
Autonomous Robots (2019) 43:713–726
https://doi.org/10.1007/s10514-018-9745-2

Learning from demonstration for semi-autonomous teleoperation

Ioannis Havoutis1 · Sylvain Calinon2

Received: 23 March 2017 / Accepted: 2 April 2018 / Published online: 25 April 2018
© The Author(s) 2018

Abstract
Teleoperation in domains such as deep-sea or space often requires the completion of a set of recurrent tasks. We present a
framework that uses a probabilistic approach to learn from demonstration models of manipulation tasks. We show how such
a framework can be used in an underwater ROV teleoperation context to assist the operator. The learned representation can
be used to resolve inconsistencies between the operator’s and the robot’s space in a structured manner, and as a fall-back
system to perform previously learned tasks autonomously when teleoperation is not possible. We evaluate our framework
with a realistic ROV task on a teleoperation mock-up with a group of volunteers, showing a significant decrease in time to
complete the task when our approach is used. In addition, we illustrate how the system can execute previously learned tasks
autonomously when the communication with the operator is lost.

Keywords Learning from demonstration · Teleoperation · Shared autonomy · Manipulation in ROVs

1 Introduction

Manipulator arms are often used as a proxy for humanmanual
labour in environments that are hostile. Such tasks might
involvemanipulating equipment in deep underwater facilities
or handling materials that can be dangerous to handle by
hand. Often such systems are controlled directly by a human
operator who receives visual feedback from the teleoperated
manipulator workspace and accordingly controls the degrees
of freedom (DoFs) of the arm.

Such direct teleoperation can be cognitively very demand-
ing for the operator. Teleoperation tasks are often very
structured, but the robot operating environment seldom
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changes dramatically. Most variability in such tasks comes
from the change of the pose of the manipulators and the pose
of the items that are to bemanipulated. For example, imagine
an underwater ROV that needs to connect a set of hydraulic
hoses to a distribution panel at a deep-sea facility. The task
of connecting each hose is intrinsically the same, but the
parametrization of each task instance changes. This way, for
each connection the ROV might assume a different position
while the connector for each hose would be at a different
pose on the distribution panel.

Long range teleoperation is often the only solution for
most dangerous environments, including space and deep-
sea. In such cases the communication bandwidth imposes a
hard constraint on the efficiency of the system. For example,
streaming live video feeds from the teleoperated manipulator
workspace imposes large delays to the completion of the set
of tasks at hand.

In this paper, we present a probabilistic method that can
assist an operator in performing a teleoperation task effi-
ciently, through learning a representation of the task by
demonstration. We present a structured way to deal with dis-
crepancies between operator space and robot space and a
way of autonomously executing the task in case of commu-
nication break-down (see Figs. 1 and 2 for an overview). We
use a task-parametrized Hidden semi-Markov model (TP-
HSMM) to learn task representations, and generate motions
by sampling the model in combination with an optimal
control formulation, namely with linear quadratic tracking
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Fig. 1 Overview of the approach. The left side presents a traditional
teleoperation scenario where the operator is situated on the vessel that
supports the ROV at sea. The operator receives a set of video feeds
from the cameras of the ROV, as well as the ROV’s telemetry and joint
configuration data. Based on this, the operator then directly commands
the desired configuration for the robotic manipulator. The right side
presents our new paradigm of mixed teleoperation. Here the operator
commands a virtual ROV in a virtual environment (onshore), set up
according to the model of the environment that the ROV will operate

in, at sea (offshore). The arms of the ROV are controlled locally by
a cognitive engine that does not require any large data (video feeds,
telemetry) to be communicated. Both systems, onshore and offshore,
are locally controlled while both sides have a local parametrization of
the corresponding variables. Onlyminimal communication between the
two sides is now required to adjust the local control loops. (i.e. opera-
tor state and coordinate system importances, in contrast to video feeds,
telemetry, joint states, etc.)

Fig. 2 Current stage of the DexROV project. Top: On the left, the
simulated DexROV, equipped with manipulator and gripper. On the
right, the simulated underwater testing rig, with a set of standardized
ROV handles. The inset image shows the DexROV project onshore
control center. Bottom: Left, the prototype exoskeleton that will be
used as an input interface for the VR system. Right, the developed ROV
with prototype manipulators and prototype underwater vision system
visible between the arms

(LQT) with a double integrator system. Our approach lever-
ages the key advantages of two models, the flexibility of a
task-parametrized mixture model encoding (Calinon 2016)

alongside with the ability of the HSMM to accurately capture
motion duration and generate novel trajectories.

Throughout this manuscript we will use the term mixed
teleoperation to refer to the behavior of the system.We chose
this termas,webelieve, it accurately describes that the behav-
ior on the robot’s side is a combination of the operator’s
input and the learned task model. Mixed teleoperation cor-
responds to the similar terms, often found in the literature,
of assisted teleoperation, semi-autonomous teleoperation or
shared autonomy.

Our contribution in this work is twofold. First, we
present the task-parametrized extension of our previouswork
(Havoutis et al. 2016), that allows learned movements to be
used in novel and changing situations. Second, we show how
such a probabilistic model, learned by demonstration, can
be used in a teleoperation context to disambiguate between
different task parametrizations, making the operators’ work
easier and faster, and how the system can be used as a fall-
back in case of communication break-down.

Underwater ROVs capable of teleoperated manipulation
are typically tethered to the support vessel. Consequently,
the communication bottleneck occurs between the support
vessel and the onshore control center, typically connected
over a satellite link.

Current field ROVs that target teleoperated manipulation
use simple extending gripper arms to secure the ROV on
a designated rail before the operator begins the manipula-
tion phase. This way, the operators do not need to constantly
adjust the control of the ROV body and can focus on the
manipulation task at hand. The underwater vehicle dynamics,
external disturbances of the underwater environment or the
control of the ROV body are beyond the scope of this paper.
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The rest of the paper is structured as follows. We discuss
previous research in Sect. 2 and we present our approach in
Sect. 3. In Sect. 4 we present two illustrative planar examples
with 2 and 3 frames to aid in the reader’s understanding of
the approach. Section 5 describes the learning from demon-
stration procedure and the evaluation trials with a group of
volunteers. Last Sect. 6 summarizes this work and presents
directions for future work.

2 Related work

The use of learning techniques in the context of ROV tele-
operation is novel (Palomeras et al. 2016). The traditional
teleoperation approach requires the operator to directly com-
mand the different actuators of the ROV. The automation
efforts in this field have largely been concerned with the con-
trol of the body of the ROV, e.g., how to home to a desired
position or how to counter the effect of currents, while ROV
manipulators are directly teleoperated.

In contrast, developing learning approaches to model and
reproduce skills given motion examples has been a central
topic of robotics research. A number of such learning from
demonstration (LfD) approaches exist to date. One of the
most widely used approaches is using Dynamic Movement
Primitives (DMPs) (Ijspeert et al. 2013). DMPs are dynam-
ical systems with simple convergence behaviour that are
coupled with a learned non-linear function that modulates
their output. This way, DMPs can provide adaptive motion
representations that are easy to implement. For example, the
approach in Palomeras et al. (2016) uses DMPs to model
and synthesise a valve-turning motion for a 4-DoF arm. One
drawback of standard DMPs is that a sequence of radial basis
activation functions needs to be allocated manually (usually
spread equally in time with a shared variance), and that each
DoF of the system is separately described (synchronized by
a phase variable), sometimes leading to sets of DMPs that
have difficulty in capturing joint synergies when few basis
functions are used.

A number of extensions to the DMP framework have been
proposed in the current literature. Gams et al. (2014) extends
theDMP framework by adding amodulation term that allows
interactionwith objects and the environment. Learning of this
coupling term is performed with an iterative learning control
algorithm. Other extensions include the work of Ude et al.
(2014) and Pastor et al. (2011), with the former encoding
orientation trajectories as DMPs, and the latter using amodel
of previous sensory information to modulate the target of
learned DMPs.

An alternative LfD approach is to encode sets of motions
as a Gaussian mixture model (GMM) and use GaussianMix-
ture Regression (GMR) to regenerate motion. It was shown
in Calinon et al. (2012) that a DMP can be recast as a

GMR problem for a GMM with diagonal covariance, and
that its natural extension to a GMM with full covariances
can retrieve local coordination patterns. With this probabilis-
tic form of DMP, the basis functions can also be learned
from the demonstrations. GMM/GMR have been successful
in representing sets of demonstrated examples that are time-
indexed, this way using time as the Gaussian conditioning
variable to perform the regression, see Calinon (2016) for an
overview. Such systems are often used for learning models
from a set of demonstrations but are somewhat restrictive in
their generalization capability. An extension to the traditional
GMM-based learning approach is the parametrization of the
problem with a set of different coordinate systems (Calinon
2016). In this setting, learning is performed in multiple coor-
dinate systems, whose information is fused through products
of Gaussians used to generate the final motion. Our work in
Zeestraten et al. (2017) shows how one can learn position
and orientation trajectories of bimanual tasks and how the
resulting task-parametrized GMM can generalize to differ-
ent orientations of objects or tools.

Hidden Markov Models (HMMs) have been used in
robotics in a number of approaches. For example, Lee and
Ott proposed to combine HMM with GMR to cope with the
poor duration modeling properties of standard HMMs (Lee
and Ott 2010; Lee et al. 2010). Similarly, Chan et al. (2013)
used GMR and HMM as part of a constrained manipulator
visual servoing controller. Bowen and Alterovitz presented
the combination of an HMM (for task representation) with a
sampling-based motion planner to produce (asymptotically)
optimal plans (Bowen and Alterovitz 2014). Kulic et al.
(2008) used HMMs to incrementally group together human
whole-body motions, using hierarchical agglomerative clus-
tering, based on their relative distances in HMM space.

Often, the use of HMM-based approaches in robotics
applications is limited by the simplistic state duration mod-
eling that HMMs provide. Other signal processing related
disciplines, such as speech synthesis, have developed a num-
ber of models that seek to model state duration information
more explicitly (for an overview see Rabiner 1989). One
such model is the Hidden Semi-Markov Model (HSMM),
see Yu and Kobayashi (2006) for a review. Recently we
experimented with the use of HSMM in robot applications,
by contrasting it to a set of different graphical model based
approaches (Calinon et al. 2011). HSMMs are relevant for
robot motion generation because they model the transitions
and the durations of state activations, thus providing a rela-
tive time instead of a global time representation. In Tanwani
and Calinon (2016), we exploited this local duration repre-
sentation for autonomously learning and reproducing in new
situations the tasks of opening a valve and moving objects
while avoiding obstacles. In Havoutis and Calinon (2016),
we showed how a similar task representation can be used
to learn assistive behaviours of recurrent tasks. In Havoutis
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Operator Space Robot Space

Fig. 3 Sketch of our approach in a 2-dimensional casewith 2 coordinate
systems and two Gaussians per coordinate system. The red dot repre-
sents the endpoint of the motion. On the left, the setup that is available
to the operator. The solid line is the motion performed up to now (until
time t) and the black square is the current state of the operator’s end-
effector. On the right, the (remote) space where the robot performs the
task. Note that the coordinate system parametrization between the two
spaces is different. The solid line represents the motion performed until

time t while the red square represents the current state or the robot’s
end-effector. The coordinate system importance, h( j)

t , is computed on
the operator space and passed to the robot space. The red dotted line is
themotion predicted by themodel from the current robot state. The gray
square in the robot space represents what the robot end-effector state
would be with a direct teleoperation behavior, which would only poorly
match the current situation in the robot space (Color figure online)

et al. (2016) and Havoutis and Calinon (2017), we showed
how such a model can be learned in an online manner, and be
used in a teleoperation scenario with failing communication,
to semi-autonomously perform an ROV task (hot-stabbing)
using an MPC formulation for motion generation.

This paper is extending this line of research by exploit-
ing the strengths of the task-parametrized representation in
a mixed teleoperation setting. While in Havoutis and Cali-
non (2017), we focused on learning a TP-HSMM online in a
supervisory teleoperation setting, we present here a different
but complementary approach in a shared control setting. By
relying on task-adaptive statistical models of movements and
a batch trainingwith an infinite horizon LQT formulation, we
showhow such a teleoperation strategy can be used to resolve
differences between local and remote environment configura-
tions. With such decoupling of the operator’s and the robot’s
spaces in the statistical representation, we demonstrate that
the proposed approach can replace the conventional use of
video streams in teleoperation, with a minimal exchange
of activation weights as communication overhead. We also
extend our analysis with a user study, highlighting the benefit
of using our model both in terms of time to complete the task
and resulting trajectory quality.

3 Approach

Herewe present the TP-HSMMrepresentation used through-
out this work. This model is an extension of a TP-GMM in
which the HSMM also represents the temporal evolution of
themotion. Ourmodel is trained from a set of demonstrations
with varying task parameters.

The task parameters can be regarded as coordinate sys-
tems relevant to the task at hand. For example, consider the

task of pushing a button with a manipulator. One task param-
eter can be the pose of the manipulator base in a globally
defined coordinate system, while a second task parameter
can be the pose of the button in the global coordinate system.
Varying the pose of the button and/or the pose of the base of
the manipulator would result in a different adaptation of the
motion to push the button. Task parameters in our model are
represented by P coordinate systems, defined at time step
t by {bt, j , At, j }Pj=1, representing the transformation matrix
for each coordinate system (see toy example in Fig. 3).

Each demonstration m ∈ {1, . . . , M} contains Tm dat-
apoints forming a dataset of N datapoints {ξ t }Nt=1 with

N = ∑M
m Tm . The demonstrations ξ ∈ R

D×N are observed
from the perspective of each of the different coordinate sys-
tems, forming P trajectory samples X( j) ∈ R

D×N . These
samples can be collected from each coordinate system indi-
vidually or can be computed with

X( j)
t = A−1

t, j (ξ t − bt, j ). (1)

For example, a demonstratedmotion is provided in the global
coordinate system and is later projected to the local coor-
dinate system of the manipulator base and the coordinate
system of the button.

The parameters of a TP-HSMM with K components are
defined by

{{πi , {μ( j)
i ,Σ

( j)
i }Pj=1,μ

D
i ,ΣD

i }Ki=1, ai, j
}
,

where πi are the mixing coefficients, μ
( j)
i and Σ

( j)
i are the

center and covariance matrix of the i th Gaussian component
in coordinate system j , μD

i and ΣD
i are univariate Gaussian

distributions that directly model the duration of each state,
and ai, j the transition probabilities between states.
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3.1 Parameter estimation

Learning of the TP-HSMM parameters is performed in two
steps. First the parameters of the spatial part of the model are
estimated, and second the encoding of the temporal aspect
of the data is performed.

First we estimate the priors, centers and covariances,
{πi , {μ( j)

i ,Σ
( j)
i }Pj=1, }Ki=1, of the model with an expectation-

maximization (EM) algorithm (Dempster et al. 1977) that are
iteratively computed until model convergence, see
“Appendix I”.

For the duration aspect of TP-HSMM,we need to estimate
the center and covariance for each state duration as a distribu-
tion with parameters {μD

i ,ΣD
i }Ki=1, as well as the transition

probabilities. ai, j can be arranged as a K×K transition prob-
ability matrix, where each element represents the probability
to move to state q j , while currently being in state qi . For
all demonstrations, given the spatial model that was learned
above, we can compute the state probabilities of every dat-
apoint. This way, for each datapoint ξ t we can estimate the
state q j and the previous state qi . To build up the transition
probabilities, ai, j , we keep a log of ci, j ∈ R

K×K , counting
the number of state transitions that are not self-transitory, by
performing a pass through each demonstration, namely

∀{ξ t−1, ξ t } ⇒ ci, j = ci, j + 1, i �= j

ai, j = ci, j
∑K

j=1 ci, j
.

When computing the transition probabilities, we only
need to keep track of the non self-transitory instances,
as we are modeling the relative time during which the
system will stay at each state. For simplicity, we use a
univariate Gaussian distribution N (μD

i ,ΣD
i ) to model this

duration, but other distributions that would better model
durations are possible. Hence we bypass the computa-
tionally expensive HSMM batch training procedure and
replace it with an iterative approach keeping statistics over
the state transitions, which showed in practice to be a
reasonable approximation in our experiments. This way,
as we add each demonstration, we keep track of each
state duration and accordingly update the statistics of each
state. This is done using a running statistics method to
compute the mean and variance for each state duration.
This requires that we only keep track of the total num-
ber of samples while we incrementally add new observa-
tions.

The total computation time for learning a model with 2
coordinate systems, by providing 6 demonstrations would
amount to approximately 3 s on commodity hardware. Sam-
pling as detailed below is much faster and can be computed
online (below 1 ms).

3.1.1 Orientation data

We use unit quaternions to represent orientation data, as in
Silvério et al. (2015). We chose this representation as it is
singularity-free and uses only 4 parameters. We define a unit
quaternion as ε = [v, u�]�, with v ∈ R the scalar and u ∈ R

3

the vector part of the representation. Accordingly, the conju-
gate quaternion is defined as ε̄ = [v, −u�]�. To describe the
orientation of one coordinate system with respect to another
we use the quaternion product which is defined as

ε1 ∗ ε2 =
[

v1v2 − u�
1u2

v1u2 + v2u1 + u1 × u2

]

. (2)

The quaternion product can also be implemented in
matrix-vector multiplication form as ε = E1ε2, where

E1 =

⎡

⎢
⎢
⎣

v1 − u1,1 − u1,2 − u1,3
u1,1 v1 − u1,3 u1,2
u1,2 u1,3 v1 − u1,1
u1,3 − u1,2 u1,1 v1

⎤

⎥
⎥
⎦ , (3)

is a quaternion matrix built from the elements of the quater-
nion ε1. This way we can directly use this representation
of orientations under the TP-HSMM formulation by setting
ξn = ε̂n , bn, j = 0 and An, j = En, j for the orientation part
of the task parameters, see Silvério et al. (2015) for details.
The projection of Eq. (1) then becomes E−1

n, j ε̂n and maps
the reference orientation (demonstration) ε̂n to coordinate
system j . This allows us to seamlessly integrate orientation
data to our learning approach and encode both position and
orientation of demonstrated motions.

3.2 Reproduction

The learned TP-HSMM is used to generate motions given
a new set of coordinate system parameters {b̂t, j , Ât, j }Pj=1.
This is done in two steps. First we generate a GMM with
parameters {πi , μ̂t,i , Σ̂ t,i }Ki=1 where

N
(
μ̂t,i , Σ̂ t,i

)
∝

P∏

j=1

N
(
μ̂

( j)
t,i , Σ̂

( j)
t,i

)
, with

μ̂
( j)
t,i = At, jμ

( j)
i +bt, j , Σ̂

( j)
t,i = At, jΣ

( j)
i A�

t, j , (4)

where the result of the Gaussian product is given by

Σ̂ t,i =
⎛

⎝
P∑

j=1

Σ̂
( j)
t,i

−1

⎞

⎠

−1

, μ̂t,i = Σ̂ t,i

P∑

j=1

Σ̂
( j)
t,i

−1
μ̂

( j)
t,i .

(5)
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Next we generate the state sequence by recursively com-
puting the probability of the datapoint ξ t to be in state i at
time step t , given the partial observation {ξ1, ξ2, . . . , ξ t },
using the forward variable αHSMM

i,t as in Rabiner (1989) with

αHSMM
i,t =

K∑

j=1

dmax
∑

d=1

αHSMM
j,t−d a j,i ND

d,i

t∏

s=t−d+1

Ns,i , where

ND
d,i = N (d|μD

i ,ΣD
i ) and Ns,i = N (

ξ s | μi ,Σ i
)
,

that is computed with an iterative procedure, described in
“Appendix II”. With this representation, a generative process
can be constructed by setting equal observation probability
Ns,i = 1 ∀i , i.e. the spatial part of the motion representation.
This yields a step-wise state reference that we use in the
subsequent optimal control formulation.

3.3 Optimal control trajectory generation

We formulate the trajectory generation step as an optimal
control problem. We use a double integrator system as a vir-
tual unit mass attached to the end-effector of the controlled
arm. This system has the form

ξ̇ t+1 =
[
0 I
0 0

]

ξ t +
[
0
I

]

ut . (6)

Using an infinite-horizon linear-quadratic tracking (LQT)
controller, we can generate a trajectory to smoothly track
the previously computed stepwise reference state sequence,
q1 . . . qT .1 The step-wise reference trajectory N (μ̂qt , Σ̂qt )

is used to set up a cost function that trades-off accuracy to
control effort according to the demonstrated motions (Cali-
non et al. 2014). The cost function to minimize at each time
step t is given by

c(ξ t , ut ) =
∞∑

t=t0

(ξ t − μ̂qt )
� Qt (ξ t − μ̂qt ) + u�

t Rut , (7)

where ut ∈ R
m is the control input of the system. Setting

Qt = Σ̂
−1
qt , R 
 0, ξ t = [xt�, ẋt

�]�, μ̂qt = [μ̂x�
t , μ̂

ẋ�
t ]�

with x, ẋ representing the position and velocity of the sys-
tem, the optimal control input u∗

t is obtained by solving the
algebraic Riccati equation (see “Appendix III” for details),
yielding full stiffness and damping matrices that are regu-
lated in accordance to the precision required by the task, as
learned by the demonstrations.

1 A model predictive control (MPC) formulation can alternatively be
employed as in Zeestraten et al. (2016), generating the state sequence
in a receding horizon manner.

3.4 Arm control

For controlling the arm, we chose a torque control approach.
This allows us to naturally regulate the compliance of the
controlled arm, according to the full stiffness and damping
terms computed by the above LQT solution. The torque com-
mand that the robot low-level controller tracks is

τ = J� f + τG, (8)

where J is the arm Jacobian, f = [ f�
p, f�

o]� is a wrench
and τG are the gravity compensation terms computed based
on the manipulator model and state. Given the desired pose
of the arm end-effector, ξ̂ t = [x̂, ε̂]�,

f p = KP,x
t (x̂t − x) − KV,x

t ẋ, (9)

f o = KP,ε
t 2 log(ε̂t ∗ ε) − KV,ε

t ω, (10)

where ω ∈ R
3 is the angular velocity of the end-effector.

The quaternion product, ε̂t ∗ε, computes the orientation error
between desired and current orientation, and the logarithmic
map, log(·), converts the quaternion error to an axis-angle dif-
ference. As outlined above, the computed LQT gains can be
used when tracking a generated trajectory. When the system
is at a mixed teleoperation mode, the stiffness and damping
terms are heuristically set to a desired manipulator compli-
ance.

3.5 Taskmodel based discrepancy resolution

The ROVs operate in an environment that is often dynamic.
In most operation scenarios a model of the main structures
of the environment, where the ROV will be operating at,
is known a priori. Nonetheless, such models are often only
partially accurate.

A naive (VR) teleoperation approach would require real-
time knowledge of all the task-relevant components. This
way the ROVwould either need to locally recognize the rele-
vant components or send back a video feed for this operation
to be carried on-shore. As the relevant information is pro-
cessed, all coordinate systems will have to be readjusted so
that the operator’s space (VR) parametrization provides a
consistent match with the real-world configuration that the
ROV is operating in (robot space).

Our approach decouples the configuration of the opera-
tor’s (VR) space and the configurationof the real environment
(robot space), where the ROV is operating at. This way we
can locally resolve discrepancies/inconsistencies between
the parametrizations of coordinate systems, without the need
to transmit such information or readjust the operator’s (VR)
environment. Hence the operator’s space (VR environment)
keeps only a local configuration of the environment and the
operator is performing the task in this setup. Here we make
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Fig. 4 a The state on the operator’s space: (top row) considered glob-
ally and (bottom row) as seen from each of the 2 frames in the example.
b Two examples of different frame importances in the robot space. In
example 1 (top row), frame 1 is weighted more, while in example 2

(bottom row) frame 2 is considered more important. The global predic-
tion in the robot side (red square) is the importance-weighted average
of the per-frame predictions (Color figure online)

the implicit assumption that the same set of reference frames
is available on both sides, a feature that is trivial to enforce
programmatically given the learned task model. The ROV
operates in its local configuration while we resolve the dif-
ference between the two spaces using the learned taskmodel.

We do this by computing the probability of the state of
the system to belong to each coordinate system in the model,
on the operator’s side. We calculate the probability of the
current state, projected on the different coordinate systems,
to belong to the model of each coordinate system. This is
computed as

P(ξ t , j) =
K∑

i=1

πi N
(
ξ

( j)
t

∣
∣
∣ μ

( j)
i ,Σ

( j)
i

)
, (11)

h( j)
t = P(ξ t , j)

∑P
j=1 P(ξ t , j)

, (12)

which can be interpreted as the relevance of each coordinate
system in the current position. By treating these coordinate
system probabilities as a measure of importance, we can then
look at the related state of the system on the operator’s side,
and reconstruct the global state in the ROV space according
to this information.

In steps, this is done by first computing the frame-local
state of the global state on the operator’s side, using the
frames’ parameters as

ξ
( j)
t = A( j)�

t (ξ t − b( j)
t ). (13)

for each frame j = 1, . . . , P . Next, we compute a global
robot state, ξ ′( j)

t , for each of the robot frame’s with

ξ ′( j)
t = A′( j)

t ξ
( j)
t + b′( j)

t (14)

where [ ]′ denotes the parameters of the robot side frames
that can differ from the operator’s side. This is the per-frame
estimate of the global (desired) robot state. To arrive at the
final prediction we compute a weighted sum of all frames’
estimates, in the form

ξ ′
t =

P∑

j=1

h( j)
t ξ ′( j)

t (15)

We thus transform each coordinate system state repre-
sentation to the global coordinate system and compute an
average, weighted by the coordinate system importance that
is communicated to the robot side. Figure 4 helps explain the
relevant variables and gives an intuitive presentation of the
above steps.

4 Planar examples

We use two planar examples to illustrate our approach. The
task in both cases is to start from the “U” shape on the left
of the panel and reach the “U” shape on the right side. In
the case of 3 frames, the path needs to pass from the area
between the two lines in the middle, representing a cross-
section of a cylinder, as an additional constraint to the task.
In both example, each shape represents a frame. The operator
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Fig. 5 Planar examples of our developed mixed-teleoperation frame-
work with tasks involving 2 frames (top row) and 3 frames (bottom
row). All frames’ parameters can vary. In particular, the parameters of
frame 2 differ in the first example (top row), while in the second exam-

ple (bottom row) both frame 2 and 3 are in different configurations
with respect to the operator’s space. Please see Sect. 4 for details. The
accompanying video presents the full sequences for both examples

uses amouse cursor to interact with the local side and provide
motion demonstrations. Snapshots are presented in Fig. 5 and
the accompanying video presents the full sequence.

We begin by learning the task in the local side, where
the operator demonstrates a number of motions that are
encoded online. In the 2-frame case 2 demonstrations are pro-
vided, while for the 3-frame case the operator demonstrates
3 motions. The models are being built online and the blue
line represents the current motion prediction of the system.

The middle column of Fig. 5 shows the prediction of the
model in the operator (local) and robot (robot) space while
the parametrization of the frames remains identical. This way
as the operator executes the motion, the robot on its side fol-
lows the same path (red square in the accompanying video).
Next, we change the parametrization on the robot’s space to
demonstrate the behavior of the system in a scenario where
the parametrization of the corresponding frames differs. In
the 2-frame example we change the configuration of frame 2
in the robot’s space, while in the 3-frame example wewant to
highlight that all frame parametrizations can change and we
change both frame 2 and 3 in the robot space. In this example,
the blue line represents the predictedmotion in the nowdiffer-
ent parametrization. As the operator performs her version of
the task on the local panel, the system can correctly compen-
sate for the inconsistency. This way, on the 2-frame example,
the state can successfully reach the (differently configured)
target and in the 3-frame case, the remote state correctly
passes through the cylinder and reaches the target, even if
the configurations between the two spaces differ.

5 Experimental evaluation

This section describes the learning of a task model and
presents two examples of how such a model can be used

Fig. 6 Example of standardised ROV-operated rotary valve. Valve han-
dle highlighted in yellow (Color figure online)

in the context of underwater teleoperation. We show how a
model learned with our approach can be used to generate
novel motions in unseen situations whenever we want the
ROV to perform the task autonomously or when communi-
cation with the operator breaks down. In addition we show
how the learned model can be used to map the control of the
operator to the real environment parametrization of the ROV.
Thiswaywe can decouple the two control spaces and perform
control only locally with minimal communication overhead
(i.e. operator state and coordinate system importances, in
contrast to video feeds, telemetry, joint states, etc.).

5.1 Use case

As a use case we have selected an experimental setup that
resembles an ROV rotary control valve, see Fig. 6. ROVs
often need to operate such control valves, that are crucial
for sealing or pressurizing parts of hydraulic circuits. As we
do not have access to a real ROV valve, we use a symmetric
handle as amock-up (Fig. 7). The task in this setup is to reach
the control valve (handle), placed on the robot side (right arm
of the robot), using the left armof the robot as the input device
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Fig. 7 Experimental setup as a teleoperation mock-up using the Baxter
robot. In mixed teleoperation mode the pose of the coordinate systems
in operator and robot space are decoupled

(master arm) and optionally turn it 90◦ clockwise. The valves
on the operator’s space and the robot’s space canmove freely.
For the direct teleoperation case, the camera mounted in the
teleoperated arm’s wrist is used to provide visual feedback
to the operator.

5.2 Model learning

We use kinesthetic demonstrations to collect a set of trajecto-
ries with an operator performing a valve reaching and turning
task. The trajectories consist of end-effector poses, contain-
ing a Cartesian position and a quaternion orientation part.
Accordingly, two coordinate systems are set: the base of the
arm and the valve. The coordinate system of the arm is set
to the base of the operator’s arm with an orientation equal
to the orientation of the global coordinate system. The sec-
ond coordinate system, attached to the valve, is free-floating
in the operator’s space and is being visually tracked using
a fiducial marker2 (Fig. 7), by using the camera embedded
within the robot’s hand. This camera has wide lens and pro-
duces a stream at 25 frames per second. It is placed to look
over the two fingers of the standard Baxter gripper, i.e. the
gripper fingers are always visible.

We use a torque controller compensating for the effect
of gravity on the arm to let the operator directly guide the
arm to the position and orientation of the valve (handle).
We collected 7 movements of the operator performing the
task and used 5 demonstrations to learn a model with the

2 Please note that fiducial markers are used here to simplify the per-
ception part of the problem. These will be replaced at a later stage
with a specialized model-based underwater perception solution, that is
contributed by another partner within the DexROV consortium.

procedure described in Sect. 3. The remaining 2 trajectories
are kept for model testing and evaluation.

5.3 Model evaluation

We learn a TP-HSMM for the valve task, setting the number
of states K = 5 empirically. A number of techniques can
alternatively be used for model selection, for example with a
Bayesian information criterion (Schwarz 1978) or aDirichlet
process (Rasmussen 2000). The learned TP-HSMM for the
valve task is shown in Fig. 8, where both the Gaussian states
per coordinate system and the state connectivity are depicted.

We first use the learned TP-HSMM with the same set of
task parameters as in the demonstrations to generate a trajec-
tory. We compare the trajectories that our model generates
against the demonstrated “ground truth”, for both the training
samples and the test samples that were not used in learning.
The RMSE for the training set is 0.047m and 0.31 rad, while
the RMSE for the test set is 0.053m and 0.38 rad, for position
and orientation accordingly.

Figure 9 shows positions and orientation trajectories for
all demonstrations in black lines, one of the test trajectories
in red and a trajectory generated by the TP-HSMM with the
same coordinate system parametrization in blue. This fig-
ure highlights that the learned model can generalize to novel
parametrizations (not “seen” during learning) and success-
fully perform the encoded task in an unseen situation.

5.4 Mixed teleoperation evaluation trials

To directly demonstrate the benefit of using our approach
we organized evaluation trials with a set of 5 volunteers. The
volunteers have someexperience using the robot armbut have
no specific prior experience of the proposed teleoperation
setup.

We distinguish two cases; first direct teleoperation of the
robot arm using visual feedback, secondmixed teleoperation
where the operator performs the task locally (in the opera-
tor space) and the correspondence between operator space
and robot space parametrization is handled by the proposed
approach.

5.4.1 Protocol

All the volunteers start with 1 minute of direct teleoperation
to familiarize with the use of the robot arm under gravity
compensation. Next the volunteers are asked to perform the
valve task in direct teleoperation, where they can directly see
the robot arm. Next, a separating barrier is placed between
the operator’s space and the robot’s space. The volunteers
are asked to perform the valve task with visual feedback
from the wrist-mounted camera on the robot side. After these
familiarization steps, we begin the main set of trials.

123



722 Autonomous Robots (2019) 43:713–726

x1

x2

x 3

-0.2

(a) (b) (c)

-0.1
0

0.1

0

0.1

0.2

0.3

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x1
x2

x 3

0.5
0.6

0.7
0.8 0.2

0.3
0.4

0.5

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

1

2

3 4

5

Fig. 8 The TP-HSMM representation learned from the set of demon-
stration trajectories. a The Gaussians represented in the coordinate
system of the valve (isocontour of one standard deviation), where all
demonstrations converge to the handle. b The Gaussians learned in the
coordinate system of the robot arm base. Note that the variance in this

coordinate system is higher, leading to larger ellipsoids. c The learned
state transition graph with the corresponding state duration probabili-
ties. Note that the state colors are consistent across the images, and that
the training samples are displayed in both coordinate systems in black
color

x 
[m

]

t [s]
0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

training samples

test sample

generated sample

y 
[m

]

t [s]
0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

z 
[m

]
t [s]

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

q x

t [s]
0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

q y

t [s]
0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6

0.7

0.75

0.8

0.85

0.9

0.95

1

q z

t [s]
0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6

-0.02

0

0.02

0.04

0.06

0.08

q w

t [s]
0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06
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generated from the TP-HSMM given the same task parametrization as
the test sample (Color figure online)

The volunteers are asked to perform the valve reaching
task from an approximately similar starting pose, while only
visual feedback from thewrist camera is available through the
monitor of the robot. The valve (handle) is placed each time
at a random position, within reachable limits, in the robot
space. The trial is considered successful once the handle is
placed within the distance between the robot fingers, sig-
naled by the trials’ supervisor. Note that no reference exists
in the operator’s space at this time. This direct teleoperation
trial is repeated 3 times with different configurations, where

both operator arm and robot arm end-effector poses are col-
lected.

Next a valve reference (handle) is placed at a random posi-
tion in the operator’s space and the volunteers are asked to
perform the valve task using this local task reference. Note
that the pose of the local valve (operator space) does not cor-
respond to the pose of the remote valve (robot space), i.e. the
coordinate system parametrizations between the two spaces
are different. During this period, our system uses the refer-
ence information in both spaces, the operator’s input and the
learned model to disambiguate the end-effector target pose
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Fig. 11 Left: Average change in direction per performed motion, aver-
aged over all trials per teleoperationmode. Right: Average time required
to complete the valve task for each teleoperation mode. The red error-
bars represent ±1 standard deviation (Color figure online)

for the teleoperated arm. This way the operator is performing
the task locally while the remote arm is performing a “dif-
ferent version” of the task successfully, using the approach
described in Sect. 3.5. Again the end of each trial is signaled
by the supervisor, as soon as the handle is placed between
the robot fingers. As before, the mixed teleoperation trial is
repeated 3 times in different configurations, where the end-
effector poses of both arms are collected. During this, no
visual feedback from the remote side is available to the oper-
ator, i.e. the monitor of the robot displays a black screen.

5.5 Results

The evaluation trials, as previously described, yield 30 tele-
operation trajectories, 15 trajectories for each teleoperation
mode. Figure 10 presents 3 samples from each mode. Qual-
itatively, the direct teleoperation motions appear coarse in
comparison to the mixed teleoperation motions. This reflects
the strategy that all volunteers used when performing the

task, with small incremental movements where each action
was planned accordingly to the visual feedback from the pre-
vious action. In contrast, in the mixed teleoperation samples,
where the teleoperator had direct access to a local feedback,
we observed that motions are consistently smooth and fluid
for all samples. The average directional change per motion
and the average over the set of trials for each teleoperation
mode are computed. This provides a measure of smoothness
of the performed motions, the results of which are summa-
rized in Fig. 11a.

Assisting the operator by providing immediate local feed-
back about the task, by completing a local version of the task,
resulted in a significant improvement of the time required to
complete the valve reaching task.3 The direct teleoperation
trials required on average 1 min (58.9 ± 24.4 s) to complete
the task. In contrast, the volunteers completed the task in the
proposed mixed teleoperation setting in under 6 seconds on
average and more consistently (5.69 ± 1.9 s). These results
are summarized in Fig. 11b.

5.6 Communication disruption

In addition to the significant reduction of the task execution
time, we can also use the learned task model to generate
motions that achieve the task at hand when the communica-
tion is disrupted. An example of this situation is presented
in Fig. 12. We consider the example in which the operator is
performing the valve task in the mixed teleoperation mode
when the communication between the two spaces is abruptly

3 Note that ultimately, the target in the project is to replace the operator’s
space by an immersive VR setup rather than the teleoperation mock-up.
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disrupted (see the × points on the trajectory in Fig. 12).
In this situation, the robot arm on the remote side, having
access to a local copy of the TP-HSMM, can still generate
a motion from the current state and continue to perform the
task autonomously. In turn, this feature can also be used for
autonomous task execution, where the operator is presented
with the generated motion and can select between teleoper-
ation and autonomous task execution. The predicted motion
can be presented either on the operator’s monitor or in a VR
system. The operator can then select whether she would like
to have the robot execute the motion or proceed in a mixed
teleoperation fashion. Execution can be triggered through the
operator’s interface, for example by confirming the action
execution by clicking the appropriate button on the graphical
user interface.

5.7 Discussion

In most mixed teleoperation trials, we observed that the sys-
tem presents a transient behavior around the area where the
probabilities of the coordinate systems are approximately
equal. This is visible in Fig. 10b and is related to the shape of
the Gaussians. Broader Gaussians (e.g. using a prior on min-
imal covariance used as regularization term) would result in
smoother changes of coordinate systemweighting, but might
not be suitable for tasks requiring very high precision.

The reduction of task execution time based on the tri-
als with volunteers highlights the support that our system
can provide to non-experienced users. In a real world ROV
teleoperation situation, an experienced ROV pilot operates
the controls of the ROV and generally, the visual feed-
back is more extensive, i.e. multiple cameras from different
viewpoints are traditionally used. Nonetheless such feed-
back can only be accessible to ROV operators off-shore,

as communicating multiple video streams through a satel-
lite link is—at least currently—infeasible. To perform the
teleoperation from an on-shore site, in the context of the
DexROV project, video streams are not available. In con-
trast, we showed how the use of a learning approach can
make video streams redundant by decoupling the operator’s
and the robot’s spaces with minimal communication over-
head.

6 Conclusion

We presented a learning by demonstration approach for
manipulation tasks that can be used in a teleoperation context
to remotely operate underwater ROVs.We proposed a mech-
anism that can be used to disambiguate differences between
the operator’s and the robot’s workspaces based on a learned
task model. This way the operator is performing the task
using local feedback while the robot performs a different
version of the same task, based on the input of the opera-
tor. In addition, we showed how the system can be used as a
fall-back in case of communication break-down—something
common when operating through a satellite link—and pro-
ceed to execute the remainder of the task autonomously.

In future work, we aim to investigate ways of accommo-
dating force and torque dimensions in our demonstrations,
as such information is often important for successful inter-
action with the environment. Along the same line, we will
investigate the role of force feedback to the operator and how
such loop can be closed in cases where the operator and the
robot spaces differ. Finally, we are currently exploring ways
of inferring the operators intent while he/she is performing
a task, and choosing which task to execute on the robot side
from a set of tasks in a learned task library.
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Appendix I

The E and M steps have the following form.
E-step

ht,i =
πi

∏P
j=1N

(
X( j)
t

∣
∣
∣ μ

( j)
i ,Σ

( j)
i

)

∑K
k=1 πk

∏P
j=1N

(
X( j)
t

∣
∣
∣ μ

( j)
k ,Σ

( j)
k

) . (16)
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M-step

πi ←
∑N

t=1 ht,i
N

, (17)

μ
( j)
i ←

∑N
t=1 ht,i X

( j)
t

∑N
t=1 ht,i

, (18)

Σ
( j)
i ←

∑N
t=1 ht,i

(
X( j)
t − μ

( j)
i

)(
X( j)
t − μ

( j)
i

)�

∑N
t=1 ht,i

. (19)

These steps are the result of a log-likelihoodmaximization
process subject to the constraint that the data in the different
coordinate systems are drawn from the same source.

Appendix II

We compute the the forward variable, αHSMM
i,t as in Rabiner

(1989) with

αHSMM
i,t =

K∑

j=1

dmax
∑

d=1

αHSMM
j,t−d a j,i ND

d,i

t∏

s=t−d+1

Ns,i , where

ND
d,i = N (d|μD

i ,ΣD
i ) and Ns,i = N (

ξ s | μi ,Σ i
)
,

with the initial iterations (for t < dmax) given by

αHSMM
i,1 = ΠiND

1,i N1,i ,

αHSMM
i,2 = ΠiND

2,i

2∏

s=1

Ns,i +
K∑

j=1

αHSMM
j,1 a j,iND

1,iN2,i ,

αHSMM
i,3 = ΠiND

3,i

3∏

s=1

Ns,i +
K∑

j=1

2∑

d=1

αHSMM
j,3−d a j,iND

d,i

3∏

s=4−d

Ns,i ,

etc., corresponding to the update rule

αHSMM
i,t = ΠiND

t,i

t∏

s=1

Ns,i +
K∑

j=1

t−1∑

d=1

αHSMM
j,t−d a j,iND

d,i

t∏

s=t−d+1

Ns,i .

(20)

Note that the iterations can be reformulated for efficient com-
putation, see Yu and Kobayashi (2006) and Yu (2010) for
details.

Appendix III

For the infinite horizon LQT formulation, the cost function in
Eq. (7) can be minimized with the algebraic Riccati equation
(ARE)

A�P + P A − PBR−1B�P + Q = 0

⇔ [
P −I

]
H

[
I
P

]

= 0, (21)

with the Hamiltonian matrix

H =
[

A − BR−1B�

− Q − A�

]

. (22)

Under suitable hypotheses about symmetry, stabilizability
and detectability, Eq. (21) has a unique positive semidefinite
solution P , which can be obtained by several methods, see
Laub (1979) for details.

The key is to convert the problem to a stable invariant
subspace problem of the Hamiltonian matrix, i.e., finding the
invariant subspace corresponding to eigenvalues of H with
negative real parts. This subspace can be found in several
ways. With the cost Q evaluated from precision matrices,
a simple solution is to use an eigendecomposition approach
(with ordered eigencomponents) to decompose H as

H = V
[
λ1 0
0 λ2

]

V�, with V =
[
V 1 V 12

V 21 V 2

]

, (23)

where

[
V 1

V 21

]

forms the stable eigenspace of H .We have that

H ∈ R
4D×4D for a double integrator as in Eq. (6), which pre-

cisely has 2D eigenvalues with negative real parts. Together
with (21), it provides the ARE solution

P = V 21V
−1
1 , (24)

which is used at each iteration to compute the tracking gains.
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