Hardware-conscious Query Processing in GPU-accelerated Analytical Engines

Periklis Chrysogelos⋆, Panagiotis Sioulos⋆, Anastasia Ailamaki‡
⋆École Polytechnique Fédérale de Lausanne
‡RAW Labs SA

firstname.lastname@epfl.ch

ABSTRACT
Over the last years, modern servers have been adopting hardware accelerators, such as GPUs, in order to improve their power efficiency and computational capacity. Modern analytical query processing engines have been highly optimized for multi-core multi-CPU query execution, but lack the necessary abstractions to support concurrent hardware-conscious query execution over multiple heterogeneous devices and exploit the available accelerators.

This work presents a Heterogeneity-conscious Analytical query Processing Engine (HAPE), a blueprint for hardware-conscious analytical engines for efficient and concurrent multi-CPU multi-GPU query execution. HAPE decomposes query execution on heterogeneous hardware into: 1) efficient single-device and 2) concurrent multi-device query execution. It uses hardware-conscious algorithms designed for single-device execution and combines them into efficient intra-device hardware-conscious execution modules, via code generation. HAPE combines these modules to achieve multi-device execution by handling data and control transfers.

We validate our design by building a prototype and evaluate its performance using radix-join co-processing and the TPC-H benchmark. We show that it achieves up to 10x and 3.5x speed-up on the radix-join against CPU and GPU alternatives and 1.6x-8x against state-of-the-art CPU- and GPU-based commercial DBMSs on the selected TPC-H queries.

1. INTRODUCTION
Traditionally, analytical query engines have relied on the exponential increase of CPU performance in order to keep up with the data growth, which is also exponential. Initially, CPUs relied on Dennard scaling, improving their performance by increasing their clock frequency. However, after 2005, this was no longer feasible due to the power wall. As a response, CPU vendors started increasing the core count, which signaled the beginning of the multicore era. Now, due to the power wall, the power inefficiency of general-purpose hardware is causing modern servers to change. The increased performance per watt of specialized hardware, such as GPUs, has resulted in their adoption in emerging servers, which can be seen by the almost linear increase over the past decade of accelerator-enabled servers in the TOP500 list. In addition, architects explore designs that go beyond the classical system-wide cache-coherence in favor of increased core scalability.

In order for analytical query engines to scale over time with hardware improvements, they have to efficiently use the heterogeneous hardware of emerging servers. On the CPU front, state-of-the-art engines are using algorithms [28, 29, 6, 26] that match the CPU micro-architecture. Techniques like vector-at-a-time execution [7] and just-in-time code generation [20, 19] are used to reduce the query execution overheads, while the Exchange [12] operator and HyPer’s Morsels [21] are used to parallelize query execution in multi-core and multi-CPU configurations. On the GPU front, recent work has explored optimized algorithms for GPU execution [17, 27, 14, 18, 30] as well as GPU query execution models [32, 13, 23, 8]. The majority of these works do not consider query execution over heterogeneous devices, for example multiple GPUs, and many of them ignore the processing power available in the server’s CPUs. Works that support both use a high-level framework and/or hardware-oblivious algorithms and thus achieve sub-optimal per-device execution. Lastly, works that support heterogeneous hardware, only consider a single device type per query [24] due to the lack of abstractions and algorithms for multi-device execution or rely on full wasteful materialization [32, 15, 8].

In this work, we describe a new analytical engine design for efficient analytical query execution on a heterogeneous multi-CPU multi-GPU server node that combines hardware-conscious algorithms with efficient intra- and inter-device execution models.

Contributions. The contributions of this work are the following:

- We make the case for heterogeneity- and hardware-conscious analytical engines and present HAPE, an engine design for concurrent execution on heterogeneous hardware.
- We show that decoupling inter- from intra-device operator design can decrease the design space as well as achieve state-of-the-art performance in each device and allow scaling existing algorithms to heterogeneous hardware.
- We evaluate our design by extending Proteus [19, 10] with a GPU join [30] to show the importance of hardware-conscious algorithms during hybrid execution. Our engine achieves 10x and 3.5x on equi-joins and 1.6x-8x speed-up on TPC-H queries, against CPU and GPU state-of-the-art DBMSs.

Our design allows combining hardware-conscious device-specific algorithms to achieve efficient execution across all the compute units of a multi-CPU, multi-GPU server. HAPE achieves near optimal co-processing performance by combining algorithms optimized for homogeneous hardware, effectively avoiding the developing cost of algorithms specialized for heterogeneous hardware.

This article is published under a Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits distribution and reproduction in any medium as well allowing derivative works, provided that you attribute the original work to the author(s) and CIDR 2019. 9th Biennial Conference on Innovative Data Systems Research (CIDR ’19) January 13-16, 2019 , Asilomar, California, USA.
2. BACKGROUND

In this section, we discuss hardware-conscious operator algorithms and parallel execution of query plans. In the rest of the paper we will use these components as our building blocks for the heterogeneous hardware-conscious analytical engines.

2.1 Hardware-conscious Operators

While hardware-oblivious algorithms simplify the optimization process and the execution over heterogeneous hardware, tuning algorithms for the underlying hardware can produce significant performance benefits. For modern CPUs, most previous studies take three architectural characteristics into account: cache hierarchy, TLBs and SIMD instructions. These dimensions are analyzed in conjunction with the available memory bandwidth and latency.

Prior work has introduced hardware-conscious variants of several operators, including scan-like operators, sort-based operations and index scans [33, 25, 16]. As a heavyweight operator, the join has been studied and tuned extensively for modern CPUs, resulting in multiple variants of the radix hash-join [29, 6, 3, 2, 28]. Specifically, Shatdal et al. [29] proposed a cache-conscious variant that introduces a partitioning step. The two input tables are co-partitioned such that for each partition pair the hash table fits in cache. Then, all hash-table accesses during the probing phase are in cache and cache misses are averted. Blanas et al. [6] observed that for high number of output partitions the performance is impacted by TLB misses. As a solution, they advocate for the use of multiple partitioning passes, each producing a smaller number of partitions, reducing TLB misses at the expense of extra passes over the input. Schuh et al. [28] argue that the common denominator is that these works try to minimize the effects of random memory accesses by minimizing cache and TLB misses. Still, Blanas et al. [5] argue in favor of a hardware-oblivious hash-joins as they require less parameter tuning and can outperform hardware-conscious implementations in some scenarios.

In contrast to CPUs, modern GPUs have a significantly different micro-architecture, including for all three of the aforementioned characteristics. First of all, GPUs depart from the linear memory hierarchy of CPUs and adopt a fatter cache hierarchy, with a hardware-managed L1-like cache, called shared memory, which is a software managed scratchpad, and other more specialized caches, like a constant cache. In addition, GPUs target different workloads and thus size their caches and TLBs differently to CPUs. Karnagel et al. [18] experimentally showed that GPU TLBs have 2MB pages to support the high number of threads and pack more addressable space per TLB entry. Finally, in the GPU SIMT model, each GPU thread has an independent register file but, in contrast with the SIMD model, thread divergence is handled in hardware. As for CPUs, hardware-conscious algorithms that consider the GPU hardware improves performance. Karnagel et al. [18] take into consideration the TLBs in order to improve hash-based group-by operations, while partitioned hash-join [27, 17] implementations use shared memory to store histograms and per-partition hash-tables.

A limiting factor for GPU algorithms is GPU memory size. Prior works make simplifying assumptions about the types of workloads handled; [27] only addresses the case that at least one of the tables fits in GPU memory. Kaldewey et al. [17] use Unified Virtual Addressing (UVA), to join arbitrarily large data by accessing data over the interconnect. Still, interconnect bandwidth is an order of magnitude slower than GPU memory bandwidth and this greatly impacts multi-pass algorithms such as radix joins.

Inter-device co-processing can reduce unnecessary interconnect traffic. Stiehle and Jacobsen [31] present an efficient sorting algorithm that consists of two steps: generating sorted runs in GPU and merging them in CPU. Merging in the CPU side allows for a single pass, per direction, over the scarcest resource, the interconnect. Sioulas et al. [30] exploited the CPU memory-bandwidth to partition the inputs of a partition-based hash-join before sending them to the GPU. The initial partitioning breaks down big relations into partitions that fit in the GPU memory, while its small fan-out allows for a high throughput in the CPU side. In the GPU side they further partition the inputs to fit the final partitions in the scratchpad and minimize the effect of random accesses.

In Section 4.1, we use this join as a representative example to discuss a hash-join optimized for GPU hardware with respect to the memory hierarchy and compare it with a hardware-oblivious GPU implementation as well as CPU algorithms. In Section 5 we show how their out-of-GPU execution strategy can be generalized in order to mix different intra-device algorithms to attain efficient multi-device execution.

2.2 Query execution models

In-memory analytical query execution engines traditionally used either a tuple-at-a-time or an operator-at-a-time execution model and thus suffered from high interpretation overheads or materialization costs, respectively. To amortize these costs, vector-at-a-time [7] execution and just-in-time (JIT) code generation [20] engines emerged. The vector-at-a-time model communicates a block of data at a time between operators and is based on the trade-off between interpretation and materialization costs. This model is usually coupled with using vectorized code (SIMD instructions) and tuned for cache locality. JIT-based engines generate specialized code for each query, consisted of tight loops. Intermediate results are passed across operators via the processors registers until an operator forces a materialization point. Unlike previous models, overheads are less dependent on the size of intermediate results.

GPU analytical query execution has similar challenges and techniques. Several GPU systems have used the operator-at-time execution model [32, 15, 8]. This model is restricted by the GPU memory size and thus is often combined with transferring intermediate result to CPU memory [15, 8]. However, the latter causes excessive interconnect traffic, as all the results have to pass over the interconnect. In order to reduce the materialization overhead, Paul et al. [23] pipeline data between operators running as separate kernels through OpenCL’s communication channels. HorseQC [11] uses a block-at-a-time approach and materialized intermediate results in GPU memory significantly reduce the execution time. In addition, HorseQC and MapD [22] use just-in-time code generation to fuse multiple operators in a single kernel to reduce result materialization and the number of required passes.

The emergence of systems with multiple processors has motivated parallel query execution. On the one hand, the Exchange operator [12] has been used to encapsulate parallelism and allow par-
parallel execution using the existing, single-threaded, operators. On the other hand, Hyper [21] exposes the operators to parallelism, propagating the responsibility of maintaining shared data structures to the operators, for example, its hash-join has to guarantee that the hash-table is correctly built using multiple threads. In the heterogeneous context, Voodoo [24] allowed query execution on CPUs and GPUs in MonetDB, but without support for concurrent CPU-GPU execution, load balancing or data structures. Similarly, TVM [9] focused on deep learning workloads and targeted multiple types of devices but considered execution on a single device at a time.

The architecture of modern servers introduces new challenges for targeting multiple types of devices at the same time. Both the Exchange and Hyper’s approach rely on low-latency system-wide cache coherent memory for synchronization and atomic primitives as well as shared data structures, which is generally lacking in heterogeneous servers. In addition, different devices may have different access rights for different regions of the aggregate memory of the system, based on the system topology as well as the type of devices. To avoid complicating the relational operators and increase the applicability of our design to future architectures, the HAPE decouples the development of relational operators from the complexities of heterogeneous servers. Our parallelization strategy builds upon the ideas of HetExchange [10], a framework that allows multi-CPU, multi-GPU query execution by encapsulating the heterogeneous parallelism of the server. While HetExchange provides a framework for hardware-oblivious operators, HAPE provides server-wide hardware-conscious execution by composing per-device hardware-conscious algorithms.

TVM automated the optimization of low-level programs to different hardware via an iterative process: a scheduler proposes optimized versions of the input program and the measured performance is used to refine a machine learning model that predicts the performance of the device. TVM can be incorporated in our system to tune the query optimizer as well as the compiler optimizations used by the different device back-ends.

In addition, different devices are fit for different workloads and can be leveraged synergistically. Appuswamy et al. [1] propose the archipelago abstraction which encapsulates a set of devices and a target workload as a means to partition resources per functionality. Our work focuses on the design of a hardware-conscious analytical multi-CPU, multi-GPU archipelago.

3. THE CASE FOR HAPE

Heterogeneity-conscious Analytical query Processing Engines (HAPE) allow DBMSs to take advantage of heterogeneous hardware present in modern servers by 1) encapsulating heterogeneity and multi-device parallelism, 2) providing a unified execution model and 3) embracing single-device hardware-conscious operators. These operators are then composed together to provide server-wide hardware-conscious execution, while the encapsulation handles their communication and synchronization.

Decoupling heterogeneity from execution. HAPE exploits the observation that by encapsulating inter-device functionality, the remaining system is composed of single device, and thus homogeneous, subsystems. HAPE minimizes the effect of heterogeneity and allows the rest of the system to be build by combining existing work on homogeneous systems. Operators specialized to each micro-architecture may be used for each type of device. Just-in-time code generation provides a unified interface that allows operators to be used on multiple device types. In addition, JIT allows the execution model to be adapted to each device providing enough flexibility for efficient inter-operator execution. HAPE encapsulates the heterogeneity by handling execution and data transfers between devices using the HetExchange operators.

Traits in heterogeneous systems. In a heterogeneous server there are four simple traits [10] that characterize execution: target devices, parallelism, data locality and data packing. The first two traits concern the flow of execution, or control flow, inside the heterogeneous system. More specifically, for each operation, the first one defines the execution device type, while the second one defines the number of concurrently used devices. The last two traits concern the data flow in the system. Data locality is concerned with the distance of the data from their consumer. Transition between different values of any of the control-flow traits requires inter-thread or inter-device task assignment, while increasing data-locality requires data-transfers. All these operations are usually costly, thus it is common practice to amortize their overhead by performing them in the granularity of packets [12]. Unfortunately, decisions often depend on the actual values of each tuple. In such cases we can operate on units of packets only if the property on which the decision depends is common among all the tuples of the packet. Thus, the data packing trait specifies whether the operations operate on tuples or packets and in the case of the later, the properties that are common between all the tuples of each packet. For example, routing packets based on a hash-value implies that for every packet, all its tuples have the same hash. This allows the system to route packets without actually accessing their content.

HAPE architecture. HAPE is composed of three main parts, as shown in Figure 2. The first part is the query optimizer, which is responsible for translating the query into a heterogeneity-aware physical plan, a physical plan augmented with information regarding which devices will be used for each part of the tree. By encapsulating conversions of the aforementioned traits in the four HetExchange operators, all relational operators are heterogeneity-oblivious. The heterogeneity-aware plan can explicitly specify the degree of parallelism and target devices of each operator by placing these four operators. Combining the operators with a representation of the plan as a directed acyclic graphs, instead of a tree, permits the plan to use different paths for each device. As a consequence, i) each node of the plan is mapped into a specific device, with the exception of nodes representing a target device conversion, ii) the plan is expressive enough to represent the selection of different algorithms optimized for each target device.

The heterogeneity-aware plan is then broken down into pipelines each targeting a single device. For each pipeline, the code generator produces code optimized for the pipeline’s target device through
device-specific back-ends, named device providers. The generated code is executed on the available devices and is responsible for transferring control and data between the devices. In addition, by coordinating with the scheduler and resource managers, it load balances based on the runtime load.

HAPE benefits. HAPE architecture provides several benefits. First, by encapsulating inter-device operations, HAPE allows relational operators to be heterogeneity-oblivious but also hardware-aware. Relational operators ignore the complexities of remote data, multi-device execution and coordination between devices and focus on using the microarchitecture of their specific target devices as efficiently as possible. At the same time, HAPE provides the methods through four meta-operators to enable co-processing across a mix of CPUs and GPUs. Second, by providing a unified code generation interface, HAPE allows operators to be used for a variety of device types, depending on the needs and the degree of specialization. Third, by embracing control-flow and data-flow operations, it allows load-balancing and data-transfers between the different devices. As a result, HAPE supports query execution both over CPU- and GPU-resident data as well as data scattered over the server’s memories. Last but not least, extracting and handling heterogeneity through explicit converters makes HAPE compatible with existing query optimizers [4].

HAPE challenges. HAPE has to overcome three challenges to effectively use the underlying hardware. First, it needs efficient operators for single-device execution. As HAPE builds on top of single-device operators, it’s overall effectiveness relies on the efficiency of the underlying single-device operators. For CPU query execution there has been debate [28, 3, 2, 5] regarding hardware-oblivious versus hardware-aware algorithms which generally concludes that the more appropriate option depends on the workload. To support multiple devices, the first challenge is to identify how algorithm specialization and selection differs from CPUs to GPUs. Second, even if optimal algorithms are used, the inter-operator efficiency can significantly impact performance and in the case of HAPE, the engine should have a common, albeit efficient, execution model to allow hybrid execution. Prior work [7, 20] on CPU query execution has shown the impact of inefficient execution models and tried to minimize them. Recent work [24] has shown that portability can be achieved by expressing the operators in high-level frameworks like OpenCL and/or using vector primitives, but Funke et al. [11] showed that such strategies can incur a high number of passes and thus waste memory (and cache) bandwidth, even when optimized for the GPU-only case. Thus, the second challenge is to identify an execution model efficient both on CPUs and GPUs. Last but not least, in heterogeneous servers there are multiple devices, cache-coherence is limited, globally shared memory may either not exist or incur high access latencies and inter-device bandwidth is one of the scarcest resources. In order to take advantage of the efficient per-device execution, the engine should be capable of efficiently handling the multiple devices. This requires: 1) that the engine has the necessary mechanisms to efficiently handle transfers and packet routing, 2) the necessary policies and algorithms to decide on the required transfers and routing. So, the third challenge is achieving concurrent multi-device execution and mapping parallel algorithms in such a system.

HAPE extensibility. While we focus on the multi-CPU multi-GPU case, HAPE is extensible to other accelerators as well. To support a new device type, the engine needs a pair of new device-crossing operators and a device provider. In our prototype the device provider translates the code generation directives to LLVM IR and the generated code contains control flow statements, such as branches and loops. Thus, HAPE is generalizable to such devices.

For devices without control-flow support, but with gather and scatter capabilities, HAPE can be applied by restricting the device providers to such a subset of instructions and allow only the CPU operators to generate more complex code, in order to support routers and allow HAPE to maintain its load balancing capabilities and apply multi-device algorithms.

4. EFFICIENT PARALLEL PROCESSING

4.1 Efficiently parallelizing operators

The abstractions of Proteus’s infrastructure allows the execution engine to be composed of homogeneous subsystems. This property empowers the optimizer to opt for hardware-conscious operators, tuned for the specific target device alongside the range of supported hardware-oblivious operators. As discussed in Section 2.1, this brings about the potential for significant performance benefits over generic hardware-oblivious operators.

Tuning operators for devices. Specializing to the target devices has the potential to boost performance. Prior work has optimized data movement and access patterns with respect to the device’s caches, including TLBs, and their characteristics. Other works have considered properties and functionalities of processing units such as the instruction level parallelism (ILP), branch predictors, SIMD instructions for CPUs, and warp-wide execution and shuffles in GPUs. Operator implementations need to exploit properties of the underlying hardware and explore the available opportunities within the design space to achieve high performance.

Common design, different specialization. Despite the microarchitectural differences, the exploration of hardware-conscious operator designs is not uncorrelated across different devices. Parallels can be drawn between the optimization demands and consequently the design choices across devices. The hardware-conscious join is an indicative case: independently of CPU or GPU execution, random accesses are the main bottleneck of a non-partitioned hash-join, as they waste memory bandwidth due to over-fetching. In both CPUs and GPUs, similar algorithmic approaches can be used to mitigate the problem, as for example, partitioning the input to fit the per-partition hash-tables in a memory (cache) with a higher bandwidth. On the CPU side, the partitioning fanout is restricted by the TLB size and, on the GPU side, the size of the cache that contains write offsets and consolidates stores. The end result, in both cases, is a multi-pass partitioned hash-join design.

In GPUs, it is possible to do some further optimizations. Random accesses to L1 waste bandwidth as a whole cache line has to be fetched per access. To make the probing step GPU-friendly, we load the smaller partition to the scratchpad, build the hash-table using atomic operations and probe with the tuples of the corresponding partition. The scratchpad is organized into banks and is capable of serving a different word from each bank per (warp-)request, in-

![Block diagram for a GPU join over partitioned data.](image-url)
dependently of its location in the bank. Thus, the scratchpad only penalizes accesses to the same bank, but does not waste bandwidth by over-fetching. We show a block diagram of the build & probe sequence within the memory hierarchy in Figure 3.

The scratchpad is of limited size, in the order of L1 size, and the produced partitions of the two inputs should be small enough to fit in it. Therefore, the number of produced partitions should be sufficiently high. In the CPU case, the partitioning is optimized with the goal to reduce the TLB misses and improve the cache locality of the output. Similarly, in the GPU case, we aim to reduce the sparsity of the stores but the fanout is restricted by the memory available for consolidating the stores. To consolidate the stores, we read a chunk of the input (at a time) in the scratchpad and reorganize it in such a way that elements belonging to the same output partition are located in consecutive scratchpad entries. Then, we scan the scratchpad and write each tuple to its corresponding output partition, before moving to the next chunk. By controlling the number of output partitions, we control the average number of elements mapped to each partition for each step. The reordering gathers elements of the same partition together and thus increases the coalescing of the stores, which allows for better utilization of the GPU memory bandwidth and improves the effective throughput. The fewer the output partitions the higher the average run length of elements in the same partition, and thus the bandwidth utilization, but the more passes over the data are required to achieve scratchpad-resident co-partitions. In our implementation, contrary to the GPU hash-join of [27], in each partition pass we scan the data once and write them to a linked list of buffers managed with atomic operations. This technique avoids performing an extra scan to determine the output offsets. We illustrate the block diagram for the steps of a partitioning pass within the memory hierarchy in Figure 4.

The GPU hardware-conscious join is tuned for the specific memory hierarchy of the GPUs. However, the skeleton of the algorithm remains the same for both CPUs and GPUs. The main observation is that the design of hardware-conscious operators has two components: the algorithmic skeleton and the hardware-specific finer-grained building blocks, such as caching the hash table in the scratchpad, that change between different device types. This allows us to re-use the algorithms across devices and argue for separating hardware-consciousness from device-consciousness: algorithms may be capable of solving different hardware-specific device-invariant problems (eg. random accesses through multiple partitioning steps) but the exact mappings to the hardware may differ per device (eg. fanout based on TLB versus scratchpad capacity).

4.2 Efficiently parallelizing query plans

To achieve efficient inter-operator CPU and GPU query execution, we use code generation to produce efficient code for each target device and we parallelize the execution to multiple homogeneous devices by scheduling execution of the generated code as well as any necessary data transfers. In Section 5 we discuss how these techniques extend concurrent execution to multiple heterogeneous devices.

Code generation. We use code generation to achieve two goals, i) a unified interface for operators to target multiple devices and ii) enough flexibility to provide a hardware optimized implementation. We provide the implementation of the code generation interface with a different back-end per device. Each back-end is responsible for producing code tailored to the underlying device. Starting from the lower level, back-ends are responsible for translating code generation directives received by the operator to the instruction set of their target device. At a higher level, they specialize common functions, like worker-scoped atomics, reductions and synchronizations to the underlying device. For example, a back-end for single-threaded CPU execution would optimize-out worker-scoped atomics to simple load-apply-store operations.

Homogeneous inter-device parallelism. In order to achieve inter-device parallelism over a set of homogeneous devices, we extend the traditional Exchange [12]. Similar to the Exchange, we instantiate both the producer and consumer code on multiple devices to achieve the desired input and output degree of parallelism. In contrast with the traditional Exchange, we separate control flow, control transfers between producers and consumers, from data flow, data transfers over the interconnects. Separating them, allows for taking data-dependent decisions to transfer control without access to the data at the point of decision.

As control flow operations are inherently more CPU-friendly than GPU we propagate task assignment and load balancing to the CPU and perform them through a CPU-side operator, HeteXchange’s router. This operators is a parallelism trait converter. It receives tasks from producers and routes them to consumers, based on policies. Our implementation has load-aware, locality-aware and hash-based policies. We push down to the producers the responsibility of packing data such that the router can take routing decisions the granularity of packets, without accessing the packet contents and only based on packet metadata.

Depending on the routing policy, a packet may be routed to a consumer that does not have access to its content. To handle such cases, we represent data transfers as an operator and place them on the plan. In addition, a variant of the same operator takes into consideration the memory topology in order to perform broadcasts with minimal number of copies. By taking into consideration the memory topology, this operator performs packet multi-casts and sharing, in order to minimize the data transfers during broadcasts. In addition, decoupling the data transfers from the relational operators allows our design to operate over both initially CPU-resident and GPU-resident datasets as well as datasets that are distributed over all the CPU and GPU memory nodes.

5. EFFICIENT CO-PROCESSING

Supporting multiple types of devices, but only one device-type at a time (homogeneous parallel execution) allows executing the query on the most appropriate device type, but leaves the rest of the devices underutilized. The rest of this section expands our design to concurrently use all the available heterogeneous devices.

Similarly to the homogeneous case [12], there are three ways to parallelize a query over heterogeneous devices. First, the engine can vertically partition the query plan and execute each part on the most appropriate type of devices, pipelining execution between heterogeneous devices. Second, different subtrees of the query plan can be distributed to different devices, thus partitioning the plan horizontally. Third, we can design efficient operators, the execution of which spans across multiple heterogeneous devices.
Vertical co-processing. We achieve pipelined execution across devices by exploiting that the two vertical partitions of the plan are independent which allows us to independently select the most appropriate algorithms for each part as well as generate efficient code for the target device of each part. We encode the transition between device targets using HetExchange’s *device crossing*, which is responsible for changing the back-ends used during the code generation and handles the transition of execution between different devices, effectively hiding from the rest of the operators that their input might be potentially received from another device, both during code generation and execution time.

Horizontal co-processing. The design supports horizontal parallelism across multiple heterogeneous devices by allowing routers to have multiple distinct parents. By this relaxation, each of its parents can target different type of devices. For example, in contrast with L1, is not over-fetching. In addition, L1 is affected by cache pollution and handles the transition of execution between different devices, effectively hiding from the rest of the operators that their input might be potentially received from another device, both during code generation and execution time.

Horizontal co-processing. The design supports horizontal parallelism across multiple heterogeneous devices by allowing routers to have multiple distinct parents. By this relaxation, each of its parents can target different type of devices. For example, in order to split an aggregation across 48 CPU cores and 2 GPUs, the plan has a router operator that runs on the CPU with two parents. The first parent is an aggregation while the second one is a CPU-to-GPU device crossing operator followed by an aggregation. For this example, the first parent would be instantiated 48 times, resulting in the parallel execution of the aggregation to the CPU cores. The device crossing operator and its aggregation would be instantiated 2 times by the router and each instance will transfer the execution to its GPU and compute the aggregation. The router does not differentiate between parents based on their execution target, the device crossing operators handle that. Data partitioning for horizontal heterogeneous parallelism is handled as described in Section 4.2.

Intra-operator co-processing. In order to provide efficient algorithms for co-processing, it is possible to combine, without modification, algorithms tailored to each device via data partitioning and scheduling policies, reducing the design effort in this manner. Continuing on the radix-join algorithm of Section 4.1, Sioulas et al. [30] propose using the CPU in order to perform a first partitioning step locally to the input, which enables us to perform the join with a single pass over the slow interconnect. The two join inputs are co-partitioned in their initial location in such a way that each co-partition can fit in GPU memory. Then, for each pair, we transfer it to the GPU and execute the more fine grained partitioning steps and the probing as described in Section 4.1. By controlling the number of partitions, we fit each co-partition in the GPU memory and thus only a single pass over the interconnect is required, as long as there is no single key for which the corresponding tuples do not fit in GPU memory. As the partitions generated in the CPU side should be just small enough to fit in the GPU-memory, the CPU-side partitioning requires a small number of output partitions, compared to the final number of partitions required by the radix join, and thus it can be optimized to achieve very high throughput even for datasets in the order of tens or hundreds of gigabytes.

The task of selecting the above server-wide algorithm is propagated to the query optimizer. The query optimizer places an initial CPU-side partitioning operator on each of the two inputs. These operators are followed by a zip operator that matches the corresponding partitions from each side into co-partitions and pushes them to the next operator. The zip is followed by a split operator which drives each of the two partitions to a (different) sequence of a mem-move, a CPU-to-GPU and another partitioning operator. The co-partitions produced by the latter are then zipped once more, unpacked and propagated to the actual in-GPU join operator.

Based on the above plan, the query optimizer can produce other more complex plans using its optimization rules. For example, instead of sending all the co-partitions to a single GPU, it can add a router to send some co-partitions into a second GPU, or even keep some of them for joining on the CPU-side.

6. **EVALUATION**

In this section, we present an evaluation of the performance for the system described above.

6.1 **Experimental Setup**

The following experiments run on a machine provisioned with two 12-core Intel Xeon E5–2650L v3 running at 1.8 GHz, with 64KB of L1 and 256KB of L2 cache memory per core, 30MB of shared L3 cache and 256 GB of main memory. Also, the machine is equipped with two NVidia GeForce GTX 1080 GPUs each with 8 GB of local memory and connected on one of the two CPU sockets, through a dedicated PCIe 3 x16 interconnect. We compare our implementation with two state-of-the-art commercial systems, DBMS C and DBMS G. DBMS C is a CPU-based columnar DBMS that is based on MonetDB/X100 [7], uses SIMD vector-at-a-time execution and supports multi-CPU execution. DBMS G is a GPU-based DBMS that supports multi-GPU execution and uses just-in-time code generation for the in-GPU kernels.

6.2 **Hardware-conscious Join**

This section evaluates the GPU partitioned hash-join against other algorithms and implementations. The first two experiments use two equally-sized tables, each with two 4-byte columns: a key and a payload. We measure the performance of an equi-join over the key columns that is followed by a sum/count aggregation over each payload column. Both tables have exactly the same keys and thus the join output has as many tuples as any of the inputs. Figure 5 assesses the importance of using the GPU scratchpad for the build and probe phase of the join, rather than following the CPU conversion of using the L1. For this experiment, we use 32 million tuples for each table, load them in GPU memory and measure the execution time of the in-GPU partitioned join for varying number of partitions. Thus, the input size is constant, while the number of elements per partition varies. To filter-out the effect of handling over-sized partitions and focus on the impact of selecting the correct memory, we select the keys so that all produced partitions have exactly the same size. Each co-partition is assigned to a GPU block of threads and thus this defines the memory requirements for the intermediate structures per block. We compare three variants: L1, which optimistically stores all the corresponding data in L1, SM that stores all the data of the build table in the scratchpad and SM+L1 that stores the offsets of the heads of the hash table chains in scratchpad and the rest in L1.

The more we rely on the scratchpad to store join’s intermediate structures, the better the performance, as the scratchpad, in contrast with L1, is not over-fetching. In addition, L1 is affected by the scanning of the co-partitions, which causes cache pollution and decreases the hit rate proportionally to the input size, as multiple
6.3 Operator-level co-processing

The next experiment evaluates the join co-processing technique designed for scaling up the join to cases when the GPU-memory is insufficient for storing the inputs tables and intermediate join structures. In that purpose, we scale to datasets bigger than the ones in Figure 6, from 256 million tuples to 2 billion tuples and operate over CPU-resident data. Figure 7 shows the execution time of the co-processing technique for the case of 1 and 2-GPUs compared against the joins of the two commercial systems. DBMS G is not designed for out-of-GPU datasets, and thus performs poorly even after 512 million tuples. DBMS G scales linearly with the number of keys but despite the fact that it has access to the data with the DRAM bandwidth, the random accesses force CPU implementations to suffer either from high latencies, or reduce the latencies at the expense of multiple passes, which causes the DMBS C to achieve a throughput significantly lower than the PCIe throughput. In contrast, the co-processing approach achieves the best from both worlds. It partitions the data in the CPU-side where it has the DRAM bandwidth in its availability for scanning the data. On top of that, as it requires a relatively low-fanout, the partition materialization can also take advantage of the high DRAM bandwidth. The partitioning allows for a single-pass over the slow PCIe and on the GPU-side, the 280GBps memory bandwidth of each GPU in combination with the optimizations to use the scratchpads allow for a partition-and-join throughput also higher than the PCIe. As a result, the single-GPU co-processing the join is bottlenecked by the PCIe which is higher that the CPU-only join throughput. In addition, adding an extra GPU, on a dedicated PCIe bus, almost doubles (1.7x) the total throughput as the GPU-side join throughput is also doubled, while the near-DRAM low-fanout CPU-side partitioning can sustain providing for the two PCies. Overall, the co-processing achieves 12.5x and 4.4x speedup over DBMS G and DBMS C, respectively, for the largest dataset size each supports.

6.4 Query Plan-level co-processing

The rest of the experiments focus on evaluating the end-to-end performance of the query engine presented and more specifically evaluate its efficiency on achieving state-of-the-art performance in each device and, in hybrid mode, its efficiency on achieving the aggregate throughput of the individual devices. We use four TPC-H queries, at scale factor 100, to evaluate our system: Q1, Q6 which are simple aggregations and thus stress the interconnect and memory bandwidth utilization of the system, and Q5, Q9 that are join-heavy. As we currently have no support for LIKE conditions, we run Q9 without the LIKE condition and the join to the corresponding filtered table. We use a binary columnar format for the inputs, which for our system is translated to 15-27GB working sets per query. Taking into consideration data structures and space for buffer management, none of these queries fits in the aggregated GPU memory. Thus, for all the experiments and systems the data are CPU-resident. For each experiment we warm up each systems to allow them to load the data in-memory prior to any measurement.
Figure 8 plots the execution time for the commercial systems and for three configurations of Proteus: CPU-only that uses the two CPU sockets, GPU-only that uses both GPUs, and hybrid execution which uses all the CPUs and GPUs of the server. The performance of Proteus CPU is comparable DBMS C, with the exception of Q1. Q1 has multiple aggregates and thus DBMS C has a higher overhead due to the multiple in-L1 passes required by its vector-at-a-time processing. In contrast the code generation of Proteus CPU avoids that. DBMS G is optimized for star-schema based queries and in-GPU processing and thus it was unable to run on 3 queries.

For the case of homogeneous device execution, we see that the relative performance depends on the query category. For the scan-bound queries, CPU-only execution demonstrates significantly better performance compared to GPU-only execution and is more than 2.65 times faster in both queries. The CPU-only configurations only access local DRAM and sustain a throughput higher than the combined bandwidth of the interconnects, over which, the GPU configurations, have to access the data. However, for the join-intensive Q5, GPU-only execution attains higher performance and achieves a speedup of 1.4x, despite the data transfers over PCIe. This upfront interconnect overhead is amortized as the heavy processing involved benefits from the hardware capabilities and the fine-tuned algorithm on the GPU, while the CPU-side join suffers from high latencies and/or multiple passes. Q9 is producing intermediate results that increase the hash-table size requirements further than the available memory on the GPUs and thus none of the GPU-only systems is able to execute it.

Even though the choice between CPU-only and GPU-only execution is case-by-case, in all four experiments the multi-CPU multi-GPU hybrid configuration outperforms both in all these scenarios. The hybrid mode is most efficient for Q1 and Q6 queries, as it can achieve 89% and 82% of the aggregate throughput achieved by the CPU-only configuration plus the GPU-only configuration. For Q5 the hybrid configuration achieves 64% of the aggregate throughput, due to the overhead of shuffling data for the joins. Additionally, hybrid execution allows for co-processing at the operator level which is the cornerstone for evaluating Q9. The co-processing join technique presented earlier is combined with the in-GPU join to provide a speedup of 2x over the CPU version. This result shows the practical value of the technique as it allows for a query with requirements higher than the capacity of the accelerators to benefit from their processing power.

Figure 9 depicts the execution time for GPU-only and multi-CPU multi-GPU variants for query Q5, with a partitioned join as a representative example of a hardware-conscious join and a non-partitioned join as the representative for the hardware-oblivious joins, for the heavy joins on the GPU-side of the plan, in order to outline the impact of optimized operators within the query plan. The plans that contain the partitioned joins have a lower execution time, with 1.44x and 1.23x speedups for GPU and hybrid execution respectively. The efficient device-optimized operator is able to mitigate the join bottleneck, increase performance and showcases the importance of hardware-conscious processing.

7. CONCLUSIONS

In conclusion, we presented HAPE, a design for analytical query engines that achieves efficient query execution over heterogeneous hardware. We showed that heterogeneous execution can be decomposed into a two dimension problem, achieving efficient intra-device execution and inter-device execution. Efficient inter-device execution requires mechanisms for transferring control and data between devices as well as the policies, co-processing algorithms, that define how data and control should flow between the devices. Efficient intra-device execution can be further decomposed into optimizing intra- and inter-operator (intra-device) efficiency.

8. ACKNOWLEDGMENTS

This project has received funding from European Union Seventh Framework Programme, 2013-2016, grant agreement number 617508, ViDa and H2020 - UE Framework Programme for Research & Innovation (2014-2020), 2017 - ERC-2017-PoC, grant agreement number 768910, ViDaR.

References

