E uses a complex fault localization

mechanism, combining syntactic, control flow and statistical dynamic information. Its repair

mechanism is based on built-in repair schemas, which allow reuse of the faulty statement as a

component of the repaired expression.

Samanta et al. [SDE08] repair sequential boolean programs. They compute Hoare triples

representing each boolean statement in the program, then check them for correctness on a

specific order and proceed to repair those which are found to be erroneous. In later work,

they proceed to repair C programs [SOE14] by abstracting them with boolean constraints.

This constraint is then repeatedly modified according to a set of update schemas until all

assertions in the program are satisfied, at which point the boolean constraint back to a

repaired C program. The update schemas are picked based on a cost model. Their approach

105



Chapter 5. Related Work

needs developer intervention to define the cost model for each program, as well as at the

concretization step.

SPR [LR15] is a system that repairs imperative programs from input-output examples. It uses a

fixed set of repair schemas with abstract values, and discovers parameters for those sketches so

the program passes the test cases. It also synthesizes conditional expressions which partition

the space of inputs each sketch needs to handle.

Logozzo et al. [LB12] present a framework which suggests repairs, taking input from the

static checker CodeContracts [FL11]. Suggested repairs address errors that are discovered by

common static analyses, such as arithmetic overflows or object initialization, and are typically

simpler than those Leon can generate.

Gopinath et al. [GMK11] use concrete values and a SAT solver to generate repairs for data

structure operations. First, they pick a concrete input which exposes a suspicious statement,

then they use a SAT-solver to discover a corresponding concrete output that satisfies the speci-

fication. This concrete output is then abstracted to various possible candidate expressions,

which are filtered with bounded verification.

Another approach to fault localization is suggested by Chandra et al. [CTBB11]: they examine

an expression as a possible error source if replacing it with a ground term fixes a failing

execution.

Repair has also been studied in the context of reactive and pushdown systems with otherwise

finite control [JGB05, JSGB12, vEJ13, GBC06]. In other work [vEJ13], the authors discuss how

their repairs preserve specific traces of the original program. Our own repairs reuse parts of

the original programs and thus have a tendency to preserve correct traces, but an analysis of

semantic guarantees is left for future work.

An important component of our repair system is test generation. We use our enumeration

algorithms on term grammars to generate test cases. A more elaborate approach is taken by

the Korat [BKM02] automatic test generation system, which generates inputs for Java data

structure programs, exhaustively up to a specific size. To reduce the search space of inputs,

Korat generates only nonisomorphic inputs, according to a definition of isomorphism. Inputs

are filtered by the class invariant of the data structure.
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6 Conclusions and Future Work

In this dissertation, we presented techniques to improve the efficiency of synthesis and repair

of recursive functional programs.

We gave a brief overview of the Leon deductive synthesis tool and described how we updated

its deductive synthesis rules to introduce specific safe recursive calls in a problem’s path

conditions and handle bound variables.

We gave an overview of different flavors of term grammars used to describe program spaces in

Leon. We presented a version of aspect grammars for synthesis which remain context-free for

a specific choice of aspects. An interesting future direction would be to incorporate aspect

grammars into more powerful formalisms, such as probabilistic higher-order grammars or

version-space algebras. Additionally, we presented generic grammars, whose rules contain

type parameters which can be instantiated to types appearing in the program to generate

ground productions. The way we instantiate generic types for probabilistic grammars could

be improved so that the final grammars contain a more accurate proportion of instantiated

rules and rules that were originally ground. We described the built-in grammar of Leon, as

well as a system to manually define term grammars, or extract them by analyzing a corpus

of code. As future work, we would like to increase the expressiveness of extracted probabil-

ities by making them conditional on additional features other than the parent node in the

AST, for example, sibling nodes, number of parameters of the function under synthesis, and

contextual information such as what recursion schema is being used. Additionally, given a

specific synthesis problem, we would like to compute posterior probabilities based on the

priors coming from the language model and the shape of the problem’s specification. Neural

networks can be trained to approximate these prior and posterior probabilities.

Next, we described two different enumeration algorithms which are deployed to discover

solutions to a synthesis problem. We show that those algorithms solve a variety of bench-

marks of the realm of recursive functional programs. Additionally, we demonstrate that the

optimizations we suggest to improve the efficiency of synthesis do have practical impact

on our benchmarks. We recently deployed similar ideas to efficiently generate terms in the
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realm of relational algebra [WSK+18]. As a future direction, we would like to investigate the

possibility to subsume the full Leon deductive synthesis framework with the Probabilistic

Term Enumeration algorithm. Deductive rules could be encoded as grammar rules and a

unified probabilistic model could be created for all expressions, including match-expressions

and recursive calls, which are currently handled by dedicated deductive rules. This would

require an extension of the grammars to handle, for instance, newly bound variables that are

currently introduced by those rules. We believe this is achievable within the aspect framework.

Finally, we presented a system which is able to localize and fix bugs in functional programs.

Fault localization is based on execution traces, and the system deploys a novel trace minimiza-

tion technique to prune false positives. Since our technique depends on code coverage of a

test suite, in the future we would like to utilize techniques that improve the code coverage

of test suites. Fixes for the discovered bugs are generated with a variant of synthesis that

generates terms similar to the original erroneous term. We showed that our technique is able

to localize and fix a variety of bugs in functional programs.

In conclusion, we believe that the work presented in this dissertation improves the state of the

art in the field of functional synthesis and repair, and can be used to improve the performance

of existing synthesis techniques, as well as a starting point for future work in the field.
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A Synthesis Benchmarks by Specifica-
tion

We present the synthesis by specification benchmarks used in Chapter 3. For each benchmark,

we give the code containing the synthesis problem (the choose construct, or the synthesis

hole ???), followed by the synthesized solution.

A.1 List.insert

def insert[A](in1: List[A], v: A) = choose {
(out : List[A]) ⇒

out.content == in1.content ++ Set(v) }

// Solution:
def insert[A](in1 : List[A], v : A): List[A] = {

Cons[A](v, in1)
} ensuring {

(out : List[A]) ⇒ out.content == in1.content ++ Set[A](v) }

A.2 List.delete

def delete(in: List[BigInt], v: BigInt) = ???[List[BigInt]] ensuring {
(out : List[BigInt]) ⇒

out.content == in.content -- Set(v) }

// Solution:
def delete(in : List[BigInt], v : BigInt): List[BigInt] = {

in match {
case Nil() ⇒ List[BigInt]()
case Cons(h, t) ⇒

val rec = delete(t, v)
if (h == v) {

109



Appendix A. Synthesis Benchmarks by Specification

rec
} else {

Cons[BigInt](h, rec) } }
} ensuring {

(out : List[BigInt]) ⇒ out.content == in.content -- Set[BigInt](v) }

A.3 List.union

def union[A](in1: List[A], in2: List[A]) = choose {
(out : List[A]) ⇒

out.content == in1.content ++ in2.content }

// Solution:
def union[A](in1 : List[A], in2 : List[A]): List[A] = {

in1 match {
case Nil() ⇒ in2
case Cons(h, t) ⇒ Cons[A](h, union[A](t, in2)) }

} ensuring {
(out : List[A]) ⇒ out.content == in1.content ++ in2.content }

A.4 List.diff

def delete[A](in1: List[A], v: A): List[A] = {
in1 match {

case Cons(h,t) ⇒
if (h == v) delete(t, v)
else Cons(h, delete(t, v))

case Nil() ⇒ Nil[A]() }
} ensuring { _.content == in1.content -- Set(v) }

def diff[A](in1: List[A], in2: List[A]) = choose {
(out : List[A]) ⇒

out.content == in1.content -- in2.content }

// Solution:
def diff[A](in1 : List[A], in2 : List[A]): List[A] = {

in2 match {
case Nil() ⇒ in1
case Cons(h, t) ⇒ delete[A](diff[A](in1, t), h) }

} ensuring {
(out : List[A]) ⇒ out.content == in1.content -- in2.content }
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A.5 List.split

def splitSpec[A](list : List[A], res : (List[A],List[A])) : Boolean = {
val (l1, l2) = res
val s1 = l1.size
val s2 = l2.size
abs(s1 − s2) ≤ 1 && s1 + s2 == list.size &&
l1.content ++ l2.content == list.content }

def abs(i : BigInt) : BigInt = {
if(i < 0) −i else i

} ensuring(_ ≥ 0)

def split[A](list : List[A]) : (List[A],List[A]) = {
choose { (res : (List[A],List[A])) ⇒ splitSpec(list, res) } }

// Solution:
def split[A](list : List[A]): (List[A], List[A]) = {

list match {
case Nil() ⇒ (List[A](), List[A]())
case Cons(h, t) ⇒

val (rec_1, rec_2) = split[A](t)
(Cons[A](h, rec_2), rec_1) }

} ensuring {
(res : (List[A], List[A])) ⇒ splitSpec[A](list, res) }

A.6 List.listOfSize

def listOfSize(s: BigInt): List[BigInt] = {
require(s ≥ 0)
choose((l: List[BigInt]) ⇒ l.size == s) }

// Solution:
def listOfSize(s : BigInt): List[BigInt] = {

require(s ≥ BigInt(0))
if (s == BigInt(0)) List[BigInt]()
else Cons[BigInt](s, listOfSize(s − BigInt(1)))

} ensuring {
(l : List[BigInt]) ⇒ l.size == s }

A.7 SortedList.insert

def isSorted(list: List[BigInt]): Boolean = list match {
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case Cons(x1, t@Cons(x2, _)) ⇒ x1 ≤ x2 && isSorted(t)
case _ ⇒ true }

def insert(in: List[BigInt], v: BigInt): List[BigInt] = {
require(isSorted(in))
choose { (out : List[BigInt]) ⇒

(out.content == in.content ++ Set(v)) && isSorted(out) } }

// Solution:
def insert(in : List[BigInt], v : BigInt): List[BigInt] = {

require(isSorted(in))
in match {

case Nil() ⇒ List(v)
case Cons(h, t) ⇒

val rec = insert(t, v)
if (h == v) rec
else if (h < v) Cons[BigInt](h, rec)
else Cons[BigInt](v, Cons[BigInt](h, t)) }

} ensuring {
(out : List[BigInt]) ⇒

out.content == in.content ++ Set[BigInt](v) && isSorted(out) }

A.8 SortedList.insertAlways

def isSorted(list: List[BigInt]): Boolean = list match {
case Cons(x1, t@Cons(x2, _)) ⇒ x1 ≤ x2 && isSorted(t)
case _ ⇒ true }

def insertAlways(in: List[BigInt], v: BigInt) = {
require(isSorted(in))
choose{ (out : List[BigInt]) ⇒

(out.content == in.content ++ Set(v)) &&
isSorted(out) && out.size == in.size + 1 } }

// Solution:
def insertAlways(in : List[BigInt], v : BigInt): List[BigInt] = {

require(isSorted(in))
in match {

case Nil() ⇒
List(v)

case Cons(h, t) ⇒
val rec = insertAlways(t, v)
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if (h == v) Cons[BigInt](v, rec)
else if (h < v) Cons[BigInt](h, rec)
else Cons[BigInt](v, Cons[BigInt](h, t)) }

} ensuring {
(out : List[BigInt]) ⇒

out.content == in.content ++ Set[BigInt](v) &&
isSorted(out) && out.size == in.size + BigInt(1) }

A.9 SortedList.delete

def isSorted(list: List[BigInt]): Boolean = list match {
case Cons(x1, t@Cons(x2, _)) ⇒ x1 ≤ x2 && isSorted(t)
case _ ⇒ true }

def delete(in: List[BigInt], v: BigInt) = {
require(isSorted(in))
choose( (res : List[BigInt]) ⇒

(res.content == in.content -- Set(v)) && isSorted(res) ) }

// Solution:
def delete(in : List[BigInt], v : BigInt): List[BigInt] = {

require(isSorted(in))
in match {

case Nil() ⇒
List[BigInt]()

case Cons(h, t) ⇒
val rec = delete(t, v)
if (h == v) rec
else Cons[BigInt](h, rec) }

} ensuring {
(res : List[BigInt]) ⇒ res.content == in.content -- Set[BigInt](v) && isSorted(res) }

A.10 SortedList.union

def isSorted(list: List[BigInt]): Boolean = list match {
case Cons(x1, t@Cons(x2, _)) ⇒ x1 ≤ x2 && isSorted(t)
case _ ⇒ true }

def insert(in: List[BigInt], v: BigInt): List[BigInt] = {
require(isSorted(in))
in match {

case Cons(h, t) ⇒
if (v < h) Cons(v, in)
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else if (v == h) in
else Cons(h, insert(t, v))

case Nil() ⇒ Cons(v, Nil[BigInt]()) }
} ensuring { res ⇒

(res.content == in.content ++ Set(v)) && isSorted(res) }

def union(in1: List[BigInt], in2: List[BigInt]) = {
require(isSorted(in1) && isSorted(in2))
choose { (out : List[BigInt]) ⇒
(out.content == in1.content ++ in2.content) && isSorted(out) } }

// Solution:
def union(in1 : List[BigInt], in2 : List[BigInt]): List[BigInt] = {

require(isSorted(in1) && isSorted(in2))
in1 match {

case Nil() ⇒ in2
case Cons(h, t) ⇒ insert(union(t, in2), h) }

} ensuring {
(out : List[BigInt]) ⇒

out.content == in1.content ++ in2.content && isSorted(out) }

A.11 SortedList.diff

def isSorted(list: List[BigInt]): Boolean = list match {
case Cons(x1, t@Cons(x2, _)) ⇒ x1 ≤ x2 && isSorted(t)
case _ ⇒ true }

def delete(in1: List[BigInt], v: BigInt): List[BigInt] = {
require(isSorted(in1))
in1 match {

case Cons(h,t) ⇒
if (h < v) Cons(h, delete(t, v))
else if (h == v) delete(t, v)
else in1

case Nil() ⇒ Nil[BigInt]() }
} ensuring { res ⇒

res.content == in1.content -- Set(v) && isSorted(res) }

def diff(in1: List[BigInt], in2: List[BigInt]) = {
require(isSorted(in1) && isSorted(in2))
choose { (out : List[BigInt]) ⇒

(out.content == in1.content -- in2.content) && isSorted(out) } }
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// Solution:
def diff(in1 : List[BigInt], in2 : List[BigInt]): List[BigInt] = {

require(isSorted(in1) && isSorted(in2))
in2 match {

case Nil() ⇒ in1
case Cons(h, t) ⇒ delete(diff(in1, t), h) }

} ensuring {
(out : List[BigInt]) ⇒ out.content == in1.content -- in2.content && isSorted(out) }

A.12 SortedList.insertionSort

def isSorted(list: List[BigInt]): Boolean = list match {
case Cons(x1, t@Cons(x2, _)) ⇒ x1 ≤ x2 && isSorted(t)
case _ ⇒ true }

def insert(in: List[BigInt], v: BigInt): List[BigInt] = {
require(isSorted(in))
in match {

case Cons(h, t) ⇒
if (v < h) Cons(v, in)
else if (v == h) in
else Cons(h, insert(t, v))

case Nil() ⇒ Cons(v, Nil()) }
} ensuring { res ⇒

(res.content == in.content ++ Set(v)) && isSorted(res) }

def insertionSort(in: List[BigInt]): List[BigInt] = {
choose { (out: List[BigInt]) ⇒

out.content == in.content && isSorted(out) } }

// Solution:
def insertionSort(in : List[BigInt]): List[BigInt] = {

in match {
case Nil() ⇒ List[BigInt]()
case Cons(h, t) ⇒ insert(insertionSort(t), h) }

} ensuring {
(out : List[BigInt]) ⇒ out.content == in.content && isSorted(out) }

A.13 StrictSortedList.insert

def isSorted(list: List[BigInt]): Boolean = list match {
case Cons(x1, t@Cons(x2, _)) ⇒ x1 < x2 && isSorted(t)
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case _ ⇒ true }

def insert(in: List[BigInt], v: BigInt): List[BigInt] = {
require(isSorted(in))
???[List[BigInt]]

} ensuring { (out : List[BigInt]) ⇒
(out.content == in.content ++ Set(v)) && isSorted(out) }

// Solution:
def insert(in : List[BigInt], v : BigInt): List[BigInt] = {

require(isSorted(in))
in match {

case Nil() ⇒ List(v)
case Cons(h, t) ⇒

val rec = insert(t, v)
if (h == v) rec
else if (h < v) Cons[BigInt](h, rec)
else Cons[BigInt](v, Cons[BigInt](h, t)) }

} ensuring {
(out : List[BigInt]) ⇒

out.content == in.content ++ Set[BigInt](v) && isSorted(out) }

A.14 StrictSortedList.delete

def isSorted(list: List[BigInt]): Boolean = list match {
case Cons(x1, t@Cons(x2, _)) ⇒ x1 < x2 && isSorted(t)
case _ ⇒ true }

def delete(in: List[BigInt], v: BigInt) = {
require(isSorted(in))
choose( (res : List[BigInt]) ⇒

(res.content == in.content -- Set(v)) && isSorted(res) ) }

// Solution:
def delete(in : List[BigInt], v : BigInt): List[BigInt] = {

require(isSorted(in))
in match {

case Nil() ⇒ List[BigInt]()
case Cons(h, t) ⇒

val rec = delete(t, v)
if (h == v) rec
else Cons[BigInt](h, rec) }
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} ensuring {
(res : List[BigInt]) ⇒

res.content == in.content -- Set[BigInt](v) && isSorted(res) }

A.15 StrictSortedList.union

def isSorted(list: List[BigInt]): Boolean = list match {
case Cons(x1, t@Cons(x2, _)) ⇒ x1 < x2 && isSorted(t)
case _ ⇒ true }

def insert(in1: List[BigInt], v: BigInt): List[BigInt] = {
require(isSorted(in1))
in1 match {

case Cons(h, t) ⇒
if (v < h) Cons(v, in1)
else if (v == h) in1
else Cons(h, insert(t, v))

case Nil() ⇒ Cons(v, Nil()) }
} ensuring { res ⇒

(res.content == in1.content ++ Set(v)) && isSorted(res) }

def union(in1: List[BigInt], in2: List[BigInt]) = {
require(isSorted(in1) && isSorted(in2))
choose { (out : List[BigInt]) ⇒

(out.content == in1.content ++ in2.content) && isSorted(out) } }

// Solution:
def union(in1 : List[BigInt], in2 : List[BigInt]): List[BigInt] = {
require(isSorted(in1) && isSorted(in2))
in1 match {

case Nil() ⇒ in2
case Cons(h, t) ⇒ insert(union(t, in2), h) }

} ensuring {
(out : List[BigInt]) ⇒

out.content == in1.content ++ in2.content && isSorted(out) }

A.16 UnaryNumerals.add

sealed abstract class Num
case object Z extends Num
case class S(pred: Num) extends Num

def value(n: Num): BigInt = {
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n match {
case Z ⇒ BigInt(0)
case S(p) ⇒ BigInt(1) + value(p) }

} ensuring (_ ≥ 0)

def add(x: Num, y: Num): Num = {
choose { (r : Num) ⇒

value(r) == value(x) + value(y) } }

// Solution:
def add(x : Num, y : Num): Num = {

x match {
case Z ⇒ y
case S(pred) ⇒ S(add(pred, y)) }

} ensuring {
(r : Num) ⇒ value(r) == value(x) + value(y) }

A.17 UnaryNumerals.distinct

sealed abstract class Num
case object Z extends Num
case class S(pred: Num) extends Num

def value(n: Num): BigInt = {
n match {

case Z ⇒ BigInt(0)
case S(p) ⇒ BigInt(1) + value(p) }

} ensuring (_ ≥ 0)

def add(x: Num, y: Num): Num = {
x match {

case S(p) ⇒ S(add(p, y))
case Z ⇒ y }

} ensuring { (r : Num) ⇒
value(r) == value(x) + value(y) }

def distinct(x: Num, y: Num): Num = {
choose { (r : Num) ⇒

r != x && r != y } }

// Solution:
def distinct(x : Num, y : Num): Num = add(y, S(x)) ensuring {
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(r : Num) ⇒ r != x && r != y }

A.18 UnaryNumerals.mult

sealed abstract class Num
case object Z extends Num
case class S(pred: Num) extends Num

def value(n: Num): BigInt = {
n match {

case Z ⇒ BigInt(0)
case S(p) ⇒ BigInt(1) + value(p) }

} ensuring (_ ≥ 0)

def add(x: Num, y: Num): Num = {
x match {

case S(p) ⇒ S(add(p, y))
case Z ⇒ y }

} ensuring { (r : Num) ⇒
value(r) == value(x) + value(y) }

def mult(x: Num, y: Num): Num = {
choose { (r : Num) ⇒

value(r) == value(x) ∗ value(y) } }

// Solution:
def mult(x : Num, y : Num): Num = {

x match {
case Z ⇒ Z
case S(pred) ⇒ add(mult(pred, y), y) }

} ensuring {
(r : Num) ⇒ value(r) == value(x) ∗ value(y) }

A.19 BatchedQueue.enqueue

case class Queue[T](f: List[T], r: List[T]) {
def content: Set[T] = f.content ++ r.content
def size: BigInt = f.size + r.size

def invariant: Boolean = {
(f == Nil[T]()) =⇒ (r == Nil[T]()) }

def toList: List[T] = f ++ r.reverse
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def enqueue(v: T): Queue[T] = {
require(invariant)
???[Queue[T]]

} ensuring { (res: Queue[T]) ⇒
res.invariant &&
res.toList.last == v &&
res.size == size + 1 &&
res.content == this.content ++ Set(v) }

}

// Solution:
def enqueue[T](thiss : Queue[T], v : T): Queue[T] = {

require(thiss.invariant)
val Queue(f, r) = thiss
f match {

case Nil() ⇒
Queue[T](Cons[T](v, Nil[T]()), Nil[T]())

case Cons(h, t) ⇒
Queue[T](Queue[T](Cons[T](h, t), r).toList, Cons[T](v, Nil[T]())) }

} ensuring {
(res : Queue[T]) ⇒

res.invariant &&
res.toList.last == v &&
res.size == thiss.size + BigInt(1) &&
res.content == thiss.content ++ Set[T](v) }

A.20 BatchedQueue.dequeue

case class Queue[T](f: List[T], r: List[T]) {
def content: Set[T] = f.content ++ r.content
def size: BigInt = f.size + r.size
def isEmpty: Boolean = f.isEmpty && r.isEmpty
def invariant: Boolean = (f.isEmpty) =⇒ (r.isEmpty)
def toList: List[T] = f ++ r.reverse

def dequeue: Queue[T] = {
require(invariant && !isEmpty)
???[Queue[T]]

} ensuring { (res: Queue[T]) ⇒
res.size == size−1 && res.toList == this.toList.tail && res.invariant }

}
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object Queue {
// Make this available for synthesis
def reverse[T](l: List[T]) = l.reverse

}

// Solution: (Note: Leon output was manually simplified)
def dequeue[T](thiss : Queue[T]): Queue[T] = {

require(thiss.invariant && !thiss.isEmpty)
val Queue(f @ Cons(h, t), r) = thiss
t match {

case Nil() ⇒
Queue[T](r.reverse, Nil[T]())

case Cons(h1, t1) ⇒
Queue[T](Cons[T](h1, t1), r) }

} ensuring {
(res : Queue[T]) ⇒

res.size == thiss.size − BigInt(1) &&
res.toList == thiss.toList.tail &&
res.invariant }

A.21 AddressBook.makeAddressBook

case class Address[A](info: A, priv: Boolean)

def allPersonal[A](l: List[Address[A]]): Boolean = l match {
case Nil() ⇒ true
case Cons(a, l1) ⇒

if (a.priv) allPersonal(l1)
else false }

def allBusiness[A](l: List[Address[A]]): Boolean = l match {
case Nil() ⇒ true
case Cons(a, l1) ⇒

if (a.priv) false
else allBusiness(l1) }

case class AddressBook[A](business: List[Address[A]], personal: List[Address[A]]) {
def size: BigInt = business.size + personal.size

def content: Set[Address[A]] = business.content ++ personal.content
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def invariant = {
allPersonal(personal) && allBusiness(business) }

}

def makeAddressBook[A](as: List[Address[A]]): AddressBook[A] = {
choose( (res: AddressBook[A]) ⇒ res.content == as.content && res.invariant ) }

// Solution:
def makeAddressBook[A](as : AddressList[A]): AddressBook[A] = {

as match {
case Nil() ⇒

AddressBook[A](Nil[A](), Nil[A]())
case Cons(a @ Address(info, priv), tail) ⇒

val AddressBook(business, personal) = makeAddressBook[A](tail)
if (priv) {

AddressBook[A](business, Cons[A](Address[A](info, true), personal))
} else {

AddressBook[A](Cons[A](Address[A](info, false), business), personal) } }
} ensuring {

(res : AddressBook[A]) ⇒ res.content == as.content && res.invariant }

A.22 AddressBook.merge

def union[A](l1: List[A], l2: List[A]): List[A] = { l1 match {
case Nil() ⇒ l2
case Cons(h, t) ⇒ Cons(h, union(t, l2))

}} ensuring { res ⇒ res.content == l1.content ++ l2.content }

case class Address[A](info: A, priv: Boolean)

def allPersonal[A](l: List[Address[A]]): Boolean = l match {
case Nil() ⇒ true
case Cons(a, l1) ⇒

if (a.priv) allPersonal(l1)
else false }

def allBusiness[A](l: List[Address[A]]): Boolean = l match {
case Nil() ⇒ true
case Cons(a, l1) ⇒

if (a.priv) false
else allBusiness(l1) }
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case class AddressBook[A](business: List[Address[A]], personal: List[Address[A]]) {
def size: BigInt = business.size + personal.size
def content: Set[Address[A]] = business.content ++ personal.content
def invariant = allPersonal(personal) && allBusiness(business)

}

def merge[A](a1: AddressBook[A], a2: AddressBook[A]): AddressBook[A] = {
require(a1.invariant && a2.invariant)
???[AddressBook[A]]

} ensuring {
(res: AddressBook[A]) ⇒

res.personal.content == (a1.personal.content ++ a2.personal.content) &&
res.business.content == (a1.business.content ++ a2.business.content) &&
res.invariant }

// Solution:
def merge[A](a1 : AddressBook[A], a2 : AddressBook[A]): AddressBook[A] = {

require(
(allPersonal[A](a1.personal) && allBusiness[A](a1.business)) &&
(allPersonal[A](a2.personal) && allBusiness[A](a2.business)) )

val AddressBook(business, personal) = a2
val AddressBook(business1, per sonal1) = a1
AddressBook[A](business ++ business1, per sonal1 ++ personal)

} ensuring {
(res : AddressBook[A]) ⇒

res.personal.content == a1.personal.content ++ a2.personal.content &&
res.business.content == a1.business.content ++ a2.business.content &&
(allPersonal[A](res.personal) && allBusiness[A](res.business)) }

A.23 RunLength.encode

def decode[A](l: List[(BigInt, A)]): List[A] = {
def fill[A](i: BigInt, a: A): List[A] = {

if (i > 0) a :: fill(i − 1, a)
else Nil[A]() }

l match {
case Nil() ⇒ Nil[A]()
case Cons((i, x), xs) ⇒

fill(i, x) ++ decode(xs) }
}
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def legal[A](l: List[(BigInt, A)]): Boolean = l match {
case Nil() ⇒ true
case Cons((i, _), Nil()) ⇒ i > 0
case Cons((i, x), tl@Cons((_, y), _)) ⇒

i > 0 && x != y && legal(tl) }

def encode[A](l: List[A]): List[(BigInt, A)] = ???[List[(BigInt, A)]] ensuring {
(res: List[(BigInt, A)]) ⇒

legal(res) && decode(res) == l }

// Solution:
def encode[A](l : List[A]): List[(BigInt, A)] = {

l match {
case Nil() ⇒ List[(BigInt, A)]()
case Cons(h, t) ⇒

encode[A](t) match {
case Nil() ⇒

List((BigInt(1), h))
case Cons(h1 @ (h_1, h_2), t1) ⇒

if (h == h_2) {
Cons[(BigInt, A)]((h_1 + BigInt(1), h), t1)

} else {
Cons[(BigInt, A)]((BigInt(1), h), Cons[(BigInt, A)](h1, t1)) } } }

} ensuring {
(res : List[(BigInt, A)]) ⇒ legal[A](res) && decode[A](res) == l }

A.24 Diffs.diffs

def diffs(l: List[BigInt]): List[BigInt] =
choose((res: List[BigInt]) ⇒

res.size == l.size && undiff(res) == l )

def undiff(l: List[BigInt]) = {
l.scanLeft(BigInt(0))(_ + _).tail }

// Solution:
def diffs(l : List[BigInt]): List[BigInt] = {

l match {
case Nil() ⇒

List[BigInt]()
case Cons(h, t) ⇒

diffs(t) match {
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case Nil() ⇒
Cons[BigInt](h, t)

case Cons(h1, t1) ⇒
Cons[BigInt](h, Cons[BigInt](h1 − h, t1)) } }

} ensuring {
(res : List[BigInt]) ⇒ res.size == l.size && undiff(res) == l }
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B Synthesis Benchmarks by Example

We present the synthesis by example benchmarks used in Chapter 3. For each benchmark, we

give the code containing the synthesis problem (the choose construct, or the synthesis hole

???), followed by the synthesized solution.

B.1 UnaryNumerals.add

sealed abstract class Num
case object Z extends Num
case class S(pred: Num) extends Num

def add(x: Num, y: Num): Num = {
???[Num]

} ensuring { res ⇒
((x, y), res) passes {

case (Z, _) ⇒ y
case (_, Z) ⇒ x
case (S(Z), S(Z)) ⇒ S(S(Z))
case (S(S(Z)), S(Z)) ⇒ S(S(S(Z))) } }

// Solution:
def add(x : Num, y : Num): Num = x match {

case Z ⇒ y
case S(pred) ⇒ S(add(pred, y)) }

B.2 List.append

def append[A](l1: List[A], l2: List[A]) : List[A] = {
???[List[A]]

} ensuring { (res: List[A]) ⇒
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((l1, l2), res) passes {
case (Nil(), l) ⇒ l
case (l, Nil()) ⇒ l
case (Cons(a, Nil()), Cons(b, Nil())) ⇒ Cons(a, Cons(b, Nil()))
case (Cons(a, Cons(b, Nil())), Cons(c, Nil())) ⇒ Cons(a, Cons(b, Cons(c, Nil())))
case (Cons(a, Cons(b, Nil())), Cons(c, Cons(d, Nil()))) ⇒

Cons(a, Cons(b, Cons(c, Cons(d, Nil())))) } }

// Solution:
def append[A](l1 : List[A], l2 : List[A]): List[A] = l1 match {

case Nil() ⇒ l2
case Cons(h, t) ⇒ Cons[A](h, append[A](t, l2)) }

B.3 Calc.eval

abstract class Expr
case class Const(i: BigInt) extends Expr
case class Plus(l: Expr, r: Expr) extends Expr
case class Minus(l: Expr, r: Expr) extends Expr
case class Times(l: Expr, r: Expr) extends Expr
case class Max(l: Expr, r: Expr) extends Expr

def eval(e: Expr): BigInt = ???[BigInt] ensuring { res ⇒
(e, res) passes {

case Const(i) ⇒ i
case Plus(Const(BigInt(8)), Const(BigInt(5))) ⇒ 13
case Plus(Const(BigInt(−10)), Const(BigInt(7))) ⇒ −3
case Minus(Const(BigInt(−10)), Const(BigInt(7))) ⇒ −17
case Minus(Const(BigInt(8)), Const(BigInt(5))) ⇒ 3
case Times(Const(BigInt(8)), Const(BigInt(5))) ⇒ 40
case Times(Const(BigInt(−10)), Const(BigInt(7))) ⇒ −70
case Max(Const(BigInt(18)), Const(BigInt(5))) ⇒ 18
case Max(Const(BigInt(8)), Const(BigInt(8))) ⇒ 8
case Max(Const(BigInt(−5)), Const(BigInt(5))) ⇒ 5
case Max(Const(BigInt(−8)), Const(BigInt(22))) ⇒ 22 } }

// Solution:
def eval(e : Expr): BigInt = e match {

case Const(i) ⇒ i
case Max(l, r) ⇒

val rec = eval(l)
val rec1 = eval(r)
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if (rec == rec1) rec1
else if (rec < rec1) rec1
else rec

case Minus(l, r) ⇒
eval(l) − eval(r)

case Plus(l, r) ⇒
eval(l) + eval(r)

case Times(l, r) ⇒
eval(l) ∗ eval(r)

}

B.4 Tree.countLeaves

abstract class Tree[A]
case class Leaf[A]() extends Tree[A]
case class Node[A](l: Tree[A], v: A, r: Tree[A]) extends Tree[A]

def countLeaves[A](t: Tree[A]): BigInt = ???[BigInt] ensuring { (res: BigInt) ⇒
(t, res) passes {

case Leaf() ⇒ 1
case Node(Leaf(), _, Leaf()) ⇒ 2
case Node(Node(Leaf(), _, Leaf()), _, Leaf()) ⇒ 3
case Node(Node(Leaf(), _, Leaf()), _, Node(Leaf(), _, Leaf())) ⇒ 4 } }

def countLeaves[A](t : Tree[A]): BigInt = t match {
case Leaf() ⇒

BigInt(1)
case Node(l, v, r) ⇒

countLeaves[A](l) + countLeaves[A](r) }

B.5 Dictionary.replace

def dictReplace[A, B](l: List[(A, B)], key: A, v: B): List[(A,B)] = {
???[List[(A, B)]]

} ensuring { res ⇒
((l, key, v), res) passes {

case (Nil(), _, _) ⇒ Nil()
case (Cons((k1, v1), Nil()), k, v) if k == k1 ⇒ List((k1, v))
case (Cons((k1, v1), Nil()), k, v) if k != k1 ⇒ l
case (Cons((k1, v1), Cons((k2, v2), Nil())), k, v) if k != k1 && k == k2 ⇒

List((k1, v1), (k2, v))
case (Cons((k1, v1), Cons((k2, v2), Nil())), k, v) if k != k1 && k != k2 ⇒

List((k1, v1), (k2, v2))
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case (Cons((k1, v1), Cons((k2, v2), Nil())), k, v) if k == k1 && k == k2 ⇒
List((k1, v), (k2, v)) } }

// Solution:
def dictReplace[A, B](l : List[(A, B)], key : A, v : B): List[(A, B)] = l match {

case Nil() ⇒ List[(A, B)]()
case Cons(h @ (h_1, h_2), t) ⇒

val rec = dictReplace[A, B](t, key, v)
if (h_1 == key) Cons[(A, B)]((key, v), rec)
else Cons[(A, B)](h, rec) }

B.6 Dictionary.find

def dictFind[A, B](l: List[(A, B)], key: A): Option[B] = ???[Option[B]] ensuring { res ⇒
((l, key), res) passes {

case (Nil(), _) ⇒ None()
case (Cons((k1, v1), Nil()), k) if k == k1 ⇒ Some(v1)
case (Cons((k1, v1), Nil()), k) if k != k1 ⇒ None()
case (Cons((k1, v1), Cons((k2, v2), Nil())), k) if k == k1 ⇒ Some(v1)
case (Cons((k1, v1), Cons((k2, v2), Nil())), k) if k != k1 && k == k2 ⇒ Some(v2)
case (Cons((k1, v1), Cons((k2, v2), Nil())), k) if k != k1 && k != k2 ⇒ None() } }

// Solution:
def dictFind[A, B](l : List[(A, B)], key : A): Option[B] = l match {

case Nil() ⇒ None[B]()
case Cons(h @ (h_1, h_2), t) ⇒

if (h_1 == key) Some[B](h_2)
else dictFind[A, B](t, key) }

B.7 List.diffs

def diffs(l: List[BigInt]): List[BigInt] = {
???[List[BigInt]]

} ensuring { (res: List[BigInt]) ⇒
(l, res) passes {

case Nil() ⇒ Nil()
case Cons(BigInt(55), Nil()) ⇒ List(55)
case Cons(BigInt(100), Cons(BigInt(−100), Nil())) ⇒ List(200, −100)
case Cons(BigInt(1), Cons(BigInt(2), Cons(BigInt(22), Nil()))) ⇒ List(−1, −20, 22) } }

// Solution:
def diffs(l : List[BigInt]): List[BigInt] = l match {

case Nil() ⇒ List[BigInt]()
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case Cons(h, t) ⇒ t match {
case Nil() ⇒ List(h)
case Cons(h1, t1) ⇒

Cons[BigInt](h − h1, diffs(t)) } }

B.8 Expr.fv

abstract class Expr
case class Var(i: BigInt) extends Expr
case class Unit() extends Expr
case class App(f: Expr, a: Expr) extends Expr
case class Lam(v: BigInt, b: Expr) extends Expr
case class Let(v: BigInt, vl: Expr, b: Expr) extends Expr

def fv(e: Expr): Set[BigInt] = ???[Set[BigInt]] ensuring { res ⇒
(e, res) passes {

case Var(i) ⇒ Set(i)
case App(Var(i), Var(j)) ⇒ Set(i, j)
case Lam(BigInt(0), Var(BigInt(0))) ⇒ Set()
case Lam(BigInt(0), Var(BigInt(1))) ⇒ Set(BigInt(1))
case Let(BigInt(0), Var(BigInt(0)), Var(BigInt(1))) ⇒ Set(BigInt(0), BigInt(1))
case Let(BigInt(0), Var(BigInt(1)), Var(BigInt(0))) ⇒ Set(BigInt(1))
case Let(BigInt(0), Var(BigInt(1)), Var(BigInt(2))) ⇒ Set(BigInt(1), BigInt(2)) } }

// Solution:
def fv(e : Expr): Set[BigInt] = e match {

case Unit() ⇒
Set[BigInt]()

case Var(i) ⇒
Set[BigInt](i)

case Lam(v, b) ⇒
fv(b) -- Set[BigInt](v)

case App(f, a) ⇒
fv(a) ++ fv(f)

case Let(v, vl, b) ⇒
(fv(b) -- Set[BigInt](v)) ++ fv(vl)

}

B.9 UnaryNumerals.isEven

sealed abstract class Num
case object Z extends Num
case class S(pred: Num) extends Num
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def isEven(x: Num): Boolean = ???[Boolean] ensuring { res ⇒
(x, res) passes {

case Z ⇒ true
case S(Z) ⇒ false
case S(S(Z)) ⇒ true } }

// Solution:
def isEven(x : Num): Boolean = x match {

case Z ⇒ true
case S(pred) ⇒ !isEven(pred) }

B.10 SortedList.insert

def isSorted(list: List[BigInt]): Boolean = list match {
case Cons(x1, t@Cons(x2, _)) ⇒ x1 < x2 && isSorted(t)
case _ ⇒ true }

def insert(in: List[BigInt], v: BigInt): List[BigInt] = {
require(isSorted(in))
choose { (out : List[BigInt]) ⇒

((in, v), out) passes {
case (Nil(), v) ⇒ List(v)
case (Cons(a, Nil()), b) if a == b ⇒ in
case (Cons(BigInt(1), Nil()), BigInt(2)) ⇒ List(1, 2)
case (Cons(BigInt(1), Nil()), BigInt(−22)) ⇒ List(−22, 1)
case (Cons(BigInt(42), Nil()), BigInt(−22)) ⇒ List(−22, 42)
case (Cons(BigInt(1), Cons(BigInt(42), Nil())), BigInt(100)) ⇒

List(1, 42, 100) } } }

// Solution:
def insert(in : List[BigInt], v : BigInt): List[BigInt] = {

require(isSorted(in))
in match {

case Nil() ⇒
List(v)

case Cons(h, t) ⇒
val rec = insert(t, v)
if (h == v) rec
else if (h < v) Cons[BigInt](h, rec)
else List(v, h) } }
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B.11 UnaryNumerals.mult

sealed abstract class Num
case object Z extends Num
case class S(pred: Num) extends Num

def add(x: Num, y: Num): Num = x match {
case S(p) ⇒ S(add(p, y))
case Z ⇒ y }

def mult(x: Num, y: Num): Num = ???[Num] ensuring { res ⇒
((x, y), res) passes {

case (Z, _) ⇒ Z
case (_, Z) ⇒ Z
case (S(Z), S(Z)) ⇒ S(Z)
case (S(S(S(Z))), S(S(Z))) ⇒ (S(S(S(S(S(S(Z))))))) } }

// Solution:
def mult(x : Num, y : Num): Num = x match {

case Z ⇒ Z
case S(pred) ⇒ add(mult(pred, y), y) }

B.12 Tree.postorder

abstract class Tree[A]
case class Leaf[A]() extends Tree[A]
case class Node[A](l: Tree[A], v: A, r: Tree[A]) extends Tree[A]

def append[A](l1: List[A], l2: List[A]) = l1 ++ l2

def postorder[A](t: Tree[A]): List[A] = ???[List[A]] ensuring { res ⇒
(t, res) passes {

case Leaf() ⇒ Nil()
case Node(Leaf(), a, Leaf()) ⇒ Cons(a, Nil())
case Node(Node(Leaf(), a, Leaf()), b, Leaf()) ⇒ Cons(a, Cons(b, Nil()))
case Node(Leaf(), a, Node(Leaf(), b, Leaf())) ⇒ Cons(a, Cons(b, Nil())) } }

// Solution:
def postorder[A](t : Tree[A]): List[A] = t match {

case Leaf() ⇒ List[A]()
case Node(l, v, r) ⇒ append[A](postorder[A](l), Cons[A](v, postorder[A](r))) }
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B.13 List.reserve

def append[A](l1: List[A], l2: List[A]) = l1 ++ l2

def reserve[A](l: List[A]): List[A] = ???[List[A]] ensuring { res ⇒
(l, res) passes {

case Nil() ⇒ Nil()
case Cons(a, Nil()) ⇒ Cons(a, Nil())
case Cons(a, Cons(b, Nil())) ⇒ Cons(b, Cons(a, Nil()))
case Cons(a, Cons(b, Cons(c, Nil()))) ⇒ Cons(c, Cons(b, Cons(a, Nil()))) } }

// Solution:
def reserve[A](l : List[A]): List[A] = l match {

case Nil() ⇒ List[A]()
case Cons(h, t) ⇒ append[A](reserve[A](t), List(h)) }

B.14 RunLength.encode

def encode[A](l: List[A]): List[(BigInt, A)] = ???[List[(BigInt, A)]] ensuring {
(res: List[(BigInt, A)]) ⇒ (l, res) passes {

case Nil() ⇒ Nil()
case Cons(a, Nil()) ⇒

List((1,a))
case Cons(a, Cons(b, Nil())) if a == b ⇒

List((2,a))
case Cons(a, Cons(b, Cons(c, Nil()))) if a == b && a == c ⇒

List((3,a))
case Cons(a, Cons(b, Cons(c, Nil()))) if a == b && a != c ⇒

List((2,a), (1,c))
case Cons(a, Cons(b, Cons(c, Nil()))) if a != b && b == c ⇒

List((1,a), (2,b))
case Cons(a, Cons(b, Nil())) if a != b ⇒

List((1,a), (1,b)) } }

// Solution
def encode[A](l : List[A]): List[(BigInt, A)] = l match {

case Nil() ⇒ List[(BigInt, A)]()
case Cons(h, t) ⇒

encode[A](t) match {
case Nil() ⇒

List((BigInt(1), h))
case Cons(h1 @ (h_1, h_2), t1) ⇒
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if (h == h_2) {
Cons[(BigInt, A)]((h_1 + BigInt(1), h), t1)

} else {
Cons[(BigInt, A)]((BigInt(1), h), Cons[(BigInt, A)](h1, t1)) } } }

B.15 List.take

def take[A](l: List[A], n: BigInt) : List[A] = {
require(n ≥ 0)
???[List[A]]

} ensuring { (res: List[A]) ⇒
((l, n), res) passes {

case (Nil(), _) ⇒ Nil()
case (_, BigInt(0)) ⇒ Nil()
case (Cons(a, Cons(b, Nil())), BigInt(1)) ⇒ Cons(a, Nil())
case (Cons(a, Cons(b, Nil())), BigInt(2)) ⇒ Cons(a, Cons(b, Nil()))
case (Cons(a, Cons(b, Nil())), BigInt(5)) ⇒ Cons(a, Cons(b, Nil()))
case (Cons(a, Cons(b, Cons(c, Nil()))), BigInt(2)) ⇒ Cons(a, Cons(b, Nil())) } }

// Solution:
def take[A](l : List[A], n : BigInt): List[A] = {

require(n ≥ BigInt(0))
if (n == BigInt(0)) List[A]() else {

l match {
case Nil() ⇒ List[A]()
case Cons(h, t) ⇒ Cons[A](h, take[A](t, n − BigInt(1))) } } }

B.16 List.unzip

def unzip[A, B](l: List[(A, B)]): (List[A], List[B]) = {
???[(List[A], List[B])]

} ensuring { res ⇒ (l, res) passes {
case Nil() ⇒ (Nil(), Nil())
case Cons((a, b), Nil()) ⇒ (Cons(a, Nil()), Cons(b, Nil()))
case Cons((a, b), Cons((c, d), Nil())) ⇒ (Cons(a, Cons(c, Nil())), Cons(b, Cons(d, Nil()))) } }

// Solution:
def unzip[A, B](l : List[(A, B)]): (List[A], List[B]) = l match {

case Nil() ⇒ (List[A](), List[B]())
case Cons(h @ (h_1, h_2), t) ⇒

val (rec_1, rec_2) = unzip[A, B](t)
(Cons[A](h_1, rec_1), Cons[B](h_2, rec_2)) }
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C Repair Benchmarks

We present the benchmarks used in Chapter 4. The correct version of each benchmark is listed,

along with a set of numbered comments describing the error introduced in each erroneous

version of the benchmark. The order is the same as presented in Table 4.1.

C.1 Compiler Benchmark

package compiler

import leon.lang._
import leon.annotation._
import leon.collection._
import leon._

object Trees {
abstract class Expr
case class Plus(lhs: Expr, rhs: Expr) extends Expr
case class Minus(lhs: Expr, rhs: Expr) extends Expr
case class LessThan(lhs: Expr, rhs: Expr) extends Expr
case class And(lhs: Expr, rhs: Expr) extends Expr
case class Or(lhs: Expr, rhs: Expr) extends Expr
case class Not(e : Expr) extends Expr
case class Eq(lhs: Expr, rhs: Expr) extends Expr
case class Ite(cond: Expr, thn: Expr, els: Expr) extends Expr
case class IntLiteral(v: BigInt) extends Expr
case class BoolLiteral(b : Boolean) extends Expr

}

object Types {
abstract class Type
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case object IntType extends Type
case object BoolType extends Type

}

object TypeChecker {
import Trees._
import Types._

def typeOf(e :Expr) : Option[Type] = e match {
case Plus(l,r) ⇒ (typeOf(l), typeOf(r)) match {

case (Some(IntType), Some(IntType)) ⇒ Some(IntType)
case _ ⇒ None() }

case Minus(l,r) ⇒ (typeOf(l), typeOf(r)) match {
case (Some(IntType), Some(IntType)) ⇒ Some(IntType)
case _ ⇒ None() }

case LessThan(l,r) ⇒ ( typeOf(l), typeOf(r)) match {
case (Some(IntType), Some(IntType)) ⇒ Some(BoolType)
case _ ⇒ None() }

case And(l,r) ⇒ ( typeOf(l), typeOf(r)) match {
case (Some(BoolType), Some(BoolType)) ⇒ Some(BoolType)
case _ ⇒ None() }

case Or(l,r) ⇒ ( typeOf(l), typeOf(r)) match {
case (Some(BoolType), Some(BoolType)) ⇒ Some(BoolType)
case _ ⇒ None() }

case Not(e) ⇒ typeOf(e) match {
case Some(BoolType) ⇒ Some(BoolType)
case _ ⇒ None() }

case Eq(lhs, rhs) ⇒ (typeOf(lhs), typeOf(rhs)) match {
case (Some(t1), Some(t2)) if t1 == t2 ⇒ Some(BoolType)
case _ ⇒ None() }

case Ite(c, th, el) ⇒ (typeOf(c), typeOf(th), typeOf(el)) match {
case (Some(BoolType), Some(t1), Some(t2)) if t1 == t2 ⇒ Some(t1)
case _ ⇒ None() }

case IntLiteral(_) ⇒ Some(IntType)
case BoolLiteral(_) ⇒ Some(BoolType)

}

def typeChecks(e : Expr) = typeOf(e).isDefined
}

object Semantics {
import Trees._
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import Types._
import TypeChecker._

def semI(t : Expr) : BigInt = {
require( typeOf(t) == ( Some(IntType) : Option[Type] ))
t match {

case Plus(lhs , rhs) ⇒ semI(lhs) + semI(rhs)
case Minus(lhs , rhs) ⇒ semI(lhs) − semI(rhs)
case Ite(cond, thn, els) ⇒

if (semB(cond)) semI(thn) else semI(els)
case IntLiteral(v) ⇒ v } }

def semB(t : Expr) : Boolean = {
require( (Some(BoolType): Option[Type]) == typeOf(t))
t match {

case And(lhs, rhs ) ⇒ semB(lhs) && semB(rhs)
case Or(lhs , rhs ) ⇒ semB(lhs) || semB(rhs)
case Not(e) ⇒ !semB(e)
case LessThan(lhs, rhs) ⇒ semI(lhs) < semI(rhs)
case Ite(cond, thn, els) ⇒

if (semB(cond)) semB(thn) else semB(els)
case Eq(lhs, rhs) ⇒ (typeOf(lhs), typeOf(rhs)) match {

case ( Some(IntType), Some(IntType) ) ⇒ semI(lhs) == semI(rhs)
case ( Some(BoolType), Some(BoolType) ) ⇒ semB(lhs) == semB(rhs)

}
case BoolLiteral(b) ⇒ b } }

def b2i(b : Boolean): BigInt = if (b) 1 else 0

@induct
def semUntyped( t : Expr) : BigInt = { t match {

case Plus (lhs, rhs) ⇒ semUntyped(lhs) + semUntyped(rhs)
case Minus(lhs, rhs) ⇒ semUntyped(lhs) − semUntyped(rhs)
case And (lhs, rhs) ⇒ if (semUntyped(lhs)!=0) semUntyped(rhs) else BigInt(0)
case Or(lhs, rhs ) ⇒

if (semUntyped(lhs) == 0) semUntyped(rhs) else BigInt(1) // (7) full case
case Not(e) ⇒

b2i(semUntyped(e) == 0)
case LessThan(lhs, rhs) ⇒

b2i(semUntyped(lhs) < semUntyped(rhs))
case Eq(lhs, rhs) ⇒

b2i(semUntyped(lhs) == semUntyped(rhs))
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case Ite(cond, thn, els) ⇒
if (semUntyped(cond) == 0) semUntyped(els) else semUntyped(thn)

case IntLiteral(v) ⇒ v
case BoolLiteral(b) ⇒ b2i(b)

}} ensuring { res ⇒ typeOf(t) match {
case Some(IntType) ⇒ res == semI(t)
case Some(BoolType) ⇒ res == b2i(semB(t))
case None() ⇒ true

}}

}

object Desugar {
import Types._
import TypeChecker._
import Semantics.b2i

abstract class SimpleE
case class Plus(lhs : SimpleE, rhs : SimpleE) extends SimpleE
case class Neg(arg : SimpleE) extends SimpleE
case class Ite(cond : SimpleE, thn : SimpleE, els : SimpleE) extends SimpleE
case class Eq(lhs : SimpleE, rhs : SimpleE) extends SimpleE
case class LessThan(lhs : SimpleE, rhs : SimpleE) extends SimpleE
case class Literal(i : BigInt) extends SimpleE

@induct
def desugar(e : Trees.Expr) : SimpleE = { e match {

case Trees.Plus (lhs, rhs) ⇒
Plus(desugar(lhs), desugar(rhs))

// (1) Full case
case Trees.Minus(lhs, rhs) ⇒

Plus(desugar(lhs), Neg(desugar(rhs))) // (2) Full case
case Trees.LessThan(lhs, rhs) ⇒ LessThan(desugar(lhs), desugar(rhs))
case Trees.And (lhs, rhs) ⇒ Ite(desugar(lhs), desugar(rhs), Literal(0))
case Trees.Or (lhs, rhs) ⇒ Ite(desugar(lhs), Literal(1), desugar(rhs))
case Trees.Not(e) ⇒

Ite(desugar(e), Literal(0), Literal(1))
// (4) 1 instead of 0

case Trees.Eq(lhs, rhs) ⇒
Eq(desugar(lhs), desugar(rhs))

case Trees.Ite(cond, thn, els) ⇒
Ite(desugar(cond), desugar(thn), desugar(els))
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// (3) subst. arguments
// (5) is (3) and (4) combined

case Trees.IntLiteral(v) ⇒ Literal(v)
case Trees.BoolLiteral(b) ⇒ Literal(b2i(b))

}} ensuring { res ⇒
sem(res) == Semantics.semUntyped(e) }

def sem(e : SimpleE) : BigInt = e match {
case Plus (lhs, rhs) ⇒ sem(lhs) + sem(rhs)
case Ite(cond, thn, els) ⇒ if (sem(cond) != 0) sem(thn) else sem(els)
case Neg(arg) ⇒ −sem(arg)
case Eq(lhs,rhs) ⇒ b2i(sem(lhs) == sem(rhs))
case LessThan(lhs, rhs) ⇒ b2i(sem(lhs) < sem(rhs))
case Literal(i) ⇒ i }

}

object Evaluator {
import Trees._

def bToi(b: Boolean): BigInt = if (b) 1 else 0
def iTob(i: BigInt) = i == 1

def eval(e: Expr): BigInt = {
e match {

case Plus(lhs, rhs) ⇒ eval(lhs) + eval(rhs)
case Minus(lhs, rhs) ⇒ eval(lhs) + eval(rhs)
case LessThan(lhs, rhs) ⇒ bToi(eval(lhs) < eval(rhs))
case And(lhs, rhs) ⇒ bToi(iTob(eval(lhs)) && iTob(eval(rhs)))
case Or(lhs, rhs) ⇒ bToi(iTob(eval(lhs)) || iTob(eval(rhs)))
case Not(e) ⇒ bToi(!iTob(eval(e)))
case Eq(lhs, rhs) ⇒ bToi(eval(lhs) == eval(rhs))
case Ite(cond, thn, els) ⇒ if (iTob(eval(cond))) eval(thn) else eval(els)
case IntLiteral(v) ⇒ v
case BoolLiteral(b) ⇒ bToi(b) } }

}

object Simplifier {
import Trees._
import Evaluator._

@induct
def simplify(e: Expr): Expr = { e match {
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case And(BoolLiteral(false), _) ⇒ BoolLiteral(false)
case Or(BoolLiteral(true), _) ⇒ BoolLiteral(true)
case Plus(IntLiteral(a), IntLiteral(b)) ⇒ IntLiteral(a+b) // (6) a−b
case Not(Not(Not(a))) ⇒ Not(a)
case e ⇒ e

}} ensuring { res ⇒ eval(res) == eval(e) }
}

C.2 Heap Benchmark

import leon.lang._
import leon.collection._

object Heaps {

sealed abstract class Heap {
val rank : BigInt = this match {

case Leaf() ⇒ 0
case Node(_, l, r) ⇒

1 + max(l.rank, r.rank) }

def content : Set[BigInt] = this match {
case Leaf() ⇒ Set[BigInt]()
case Node(v,l,r) ⇒ l.content ++ Set(v) ++ r.content }

}
case class Leaf() extends Heap
case class Node(value: BigInt, left: Heap, right: Heap) extends Heap

def max(i1: BigInt, i2: BigInt) = if (i1 ≥ i2) i1 else i2

def hasHeapProperty(h : Heap) : Boolean = h match {
case Leaf() ⇒ true
case Node(v, l, r) ⇒

( l match {
case Leaf() ⇒ true
case n@Node(v2,_,_) ⇒ v ≥ v2 && hasHeapProperty(n)

}) &&
( r match {

case Leaf() ⇒ true
case n@Node(v2,_,_) ⇒ v ≥ v2 && hasHeapProperty(n)

}) }
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def hasLeftistProperty(h: Heap) : Boolean = h match {
case Leaf() ⇒ true
case Node(_,l,r) ⇒

hasLeftistProperty(l) &&
hasLeftistProperty(r) &&
l.rank ≥ r.rank }

def heapSize(t: Heap): BigInt = { t match {
case Leaf() ⇒ BigInt(0)
case Node(v, l, r) ⇒ heapSize(l) + 1 + heapSize(r)

}} ensuring(_ ≥ 0)

private def merge(h1: Heap, h2: Heap) : Heap = {
require(

hasLeftistProperty(h1) && hasLeftistProperty(h2) &&
hasHeapProperty(h1) && hasHeapProperty(h2)

)
(h1,h2) match {

case (Leaf(), _) ⇒ h2
case (_, Leaf()) ⇒ h1 // (2) h2

// (6) Swapped first 2 cases
case (Node(v1, l1, r1), Node(v2, l2, r2)) ⇒

if(v1 ≥ v2) // (1)/(3) swapped the branches/condition
// (5) completely wrong condition

makeN(v1, l1, merge(r1, h2))
else

makeN(v2, l2, merge(h1, r2)) // (4) l1 → l2
}

} ensuring { res ⇒
hasLeftistProperty(res) && hasHeapProperty(res) &&
heapSize(h1) + heapSize(h2) == heapSize(res) &&
h1.content ++ h2.content == res.content

}

private def makeN(value: BigInt, left: Heap, right: Heap) : Heap = {
require(hasLeftistProperty(left) && hasLeftistProperty(right))
if(left.rank ≥ right.rank) // (8) Unnecessary additive constant

Node(value, left, right)
else

Node(value, right, left)
} ensuring { res ⇒ hasLeftistProperty(res) }
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def insert(element: BigInt, heap: Heap) : Heap = {
require(hasLeftistProperty(heap) && hasHeapProperty(heap))
merge(Node(element, Leaf(), Leaf()), heap) // (7) element+1

} ensuring { res ⇒
hasLeftistProperty(res) && hasHeapProperty(res) &&
heapSize(res) == heapSize(heap) + 1 &&
res.content == heap.content ++ Set(element) }

def findMax(h: Heap) : Option[BigInt] = {
h match {

case Node(m,_,_) ⇒ Some(m)
case Leaf() ⇒ None() } }

def removeMax(h: Heap) : Heap = {
require(hasLeftistProperty(h) && hasHeapProperty(h))
h match {

case Node(_,l,r) ⇒ merge(l, r)
case l ⇒ l }

} ensuring { res ⇒
hasLeftistProperty(res) && hasHeapProperty(res) }

}

C.3 List Benchmark

package leon.custom

import leon._
import leon.lang._
import leon.collection._
import leon.annotation._

sealed abstract class List[T] {
def size: BigInt = (this match {

case Nil() ⇒ BigInt(0)
case Cons(h, t) ⇒ BigInt(1) + t.size // (9) + 3 instead of +1

}) ensuring { res ⇒ res ≥ 0 && (this, res) passes {
case Nil() ⇒ 0
case Cons(_, Nil()) ⇒ 1
case Cons(_, Cons(_, Nil())) ⇒ 2

}}

def content: Set[T] = this match {
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case Nil() ⇒ Set()
case Cons(h, t) ⇒ Set(h) ++ t.content }

def contains(v: T): Boolean = (this match {
case Cons(h, t) if h == v ⇒ true
case Cons(_, t) ⇒ t.contains(v)
case Nil() ⇒ false

}) ensuring { res ⇒ res == (content contains v) }

def ++(that: List[T]): List[T] = (this match {
case Nil() ⇒ that
case Cons(x, xs) ⇒ Cons(x, xs ++ that) // (2) Forgot x

}) ensuring { res ⇒
(res.content == this.content ++ that.content) &&
(res.size == this.size + that.size) }

def head: T = {
require(this != Nil[T]())
this match {

case Cons(h, t) ⇒ h } }

def tail: List[T] = {
require(this != Nil[T]())
this match {

case Cons(h, t) ⇒ t } }

def apply(index: BigInt): T = {
require(0 ≤ index && index < size)
if (index == 0) head
else tail(index−1) }

def ::(t:T): List[T] = Cons(t, this)

def :+(t:T): List[T] = {
this match {

case Nil() ⇒ Cons(t, this)
case Cons(x, xs) ⇒ Cons(x, xs :+ (t)) // (3) Forgot t

}
} ensuring(res ⇒ (res.size == size + 1) && (res.content == content ++ Set(t)))

def reverse: List[T] = { this match {
case Nil() ⇒ this
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case Cons(x,xs) ⇒ xs.reverse :+ x
}} ensuring (res ⇒

(res.size == size) && (res.content == content))

def take(i: BigInt): List[T] = (this, i) match {
case (Nil(), _) ⇒ Nil()
case (Cons(h, t), i) ⇒

if (i == 0) Nil()
else Cons(h, t.take(i−1)) }

def drop(i: BigInt): List[T] = (this, i) match {
case (Nil(), _) ⇒ Nil()
case (Cons(h, t), i) ⇒

if (i == 0) { // (13) swapped condition
Cons(h, t)

} else {
t.drop(i−1) // (12) forgot −1

} }

def slice(from: BigInt, to: BigInt): List[T] = {
require(from < to && to < size && from ≥ 0)
drop(from).take(to−from)

}

def replace(from: T, to: T): List[T] = this match {
case Nil() ⇒ Nil()
case Cons(h, t) ⇒

val r = t.replace(from, to)
if (h == from) { // (4) reversed condition

Cons(to, r)
} else {

Cons(h, r) } }

private def chunk0(
s: BigInt, l: List[T], acc: List[T], res: List[List[T]], s0: BigInt

): List[List[T]] = l match {
case Nil() ⇒

if (acc.size > 0) res :+ acc
else res

case Cons(h, t) ⇒
if (s0 == 0) {

chunk0(s, l, Nil(), res :+ acc, s)
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} else {
chunk0(s, t, acc :+ h, res, s0−1) } }

def chunks(s: BigInt): List[List[T]] = {
require(s > 0)
chunk0(s, this, Nil(), Nil(), s) }

def zip[B](that: List[B]): List[(T, B)] = (this, that) match {
case (Cons(h1, t1), Cons(h2, t2)) ⇒

Cons((h1, h2), t1.zip(t2))
case (_) ⇒ Nil() }

def −(e: T): List[T] = this match {
case Cons(h, t) ⇒

if (e == h) {
t − e // (11) missing rec. call

} else {
Cons(h, t − e) }

case Nil() ⇒ Nil() }

def --(that: List[T]): List[T] = this match {
case Cons(h, t) ⇒

if (that.contains(h)) t -- that
else Cons(h, t -- that)

case Nil() ⇒ Nil() }

def &(that: List[T]): List[T] = this match {
case Cons(h, t) ⇒

if (that.contains(h)) { // (14) completely wrong condition
Cons(h, t & that)

} else {
t & that }

case Nil() ⇒ Nil() }

def pad(s: BigInt, e: T): List[T] = { (this, s) match {
case (_, s) if s ≤ 0 ⇒

this
case (Nil(), s) ⇒

Cons(e, Nil().pad(s−1, e))
case (Cons(h, t), s) ⇒

Cons(h, t.pad(s, e)) // (1) s−1
}} ensuring { res ⇒
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((this,s,e), res) passes {
case (Cons(a,Nil()), BigInt(2), x) ⇒ Cons(a, Cons(x, Cons(x, Nil()))) } }

def find(e: T): Option[BigInt] = this match {
case Nil() ⇒ None()
case Cons(h, t) ⇒

if (h == e) { // (8) reversed condition
Some(0)

} else {
t.find(e) match {

case None() ⇒ None()
case Some(i) ⇒ Some(i+1) } } } // (6)/(7) Forgot +1/ +2 instead of +1

def init: List[T] = (this match {
case Cons(h, Nil()) ⇒ Nil[T]()
case Cons(h, t) ⇒ Cons[T](h, t.init)
case Nil() ⇒ Nil[T]()

}) ensuring ( (r: List[T]) ⇒
((r.size < this.size) || (this.size == 0)) )

def lastOption: Option[T] = this match {
case Cons(h, t) ⇒ t.lastOption.orElse(Some(h))
case Nil() ⇒ None() }

def firstOption: Option[T] = this match {
case Cons(h, t) ⇒ Some(h)
case Nil() ⇒ None() }

def unique: List[T] = this match {
case Nil() ⇒ Nil()
case Cons(h, t) ⇒ Cons(h, t.unique − h) }

def splitAt(e: T): List[List[T]] = split(Cons(e, Nil()))

def split(seps: List[T]): List[List[T]] = this match {
case Cons(h, t) ⇒

if (seps.contains(h)) {
Cons(Nil(), t.split(seps))

} else {
val r = t.split(seps)
Cons(Cons(h, r.head), r.tail) }

case Nil() ⇒ Cons(Nil(), Nil()) }
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def count(e: T): BigInt = { this match {
case Cons(h, t) ⇒ // (15) completely wrong

if (h == e) 1 + t.count(e) // (5) Forgot +1
else t.count(e)

case Nil() ⇒ 0
}} ensuring { res ⇒

res + (this − e).size == this.size }

def evenSplit: (List[T], List[T]) = {
val c = size/2
(take(c), drop(c)) }

def insertAt(pos: BigInt, l: List[T]): List[T] = {
if(pos < 0) {

insertAt(size + pos, l)
} else if(pos == 0) {

l ++ this
} else {

this match {
case Cons(h, t) ⇒

Cons(h, t.insertAt(pos−1, l))
case Nil() ⇒

l } } }

def replaceAt(pos: BigInt, l: List[T]): List[T] = {
if(pos < 0) {

replaceAt(size + pos, l)
} else if(pos == 0) {

l ++ this.drop(l.size)
} else {

this match {
case Cons(h, t) ⇒

Cons(h, t.replaceAt(pos−1, l))
case Nil() ⇒

l } } }

def rotate(s: BigInt): List[T] = {
if (s < 0) {

rotate(size+s)
} else {

val s2 = s % size
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drop(s2) ++ take(s2) } }

def isEmpty = this match {
case Nil() ⇒ true
case _ ⇒ false }

}

@ignore
object List {

def apply[T](elems: T∗): List[T] = ???
}

@library
object ListOps {

def flatten[T](ls: List[List[T]]): List[T] = ls match {
case Cons(h, t) ⇒ h ++ flatten(t)
case Nil() ⇒ Nil() }

def isSorted(ls: List[BigInt]): Boolean = ls match {
case Nil() ⇒ true
case Cons(_, Nil()) ⇒ true
case Cons(h1, Cons(h2, _)) if(h1 > h2) ⇒ false
case Cons(_, t) ⇒ isSorted(t) }

def sorted(ls: List[BigInt]): List[BigInt] = ls match {
case Cons(h, t) ⇒ insSort(sorted(t), h)
case Nil() ⇒ Nil() }

def insSort(ls: List[BigInt], v: BigInt): List[BigInt] = ls match {
case Nil() ⇒ Cons(v, Nil())
case Cons(h, t) ⇒

if (v ≤ h) Cons(v, t)
else Cons(h, insSort(t, v)) }

def sum(l: List[BigInt]): BigInt = { l match {
case Nil() ⇒ BigInt(0)
case Cons(x, xs) ⇒ x + sum(xs) // (10) x → 1

}} ensuring { (l, _) passes {
case Cons(a, Nil()) ⇒ a
case Cons(a, Cons(b, Nil())) ⇒ a + b }}

}
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case class Cons[T](h: T, t: List[T]) extends List[T]
case class Nil[T]() extends List[T]

C.4 Numerical Benchmark

import leon._
import leon.lang._
import leon.annotation._

object Numerical {
def power(base: BigInt, p: BigInt): BigInt = {

require(p ≥ BigInt(0))
if (p == BigInt(0)) {

BigInt(1)
} else if (p%BigInt(2) == BigInt(0)) {

power(base∗base, p/BigInt(2))
} else {

base∗power(base, p−BigInt(1)) // (1) forgot first ’base’
}

} ensuring {
res ⇒ ((base, p), res) passes {

case (_, BigInt(0)) ⇒ BigInt(1)
case (b, BigInt(1)) ⇒ b
case (BigInt(2), BigInt(7)) ⇒ BigInt(128)
case (BigInt(2), BigInt(10)) ⇒ BigInt(1024) } }

def gcd(a: BigInt, b: BigInt): BigInt = {
require(a > BigInt(0) && b > BigInt(0));
if (a == b) a
else if (a > b) gcd(a−b, b)
else gcd(a, b−a)

} ensuring { res ⇒
(a%res == BigInt(0)) && (b%res == BigInt(0)) &&
(((a,b), res) passes {

case (BigInt(468), BigInt(24)) ⇒ BigInt(12) }) }

def moddiv(a: BigInt, b: BigInt): (BigInt, BigInt) = {
require(a ≥ BigInt(0) && b > BigInt(0));
if (b > a) {

(a, BigInt(0)) // (2) a → 1
} else {

val (r1, r2) = moddiv(a−b, b)
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(r1, r2+1) }
} ensuring {

res ⇒ b∗res._2 + res._1 == a }
}

C.5 MergeSort Benchmark

package mergesort
import leon.collection._

object MergeSort {

def split(l : List[BigInt]) : (List[BigInt],List[BigInt]) = { l match {
case Cons(a, Cons(b, t)) ⇒

val (rec1, rec2) = split(t)
(Cons(a, rec1), Cons(b, rec2)) // (1) forgot ’a’

case other ⇒ (other, Nil[BigInt]())
}} ensuring { res ⇒

val (l1, l2) = res
l1.size ≥ l2.size &&
l1.size ≤ l2.size + 1 &&
l1.size + l2.size == l.size &&
l1.content ++ l2.content == l.content }

def isSorted(l : List[BigInt]) : Boolean = l match {
case Cons(x, t@Cons(y, _)) ⇒ x ≤ y && isSorted(t)
case _ ⇒ true }

def merge(l1 : List[BigInt], l2 : List[BigInt]) : List[BigInt] = {
require(isSorted(l1) && isSorted(l2))
(l1, l2) match {

case (Cons(h1, t1), Cons(h2,t2)) ⇒
if (h1 ≤ h2) // (3) reversed condition

Cons(h1, merge(t1, l2))
else

Cons(h2, merge(l1, t2))
// (2) h2 → h1
// (4) missing h2

case (Nil(), _) ⇒ l2 // (5) l2 → l1
case (_, Nil()) ⇒ l1 }

} ensuring { res ⇒
isSorted(res) &&
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res.size == l1.size + l2.size &&
res.content == l1.content ++ l2.content }

def mergeSort(l : List[BigInt]) : List[BigInt] = { l match {
case Nil() ⇒ l
case Cons(_, Nil()) ⇒ l
case other ⇒

val (l1, l2) = split(other)
merge(mergeSort(l1), mergeSort(l2))

}} ensuring { res ⇒
isSorted(res) &&
res.content == l.content &&
res.size == l.size }

}
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