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Abstract

The proper computation of the time evolution of the fracture front is the main chal-
lenge of 3D hydraulic fracture growth simulation. We discuss explicit and implicit
variants of a hydraulic fracture propagation scheme based on a level set represen-
tation of the fracture. Such a scheme couples a finite discretization of the gov-
erning equations and the near-tip hydraulic fracture asymptotes. We benchmark
the accuracy, robustness and stability of these different front advancing schemes
on a number of test cases. Our results indicate a large computational gain of the
explicit scheme at the expense of a slightly less accurate solution (few percent
less accuracy over few time-steps) when crossing heterogeneities. The predictor
corrector scheme combines at least a ∼ 25% computational gain while retaining
the stability and accuracy of the fully implicit version of the scheme in all cases.

Keywords: Hydraulic fracture propagation, Level set method, moving boundary
problem, explicit vs. implicit schemes

1. Introduction

Hydraulic fractures are a class of tensile fractures that propagate in a material
due to the injection of a viscous fluid [1]. A mathematical model of hydraulic frac-
ture growth needs to account for the elastic deformation of the medium, the cre-
ation of new fracture surface as well as the flow of viscous fluid inside the created
fracture and its potential leak-off in the surrounding rock [2, 3]. Fracture propa-
gation is intrinsically a moving boundary problem where the time evolution of the
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fracture front is to be determined. The coupling between the elastic deformation of
the fracture and the flow of viscous fluid inside is highly non-linear and results in
an extremely stiff system. Combined with the fracture propagation condition, such
an elasto-hydrodynamics system yields an intricate multiscale structure near the
fracture tip where different asymptotes emerge at different lengthscales as func-
tion of the rock and fluid properties as well as the current fracture velocity. It has
been recognized for some time that the linear fracture mechanics asymptote can
shrink to a boundary layer at the fracture tip in the so-called viscosity dominated
regime [4, 5, 6, 7]. This renders numerical schemes based solely on the linear
elastic fracture mechanics propagation condition rather inefficient in those cases,
and poses a significant challenge to any numerical scheme. It is important to point
out that the fracture velocity is a-priori unknown and varies temporally as well as
spatially around the fracture front.

Peirce and Detournay [8] presented an implicit level set algorithm that does not
require the a-priori knowledge of the fracture front velocity to evolve the fracture
front over a time-step. The distinguishing feature of this scheme is its use of
the hydraulic fracture tip asymptote solution valid close to the fracture tip [9, 10,
7]. Incorporating this near-tip solution in a numerical algorithm based on a finite
discretization of the fracture results in a robust and accurate scheme even on a
relatively coarse mesh. This allows one to capture the different physical processes
occurring at small scales near the tip accurately in a computationally efficient
manner. In such a scheme, the fracture velocity is obtained all around the fracture
front as part of the solution over a time-step. These advantages make the Implicit
Level Set Algorithm (ILSA) a very accurate numerical scheme for any given mesh
resolution as can be seen by the benchmarks against known analytical solutions
[8, 11, 12, 13].

Since the velocity of the fracture front is not available a-priori, ILSA deter-
mines the location of the front "implicitly" via an iterative process. An alternative
to this scheme is to advance the front "explicitly": using the velocity of the frac-
ture front estimated from the last time step. This choice may possibly introduce
error in the solution, especially if the fracture front passes through heterogeneities
(stress, material changes etc.), due to over or under predictions of the velocity de-
pending upon the nature and magnitude of the heterogeneity. It is unclear a-priori
how the choice of the time-step may influence the accuracy of such an explicit
scheme. The advantage, on the other hand, is that it can reduce the computational
cost many folds as each of the fracture front iterations of the implicit scheme cost
the equivalent of one explicit step.

In this paper, we compare the performance of the implicit level set algorithm
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(ILSA) with an explicit version of the scheme as well as a predictor corrector
version that uses the front provided by the explicit step as the first trial position
for the implicit scheme. We assess the gain in the computational efficiency of the
explicit scheme as well as its potential loss of accuracy and stability on differ-
ent verification cases. Although we restrict our discussion to the case of planar
3D hydraulic fractures, we believe that similar performance will be shown by the
explicit scheme for full 3D problems, where the front is constituted by a surface
which can move in any direction in 3D, as well as for bi-dimensional configura-
tions, where the fracture front is reduced to two points and can move only along a
line.

It is important to note that the choice of an explicit or implicit scheme for the
fracture front advance is distinct from the choice of an implicit or explicit time
discretization of the coupled fluid flow/elasticity equations for a given fracture
geometry. Due to the stringent CFL condition of the elasto-hydrodynamics system
for a given fracture advance [2], the variants of the original ILSA scheme that
we present also use an implicit (Backward Euler) scheme to solve the fluid-solid
coupling: the explicit nature of the scheme is solely restricted to the fracture front
advance over a time-step.

2. Numerical modeling of planar hydraulic fracture growth

We consider here a planar (pure mode I) 3D hydraulic fracture driven by the
injection of a viscous fluid into a linear elastic medium under a pre-existing com-
pressive stress field. The plane of propagation (z = 0) is oriented perpendicular to
the minimum in-situ compressive stress σo(x, y). We follow the classical assump-
tions of hydraulic fracture mechanics [1] which rely on coupling linear elastic
fracture mechanic, lubrication fluid flow in the fracture and an early-time approx-
imation for fluid leak-off from the fracture into the surrounding medium (Carter’s
leak-off). For a detailed discussion of such a classical hydraulic fracture model
and its formulation, we refer to e.g. [14, 1, 3].

We only present here the necessary information on the numerical discretiza-
tion of the problem using the implicit level set algorithm (ILSA) developed in
[8, 12, 13, 15]. During a time step, ILSA consists of two nested loop. The outer
loop iterates on the new fracture front, while the inner loop solves the coupling
between elasticity and fluid flow for the corresponding given trial fracture front
position and tip behavior.

For a planar 3D hydraulic fracture, the elasticity equations reduce to a single
boundary integral equation for opening mode that is solved using piece-wise con-
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stant rectangular displacement discontinuity [16]. The fracture front is tracked by
a level set and the front is reconstructed in a piece wise linear fashion in the tip el-
ements (see Figure 1). The lubrication flow inside the fracture is discretized using
a five-point stencil finite difference with the fluid pressure located at the center of
the rectangular displacement discontinuity element. The coupling between elas-
ticity and fluid flow yields - for a given trial fracture front - a non-linear system
of equations that we solve via fixed point iterations. It is worth emphasizing that
this non-linear system is constructed using a backward Euler scheme for the time
derivative entering into the lubrication equation. This choice stems from the very
restrictive CFL condition for such an elasto-hydrodynamics system of equations
which is given as ∆t < h3/E′D [2], where h is the grid size and D ≈ w̄3/µ is a
diffusivity coefficient function of a nominal fracture width w̄). One clearly sees
that an explicit (forward Euler) scheme for such a coupled system would result
in extremely small time-step size and would thus be extremely expensive. It is
however important to note that the time stepping scheme for the evolution of the
fracture front over a time-step may actually be chosen differently as will be dis-
cussed below.

The quasi-static fracture propagation condition all along the fracture front
closes the system of equations, i.e. KI(xc) = KIc where KI is the mode I stress
intensity factor and KIc the material fracture toughness. It can be shown that the
fluid and fracture front coalesce when the in-situ stress σo is sufficiently large [4],
more precisely, for time larger than E′2µ/σ3

o [17, 18]. Under those circumstances
[14], the additional boundary conditions at the fracture front are of zero fluid flux
q = wV = 0 (where V is the fluid velocity equals to the fracture tip velocity
in the absence of lag) and zero width w. The fracture velocity can not therefore
be explicitly recovered. The key idea of the implicit level set scheme is to use
the tip asymptotic solution of a steadily moving hydraulic fracture. Indeed, in
the vicinity of the fracture front, the planar 3D problem at a given time reduces
asymptotically to the one of a semi-infinite plane-strain hydraulic fracture prop-
agating at a constant velocity V . This so-called ‘tip problem’has been addressed
and solved in details [9, 6, 7]. The fracture width and net pressure have been
shown to transition from the classical linear elastic fracture mechanics asymptote
near the tip to the viscosity dominated asymptote [9] away from the tip over a
length scale governed by the problem parameters [7]. The effect of fluid leak-off

appears as an intermediate asymptote [10, 7] between the LEFM and the viscosity
dominated asymptote. Such a tip asymptotic solution which embeds the different
non-linearities of the problem has been shown to be valid over a large part of the
fracture for the fracture width. It can be used in combination with a finite scale
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Figure 1: The fracture plane is discretized with a Cartesian mesh using rectangular cells. At any

time, the cells are classified as either tip (near the front) or channel cells. Among the channel cells,

the cells adjacent to the tip cells are denoted as ribbon cells (with their centers as survey points)

and are used to coupled the finite discretization with the near-tip hydraulic asymptotic solution

(see e.g.[12] for more details).

discretization in order to obtain very efficient schemes even on a coarse mesh
[8, 11]. The tip solution for the fracture width can be schematically written as:

ŵ = f (s,V, E′,KIc, µ,CL), (1)

where ŵ is the width of the fracture in the tip region and s is the closest distance
from fracture front. Conversely, knowing the fracture width, this function can be
inverted to get the distance to the fracture front from the survey point where the
width is estimated. This allows for construction of efficient and accurate numeri-
cal schemes combining this tip solution with a finite discretization and a level set
approach to evolve the fracture front over a time-step [8, 12, 13].

3. Fracture front advancing schemes

We now describe the different possible schemes that can be used to advance
the fracture front and the solution over a time step, given an initial fracture foot-
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print in equilibrium with both the elasto-hydrodynamics equations and the fracture
propagation condition. All these schemes are based on a level set representation
of the fracture front and the use of the hydraulic fracture tip asymptotic solution
Eq. (1).

3.1. Implicit front advance
This is the original (implicit) version of the level set scheme proposed by [8].

We recall it here for clarity and completeness (more details can be found in [8, 12,
13, 15]). The steps taken by the algorithm to advance the fracture over a time step
from tn to tn+1 = tn + ∆t can be summarized as follows.

Injection with the same footprint:. The implicit algorithm starts with a balloon
like inflation of the fracture on the previous fracture footprint at tn. This is per-
formed by solving the coupled elasto-hydrodynamic system with the previous
fracture footprint to evaluate a new fracture width - which is inflated if the in-
jection continue and the fracture footprint does not change.

Inversion of the tip asymptote. From the current footprint of the fracture, the chan-
nel cells neighboring tip cells are taken as survey cells (referred as ribbon cells in
the rest of the paper; see Figure 1). The width of the ribbon cells from the inflated
fracture is then used to invert the tip asymptote to obtain the minimum distance
of the center of these ribbon cells to the new fracture front. It is important to note
here that the local fracture velocity of the front appears as a variable in the tip
asymptote function that provides the relation between the width and the tip dis-
tance (Eq. 1). At the stage of tip inversion, the velocity at time tn+1 is not readily
available and is thus approximated via an implicit (backward-Euler) approxima-
tion:

Vn+1 =
sn+1 − sn

∆t
, (2)

where ∆t is the time step, s is the distance from the front and the superscript n + 1
refer to the time tn+1. This makes the tip asymptote an implicit function of the
form

ŵ = f (sn+1,
sn+1 − sn

∆t
, E′,KIc, µ,CL), (3)

which can be solved via a root finding algorithm for sn+1. We use the efficient ap-
proximation of the complete hydraulic fracture tip asymptote presented in Dontsov
and Peirce [15].
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Reconstruction of the fracture front. The fracture front is represented via a signed
distance function on the computational domain (a level set), which is initialized
with the given tip distances at the ribbon cells. The distances are initialized as neg-
ative to impose the sign convention that these cells are located inside the fracture.
Knowing the closest distance to the fracture front at each ribbons cells, the Eikonal
equation is then solved in the rest of the grid via the Fast Marching Method. From
the knowledge of the signed distance function at every cell of the grid, the fracture
front is constructed by identifying the zero level set i.e. the set of points where
the signed distance has a value of zero (see [8] for details). Note that the level set
provides the front location at sub-mesh scale, i.e. the front is tracked irrespective
of the mesh resolution.

Tip volume calculation. After the new fracture front position has been deter-
mined, the average fracture width in the tip cells are evaluated by averaging the
hydraulic fracture tip asymptote over these cells, thus imposing the proper fracture
volume in the tip cells. Projecting the one dimensional tip asymptotic solution on
to two dimensions and its integration over the tip cells is discussed at length in
[15] which provides efficient computations of these different integrals over the tip
cells.

Solution of the elasto-hydrodynamic system. Once a new fracture front position
is determined and the tip volumes evaluated, all the terms required to make a new
elasto-hydrodynamic system are available. The system is then solved iteratively
via fixed point iterations to determine the corresponding new width of the channel
cells and pressure of the tip cells.

From this new solution, the width of the ribbon cells are again inverted to get
a new footprint. The overall iterative procedure is repeated until the front position
converges. The iterations are stopped once the average of the difference in the
filling fractions of all the tip cells between two successive iterations is less than
10−3. The overall iterative procedure is summarized in the form of a flow chart in
Figure 2.

3.2. Explicit front advance
For each iteration of the implicit front advancing algorithm, the front position

is found by inverting the tip asymptote. Due to the direct correspondence between
the front position and the propagation velocity (see Eq. (2)), the fracture front
iteration can also be viewed as an iteration on the propagation velocity at all points
along the fracture front. This iterative process is computationally expensive as
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Figure 2: Flow chart of the implicit level set algorithm over a time step.
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the non-linear elasto-hydrodynamic system needs to be solved for each iterate of
the new fracture front position. An alternative to this scheme is that instead of
iterating on the propagation velocity, the change in velocity between successive
time steps is assumed to be negligible and the fracture is propagated with the
velocity computed at time tn (at the last time step). The elasto-hydrodynamic
system is then solved with the new footprint to get the new width at time tn+1. The
velocity at time tn+1 (to be used to propagate the front in the next time step) is then
obtained by inversion of the tip asymptote using the newly calculated width in the
ribbon cells. Such an explicit front advance, of course, introduces error which may
cause the fracture front to overshoot or undershoot in the case of decelerating and
accelerating front and may lead to oscillations in the solution, making the scheme
less robust. We describe below the steps involved in propagating the fracture for a
time step with the explicit front advancing algorithm and discuss the implications
on the accuracy and stability in later sections.

Propagating with the velocity from the previous time step. To propagate the frac-
ture for the given time step ∆t, the signed distance function sn+1 for the new time
tn+1 is initialized in the ribbon cells using the velocity at time tn:

sn+1
Rn = sn

Rn − Vn
Rn∆t, (4)

where the subscript Rn denotes the ribbon cells from the footprint of the last time
step. The distance function is then propagated outward through the rest of the
grid with the Fast Marching Method in order to construct the new fracture front
position.

Tip volume calculation. The fracture tip volumes are calculated in the same man-
ner as in the implicit scheme although the tip asymptote here is integrated using
the velocity from the previous time step.

Solution of the elasto-hydrodynamic system. The elasto-hydrodynamic system is
constructed with the new fracture footprint and the tip volumes, and is solved
with fixed point iteration to get the fracture width in the channel cells. It is worth
pointing out here that such a non-linear system is solved only once over a time-
step in such an explicit front advance scheme.

Computation of the new fracture velocity. The newly evaluated width of the rib-
bon cells is used to invert the tip asymptote to get the distance of the ribbon cells
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Explicit front advancing algorithm 

Advance time step.

Advance fracture front with the velocity from
the last time step via Fast Marching Method

Invert the tip asymptote with the width in the 
ribbon cells to get the new distance to the front,
and in turn the current velocity of the front.

Calculate tip volumes for the current fracture 
footprint using the tip asymptote. 

Solve the non-linear elasto-hydrodynamic system
with the tip volumes imposed in the tip cells to
get the width in channel and pressure in the tip cells

Figure 3: Flow chart describing the steps taken by the explicit front advancing variant of the

implicit level set algorithm over a time step.

to the front sn+1
Rn+1 . The velocity of the front is then evaluated by

Vn+1
Rn+1 =

sn+1
Rn+1 − sn

Rn+1

∆t
, (5)

where the subscript Rn+1 denotes the set of ribbon cells from the advanced foot-
print. These velocities are then used to propagate the fracture front during the next
time step. Such an explicit front advancing scheme is summarized in Figure 3.

3.3. predictor corrector front advance
In the implicit front advancing algorithm, the first trial location to start the

fracture front iteration is found by a balloon like inflation of the fracture using
the footprint of the previous time step. A better guess for the new front location
may be obtained by using the available, yet unused, local front velocities from the
last time step. These velocities can be used to advance the fracture front to get a
first trial position of the front explicitly and the iterations can then be proceeded
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in the same manner as the implicit front advancing algorithm until convergence.
By starting from this better trial front position, convergence can be attained with
potentially less iterations for the same accuracy as compared to the implicit front
advancing algorithm. Such a predictor corrector front advancing algorithm is ef-
fectively a combination of both the implicit and explicit algorithms. The steps
involved are shown in the form of a flow chart in Figure 4.

4. Time stepping strategy

Hydraulic fractures propagate quasi-statically, and under a constant injection
rate, their velocity decreases with time. It is therefore computationally efficient to
increase the time-step as the fracture grows instead of keeping it constant. More
generally, one can adapt the time step such that the increase of the fracture front
is roughly equal to one cell size over the next time-step:

∆t = λ
min(∆x,∆y)

max(VT )
, (6)

where VT is the front velocities in the tip cells and λ is a prefactor that can be used
to control the extent by which the front moves during the next time step. Note that
such an adaptive strategy accounts for both the case of accelerating or decelerating
fracture.

Although the original implicit algorithm can potentially take large time steps
(λ ∼ 2), they cannot be so large that the front jumps over small local hetero-
geneities without taking them into account. In other words, in order to capture the
heterogeneities in the domain up to the resolution of the grid, the front should not
move more than the length of one cell over a time step (λ ≤ 1).

In the case of explicit front advancing, the stability of the overall algorithm de-
pends on the front advancing scheme in addition to the convergence of the elasto-
hydrodynamics system, which is always ensured for a Backward Euler scheme
and a realistic time-step size. The error due to acceleration or deceleration of the
front may introduce oscillations in the solution. Note that if the explicit front ad-
vancing method is stable and accurate with the prefactor λ = 1, it would have a
major computational advantage over the implicit scheme.

In addition to the above restriction on the time step, we have also added a
restriction on the factor by which the fracture can increase its length over a time
step. This is necessary in the case of a very coarse mesh at the start of the simula-
tion when the fracture is very small compared to the computational domain. For
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get the width in channel cells.

Figure 4: Flow chart describing the steps taken by the predictor corrector front advancing variant

of the implicit level set algorithm over a time step.

12



example, in the extreme case of a radial fracture with initially 5 cells in the frac-
ture along the diameter and having the length of 3 cells (the front being very close
to the edge of channel cells in the tip cells), a step size evaluated from Eq. (6) can
increase the diameter of the fracture by as much as 2 cell lengths, which is 2/3 of
its original length. Such a big change is fracture size may lead to non-convergence
of elasto-hydrodynamic solver. We thus evaluate the time step by combining the
two restrictions as follows

∆t = λmin
(
min(∆x,∆y)

max(VT )
, ε min

(
`T

VT

))
, (7)

where ε ∼ 0.08 is a factor (of the initial length) controlling by which amount the
fracture length is restricted to increase over a time step and `T are the distances of
the fracture front from the injection point evaluated in each of the tip cell.

5. Verification and test cases

5.1. Penny shaped hydraulic fracture benchmark
We first test the accuracy of the three front advancing schemes on the case of a

penny-shaped hydraulic fracture propagating in a uniform permeable medium due
to the injection of a viscous fluid from a point source - see Madyarova [19] for the
reference solution. Here, a simulation is performed for a medium having a fracture
toughness KIc = 0.156 MPa

√
m, a plain strain modulus E′ = 3.9 × 1010 Pa and a

leak-off coefficient CL = 0.5 × 10−6 m/
√

s. The fluid driving the fracture growth
has a viscosity µ = 8.3×10−5 Pa.s and is injected at a constant rate Qo = 0.01 m3/s.
We divide the square domain of [−105, 105, −105, 105] meters into 81 cells in
both the x and y directions.

The simulation is initialized with the viscosity dominated/storage solution
(zero leak-off) for a radial hydraulic fracture [20]. It is then propagated under
a constant injection rate for a total injection time of 1100 seconds. During the
span of the simulation, the fracture propagates in the viscosity/storage propaga-
tion regime and move towards viscosity/leak-off regime. The storage to leak-off

transition time scale tmm̃ (see e.g. [19, 1] for details of the scalings) correspond-
ing to the simulation parameters is 8.833 × 105 s. Figure 5 shows the radius of
the fracture footprint versus time at the top and the fracture efficiency versus time
at the bottom respectively, for the three front advancing schemes. For all of the
schemes, the solutions are evaluated with three different values of λ (0.6, 0.8 and
1.0) to see if the time step size effects the accuracy of the solution.
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It can be seen that all the numerical solutions match the reference solution
closely for all the three front advancing schemes and all the different time step
prefactors. Note that the solution obtained with the explicit scheme has the same
accuracy as the predictor corrector and implicit schemes. The slight error (< 2%)
in the fracture efficiency (defined as the ratio of volume of the injected fluid in the
fracture to the total injected volume) for all three schemes in the beginning is due
to the initialization with the zero leak-off solution. The error in the fracture radius
is relatively large (∼ 4%) at the start of the simulation due to course discretization
as the number of cells in the fracture are small (∼ 4 across the radius). As the frac-
ture grows and more cells enters into the fracture, the error reduces significantly
(∼ 0.5%).

To compare the computational efficiency of the different schemes, the number
of fracture front iterations taken at each time steps are plotted versus the number
of grid elements in the fracture in Figure 6 (top). It can be seen that the predictor
corrector scheme, shown in blue, converges more rapidly than the implicit scheme
shown in red. In Figure 6 (bottom), we show the CPU time taken by the different
front advancing schemes and for different time step prefactors versus the time for
which the solution is evaluated. For relative comparison, we scale the CPU times
with the maximum CPU time taken by a time step during the implicit scheme.
For a Python implementation of the algorithm running on a computer with In-
tel(R) Core(TM) i7-5600U CPU @ 2.6GHz microprocessor, this largest time step
(which corresponds to the largest number of elements) takes 435 seconds. In di-
rect reflection of the number of fracture front iterations, the CPU time is 7 to 8
times, and 4 to 5 time larger for the implicit and predictor corrector schemes re-
spectively as compared to the explicit scheme. Note that the plot is in log-log
scale, signifying that the time taken to solve a time step is about two orders of
magnitude smaller in the beginning of the simulation when there is a small num-
ber of cells in the fracture. As the fracture grows and more cells enters into the
fracture, the computational requirement increases from O(n2) to O(n3): initially
the cost of making the non-linear elasto-hydrodynamics system takes more time
than solving it while for larger system size (at larger time), this reverses. This is of
course the case here as we use a simple direct solver for the tangent linear system
- better performance than O(n3) can be achieved with more refined approaches to
the solution of the elasto-hydrodynamics system [21, 22].
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Figure 5: The fracture radius (top) and fracture efficiency (bottom) versus time for a penny shaped

hydraulic fracture as evaluated by the explicit, predictor corrector and implicit front advancing

schemes. The relative errors with the semi-analytical solution are plotted on the right. Solutions

obtained with three different time step prefactors (λ) are shown for each of the front advancing

scheme to investigate the impact of time step size on the accuracy of the solution.
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Figure 6: The number of fracture front iterations (top) and scaled CPU time (bottom) as function

of the number of elements within the fracture. Penny shaped fracture benchmark for the explicit,

predictor corrector and implicit front advancing schemes. Results for three different time step

prefactors are shown for each of the front advancing scheme. The symbols used are same in the

top and bottom plots.
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5.2. Accelerating / decelerating fracture front example
In order to better understand the robustness of the explicit front advancing

version of the scheme, we investigate its performance in a case where the frac-
ture front crosses a heterogeneity that will either make the fracture accelerate or
decelerate locally. The change in the local fracture front velocity can be caused
by a change in material properties of the rock – such as fracture toughness or per-
meability – or by a variation of the in-situ confining stress. In this test case, we
investigate both the acceleration and deceleration of the fracture front by allowing
the fracture to enter a layer having a lower confining stress (acceleration case) or
a larger confining stress (deceleration case) as depicted in figure 7.

In the first part of the test case, we consider a fracture that is propagating in a
uniform impermeable medium, driven by a fluid with a viscosity of 1 Pa.s injected
at a constant rate of 1 × 10−4 m3/s. The fracture toughness is assumed to be neg-
ligible, i.e. the fracture propagates in the so-called viscosity dominated regime.
To investigate the effect of acceleration of the fracture front, a layer with much
lower confining stress (2 MPa as compared to 30 Mpa in the layer where the frac-
ture is initiated) is set up on top (see Figure 7, top). Under these conditions, the
fracture is expected to propagate as a radial fracture initially, and then accelerate
along the vertical direction (y-axis) as it enters the upper layer. The configuration
is simulated with the three different front advancing schemes to investigate their
performance. As the performance of the explicit front advancing scheme is depen-
dent on the time step, the results are first compared for simulations performed with
three different constant time steps of 6ms, 8ms and 10ms for all three schemes.
These time steps are equivalent to taking λ = 1.05, 1.40 and 1.75 respectively
together with the velocity of the fracture front just after entering the upper layer.
Results are also compared using adaptive time stepping with different prefactors
λ of 0.6, 0.8 and 1.0.

Figure 8, shows the time evolution of the distance of the front from the in-
jection point along the y-axis (represented as ` in Figure 7) as evaluated with the
predictor corrector and explicit schemes. For comparison, the distances are nor-
malized with the corresponding distances evaluated with the implicit scheme. It
can be seen that the predictor corrector scheme gives virtually the same solution
as the implicit scheme (the relative difference is of the order ∼ 10−3). The explicit
solution also closely follows the implicit solution until the front enters the upper
layer and undershoots the front position as the front is propagated with lower ve-
locity of the last time step. This causes the solution to oscillate in the next few
time steps, until it recovers and converges to the correct solution as the fracture
propagates further into the upper layer. Figure 9 shows the time evolution of the
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Figure 7: Fracture footprint as evaluated by the explicit (shown in green), predictor corrector

(shown in blue) and implicit (shown in red) front advancing schemes. There are three plots for

each of the front advancing scheme corresponding to three different time step prefactors (λ =

0.6, 0.8, 1.0). The top and bottom figures show the cases of an accelerating and decelerating

fracture front respectively.
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normalized distance `/`imp given by the two scheme for the same setup, but eval-
uated with adaptive time stepping with prefactors λ of 0.6, 0.8 and 1.0. Similar
results, compared to the fixed time stepping, are observed except the oscillations
are significantly subdued due to relatively smaller time steps taken as the velocity
of the front increases upon entering the upper layer. Figure 7 (top) shows that
the footprint is virtually indistinguishable for all the solutions at the final time of
0.3 s.

In a second test, a layer with a confining stress of 10 Mpa is set up on top of a
layer with a confining stress of 1 MPa to investigate the case of deceleration of the
front (see Figure 7). The rest of the parameters are similar to the acceleration test
case previously discussed. The explicit scheme expectedly overshoots the front
position as it enters the upper layer. Figure 10 shows the normalized distance
`/`imp evaluated by the implicit and explicit scheme respectively, for the three dif-
ferent fixed time steps of 12ms, 16ms and 20ms. These time steps are equivalent
of λ = 0.46, 0.61 and 0.77 respectively, calculated with the velocity of the front
just after entering the upper layer. Results from the adaptive time stepping with
prefactors of 0.6, 0.8 and 1.0 are also shown in Figure 11. The results are similar
to the previous accelerating case, with the expected difference of an overshooting
of the front position instead of an undershooting by the explicit front advancing
scheme. Figure 7 shows that the footprint is virtually indistinguishable for all the
schemes.

5.3. Comparison with a laboratory experiment
Finally, we numerically replicate a viscosity dominated laboratory experiment

[23] in which a hydraulic fracture grows into a layer with lower confining stress
while being bounded by another layer of larger confining stress. This provides a
good test for the validity of the mathematical model as well as for the performance
of the overall numerical algorithm, including the three different front advancing
schemes. The experiment consists of injection of a fluid with a viscosity of 30 Pa.s
into a PMMA block in a three layers configuration (see the above referenced paper
for details). Different confining stresses are applied in three layers with the upper
layer having a larger confining stress layer of 11 MPa, the lower layer having
a confining stress of 5 MPa and the layer in the middle (of 50 mm height) that
contains the injection point having a confining stress of 7 MPa (see Figure 12).
The others parameters are as follows

E′ = 3.9 × 1010 Pa, KIc = 0, CL = 0, µ = 30 Pa.s, Qo = 0.0023 mL/s.
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Figure 8: Normalized distance of the front along the y-axis from the injection point for the fracture

front acceleration test case. The left and right figures show the solution evaluated by the explicit

and predictor corrector front advancing schemes respectively using three different time step sizes

of 6ms, 8ms and 10ms.
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explicit, λ=0.8
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Figure 9: Normalized distance of the front along the y-axis from the injection point for the frac-

ture front acceleration test case. The left and right figures show the solution evaluated by the

explicit and predictor corrector front advancing schemes respectively using three different time

step prefactors (λ) of 0.6, 0.8 and 1.0.
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Figure 10: Normalized distance of the front along the y-axis from the injection point for the

fracture front deceleration test case. The left and right figures show the solution evaluated by the

explicit and predictor corrector front advancing schemes respectively using three different time

step sizes of 12ms, 16ms and 20ms.
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Figure 11: Normalized distance of the front along the y-axis from the injection point for the

fracture front deceleration test case. The left and right figures show the solution evaluated by the

explicit and predictor corrector front advancing schemes respectively using three different time

step prefactors (λ) of 0.6, 0.8 and 1.0.

21



Fracture Front Iterations CPU Time CPU Time Ratio

Implicit 257 619 s 4.04

predictor corrector 210 492 s 3.21

Explicit 48 153 s 1.00

Table 1: The performance comparison of the three front advancing schemes for the numerical

simulation of the laboratory experiment. First column shows the total number of fracture front

iterations (equivalently, the number of times the non-linear elasto-hydrodynamic system is solved)

taken by the three schemes to simulate the total time of 665 s. Second column shows the CPU

time taken by the three schemes (on a Intel(R) Core(TM) i7-5600 CPU - 2.6GHz). The time taken

by the implicit and the predictor corrector schemes relative to the explicit scheme are shown in the

third column.

Due to a rather large injection line, the effective injection rate entering the fracture
varies with time due to fluid compressibility effects during the initial pressuriza-
tion phase (see [24] for discussion). The evolution of the injection rate into the
fracture can be approximated here by three constant injection steps: 0.0009 mL/s
for the first 31 seconds, 0.0065 mL/s for the next 120 seconds and 0.0023 mL/s
for the rest of the experiment.

We perform simulation of this laboratory experiment with the level set algo-
rithm previously described, using the three different front advancing schemes. The
rectangular domain of [-0.13, 0.13, -0.17, 0.17] meters was divided into 61 cells
in the x direction and 79 cells in the y direction. A λ of 1.0 was used to evalu-
ate the adaptive time step. Figure 12 displays the fracture footprint at t = 22 s,
60 s, 144 s, 376 s and 665 s for the different front advancing schemes as well as
the experimental measurements. Very good agreement between the experimen-
tal and numerical results computed with all three schemes can be seen. Table 1
summarizes the total number of fracture front iterations (signifying the number
of times the non-linear elasto-hydrodynamic system is solved) performed by the
three front advancing schemes to compute the solution up to 665 seconds. The
CPU time shown are for a Python implementation of the algorithm running on an
Intel(R) Core(TM) i7-5600 CPU - 2.6GHz microprocessor. It can be seen that the
predictor corrector and the implicit schemes are respectively about 3 and 4 times
more costly than the explicit front advancing scheme.
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Figure 12: Fracture footprint as evaluated by the explicit (shown in green), predictor corrector

(shown in blue) and implicit (shown in red) front advancing schemes for the three layers hydraulic

fracture experiment of [23]. The experimental results are shown in black.
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6. Conclusions

One of the major challenge for the simulation of hydraulic fracture growth lies
in the proper resolution of the evolving fracture front. The Implicit level set algo-
rithm (ILSA) originally developed in [8] uses the level set method in conjunction
with the hydraulic fracture tip asymptotic solution [7] to provide a highly accurate
and efficient algorithm to locate the moving boundary. ILSA advances the fracture
front via a fully implicit scheme: i.e. the final location of the front is found by
iterating on the front position until it converges. This implicit scheme, although
robust and accurate, is computationally costly due to the iterations required to ob-
tain the new fracture front position. In this paper, we have investigated a variant of
this scheme where the fracture front is advanced either entirely explicitly, using
the velocity of the previous time step or in a predictor corrector manner, using
the explicit step as first guess for the implicit scheme. It is important to bear in
mind that although the fracture front advance is performed explicitly, the elasto-
hydrodynamics system is solved with an implicit/backward Euler scheme in order
to circumvent the stringent CFL condition of such system [2].

We have tested the stability of the explicit scheme for a challenging test case
where the fracture front accelerate after moving into a layer with a confining stress
15 times less than the layer from which it enters. An extreme test configuration
unlikely to happen in practice. We have shown that the explicit version of the
scheme introduces a slight error in the solution (few percents) in the case of an ac-
celerating or decelerating fracture front, which may cause the solution to oscillate
sporadically over few time-steps. The oscillations are however damped quickly if
the time step is dynamically adapted as a function of the velocity of the fracture
front.

For all the test cases, we observe that the solution obtained with the explicit
front advancing scheme matches closely to the solution of the implicit scheme but
is around ∼ 4 times faster computationally. The difference between the solutions
evaluated by the two schemes is of a few percents in the few time steps after the
fracture front hits a heterogeneity. It is important to note that such an error might
accumulate in the case where multiple heterogeneities are present at the scale of a
few grid cells. In such a very heterogeneous configuration, either a finer mesh or
a smaller time step (or a combination of the two) is to be used in conjunction with
the explicit front advancing scheme. In any case, the predictor corrector scheme
always performs similarly to the implicit scheme both in terms of accuracy and
stability but requires 25% to as much as 50% percent less computational time. It is
therefore the preferred scheme to be used in all cases, while the explicit scheme is
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favored in relatively homogeneous configurations or when a first "quick" solution
is sought for.
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