000262740 001__ 262740
000262740 005__ 20190619220147.0
000262740 022__ $$a1549-9618
000262740 022__ $$a1549-9626
000262740 02470 $$2isi$$a000453489100003
000262740 0247_ $$a10.1021/acs.jctc.8b00534$$2doi
000262740 037__ $$aARTICLE
000262740 245__ $$aFlat-Histogram Monte Carlo as an Efficient Tool To Evaluate Adsorption Processes Involving Rigid and Deformable Molecules
000262740 269__ $$a2018-12-01
000262740 260__ $$c2018-12-01
000262740 336__ $$aJournal Articles
000262740 520__ $$aMonte Carlo simulations are the foundational technique for predicting thermodynamic properties of open systems where the process of interest involves the exchange of particles. Thus, they have been used extensively to computationally evaluate the adsorption properties of nanoporous materials and are critical for the in silico identification of promising materials for a variety of gas storage and chemical separation applications. In this work we demonstrate that a well-known biasing technique, known as "flat-histogram" sampling, can be combined with temperature extrapolation of the free energy landscape to efficiently provide significantly more useful thermodynamic information than standard open ensemble MC simulations. Namely, we can accurately compute the isosteric heat of adsorption and number of particles adsorbed for various adsorbates over an extremely wide range of temperatures and pressures from a set of simulations at just one temperature. We extend this derivation of the temperature extrapolation to adsorbates with intramolecular degrees of freedom when Rosenbluth sampling is employed. Consequently, the working capacity and isosteric heat can be computed for any given combined temperature/pressure swing adsorption process for a large range of operating conditions with both rigid and deformable adsorbates. Continuous thermodynamic properties can be computed with this technique at very moderate computational cost, thereby providing a strong case for its application to the in silico identification of promising nanoporous adsorbents.
000262740 650__ $$aChemistry, Physical
000262740 650__ $$aPhysics, Atomic, Molecular & Chemical
000262740 650__ $$aChemistry
000262740 650__ $$aPhysics
000262740 6531_ $$aphase-equilibria
000262740 6531_ $$asimulations
000262740 6531_ $$aalkanes
000262740 6531_ $$aisotherms
000262740 6531_ $$amixtures
000262740 6531_ $$adynamics
000262740 6531_ $$abehavior
000262740 6531_ $$ascheme
000262740 700__ $$aWitman, Matthew
000262740 700__ $$aMahynski, Nathan A.
000262740 700__ $$aSmit, Berend$$0248290$$g242254
000262740 773__ $$q6149-6158$$k12$$j14$$tJournal Of Chemical Theory And Computation
000262740 8560_ $$fberend.smit@epfl.ch
000262740 8564_ $$uhttps://infoscience.epfl.ch/record/262740/files/preprint.pdf$$s1678600
000262740 8564_ $$uhttps://infoscience.epfl.ch/record/262740/files/toc.png$$zTHUMBNAIL$$s72959
000262740 909C0 $$xU12939$$mberend.smit@epfl.ch$$zBorel, Alain$$yApproved$$pLSMO$$0252509
000262740 909CO $$qGLOBAL_SET$$pSB$$particle$$ooai:infoscience.epfl.ch:262740
000262740 961__ $$afantin.reichler@epfl.ch
000262740 973__ $$aEPFL$$sPUBLISHED$$rREVIEWED
000262740 981__ $$aoverwrite
000262740 980__ $$aARTICLE