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ScienceDirect
Vaccines have been one of the most successful interventions in

global health. However, traditional vaccine development has

proven insufficient to deal with pathogens that elude the

immune system through highly variable and non-functional

epitopes. Emerging B cell technologies have yielded potent

monoclonal antibodies targeting conserved epitopes, and their

structural characterization has provided templates for rational

immunogen design. Here, we review immunogen design

strategies that leverage structural information to steer bulk

immune responses towards the induction of precise antibody

specificities targeting key antigenic sites. Immunogens

designed to elicit well-defined antibody responses will become

the basis of what we dubbed precision vaccines. Such

immunogens have been used to tackle long-standing vaccine

problems and have demonstrated their potential to seed the

next-generation of vaccines.
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Introduction
Vaccination is likely the most efficacious prophylactic

approach in modern medicine and has greatly reduced

the burden of infectious diseases [1]. Despite their

numerous successes, classical vaccine strategies that rely

on attenuated or inactivated pathogen formulations, have

failed to elicit neutralizing antibodies against a number of

pathogens. Some notable examples are long-standing

viral threats like Human Immunodeficiency Virus 1

(HIV-1), Respiratory Syncytial Virus (RSV), human

Metapneumovirus (hMPV) or Dengue as well as emerg-

ing pathogens such as Zika, amongst others. Additionally,

the constant antigenic drift of Influenza requires
www.sciencedirect.com 
formulation of seasonal vaccines, and has prevented

the development of a universally protective vaccine [2].

Many of these pathogens have evolved strategies to evade

targeted, neutralizing immune responses [3]. The immu-

nodominance of antigenic sites that do not confer broad

and potent neutralization over those that can be targeted

by potent neutralizing antibodies (nAbs) is a poorly

understood phenomenon, but it is well established that

non-neutralizing antibodies can facilitate virus entry into

host cells between different serotypes of certain patho-

gens (e.g. Dengue), thereby causing antibody dependent

disease enhancement (ADE) [4,5].

To overcome current limitations in vaccine development, a

rational vaccine strategy, known as reverse vaccinology [6],

has been proposed, aiming to focus the immune response

on epitopes where the pathogen is vulnerable to antibody-

mediated neutralization. In essence, this strategy relies on

the isolation of nAbs from human or animal repertoires,

followed by the structural characterization of the nAb–

antigen complex, and finally exploit the acquired atomic-

level information to design novel immunogens. A key

challenge for next-generation vaccines, then, is to place

neutralizing epitopes in the immune system’s spotlight for

efficient recognition and enhanced epitope-specific anti-

body elicitation. We refer to such class of vaccines as

precision vaccines, given their extremely well-defined epi-

tope-directed antibody response. An essential requisite for

precision vaccines is to encode the structural information of

epitopes targeted by broad and potent neutralizing anti-

bodies in the designed immunogens.

Here, we review four structure-based immunogen design

approaches that aim to elicit focused antibody responses:

(I) silencing non-neutralizing epitopes; (II) conforma-

tional stabilization; (III) germline targeting; (IV) epitope

scaffolding. A special emphasis is placed on linking the

design strategy to the immunological outcomes for dif-

ferent pathogens (Figure 1).

Silencing non-neutralizing epitopes
The most intuitive strategies to focus antibody responses

on immunologically subdominant epitopes is to remove or

mask non-neutralizing epitopes. In this section, we

describe two approaches to favor the immune recognition

of conserved epitopes: (I) excise antigen domains mainly

targeted by non-neutralizing antibodies; (II) reduce the

accessibility of non-neutralizing epitopes through glycan

masking.
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Glossary

Immunogen: complete antigen composed of a macromolecular

carrier and one or multiple epitopes capable of inducing an immune

response.

Immunodominance : immune responses that preferentially target

certain antigens or antigenic sites.

Precision vaccine : vaccine composed of designed immunogens

that elicits an antibody response directed to key antigenic sites that

are sensitive to neutralization.

Broadly neutralizing antibody (bnAb) : neutralizing antibody that is

broadly effective against different strains of the same pathogen.

Germline antibodies : unmutated antibody repertoire encoded by

the variable (V), diversity (D) and joining (J) genes.
In the Influenza virus, the hemagglutinin (HA) surface

protein is the main target of humoral responses, and is one

of the most notorious examples where the antibody

responses mostly target a highly sequence variable region

(head domain) and yield mostly strain specific responses
Figure 1
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[7]. Despite this immunodominance towards the head

domain, several epitopes in the HA stem region are

targeted by broadly neutralizing antibodies (bnAbs)

[8,9], providing a strong rationale for vaccines that aim

to induce antibody responses towards the HA stem. Two

independent studies reported the design of immunogens

comprising only the HA-stem domain [10,11�]. Several

rounds of structure-based design were performed, includ-

ing the removal of the entire head domain followed by the

introduction of stabilizing core mutations and linker

design. Upon vaccination with stem derived antigens,

mice, ferrets and cynomolgus monkeys mounted a

cross-reactive antibody response and survived a challenge

with a lethal dose of a highly pathogenic viral isolate.

By contrast to HA, the major target of Respiratory Syn-

cytial Virus (RSV) neutralizing antibodies is the head

domain of the Fusion protein (RSVF) [12]. Boyington
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et al. designed truncated versions of RSVF comprising

only the head region. This head-only immunogen elicited

comparable neutralization titers to those of the full

length, prefusion RSVF (see the next section). However,

mice primed with RSVF and boosted with a head-only

immunogen showed enhanced antibody titers towards

neutralization epitopes located on the apex of the head

domain, indicating the value of heterologous prime-boost

immunizations to focus antibody responses [13].

A structurally less aggressive approach to mask dominant

epitopes is to hyper-glycosylate non-functional epitopes or

domains. Such strategy has been used by Eggink et al. to

silence immunodominant epitopes in HA, generating

hyper-glycosylated HA head domains (HGHD). In mice,

the HGHDs yielded a heightened antibody response

towards the immunosubdominant stem domain and

showed improved protection upon viral challenge [14].

Masking of non-neutralizing epitopes through glycosyla-

tion has also led to novel HIV-1 Envelope (Env) immuno-

gens with reduced antigenicity to non-neutralizing epi-

topes. Two main targets of non-nAbs are the flexible

Env V3 loop, as well as the bottom of recombinant Env,

which is inaccessibleonmembrane-boundEnvspikes. The

introduction of two glycans on V3 was shown to dampen the

immune response against this site upon rabbit immuniza-

tion [15]. Similarly, glycosylation of the Env base showed

reduced reactivity with sera of animals immunized with

non-masked Env, indicating that glycan masking can ren-

der non-neutralizing epitopes inaccessible [16�].

Overall, the domain deletion and masking of epitopes

induce measurable immunological outcomes, nevertheless

they do not seem to radically transform the immune

responses obtained. Perhaps the most promising are the

HA headless immunogens which elicited antibodies with

increasedreactivity acrossheterosubtypicInfluenza strains.
Table 1

General design strategies for antigenic conformational stabilization o

Design strategy Structural stabiliza

Cavity filling mutations � Stabilization through improved hydrophob

Disulfides � Covalent linkage of residues/domains/pro

� Increase thermostability
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� Disturb helical structure formation to prev

� Increase expression yield

Fusion of

trimerization domains

� Favor trimerization 

Structural deletions � Increase solubility through deletion of hyd

� Recombinant expression of cleavage inde
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Antigenic conformational stabilization
Viruses are dependent on entering host cells for replica-

tion, a process mediated by viral surface proteins. Gener-

ally, these proteins tend to adopt a metastable prefusion

state on the virion’s surface (e.g. HIV, RSV, hMPV and

others), undergoing large structural rearrangements to a

stable postfusion conformation upon viral and host cell

membrane fusion [17]. Serum studies by Magro et al. have

revealed that RSV nAbs mostly target the prefusion state

of the RSVF [18]. This fueled the idea of promoting the

elicitation of antibodies directed against the prefusion

conformation rather than postfusion. In Table 1, we

summarize the design strategies used to accomplish the

antigenic conformational stabilization.

The structural determination of the prefusion conforma-

tion of RSVF [19] provided a template for designing

prefusion-stabilized versions of RSVF, latter achieved

by introducing intra-protomer disulfide bonds and cav-

ity-filling hydrophobic mutations (Ds-Cav1) [20]. Simi-

larly, Krarup et al. reported a stabilization strategy for

RSVF, by introducing proline residues that prevent struc-

tural rearrangements required to adopt the postfusion

conformation [21]. In immunization studies, prefusion

RSVF was eight times more potent in terms of neutrali-

zation than postfusion RSVF, as observed in mice, non-

human primates and cotton rats. A large fraction of the

elicited antibodies was directed against the apex of

RSVF, a site that undergoes profound conformational

changes in the postfusion state [20]. In a follow up article,

Joyce and colleagues further stabilized Ds-Cav1, resulting

in an immunogen with improved physical stability in the

prefusion state (RSVF-DS2). In mice, DS2 variants eli-

cited up to four-fold more potent neutralizing responses

as compared to Ds-Cav1, indicating that conformational

stability correlated with immunogenicity [22�]. As a more

relevant model for human RSV disease, a bovine RSVF-

DS2 version elicited bovine RSV neutralizing antibodies
f viral fusion proteins

tion effect Examples

ic core packing � RSVF DSCav1 [20]

� HIV Env [31]

tomers that are distant in sequence � RSVF DsCav1 [20]

� HIV Env [31]

ent structural rearrangement

� HIV gp41 [32]

� RSVF [21]

� T4 fibritin foldon [14,20]

� GCN4 leucine zipper [33]

rophobic stretches

pendent antigen

� HIV Env SOSIP.664 [34]

� HIV Env gp140 [35]

� RSVF DS2 [22�]
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>100-fold higher than postfusion F in calves, and con-

ferred full protection of upper and lower respiratory tract

upon viral challenge [23].

The structural similarity between RSV and hMPV

allowed similar design strategies to stabilize the MPVF

prefusion state. Interestingly, immunization studies in

mice have not yielded higher neutralizing antibody

responses than those elicited by the postfusion confor-

mation, showing that although design strategies seem to

be transferable to other pathogen’s fusion proteins, the

immunological outcome can differ [24].

The largest class I fusion proteins are found in human

coronaviruses, and known as spike proteins (S). The

structure of the spike protein of a human Coronavirus

HKU1 has been solved [25], serving as template to

stabilize a MERS-CoV spike protein in its prefusion

conformation. Immunogenicity studies in mice revealed

that prefusion MERS-CoV S elicited neutralizing anti-

bodies with increased breadth and potency compared to

postfusion S, showing that for this particular protein the

antigenic conformational stabilization strategy yields a

superior immunological outcome [26].

Using analogous design strategies, extensive efforts have

been made to stabilize the HIV Env glycoprotein in a

prefusion, closed conformation. A particular challenge for

Env engineering is to maintain its native conformation

upon recombinant expression, and reduce the conforma-

tional ‘breathing’ between the open and closed conforma-

tions that have been reported for the prefusion Env. The

most widely used construct for native-like Env design is

the SOSIP.664 trimer, which is stabilized by an intermo-

lecular disulfide bond, an isoleucine-proline substitution

within the fusion peptide and a truncation to remove the

hydrophobic membrane proximal region. While a com-

prehensive analysis of the efforts to stabilize Env is

beyond the scope of this article and have been the subject

of several reviews [27,28], we highlight two recent studies

that employed rational stabilization strategies to suppress

non-neutralizing antibody responses.

The Env V3 loop is a major target of non-neutralizing Abs,

and is exposed in the Env open conformation. To reduce

the V3 conformational dynamics, structure-based design

was employed to strengthen hydrophobic packing, prevent-

ing V3 loop to adopt the open conformation [29,30]. Simi-

larly, Kulp et al. employed computational design to replace a

network of buried hydrophilic residues by hydrophobic

amino acids, thereby limiting V3 exposure [16�]. Both

stabilization strategies reduced reactivity to V3 directed

antibodies, and immunogenicity studies in rabbits con-

firmed dampened antibody responses against the V3 loop.

Another main target of non-neutralizing antibodies within

Env are the CD4-induced epitopes. To prevent the CD4-
Current Opinion in Structural Biology 2018, 51:163–169 
induced conformational change while maintaining an

epitope targeted by bnAbs, de Taeye et al. introduced

two mutations that occur in HIV-1 strains unable to

undergo CD4-induced conformational changes [30].

Using a computational multi-state design protocol, Kulp

et al. rationally designed mutations that abrogate CD4

binding to Env, while maintaining binding to bnAbs

targeting the CD4 receptor binding site (CD4bs) [16�].
While these engineered Envs showed reduced binding to

antibodies targeting CD4-induced epitopes, neither

study could prove a direct impact of such modifications

on antibody specificity or neutralization in vivo.

In summary, the antigenic conformational stabilization is

clearly one of the most promising strategies for immuno-

gen engineering, having shown the ability to dramatically

transform the immunological outcome by presenting the

most relevant antigenic conformation for the elicitation of

functional antibodies. In this strategy, the precision char-

acter arises from the conformational specificity rather

than epitope specificity which will be much more domi-

nant in the following design strategies.

Germline targeting
Typical bnAbs against HIV-1 carry a large number of

somatic hypermutations [36–38].Basedonthisobservation,

germline targeting has emerged as a novel strategy to elicit

well defined antibody lineages. Germline targeting aims to

engage the unmutated precursors of the bnAbs, and drive

their maturation towards a bnAb by gradually acquiring the

necessary somatic mutations to broadly neutralize HIV-1.

Using computational design and in vitro evolution, Jardine

et al. developed an engineered outer domain (eOD) of the

viral gp120 protein, and introduced mutations that enable

binding of inferred germline precursors of thebnAb VRC01

(glVRC01) [36,39,40]. Both in a glVRC01 heavy chain

knock-in mouse model, and in mice transgenic for human

immunoglobulin loci, it was shown that the germline tar-

geting immunogen (eOD-GT8) primed antibodies with

characteristic features of VRC01-like antibodies [41–43].

Primed B cells were shown to be recalled upon boosting

immunizations with gradually more native Env versions,

and somatic mutations were driven towards those found in

VRC01-class bnAbs [44�]. Similarly, Medina-Ramirez

et al. have engineered a SOSIP.664 trimer to bind germline

precursors of CD4bs antibodies, and this engineered

native-like trimer was shown to activate glVRC01 antibo-

dies in vitro and in vivo [45].

In order to target another bnAb class binding to a different

epitope on Env (PGT121-like bnAbs), Steichen et al.,
employed mammalian cell surface display to engineer

germline targeting Env trimers, which were then shown

to activate B cells carrying a PGT121 germline receptor in
vitro and to prime PGT121-like antibody responses in

knock-in mice [46].
www.sciencedirect.com
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Together, these studies established a first milestone in

using structure-based design together with a stepwise

vaccinationprotocol that targetsandexpands specific germ-

line precursors. Albeit an importantcontribution, it remains

to be shown what outcome the germline targeting strategy

will have in terms of eliciting broadly neutralizing anti-

bodies in relevant animal models. Unlike the other

described approaches, the precision aspect of this strategy

is related to the specific antibody lineages that are deemed

necessary to achieve broad HIV neutralization activity.

Epitope scaffolding
The presentation of single epitopes in the context of scaf-

fold-proteinshasgainedtraction inthe lastyearswith theaim

of eliciting epitope-specific antibodies. Essentially, this

approach uses structural information of the exact epitope

conformation recognized by a nAb to design heterologous

proteins that mimic the structure of the epitope and are

structurally compatible with the antibody binding mode.

The first reports of epitope-scaffolds were presented in

the context of HIV using as targets the neutralization

epitopes 4E10 [47] and 2F5 [48,49]. In these two studies,

the epitopes were grafted onto heterologous scaffold-

proteins using computational design approaches [50],

biochemical and structural characterization confirmed

accurate epitope mimicry. Immunologically, the most

remarkable result was that the epitope-scaffolds were

able to induce antibodies with fine specificities similar

to those of the parent antibodies [47–49], showing that the

epitope-scaffolds achieved in vivo the immunological

outcome for which they were primarily designed,

although no serum neutralization was obtained.

A later effort by McLellan and colleagues applied the

epitope scaffolding strategy to design immunogens that

presented the antigenic site II of RSVF, the target of the

FDA-approved monoclonal antibody Palivizumab. How-

ever, only the side chains of the epitope were grafted onto

a scaffold with a similar backbone conformation as the

epitope, yielding a scaffold with imperfect epitope mim-

icry. Much like the HIV epitope-scaffolds, in mouse

immunizations, epitope-specific antibodies were elicited

but no serum neutralization was achieved [51].

To improve the structural mimicry of site II in a synthetic

scaffold, Correia et al. developed a new protein design

algorithm, where protein folding and sequence design

simulations were coupled to generate immunogens with

the epitope structure stabilized in the exact native confor-

mation. Thesedesigns showedanextremely high affinity to

site II antibodies, and structural characterization revealed a

perfect epitope mimicry. In mouse immunogenicity stud-

ies the second-generation epitope-scaffold still did not

elicit viral neutralization titers, nevertheless when used

in non-human primates (NHP) low, but consistent levels of

neutralization were detected. Monoclonal antibodies
www.sciencedirect.com 
isolated from the NHPs were site II-specific, and bound

with high affinity to RSVF. Structural studies confirmed

that the elicited antibodies recognized antigenic site II

similarly to Palivizumab, and most importantly, neutralized

RSV with superior potency compared to Palivizumab [52�].

In summary, the epitope-scaffolding approach is an effi-

cient way of eliciting epitope-specific antibodies. Never-

theless, these are simplified immunogens that mostly

encode the epitope binding motif surface and lack impor-

tant molecular features regarding the tertiary and quater-

nary environments of the native viral proteins. This class of

immunogens faces important challenges; despite their

proven ability to induce very potent and epitope specific

antibodies, it remains tobeseen howto increase thefraction

of functional antibodies within the overall repertoire.

Conclusion/outlook
The field of vaccinology is facing incredible challenges to

develop efficacious vaccines against sophisticated patho-

gens with the ability to escape immune responses in many

different ways. Due to those escape mechanisms,

mounted antibody responses against some of those patho-

gens have limited breadth and do not afford protection

against antigenically drifted strains. Additionally, the

induced neutralization titers are often low and decay over

time allowing reinfection. The reverse vaccinology strat-

egy was envisioned as an integrated approach to design

immunogens that elicit or boost preexisting antibody

responses focused on bona fide neutralization epitopes.

In the age of systems approaches and big-data science, our

understanding of complex biological phenomena, such as

an immune response, has been hugely expanded. There-

fore, we are now able to define with exquisite accuracy

the molecular determinants desirable for a particular

vaccine development endeavor. Those determinants

include, but are not limited to, antigen conformations,

desired antibody lineages and key neutralization epi-

topes, which lead us to conclude that we have entered

into a new age of precision vaccines. Structure-based

approaches, as reviewed here, are essential to define

the target problem and realize the full potential of preci-

sion vaccines. Despite the successes so far, none of the

strategies described here have proven to be the ‘one-fits-

all’ solution. While a prefusion stabilized RSVF was a far

superior immunogen than the postfusion counterpart, the

same approach for MPVF did not enhance the neutraliz-

ing responses. Similarly, the sole conformational stabili-

zation of HIV Env is deemed unlikely to elicit bnAbs [53]

and germline targeting approaches hold great promise to

prime a bnAb response. Finally, while epitope-scaffolds

elicited very potent and specific monoclonal antibodies in

NHPs, the average neutralization titers were rather low.

The strengths and weaknesses of each of the presented

strategies suggests a complex balance between the

approach, the target pathogen and the expected immune
Current Opinion in Structural Biology 2018, 51:163–169
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Table 2

Overview of immunogen engineering approaches and immunological outcomes

Approach Immunological outcome Examples

Silencing non-neutralizing epitopes Immune response focused on HA stem region, conferring

heterosubtypic protection upon challenge

Boosting of RSVF-head directed antibodies

Influenza [10,11�]
RSV [13]

Conformational stabilization Increased serum neutralization

Antibody responses focused on sites that are inaccessible in

alternative conformation

RSV [22�]
HIV [16�,30]

Germline targeting Activation of germline precursors in humanized mice

Sequential boosting protocol selected productive somatic mutations

HIV [42,44�]

Epitope scaffolding Elicitation of epitope specific antibodies

Successful elicitation of RSV antibody with superior neutralization

potency compared to clinically approved mAb

HIV [47]

RSV [52�]
response. Ultimately, a combination of the different

strategies may be the best course of action to overcome

their specific limitations and bring forth a new generation

of rationally designed, precision vaccines (Table 2).
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