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Chapter 3. Architecture

Figure 3.5 ... Advanced evaluation of the pixels

level of the coming pixel is higher.

For a reliable pixel position, if the difference exceeds the threshold 2, State output is 1.
However, for a non-reliable pixel position, it is already expected to oscillate background and
foreground. Therefore, the system “lters this change. In this case, in the non-reliable areas
the output will be masked, even if there is a signi“cant abnormal change. In order to cover
this case, we de“ne another threshold 3, to detect the movements in non-reliable areas. This
threshold is determined during the “rst non-reliable foreground operation, by storing the
maximum difference for each pixel position. Output Syt is given in the following equation:

Sout =r.(d> 2)+r.(d> 3) 3.12)

One of the main target of this method is keeping the memory allocation and access minimum.
To reach this goal, we store 18-bit words for each pixel as shown in Figure 3.6. Most of the
SRAMs in the market is designed as 9, 18 or 36 bit words, therefore, 18 bit selection suits well
the available memories. The “rst 8 bits keep the background model of the pixel. This data
is used to compute the difference d inthe Equation 3.6 The next 5 bits stores the number of
switching activities. Reliability and status occupy one bit each. The “nal 3 bits are dedicated
to maximum difference for non-reliable pixels. Before each incoming pixel captured from the
pixel bus, its information must be requested from the memory and be ready for the evaluation
process. After the evaluation, pixel data on the memory may be updated. However, if the
information stored in the memory location does not change, then it is not needed to update
the information. The situations which does not require a memory write request is marked as
gray boxes in Figure 3.6.

Sometimes a moving a foreground object appears in the scene but then it stops and keep its
position for a long time. After a point, it is better to evaluate this pixel as a part of background.
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3.2. Moving Object Detection
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Figure 3.8 ... Hardware implementation of the erosion “Iter

3.2.3 Connected Components Labeling

The binary output produced by foreground detection block and “Itered by morphology op-
eration “nally arrives at the connected components labeling block. This operation assigns
different labels to the pixels groups which are constituted of the connected pixels. In other
words, a pixel is assumed to belong to a pixel set, if it either touches or it is very close in a
pre-de“ned distance. Connected components labeling can be done in an iterative manner,
as in many software implementations, however iteration brings the requirement of multiple
accesses to the image, which requires more memory and energy, and causes latency. Instead
of iterative methods, binary data can be evaluated as soon as the “ltered output is received by
the connected components labeling block in the hardware, hence memory storage and access
requirements are eliminated.

In this part, we propose a hardware oriented connected components labeling algorithm, which
computes the data on-the-"y, compatible with the stream of the pixels in the raster-graphics
format. Evaluation of the pixel is done in a single clock cycle and the hardware outputs the
position and dimensions of the frames which covers the connected pixels to the metadata
bus during the pixel stream. In order to achieve this performance, we sacri“ce an amount of
accuracy, as stated in energy-quality scalable design manner. As a consequence of this quality
degradation it may fail to separate the close but different objects. However, in case of the
accuracy is not very critical, i.e. if the approximate number of the moving objects is important,
it provides enough accuracy with very low cost of hardware.

Data structures and control register

In this design, dimensions of an instance is represented by 8 numbers as illustrated in Fig-
ure 3.9. Four parameters de“ne the rectangular boundaries of the instance as  Xmin » Xmax» Ymin
and Ymax, and constitutes of vector A.

Xo and x1 stores the bottom left and right corner positions of the last row of the active object.
This two parameters are used to determine whether the newcoming foreground pixel touches
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3.3. Feature Extraction

Figure 3.15 ... Square box approximation in SURF [61]

computation requires gradient histogram pooling, and it produces a high-dimensional vector
of "oating point numbers. Therefore, cost of its operation is high in terms of memory and
computational power. In order to reduce the complexity of the SIFT method, SURF (Speeded
Up Robust Features) [61] is proposed. Instead of gradient histogram pooling, it uses Haar
wavelet responses, and reduces the resulting vector dimensions from 128 to 64.

In SURF, instead of Gaussian derivatives, box “Iter approach is used as shown in Figure3.15.
This approach makes it possible to bene“t from the integral image, to compute the response
of the “lter fast and with much less resources. Similar to SIFT, it searches interest point in
scale-space, but instead of building several layers of the image, it uses different size “lters to
search for points at different scales.

LXX(p1 ) LXy(pv )
Lyx(P.) Lyy(p,)

H(p,) =

Even though SURF reduce the vector dimensions, the type of the elements of resulting vector is
still "oating point. Memory footprint of a description vector with 64 elements is 256 bytes, and
in a frame with 1024 keypoints it needs 256 kBytes to store only the keypoint vector. Moreover,
matching of the keypoints performed on "oating points is a costly operation. Therefore,
limited resources of the embedded systems usually are not able to satisfy their requirements.

In order to overcome this issues, BRIEF [62] method is proposed to be a binary descriptor,
producing binary vectors for each keypoint. This method has two primary operations: (1)
smoothing with a kernel to reduce the sensitivity and (2) intensity comparison between
selected pairs. Experiments show that random or non-ordered selection of the pairs achieves
better performance. An example of selection of the comparison pairs is given in Figure 3.16a.
The output description result is a 512-bit binary array. This means a drastically improvement
(from 256 kBytes to 0.5 kBytes) in memory ef‘ciency. Moreover, matching of the keypoints are
much faster. In order to “nd the similarity between 2 keypoints, Hamming distance which is a
bitwise XOR operation followed by a bit count, is computed. In the BRIEF method, smoothing
circles have a “xed diameter.

Binary Robust Invariant Scalable Keypoints (BRISK) [63] method is another binary description
method. Differently from the BRIEF method, BRISK uses a regular sampling pattern with
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3.3. Feature Extraction

Mean Intensity

Computing the mean intensity of the square-boxes around the keypoint is primary operation
for all local binary descriptor implementations. As depicted in Figure 3.17, FREAK module
accesses the memory to obtain the integral image values. In order to calculate the mean
intensity of a single square box, four values corresponding four memory accesses is required
to the integral image according to Equation 3.32. Since the FREAK pattern consists of 43
sampling points, memory access is requested 43 x 4 = 192 times for each keypoint.

a
loc addr ™
2| data
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Figure 3.26 ... Hardware of the box area computation

In order to manage the access requests to the integral image stored in the SRAM, hardware
design consists of two state machines as illustrated in Figure 3.26. The “rst machine receives
the row and column address of the top left corner of the requested square, as well as its width
and a request signal. Request signal makes FSM to switch to ¢ state, where it sends the
top-left address the square to the memory interface and requests data in the integral image.
As it receives the acknowledge signal from the memory interface, it switch to the other states
g2, g3 and q4 to request the corner positions of the square. In g4 state, if there is another area
computation request, it goes to (i state, and starts the next computations. Otherwise, it goes
to o state where it waits the next request in idle mode.

The second FSM which receives the integral image data |y, lur, Ipr, |pL respectively. For
each data with acknowledge signal, FSM changes its state and add or subtract the integral data

r= 2 3 4 6 9 12 16
s1 A 8 A 7 A 6 A 4 A 3 A 2 A 2
S 0 SA 4 0 A 3 A 2 A 1 0
S3 0 A 1 0 A 2 A A 0
s 10 0.25 0.1113 0.0625 0.0273 0.0127 0.0069 0.0039
A+r? 0.25 0.1111 0.0625 0.0278 0.0123 0.0068 0.0039
error 0% 0.2% 0% 1.8% 3.3% 1.4% 0%

Table 3.1 ... LUT approximation of A+ r? for FREAK pattern
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Chapter 3. Architecture

from the area register, depending on the sign in the Equation 3.32:
AZIUL+|DRéIURéIDL (332)

In the last stage, sum of the intensities must be divided by the area of the square. FREAK pattern
has 7 levels and each level has identical circles. Therefore, in square box approximation, there
are 7 different square dimensions which limits the set of dividers to 7. In this case, instead
of using divider-multiplier to compute  A/r 2 term we can use only low-cost multiplexer and
adder, bene“ting from the zero-cost logic shift operations. This operation can be formulated
as sum of three terms as follows:

S= S5+ S+ S3 m=s 10 (3.33)

Although this approximation brings a maximum 3.3% difference between the results from the
"oating division operation, it is still acceptable due to its reduction on the hardware resource

cost.
> \
>
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Figure 3.27 ... Hardware of the box area computation

Relative corner positions are calculated and embedded into a look-up-table (LUT) before
the synthesis. When a keypoint location arrives at the block with a data valid signal, the
computation is triggered as soon as integral image has enough data for the boxes of FREAK
pattern. SRAM address is computed by the sum of the keypoint location input and these
relative corner positions.

Comparison

Another critical block of the FREAK algorithm is comparison of those 43 smoothed intensity
points calculated by the mean intensity block with respect to a speci“c pattern. In the original
software implementation, a pre-selected comparison pattern is applied with 512 pairs to
construct the 512-bit binary descriptor. Intensity comparison is performed as given by:

1, if I(PIY)SPL2 >0,
T(P,) = ( a_) a (3.34)
0, otherwise.
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3.3. Feature Extraction
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Figure 3.28 ... Instantiating the box mean intensity computation block for FREAK pattern

The comparisons then build the binary descriptor:

D= 28T (Pa) (3.35)
0 a<N

FREAK description result consists of comparisons of the selected intensity values. Therefore,
the output of the mean intensity block directly feeds the comparison block. Block diagram of
the comparison unit is shown in Figure 3.29. 512 most distinctive comparisons were selected
instead of comparing all the pairs in the software implementation. The comparison pair index
are pre-calculated and stored in a LUT. Received intensity values from the mean intensity block
are multiplexed and stored in the speci“c registers according to this LUT. When the mean
intensity block completes all the calculations, this block performs the comparison in parallel
following the arrival of all the mean intensities of the keypoint. Finally keypoint coordinates
and their calculated 512-bit FREAK descriptions are given to the 8-bit output in a sequential
order.

Metadata sequencer

In this hardware, metadata bus designed as 8-bit, therefore the outputs of FAST and FREAK
blocks must be formed into 8-bit packages. In order to produce this stream, a sequencer circuit

is needed. We designed a simple Finite State Machine (FSM) with 4 states as can be seen
in Figure 3.30. In the “rst state, it waits for a request signal from the FAST corner detection
module. If a pixel passes the corner test, state machine switches to keypoint transfer (KP tx)
state and transmits the row and column address of the corner. For VGA resolution, row and
column address needs to be stored in 10 bits each, therefore coordinates are transferred in 4 of
8-bit packages.

After FREAK block completes its operations, it generates 512-bit description result to be
transferred. In this case, FSMis triggered by freak_req signal and changes state from FREAK
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3.4. Hybrid Processor Population

Identity matrix and corresponding network model is depicted in Figure 3.32. As a result of
imposing this connectivity rules and identity matrix on the network, isolated subtraction
couples are generated. For each set, the network is operated one cycle, excitatory cells take
value of difference of two intensity points. A threshold = O is applied to the state variable in
order to obtain the binary output. By this way, the network can be used as a LBD co-processor
which accelerates the calculation by parallelizing M x N + 2 subtraction operations.

Figure 3.32 ... A network con“guration for LBDs

Local Binary Pattern (LBP)

Local Binary Pattern (LBP) is a very ef“cient texture operator and it has especially superior
performance in face recognition applications [82]. In this operation, pixel value of a keypoint
is subtracted from its neighbours, and a threshold is applied to remaining values. The binary
result represents the LBP of the corresponding pixel. To speed up the process, this subtract and
threshold operation can be parellelized by using the proposed keypoint detection hardware.
The network connectivity parameters should be set as follows:

cEE=cl'=cE'=0,ciF=81,d=1 (3.46)

A proper identity matrix creates M x N + 9 isolated groups with dimension of 3 x 3 as depicted
in Figure 3.33. In this network, inhibitory cells are surrounded by excitatory cells and the
inputs of those cells are the image pixel values. Similar to LBD example, a threshold =0
is applied to the state variable X, thus the binary output b is generated. As a consequence,
excitatory cell output gives the desired LBP values following a bit ordering manipulation.

Non-Uniform Distribution

Inhibitory-excitatory cells are distributed in a particular order to create isolated sub-networks
for LBD and LBP operations. Conversely to these applications, non-uniform or random
connections can be seen in biological networks [83]. If inhibitory and excitatory cells are
distributed in a non-uniform order, connections give different combinations because of the
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Chapter 3. Architecture

Figure 3.33 ... A network con“guration for LBPs

connectivity rules. As it can be seen as highlighted in Figure 3.34, cells with different number

of connections (1, 2, 3 and 4) are available in the network. Therefore differently from current
LBDs, more than two intensity values can be considered for one bit of the descriptor. This
can increase the accuracy of the description, since a selected combination ( e.g.1:S1,S 13 0r
115 (1, S 13)/2) may represent more distinctive informationthana 11 S |, comparison selected
by FREAK in particular applications, where 1, represent an intensity value of a smoothed
sampling point.

Figure 3.34 ... Randomly distributed inhibitory and excitatory cells under limited connectivity
rules.

3.4.4 Realization

In the hardware implementation of a single HPP cell, all connection weights (  ci',ciF,cE!, cEF)
are limited with to be either0or2 SN (N N). Thus, c;.y, terms can be calculated by a zero-
cost casting operation. Consequently, only low-area hardware units like adder and multiplexer

take place in the hardware which is depicted in Figure 3.35.

Building the HPP network needs a large multiplexer circuitry to map the input registers to
the HPP cells as shown in Figure 3.36. Depending on the cell identities (  h) and connectivity
rules, some of the connections between the cells are set to zero automatically. Contributions
of the neighbouring cells are calculated in  c¢1.y, units by setting the cast operations before

48
























Chapter 4. Applications

N PR N ) B

1!

=
=

. WDM'
. et

@dmimy <::::> SR

g W

o e

ﬁ
g 1

Figure 4.2 ... Centralized implementation approach to the reconstruction algorithm. Camera
data is saved onto one of the SRAMSs, via camera interface and memory interface. Panorama
reconstruction algorithm access the camera data which belongs to previous frame.

channel block and transfers it to the memory controller block for storage in one of the SRAMSs.
The memory controller block interfaces with two external SRAMs available on the board and
provides access for storing/retrieving the incoming/previous twenty image frame data on the
SRAMs. The SRAMs swap their role (one being written into, and one being read) with the
arrival of each new image frame from the cameras. The application unit block is in charge of
signal processing and basic functionalities such as single/dual video channel streaming, all
channel capture and omnidirectional vision construction. This block accesses the SRAMs via
the memory controller block and transfers the processed/image data to the control unit block.
The control unit block provides transmission capability over external interfaces available on
the board such as high speed LVDS serial links or USB 2.0. The latter block also applies the
control commands originating from the computer/FPGA.

A custom FPGA board has been designed using a Xilinx Virtex-5 FPGA as a core processing
unitin order to capture and process the video streams produced by the cameras in real-time.
The devised system consists of four layers: 1) image sensors, 2) FPGA boards handling local
image processing, 3) one central FPGA board for control, external access and last stage image
processing, 4) a PC in charge of the applicative layer consisting of displaying the operation
results transmitted from the central FPGA board. This board interfaces with twenty single-
chip Common Intermediate Format (CIF, 352 x 288) cameras. It contains two Zero Bus Turn
around (ZBT) Static Random Access Memories (SRAM) with 36 Mb capacity and an operating
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Chapter 4. Applications

Figure 4.5 ... Network with tree topology of depth 2. PN1 operates on images collected by C and
PN2 stitch partially reconstructed images by PN1. Maximum supported number of cameras is
determined by fanout of PN1 and PN2 ( m, n, respectively)

4.1.6 Novel hybrid architecture

As indicated before, memory storage and bandwidth requirements constitute an important
challenge for real-time omnidirectional reconstruction. Furthermore, implementation of
computer vision algorithms such as feature detection and description, increase the memory
requirements much more. The system presented in [17] consists of 49 processing units (PU),
where each unit has a memory, a camera unit and image processing part. This feature increase
the number of cameras which can be supported by the system, since each camera can act like
an omnidirectional image reconstruction system on its own. Furthermore, a communication
media is necessary for the data exchange among the PUs. Since each unit has its own image
processing part, the same hardware architecture should be repeated. This causes signi“cant
increase in terms of resource allocation. Furthermore, the memory bandwidth is not ef*-
ciently utilized, since each camera reads redundant data, although they are not responsible
of reconstruction. The network-based architecture allows the system to be scalable, but also
adds further latency and utilizes hardware resources. Finally, the algorithm and units are
designed to be scalable, therefore it is easy to add or subtract cameras from the system such as
adding a new nodes to a network, but the proposed hardware architecture is limited with 49
cameras since no additional board or modules can be added. Due to the limitations of the
previous systems, we designed a new hybrid panoptic architecture and propose a hardware
solution.

In this architecture, similar to the distributed approach, computational load of the omnidirec-
tional reconstruction is distributed between the processing nodes, which have a network with
tree topology (see Figure 4.5). In this network, image sensor nodes (cameras) take place as
leaves. Processing nodes stitch the images with the algorithm which is explained in Section
2, and consist of the processing units, memories and connectors. The “rst level processing
nodes (PN1) stitch the image data collected from the image sensor nodes (cameras). In the
other levels, stitching process is operated on partially stitched images. In fact, a full omnidi-
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4.2. Polarimetry

4.2 Polarimetry

Polarimetric imaging is an emerging remote sensing technology which complements panchro-
matic, multi and hyper-spectral imaging. While spectral signatures carry information about
material properties, the polarization state of an optical “eld depends on surface features, such
as shape and roughness. The information acquired by spectral and polarimetric imaging
often reveals independently distinctive features of relevant objects. With such capabilities,
polarimetric imaging demonstrates enhanced competencies for advanced object detection
tasks [86], especially with contrast-enhancing techniques.

Wire-gr id polarizer

Random polarized light Vertically polarized light

Figure 4.8 ... Horizontally placed wire-grid polarizer absorbs the horizontal components.

In more details, polarimetry is the measurement and interpretation of the polarization state of
transverse waves, such as radio or light waves. Typically it is done on electromagnetic waves
that traveled through or re”ected by some material in order to characterize that object [87].
Polarimetry is proved to be bene*“cial for numerous visual enhancement and scene identi“-
cation methods. To remove the effects of haze from images, recover visibility of underwater
scenes, improve the contrast and separate the specular components in an optical “eld, polari-
metric imaging techniques demonstrated an outstanding performance [88]...[90]. Moreover,
polarimetry is often used during post processing of various target detection applications to
improve the characterization of a target by estimating the texture of a material, resolving the
orientation of structures [91].

It is often preferred to represent the polarization information in terms of the Stoke vectors,
which is de“ned as a time-averaged intensity measurement [86]. In order to compute the
elements of the Stoke vectors, “ltered images by special polarizing “Iters are needed. A “ltering
example is illustrated in Figure 4.8. The wire-grid polarizer absorbs the horizontal components
and allows only vertical polarization to pass. Polarimetric cameras used in this study have
linear polarizing “Iters placed with different angles. This enable us to compute the “rst three
elements of the Stoke vectors: Sy, S; and S, from the output of the cameras. We preferred not
to use Stoke parameter Sg, calculated by left and right circular polarizations which are usually
quite weak for natural backgrounds. The usage of “lters is drastically different between these
devices.

The “rst one is called Equus 327k SM (Figure 4.9a), which is an infrared camera in SW/MWIR
spectra and developed by IRCAM. It is based on a mechanism that circularly rotates “lters
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shown. Four of the cameras are covered by linear polarization “Iters, placed in four different
directions: 0 °,45°,90° and 135°. These cameras are connected to a powerful FPGA development
board VC707 with Virtex-7 FPGA via its FMC connector. Thus, camera data “ltered by linear
polarization “lters arrives at FPGA, and DoLP data can be computed in real-time by FPGA. By
this way, high resolution can be reached at low-cost.

Table 4.2 ... Details regarding to the camera systems used in this study

Camera speci“cations
Name Sensor
Spectra Sensor [nm ] Pixel Pitch [um ]
Polarcam V VIS Polar. Si 400-700 640x460 7.4
Equus 327k SW/MWIR MCT 1500-5000 640x512 15
Canon D5 Mk VIS Si 400-700 5760x6840 6.25

Figure 4.10 ... Super pixel structure of an image obtained by the Polarcam V [92]

As for object detection systems, they were able to achieve outstanding performance in recent
years. Deep learning, in particular, has emerged as the most powerful model for advanced
object detection tasks. As the name implies, these models have deep network architectures
capable of discovering highly complex patterns. This characteristic, alongside with robust
training methods, allow deep learning models to construct powerful object representations by
building high-precision part-based models for a variety of object classes [93]...[95].

There are various object detection models that are highly in use and considered as state-of-the-
art models. Brie"y explaining, Faster Region-based Convolutional Network method (Faster
R-CNN) builds on region proposal algorithms to hypothesize object locations. It introduces a
Region Proposal Network (RPN) that shares full-image convolutional features with a detection
network that enables cost-free region proposals. RPNs are trained end-to-end to generate high-
quality region proposals, which are used by Fast R-CNN for detection [96]. In contrast to Faster
R-CNN, Region-based Fully Convolutional Networks (R-FCN) model is fully convolutional
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network architectures and combinations of different polarization components. Finally, we
measured and compared performances of trained models which is the section located at
the bottom of Figure 4.11. As before, Sy, S1, DoLP are placeholders for images with corre-
sponding transformations. The overall picture of the methodology followed in this study

is illustrated in Figure 4.11. Further details regarding individual steps are explained in the
following subsections.

Figure 4.11 ... Overall look at the methodology followed in the study

Dataset Construction

At the time of this project, there was no publicly available polarimetric imaging dataset. Hence,
the initial task was to acquire adequate data by using polarimetric imaging systems including
Equus 327k and PolarCam V which can be utilized to infer the polarization state of an optical
“eld. We collected around 200 images of military vehicles from 30 different locations. These
numbers double with the data priory obtained by armasuisse itself. The content of these
images includes various types of military vehicles taken from different angles and located in
various backgrounds. Their distance from the camera also differs considerably. Sample raw
images can be seen in Figure 4.12.

Image transformation using polarization components

As mentioned, an image obtained from polarimetric cameras put in use contains a pattern of
polarizers with four discrete orientations corresponding to 0, 45, 90 and 135 degrees. In order
to utilize features of such polarimetric images in object detection systems, it is required to
make certain transformations on raw images obtained directly from the cameras. According to
previous researches [86], Degree of Linear Polarization (DoLP) can be bene“ted to emphasize
man-made objects and depreciate natural ones. Since this property is highly suitable for the
purpose of this study, we decided to use DoLP to transform the raw images. It is calculated
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Figure 4.12 ... Raw polarimetric images of various military vehicles within different back-
grounds

using polarization components as in the following equations:

So lo+ lgg
S oS|I
1 ov 90 4.3)

S l45S l135

S3 lLne Slruc
S+ S5

DoLP= ———— (4.4)
So

Here, 1g,l90,145,1135 are the intensities of the linear polarization components (polarizers)
corresponding to 0, 90, 45, 135 degrees. Since raw images obtained from polarimetric systems
used in this study were different, we followed different procedures while transforming them.
As explained, the wire grid polarizer in Polarcam V contains a pattern of four discrete polarizers
with 0, 45, 90, 135 degrees known as super-pixel. In order to obtain images purely formed by
each polarization components, we transformed the raw images using super-pixel structure.
For instance, in order to obtain an image only consisting of polarization parameter So, we
added the 1g and | gg polarizers located in each super-pixel. This value is calculated for each
super-pixel and entire image for polarization parameter Sy is constructed by putting these
value to corresponding pixel locations. As for IRCAM camera, this procedure was relatively
straightforward since we obtained four different images for each discrete polarizer, instead
of a single image containing all four.  Sg in this case is calculated by using pixels in two
separate images corresponding to g and lgg polarizers. After obtaining an image for each
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polarization components thatare Sp, S; and S, we were able to directly calculate DoLP images
using Equation 4.4. In addition to DoLP, we also investigated the performance of individual
polarization components within object detection systems by considering them separately.

Figure 4.13 ... Polarimetric images after transformation with DoLP

It is evident that transformation with DoLP emphasized only man-made objects that are
military vehicles while understating irrelevant parts of images including mountains, trees, and
grass as shown in Figure 4.13. This property is expected to be quite bene“cial for object detec-
tion systems since relevant objects become strongly distinguishable after the transformation.

Object Labeling

The exact location of objects within images are required to be speci“ed for the training phase
of object detection models. We manage to do this operation manually by using an application
named as Labellmg [99]. It is a graphical image annotation tool written in Python and uses Qt
for the graphical interface. In our case, we are interested in detecting military vehicles and
therefore, only labeled such vehicle in acquired images.

Depending on the amount of collected data, manually selecting and labeling each object
might not be a feasible. It was an applicable method in our case, however, other ways of
automating this process, such as taking advantage of pre-trained masking models should be
considered for bigger scale projects.

Training and Testing of Object Detection Models

Initial experiments with pre-trained models which are built on various deep learning archi-
tectures including Faster-RCNN and SSD, reemphasized the requirement of training custom
models to be able to comprehensively utilize the additional bene“ts that polarimetric imaging
provides. As seen in Figure 6, pre-trained object detection model (which is based on Faster-
RCNN) was able to detect the vehicle in the gray-scale image (on the left) with much higher
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con“dence even though, the vehicle is more exposed and distinguishable in the polarimet-
ric image. This is a consequence of the fact that pre-trained models encountered similar
gray-scale images during their training phase.

Figure 4.14 ... Detected objects in polarimetric and gray-scale images using pre-trained models

As mentioned earlier, we utilized the SSD deep learning architecture for object detection tasks
conducted in this project. Comparing to other state-of-the-art models, SSD eliminates various
redundant steps and allows proper training with fewer sample images without compromising
from detection performance. Considering the amount of polarimetric image data within our
reach, SSD was the best-suited model for our purposes.

After completing the object labeling step, we split the available data into training and testing
parts as 60% and 40% respectively. In order to increase the amount of training sample, we
took advantage of various data augmentation techniques including randomly "ipping the
orientation or cropping of certain parts of an image. Even after augmenting, the data we
possessed was not suf‘cient to train a robust object detection model from scratch. Hence,
we decided to start the training processes from a checkpoint which corresponds to a model
trained up to a certain point with weights still highly susceptible for any updates. We train
the model using our data where the checkpoint left off. The obvious shortcoming of this
approach is that the checkpoint models are trained with RGB and gray-scale images and not
with polarimetric ones. This will cause noticeable positive performance bias toward gray-scale
images during the testing phase.

We trained two primary models by using gray-scale images and polarimetric images trans-
formed with DoLP. To investigate the effect of an individual polarization component, we also
trained models just by using one of the components, namely  S;. Additionally, several others
models were trained by combining gray-scale with DoLP, S; with DoLP and gray-scale with S;.
In total, we manage to train 6 different models.

As the machine learning framework of choice for the project, we used TensorFlow [100]
which has numerous built-in features and models including Faster R-CNN and SSD. Storage
and memory requirements to train a deep neural network is often exceeds the capacity of
a single machine and therefore, a cluster consisting of multiple machines is necessary for
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4.3.2 Result

The GigaEye-Il system is demonstrated in drone detection days organized by armasuisse
Science and Technology in 2016 and 2017, in Thun, Switzerland. In Figure 4.23, drone is at
approximately 700 m distance from the system. Since there is no moving close object in the
scene, a reliable background is computed. Figure 4.23b shows the difference the frame and the
background model, and Figure 4.23c is the output of the morphological “Iter which removes
all the noisy pixels. In Figure 4.23d connected component analysis result can be clearly seen
that the drone is detected.

(a) Frame (b) Background subtraction

(c) Morphologic “Iter (d)cCcL

Figure 4.23 ... Moving Object Detection stages

Another case is shown in 4.24. In this case, there are non-salient movements occurs caused by
bushes and other detection systems. In the difference frame in Figure 4.24b, the noise and
drone can be seen together. However this noise is masked by the reliability matrix shown in
Figure 4.24c. Finally in Figure 4.24d, the target drone can be clearly seen. Although there is
some corrosion with its shape, it is still recognizable. Since the recognition algorithm does not
utilize this shape, instead it uses a non-compressed but cropped from the original frame, it
does not have a side effect.
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4.3. Vision-based surveillance for drone detection

(a) Frame, drone is manually marked (b) Difference and threshold

() Reliability (d) Foreground output (zoom)

Figure 4.24 ... Moving Object Detection stages
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4.4. Wireless Smart Camera Networks

a wide zone. In this network, the area covered by each camera is reduced to decrease local
power consumption at the expense of having multiple nodes dispersed over the land. Having
omnidirectional imaging capability, each node covers a circular range in which the detection
of an intrusion is possible. In this con“guration, no camera node is placed on areas that are
out of interest. Each node transmits the data wireless to the base station. To provide energy
sustainability, energy harvesting is required directly at each camera node. An effective way to
acquire enough energy from the environment would be to recover solar energy. This way, a
direct DC voltage supply could be obtained. The base station is supposed to be powered by
the mains, or an other available energy source.

In this part, we detail our proposition for a Wireless Smart Camera node which exploits our
smart camera architecture. We have implemented the critical parts in hardware, targeting
FPGA and ASIC. In addition, we show a full-system design concept, power analysis of the
system to show feasibility of such an energy autonomous system.

4.4.2 Requirement Analysis

In this part, we present a detailed requirement analysis to determine the parameters of our
proposed wireless smart camera system. Our goal is to send information from the local node
to the central unit which is supposed to be at 1-3 km distance from the local node. Considering
the distance and data rate requirement, sub-1GHz band is suitable for the data transmission.

Figure 4.26 ... Pin-hole camera model

Coverage of a node is de“ned as the “eld of view in which a camera can detect a target object,
and it is an important parameter to determine the distribution of the cameras. This node
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