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I. Symmetry-protected bound states in the continuum (BICs)  

We provide here an analysis of the bound states coexisting in the radiation continuum of the 

proposed acoustic waveguide. Consider the two dimensional acoustic parallel-plate waveguide 

represented in Fig. S1a. Assume first that the waveguide does not contain any obstructing 

cylinder. The corresponding eigenmodes are either even or odd with respect to the dashed green 

line due to vertical inversion symmetry. Solving the scalar Helmholtz equation with the 

Neumann boundary condition being applied to the walls of the waveguide, one can easily find 

that the even modes do not have a cutoff frequency, whereas the odd modes possess a cutoff 

frequency of 𝑓" = 𝜋𝑐&/2ℎ (𝑐&	is the speed of sound). Next suppose a single cylindrical obstacle 

is embedded inside the waveguide, whose center is placed right at the centerline. In this case, 

since the obstacle preserves the vertical mirror symmetry, the entire structure remains mirror-

symmetric and the resulting eigenstates will still be either even or odd. An odd mode localized to 

the obstructing cylinder, and below the cutoff frequency of the radiation odd waves, i.e. 𝑓", can 

then coexist within the continuum of the even modes, while it remains completely decoupled 

from them because of its different symmetry [1]. Shown in Fig. S1b is the field profile of this 

mode. Based on its profile distribution, one can deduce that it is not possible for the even 

(radiation) modes traveling from one side to the other side of the waveguide to excite this odd-

symmetric state, because of the different symmetry. Consequently, this mode is a symmetry-

protected bound-state in the continuum (BIC): it is completely hidden in the transmission or 

absorption spectra when carrying out a scattering experiment [1].  
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Fig. S1: Symmetry-protected bound states in the continuum in an acoustic waveguide. a, 
An acoustic waveguide containing an obstructing cylinders is considered. The waveguide 
supports a continuum of radiation modes possessing even symmetry with respect to the dashed 
green line. b, An odd mode localized to the obstructing cylinder, and below the cutoff frequency 
of +",

-.
 can happen to coexist within the radiation continuum of the waveguide while remaining 

perfectly bounded to the obstacle due to its different symmetry.   
 

II. Scaling property of the radiative (even) and BIC (odd) modes  

This section reports on the effect of scaling lattice constant on the band structure of the crystal 

shown in Fig. 2a. As discussed in the article, the even eigenmodes (marked with blue colors in 

the dispersion diagram) exhibit a frequency dispersion resembling that of a typical sonic crystal. 

Hence, once the lattice constant is increased (or decreased), their dispersion bands move to lower 

(or higher) frequencies. On the contrary, scaling the lattice constant will not significantly affect 

the frequency position of the odd (BIC) mode due to the fact that it is mainly due to a resonance 

in the vertical direction [2,3].  This expectation is confirmed by gradually increasing the lattice 

constant and calculating the corresponding band structures in Fig. S2. Inspecting the results of 

this figure reveals that the position of the BIC mode (the red band) is negligibly affected by the 

scaling (only its group velocity changes due to a change of the evanescent coupling constant 
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between the BICs, which is proportional to the overlap integral between adjacent BIC modes), 

whereas the bands associated with the even modes are moved towards lower frequencies.  

 
Fig. S2:  Effect of scaling the lattice constant on the band structure of the system under 
study. a, Band structure of the system when the lattice constant is assumed to be a=16.3 cm. The 
waveguide continuum is marked with the grey area, b,c, Same as panel a except that the lattice 
constant is increased to 1.2a and 1.4a, respectively. The blue dispersion bands corresponding to 
the even eigenstates are moved to the lower frequency range, whereas the position of the red 
band associated with the BIC mode is not affected.    
 

 

III. Zak phase calculation 

This section provides supplementary details regarding the calculation of the Zak phases of the 

bands. We start with the standard equation for the Berry connection in one dimension [4] 

kA( k ) i dky y=< ¶ >   (S1) 

where y  is the eigenstate of the system and k is the Bloch wavenumber. The Zak phase of each 

band can then be calculated by integrating the Berry connection over the whole Brillouin zone as   

BZ

γ= A(k)ò   (S2) 

To provide more insight into the calculation process, we represent the Berry connection and Zak 

phases of the dispersion bands for the non-trivial crystal of Fig. 2d. To this end, for each band, 
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we separately calculate the expression of Eq. S1 for all k, making use of the mode profiles of 

their corresponding eigenstates.  

 

Fig. S3:  Zak phase calculation of the bands for the non-trivial acoustic system. The figure 
shows the Berry connections associated with the bands obtained in Fig. 2d. Integrating the Berry 
connections over the whole Brillouin zone gives the Zak phase of the band of interest.    
 

Fig. S3 reports the resulting Berry connections for all of the six bands under investigation. The 

summation over all values of A(k) leads to the Zak phases of 1 0g = , 2g p= - , 3g p= , 4g p= , 

5 0g = , 6 0g =  for the first to sixth bands, respectively. Employing a similar procedure, one 

obtains Zak phases of zero for all six bands of the trivial system. These observations resemble 

the topological phases emerging in the so-called Su-Schrieffer–Heeger (SSH) chain with detuned 

intercell and intracell coupling coefficients [4], although a tight-binding SSH model is only valid 

here for the BIC (odd) bands (a plane-wave expansion model is more suited to describe the even 

bands). We have also checked, by performing similar calculations on a system with all resonators 

0 
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shifted up from the centerline of the waveguide, that such a motion does not change the 

topological classification of the bands. 

 

IV. Field profile of the edge states of the proposed topological system         

This section provides the field profiles of the edge states forming at the interface between the 

two insulators in Fig. 3a. As mentioned in the main article, the corresponding edge states can be 

divided into two different groups according to their symmetry. The first group comprises the 

even edge states. Shown in Fig. S4a is the field profile of such edge states. The second group 

includes the odd edge state, originating from the coupled BICs shown in Fig. S1b. The field 

profile of this edge state is shown in Fig. S4b. It should be noted that while both types of edge 

states are highly localized to the interface, they offer different resonance linewidth when coupled 

to an external plane wave in a finite system. More specifically, since the odd edge mode is 

perfectly decoupled from the radiation waves due to its different symmetry, it provides a 

resonance with zero radiative linewidth (i.e. an infinite quality factor, in the ideal lossless case). 

The even edge mode, however, leaks out to the radiation continuum, leading to a finite quality 

factor or a non-zero radiative linewidth (complex resonance frequency).  
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Fig. S4:  Field profile of the edge states formed at the interface between the two insulators. 
a, Field profile of the even edge mode originating from the radiation modes, b, Field profile of 
the odd edge mode stemming from the BIC mode. Although both even and odd edge modes are 
bounded to the interface, only the even edge mode offers a finite resonance linewidth as the odd 
edge mode is completely decoupled from the radiation continuum due to its different symmetry. 
 

V. Topological Fano resonances for electromagnetic (EM) waves  

In this section, we demonstrate how topological Fano resonances can be obtained for 

electromagnetic waves. Consider a microwave parallel plate waveguide with the palate 

separation of 2h (Fig. S5a). Since the waveguide is infinite in the out-of-plane direction, the 

solution to Maxwell equations can be decomposed into transverse electric (TE) and transverse 

magnetic (TM) parts. Here, without loss of generality, we investigate the TE part and assume 

that the electric field is polarized along 𝑧	(out of plane direction). Solving the corresponding 

equations for the 𝐸1 component of the field with Dirichlet boundary conditions being applied to 

the waveguide plates, one can easily find that the resulting eigenmodes (Ez) are required to be 

even with respect to the centerline, and have a cutoff frequency of 𝑓" = 𝜋𝑐/2ℎ (𝑐	is the speed of 

light).  
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Fig. S5:  Inducing independent topological subspaces in a microwave waveguide. a, A 
microwave parallel plate waveguide containing a single silicon rod placed on the centerline is 
considered. b, Profile of the corresponding bound state forming within the radiation continuum 
of the waveguide. c, We consider a periodic lattice of silicon rods inside the waveguide. The BIC 
(odd) mode has a low-dispersive behavior (the red band), while the radiation (even) modes 
exhibit a stronger frequency dispersion (blue bands). d, Profile of the even and odd eigenstates at 
certain Bloch wavenumbers.     
 

 Suppose now a circular dielectric obstacle (a silicon rod) is placed right at the centerline. The 

dielectric rod supports a set of resonances whose Ez components can be even or odd with respect 

to the centerline.  If the resonance frequency of one of the odd dielectric modes falls above the 

waveguide cutoff (𝑓"), it can coexist in the radiation continuum of the even waveguide modes, 

while, simultaneously, remaining perfectly bounded to the rod due to its different symmetry 

[5,6]. Fig. S5b (second panel) depicts the profile (Ez component) of the corresponding BIC mode 
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obtained via FEM simulations. Now that we successfully realized a bound state in the radiation 

continuum of the waveguide, we pursue the same procedure as the acoustic case to achieve a 

topological Fano resonance. We first form a periodic lattice of the dielectric obstacles and 

calculate its dispersion (Fig. S5c). The dispersion bands are colored according to the symmetry 

of their eigenmodes represented in Fig. S5d. We further note that, similar to the acoustic case, 

one can adjust the frequency of the radiation (even) modes by scaling the lattice constant, 

whereas the position of the dispersion band of the BIC (odd) mode is not affected by scaling.   

Consider now the configuration of Fig. S6a, where different topological phases are induced by 

detuning the intercell and intracell couplings between the dielectric resonators. The profiles of 

the corresponding even and odd edge modes are shown in the second and third panel, 

respectively. By subtly choosing the lattice constant, we have made the odd edge mode coexist 

within the spectral range of the even one. The scattering experiment (Fig. 6a, bottom panel, 

dashed red spectrum), however, reveals only the presence of the even edge mode since the odd 

edge mode is decoupled from even-symmetric waves.  By slightly moving the dielectric 

resonators from the centerline, however, a topological Fano resonance emerges as a result of the 

small leakage of the odd edge mode to the radiation waves (the solid blue line). Just like in 

acoustics, the obtained Fano resonance is expected to be robust against disorder. To assess this 

robustness, we have randomly changed the position of the resonators to achieve the largely 

disordered configuration of Fig. S6b (first panel, average shift is 4.6% of ℎ, with no preferred 

direction). Shown in the second and third panels are the profiles of the corresponding even and 

odd edge modes, respectively. Notably, the resonance frequencies of both bright and dark 

resonances can shift but no Anderson localization occurs. The resulting Fano lineshape is 
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therefore expected to be preserved. This is indeed evident from the transmission spectrum of the 

waveguide in the fourth panel, confirming the high robustness of the topological Fano resonance.      

 

Fig. S6:  Electromagnetic topological Fano resonances a, Ideal case without position disorder, 

for a system of dielectric rods in a parallel plate waveguide. A topological Fano resonance is 

observed. b, Same as panel a) but for in the presence of position disorder. The presence and 

shape of the Fano resonance is protected against disorder by the topology of the bulk insulators.  

 

VI. Effect of horizontal and vertical disorder on the topological Fano resonance 

This section compares the effect of disorder in right/left direction on the topological Fano 

resonance with that of up/down direction in the case of the acoustic system. As mentioned in 

the main text, no preferred direction was considered in the random realization of disorder 

imparted to the sample. Here we report the different effect of horizontal versus vertical 
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disorder. As it is seen in Fig. S7, disorder in left/right direction affects more strongly the 

shape of the Fano resonance than the same level of disorder imparted in the up/down 

direction. While vertical shifts mostly affect the frequency of the odd BIC modes (eigen-

frequencies of the tight-binding BIC chain), horizontal shifts change both the distance 

between two scattering crystal planes (affecting the even modes), and the overlap integrals 

between adjacent BIC modes. Therefore, the effect of horizontal position disorder on the 

Fano shape is larger because it affects both of the bright and dark modes.  The main point, 

however, is that, regardless of the direction in which the disorder is applied, the Fano line 

shape will be present, and not be polluted by the occurrence of spurious disorder-induced 

peaks as long as the disorder does not close the surrounding topological band-gaps (which 

happens only for very large disorder levels, like for any topological insulator, as a 

consequence of Anderson localization). 

 

Fig. S7:  Comparison between left/ right and up/down types of disorder, a,  Original sample 

without disorder, b, Effect of position disorder along the perpendicular direction. c, Effect of 

position disorder along the waveguide direction. 
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VII. Numerical methods 

Full-wave finite-element simulations were performed using Comsol Multiphysics (Acoustic and 

RF modules). For the band structure analysis, we first considered a single unit cell of the crystal 

and meshed it. We then applied Floquet and Dirichlet boundary conditions to the sides of the 

simulation domain. Dispersion curves were then conveniently extracted using an eigenfrequency 

solver by varying the Floquet-Bloch wavenumber in the first Brillouin zone. The corresponding 

eigenmodes were then used to compute the Zak phases of the bands. In the scattering numerical 

experiment, we excite the waveguide from the left side with a time-harmonic incident plane-

wave with unit amplitude, using radiation-free boundary conditions with a plane-wave incident 

field. We then measured the amount of pressure at the transmission side of the waveguide to 

obtain the transmission coefficient. 

  

VIII. Experimental methods 

An acrylic extruded clear square tube was used as the acoustic waveguide (49 cm2 internal cross-

section). Nylon 6 continuous cast black rods were then manually embedded within the 

waveguide to implement the topological chain under study. The overall sample was then put in 

the setup shown in Fig. S8. The setup comprises a loudspeaker connected to a Bruel&Kjaer 2706 

amplifier in order to maximize the signal to noise ratio (SNR), three ICP® microphones 

measuring the sound pressure at different points of the waveguide, a home-built anechoic 

termination made of melamine foam connected to the end of the waveguide, and a Data Physics 

Quattro signal analyzer connected to a computer. To obtain the transmission (or reflection) 

coefficient of the sample, we excite the waveguide with a burst noise signal, measure the amount 

of pressures P1, P2, and P3 and use the following equations:  
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Fig. S8:  Experimental setup used to observe topological Fano resonances. The setup 

consists of three ICP® microphones, an anechoic acoustic absorber connected to the end of the 

waveguide, a loudspeaker, a power amplifier and a Data Physics Quattro data analyzer controlled 

by a computer. 
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