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Abstract

Advances in camera sensor technology and its manufacturing process now allow high quality

image acquisition with low-cost devices. Moreover, the latest signi“cant increase in compu-

tational capacity of the processing units enables incorporation of more complex machine

learning and deep learning methods within vision systems, expanding the capabilities of a

typical camera system. A potential limitation of such complex and highly accurate machine

learning and data processing methods is their high cost in terms of power and area. This

limitation becomes more critical when multiple and/or wireless camera systems and come

into question since such systems need to operate with limited power, memory and processing

resources. Even though custom hardware solutions could solve this limitation problem, they

however lack ”exibility and hence are less practical. An embedded vision system with ex-

tended capabilities needs to be designed with a good trade-off between quality, speed, power

consumption and ”exibility.

A good trade off for an enhanced wireless multi-camera vision system may be provided by

optimizing the system design at different levels. A common system-level approach to high-

complexity systems is to partition the computational load and distribute it into local nodes.

This corresponds to embedding computationally heavy operations into the camera units in a

vision system which would reduce the bandwidth and overall power consumption. A camera

equipped with a processing unit and memory that locally processes image data is called smart

camera and can help overcome power, memory and processing resource limitations.

This thesis aims at designing a novel smart camera concept, and presents the hardware

solutions to the proposed system design. Accordingly, in this thesis is proposed a ”exible

smart camera architecture which processes the pixel stream on-the-”y and produces metadata

with low-latency, still providing high power and area ef“ciency. In particular, three processing

blocks namely moving object detection, keypoint detection and description and cellular neural

networks were implemented to illustrate the system design. In addition, proposed blocks are

used in several applications such as omnidirectional image reconstruction, high resolution

surveillance, polarimetry and wireless smart camera networks to show the ”exibility of use of

the proposed system in a wide-range applications.
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Résumé

Les progrès sur la technologie des capteurs d•image et de son processus de fabrication per-

mettent désormais l•acquisition d•images de haute qualité avec des appareils à faible coût. De

plus, l•augmentation signi“cative dernièrement de la capacité de calcul des unités de traite-

ment permet l•incorporation de méthodes d•apprentissage automatique et d•apprentissage

profond plus complexe au sein des systèmes de vision en étendant les capacités des systèmes

d•imageur typiques. Le coût élévé en terme de taille et de puissance est une limitation poten-

tielle de ces méthodes d•apprentissage automatique et d•apprentissage profond complexes

et extrémement précis. Cette limitation devient plus critique lorsque plusieurs systèmes de

caméra et/ou sans “l sont mis en question, puisque ces systèmes doivent fonctionner avec

une puissance, une mémoire et des ressources de traitement limitées. Même si des solutions

matérielles personnalisées pouvaient résoudre ce problème, elles manquent cependant de

”éxibilités et sont donc moins pratiques. Un système de vision embarqué avec des capacités

étendues doit être conçue avec un bon compromis entre qualité, vitesse, faible consommation

de puissance et ”exibilité.

Un bon compromis pour un système de vision multi-caméras sans “l amélioré peut être

obtenu à travers l•optimisation de la conception du système à différents niveaux. Une approche

haut-niveau commune sur les systèmes très complexes consiste à partitionner la charge de

calcul et à la répartir dans des nœuds locaux. Ceci correspond à l•incorporation d•opérations

lourdes de calcul au sein d•une seul unité de caméra dans un système de vision, ce qui réduirait

la bande passante et la consommation énergétique globale. Une caméra équipée d•une unité

de traitement et d•une mémoire qui traite localement les données d•image s•appelle caméra

intelligente et peut aider à surmonter les limitations liés à l•alimentation, la mémoire et les

ressources de traitement.

Cette thèse vise à concevoir un nouveau concept de caméra intelligente et présente les dif-

férenes solutions matériels pour la conception du système proposé. En conséquence, une

architecture de caméra intelligente et ”exible est proposé dans cette thèse, traitant le ”ux de

pixels à la volée et produisant des métadonnées avec une faible latence, offrant toujours une

grande ef“cacité en termes de puissance et de surface. En particulier, trois blocs de traitements

nommément détection d•objets en mouvement, détection et description de points-clés, et

réseaux de cellules neuronales ont été mis en place pour illustrer la conception du système. En

outre, les blocs proposés sont utilisés dans plusieurs applications telles que la reconstruction
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Abstract

d•image omnidirectionnelle, la surveillance haute résolution, la polarimétrie et des réseaux de

caméras intelligentes sans “l pour montrer la ”exibilité d•utilisation du système proposé dans

une large gamme d•applications.
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1 Introduction

Although development of the camera technology is presumed to belong to the last centuries,

its roots go back to the “fth century BC in the ancient Greece. Micius, Aristotle and Euclid

built the basic working principle of the pinhole camera. They found that the light travels

as straight lines and when it passes through a pinhole, it projects an inverted image of the

scene. In addition to this, they also realized that smaller pinhole aperture enables sharper

projection [1]. Based on this principle, the “rst camera obscura was designed by Arab scientist

Ibn al-Haytham in 9th century, illustrated in Figure 1.1a. This camera obscura, or pin-hole

camera, forms the basis of photography. During the following centuries, many scientists have

contributed to the development of the pinhole camera. The earliest cameras that are built

until 17th century were room-sized and the produced images were only preserved by manual

tracing. In the 17th century, “rst portable model is invented by Robert Boyle and Robert Hooke

and the “rst permanent photographic image (see Figure 1.1b) was made by a French inventor

Nicephore Niepce in the early 19th century [2]. The inventions regarding photographic process

continued with Niepce•s partner Daguerre who proposed a “rst practical photographic process,

called Daguerrotype process which is followed by dry plates, photographic “lms etc.

(a) (b)

Figure 1.1 … (a) Illustration of camera obscura of Ibn al-Haytham (b) The “rst permanent
photograph taken by Niepce
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With the emergence of digital cameras, the technology has been progressed drastically. Today•s

digital camera era, two types of camera sensor are available in the market: Charge Coupled De-

vice (CCD) and Complementary Metal-Oxide-Semiconductor (CMOS) sensors. CCD sensors

which provides high quality and low-noise images require a special manufacturing process

to transport the charge across the chip without distortion. Charge to voltage conversion is

performed before the output buffer of the readout circuit. For this process, very high quality

sensors with high light sensitivity is needed. After exposure is completed, CCD transfers charge

packet of the each pixel sequentially via a shift register structure.

In the CMOS sensor technology, each pixel has several transistor next to it. This reduces the

light sensitivity and consequently the image quality. However, CMOS sensors consumes much

less power than CCD and its digital memory style readout faster readout circuitry allows to

reach high frame rates. Moreover, its low-cost manufacturing process allows to produce much

cheaper sensors and this makes the CMOS sensors widely spread.

Developments in memory, smart phone and cloud technologies together, make the storage

of the photos or sharing them much easier. Moreover, advanced computer vision methods,

image understanding capabilities of the computers with the help of graphical processing units

are extremely increased and computationally heavy deep learning blocks can be operated

on these powerful devices. Such advances in hardware and software units have brought new

functionalities to the camera technology, making cameras more accessible to end-users and

enlarging its use areas.

Even though the camera systems have evolved much more than expected in the last decades,

there are still many open issues and challenges. One of the limitations of the today•s camera

systems is their limited angle of view. Although the available “sh-eye lenses extend the angle

of view, they inevitably bring distortion and non-uniform resolution. Curved sensor and

micro-lens arrays could be an alternative solution but they require special manufacturing

process making them cost-inef“cient. Multiple camera systems can provide less-distorted

and low-cost solution to angle-of-view limitation of the current camera systems.

Another issue is power ef“ciency of the camera systems. Wireless camera systems have been

popular in the last decade due to its large number of application areas including surveillance.

Wireless nodes in such systems are designed either as battery-operated or as self-powered.

In either case, they have limited power budget. Therefore, this limitation usually does not

allow broadcasting. As data to be transferred through such systems is limited, it should be pre-

processed in advance and only salient information should be transmitted to the central units.

This requires a wireless node to be able to process the frames locally before transmission.

Increasing number of cameras connected to a single processing unit may also suffer from

bandwidth limitations. In wired systems, pin count of the processing unit, PCB path and con-

nector types determines the bandwidth. In wireless systems, carrier frequency, transmission

power and range are major delimiters.
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Considering these limitations and issues, distributing the computational load into local nodes,

or in other words, increasing intelligence of the nodes, gives a solution. In this case, each

peripheral unit in a multiple and/or wireless camera systems has to be designed as data-aware

cameras. Each camera is accordingly has its own processing unit operating according to the

assigned task. The good organization of those cameras is able to eliminate the limitations

of typical multiple and wireless camera systems. We refer such a data-aware camera with

extended functionalities as Smart Camera and is the main focus of this thesis.

There are different de“nitions of smart camera used in the literature and industry [3]. For

instance, auto-exposure or auto-focus can also be referred as smart camera. However, in

this work we use the smart camera concept as the camera not only taking images, but also

providing information about the image content by local processing. The objective of a smart

camera system is not broadcasting or high quality imaging, therefore it performs in highly

energy-ef“cient way and requires low bandwidth. A big advantage of a smart camera is

obviously its appropriateness for wireless camera systems requiring low-bandwidth and low

energy consumption. With the current trend of wireless communications, the necessity of

designing energy and data-ef“cient wireless systems is high and smart cameras can provide

good solution for such important camera systems.

The relation between the level of intelligence and bandwidth requirement is depicted in

Figure 1.2. In a standard camera where only raw data is streamed, the bandwidth requirement

is at its maximum since it lacks of the ability to local data processing, hence all the pixels

captured are sent to the central processing unit. As the level of the intelligence increases

by different data processing steps such as object detection, object description and event

description, bandwidth requirement reduces. In those cases, the data to be transferred can

be pixel information of the related area of the “gures, keypoints of the area of interest or

classi“cation of the object of interest instead of the whole image scene. This could decrease

the transmission bandwidth and processing load in the central units providing faster and

more ef“cient data communication.

With the aforementioned capabilities, smart cameras have many application areas and new

applications emerge with the development of electronics and software technology. For in-

stance, with the emergence of drone technology, the use of smart cameras in drones is a new

topic to be explored nowadays. Many similar applications will be appearing in the future,

which makes the ef“cient design and use of smart cameras crucial for the literature and the

industry. Applications of the smart cameras cover a wide range listed below, but not limited to:

€ Surveillance for security

€ Disaster-related surveillance

€ Wireless healthcare applications

€ Industrial monitoring and control
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none Raw stream high

Object detection

Object description

Event description

Level of intelligence Bandwidth requirement

lowhigh

Figure 1.2 … Intelligence vs. bandwidth [4]

€ Environmental and habitat monitoring

€ Drone applications

€ Simultaneous localization and mapping (SLAM)

In this thesis, we propose a smart camera architecture for wireless and multi-camera applica-

tions. This architecture aims at utilizing an external image sensor and performs its operations

by processing the sensor pixel stream on-the-”y. Smart camera provides the output infor-

mation as metadata with minimum latency. As processing blocks, we implemented moving

object detection, keypoint detection, binary description, and Cellular Neural Network blocks.

The smart camera system that we propose in this work is not the unique or exact solution

to the problem. Yet, it provides a better tradeoff than its counterparts in terms of ”exibility,

power and timing ef“ciency.

Key contribution of this thesis

The details of the contributions regarding to the architecture and applications are below:

€ Architecture:

…A power and area ef“cient low-complexity moving object detection method is

proposed and implemented in FPGA. Its algorithm which consists of background

subtraction, morphological “ltering and connected component labeling is de-

tailed.
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…A resource ef“cient hardware implementation of a keypoint detection combined

with local binary description is presented. Particularly, FAST corner detection and

FREAK description algorithms are designed with VHDL and implemented for both

FPGA and ASIC.

…A CNN-like network, Hybrid Processor Population is integrated to the smart camera

system. Different network con“gurations which can help local computations is

given.

€ Applications:

…A hybrid architecture for multi-camera systems are proposed and its hardware is

realized. Its PCB design consisting of FPGA and QDR-II memories are presented.

…A high-resolution vision based drone detection method and its realization is pre-

sented.

…A deep learning method is applied for polarimetry applications. We collected data

from polarimetric cameras, train the networks by testing different polarimetry

components. Finally we proposed a multi-camera polarimetry hardware.

…A wireless smart camera node is proposed exploiting the smart camera blocks.

System consists of Leon-3 open source RISC processor for system management,

NAND Flash interface for data storage, and analog blocks for sub-1 GHZ wireless

transmission.

Thesis outline

The outline of this thesis is as follows: in Chapter 2, we give a brief state of the art concerning

the smart camera systems. Chapter 3, explains the components constitutes of our smart cam-

era architecture. Particularly, moving object detection, keypoint detection and description

and Cellular Neural Network blocks are explained and their hardware implementation details

are given. In Chapter 4, 4 different example applications are given. Drone detection, omnidi-

rectional reconstruction, polarimetric imaging and wireless smart camera network problems

are examined and smart camera solutions are presented. Finally, Chapter 5 concludes the

thesis and present future research directions.
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2 State of the art

In Chapter 1, a brief introduction of the smart camera systems is given as well as our motivation

to this work and the challenges is explained. In this chapter, state of the art in multiple

and wireless camera systems will be presented. State of the art regarding the methods and

algorithms used in this work can be found in related sections.

Considering the difference in application areas and challenges, multiple camera systems can

be examined in two groups: (i) compound and (ii) distributed camera systems. While the

compound camera systems usually target to obtain wide FOV images, in distributed camera

systems environment is observed partially by each wireless node in a power ef“cient way.

2.1 Compound camera systems

One of the main restrictions of the single conventional cameras is their limited angle of

view. Several solutions for acquiring omnidirectional images and their application have

been presented in [7]. In fact, successful examples of wide angle viewing are available in

the nature as well. For instance, compound eyes of common ”y is an appropriate example,

which contains hundreds of optical units providing panoramic “eld of view [8]. Ideally this

structure can be mimicked by curved sensors, however since their manufacturing process is

very dif“cult, this solution is very expensive and has low resolution [9].

Another way is combination of special lenses and convex mirrors, but distortion and non-

uniform resolution is inevitable in this case [10]. Among the alternatives, multiple camera

systems have been gaining importance in the recent years due to their bene“ts such as uniform

and high resolution output, in addition to the reduced distortion. Moreover, the conventional

cameras are broadly available and low-cost technology, therefore can provide much more cost-

effective solution compared to the aforementioned methods requiring special manufacturing

process.

Compound camera systems are composed of outward looking multiple cameras placed on a

planar, spherical or cylindrical surface. A number of multiple camera systems are designed
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(a) (b) (c)

Figure 2.1 … (a) Stanford camera array [5] (b) Facebook surround 360 (c) Google street view [6]

with different features in terms of dimensions, real-time capability, number of cameras, output

format and resolution.

One of the “rst examples of compound camera systems is FlyCam [11] which offers a PC

based stitching. It consists of 5 inexpensive and low-resolution cameras. The Stanford Camera

Array [5] is the other early example of multiple camera systems. It consists of 100 cameras

connected to 4 PCs as shown in Figure 2.1a. It has a limited processing capability in the camera

level. The system is used for recording the videos to be later stitched of”ine.

Google Street View [6] is a popular example for polydioptric data acquisitions systems. 15 of

5-megapixel CMOS image sensors are placed on a spherical surface as shown in Figure 2.1c. It

is a 360� imaging system comprising 15 5MP cameras, which covers 80% of its surroundings.

This system is used to generate contents for street view property of Google Maps.

Another panorama system with high resolution output, OmniCam is presented in [12]. This

scalable system supports up to 12 HD cameras, and output panorama is stitched in post-

production.

In order to reach higher output resolution, number of cameras and sensor resolution can be

increased. An example camera system which is able to acquire an image frame with more

than 1 Gigapixel resolution was presented in [13]. The system uses a very complex lens system

comprising a parallel array of micro cameras to acquire the image. Due to the extremely high

resolution of the image, it suffers from a very low frame rate of three frames per minute.

Generating the panoramas of”ine is useful in many cases, but real-time stitching have been

a demanding task especially in interactive applications. In [14] real-time systems with six

cubically arranged cameras are presented. These systems utilize high resolution imagers with

a low number of cameras.

The Panoptic Camera, introduced in [15] is capable of real-time data processing and omnidi-

rectional view generation. Hardware implementation of different blending algorithms on this

system is presented in [16]. The details of the Panoptic Camera is introduced in Section 4.1.

Based on the proposed algorithm, different systems have been developed [16], [17], [18] and

integrated with VR interface [19] in LSM (Microelectronic Systems Laboratory) at EPFL. Hard-
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(a) Ping-pong (b) P49 (c) GigaEye (d) Endopano

Figure 2.2 … Multi-camera systems with different dimensions developed in LSM/EPFL

ware implementation of the system which has 15 cameras on a 3-layer and 3 cm diameter

hemisphere can be seen in Figure 2.2a. In [18], high-resolution-44-camera system design for

defense and security applications is presented. It is capable of recording omni-directional

video in a 360°× 100° FOV at 9.5 fps with a resolution over 82.3MP (see Figure 2.2c). Another ap-

proach based on interconnected network of the cameras is proposed in [17], and the presented

hardware is depicted in 2.2b.

Physical dimensions of the multiple camera systems can be reduced down to millimeter scale.

Cogal and Leblebici developed a miniaturized omnidirectional camera system with 24 pin-

hole cameras [20], shown in Figure 2.2d. Cameras are placed on a 5 mm radius hemispherical

case. Its FPGA implementation achieves 1 megapixel resolution at 25 fps.

2.2 Distributed camera systems

One of the earliest examples of the smart camera system is CMUcam [21] which was proposed

in 2001. It combines a low-cost CMOS image sensor at CIF resolution and a low-cost micro-

controller. Since the processing capability is quite limited, it can only perform a basic color

based blob tracking at 16.7 fps.

Another example of early smart cameras with MCU is Cyclops [22]. It consists of a CPLD

for image capturing from a CIF-resolution camera and transfer it to the frame buffer in 64-

KB external SRAM. Since the image resolution 352 × 288= 99K is greater then the available

memory, it reduces down the resolution to 128 × 128 for the processing applications. Buffered

frame is accessed by a 8-bit microcontroller to perform some vision algorithms, including

moving object detection and hand posture recognition.

The Cyclops and CMUCam is used as the low-power tier of SensEye [23] system which employs

multiple tier of cameras. For the high-level tiers it has a VGA resolution web-cam and PTZ

(pan-tilt-zoom) camera at HD resolution with high-cost. The network activates the high-level

tiers, if only low-level tiers detect an important activity.

The processing capability of WVSN nodes is increased with the development of more ef“cient

MCUs. 32-bit ARM powered MeshEye [4] system is battery-operated and provides a low-
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(a) CITRIC (b) CMUcam-5 (c) Google clips

Figure 2.3 … Smart camera examples

resolution stereo vision, presented in 2007. In this system, a low-resolution stereo camera

system observes the scene and determines the position, range and size of the moving objects.

This information triggers a high resolution color camera module for further analysis.

Increasing CPU power and memory extend the capability, thus application range. Integrating

an Intel XScale MCU which can operate up to 624 MHz, 16 MB Flash and 64 MB RAM in

CITRIC [24] system enables image compression, target tracking and camera localization

applications. Its power consumption is reported to be minimum 428mW at IDLE mode, and

970mW at high performance mode.

Combining the high performance MCUs and open source software tools provides a high

”exibility in terms of the applications. Raspberry Pi (ARM 700 MHz) and MSP430 MCUs are

used together in a solar powered wireless smart camera SWEETcam [25], and proposed for the

surveillance of public spaces in 2014. It also bene“ts from the Linux operating system and

OpenCV libraries which reduce the application development time signi“cantly. But the power

consumption is still around 500 mW.

In the recent years, commercial products targeting consumer electronics market have been

appearing. A popular example is Google Clips [26] shown in Figure 2.3. It selects the best

moments with a learning algorithm and store them as short video “les. However, its battery

enables up to only 3 hours operation.

Energy consumption could be reduced by custom hardware design at the expense of software

”exibility. FPGAs are recon“gurable digital devices which allows parallelization of task. Thus,

lower operating clock frequencies reduce power consumption. An early smart camera archi-

tecture with FPGA is presented in 2006 [27]. Inspiring from the human vision system, authors

split the process into three layers: (1) attention and (2) focusing of eye sends the pertinent

information, and it is (3) interpreted in brain. Since attention and focusing stages need par-

allelization, they are assigned to FPGA. On the other hand, since the data to be processed is

reduced down, high level tasks are performed in PC.
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SRAM FPGA is known as power ef“cient comparing with Flash FPGA. SENTIOF-CAM [28]

is an example of wireless vision sensor node with SRAM FPGA, proposed in 2014. Authors

implemented a low-complexity background subtraction, segmentation and bi-level video

codec in FPGA. They employed the system in particle detection, meter reading and people

counting applications. In these applications, processing power is measured as 670 mW.

Utilizing off-the-shelf processing devices such as MCUs and FPGAs provide high ”exibility,

however ASIC solutions and transistor level optimizations are needed in order to reach much

power ef“ciency by sacri“cing this ”exibility. Focal-plane image processing is one of the most

ef“cient methods to reduce the power consumption. An example image sensor which has

focal-processing array, FLIP-Q, is presented in [29]. Inside of each sensor area, pixel level

analog processing elements operating concurrently with photosensing were incorporated.

Having analog processing elements reduce the accuracy, but they are more area and power

ef“cient. Resolution of the sensor was 176 × 144 fabricated in a 0.35 µm technology. It is

reported that power consumption was maximum 5.6 mW. Later this platform was integrated

to a WVSN node, Wi-FLIP [30].

Fill factor of an image sensor is the ratio between the light sensitive area to its total area and

affects the sensitivity [31]. Placing the processing elements inside the pixel area reduce the “ll

factor, and hence the sensitivity as well. In order to overcome this issue, sensor, processing

and memory planes were integrated vertically in [32]. Moreover, the resulting data bandwidth

limitations of this solution was eliminated by fully parallel connections with high density of

through-silicon-vias. Bene“ting from this approach, a 3D vision chip VISCUBE which has

different vision tasks stacked was presented. It had nearly 100% “ll factor and able to reach

very high frame rates up to 1000 fps. However, power consumption of the processing tiers

could vary from order of 10 mW to 100 mW.

Another ef“cient transistor level technique to reduce the power consumption was near-

threshold computing [33]. By using this method, reducing the power consumption down to

even sub-mW levels by using energy-ef“cient MCUs is possible as presented in [34], [35]. This

smart camera architecture exploited a low power contrast-based imager at 128 × 64 resolution

and a quad-core ultra-low power processor (PULP) operates near-threshold. It also used

content aware analog circuits to extract meaningful data from the sensor which sends the

post-processed data to the processor. By this way, the sensor to processor bandwidth was

reduced by 31 times.

Although near-threshold computing enables energy ef“cient integrated circuits, its reduction

is also limited [36] and it is known that scaling down the transistor size does not bring a

signi“cant power advantage [37]. Therefore, future power reduction attempts are expected to

be from different directions. A recent approach, Energy-Quality (EQ) Scalability was presented

in 2017 [38]. It is based on the idea that, high quality tasks need high energy, and reducing

the quality, where it is tolerable, can bring signi“cant power reductions. This approach was

applied on vision applications and an EQ scalable feature extraction accelerator EQSCALE
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was implemented in [39]. EQSCALE is assumed to be the “rst feature extractor that operates

in sub-mW range at VGA resolution and 30 fps.

In this chapter, we presented examples of multiple and wireless smart camera systems among

many of them. It can be seen that, there is not indeed a single unique solution to the problem.

Since there are different design concerns and challenges in terms of power, area, bandwidth

and ”exibility, solutions also diversify. In the next chapters, inspiring from the ideas that

were presented in the state-of-the art systems, we will develop the smart camera architecture

targeting at a good balance between the system requirements and limitations.
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3 Architecture

In this chapter, we present our smart camera architecture which is optimized in terms of

resources and ”exible enough to incorporate several processing modules with respect to

the intended application. After giving an overview of the architecture, we will detail which

functionalities that have been integrated as sub-modules into the proposed system.

3.1 Overview

Our smart camera concept consists of three key components is shown in Figure 3.1. An image

sensor captures the frame and sends the pixel information with the synchronization signals.

In fact, the most common method is to save the frame into a memory (i.e. frame buffer ), and

process this pixel data by accessing from there. Instead of this, our image analysis chip directly

receives the data form the sensor, and performs its operations on the ”y, bene“ting from pixel

buffers to reduce the output latency. The processing blocks which performs local analysis does

not wait the end of the frame. Therefore metadata of a frame is produced during its stream.

Ima ge
Sensor

Ima ge 
Analysis 

Chip

Sma rt 
Ca me ra

   Application 
Unit

SRAM

Pixel bus

Me tadata
Px data

Sync

Figure 3.1 … Block diagram of the smart camera
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Figure 3.2 … Image analysis chip of the smart camera

A closer look to the image analysis chip is shown in Figure 3.2. Firstly a camera interface

compatible with the image sensor is needed to receive the pixel data and synchronization

signals, and convert them into pixel color information and pixel row/column addresses.

Many computer vision algorithms process the gray level intensity, not the color. Since the

implemented block in this architecture also process the grayscale data, an RGB to grayscale

conversion block is embedded into the camera interface block.

Processing blocks which are connected to the pixel bus are activated by the application unit.

The activated block drives the metadata bus, while the others have high impedence outputs.

It processes the pixel stream on-the-”y and generates metadata.

The produced metadata is received by an application unit at lower bandwidth than the pixel

stream. Thus, the application unit can achieve at better performance by processing this

reduced amount of data. Each processing block produces metadata at different energy levels.

In power critical systems, a decision mechanism which take into account the power level of

the system observed by power monitor is needed. A list of possible metadata is listed below:

€ Location and size of the moving objects

€ Keypoint positions and their descriptions

€ Classi“cation of the objects

€ Disparity - depth

€ Polarimetry data

In this thesis, we show the implementation of three different application blocks, namely
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moving object detection, local binary description and cellular neural network, in the following

sections.

3.2 Moving Object Detection

Applying resource-hungry complex analysis for each pixel at the each frame generally prevents

one to meet real-time and power requirements. In fact the amount of the data to be processed

must be reduced in order to keep resource requirements as low as possible. Most of the

cases, pixel information remains the same from frame to frame, and a small portion shows a

difference. However, those changes may not represent salient information and could belong

to the movements out of interest, such as fountain, water ”ow, clouds, shaking of the leaves or

grasses in natural images. Therefore, retrieval of the most relevant pixels in the foreground

that bare the most important information should be targeted. If such relevant pixels could be

detected, the system would simply ignore the rest where there is no signi“cant change and

this would speed up the processing, satisfying real-time requirements. The goal is accordingly

to detect salient changes and avoid to re-compute the pixel positions that are part of either

background or noisy and uninformative changes. This problem is well studied concept under

the moving object detection title. In this section, we “rst present an overview of the moving

object detection techniques and then propose a hardware-oriented scheme aiming at memory

and power ef“ciency with reasonable accuracy.

Moving object detection problem has been often approached with background subtraction

techniques. Accordingly, several methods have been proposed in the literature targeting

different ef“ciency components: memory, power, accuracy, speed, etc, or providing a good

trade-off between those concerns. Robustness of the method is also an important challenge.

It is an expectation that the algorithm should handle illumination changes and “lter the

non-salient motions. We will mention some of such techniques including the ones that are

more relevant to our study.

One of the common pixel stream methods is running Gaussian average method [40]. For each

pixel position, it “ts a Gaussian probability density function (pdf) of the last n pixels. But in

order to prevent re-computation of the pdf for each frame, a running average is calculated as

given below:

µt = � I t + (1Š �)µ t Š1 (3.1)

where I t is current value of the pixel, µ t is the previous average, and � is an empirical value

can stand for learning rate.

A pixel location at each frame can be labeled as foreground, if it meets the following inequality:

|I t Š µt | > k � t (3.2)
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In the running Gaussian average approach, the background model is updated even if the pixel

marked as foreground. In order to prevent this updates, a selective update method is proposed:

µ t = M µt Š1 + (1Š M )(� I t + (1Š �)µ t Š1 (3.3)

where M is 1 if the pixel belongs to a foreground object, otherwise it is 0.

Adaptive Mixture of Gaussians (MoG) [41] is interested in adaptive modeling of the background

for real-time tracking of scenes with complex and non-static backgrounds. They accordingly

model each pixel as a pixel process with K Gaussians (K being 3 to 5) with corresponding

mean and variance parameters and update the mixture model with each new pixel value over

time. The background model is described by the “rst most probable distributions and a new

pixel accordingly assigned as background if the most “tting Gaussian distribution to that

pixel is deemed to belong to background model, as foreground otherwise. Each distribution

represented by its mean and variance as ”oating point numbers.

The work in [42] proposed an hardware implementation of the MoG method by simplifying

the formulations using look-up-tables (LUTs) which results in an FPGA-based circuit outper-

forming its counterparts as well as an ASIC baseline for further research. It is implemented

on FPGA and ASIC UMC-90 nm process, and achieved 60 fps at full-HD resolution with 33.2

pJ/pixel power performance.

W4 (Who? When? Where? What?) is a widely used method in surveillance systems [43] In

this method, background model is compound of minimum ( µmin ), maximum ( µmax ) and

largest absolute difference ( Dmax ). A pixel at a position i , j is determined to be foreground if it

satis“es one of the following inequalities:

|I (i , j ) Š µmin (i , j )| > D (i , j ) or |I (i , j ) Š µmax (i , j )| > D (i , j ) (3.4)

There are also some methods which includes several methods at the same time. In [44], authors

bene“t from both frame difference and W4 methods. This two approach is implemented

seperately and the outputs are combined with a logical ORoperation.

One of the recent background subtraction algorithms for embedded vision is EBSCam [45].

This method is based on the suppression of the variation of the background mode. It provides

a competitive accuracy with better hardware ef“ciency in terms of both area and speed. In

this method, for each pixel location 90 bits need to be stored.

A memory-ef“cient and light-weight foreground detection method is presented in [46]. Al-

though this method needs less memory for each pixel, it is robust against lighting variations

and non-static background. Method selectively updates the background model with an auto-

matically adaptive rate, thus can adapt to rapid changes. Pixels are not treated individually, and

information about the neighbours is incorporated into decision making. Instead of building a

mathematical model for each pixel location, this method observes the state changes being
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Figure 3.3 … Moving object detection pipeline

between background and foreground in the pixel position and its neighbours. If the number of

state changes exceeds a threshold, that pixel marked as a non-reliable pixel. For the foreground

pixel decision, reliability of the pixel and its neighbours are taken into consideration.

Background subtraction produces a binary image shows the foreground pixels. This binary

data can be processed by a connected component labeling block, in order to group the pixels

which belongs the same object. Although there are many ef“cient solutions of the connected

component labeling problem in software, their iterative process needs to access the binary

image several times. Moreover, at least one binary frame must be stored in the memory. Thee

Hoshen-Kopelman algorithm [47] applies two passes over the image. In the “rst pass, it assigns

incremental numbers as temporary labels and “nds the equivalent pixels. In the following

second pass, it replaces each temporary label by the smallest label of its equivalence class.

More hardware friendly approaches are also presented in the literature. In [48], authors

propose a real-time blob analysis methods by using only one single pass, and implement it on

the FPGA. Before the operation, the pixels are compressed by a run length coding. A linked list

based FPGA implementation is [49]. Another example of the single-pass methods is presented

in [50] and [51]. This method requires less memory than the alternatives, and can reach high

throughput.

Since our smart camera concept utilizes an external vision sensor chip, sensor level processing

is not an option. Instead, we target to have a with a low complexity design by processing the

pixel stream reducing the memory bandwidth and storage requirements. Therefore, similar

to [46], we compute the number of switches between background and foreground for each

pixel, to determine its reliability. Foreground detection takes into account the reliability in-

formation of the pixel and its neighbours. In addition to this, thanks to hardware centric

approach and pixel processing on-the-”y, we reach high accuracy results with very low mem-

ory and power requirements. Moreover, we incorporate the background subtraction block

with a morphological “ltering and connected component labeling blocks, to give clean results

ready to be processed.

This moving object detection block is connected to the pixel bus, and when a new pixel is

received, its data directly feed the processing pipeline. As presented in Figure 3.3, the moving

object detection block constitutes of background subtraction, morphologic “ltering MF and

connected components labeling blocks. Background subtraction block creates a binary image

from the difference of the current frame and the background model. This binary result directly

feeds a shift register of the morphologic “lter which removes the shapes of dimensions smaller
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than 2 × 2. Non-“ltered binary values are evaluated by the connected component labeling

block. It determines if a pixel belongs to a previously found object or a new one and accordingly

updates the results. The output of the moving object detection process gives the location of

the objects and their boundary boxes.

This integrated method creates the metadata which is the positions and dimensions of the

moving objects. In total, it requires 18 bits per pixel for background model, and 5 binary line

buffers. Since it is based on the on-the-”y processing, the latency is minimum. As soon as a

moving object is detected, its information is immediately sent to the metadata bus without

waiting end of the frame. In the following subsections, we explain the methods in the pipeline

in detail.

3.2.1 Background Subtraction

In the background subtraction block, two main operations are performed: (1) creating and

updating the background model, (2) evaluation of the pixels as background or foreground.

This two operations changes depending on the information level of the system. From the

initialization signal, states of the frame can be illustrated in Figure 3.4. Normally, this hardware

remains in IDLE state when the operation is not necessary, or lack of power. With a trigger

signal, it switches to INIT state where the “rst captured frame is set as the background for fast

adaptation:

µ t (i , j ) = I t (i , j ) (3.5)

where µt (i , j ) is background model for the pixel location i , j , and I t (i , j ) is gray level pixel

intensity of the captured frame. After the “rst frame, absolute value of the difference of the
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Figure 3.4 … Frame states for background subtraction block

intensity of a pixel position ( i , j ) and the value at the background model in the same pixel

position is:

d = | I t (i , j ) Š µt Š1(i , j )| (3.6)

If the difference d is smaller than a threshold � 1, it means that there is not a signi“cant change

in the background model, and the background does not updated. It prevents unnecessary
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memory access and switches, thus power consumption is reduced down. Otherwise, it is

updated by running Gaussian average:

µ t (i , j ) =

�
�

�
µ t Š1(i , j ), if d < � 1 or d > � 2

�µ t Š1(i , j ) + (1Š � I (i , j )), otherwise
(3.7)

where � is an ampirical pre-de“ned learning rate, and selected as 2 ŠN for hardware ef“ciency.

If this difference d exceeds a threshold � 2, status of the pixel is determined as foreground:

s=

�
�

�
1, if d > � 2

0, otherwise
(3.8)

In this state, there is no reliability information. Therefore foreground output will always be 0.

But this information is used to compute the number of the state changes of each pixel:

r c,t (i , j ) =

�
�

�
r c,t Š1 + 1, if st (i , j ) � st Š1(i , j )

r c,t Š1, otherwise
(3.9)

where r c,t (i , j ) is a register which is incremented if there is a state change. A logical XOR

operation applied on current and previous states gives the state change, and in this case state

switch register is incremented by one.

When the frame counter reaches N , the system switches to checkpoint state and decides the

reliability of the pixels. If the number of state switches exceeds the threshold � r , then it is

determined as it swithces too much and does not give a reliable information:

r (i , j ) =

�
�

�
1, if r c(i , j ) < � r

0, otherwise
(3.10)

where r stands for reliability bit of the pixel. System resets the register which keeps the number

of state switches r c. The next N frames are evaluated according to this reliability information.

After processing the “rst checkpoint frame, having the reliability data of the pixels enable

more accurate background model and foreground information. The evaluation operation is

summarized in Figure 3.5. In this state, background update is a function of the difference d ,

and the reliability r .

µ t =

�
����

����

µ t Š1, if d < � 1

� 1µ t Š1 + (1Š � 1)µ t Š1, if d > � 1 and r = 1

� 2µ t Š1 + (1Š � 2)µ t Š1, if d > � 1 and r = 0

(3.11)

where � 1 and � 2 are update rates such that � 1 > � 2. By this way, small changes in reliable pixel

positions are updated faster than the non-reliable pixel positions, because the con“dence
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Figure 3.5 … Advanced evaluation of the pixels

level of the coming pixel is higher.

For a reliable pixel position, if the difference exceeds the threshold � 2, state output is 1.

However, for a non-reliable pixel position, it is already expected to oscillate background and

foreground. Therefore, the system “lters this change. In this case, in the non-reliable areas

the output will be masked, even if there is a signi“cant abnormal change. In order to cover

this case, we de“ne another threshold � 3, to detect the movements in non-reliable areas. This

threshold is determined during the “rst non-reliable foreground operation, by storing the

maximum difference for each pixel position. Output sout is given in the following equation:

sout = r.(d > � 2) + r .(d > � 3) (3.12)

One of the main target of this method is keeping the memory allocation and access minimum.

To reach this goal, we store 18-bit words for each pixel as shown in Figure 3.6. Most of the

SRAMs in the market is designed as 9, 18 or 36 bit words, therefore, 18 bit selection suits well

the available memories. The “rst 8 bits keep the background model of the pixel. This data

is used to compute the difference d in the Equation 3.6 The next 5 bits stores the number of

switching activities. Reliability and status occupy one bit each. The “nal 3 bits are dedicated

to maximum difference for non-reliable pixels. Before each incoming pixel captured from the

pixel bus, its information must be requested from the memory and be ready for the evaluation

process. After the evaluation, pixel data on the memory may be updated. However, if the

information stored in the memory location does not change, then it is not needed to update

the information. The situations which does not require a memory write request is marked as

gray boxes in Figure 3.6.

Sometimes a moving a foreground object appears in the scene but then it stops and keep its

position for a long time. After a point, it is better to evaluate this pixel as a part of background.
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Figure 3.6 … Content of a memory row stores information of one pixel

Because, this moving object information is already produced and sent to the application unit.

Re-computation of this area creates unnecessary signal switches without a useful information.

Therefore, we update the background with a small update rate.

This background subtraction method brings several advantages in terms of energy consump-

tion. We can formulate the total energy requirement of a general background subtraction

operation based on the frame difference method as in the following:

Ebs = Eop + Ecw + Ecr + Ebw + Ebr (3.13)

where Ecw and Ecr are the energy consumption required to write and read the current frame,

while Ebw and Ebr are the ones to update/write and read the background model respectively

and Eop is the energy used for the computation. In our case, since the pixel stream is evaluated

on-the-”y, the energy consumption due to read and write operations, i.e. Ecw and Ecr are

eliminated. Moreover, Ebw involves only when the background is updated. For most of the

cases,Ebw does not contribute which also reduces the total energy consumption.

Another important advantage is reduced memory space. While the memory requirement per

pixel in average more than 300 bits in [41], and more than 400 bits in [52]. In the work [46]

which is also our starting point is needs to store 2 integer number in addition to pixel data.

Our hardware oriented approximation lead us to achieve 18 bits per pixel and background

data for each pixel can be stored in a single cell of 18-bit con“gurations of the SRAMs.

3.2.2 Morphologic Filter

Background subtraction module produces a binary output stream, and this output may

contain high amount of salt-and-pepper noise. This noise increase the workload of the

connected components labeling block, and cause a memory and power penalty. In order

to remove such noise, morphological erosion, an operation performed on binary images, is

widely used.

Morphologic operations can also be de“ned as the convolution on binary images. In this case,
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in a convolution kernel the following operation is applied:

P(i , j ) =
i +n�

k=i Šn

j +m�

l = j Šm
P(k , l ) (3.14)

Erosion operation can be applied by a sliding window of 2 × 2 size as depicted in Figure 3.7. In

��

��

��

Figure 3.7 … Example operation of a 2× 2 erosion “lter

this case, kernel of this convolution is all ones:

K =

�

� 1 1

1 1

	




If all the pixels in the window are 1, then bottom right corner position in corresponding pixel

location in the output image is also 1, otherwise, it is 0. Thus, the “rst window produces 1,

while the other two positions 0. By this way, foreground pixel groups consists of high number

of connected pixels still remains in the result, small pixel groups smaller then 2 × 2 disappears.

Although this non-linear transformation does not preserve the shape of the areas, presence of

the large object can be detected.

Hardware implementation of a 2 × 2 erosion “lter which removes components of dimensions

smaller than the applied “lter size is shown in Figure 3.8. In this hardware, binary input

generated by background subtraction block is provided to the shift register. The erosion

operation is performed using logic AND operation, between the currently evaluated pixel and

its pre-determined horizontal or vertical neighbors.
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Figure 3.8 … Hardware implementation of the erosion “lter

3.2.3 Connected Components Labeling

The binary output produced by foreground detection block and “ltered by morphology op-

eration “nally arrives at the connected components labeling block. This operation assigns

different labels to the pixels groups which are constituted of the connected pixels. In other

words, a pixel is assumed to belong to a pixel set, if it either touches or it is very close in a

pre-de“ned distance. Connected components labeling can be done in an iterative manner,

as in many software implementations, however iteration brings the requirement of multiple

accesses to the image, which requires more memory and energy, and causes latency. Instead

of iterative methods, binary data can be evaluated as soon as the “ltered output is received by

the connected components labeling block in the hardware, hence memory storage and access

requirements are eliminated.

In this part, we propose a hardware oriented connected components labeling algorithm, which

computes the data on-the-”y, compatible with the stream of the pixels in the raster-graphics

format. Evaluation of the pixel is done in a single clock cycle and the hardware outputs the

position and dimensions of the frames which covers the connected pixels to the metadata

bus during the pixel stream. In order to achieve this performance, we sacri“ce an amount of

accuracy, as stated in energy-quality scalable design manner. As a consequence of this quality

degradation it may fail to separate the close but different objects. However, in case of the

accuracy is not very critical, i.e. if the approximate number of the moving objects is important,

it provides enough accuracy with very low cost of hardware.

Data structures and control register

In this design, dimensions of an instance is represented by 8 numbers as illustrated in Fig-

ure 3.9. Four parameters de“ne the rectangular boundaries of the instance as xmin ,xmax , ymin

and ymax , and constitutes of vector �A.

x0 and x1 stores the bottom left and right corner positions of the last row of the active object.

This two parameters are used to determine whether the newcoming foreground pixel touches
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Figure 3.9 … Data structure representing an instance

to that object or not. The column addresses of the left-most and right-most foreground pixels

which belongs to the same object are stored in x2 and x3, respectively. When the row is

completed in the pixel stream, x2 and x3 will be the new boundaries and replaces x0 and x1 in

the next row. This vector consists of x0, x1, x2 and x3 is de“ned as vector �B. Thus, a moving

object is represented by two vectors: �A and �B which corresponds the boundaries and the

bottom line information, respectively. All the operations can be explained by using this data

structure, composition of �A and �B.

In addition to this data structures, a control register stores the states of the objects in 2 bits per

instance. One of the registers stores if the instance is active, i.e., its bottom line has pixel(s)

from the previous row. In other words, if there is a possibility of newcoming pixel touching

an instance, which results in updating or merging operations on it, this instance is marked as

active. The second register stores if an instance has new pixel during the stream of the current

row. Considering these two registers, if an instance was active but did not receive any new

pixel in the active row, it means that the instance is completed and its information is ready to

be sent through the metadata bus.

Since the number of the instances is “xed at 8, then the size of the control register is determined

as 16-bits. If we use 10-bit register for each element of �A and �B, 80 bits are dedicated for each

vector, and 640 registers in total. To sum up, the 656 ”ip-”ops are used for instance data

structures and control register.

Operation

Operation of the CCL block is managed by an FSM which is shown in Figure 3.10. This FSM

has 6 states, namely:
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Figure 3.10 … FSM for connected component labeling

€ qi : init state

€ qa: active waiting state

€ qn : new instance state

€ qu : update instance state

€ qm : merge state

€ qt : transmit state

Transactions between the states are triggered by the following events:

€ eh : end of line (horizontal blanking)

€ ev : frame start (vertical blanking)

€ ef : receiving a foreground pixel

€ et : the new foreground pixel touches an instance

The FSM starts from qi state, and waits for a frame start signal ev to switch to qa state. When

a foreground pixel arrives, if it touches to any available objects, FSM switches to the update

state qu . Otherwise, it goes to qn state to create a new instance. In qn state, it creates a new
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instance with the following parameters:
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(3.16)

where x and y is the coordinates of the new foreground pixel. In qn state, if the new input is

foreground, it goes to qu state to update the current instance:
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(3.17)

While it is in the qu state, if it touches another instance, FSM enters to the merge state qm .

In this state, current active instance vector is updated with the information of the touched

instance as in the following equations:
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(3.18)

where the touched instance is represented by �A = x�
min ,x�

max , y�
min , y�

max and �B = x�
0,x�

1,x�
2,x�

3.

Removing of this instance is simply done by resetting the corresponding activation bit of the

instance in the control register.

Example

A comprehensive example is illustrated in Figure 3.11. In this example, sixth line is the active

line, i.e., the connected component labeling block is receiving the information regarding to the

sixth line. The instance #1 is a passive object which is already sent and there is no connection

with the active line. Therefore receiving pixel cannot belong to this instance which makes it

passive.

Instance #2, #3 and #4 are active instances that are possible the foreground pixel can touch.
�A2 = (5,10,1,5) and �B2 = (6,9,Š1,Š1) represents the second instance, �A3 = (12,14,2,5) and
�B3 = (13,14,Š1,Š1) represents the third instance. At the beginning of the line, FSM is in qa

state. When the “rst foreground bit arrives at x = 3, it changes the state to qn to create a new

instance #5. FSM switches to the update state fu with the next foreground bit. The third
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Figure 3.11 … Connected components labeling example operation

foreground bit at x = 5 creates the touch event et , and FSM switches to the merge state qm to

combine the instances #2 and #5. The instance #5 is updated with respect to the Equation 3.18,

and the new values for �A5 and �B5 are:

�A5 = (3,10,1,6) �B5 = (6,9,3,5) (3.19)

The next foreground pixel changes the state again qu , and the following background pixel to

qa. Then a string of 6 consecutive foreground pixels arrive. For each foreground pixel, FSM

updates the instance #2 in the qu state, until it reaches x = 12. At this point, touch event occurs

to the instance #3, and the FSM switches again to the merge state.

�A4 = (3,14,1,6) �B4 = (6,14,3,13) (3.20)

At the end of the line, it enters the qt state where it transmits the completed instances, and

update the active instances for the next line. In this example, since although instance #4 is

active, there is no foreground pixels touches to it in the active line. This makes it completed
�A4 is transmitted via the metadata bus:

�A4 = (0,1,5,5) (3.21)

One of the limitations of the hardware, in order to achieve one clock cycle timing performance,

it uses a static number of instance positions, which is 8 in this implementation. It means that,

there cannot be more than 8 active instances at a given time. However, this is not a limitation

of the maximum instances can be detected in a frame. Because, if an instance does not have a

connection in the active line anymore, its data is sent during the horizontal blanking.
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3.2.4 Result

We tested our method with the change detection dataset from [53], and compared its results

with OpenCV implementation of Mixture of Gaussians (MOG). In general, MOG is a more

robust method which covers more cases. However, in some challaeging frame sets, espe-

cially where there are non-salient motion such as shaking of leaves or fountain, our method

outperforms the MOG method in terms of accuracy.

Result of such a frame set is shown in Figure 3.12. Figure 3.12a is an example frame which has

a moving car and fountain which creates non-salient foreground data. Our method observes

the changes, and creates a binary reliability matrix for the frame. This matrix is used to mask

non-salient data, i.e., fountain region in this case. As shown in Figure 3.12c and Figure 3.12d,

our method gives much cleaner result, by “ltering the fountain region.

On the other hand, considering memory ef“ciency, timing performance and power consump-

tion, our method well suits the resource limited embedded devices.

(a) Frame (b) Reliability

(c) OpenCV MOG result (d) Output of our method

Figure 3.12 … Foreground detection results of the proposed method
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3.3 Feature Extraction

Extracting the salient features is one of the most common operations in computer vision

applications. These features carry the signi“cant portion of the information about the image.

Therefore, eliminating the remaining redundant data and perform computations on the

features provides an ef“cient analysis. This approach is widely used in many applications

including object recognition, motion tracking and image registration.

Keypoint
detection

Description Matching

Figure 3.13 … Feature extraction pipeline

A classical pipeline for feature extraction process is shown in Figure 3.13. Firstly, image pixels

are tested according to selected feature detection criteria, and feature positions are transferred

to the description block. For each detected feature, its description is computed with a selected

algorithm. The “nal block receives the description results, and “nd the best matches.

A feature detection or description algorithm is expected to be robust to image transformations.

From the images taken from different viewpoints in the same scene, under rotation or scaling

conditions, they should “nd similar keypoints, and close descriptions. In addition, these

features should be distinctive to “nd the correct matches. Moreover, accuracy is not the only

concern in embedded systems. In addition, power, area, memory and timing ef“ciencies are

also critical.

An important feature detector available in the literature is Canny Edge Detector [54]. Edge

detection problems have been formulated considering three criterion: good detection, good

localization and elimination of spurious detections. Such criteria have led to a 4-step algorithm

as follows: (1) Apply Gaussian “lter to smooth the image (2) Compute the intensity of the

gradient image (3) Non-maximum suppression to remove irrelevant (noisy) responses to edge

detections (4) Use of double-threshold and edge tracking by hysteresis. Canny Edge Detector

has been widely used in computer vision applications due to its easy implementation and

good and reliable performance.

Another popular feature detection technique is Harris corner detector [55]. This technique

aims at detecting both edges and corners simultaneously, claiming that edge detectors such

as Canny Edge Detector do not consider edge connectivity while performing edge detection

and that detecting corner, as de“ned the junctions of edges is indeed very crucial for edge

detection. As an improvement of Morovec•s corner detector [56], the basic idea behind the

proposed technique is to consider three potential cases to discriminate salient parts from

non-interesting regions: The intensity in a small window (1) does not change in a ”at region

when shifted to any direction (2) changes only in the edge direction when on an edge (3)

changes in all directions when on a corner. In [55], the authors formulate those three cases in
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one formulation and proposes to “rst compute the structure tensor H, second moment matrix

for every pixel (x,y) of the sum-of-squared distances (SSD) between a small window around a

point of interest and its shifted versions and second to calculate the corner/edge response

function by

R(x, y) = det(H )…kTrace(H ) (3.22)

with k being an empirical parameter in [0.04, 0.06]. The response R is then thresholded to

determine the ”at regions, edges and corners.

In order to further increase the speed of feature detection up to a real-time scale, Rosten and

Drummond [57] have proposed a technique for corner detection that examines a circle of 16

pixels around a candidate point. If a contiguous arc of 12 pixels that are either brighter or

darker than the candidate point intensity is found, it is considered as a corner. As a further

improvement, in [58], the authors apply a machine learning approach to determine how many

pixels have to be contiguous around the candidate point that maximizes the information gain

introducing a recursive decision tree-based algorithm. In the experiments, FAST algorithm

seeking for an arc of contiguous 9 pixels around a candidate points was found to lead to the

optimal performance than the previous assumption of 12 contiguous pixels.

Depending on scale of the image, keypoint property can differ. For example a corner point in

a small kernel can be seen as an edge, while it is detected as a corner within a bigger kernel.

SIFT (Scale Invariant Feature Transform) [59] propose the scale invariance for both detection

and description. Its primary operation is scale-space “ltering with Laplacian of Gaussian

Figure 3.14 … Difference of Gaussians in SIFT [60]

(LoG). Gaussian kernel with low � gives high values for small corners, while high � for large

corners. Thus local maxima across the scale and space gives a list of ( x, y, � ) values represents

a keypoint at pixel position x, y at scale of � . Since LoG is a costly operation, SIFT algorithm

uses an approximation, Difference of Gaussians (DoG).

SIFT is a highly discriminative and robust to many image transformations. However its
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Figure 3.15 … Square box approximation in SURF [61]

computation requires gradient histogram pooling, and it produces a high-dimensional vector

of ”oating point numbers. Therefore, cost of its operation is high in terms of memory and

computational power. In order to reduce the complexity of the SIFT method, SURF (Speeded

Up Robust Features) [61] is proposed. Instead of gradient histogram pooling, it uses Haar

wavelet responses, and reduces the resulting vector dimensions from 128 to 64.

In SURF, instead of Gaussian derivatives, box “lter approach is used as shown in Figure3.15.

This approach makes it possible to bene“t from the integral image, to compute the response

of the “lter fast and with much less resources. Similar to SIFT, it searches interest point in

scale-space, but instead of building several layers of the image, it uses different size “lters to

search for points at different scales.

H (p,�) =

�

� Lxx (p, �) Lxy(p, �)

Lyx(p, �) Ly y(p, �)

	




Even though SURF reduce the vector dimensions, the type of the elements of resulting vector is

still ”oating point. Memory footprint of a description vector with 64 elements is 256 bytes, and

in a frame with 1024 keypoints it needs 256 kBytes to store only the keypoint vector. Moreover,

matching of the keypoints performed on ”oating points is a costly operation. Therefore,

limited resources of the embedded systems usually are not able to satisfy their requirements.

In order to overcome this issues, BRIEF [62] method is proposed to be a binary descriptor,

producing binary vectors for each keypoint. This method has two primary operations: (1)

smoothing with a kernel to reduce the sensitivity and (2) intensity comparison between

selected pairs. Experiments show that random or non-ordered selection of the pairs achieves

better performance. An example of selection of the comparison pairs is given in Figure 3.16a.

The output description result is a 512-bit binary array. This means a drastically improvement

(from 256 kBytes to 0.5 kBytes) in memory ef“ciency. Moreover, matching of the keypoints are

much faster. In order to “nd the similarity between 2 keypoints, Hamming distance which is a

bitwise XOR operation followed by a bit count, is computed. In the BRIEF method, smoothing

circles have a “xed diameter.

Binary Robust Invariant Scalable Keypoints (BRISK) [63] method is another binary description

method. Differently from the BRIEF method, BRISK uses a regular sampling pattern with
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(a) BRIEF [62] (b) BRISK [63] (c) FREAK [64]

Figure 3.16 … Comparison points in binary descriptor

a uniform density around the keypoint as shown in Figure 3.16b. In addition, BRISK needs

dramatically fewer sampling points since a single point is used in different comparisons.

Inspiring from the increasing density of the neurons in the human retina from outer regions

to the center, Fast Retina Keypoint (FREAK) [64] algorithm is proposed. Diameter size of

the smoothing circles increases according to radial distance from the keypoint location as

depicted in Figure 3.16c. This bio-inspired radial growth and overlapping of the circles in the

FREAK method has been reported to be more effective in keypoint description [64].

Finding the descriptions of all the points is very time-consuming and power-inef“cient, there-

fore description methods are incorporated with a keypoint detector. FAST corner detection

algorithm [58] is commonly preferred due to its speed advantage. Although the binary de-

scription techniques and FAST corner detection pair have good computational performance

among the others, their software implementations are still computationally expensive for

real-time embedded applications. Yet, hardware implementations accelerate the computation

and reduces the power consumption.

In [65], a method for detection and description as well as matching is proposed and imple-

mented on a Zynq-based platform. They implemented the combination of the FAST and

the BRIEF algorithms. A standalone FREAK implementation as a Xilinx IP core is proposed

in [66]. There are also implementations of the ORB algorithm [67], which is a combination of

FAST and BRIEF methods. In [68], authors implemented SURF method for feature detection,

and FREAK for description on FPGA. They reach 60 fps frame rate for 800 × 600 resolution.

FAST-BRIEF and FAST-BRISK implementations on different platforms such as Embedded CPU,

Tegra GPU and Zynq are compared in [69]. Better performance can be reached by ASIC design.

For instance, 135-frames/s 1080p 87.5-mW binary-descriptor-based image feature extraction

is proposed in [70] with implementation in 65-nm CMOS technology.

In this design, we selected FAST [57] and FREAK [64] methods for keypoint detection and local

binary description, due to their speed and memory ef“ciency. Since reducing the latency is

one of our primary concerns, performing the computations on the pixel stream is crucial. In

order to prevent unnecessary memory access which causes latency and power penalty, all
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Figure 3.17 … Hardware block diagram for local binary description

computations must be progressed with the capture of the pixel data stream.

An overview of the hardware block diagram is shown in Figure 3.17. Resolved RGB pixel values

and their addresses by the camera interface are “rstly converted into grayscale values and

then it feeds both the integral image and the keypoint detection blocks. While the integral

image data is written onto SRAM via the arbiter, FAST block computes in parallel the location

of the corners from the pixel stream. The resulting locations are sent to the FREAK description

block. Since the FREAK operation requires multiple clock cycles per keypoint, a FIFO buffer is

utilized to handle the keypoint coordinate transfer between the FAST and FREAK modules.

On the other hand, one of the memory interface ports is dedicated to writing integral image,

while the other port is for accessing integral image requested by the mean intensity block.

This interface block has a Round-Robin scheduler to arrange the memory access requests, and

interface the physical memory.

3.3.1 FAST Corner Detection

FAST corner detection algorithm is based on the intensity comparison between the central

candidate pixel Pc and its neighbourhood. It tests 16 locations on the Bresenham circle

surrounding Pc. Let a point on this surrounding circle Pc� x , be element of Sbright , if it has

higher intensity than Pc+ � ; and be element of Sdark , if it has lower intensity than PcŠ� . Here, �

is a prede“ned threshold. If Sdark or Sbright has at least 9 contiguous points, then Pc is labelled

as a corner.

This comparison is illustrated in Figure 3.18. The pixel in the center with the gray level intensity

10 is under the corner test where threshold � is 30. Values of the neighbour pixels on the

Bresenham circle centered the candidate point is given in the “gure. In this case, we “nd

a contiguous arc of 10 pixels which are all brighter than the candidate point more than the

threshold � = 30. Thus, it passes the corner test and marked as a corner.

If a pixel pass the corner test, frequently its adjacent pixels may pass the test as well. However,
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Figure 3.18 … A FAST corner on an example image

the corners next to each other does not carry a distinctive information, and their description

results are similar. Therefore, selecting the strongest corner from the adjacent corners and

suppressing the others, reduce the number of the corners to be described. To perform this

operation, a score function is de“ned in Equation 3.24,

V = max



�

x� Sbright

D x Š � ,
�

x� Sdark

D x Š �

�

(3.24)

where Dx = | Pc� x Š Pc|.

To sum up, implementation of the FAST algorithm requires to access the pixels surrounding

the candidate point, applying the corner test, computing the corner score and non-max

suppression of the corners. In our hardware implementation, received pixel from the pixel

bus is directly feed the FAST computation pipeline. At each clock cycle, one result of a pixel is

generated, therefore the throughput of the hardware is the same as the camera.
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Figure 3.19 … Buffer used in FAST corner detection. Pixel numbers are for VGA resolution.
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Buffering the pixel stream enables to access to the neighbouring pixels as shown in Figure 3.19.

In this “gure, Pc at the center is marked as dark, and its neighbours to be evaluated in the

corner test is gray. Thanks to this structures with shift registers, all the pixels for the corner

and score calculations will be ready at each clock cycle.
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Figure 3.20 … Hardware blocks for FAST corner test and score computation

Hardware blocks of corner test and corner score computation is illustrated in Figure 3.20. In

order to reach high frame rates, pipeline registers are used to divide it into stages. The “rst

pipeline stages perform the corner test. Binary inputs to the corner detection block on the left,

are the results of the single intensity comparisons:

bi =

�
�

�
1, if Pi > Pc + �

0, otherwise
di =

�
�

�
1, if Pi < Pc Š �

0, otherwise
(3.25)

Since there are two possible cases darker or brighter arc, this search can be formulated as in

the following equation:

cb =
6�

i =0

i +9�

j =i
bi cd =

6�

i =0

i +9�

j =i
di c = cb + cd (3.26)

where c is corner test result, cb and cd brighter and darker arc search results respectively. This

operation can be realized with the logic gates (AND, OR) as depicted.

The corner score is computed by an adder tree in the last stages of the pipeline as the sum of

si inputs:

s=
15�

i =0
si (3.27)
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where si is determined by brighter or darker arc search:

si =

�
����

����

|Pi Š Pc Š � |, if cb and Pi > Pc + �

|Pi Š Pc + � |, if cd and Pi < Pc Š �

0, otherwise

(3.28)

In order to suppress the weaker adjacent corners, accessing the corner scores of the 1-

neighbouring pixels is required as given in Equation 3.24. Therefore, similar buffering structure

is applied to FAST scores for the non-maximal suppression, as given in Figure 3.18. If only the

central point under suppression test is higher than its neighbours, its coordinates is transferred

to the next keypoint description block. Otherwise, the corner is suppressed and no description

request is produced.
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Figure 3.21 … Buffering of scores for non-max suppression

(a) FAST keypoints without NMS (b) FAST keypoints with NMS

Figure 3.22 … Hardware simulation results of the FAST block

In Figure 3.22b, keypoints found by the hardware simulation are shown. If NMS is disabled,

2915 keypoints are found in Figure 3.22a. When NMS block is activated, number of keypoints

are reduced down to 1282 in Figure 3.22b, which corresponds 56% reduction. Hardware

implementation of the FAST block produces the same results with OpenCV implementation.
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3.3.2 FREAK Description

Figure 3.23 … FREAK pattern applied on a corner

In the general Local Binary Description framework, a number of locations are selected with

different smoothing radius and comparison between their intensities is performed. The

FREAK method consists of a circular overlapping pattern in which the size of Gaussian kernels

exponentially increases as depicted in Figure 3.23. This “gure also illustrates the description

of a keypoint previously detected by FAST corner detection block. There are 7 stages with 6

sampling points (i.e., 42 circles in total). Thus, including the value of the selected keypoint

itself, there are 43 values to be compared pair-wise. Among those points, 512 most distinctive

comparisons are selected with machine learning methods. For more detailed information,

please refer to [64].

Primary operation of the algorithm is the computation of the mean intensities of the Gaus-

sian smoothed circles, and their comparison in the pre-determined order. In its software

implementation, instead of generating the Gaussian smoothed intensity regions which is com-

putationally costly, box-average approximation with integral image is used. In our method, we

also utilized the box area approach as shown in Figure 3.24. Following subsections, explain

these primary sub-blocks, i.e., integral image, mean intensity, and comparison blocks.

Figure 3.24 … FREAK pattern and box approximation
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Integral Image

Integral image is a very ef“cient tool widely used in feature detection applications [71]. A pixel

in the integral image I at (x, y) coordinates is given in Equation 3.29:

I (x, y) =
�

x� � x,y� � y
P(x�, y�). (3.29)

where P(x�, y�) is the pixel intensity value at ( x�, y�) coordinates of the image. Integral image

can be computed during the pixel stream:

I (x, y) = P(x, y) + I (x, y Š 1)+ I (x Š 1,y) Š I (x Š 1,y Š 1) (3.30)

With the integral image method, sum of intensities of a given rectangular area centered at

(x, y) with size of r , can be easily found as in the following:

I =
IUL + IDR Š IUR Š IDL

r
(3.31)

where IUL = I (x Š y, y Š r ), IDR = I (x + r, y + r ), IUR = I (x Š r,x + r ), and IDL = I (x + r, y Š r ). By

using this approximation, both memory bandwidth and computation time is reduced. In

order to compute the sum of the pixels inside a rectangle, instead of accessing all the pixels

in that area, only four access is required to the integral image regardless of the size of the

rectangle.

In this architecture, we bene“t from the square-sum approximation like in the software

implementation, and utilized integral image as well. Differently from the software approach,

integral image can be computed during the pixel ”ow. In addition, FREAK computations does

not necessarily wait for end of the frame. As soon as integral image has enough data in the

memory for a keypoint position, computation for that position starts.

Block diagram of the integral image generation hardware is shown in Figure 3.25. A simple

hardware structure with a line buffer and an adder, creates the integral image stream to store

on the SRAM.

1 2 Line bu�er 639 640

I(x-1,y-1)

I(x,y-1)

I[15:0]

Gr ay[7:0]

ADD

I(x-1,y)

I(x,y)

Px_gray(x,y)

Figure 3.25 … Integral image calculation block
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Mean Intensity

Computing the mean intensity of the square-boxes around the keypoint is primary operation

for all local binary descriptor implementations. As depicted in Figure 3.17, FREAK module

accesses the memory to obtain the integral image values. In order to calculate the mean

intensity of a single square box, four values corresponding four memory accesses is required

to the integral image according to Equation 3.32. Since the FREAK pattern consists of 43

sampling points, memory access is requested 43 × 4 = 192 times for each keypoint.

addr
loc

req

width
req

ack

data

vld

S
R

A
M

(in
te

gr
al

 im
ag

e)
 

area

vld

Figure 3.26 … Hardware of the box area computation

In order to manage the access requests to the integral image stored in the SRAM, hardware

design consists of two state machines as illustrated in Figure 3.26. The “rst machine receives

the row and column address of the top left corner of the requested square, as well as its width

and a request signal. Request signal makes FSM to switch to q1 state, where it sends the

top-left address the square to the memory interface and requests data in the integral image.

As it receives the acknowledge signal from the memory interface, it switch to the other states

q2, q3 and q4 to request the corner positions of the square. In q4 state, if there is another area

computation request, it goes to q1 state, and starts the next computations. Otherwise, it goes

to q0 state where it waits the next request in idle mode.

The second FSM which receives the integral image data IUL , IUR, IDR, IDL respectively. For

each data with acknowledge signal, FSM changes its state and add or subtract the integral data

r= 2 3 4 6 9 12 16

s1 A 	 8 A 	 7 A 	 6 A 	 4 A 	 3 A 	 2 A 	 2

s2 0 ŠA 	 4 0 A 	 3 A 	 2 A 	 1 0

s3 0 A 	 1 0 A 	 2 A A 0

s 
 10 0.25 0.1113 0.0625 0.0273 0.0127 0.0069 0.0039

A÷ r 2 0.25 0.1111 0.0625 0.0278 0.0123 0.0068 0.0039

error 0 % 0.2% 0% 1.8% 3.3% 1.4% 0%

Table 3.1 … LUT approximation of A÷ r 2 for FREAK pattern
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from the area register, depending on the sign in the Equation 3.32:

A = IUL + IDR Š IUR Š IDL (3.32)

In the last stage, sum of the intensities must be divided by the area of the square. FREAK pattern

has 7 levels and each level has identical circles. Therefore, in square box approximation, there

are 7 different square dimensions which limits the set of dividers to 7. In this case, instead

of using divider-multiplier to compute A/ r 2 term we can use only low-cost multiplexer and

adder, bene“ting from the zero-cost logic shift operations. This operation can be formulated

as sum of three terms as follows:

s= s1 + s2 + s3 m = s 
 10 (3.33)

Although this approximation brings a maximum 3.3% difference between the results from the

”oating division operation, it is still acceptable due to its reduction on the hardware resource

cost.
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Figure 3.27 … Hardware of the box area computation

Relative corner positions are calculated and embedded into a look-up-table (LUT) before

the synthesis. When a keypoint location arrives at the block with a data valid signal, the

computation is triggered as soon as integral image has enough data for the boxes of FREAK

pattern. SRAM address is computed by the sum of the keypoint location input and these

relative corner positions.

Comparison

Another critical block of the FREAK algorithm is comparison of those 43 smoothed intensity

points calculated by the mean intensity block with respect to a speci“c pattern. In the original

software implementation, a pre-selected comparison pattern is applied with 512 pairs to

construct the 512-bit binary descriptor. Intensity comparison is performed as given by:

T (Pa) =

�
�

�
1, if

�
I (Pr 1

a ) Š Pr 2
a

�
> 0,

0, otherwise.
(3.34)
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Figure 3.28 … Instantiating the box mean intensity computation block for FREAK pattern

The comparisons then build the binary descriptor:

D =
�

0� a< N
2aT (Pa) (3.35)

FREAK description result consists of comparisons of the selected intensity values. Therefore,

the output of the mean intensity block directly feeds the comparison block. Block diagram of

the comparison unit is shown in Figure 3.29. 512 most distinctive comparisons were selected

instead of comparing all the pairs in the software implementation. The comparison pair index

are pre-calculated and stored in a LUT. Received intensity values from the mean intensity block

are multiplexed and stored in the speci“c registers according to this LUT. When the mean

intensity block completes all the calculations, this block performs the comparison in parallel

following the arrival of all the mean intensities of the keypoint. Finally keypoint coordinates

and their calculated 512-bit FREAK descriptions are given to the 8-bit output in a sequential

order.

Metadata sequencer

In this hardware, metadata bus designed as 8-bit, therefore the outputs of FAST and FREAK

blocks must be formed into 8-bit packages. In order to produce this stream, a sequencer circuit

is needed. We designed a simple Finite State Machine (FSM) with 4 states as can be seen

in Figure 3.30. In the “rst state, it waits for a request signal from the FAST corner detection

module. If a pixel passes the corner test, state machine switches to keypoint transfer (KP tx)

state and transmits the row and column address of the corner. For VGA resolution, row and

column address needs to be stored in 10 bits each, therefore coordinates are transferred in 4 of

8-bit packages.

After FREAK block completes its operations, it generates 512-bit description result to be

transferred. In this case, FSM is triggered by freak_req signal and changes state from FREAK
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Figure 3.29 … Parallel comparison of mean intensities

wait to FREAK tx where it transmits the description result in 64 clock cycle by help of the

counter cnt2 . When the transfer is completed, FSM goes into KP wait state and observes a

request from the FAST block.

3.4 Hybrid Processor Population

Operation speed of the traditional computation methods based on consecutive operations

are limited by the clock frequency of the processing unit. Although very high frequencies can

be reached today, biological neural networks show much superior performance in terms of

timing and power ef“ciency. It is known that human brain consumes 20 W [72], although a

supercomputer requires megawatts of power [73] for similar tasks. Therefore, this ef“ciency

has attracted researchers• attention, and developing bio-inspired computation devices has

been a challenge among them.

One of the earliest attempts to the computation methods with bio-inspired structures is

Cellular Neural Networks(CNN) [74] [75]. In the architectural point of view, a standard CNN is

a system of locally coupled non-linear processing units placed on a rectangular grid as shown

in Figure 3.31. As it is illustrated in this “gure, the cell at the position i , j is connected to the

cells only within its neighbourhood Nr (i , j ). Because of this local connections, data can be

shared with only the neighbors, but propagation enables temporal interactions. Dynamics of

the non-linear cells is commonly given in the following state equation:

�xi , j (t ) =
�

k ,l � Nr (i , j )
Ak,l xk ,l (t ) +

�

k ,l � Nr (i , j )
Bk,l uk ,l (t ) + I i , j (3.36)

where x is output of the cells, A is output feedback operator, B is input control operator, and I

42



3.4. Hybrid Processor Population

KP
wait

KP
tx

FREAK
wait

FREAK
tx

cn
t1

_d
on

e

cnt2_done

fa
st

_r
eq

fr
ea

k_
re

q

4 clk 64 clk 

Figure 3.30 … FSM and timing diagram of metadata sequencer

is the input of the cell.
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Figure 3.31 … Cell connections in CNN

The “rst analog circuit design of the CNN is presented in [76] with the name of CNN Universal

Machine (CNN-UM). It is promoted as the “rst algorithmically programmable analog array

computer and the •analogic• (analog+logic) algorithms of this new computing method is

explained. A successful analog processing array of 128 × 128 cells is implemented in a 0.35 µm

technology [77]. In that work, the processor array is used in real-time image processing

applications and have embedded distributed optical sensors. It achieves to process VGA

frames at 100 fps by applying some basic image processing tasks.

Although CNN is designed initially as analog, there are many digital emulators implemented

on FPGA and ASIC. Continuous time domain expressions in Equation 3.36 can be discretizate
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with Forward Euler method:

xi , j (n + 1) = xi , j (n ) + h



�

k ,l � Nr (i , j )
Ak,l xk ,l (n ) +

�

k ,l � Nr (i , j )
Bk,l uk ,l (n ) + I i , j

�

(3.37)

where h is the time step. A digital implementation of the CNN-UM is presented in [78]. In that

work, authors implemented a multi-layer CNN model on a Virtex-300 FPGA.

The biological networks such as in frontal cortex performs their operations by bene“ting

form inhibition and excitation activities. A mathematical model of inhibitory and excitatory

sub-populations constituting of the network is given by Wilson and Cowan [79]. Their model

characterize the dynamics of the neural population explicitly with E(t ) and I (t ) variables,

being proportion of excitatory and inhibitory cells “ring per unit time at the instant t , re-

spectively. Based on this network model, Ayhan and Yalcin used a similar network to realize

an arti“cial olfaction system [80] and implemented in FPGA [81]. They generate different

networks by randomly distributing the inhibitory and excitatory cells, and select the best

random distribution by observing their classi“cation performances. In the implementation

point of view, this method does not require a signi“cant extra complexity over classical CNN.

It needs an identity matrix with the size of the network.

In this section, we develop a Hybrid Processor Population model and give its FPGA implemen-

tation for vision applications. We have integrated this hardware block into our smart camera

architecture. Since the cell types can be con“gured by identity matrix, the network is highly

con“gurable. We presented different network con“gurations, directly can be used in local

binary features applications as parallel subtractors. Moreover, this approach can lead different

methods for feature extraction.

3.4.1 Cell Model

The network architecture is based on the Cellular Neural Network which is composed of locally

coupled cells (or Neural Processing Elements, NPEs) on a two-dimensional grid of size M × N .

Similar to [81], each cell can be two different types of characteristic as excitatory and inhibitory.

Cell types are stored in H matrix of size M × N , and elements of the matrix hi , j � {0,1} indicate

the cell type as inhibitory (0) and excitatory (1). Since the implementation target is digital

hardware realization, cell dynamic can be written directly in the discrete time domain:

xi , j [n + 1] = c0xi , j [n ] +
�

k ,l � S
c1.yk,l [n ] + c2.gin [n ] (3.38)

where i , j ,k , l are indices represent the location of the NPE on the grid network:

1 � i ,k � M ;1 � j , l � N (3.39)
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In this equation, next value of the state variable x[n + 1] is a linear combination of the current

value x[n ], input ( gin ), and the output values ( yk,l ) of the neighbouring cells ( S). If the state

variable x exceeds the limits ( Xmax ,Xmin ), output y saturates. Output of a cell is de“ned as in

the following non-linear equation:

yi , j [n ] =

�
����

����

Xmax , xi , j [n ] > Xmax

Xmin , xi , j [n ] < Xmin

xi , j [n ], else

(3.40)

The binary outputs constitute the binary descriptor, while y output is the input of neighbour

cells. If a threshold � is applied to state variable x, binary output is produced:

bi , j [n ] =

�
�

�
0, x < �

1, else
(3.41)

In Equation 3.38, c1 is a function of identity matrix H and determines the weight of the

connections between the cell-types. If h is concatenation of the identities of the neighbouring

cells (h = [H (i , j ), H (k , l )]), different c1 connection weights can be de“ned as:

c1 = c1(H ;i , j ;k , l ) =

�
�������

�������

cII
1 , h = 00

cIE
1 , h = 01

cEI
1 , h = 10

cEE
1 , h = 11

(3.42)

In this equation, I and E superscripts represent inhibitory and excitatory identity, respectively.

Connection weights from inhibitory cells are de“ned as negative ( i .e.,cIE
1 ,cII

1 � 0). In fact, the

network consists of identical cells like in the CNN approach, however identity input of the

cells de“ne their behaviour as either inhibitory or excitatory.

3.4.2 Connectivity Rules

In the classical CNN structure, a single cell may have connected with both positive and

negative weights to its neighbours. In contrast, visual cortex is compound of the neurons

which show either inhibitory or excitatory behaviour. Limiting the connections create isolated

regions which are not affected by the other cells, and this extends the ”exibility of the network.

In order to provide this, connections between the same type of cells can be restricted as in

biological examples:

cEE
1 = cII

1 = 0 (3.43)
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The identity matrix is a representation and each element of the matrix is directly connected to

cell. This can be implemented by the help of an XOR operation applied on the identities:

ci , j = hi , j � hk ,l (3.44)

We can de“ne another connection limitation rule by prohibiting the diagonal neighbourhood

with d parameter. In case of d = 0, each cell has 4 connections (left, right, up and down),

otherwise ( d = 1) 8 connections including diagonal neighbours. This helps to create isolated

sub-networks. As a result, if all cell types are connected and diagonal neighbourhood is

permitted, connectivity of the network is maximum. On the other hand, connections are

limited by synaptic rules and this increase the ”exibility of the architecture. Therefore a

cell can be connected from 0 up to 8 neighbouring cells depending on the rules and type of

surrounding cells.

3.4.3 Example Network Con“gurations

Due to the ”exibility of the architecture, many different types of network can be generated. For

instance if the inhibitory and excitatory cells are distributed into the network in a particular

order, the network can be used as an accelerator in LBP and LBD operations. In addition, if

inhibitory and excitatory cells are distributed in a non-uniform order under some connectivity

rules, cells can have different number of connections from each other. Moreover, a longer

process of the network enables a more complex calculation with propagation effect. By using

random distributions and propagation, novel binary descriptors can be produced.

Besides being accelerator/co-processor of the local binary description process, recon“guration

is a key-concept in this architecture. Since the networks are described by identity matrix and

connectivity rules, a modi“cation on those parameters corresponds a new network. Therefore,

in case of different binary description operation is a requirement for the multiple target

applications, this network provide to this ability without any additional hardware cost. In this

sub-section, 3 different application examples will be examined.

Local Binary Descriptor (LBD)

In this example, selected interest points are described by LBDs. Gaussian smoothed intensity

points are selected and compared around an interest point. 512 intensity comparison is

required to obtain 512-bit binary descriptor. Therefore, parallelizing this computation results

in accelerating the process. For this application, the connectivity rules should be selected as

in the following:

cEE
1 = cI I

1 = cEI
1 = 0,cIE

1 = Š 1,d = 0 (3.45)
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Identity matrix and corresponding network model is depicted in Figure 3.32. As a result of

imposing this connectivity rules and identity matrix on the network, isolated subtraction

couples are generated. For each set, the network is operated one cycle, excitatory cells take

value of difference of two intensity points. A threshold � = 0 is applied to the state variable in

order to obtain the binary output. By this way, the network can be used as a LBD co-processor

which accelerates the calculation by parallelizing M × N ÷ 2 subtraction operations.

1

0

1 1 1

0 0 0

1

0

1 1 1

0 0 0

1

0

1 1 1

0 0 0

1 1

0 0

1 1

0 0

1 1

0 0

Figure 3.32 … A network con“guration for LBDs

Local Binary Pattern (LBP)

Local Binary Pattern (LBP) is a very ef“cient texture operator and it has especially superior

performance in face recognition applications [82]. In this operation, pixel value of a keypoint

is subtracted from its neighbours, and a threshold is applied to remaining values. The binary

result represents the LBP of the corresponding pixel. To speed up the process, this subtract and

threshold operation can be parellelized by using the proposed keypoint detection hardware.

The network connectivity parameters should be set as follows:

cEE
1 = cI I

1 = cEI
1 = 0,cIE

1 = Š 1,d = 1 (3.46)

A proper identity matrix creates M × N ÷ 9 isolated groups with dimension of 3 × 3 as depicted

in Figure 3.33. In this network, inhibitory cells are surrounded by excitatory cells and the

inputs of those cells are the image pixel values. Similar to LBD example, a threshold � = 0

is applied to the state variable x, thus the binary output b is generated. As a consequence,

excitatory cell output gives the desired LBP values following a bit ordering manipulation.

Non-Uniform Distribution

Inhibitory-excitatory cells are distributed in a particular order to create isolated sub-networks

for LBD and LBP operations. Conversely to these applications, non-uniform or random

connections can be seen in biological networks [83]. If inhibitory and excitatory cells are

distributed in a non-uniform order, connections give different combinations because of the
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Figure 3.33 … A network con“guration for LBPs

connectivity rules. As it can be seen as highlighted in Figure 3.34, cells with different number

of connections (1, 2, 3 and 4) are available in the network. Therefore differently from current

LBDs, more than two intensity values can be considered for one bit of the descriptor. This

can increase the accuracy of the description, since a selected combination ( e.g. I 1 Š I2 Š I3 or

I 1 Š (I 2 Š I3)/2) may represent more distinctive information than a I1 Š I2 comparison selected

by FREAK in particular applications, where In represent an intensity value of a smoothed

sampling point.
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Figure 3.34 … Randomly distributed inhibitory and excitatory cells under limited connectivity
rules.

3.4.4 Realization

In the hardware implementation of a single HPP cell, all connection weights ( cI I
1 ,cIE

1 ,cE I
1 ,cEE

1 )

are limited with to be either 0 or 2 ŠN (N � N). Thus, c1.yn terms can be calculated by a zero-

cost casting operation. Consequently, only low-area hardware units like adder and multiplexer

take place in the hardware which is depicted in Figure 3.35.

Building the HPP network needs a large multiplexer circuitry to map the input registers to

the HPP cells as shown in Figure 3.36. Depending on the cell identities ( h) and connectivity

rules, some of the connections between the cells are set to zero automatically. Contributions

of the neighbouring cells are calculated in c1.yn units by setting the cast operations before
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Figure 3.35 … Hardware of a single cell in HPP

synthesis. On the other hand, cell identities and connectivity rules can be changed in run-time

by a control unit.
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Figure 3.36 … Multiplexing the inputs for HPP

3.4.5 Conclusion

In this section, we extended our smart camera architecture which consists of keypoint detec-

tion and description blocks, with Hybrid Processor Population (HPP). HPP is designed as a

highly con“gurable processing block. By changing identity matrix and synaptic rules, many

network con“gurations can be generated. Among those networks, two different con“gurations

are shown to be incorporated with keypoint detection and description operations. In addition

to this, the HPP network is also capable of performing complex comparisons and multiple

iterations.
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3.5 Result

In this chapter, we presented our smart camera architecture which consists of three processing

unit: moving object detection, keypoint description and cellular neural network. For their

implementations, “rstly we coded their models in Python language.

OpenCV is an open source computer vision library which can be imported into the Python.

Since MOG background subtraction, FAST keypoint detection and FREAK description methods

are already implemented in OpenCV library, accuracy of the proposed algorithms can be

evaluated by comparing them. In this stage, we also created test vectors and their expected

results to be used in the hardware simulations.

Camera
interface

Smart 
camera

Camera model

pixel stream Metadata

Python - OpenCV

Expected 
results

Memory arbiter
and interface

Synthesizable 
RTL

Simulation environment

Assertion

SRAM model

Figure 3.37 … Hardware simulation environment of smart camera

Then, we described all these hardware processing blocks in VHDL. In addition to this, be-

havioral models of the camera (Toshiba TCM8230 VGA) and the memory (SRAM) and their

interfaces are also coded in VHDL in order to create a board level cycle-accurate simulation

environment as depicted in Figure 3.37. Including these VHDL codes and applying the test

vectors, we verify the functionality with behavioral simulations in ModelSim.

Following this, we synthesized the design for VGA resolution with Vivado, targeting Xilinx

VC707 board with Virtex-7 XC7VX485T FPGA, however since there is no IP core from a vendor,

full design can easily be adapted to other technologies. As an example, some functions are

taped out for 65 nm chip technology in Section 4.4.

We set the system clock frequency to 100 MHz and frame rate to 30 fps, then we run post-

implementation simulation to extract switching activities of the logic blocks, and used Xilinx

Power Estimation Tool with this information. According to its output, power consumption

of processing of a VGA frame with 1200 keypoints is found as 292 mW for feature extraction

module. In fact, since device static power is 242 mW, dynamic logic consumes 50 mW. On the

other hand, for moving object detection block, dynamic power consumption is estimated as

18 mW (i.e. 260 mW with device static).
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On-the-”y pixel processing of the blocks needs a number of line buffers, a form of shift

registers. Shift registers are mapped onto slice LUTs bene“ting from SRL32 structure of Xilinx

FPGA technology. This mapping brings an area ef“ciency. Hardware resource allocation of the

processing blocks is given in Table 3.2. Since there is no multiplier in any blocks, DSP blocks

remains free. Block RAM is not also utilized, but in case of internal storage of the integral

image in feature extraction block, it will be occupied by 56%.

Table 3.2 … Resource allocation

Blocks Slice LUTs Slice Registers DSP BRAM

FAST 2541 (0.84%) 1183 (0.19%) 0 0

FREAK 2356 (0.78%) 531 (0.09%) 0 0

HPP 2952 (0.97%) 1836 (0.01%) 0 0

Total 8941 (3%) 4653 (0.77%) 0 0

According to these simulation analysis results, a performance comparison for Moving Object

Detection is given in Table 3.3, and for Feature Description in Table 3.4. Considering these

computation blocks separately, we can prove that both modules outperform the other designs

in terms of power, area and speed tradeoff.

Table 3.3 … Performance comparison for Moving Object Detection

Work Max. Frame Rate Power (mW) Area [LUT+REG]

[28] 15 670 0.8 k

[42] 91 (HD) 136 1 k

[45] 182 459 0.8 k

This work (MOD) 150 230 0.9k

Table 3.4 … Performance comparison for Keypoint Description

Work Max. Frame Rate Power (mW) Area [LUT+REG]

[84] 55 N/A 31 k

[69] 325 2400 16 k

This work (FD) 300 580 7 k

To conclude, processing blocks which constitutes the smart camera are implemented in a

hardware ef“cient way. Having processing blocks at different energy levels make the system

”exible for power-critical applications. Since feature extraction is more expensive in terms

of power, its operation can be decided if there is a moving object detected by moving object

detection block, also taking into account of energy level of the system.
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4 Applications

4.1 Omnidirectional Image Reconstruction

The number of cameras determine the full-coverage distance of the scene, thus different solu-

tions could be produced according to the application by changing the number and distribution

of the cameras. In order to cover short distances, it is required to increase the number of

cameras. However, the computational complexity and memory access load increases propor-

tional to captured images. Moreover, computer vision applications such as feature detection

and description, object recognition and tracking increase the random access storage and

bandwidth requirements. In order to satisfy the requirements, speed- and memory-optimized

approaches to algorithms as well as the amelioration of the computational performance of

the embedded devices in terms of memory, power, and processing unit capacity should be

considered.

In this part, we propose a hybrid architecture examining centralized and distributed ap-

proaches. This architecture distribute the computational load into processing nodes which is

connected with a network with tree topology. In addition, we propose a hardware solution for

processing nodes of the network, which targets scalability and maximizing memory storage

and bandwidth capabilities. For this purpose, “rstly omnidirectional image reconstruction

algorithm will be given. Following, centralized and distributed approaches to algorithm im-

plementation will be explained. Finally, a novel hybrid architecture and its hardware solution

with the smart camera architecture will be presented.

4.1.1 Method

The omnidirectional vision of a virtual observer located anywhere inside the hemisphere

of the Panoptic structure can be reconstructed by combining the information collected by

each camera in the light “eld [85]. In this process, the omnidirectional view is estimated on a

discretized spherical surface Sd of directions. The surface of this sphere is discretized into an

equiangular grid with N� latitudes and N� longitudes samples, where each sample represents
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Figure 4.1 … (a)Cameras contributing to the direction �� , (b) contributing pixel positions on the
image frame of the contributing cameras for direction �� , (c) projections of camera centers
contributing to direction �� onto planar surface normal to ��.

one pixel. Different pixel distributions over the sphere are possible and a comparison can be

found in [17]. A unit vector �� � Sd , represented in the spherical coordinate system � = (� � , � � ),

is assigned to the position of each pixel.

The construction of the virtual omnidirectional view L (�q,�� ) � R, where �q determines the

location of the observer, is performed in two steps. The “rst step consists of “nding a pixel in

each camera image frame that corresponds to the direction de“ned by �� . Due to the rectangu-

lar sampling grid of the cameras, the �� does not coincide with the exact pixel grid locations on

the camera image frames. The pixel location is chosen using the nearest neighbour method,

where the pixel closest to the desired direction is chosen as an estimate of the light ray intensity.

The process is then repeated for all �� and results in the estimated values L (ci ,�� ), where ci

is the radial vector directing to the center position of the i th contributing camera•s circular

face. Figure 4.1a shows an example of the contributing cameras for a random pixel direction

�� . The contributing position A� of the camera A, providing L (cA,�� ) is also indicated in

Figure 4.1b. The second reconstruction step is performed in the space of light rays given

by direction �� and passing through the camera center positions. Under the assumption of

Constant Light Flux (CLF), the light intensity remains constant on the trajectory of any light

ray. Following the CLF assumption, the light ray intensity for a given direction �� only varies in

its respective orthographic plane. The orthographic plane is a plane normal to �� . Such plane

is indicated as the • �� -planeŽ in Figure 4.1c, and represented as a gray-shaded circle. The light

ray in direction �� recorded by each contributing camera intersects the �� -plane in points that

are the projections of the cameras• focal points on this plane. The projected focal points of

the contributing cameras in �� direction onto the �� -plane are highlighted by hollow points in

Figure 4.1c. Each projected camera point Pci on the planar surface is assigned the intensity

value L (ci ,��), that is calculated in the “rst step.

When applying the nearest neighbour (NN) technique in the second reconstruction step, the

light intensity at the virtual observer point for each �� direction is set to the light intensity value

of the best observing camera for that direction. The nearest neighbour technique as in the
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following:

d j = argmin i � I (r i )

L(�q,��) = L(cj ,��)
(4.1)

where I = {i |�� · �t i � cos( � i
2 )} is the index of the subset of contributing cameras for the pixel

direction �� . A pixel direction �� is assumed observable by the camera ci , if the angle between

its focal vector �t i and the pixel direction �� is smaller than half of the minimum angle of view

� i of camera ci . The length r i identi“es the distance between the projected focal point of

camera ci and the projected virtual observer point on the �� -plane. The camera with the

smallest r distance to the virtual observer projected point on the �� -plane is considered the

best observing camera. As an illustration, such distance is identi“ed with r A and depicted by a

dashed line for the contributing camera A in Figure 4.1c.

Different brightness levels between cameras and misalignment causes sharp transition among

the cameras. In order to resolve this transition problems, several other blending techniques

were proposed. For example, the linear blending scheme incorporates all the cameras con-

tributing into a selected �� direction through a linear combination [15]. This is conducted by

aggregating the weighted intensities of the contributing cameras. The weight of a contributing

camera is the reciprocal of the distance between its projected focal point and the projected

virtual observer point on the �� -plane, r A in Figure 4.1c. The weights are also normalized to

the sum of the inverse of all the contributing cameras distances.

The linear blending is expressed in Equation 4.2.

L(�q,��) =

�

i � I
w i · L(ci ,��)

�

i � I
w i

w i =
1

r i

(4.2)

For detailed discussion on camera arrangement on spherical surface, different blending

approaches, camera orientation and multiple camera calibration, the reader is referred to [16].

4.1.2 Central Approach

The “rst implementation approach to omnidirectional reconstruction algorithm is the cen-

tralized approach, where data acquisition and data processing reside on the same unit. The

architecture of the central approach is depicted in Figure 4.2. The arrow lines shows the ”ow

of image data inside the FPGA. Image data streaming from the cameras enters the FPGA via

the camera connectors. A time-multiplexing mechanism must be conducted to store the

incoming frame data from all the camera modules onto one of the single data port SRAMs.

Hence the memory arbiter block time multiplexes the data received by the camera input
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Figure 4.2 … Centralized implementation approach to the reconstruction algorithm. Camera
data is saved onto one of the SRAMs, via camera interface and memory interface. Panorama
reconstruction algorithm access the camera data which belongs to previous frame.

channel block and transfers it to the memory controller block for storage in one of the SRAMs.

The memory controller block interfaces with two external SRAMs available on the board and

provides access for storing/retrieving the incoming/previous twenty image frame data on the

SRAMs. The SRAMs swap their role (one being written into, and one being read) with the

arrival of each new image frame from the cameras. The application unit block is in charge of

signal processing and basic functionalities such as single/dual video channel streaming, all

channel capture and omnidirectional vision construction. This block accesses the SRAMs via

the memory controller block and transfers the processed/image data to the control unit block.

The control unit block provides transmission capability over external interfaces available on

the board such as high speed LVDS serial links or USB 2.0. The latter block also applies the

control commands originating from the computer/FPGA.

A custom FPGA board has been designed using a Xilinx Virtex-5 FPGA as a core processing

unit in order to capture and process the video streams produced by the cameras in real-time.

The devised system consists of four layers: 1) image sensors, 2) FPGA boards handling local

image processing, 3) one central FPGA board for control, external access and last stage image

processing, 4) a PC in charge of the applicative layer consisting of displaying the operation

results transmitted from the central FPGA board. This board interfaces with twenty single-

chip Common Intermediate Format (CIF, 352 × 288) cameras. It contains two Zero Bus Turn

around (ZBT) Static Random Access Memories (SRAM) with 36 Mb capacity and an operating
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bandwidth of 167 MHz, for each. The maximum achievable throughput using this SRAM is

approximately 3 Gbps. The details of the implementation is explained detailed in [16].

In the centralized approach, because of the input-output (I/O) constraints, the number of

cameras that can be connected to a single node is limited. Furthermore, for high number

of cameras and high camera resolutions, the memory bandwidth requirement increases

signi“cantly. Therefore, centralized approaches for such systems may create bottlenecks and

limit the scalability.

4.1.3 Distributed Approach

The real-time implementation of multi-camera systems applications with a high number of

cameras, high image sensor resolutions and the current image sensor architectures demands

a high amount of hardware resources, and depending on the target application, it might also

demand high computing performances. Parallel processing approaches aim to overcome the

limitations of centralized approach by distributing signal processing tasks and memory band-

width usage among several signal processing blocks. This technique creates the possibility

of constructing higher resolution images beyond centralized approach. Moreover, parallel

approaches are faster implementations compared to the centralized approaches, which create

the possibility of creating higher resolution images. A distributed and parallel implementation

is presented in [17].

4.1.4 Distributed and Parallel Implementation

If tasks are distributed properly among many processors, the computation time will decrease

signi“cantly. In order to distribute the tasks among the nodes, it is required to enhance

the features of customary cameras to include processing and communication capabilities.

The processing capability enables the camera module to perform local processing down to

pixel level, while communicating features permit information exchange among the camera

modules. Assuming that all cameras have signal processing capability and communication

media that permits a communication with other cameras and a central unit, omnidirectional

vision reconstruction algorithms can be realized in a distributed manner among the camera

nodes.

In the distributed and parallel implementation of the Panoptic Camera, each camera con-

structs a portion of the omnidirectional vision with the help of neighboring cameras. For a

distributed implementation of the omnidirectional algorithm, each i th camera must possess

the knowledge of its covering directions and the information of the other contributing cam-

eras for all of these directions. This information can be extracted by the internal and external

calibration processes of the Panoptic system. After extracting the camera parameters, such as

camera direction vectors and coordinates on spherical surface, angle of views (AOV) of each

camera, etc., each camera can construct its assigned portion of omnidirectional view inde-
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Figure 4.3 … High level model of an interconnected network of cameras. All cameras Ci are
connected via interconnection network and some cameras have direct access to central unit.

Algorithm 1 Distributed Reconstruction Algorithm

1: calculate calibration data
2: calculate weights
3: for all best observing directions do
4: Pm := read_pi xel _f r om _memor y
5: pcontr ,2..n := request_pi xel s
6: C := Wm ·Pm +

� n
2 Ps,n

7: send C to central unit
8: end for
9: for all other observing directions do

10: wait for request from principal camera
11: Ps := read_pi xel _f r om _memor y
12: Ps,out := Ws ·Ps

13: send Ps,out to principal camera
14: end for

pendently. The distributed implementation of the algorithm is summarized in Algorithm 1.

The required information can be calculated once by the central unit and updated to the local

memory of the camera modules. Alternatively, each camera module can calculate its own

required information using its own processing features. In the initialization process, the set

of best observing directions for each camera is extracted. Furthermore, other contributing

cameras for each coverage direction and their weights used in the second interpolation step

are extracted. After the initialization process, each camera has the knowledge of which ��

to construct, which other cameras are contributing to the same �� and, depending on the

interpolation type, what are the camera weights contributing to the “nal level of interpolation.

Assuming cameras have processing capabilities, the missing variables to construct the light

“eld are the light intensity values obtained by the other cameras. This creates the necessity of

a communication scheme among the camera modules.

4.1.5 Interconnected Network of Cameras

A general purpose message-passing interconnection network is a programmable system

capable of exchanging data between terminals. The system illustrated in Fig. 4.3 shows N
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4.1. Omnidirectional Image Reconstruction

(a) (b)

Figure 4.4 … (a) The network-based Panoptic prototype with 5 ”oors and 49 cameras. The
sphere diameter of the prototype is 2 r � = 30cm. (b) Top view of the Panoptic Media FPGA-
based development platform.

terminals, C1 through CN connected to a network. As an example, when terminal C2 wishes to

exchange data with terminal C5, C2 sends a message containing the data to the network and

the network delivers the message to C5. The terminals Ci resemble the camera nodes with

features in addition to basic imaging.

Having a distributed camera system does not imply the omission of a central unit. For example,

a central unit is required for the cameras to send their processed information for the purpose

of display. It is preferred that all cameras also have a direct access to a central unit. However,

this feature is not feasible or optimal in most cases. A central unit may not have enough ports

to interface with all the cameras of the system. In case where all the cameras are connected to

the central unit with distinct interfaces, and the respective bandwidth of these connections

are not fully utilized, such an arrangement may cause inef“cient usage of resources. Hence it

is more ef“cient to provide some of the cameras with direct accessing capability to the central

unit and share these connections with the cameras that do not have a direct interface to the

central unit. The availability of an interconnection network permits the utilization of this

strategy. The latter concept is depicted for the Panoptic system with N number of cameras in

Fig. 4.3.

In multi-camera applications, information exchange mostly takes part among the neighboring

cameras. Thus, during the creation of an interconnection network, neighborhood relations of

camera modules should be preserved as much as possible. In order to obtain the neighborhood

relation graph of the Panoptic system, the surface of the Panoptic device hemisphere is

partitioned into a set of cells centered on the camera locations. Each cell is de“ned as the set

of all points on the hemisphere which are closer to the camera location contained in the cell

than to any other camera positions. The boundaries of the cells are determined by the points

equidistant to two nearest sites, and the cell corners (or nodes) to at least three nearest sites.
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Figure 4.5 … Network with tree topology of depth 2. PN1 operates on images collected by C and
PN2 stitch partially reconstructed images by PN1. Maximum supported number of cameras is
determined by fanout of PN1 and PN2 ( m, n, respectively)

4.1.6 Novel hybrid architecture

As indicated before, memory storage and bandwidth requirements constitute an important

challenge for real-time omnidirectional reconstruction. Furthermore, implementation of

computer vision algorithms such as feature detection and description, increase the memory

requirements much more. The system presented in [17] consists of 49 processing units (PU),

where each unit has a memory, a camera unit and image processing part. This feature increase

the number of cameras which can be supported by the system, since each camera can act like

an omnidirectional image reconstruction system on its own. Furthermore, a communication

media is necessary for the data exchange among the PUs. Since each unit has its own image

processing part, the same hardware architecture should be repeated. This causes signi“cant

increase in terms of resource allocation. Furthermore, the memory bandwidth is not ef“-

ciently utilized, since each camera reads redundant data, although they are not responsible

of reconstruction. The network-based architecture allows the system to be scalable, but also

adds further latency and utilizes hardware resources. Finally, the algorithm and units are

designed to be scalable, therefore it is easy to add or subtract cameras from the system such as

adding a new nodes to a network, but the proposed hardware architecture is limited with 49

cameras since no additional board or modules can be added. Due to the limitations of the

previous systems, we designed a new hybrid panoptic architecture and propose a hardware

solution.

In this architecture, similar to the distributed approach, computational load of the omnidirec-

tional reconstruction is distributed between the processing nodes, which have a network with

tree topology (see Figure 4.5). In this network, image sensor nodes (cameras) take place as

leaves. Processing nodes stitch the images with the algorithm which is explained in Section

2, and consist of the processing units, memories and connectors. The “rst level processing

nodes (PN1) stitch the image data collected from the image sensor nodes (cameras). In the

other levels, stitching process is operated on partially stitched images. In fact, a full omnidi-
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4.1. Omnidirectional Image Reconstruction

(a) (b)

Figure 4.6 … (a) Front view of the horizontal board carrying FPGA, memories, power units and
misc. devices (b) Back view of the horizontal board carrying 16 camera connectors

rectional image can be reconstructed with a tree of depth 1, with PN1 standalone. However,

the sensor nodes which can be supported by PN1, fanout of PN1, is limited with the number

of pins and hardware resources of PN1. Therefore, depth level is supposed to be increased, if

more cameras needed in the system. Owing to modularity of the architecture provided by the

network with tree topology, a wide range of Panoptic system of different number of cameras,

can be built by changing the fanout and depth of the tree.

The main processing components of this architecture, PN1 and PN2, can be realized as custom-

designed FPGA-based high-performance boards, taking into account real-time constraints.

Image sensor nodes, which are the leaves of the tree topology, are VGA cameras with parallel

output. Since panorama construction and feature extraction algorithms need very irregular

and fast memory access, the main target of the hardware implementation is maximizing

the memory capabilities in terms of both memory storage area and bandwidth. Therefore,

memories and cameras are connected to FPGA separately in order to increase the bandwidth,

thus FPGA pin count limits the number of cameras that can be connected. Because of this

limitation, fan-out of PN1 is 16, which means that each PN1 board has 16 camera connectors.

While the connection between C and PN1 nodes is provided by ”exible parallel cables, 90

degree data connector is placed for PN1 and PN2 communication. Thus, PN1 boards can

be mounted vertically onto PN2 boards. Xilinx Virtex-5 FPGA is used as the processing unit

of PN1, due to its parallel processing capability, high amount of internal resources and pin

count. Memory units consisting of 4 Quad Data Rate (QDR-II) SRAMs capacity of 8 M × 18bi t

which are separately connected to FPGA, provides 32 Megapixel (MP) storage area and 1600

MP/s bandwidth, assuming each pixel data is stored in 18-bit memory cell. Consequently, PN1

provides a memory space to store 6.75 VGA frame per each camera. The nature of the QDR-II

SRAM which has separate input and output ports and data transfer both falling and rising

edges of the clock, improve the bandwidth 4 times, however a new approach on the algorithm
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Figure 4.7 … Hardware solution for a system which has single PN2. Cameras is placed on
hemisphere, and collected images are transmitted to vertical boards which represents PN1.
Omnidirectional image is completed on horizontal board, PN2, processing of stitched image
by PN1.

is needed in order to bene“t this performance increase. A comparison with previous panoptic

systems can be found in Table 4.1. Manufactured and assembled PCB is shown in the Figure

4.6.

Storage per camera Total storage Total bandwidth

Ping-pong [16] 2 CIF frame 4 MP 670 MP/s

P-49 [17] 3 VGA frame 49 MP 4900 MP/s

Proposed PN1 board 6.75 VGA frame 32 MP 1600 MP/s

Proposed system 6.75 VGA frame 128 MP 6400 MP/s

Table 4.1 … Storage and bandwidth comparison of the Panoptic systems

The tree node PN2, can be realized as a horizontal board, which PN1 boards are mounted

vertically. Fanout of PN2 is restricted with pin count of the FPGA, and equal to 4. By using

proposed hardware (C, PN1, PN2), it is possible to generate a number of different solutions by

changing connections. Since fanout of PN1 is 16, and fanout of PN2 is 4, a system which has

one PN2 supports up to 64 camera and an example structure can be seen in Figure 4.7. If more

camera is needed, either depth of the tree is increased or PN2 boards are connected with a

different network topology.
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4.2. Polarimetry

4.2 Polarimetry

Polarimetric imaging is an emerging remote sensing technology which complements panchro-

matic, multi and hyper-spectral imaging. While spectral signatures carry information about

material properties, the polarization state of an optical “eld depends on surface features, such

as shape and roughness. The information acquired by spectral and polarimetric imaging

often reveals independently distinctive features of relevant objects. With such capabilities,

polarimetric imaging demonstrates enhanced competencies for advanced object detection

tasks [86], especially with contrast-enhancing techniques.

Random polarized light Vertically polarized light

Wire-gr id  po lar izer

Figure 4.8 … Horizontally placed wire-grid polarizer absorbs the horizontal components.

In more details, polarimetry is the measurement and interpretation of the polarization state of

transverse waves, such as radio or light waves. Typically it is done on electromagnetic waves

that traveled through or re”ected by some material in order to characterize that object [87].

Polarimetry is proved to be bene“cial for numerous visual enhancement and scene identi“-

cation methods. To remove the effects of haze from images, recover visibility of underwater

scenes, improve the contrast and separate the specular components in an optical “eld, polari-

metric imaging techniques demonstrated an outstanding performance [88]…[90]. Moreover,

polarimetry is often used during post processing of various target detection applications to

improve the characterization of a target by estimating the texture of a material, resolving the

orientation of structures [91].

It is often preferred to represent the polarization information in terms of the Stoke vectors,

which is de“ned as a time-averaged intensity measurement [86]. In order to compute the

elements of the Stoke vectors, “ltered images by special polarizing “lters are needed. A “ltering

example is illustrated in Figure 4.8. The wire-grid polarizer absorbs the horizontal components

and allows only vertical polarization to pass. Polarimetric cameras used in this study have

linear polarizing “lters placed with different angles. This enable us to compute the “rst three

elements of the Stoke vectors: S0, S1 and S2 from the output of the cameras. We preferred not

to use Stoke parameter S3, calculated by left and right circular polarizations which are usually

quite weak for natural backgrounds. The usage of “lters is drastically different between these

devices.

The “rst one is called Equus 327k SM (Figure 4.9a), which is an infrared camera in SW/MWIR

spectra and developed by IRCAM. It is based on a mechanism that circularly rotates “lters
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(a) Equus 327k SM (b) PolarCam-V

Planar camera array
with polarized filters

Processing board
        (FPGA)

Linear polarization filters: 
       0°, 45°, 90°, 135°

(c) Custom design multi-camera polarization

Figure 4.9 … Polarization camera examples

corresponding to different polarization components. As an obvious downside of such systems,

since there is a delay between the consecutive frames, stoke parameters of the pixels belong to

moving objects cannot be computed correctly.

To overcome this issue, we used another polarimetric camera by 4D Technology named

PolarCam V in VIS spectra, shown in Figure 4.9b. It is a snapshot micro-polarizer camera

which is capable of simultaneously capturing multiple polarization angles of an image. More

speci“cally, it uses a technology called wire grid polarizer in which nano-scale patterning is

utilized to form a metal grating on a glass substrate [92]. It contains a pattern of four discrete

polarizers with 0, 45, 90, 135 degrees. This structure is known as a super pixel and can be seen

in Figure 4.10. A more detailed look at technical speci“cations regarding both conventional

and polarimetric systems used in this study is provided in Table 4.2.

Although PolarCam has solved simultaneous capturing problem, the special manufacturing

process makes it cost inef“cient. A multiple camera system operates synchronously can

also provide polarizing information simultaneously. In Figure 4.9c, our hardware proposal is
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shown. Four of the cameras are covered by linear polarization “lters, placed in four different

directions: 0 °,45°,90°and 135°. These cameras are connected to a powerful FPGA development

board VC707 with Virtex-7 FPGA via its FMC connector. Thus, camera data “ltered by linear

polarization “lters arrives at FPGA, and DoLP data can be computed in real-time by FPGA. By

this way, high resolution can be reached at low-cost.

Table 4.2 … Details regarding to the camera systems used in this study

Camera speci“cations

Name Sensor

Spectra Sensor �[nm ] Pixel Pitch [µm ]

Polarcam V VIS Polar. Si 400-700 640x460 7.4

Equus 327k SW/MWIR MCT 1500-5000 640x512 15

Canon D5 Mk VIS Si 400-700 5760x6840 6.25

Figure 4.10 … Super pixel structure of an image obtained by the Polarcam V [92]

As for object detection systems, they were able to achieve outstanding performance in recent

years. Deep learning, in particular, has emerged as the most powerful model for advanced

object detection tasks. As the name implies, these models have deep network architectures

capable of discovering highly complex patterns. This characteristic, alongside with robust

training methods, allow deep learning models to construct powerful object representations by

building high-precision part-based models for a variety of object classes [93]…[95].

There are various object detection models that are highly in use and considered as state-of-the-

art models. Brie”y explaining, Faster Region-based Convolutional Network method (Faster

R-CNN) builds on region proposal algorithms to hypothesize object locations. It introduces a

Region Proposal Network (RPN) that shares full-image convolutional features with a detection

network that enables cost-free region proposals. RPNs are trained end-to-end to generate high-

quality region proposals, which are used by Fast R-CNN for detection [96]. In contrast to Faster

R-CNN, Region-based Fully Convolutional Networks (R-FCN) model is fully convolutional
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with almost all computation shared on the entire image instead of applying a per-region

sub-network hundreds of times [97].

Similar to R-FCN, Single Shot Multi-box Detector (SSD) also utilizes a single deep neural

network for an entire image. SSD is simpler in a sense that it completely eliminates proposal

generation and subsequent pixel or feature resampling stages and encapsulates all compu-

tation in a single network which makes SSD easy to train and straightforward to integrate

into systems [98]. Its uncomplicated nature and competitive accuracy in advanced object

detection tasks motivated us to use SSD as the main object detection model in this study.

Further information and experimentation of object detection models are provided in following

sections.

Despite numerous developments in object detection, computer vision industry is still facing

challenges in terms of accuracy and speed as the amount of data increases. The compli-

cated nature of conventional imaging raises dif“culties for deep learning models to operate

effectively. Various technologies have been developed to improve signal-to-noise ratio and

multispectral imaging to obtain spectral characteristics. However, higher contrast is required

based on the physical properties of materials. The polarization state plays a key role here as it

holds descriptive information about surface properties.

In this study, the primary objective is to utilize the state-of-the-art deep learning models

designed for object detection tasks with images obtained by polarimetric systems. With the

additional information that polarimetric imaging reveals, it was expected for object detection

models to improve performance. We started with the construction of suitable polarimetric

imaging dataset using imaging equipments mentioned above. Then, we generated various

object detection models with images obtained by both polarimetric and conventional tech-

niques. Finally, we presented the best performing models in various scenarios and proposed a

method to achieve the highest accuracy.

In this section, “rstly we present the procedures and methods that we applied, and justify

the choices. In addition we propose a multiple camera hardware solution for polarimetry

applications. Then “nally we conclude the section by describing the results and related

discussions.

4.2.1 Method

Methods followed in this study can be divided into “ve steps. We started with the construction

of the dataset using both polarimetric and conventional imaging techniques. Then, certain

transformations are applied to the raw polarimetric images in order to properly utilize polar-

ization components. This section is indicated as Transforming Images in Figure 4.11 where

S0, S1 and DoLP corresponds to various transformations explained in Section 4.2.1. In the

third step, we labeled relevant objects in acquired images in order to create training sam-

ples for our object detection models. We generated various models by using state-of-the-art
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network architectures and combinations of different polarization components. Finally, we

measured and compared performances of trained models which is the section located at

the bottom of Figure 4.11. As before, S0, S1, DoLP are placeholders for images with corre-

sponding transformations. The overall picture of the methodology followed in this study

is illustrated in Figure 4.11. Further details regarding individual steps are explained in the

following subsections.

Figure 4.11 … Overall look at the methodology followed in the study

Dataset Construction

At the time of this project, there was no publicly available polarimetric imaging dataset. Hence,

the initial task was to acquire adequate data by using polarimetric imaging systems including

Equus 327k and PolarCam V which can be utilized to infer the polarization state of an optical

“eld. We collected around 200 images of military vehicles from 30 different locations. These

numbers double with the data priory obtained by armasuisse itself. The content of these

images includes various types of military vehicles taken from different angles and located in

various backgrounds. Their distance from the camera also differs considerably. Sample raw

images can be seen in Figure 4.12.

Image transformation using polarization components

As mentioned, an image obtained from polarimetric cameras put in use contains a pattern of

polarizers with four discrete orientations corresponding to 0, 45, 90 and 135 degrees. In order

to utilize features of such polarimetric images in object detection systems, it is required to

make certain transformations on raw images obtained directly from the cameras. According to

previous researches [86], Degree of Linear Polarization (DoLP) can be bene“ted to emphasize

man-made objects and depreciate natural ones. Since this property is highly suitable for the

purpose of this study, we decided to use DoLP to transform the raw images. It is calculated
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Figure 4.12 … Raw polarimetric images of various military vehicles within different back-
grounds

using polarization components as in the following equations:
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Here, I 0, I 90, I 45, I 135 are the intensities of the linear polarization components (polarizers)

corresponding to 0, 90, 45, 135 degrees. Since raw images obtained from polarimetric systems

used in this study were different, we followed different procedures while transforming them.

As explained, the wire grid polarizer in Polarcam V contains a pattern of four discrete polarizers

with 0, 45, 90, 135 degrees known as super-pixel. In order to obtain images purely formed by

each polarization components, we transformed the raw images using super-pixel structure.

For instance, in order to obtain an image only consisting of polarization parameter S0, we

added the I0 and I90 polarizers located in each super-pixel. This value is calculated for each

super-pixel and entire image for polarization parameter S0 is constructed by putting these

value to corresponding pixel locations. As for IRCAM camera, this procedure was relatively

straightforward since we obtained four different images for each discrete polarizer, instead

of a single image containing all four. S0 in this case is calculated by using pixels in two

separate images corresponding to I 0 and I90 polarizers. After obtaining an image for each
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polarization components that are S0, S1 and S2, we were able to directly calculate DoLP images

using Equation 4.4. In addition to DoLP, we also investigated the performance of individual

polarization components within object detection systems by considering them separately.

Figure 4.13 … Polarimetric images after transformation with DoLP

It is evident that transformation with DoLP emphasized only man-made objects that are

military vehicles while understating irrelevant parts of images including mountains, trees, and

grass as shown in Figure 4.13. This property is expected to be quite bene“cial for object detec-

tion systems since relevant objects become strongly distinguishable after the transformation.

Object Labeling

The exact location of objects within images are required to be speci“ed for the training phase

of object detection models. We manage to do this operation manually by using an application

named as LabelImg [99]. It is a graphical image annotation tool written in Python and uses Qt

for the graphical interface. In our case, we are interested in detecting military vehicles and

therefore, only labeled such vehicle in acquired images.

Depending on the amount of collected data, manually selecting and labeling each object

might not be a feasible. It was an applicable method in our case, however, other ways of

automating this process, such as taking advantage of pre-trained masking models should be

considered for bigger scale projects.

Training and Testing of Object Detection Models

Initial experiments with pre-trained models which are built on various deep learning archi-

tectures including Faster-RCNN and SSD, reemphasized the requirement of training custom

models to be able to comprehensively utilize the additional bene“ts that polarimetric imaging

provides. As seen in Figure 6, pre-trained object detection model (which is based on Faster-

RCNN) was able to detect the vehicle in the gray-scale image (on the left) with much higher

69



Chapter 4. Applications

con“dence even though, the vehicle is more exposed and distinguishable in the polarimet-

ric image. This is a consequence of the fact that pre-trained models encountered similar

gray-scale images during their training phase.

Figure 4.14 … Detected objects in polarimetric and gray-scale images using pre-trained models

As mentioned earlier, we utilized the SSD deep learning architecture for object detection tasks

conducted in this project. Comparing to other state-of-the-art models, SSD eliminates various

redundant steps and allows proper training with fewer sample images without compromising

from detection performance. Considering the amount of polarimetric image data within our

reach, SSD was the best-suited model for our purposes.

After completing the object labeling step, we split the available data into training and testing

parts as 60% and 40% respectively. In order to increase the amount of training sample, we

took advantage of various data augmentation techniques including randomly ”ipping the

orientation or cropping of certain parts of an image. Even after augmenting, the data we

possessed was not suf“cient to train a robust object detection model from scratch. Hence,

we decided to start the training processes from a checkpoint which corresponds to a model

trained up to a certain point with weights still highly susceptible for any updates. We train

the model using our data where the checkpoint left off. The obvious shortcoming of this

approach is that the checkpoint models are trained with RGB and gray-scale images and not

with polarimetric ones. This will cause noticeable positive performance bias toward gray-scale

images during the testing phase.

We trained two primary models by using gray-scale images and polarimetric images trans-

formed with DoLP. To investigate the effect of an individual polarization component, we also

trained models just by using one of the components, namely S1. Additionally, several others

models were trained by combining gray-scale with DoLP, S1 with DoLP and gray-scale with S1.

In total, we manage to train 6 different models.

As the machine learning framework of choice for the project, we used TensorFlow [100]

which has numerous built-in features and models including Faster R-CNN and SSD. Storage

and memory requirements to train a deep neural network is often exceeds the capacity of

a single machine and therefore, a cluster consisting of multiple machines is necessary for
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training phase. We decided to use Google Cloud Services (GCS) for that purpose. It supports

TensorFlow and offers convenient ways of utilizing multiple machines for deep learning tasks.

The cluster used in this project consisted of 8 worker machines with GPUs of 3.75 GB memory.

The average duration of the training phase was 1 hour 45 minutes and memory utilization of

workers during this process was approximately 40%. Within this settings, it took around 5000

steps to train each model. Loss function becomes stable and prediction accuracy no longer

increased afterward as demonstrated in Figure 4.15.

Figure 4.15 … Value of the loss function with respect to number of steps during the training
phase

Memory space occupied by a single trained model was around 160MB and node weights were

varied between values -18 and 46. As for testing, it is done on a local machine with 2.5 GHz

CPU and an 8 GB of RAM. It took 4.75 seconds on average for trained models to process a

single image and detect objects within.

4.2.2 Result

For the testing phase, different images with various military vehicle and backgrounds were

used. The performance of the model trained with polarimetric images transformed by DoLP

was satisfactory. It manages to achieve similar performance with models trained using gray-

scale images that are obtained by conventional imaging techniques. Our experiments with the

polarization parameter S1, on the other hand, did not reach desired performance. Accuracies

that trained models managed to achieve are presented in Table 4.3.

The accuracy of the model trained with grayscale images was the highest, followed by models

trained with polarimetric images transformed using DoLP. It is likely that the better perfor-

mance of grayscale is a result of using checkpoints. As mentioned earlier, these checkpoints

are constructed using grayscale and RGB images and biased towards model trained with

grayscale images. Even this being the case, models trained with DoLP were still able to achieve
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Table 4.3 … Accuracy of the trained models

Model accuracies

Trained with Tested on

Grayscale DoLP S1

Grayscale 81% - -

DoLP - 75% -

S1 - - 30%

Grayscale + DoLP 75% 76% -

Grayscale +S1 65% - 37%

DoLP + S1 - 13% 15%

signi“cantly higher accuracy which indicates that training an object detection model from

scratch with couple thousand polarimetric images is likely to outperform current object de-

tection model trained by conventional imaging techniques. Moreover, we observe that DoLP

trained models were able to demonstrate even better performance in certain scenarios. If

an image is sharp with objects that are easily distinguishable from the background then,

gray-scale trained model detected them with a strong con“dence. On the other hand, for

blur images with objects that disappear in the background, the DoLP trained model achieved

signi“cantly higher con“dence levels which can be observed in Figure 4.16. Also note that in

order to calculate con“dence levels, SSD generates different bounding boxes and adjust these

boxes as part of prediction. It “nds a score for automatically generated bounding boxes with

various shapes and sizes. Then, it tries to keep bounding boxes with high scores meaning that

probability of an object being in that box is high. The percentages in Figure 4.16 represent

these scores.

For the image at the top, detection with gray-scale trained model reached a better con“dence

percentage since the vehicle is easy to distinguish from the background. The situation was

vice verse for the bottom image and therefore, DoLP trained model demonstrated better

performance. With this observation, we decided to run these models in parallel with each

other. For the scenarios where one of the models lack, the other one was able to compensate

for that. By doing so, we manage to achieve an accuracy score of %90 which was the highest

among all models tested in this study. These results suggest that the performance of state-of-

the-art object detection models can be exceeded and considerably improved by using images

obtained by polarimetric imaging techniques.

4.2.3 Conclusion

Object detection systems using advanced deep learning model were able to achieve excep-

tional performances in recent years. They were able to unfold the intricate structure of objects
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Figure 4.16 … Objects within different backgrounds detected by the model trained with gray-
scale and DoLP images

by analyzing complex patterns. However, conventional imaging with its complicated nature

proved to be troublesome for these detection models. Polarimetric imaging techniques, on the

other hand, demonstrated enhanced capabilities for object detection tasks with its capability

to discriminate man-made objects from natural background surfaces. In this study, the perfor-

mance of polarimetric imaging on advanced object detection tasks was investigated further.

With additional information provided by these images, we were able to achieve signi“cant

performance improvements on state-of-the-art object detection models. We observed that

utilizing both conventional and polarimetric imaging techniques alongside with each other

demonstrated the best performance.

There are couple of directions to proceed from this study. In parallel with the scale of this

project, the amount of polarimetric data we acquired were limited. We were not able to

train an object detection model from scratch and started from a checkpoint. Increased

performance and more reliable results might be achieved by collecting more polarimetric

images and following steps suggested in this study. Additionally, optimizing deep learning

models speci“cally for polarimetric imaging with various methods, such as parameter “ne-

tuning is likely to increase the performance and might be another improvement and direction

to proceed from this study.
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4.3 Vision-based surveillance for drone detection

Unmanned aerial vehicles (UAV) or drones are autonomous or remote-controlled aircrafts.

Although its history goes back to unmanned balloon carriers used in a war in 1849 [101], and

mostly used in military through the history, its civil application areas are rapidly expanding in

the recent years. The latest developments in production processes of the drone technology

make them more affordable, and number of actually operating drones in the air has been

exponentially increased. Approximately 300,000 drones are being sold every month, and

it is estimated that there will be 5 million drones will be ”ying in the sky in the next few

years. Although this technology is being ef“ciently used in several areas, such as agriculture,

cartography, transportation, search and rescue, bringing improvement in the corresponding

tasks, it also causes security and privacy concerns. As an important fact, the drones have

much ”exible uses and can be equipped with cameras, explosives, and so on for spying,

terrorist attacks, etc. purposes. A mechanism that detects in real-time the drones violating the

unpermitted civil and military areas could help preventing malicious acts by drones.

Their dimensions of a drone vary from insect-size to 15 m wingspan. Small drones are of

carrying high amount of explosive materials whereas big drones are able to carry, but the

former is also easy to detect by the current surveillance systems. Middle sized drones capable

of carrying dangerous material and could serve malignant actions, however, are dif“cult to

detect. In addition to this, since drones move in 3-dimension mostly without obstacles, they

can rapidly get closer to the target. This also brings more strict constraints for real-time

detection of middle-sized drones.
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Figure 4.17 … Drone detection methods
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Since drones have been a security threat which has not still a feasible and affordable solution,

this problem have drawn attention from both academia and industry in the recent years.

Attempts to this problem mostly bene“t from three types of sensors: acoustic, RADAR and

optics [102] as illustrated in Figure 4.17. Acoustic systems composed of microphone arrays

have been used to analyze the sound produced by the drones and “nd the direction of them

through beamforming. Although it is reported that the range can be reach up to around 700

m [103], background noise level in urban areas and rural areas differs and the range reduces

down to 200 m level or below [104].

Principle of RADAR-based systems relies on analysis of transmitted signal and its received

version re”ected from objects. They can operate in day and night-time, and are not affected

by weather and environmental conditions such as rain, fog, dust or snow. However, in order to

detect small sized objects from long range, short wavelength radar signals, such as mm-wave,

has to be used but the use of such radars are costly.

Vision-based approaches have been also introduced in the literature. In [105], a boosted

cascaded classi“er with Haar-like features, Histogram of gradients (HoG) and Local Binary

Patterns (LBP) was proposed for UAV detection with an integrated distance estimation mecha-

nism. They concluded that boosted cascaded classi“er with LBP has better near„real-time

detection performance. Another detection technique was presented in [106] that suggests

a multi-staged framework incorporating AdaBoost method along with a tracking algorithm.

The method achieves accurate detection meeting real-time constraints. In [107] has been

proposed a method combining both motion and appearance information to be used within

a machine learning set-up based on AdaBoost, Deformable Parts Model and Convolutional

Neural Network (CNN). To improve the performance of CNN-based approach, deep domain

adaptation was additionally proposed. A latest work in [108] exploited the distinct motion

signature of UAVs through video sequences for the UAV detection problem. Good detection

performance has been reported for the UAVs in several status of UAV, such as moving at high

or low speeds.

In this problem, hybrid solutions to combine strength of different sensors are also available.

In [109], acoustics, RADAR, LIDAR and optical sensors are used together. Another hybrid

solution was provided by commercial product Drone Detector where detection up to 1 km

range is promised with RF detection [110].

Drones are generally challenging to discriminate from birds. A number of works therefore

focused on the bird-drone discrimination. In [111], a nearest neighbor classi“er on polari-

metric scatterings has been proposed for classi“cations of drones and birds. An analysis of

monostatic and bistatic radar measurements of multiple birds as well as a quadcopter micro-

drone was given in [112]. Alternatively, a single shot object model was presented in [113]. Even

though, all those attempts provide promising approaches to the this task, the problem still

remains challenging to distinguish drones from birds that are far from the source, especially

from a vision-based perspective. Accordingly, a Drone-vs-Bird Challenge was launched in

75



Chapter 4. Applications

conjunction with 14th IEEE International Conference on Advanced Video and Signal based

surveillance.

Although vision sensors have usually a complementary role, high-resolution multiple camera

systems can play a signi“cant role in drone detection problem. Visual data captured by a

static and high-resolution camera system enables to detect even small changes occurred in

the “eld of view. In this section, we propose a solution for vision based drone detection. High

resolution cameras enables detection from the long distances. By applying the smart camera

concept, reducing the bandwidth makes possible to process all the data locally on the chip,

and transmit to the PC only the area which is possible to have a salient motion. This also

enables to apply machine learning applications on the software side in real-time.

4.3.1 System overview

Detection range and response time are the most important parameters in the drone detection

systems. In order to extend the range in the vision based systems, high resolution sensors are

necessary. In addition to this, limited angle of view of a single camera is not suf“cient for a full

observation. Therfore, multiple of the high resolution cameras are needed.

Considering these requirements, in this work, we used the GigaEye-II (see Figure 4.18) which

is a scalable multiple camera system consists of 20-megapixel cameras, speci“cally CMV20000

from CMOSIS. It is designed to produce high resolution (9000 × 2400 pixels) panorama [114]

at 30 fps. Computation of the panorama is performed by the FPGA boards (VC707 and

VC709 from Xilinx) of the system, by bene“ting of the DDR-3 memories and the high speed

connectivity of the FPGA boards.

The connectivity of the system is shown in Figure 4.19. 4 high-resolution cameras are con-

nected to a cluster board of VC709 with Virtex-7 FPGA from Xilinx via its FMC connector. A

concentrator board can serve 4 of the cluster boards and 16 cameras in total. The connections

between concentrator boards and cluster board are provided by optical links.

This system aims at creating panorama and apply a drone detection method on the omni-

directional image. Operations on the panorama prevents jumping of the target from one

camera to another camera, it is always remains on the composite image. This makes the

tracking of the targets easier. However, during the panorama construction, pixels are collapsed

in the panorama. In GigaEye-II, 16 × 20 = 320 MP data is captured, but in the panorama

at 9 × 2.4 = 21.6 MP is represented. Although a signi“cant portion of this data comes from

overlapping area and does not carry different information, when the target drone is at the

long distance, it occupies a few pixels and each pixel is important. These small targets may

disappear in the panorama. Therefore, evaluating each camera separately enables to extend

the range.

Maximum distance of the target that can be detectable by the software is calculated by the

pin-hole camera model, and similarity of triangles. Assuming the software is able to detect
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Figure 4.18 … GigaEye-II, captured in drone detection days of armasuisse, 2016

a moving object wider than 1 meter in horizontal and its corresponding shape on the image

sensor has at least 10 consecutive pixels, maximum distance is given in the following equation:

D =
f × him

hre
=

50mm × 1m

10px× 6.4µm
= 780m (4.5)

Here, the lens focal length ( f = 50mm ) and the image sensor size ( him = 6.4µm) is “xed in the

GigaEye system. However, this range estimation is valid under the speci“ed assumptions, and

could show difference depending on the software algorithm.

In order to reach this detection range, each camera should be evaluated separately. On

the other hand, this operation brings a challenge in terms of bandwidth, due to very high

resolution of the full system. The total bandwidth generated by the camera sensors can be

calculated as follows:

BW = 16 cam× 20 MP× 24 bit/px × 30 fps � 230 Gbps (4.6)

Since this number exceeds the PCIe and ethernet limits, it is not possible to transmit all the

data to a single PC. A better solution which increase the bandwidth capacity of the system is

depicted in Figure 4.20. Differently from the system in Figure 4.19, cluster boards are directly

connected to the PC with PCIe connection. For the PCIe connectivity of this design, we bene“t

from the RIFFA framework [115].

In this solution, although bandwidth capacity of the system is increased, frame rate is sacri“ed
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Figure 4.19 … GigaEye-II connectivity with single PC via 10 Gb ethernet

in order to overcome the bandwidth limitations. Since it is not possible to transmit the data

from all the cameras at the same time, frames are sent sequentially to the PC. On the other

hand, based on the fact that increasing the level of intelligence of the cameras reduce the

bandwidth, applying the smart camera approach in the GigaEye system makes it possible to

meet real-time requirements overcoming the bandwidth limitations.

Proposed architecture with smart camera is shown in Figure 4.21 Moving object detection

blocks use the “rst DDR-3 memory to store the background models of the cameras. Parallel

to the pixel stream, they generates the metadata of the positions of the moving objects. This

metadata information is used to select the camera and its sub-window which contains the

moving objects, and this pixel information is directed to the second DDR-3 memory. In parallel

to this, FIFO in the RIFFA PCI interface is “lled by this data. When the software in the PC

requests this data it is transmitted via FIFO.

Display operation on the PC side is shown in Figure 4.22. Central screen is dedicated for

composite view and control panel. In case of moving objects are found in the “eld of view,

their corresponding sub-windows are displayed in the left and right screens with the full

resolution. The targets are marked and their trails are drawn.

Cameras

FMC

FPGA boards

PCIe

PC

Figure 4.20 … GigaEye-II connectivity with dual PC via PCIe
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Figure 4.21 … Smart camera concept applied to the GigaEye system

Figure 4.22 … Operation of the drone detection software for GigaEye platform
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4.3.2 Result

The GigaEye-II system is demonstrated in drone detection days organized by armasuisse

Science and Technology in 2016 and 2017, in Thun, Switzerland. In Figure 4.23, drone is at

approximately 700 m distance from the system. Since there is no moving close object in the

scene, a reliable background is computed. Figure 4.23b shows the difference the frame and the

background model, and Figure 4.23c is the output of the morphological “lter which removes

all the noisy pixels. In Figure 4.23d connected component analysis result can be clearly seen

that the drone is detected.

(a) Frame (b) Background subtraction

(c) Morphologic “lter (d) CCL

Figure 4.23 … Moving Object Detection stages

Another case is shown in 4.24. In this case, there are non-salient movements occurs caused by

bushes and other detection systems. In the difference frame in Figure 4.24b, the noise and

drone can be seen together. However this noise is masked by the reliability matrix shown in

Figure 4.24c. Finally in Figure 4.24d, the target drone can be clearly seen. Although there is

some corrosion with its shape, it is still recognizable. Since the recognition algorithm does not

utilize this shape, instead it uses a non-compressed but cropped from the original frame, it

does not have a side effect.
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(a) Frame, drone is manually marked (b) Difference and threshold

(c) Reliability (d) Foreground output (zoom)

Figure 4.24 … Moving Object Detection stages
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4.4 Wireless Smart Camera Networks

4.4.1 Introduction

In Section 4.3, we analyzed drone detection application with a gigapixel resolution system,

where power is not a concern and high data transmission rates are acceptable. However,

several tasks such as wide-area surveillance in highlands and wild-life monitoring brings

power- and bandwidth-limitations. A widely used approach to long-range surveillance is

using a high resolution pan-tilt-zoom (PTZ) camera with a high-focal length lens. It can be

connected to a PC, and some computer vision methods can be used to detect the targets.

However this solution is not cost-ef“cient, due to requirement of high-focal length lens and

high resolution image sensor. Moreover, power, data cabling and maintenance add an extra

cost and these reduce ”exibility.

Instead, energy autonomous wireless smart cameras distributed in the target area as depicted

in could provide an ef“cient solution. Each camera node has its own processing and energy

harvesting unit and is designed as low-cost. As described in Section 3, our smart camera

architecture is aimed at producing metadata at low-power and low-latency. Such featured

camera is therefore suitable to the Wireless Visual Sensor Network (WVSN) concept. By

incorporating this hardware into an embedded microprocessor and into analog-RF modules,

a complete SoC solution can be used as a smart sensor node.

Area out of 
interest

m
ax distance = 3 km

Base 
station

Wire less
smart camera 

nodes

Node coverage diameter = 200 m

Figure 4.25 … Wide area surveillance with distributed camera nodes

Figure 4.25 illustrates our proposed distributed camera network where multiple cameras cover
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a wide zone. In this network, the area covered by each camera is reduced to decrease local

power consumption at the expense of having multiple nodes dispersed over the land. Having

omnidirectional imaging capability, each node covers a circular range in which the detection

of an intrusion is possible. In this con“guration, no camera node is placed on areas that are

out of interest. Each node transmits the data wireless to the base station. To provide energy

sustainability, energy harvesting is required directly at each camera node. An effective way to

acquire enough energy from the environment would be to recover solar energy. This way, a

direct DC voltage supply could be obtained. The base station is supposed to be powered by

the mains, or an other available energy source.

In this part, we detail our proposition for a Wireless Smart Camera node which exploits our

smart camera architecture. We have implemented the critical parts in hardware, targeting

FPGA and ASIC. In addition, we show a full-system design concept, power analysis of the

system to show feasibility of such an energy autonomous system.

4.4.2 Requirement Analysis

In this part, we present a detailed requirement analysis to determine the parameters of our

proposed wireless smart camera system. Our goal is to send information from the local node

to the central unit which is supposed to be at 1-3 km distance from the local node. Considering

the distance and data rate requirement, sub-1GHz band is suitable for the data transmission.
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Figure 4.26 … Pin-hole camera model

Coverage of a node is de“ned as the “eld of view in which a camera can detect a target object,

and it is an important parameter to determine the distribution of the cameras. This node
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coverage diameter is calculated using similarity of the triangles applied on the pin hole camera

model illustrated in Figure 4.26. If the focal length of the lens is f , physical object height

is h and projection height is h �, distance of the target object from the camera, i.e. the node

coverage radius, d is given in Equation 4.7:

d = f ×
him

hre
(4.7)

Taking into account the object detection algorithms, the object should be at least 12-pixels big

in the image frame in order to be clearly identi“ed. If a 2.25 mm lens and 1.8 mm height VGA

sensor are used, radius of a node coverage can be calculated as follows:

d = 2.25mm ×
2m

12px

480px
× 1.8mm

= 100m (4.8)

This means that a single camera node observes an area with 100 m radius. Consequently,

a minimum 200 m distance between the camera nodes prevents processing overlapping

information.

Moving object detection is the primary task operating continuously in the lowest digital energy

level. As analyzed in Section 3.2, this task needs 18 bits per pixel. When a VGA sensor is used,

640× 480= 300k pixel needs 4.5 Mb memory space, so the memory requirement of 6 cameras

is 27 Mb for the moving object detection task.

During a day, the number of detected salient activities and the compression rate determine

the bandwidth requirement. If we assume that one event occur per minute during 15 hours of

operation and that stream is reduced by cropping and compressing to its 5% the data to be

transferred per day is approximately 100 Mbits.

For 868 MHz carrier frequency, we can calculate the path loss by using Friis equation:

PR =
PT GT GR� 2

(4�R )2 (4.9)

In this equation PR, PT , GT and GR stand for power and antenna gains at receiver and trans-

mitter respectively, while � is operation wavelength and R is the transmission distance. This

equation can be converted into the logarithmic scale as in the following:

PR(dB) = PT (dB) + GT (dB) + GR(dB) Š 20log10RŠ 20log10 f + 20log10
c

4�
(4.10)

Here, the path loss is de“ned as given by:

L = 20log10R+ 20log10 f Š 20log10
c

4�
= 20log10R+ 20log10 f Š 147.55

(4.11)

84



4.4. Wireless Smart Camera Networks

Similarly to commercial wireless communication units in the market, we initially assume that

output power is 10 dBm, transmitter and receiver antenna gains are 3 dBi as were given in

Table 4.4. In order to transmit the data to the central node at 3 km distance, receiver sensitivity

should be -105 dBm including 15 dB range for weather conditions.

Table 4.4 … Wireless power analysis

Frequency 868 MHz

Output power 10 dBm

TX antenna gain 3 dBi

RX antenna gain 3 dBi

Distance 3 km

Path loss 105.25 dBc

Power at RX -89.25 dBm

The power management of the system is constituted of solar panels, battery charging circuits

and DC-DC converters. Supposing a cylindrical architecture for the system with a radius

r = 10cm, the available solar panel area is �r 2 = 314cm2. It delivers an output voltage of 3 V

with a maximum peak current of 200 mA. Its typical conversion ef“ciency is 15%. Harvested

energy is proportional to solar irradiance, as well as area and ef“ciency of the solar panel.

Solar irradiance in Lausanne during a year is shown in Table 4.5. Considering the worst

Table 4.5 … Solar irradiance [kW h/m 2/day] on a horizontal surface in Lausanne [116]

.
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1.39 2.16 3.33 4.24 5.17 5.90 5.97 5.08 3.74 2.31 1.43 1.08

case scenario, we can assume solar irradiance of 1 kW h / m 2/ day for energy calculations.

Accordingly, harvested energy per day in the worst case scenario is shown in Table 4.6.

Table 4.6 … Harvested energy per day in the worst case

Solar irradiance 1000 W h/m 2/day

Solar panel surface area 0.03 m 2

Solar panel ef“ciency 15 %

Harvested energy per day 4.5 W h/day

Considering a 300 cm 2 solar panel area, the total available energy was calculated in Table 4.6

as 4.5 Wh/day. The proposed case has an active area of 264.6 cm2, which makes the total

available energy equal to around 4 Wh/day.

Weather conditions varying a lot from one day to the other, the illumination on the panel

changes consequently, too. The 3V CR123A Lithium-Ion battery, can be chosen in order to
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store solar energy and deliver it to the circuit in bad weather conditions. Having a capacity of

400mAh, the total energy is 3 V × 400mAh = 1.2W h. Several batteries may be placed in parallel

to increase the total capacity with respect to the application. A battery charging circuit will be

used in order to transfer the energy of the panel to the battery. The bq25505 boost charger

circuit of Texas Instruments (TI) enables battery charging even for input voltages as low as

100mV. Moreover, it has a battery management block which could be very ef“cient in this

particular case. With the maximum input voltage being 5.5V, this circuit is suitable for the

chosen 3V solar panel. Each bq25505 circuit could tolerate a maximum input power of 510mW.

Thus, 5 bq25505 circuits is necessary to cover all the solar panels.

These circuits are always on, constantly charging the battery. The data sheet shows a charging

ef“ciency of 90% approximately, with a little drop to 80% when the input power goes higher

than 100mA. Since each solar cell may deliver a peak current of 200mA, the conversion

ef“ciency is taken as 80% for the calculus. Equation 4.12 shows the energy lost ELOST during

the harvesting with respect to the solar energy EI N and conversion ef“ciency 	:

ELOST = EI N × (1Š 	) = 4× (1Š 0.8)= 0.8W h/day (4.12)

The passive energy is negligible compared to the conversion loss in this case.

Image sensor is another important power consumer. The typical current consumption of our

camera is detailed as 40mA in active mode. The quiescent current during sleep mode is 0.1

mA. Since only one camera is active at a given time, and assuming 15 operating hours per

day with 60 mW power consumption, we can estimate 900 mWh energy budget is needed for

image sensors.

The total power consumption is calculated as 56.5mW, which corresponds to an energy of

1.426 Wh/day. With the solar panel providing 4 Wh/day, the system is operational with an

energy excess of more than 2 Wh/day. This analysis shows that such a system is feasible with

respect to the system requirements. Since there is an available extra power budget, the system

could be even more improved.

4.4.3 System overview

As previously mentioned, our primary objective is to observe an area with minimum cost

and maintenance. In this scope, extending angle of view to 360 degree increase the coverage

of a single node. Therefore, this omnidirectional imaging capability reduces the number of

the nodes. Although this can be implemented using a single rotating camera, having such

mechanical system increases the power consumption and requires more maintenance. Hence,

we propose to cover 360 degree horizontal angle of view with low cost multiple cameras by

achieving digital rotation. Since commercial camera units have typically around 60 degree

horizontal angle of view, 6 cameras are suf“cient for 360 degree viewing.

A simpli“ed block diagram of the proposed multi-camera system is shown in Figure 4.27.
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Figure 4.27 … WVSN node block diagram

Digital and analog blocks are placed in the same chip to build the SoC. The control of the

system is performed by the Leon-3 core which is an open-source 32-bit RISC processor. The

other digital blocks including the smart camera, memory interface and analog control blocks

are connected to the bus system of the Leon-3 processor.

The SoC needs external connections for its functionality. The smart camera sub-block is

connected to the cameras. Run-time and long-term data storage is provided by external SRAM

and NAND Flash memories, respectively. Analog module has PLL, ADC, DAC and Mixer blocks

to support different analog sensors, in addition to Sub-1GHz wireless communication.

In this “rst prototype, we aim designing energy harvesting circuitry with on-the-shelf discrete

components. A photovoltaic panel recovers solar energy and provide a 3V constant DC voltage.

DC-DC converters on the PCB generates the voltage levels necessary for the SoC and the other

components.

If the smart camera detects a moving target, it either sends an image patch to the base station,

or it stores it into the NAND Flash depending on the application.

Six cameras capture one at a time 1 frame per second and transmit the data to a low power

FPGA. An SRAM memory stores a background image from each camera. With the weather

conditions varying all the day, the background images are updated periodically. The FPGA

processes data coming from the cameras and detects if any intrusion occurred. In the latter

case, relevant data is sent to the wireless transceiver. This one creates a link with the base
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station and send the data wirelessly. An omnidirectional antenna is used for RF transmissions.

Even if a large ratio of the electromagnetic power is lost through unused directions, the

omnidirectional antenna brings some ease to the user to place the system on the high land.

Indeed, with an omnidirectional antenna, the user does not have to worry about the direction

wherever the system is positioned.

Considering cost, power and availability in the market TOSHIBA TCM8230MD VGA camera

can be chosen for the proposed system. The sensor array has 640 × 480 pixels and has already

its lens incorporated.

An energy harvesting circuit is implemented in order to store the solar energy into a battery.

Giving that the solar irradiance is fully variable, the output power of the panel may present

variations that could cause the circuits to malfunction. Thus, a battery could “lter these

”uctuations and ensure proper operation of the system.

qsstart ql

qhqt

Figure 4.28 … FSM for operation of the WVSN

The principle of operation of the smart camera functionality in the node is shown in Figure 4.28.

Firstly, one of the cameras is activated to drive the camera connections while the other cameras

are disabled in initial state qs . Then it switches to the state ql which is the low power state

where moving object detection block handles the incoming camera data, and performs its

operation by accessing the background model stored in the SRAM. If moving objects are

detected in this analysis, feature extraction module is activated for the next frame of the same

camera in the state qh . FREAK features can be extracted and the target object can be detected

by comparing the extracted FREAK features with the pre-stored object features. Finally, if the

probability of the moving object to match with the pre-de“ned targets exceeds a threshold,

FSM goes into state qt , which sends the related part of the image wirelessly and needs the

most power.
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Figure 4.29 … Block diagram of the processing chip

4.4.4 Electronics Design

Block diagram of the processing chip of the system is shown in Figure 4.29. The system

consists of an open source 32-bit Leon-3 RISC processor with Sparc architecture [117]. Leon

uses the ARM Advanced Microcontroller Bus Architecture (AMBA), with the Advanced High

Performance Bus (AHB), and a slower peripheral bus (APB). Connection between the two

buses is provided by AHB/APB bridge.

Figure 4.30 … NAND Flash interface board equipped with FMC connector

In addition to data transmission with the wireless communication, data storage is also enabled

in the system with a NAND Flash memory. This memory is controlled by a NAND Flash inter-
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face connected to the AMBA AHB. In order to test the NAND Flash controller, we designed the

PCB shown in Figure 4.30, with the 16 GB NAND Flash (model name: MT29F16G08ADACAH4).

The connectivity of the board is provided by an FMC connector, and a dip header. The board

can be connected to a FPGA board, and dip header is pin compatible with Arduino Uno rev3.

Both FPGA and MCU boards can be connected separately or simultaneously. Access to the

NAND Flash is controlled by a NOR gate connected to the enable pin. At a given time, only

one unit can access the NAND Flash. NAND Flash is connected to bus, unless the both units

send 0. In that case, NAND is unconnected to the bus with high-Z, and MCU and FPGA can

communicate via the bus.

In this design, we integrated a low-power and wide-range Analog to Digital Converter (ADC)

and Variable Gain Ampli“er (VGA) presented in [118]. These ADC and VGA are designed for

from 83.3 kS/s to 85.7 MS/s sampling range. Thus, it is suitable to use it in different sensor

applications as well as sub-1GHz communication by incorporating a PLL to generate the

carrier frequency and a mixer. In case of the PLL is activated, the system can communicate in

sub-1GHz band, by injecting the carrier signal to the analog I/O via mixer. When the PLL is

disabled, the analog sub-system can be used to capture the signals in this range.
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Figure 4.31 … Block diagram of ADC interface

Sensor data or incoming data converted by ADC is transferred to the system via ADC interface

as shown in Figure 4.31. Leon writes to the software accessible registers to control the ADC. 4

registers are connected to power down (pwdn), sample-hold adjustment (sha), reset (rst) and

SAR reset (srst) inputs of the ADC. On the other hand, outputs of the ADC are connected to
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