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Abstract
Humans and some other animals are able to perform tasks that require coordination of movements

across multiple temporal scales, ranging from hundreds of milliseconds to several seconds. The

fast timescale at which neurons naturally operate, on the order of tens of milliseconds, is well-

suited to support motor control of rapid movements. In contrast, to coordinate movements on

the order of seconds, a neural network should produce reliable dynamics on a similarly “slow”

timescale. Neurons and synapses exhibit biophysical mechanisms whose timescales range from

tens of milliseconds to hours, which suggests a possible role of these mechanisms in producing

slow reliable dynamics. However, how such mechanisms influence network dynamics is not

yet understood. An alternative approach to achieve slow dynamics in a neural network consists

in modifying its connectivity structure. Still, the limitations of this approach and in particular

to what degree the weights require fine-tuning, remain unclear. Understanding how both the

single neuron mechanisms and the connectivity structure might influence the network dynamics

to produce slow timescales is the main goal of this thesis.

We first consider the possibility of obtaining slow dynamics in binary networks by tuning their

connectivity. It is known that binary networks can produce sequential dynamics. However, if

the sequences consist of random patterns, the typical length of the longest sequence that can be

produced grows linearly with the number of units. Here, we show that we can overcome this

limitation by carefully designing the sequence structure. More precisely, we obtain a constructive

proof that allows to obtain sequences whose length scales exponentially with the number of units.

To achieve this however, one needs to exponentially fine-tune the connectivity matrix.

Next, we focus on the interaction between single neuron mechanisms and recurrent dynamics.

Particular attention is dedicated to adaptation, which is known to have a broad range of timescales

and is therefore particularly interesting for the subject of this thesis. We study the dynamics of a

random network with adaptation using mean-field techniques, and we show that the network can

enter a state of resonant chaos. Interestingly, the resonance frequency of this state is independent

of the connectivity strength and depends only on the properties of the single neuron model. The

approach used to study networks with adaptation can also be applied when considering linear

rate units with an arbitrary number of auxiliary variables. Based on a qualitative analysis of the

mean-field theory for a random network whose neurons are described by a D-dimensional rate

model, we conclude that the statistics of the chaotic dynamics are strongly influenced by the

single neuron model under investigation.

Using a reservoir computing approach, we show preliminary evidence that slow adaptation can be

beneficial when performing tasks that require slow timescales. The positive impact of adaptation
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Abstract

on the network performance is particularly strong in the presence of noise. Finally, we propose

a network architecture in which the slowing-down effect due to adaptation is combined with a

hierarchical structure, with the purpose of efficiently generate sequences that require multiple,

hierarchically organized timescales.

Keywords: Binary networks; chaotic dynamics; adaptation; nonlinear dynamics; sequence

generation.
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Compendio
Alcuni animali sono in grado di eseguire azioni che richiedono la coordinazione di movimenti

su più scale temporali, che variano da centinaia di millisecondi fino a diversi secondi. La

scala temporale alla quale i neuroni agiscono, nell’ordine di decine di millisecondi, ben si

adatta al controllo dei movimenti più rapidi. Tuttavia, al fine di coordinare movimenti su una

scala temporale nell’ordine dei secondi, una rete neurale deve poter produrre una dinamica

caratterizzata da una scala temporale adeguatamente “lenta”. I neuroni e le sinapsi possiedono

meccanismi biofisici che agiscono su scale temporali che variano da decine di millisecondi fino a

diverse ore. Ciò suggerisce che tali meccanismi biofisici possano giocare un ruolo importante

nella produzione di dinamica lenta. Tuttavia, non è ancora ben chiaro come questi meccanismi

biofisici influenzino la dinamica della rete. Modicare la struttura della connettività di una rete

neurale al fine di rallentarne la dinamica costituisci un approccio alternativo per la produzione di

dinamica lenta. Ciononostante, non è chiaro quali siano le limitazioni di questo approccio e in

particolare quanta precisione sia richiesta nella regolazione dei pesi sinaptici. Lo scopo principale

di questa tesi è lo studio di come i meccanismi biofisici dei singoli neuroni e la struttura della

connettività influenzino la dinamica della rete, risultando in una dinamica lenta.

Iniziamo col considerare la produzione di dinamica lenta mediante la regolazione dei pesi sinap-

tici in reti di neuroni binari. È noto che le reti binarie possono produrre dinamica sequenziale.

Tuttavia, se la sequenze in oggetto sono aleatorie, la massima lunghezza tipica ottenibile scala

linearmente con il numero di neuroni. In questa tesi mostriamo che possiamo superare questo

limite grazie ad un’attenta scelta della struttura della sequenza. Più precisamente, proponiamo

una dimostrazione costruttiva che permette di produrre sequenze la cui lunghezza scala espo-

nenzialmente con il numero di neuroni. Tuttavia, ciò richiede una precisione esponenziale nella

regolazione dei pesi sinaptici.

Nella seconda parte di questa tesi ci concentriamo invece sull’effetto dei meccanismi presenti

nei singoli neuroni sulla dinamica della rete ricorrente. Particolare attenzione è dedicata all’a-

dattamento neurale, un meccanismo che agisce su più scale temporali e quindi particolarmente

interessante per l’oggetto di questa tesi. Il nostro studio della dinamica di una rete con connes-

sioni aleatorie e adattamento, sviluppato utilizzando tecniche di campo medio, dimostra come

la rete possa entrare in uno stato di caos risonante. Tale frequenza di risonanza è indipendente

dall’intensità dei pesi sinaptici, in quanto dipende solamente dalle proprietà del modello di

singolo neurone utilizzato. L’approccio utilizzato per studiare la rete con adattamento può essere

utilizzato anche per studiare una rete i cui neuroni sono modellizzati con un numero arbitrario di

variabili ausiliarie. Basandoci su un’analisi qualitativa della teoria di campo medio, derivata nel
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Abstract

caso di neuroni lineari D-dimensionali, concludiamo che le proprietà statistiche della dinamica

caotica sono fortemente influenzate dalle caratteristiche dei modelli di singolo neurone presi in

considerazione.

L’adattamento neurale può migliorare le prestazioni della rete neurale in situazioni che richiedono

scale temporali “lente”, come mostriamo in risultati preliminari ottenuti con tecniche di reservoir

computing. Proponiamo infine un’architettura di rete in cui l’effetto dell’adattamento è combinato

con una struttura gerarchica, con lo scopo di poter generare in maniera efficiente sequenze che

richiedono scale temporali multiple e con un’organizzazione gerarchica.

Parole chiave: Reti binarie; dinamica caotica; adattamento neurale; dinamica nonlineare;

generazione di sequenze.
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1 Introduction

Our brain is able to coordinate movements across multiple temporal scales with an impressive

reliability. Similarly, the cerebral cortex also exhibits complex, multi-scale dynamics, that might

be suited to support such complex behaviors. This is particularly striking when considering that

neurons, the building blocks of our brain, operate considerably faster than behavior. It is therefore

of crucial importance to understand how slow dynamics emerge in neural networks.

We address this question from a modeling perspective, by focusing on structured neural network

models. Theoretical studies often assume unstructured network models, e.g. by choosing

the connectivity to be entirely random or by using neuron models that capture only the basic

features of real neurons. This allows to obtain theoretical insights that do not depend on specific

assumptions about the connectivity or about the neuron model under consideration. However,

obtaining reliable dynamics across multiple timescales in unstructured networks has been proven

to be difficult. In this thesis in contrast, we investigate the influence that structure has on dynamics.

By “structure” we refer either to nonrandom connectivity or to the use of neuron models equipped

with additional biophysical mechanisms, whose influence on the network dynamics is not clear

yet. Our hypothesis is that this additional structure, that might have developed either because of

evolution or because of learning, could facilitate the emergence of multi-scale dynamics.

In this introduction, I first review some fundamental neuroscience notions that will be used

throughout this thesis, with particular attention to the relevant timescales at which different

phenomena take place. Then, I discuss binary neuron models, focusing on the limitations that

they have in producing slow sequential dynamics. I then move to rate neuron models and discuss

the general mechanism that allows to slow down the dynamics in the vicinity of attractor states.

Finally, I introduce the tools that are necessary to study the dynamics of chaotic rate networks

and discuss the emergence of slow dynamics in the chaotic state.

1



Chapter 1. Introduction

1.1 Timescales of fundamental processes

Throughout this thesis, I will frequently use the word timescale. When referring to a physical

system, its timescale can be loosely defined as the time it takes for that system to change

significantly. This definition is rather qualitative, since the meaning of the word significantly
depends on which features of the system we are interested in. In linear (or linearized) dynamical

systems, a more rigorous definition can be given and the details underlying this statement will

be reviewed in 1.1.4. However, since the systems we are interested in are often nonlinear, I will

refer to timescales using the qualitative definition above, while trying to be more rigorous in the

cases where this is possible.

Most of the tasks we encounter during behavior are characterized by timescales on the order of

seconds. If sufficiently trained, humans are able to coordinate motor commands across multiple

scales, from hundreds of milliseconds to several seconds, with an impressive precision (think

about musicians or professional sportsmen). The same considerations hold true for our ability to

integrate sensory information over time. Neurons in contrast, appear to operate on much faster

timescales, on the order of tens of milliseconds. As we will see in this section, this is only one

part of the story. Looking closer at fast neuronal dynamics, we see that they are in fact influenced

by many biophysical mechanisms that exhibit different timescales, some of which comparable to

behavioral ones. I will now briefly review such mechanisms, while in parallel introducing some

fundamental concepts of computational neuroscience.

1.1.1 Single neurons and synapses

Neurons are the fundamental units of the brain and communicate with each other via short

electrical pulses called action potentials, or spikes. As many other cells, they are enveloped in a

lipid membrane, that can be thought as an electrical capacitor on which charged ions accumulate

due to the difference in potential between the inside and the outside of the cell. Such potential

difference is maintained by ion pumps, special proteins that sit in the cell membrane and consume

energy to pump ions against the electrical gradient. The neuronal membrane has a small leakage,

so that a small amount of ions flows in or out until an equilibrium between the electrical force

and the concentration pressure is reached. For a typical neuron, this equilibrium is achieved when

the interior of the cell is at a voltage urest ∼ −70 mV. We can describe these properties of the

neuronal membrane as an electrical circuit, in which a capacitor (the cell membrane) is in parallel

with a resistor (the leak of the membrane) (Fig. 1.1A, Gerstner et al. (2014))

u̇ =− 1

RC
(u(t )−urest)+ 1

C
I (t ) . (1.1)

I (t ) is any additional electric current that goes through the membrane, and it can result for

example from the input from other neurons or from an experimental injection. The parameter

τm ··= RC sets the timescale of the passive membrane, which for a typical neuron is around 10

ms, and it is responsible for the fast dynamics mentioned above. If for example a constant current

2



1.1. Timescales of fundamental processes

Figure 1.1 – Passive mem-
brane behavior. A: Elec-

trical circuit representation

of the neuron passive mem-

brane. B: Evolution of

the membrane potential u(t )
(bottom), in the presence of a

step current (top). All panels

were redrawn from Gerstner

et al. (2014).

is injected, the voltage reaches a new stationary value in a typical time that is on the same order

as τm (Fig. 1.1B).

If a neuron receives enough input so that its internal voltage reaches a critical value, nonlinear

effects trigger a sudden depolarization of roughly 100 mV, before the membrane potential returns

to its resting value. Whenever this happens we say that a spike is emitted or, in other words, the

neuron fires. This critical value is known as spike threshold and for a typical neuron is about

uth ∼−50 mV. The biophysics underlying the spike generation process is quite complex, and it

was first described quantitatively by Hodgkin and Huxley (1952). For the purpose of this thesis, it

is important to point out that spikes usually have a stereotypical shape, with a duration of roughly

1 ms. For this reason, spikes are often modeled as events and the details of their time course

are neglected. After the spike, the membrane potential goes back to a value close to the resting

potential. This type of spike-generation mechanism can be easily added to the passive membrane

Eq. (1.1)

τmu̇ =−u(t )+urest +RI (t )

when u(t ) > uth then u(t ) → ur ,
(1.2)

where ur is the reset potential that we consider as a fixed parameter. Eq. (1.2) defines the leaky

integrate and fire model (LIF, Lapicque (1907)).

Action potentials are typically generated at the initial part of the axon, along which they then

propagate until they reach the pre-synaptic terminals of the synapse, the site where the electrical

activity is transmitted to other neurons. There, a cascade of biophysical mechanisms triggers the

release of neurotransmitters, which diffuse outside the cell and that activate specific receptors on

the post-synaptic terminal of the synapse. There exist several neurotransmitters, such as glutamate

or GABA (γ-aminobutyric acid). Importantly, each neuron can usually release only one type

of neurotransmitter. Based on the neurotransmitter they release, neurons are distinguished in

mainly two classes: excitatory (releasing glutamate) or inhibitory (releasing GABA). Other types

of neurons present in the brain, such as dopaminergic neurons, are not considered in this thesis.

Neurons collect input from many others (on the order of 10000) thanks to the dendritic tree,
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an arborization of the cell membrane that allows to have multiple contact points with axons

coming from other neurons. On the post-synaptic terminal of a synapse, we find receptors for

both glutamate, the most important ones being AMPA (α-amino-3-hydroxy-5-methyl-4isoxalone

propionic acid) and NMDA (N-methyl-D-aspartate), and for GABA, the most important being

GABAa and GABAb. Here we will not detail the different properties of these receptors, but

we will mention two important distinctions: first, the opening of glutamate receptors drives the

influx of positive ions which depolarize the cell, while when GABA receptors open there is an

influx of negative ions (or an outflux of positive ions), which hyperpolarize the cell. Second,

different types of receptors are responsible for currents with different timescales. For example,

the timescale of the AMPA-associated current is on the order of 10 ms, i.e. comparable to the

passive membrane time constant, while the timescale of the NMDA-associated current is much

slower, i.e. on the order of 100 ms (Hestrin et al. (1990)). Similarly, GABAa receptors are fast,

while GABAb receptors are much slower (Bowery et al. (2002)).

The simplest way to introduce synaptic interactions in the LIF model is to add to Eq. (1.2) a

current

Isyn =
∑
t̂ j

ε(t − t̂ j ) , (1.3)

where the sum runs over all the pre-synaptic spike times t̂ j . Each pre-synaptic spike causes a

post-synaptic current whose typical time course is given by ε(s). Its exact shape depends on the

synaptic model we consider, and one common choice is to set it to a single exponentially-decaying

function

ε(s) = w ·τsyn ·exp

(
− s

τsyn

)
, (1.4)

where w is the synaptic strength (which can be positive or negative depending on the pre-synaptic

neuron type) and τsyn is the timescale of the decay of the post-synaptic current.

The LIF model as described by Eq. (1.2) is a memoryless device, in the sense that once a spike

is emitted, the voltage is reset to ur and any trace of previous spikes is lost. Real neurons in

contrast, exhibit multiple history-dependent mechanisms such as refractoriness and adaptation.

More precisely, for a few milliseconds after a neuron emits a spike, it becomes less likely for it to

emit another one. This effect is usually described as resulting from three different phenomena.

First, the absolute refractoriness is the time interval after the spike is emitted during which it is

impossible to spike again. In threshold models like the LIF, it is important to include this period

to account for the finite length of the action potential. After the absolute refractory period, the

neuron might enter a state of relative refractoriness, in which a spike can be elicited but this is

harder than when the neuron is at rest. We can account for this effect by introducing a spike-

triggered hyperpolarizing current. Importantly, this effect is short-term, in that it depends only on

the last spike and not on the full spike-history. Finally, spike-frequency adaptation (SFA) can

also be modeled as spike-triggered hyperpolarizing currents. In contrast to relative refractoriness
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1.1. Timescales of fundamental processes

however, the SFA current accumulate over spikes, which allows it to have a longer-lasting effect

and which leads to interesting consequences from the sensory coding perspective. Due to the

abundant use of adaptation in the models presented in this thesis, in the next section I provide

some additional details on the mechanisms that underlie it and on the approaches towards its

inclusion in a modeling framework.

1.1.2 Single neuron adaptation

The word adaptation is used to describe a broad class of phenomena that are thought to be

responsible for how a neuron adapts to the statistics of the incoming stimuli. For example, if a

step current is injected into a neuron, it emits a series of spikes whose frequency decreases with

time (Benda and Herz (2003)). This phenomenon is known as spike-frequency adaptation (SFA).

Moreover, even when the injected current is not strong enough to cause a spike, many neurons

undergo subthreshold adaptation due to the presence of hyperpolarizing subthreshold currents,

mediated by voltage sensitive ion channels (Benda and Herz (2003)). Both these phenomena

represent a form of negative feedback, that might be useful to maintain the neuron in an optimal

response regime.

The biophysics underlying SFA is rich and I will not go into extensive details in this thesis.

However, since we are interested in the typical timescale at which different mechanisms take

place, it is important to mention a few striking properties of SFA. It was shown in several studies

that a single spike can have a significant effect on the dynamics of the neuron even seconds

after it was emitted (La Camera et al. (2004); Lundstrom et al. (2008); Pozzorini et al. (2013)).

However, concluding that SFA has a timescale of seconds would not be accurate, since its effect

is also significant at shorter timescales. In fact, SFA has been shown to be scale-free, i.e. it is

not possible to find a unique timescale at which SFA has a significant effect (Lundstrom et al.

(2008)).

From the modeling perspective, the LIF model can be extended to include SFA in two ways: via

a spike-triggered hyperpolarizing current or via a moving-threshold mechanism (Gerstner et al.

(2014)). Using the first solution, Eq. (1.2) becomes

τmu̇ =−u(t )+urest −
∑
t f

η(t − t f )+RI (t )

when u(t ) > uth then u(t ) → ur ,
(1.5)

where η(s) is the time course of the spike-triggered current, in voltage units. Using a single

exponential for such time course, albeit common, is at odds with the scale-free behavior of

adaptation (Lundstrom et al. (2008)), since exponentials require to fix a timescale. Interestingly,

when the profile of such currents is fitted to data, the outcome is a power law-shaped current,

which is inherently scale-free. Notice that adaptation is obtained if η(s) is positive. However,

neurons that exhibit facilitation, i.e. an increase of the firing rate in response to a sustained

stimulus, have also been observed (Edman et al.; Benda and Herz (2003)). The model in Eq. (1.5)
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can account for facilitation if η(s) is set to be negative.

Similarly, turning the fixed threshold of Eq. (1.2) into a dynamic one provides another solution to

realize SFA:

τmu̇ =−u(t )+urest +RI (t )

uth = u0
th +
∑
t f

ηth(t − t f )

if u = uth then u → ur .

(1.6)

Again, ηth(s) is the time course of the effect of one spike on the neuronal threshold, for which the

same considerations about the timescale apply. These two solutions are similar but not equivalent,

in that in the first solution the spike-triggered current enters the potential via the additional

membrane filtering, while in the second solution the threshold dynamics does not get filtered.

It is worth mentioning that to fit the behavior of real neurons it is advantageous to include both

mechanisms (Pozzorini et al. (2013)).

Interestingly, a power-law current can be approximated by a sum of exponential currents having

different timescales. This approach has the advantage of being easier to treat analytically, since

exponentials are solutions of linear differential equations. In this thesis I will only consider

models with a single exponential adaptation current, and only briefly mention the effect of

multiple adaptation timescales. When doing this, we hope that the results obtained for this

simple type of adaptation would be easier to generalize to multiple-exponentials adaptation than

it would be to directly consider a power-law adaptation. In the rest of this thesis, I will implement

exponential adaptation by using auxiliary variables that obey linear differential equation. This

solution is completely equivalently to the implementation of Eq. (1.5). The equations for the LIF

with adaptation read

τmu̇ =−u(t )+urest −a +RI (t )

τa ȧ =−a(t )+c ·S(t )

if u = uth then u → ur ,

(1.7)

where τa sets the adaptation time scale, c is a parameter that controls the adaptation strength and

S(t ) =∑t f
δ(t − t f ) is the spike train of the neuron, i.e. a sum of Dirac δ-functions with support

at the spike times.

A type of adaptation distinct from SFA is subthreshold adaptation, which does not depend on the

spike history but only on the subthreshold voltage. The LIF model can be extended to include

subthreshold adaptation by using an auxiliary variable

τmu̇ =−u(t )+urest −a(t )+RI (t )

τa ȧ(t ) =−a +c ·u(t ) . (1.8)

The parameters have the same interpretation as in Eq. (1.7), but the mechanism is different since

6



1.1. Timescales of fundamental processes

in this case the adaptation variable is a filtered version of the membrane potential and not of the

spike train. Notice that, as for SFA, c can be both positive and negative, the latter corresponding

to a facilitating current. If the adaptation effect is strong enough, such a neuron model exhibits

resonant behavior, and for this reason it is called resonate and fire (Izhikevich (2001); Richardson

et al. (2003)). This resonant behavior is similar to the one that we observe in the rate model

considered in chapter 3.

1.1.3 The timescales of synaptic plasticity

The electrical efficacy of synapses is not fixed, but it changes through time in response to the

electrical activity of the pre- and post-synaptic neurons. This phenomenon is called synaptic
plasticity and is considered to be the neural correlate of learning and memory (Hebb (1949);

Martin et al. (2000); Hayashi-Takagi et al. (2015)). In this thesis, I neglect the consequences

of synaptic plasticity for the dynamics of neural networks and I only marginally discuss the

possibility of plastic synapses in chapter 6. However, to give a complete overview of the repertoire

of timescales present in the brain, I briefly review here the main plasticity mechanisms.

On a timescale of roughly hundreds of milliseconds, synapses undergo short-term plasticity
(STP), whose dynamics depends mostly on the pre-synaptic firing. Short-term facilitation leads

to a transient increase of the synaptic efficacy in response to a series of pre-synaptic spikes. On

the other hand, short-term depression corresponds to a transient decrease of the synaptic efficacy.

Whether a synapse exhibits one or the other is thought to depend on the interplay between the

probability of release of synaptic vesicles and on the available pool of releasable vesicles (Zucker

and Regehr (2002)). Since STP leads to transient changes in the efficacies, it is usually not directly

related to learning and memory. However, it has been proposed to play an important role for the

stability of attractor states in realistic neural network models (Mongillo et al. (2005); Sussillo

and Maass (2007)) and to be a crucial ingredient for a metabolically efficient implementation of

working memory (Mongillo et al. (2008)).

Long-term potentiation (LTP) and long-term depression (LTD) of synaptic efficacies take place

on much longer timescales (from tens of seconds to hours) and they are considered to be the

main mechanism by which information is stored in synapses. In contrast to STP, the induction of

LTP and LTD usually requires the proximity in time of both pre- and post-synaptic firing. Two

components can be distinguished: early-LTP (LTD) can be elicited with relatively few spikes

and it has typical timescales ranging from tens of seconds to minutes. From the theoretical

perspective, early-LTP is usually understood in terms of learning rules (i.e. equations according

to which synaptic efficacies are modified) based on spike-timing dependent plasticity (STDP)

(Gerstner et al. (1996)). Such learning rules assume that the modification of synaptic efficacies

does not depend merely on the mean activity of the pre- and post- synaptic neurons, but on the

precise timing of their spikes. Such rules do not only provide an excellent fit to experimental data

(Pfister and Gerstner (2006); Clopath et al. (2010)), but they are also believed to support optimal

learning of exact spike timing (Pfister et al. (2006); Gütig and Sompolinsky (2006)).
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The synaptic changes induced by few episodes of pre-post pairing do not last long enough to

support stable memories, since they usually decay with a timescale of roughly ten minutes (Bliss

and Collingridge (1993); Frey and Morris (1997)). On the other hand, if such pairing episodes

are repeated and strong enough, changes can be lasting for the whole duration of the recording,

i.e. up to several hours (Frey and Morris (1997, 1998)). This slow component is called late-LTP

and the phenomenon of inducing such long-lasting changes is called synaptic consolidation. At

the theoretical level, understanding the outcome of experimental protocols seems to require the

introduction of complex dynamics and of multiple auxiliary variables (Clopath et al. (2008);

Ziegler et al. (2015)). To summarize, synaptic plasticity provides a large repertoire of mechanisms

and consequently of timescales. Such richness is believed to have beneficial consequences for

memory capacity (Fusi et al. (2005); Benna and Fusi (2016))

In a collaboration with Chiara Gastaldi (Gastaldi et al. (2018)), we studied a bistable model of

synaptic dynamics that features two timescales, and we found that the ratio of the two timescales

influences the sensitivity of the synapse to stimulation protocols. Being quite disconnected from

the rest of the thesis, this work is not included here but a more detailed summary of it is contained

in appendix A.

We have seen that the building blocks of biological brains, neurons and synapses, have timescales

that essentially tile the full range necessary for behavior. We can summarize these mechanisms in

a sketch:

However, it is not clear how such timescales are reflected in the network dynamics. Even in the

case in which they are, a further question arises, namely how they can be exploited in order to

solve tasks. These questions will be the main motivation for chapters 3–6. In the next section, I

will briefly review linear system theory, focusing on their characteristic timescales. The reader

familiar with this topic can skip the next section.

In the rest of the introduction, we introduce the concept of binary neurons and rate neurons,

simplifications aimed to ease the study of network dynamics. Thanks to these theoretical tools, we

discuss the possibility of obtaining slow dynamics as a result of the connectivity of the network,

rather than emerging from single neuron properties.
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1.1. Timescales of fundamental processes

1.1.4 Timescales of linear systems

In this section, we do a detour from neuroscience to briefly review linear system theory and how

for such systems the concept of timescale can be better defined. The material presented here

is textbook knowledge, and can be found in any book on linear system or ordinary differential

equations theory. I particularly enjoyed the book by Hespanha (2009).

Consider a homogeneous time-invariant system

ẋ = Ax (1.9)

x(t0) = x0 ∈Rn .

The solution to this problem is known to be

x(t ) = eA(t−t0) · x0 , (1.10)

where the matrix exponential is defined by

eA =
∞∑

k=0

1

k !
Ak . (1.11)

If the matrix A is diagonalizable, the matrix exponential can be easily computed

eAt = P

⎛
⎜⎝

eλ1t 0 . . . 0

0 eλ2t . . . 0

0 0 . . . eλn t

⎞
⎟⎠P−1 (1.12)

where P can be constructed by having the eigenvectors of A as columns. If the matrix A is normal,

i.e. if AAT = AT A, then its eigenvectors form an orthonormal basis. This implies that a trajectory

of the system can be described as a sum of independent components, the eigenmodes, each

of which has an exponential profile, with a timescale given by the real part of the associated

eigenvalue. Notice that if the eigenvalue also has a nonzero imaginary part, each mode exhibits

exponentially-modulated oscillations controlled by two timescales, the one of the oscillations and

the one of the exponential envelope, given by the imaginary and the real part of the eigenvalues,

respectively. If the matrix A is not normal, then the eigenvectors are not orthogonal. This

complicates the analysis of the timescales and can lead to a transient behavior whose duration

exceeds the one predicted by the eigenvalues (Trefethen and Embree (2005)).

Notice that a nonlinear system can be linearized around a fixed point, which gives a good

approximation of the system behavior in the vicinity of that point. For this reason, we sometimes

refer to the timescales of a nonlinear system in the vicinity of a fixed point as the ones of the

corresponding linearized system.
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1.2 Binary networks and sequential dynamics

As we have seen in section 1.1, the output of a neuron is an all-or-none process, i.e. the neuron is

either spiking or not spiking. This motivates the description of neurons with binary variables,

that take value σ=+1 when the neuron is firing or σ= 0 when the neuron is silent, an idea that

dates back to McCulloch and Pitts (1943). Binary neuron models are often treated in discrete

time, which implies the choice of a time step Δt . The interpretation of the two possible states of

the variable depends on the time step that we consider. For example, if Δt = 1 ms, we interpret

the state σ=+1 as a spike emitted by the neuron, while if Δt = 500 ms, the same state should be

rather interpreted as a period of sustained spiking activity (Gerstner et al. (2014)).

A common choice for the dynamics of a network of N binary neurons is given by the update rule

(Amit (1989))

σi (t +1) =Θ

(
N∑

j=1
Ji jσ j (t )−Ti

)
, i = 1, . . . , N (1.13)

where Ti represents the threshold of neuron i , Θ(·) is the Heaviside function and Ji j represents

the strength of the synaptic connection from neuron j to neuron i . Intuitively, the dynamics

in Eq. (1.13) indicates that if the total input into a neuron, given by
∑N

j=1 Ji jσ j (t ), is larger

than a threshold Ti , then the neuron is active. Neurons in the network can be updated either

synchronously or asynchronously. In the synchronous version of the update rule, the next state is

computed for all neurons in parallel based on the full state of the network at the previous time

step. In the asynchronous version instead, neurons are updated one at a time, usually in a random

order.

Alternatively, binary neurons can be described by a variable that takes value S ∈ {+1,−1}. The

two descriptions can be mapped onto each other by the transformation

S = 2σ−1 , (1.14)

from which we can find the update rule for the S variables, equivalent to Eq. (1.13)

Si (t +1) = sign

(
1

2

N∑
j=1

Ji j S j + 1

2

N∑
j=1

Ji j −Ti

)
, (1.15)

where the sign(·) is defined with the convention that sign(0) = 1. If the mean input drives neurons

close to their thresholds and there are approximately as many neurons active as non-active, we

have that 1
2

∑N
j=1 Ji j � Ti . This situation has the advantage that neurons are most sensitive to

changes in their input (Amit (1989)). In what follows, I will consider the S ∈ {+1,−1} convention

and I will neglect the biases, i.e. 1
2

∑N
j=1 Ji j −Ti � 0.

The Hopfield model (Hopfield (1982)) is one of the most influential models in computational

neuroscience and it was proposed as a possible mechanism for associative memory and for
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content-based memory addressing. It was originally defined for a network following asynchronous

dynamics with the update rule given by Eq. (1.15), and it allows to “store” in the network a set of

P patterns, defined by ξμ = (ξμ1 , . . . ,ξμN ), with μ= 1, . . . ,P . To ”store” these patterns, one has to

set the connections to

Ji j = 1

N

P∑
μ=1

ξ
μ

i ξ
μ

j , (1.16)

which results in a symmetric connectivity matrix. With this choice of weights the patterns become

fixed points of the dynamics in Eq. (1.15). In this case, the network can be initialized in a

corrupted version of the pattern and, when let free to evolve, it will converge to the stored pattern

which is most similar to the initial state. This mechanism can be seen as a form of error correction

or of associative memory. There are however limitations in the number of patterns one can store.

For the case of random uncorrelated patterns in which +1s and −1s are drawn independently and

with the same probability, the capacity, i.e. the number of maximum patterns that can be faithfully

retrieved, is known to scale linearly with N (see Hertz et al. (1991) for a textbook treatment of

the topic).

We have seen how to induce fixed points in the dynamics of a binary network by following

Hopfield’s prescription for the weights. In the next section I will focus on how to modify this

prescription to obtain sequential activity and highlight the problem of slow timescales in binary

networks.

1.2.1 Sequential activation in binary networks

Manifestly, the only intrinsic timescale of a single binary neuron is given by Δt , the time step

that separates consecutive updates. Thanks to network interactions however, slower timescales

can be produced. If the synaptic connections are allowed to be asymmetric, the network can enter

reliable cycles (Amit (1989)).The period of such cycles can be considered an effective timescale

of the system. To clarify this concept, consider a neuron which is downstream of a binary network.

If the network is in a cycle of period T , the connections to the downstream neuron can be set so

that the latter is active only when the network is in a specific state. In this way, the downstream

neuron will be active only every T time steps. This represents a straightforward way to exploit

long cycles to obtain long effective timescales.

Hopfield (1982) already proposed to add a set of asymmetric weights on top of the ones defined

by Eq. (1.16), to produce transitions between patterns. We will refer to these weights as transition
weights, and they are given by

J T
i j =

1

N

P∑
μ=1

ξ
μ+1
i ξ

μ

j . (1.17)
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The idea is that these connections would drive the transition from pattern μ to pattern μ+1, so

that each pattern becomes effectively a metastable state. However, this mechanism works only

for very short sequences, while for longer ones it suffers from instabilities (Hopfield (1982)). The

reason for this failure is that if the transition weights are not strong enough then the patterns are

stable, while if they are too strong then the patterns cannot be correctly retrieved (Sompolinsky

and Kanter (1986)).

This problem was addressed by adding a second timescale to the system at the level of the

synapses (Sompolinsky and Kanter (1986); Kleinfeld (1986)). More precisely, if one postulates

that the synapses associated to the transition weights have a slower dynamics than the ones

encoding the patterns, one can increase the transition weight strength without harming the

stability of the patterns on a short timescale. This leads to stable sequential activation both

with asynchronous or synchronous dynamics (Fig. 1.2). From the perspective of this thesis,

this approach represents a direct way to exploit an intrinsic slow timescale of the system (the

slow synaptic timescale) to slow down the dynamics of the full network. Slow mechanisms at

the synapse level exist in real neurons (see section 1.1) and good candidates to implement this

type of mechanism could be NMDA receptors or short-term facilitation. In a different approach,

Buhmann and Schulten (1987) proposed to exploit stochasticity to “escape” the stable fixed points

given by the patterns and transition to the next one. While this solution avoids the introduction of

intrinsic slow timescales, it results in quite irregular sequences when N is not very large.

Figure 1.2 – Sequential activation in binary networks. The overlap mν(t ) ··= N−1∑N
i=1 ξ

ν
i Si (t )

of the network with different patterns is plotted against time steps. Transition weights are chosen

to integrate input with a step-function kernel. Figure adapted from Sompolinsky and Kanter

(1986).

Can we get slow timescales in a deterministic binary network without any intrinsic slow mecha-

nism? For simplicity, consider synchronous dynamics. In this case, using only a set of transition

weights given by Eq. (1.17) without any pattern-encoding weights, results in a sequential reacti-

vation during which every pattern is visited for only one time step. As we have seen, the length

of the sequence that the network produces can be seen as an effective timescale of the system.

Therefore, to obtain slow timescales with this strategy the network has to produce long sequences.

However, as for the Hopfield model, the number of patterns that can be visited in a sequence is
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limited, and so is the effective timescale of the network. Using the result of Gardner and Derrida

(1988), we conclude that the maximal expected length of the orbit, when considering random

patterns, scales linearly with N . In chapter 2, we try to overcome the limitation of linear scaling

by assuming that the patterns are not randomly chosen, but highly structured.

1.2.2 Activity propagation in networks of spiking neurons

Abstract binary models of sequential activation share conceptual similarities with spiking neuron

models of activity propagation. Synfire chains (Diesmann et al. (1999)) allow fast propagation of

activity across feed-forwardly connected populations of spiking neurons. The timescale of the

activity propagation is set by the refractory period (Kistler and Gerstner (2002)) and it is therefore

on the order of few milliseconds. The robustness and the speed of the activity propagation

generated by synfire chains makes them appealing for some applications, such as song generation

in songbirds (Hahnloser et al. (2002)). However, the large amount of neurons required to have

stable propagation makes the use of such models for long timescale generation (i.e. long chains

of activity propagation) rather unlikely. To overcome this limitation, in a recent model Setareh

et al. (2018) proposed to use assembly dynamics in combination with a slow fatigue mechanism

to obtain slow activity propagation, that could be more suited to support some behavioral tasks.

Similarly to Sompolinsky and Kanter (1986) and Kleinfeld (1986), this model highlights the

possibility to slow down the effective network dynamics exploiting an intrinsic slow mechanism.
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1.3 Slow dynamics in networks of rate neurons

We have seen that spiking neuron models can be simplified by describing neurons only in terms

of whether they are active or not. This leads to binary neuron models, that we described in the

previous section. In a different approach, we can describe single neurons not in terms of single

spikes, but in terms of spike rates, i.e. discarding the information about the exact spike timing.

The spike rate is the expected number of spikes at a certain time, and it can be interpreted in

multiple ways. In one way, it can be seen as the spike count of a single neuron on a single trial

over a certain time window. To obtain a reliable value however, this interpretation requires long

time windows which leads to information loss at shorter timescales. Alternatively, the firing

rate can be interpreted as an average over a homogeneous population of neurons, which does

not require a time average. Finally, it can represent the average spike count of a neuron over

trials, which allows to consider smaller time windows. In this interpretation, the neuron rate is

similar to the peri-stimulus time histogram (PSTH) measured experimentally. The reason to study

firing rate models is twofold: first, we are interested in slow dynamics and for this reason we can

discard the information about the exact spike timing. Second, models of recurrent networks of

rate units are simpler to study analytically while still exhibiting interesting dynamics, as we will

detail in section 1.4.

Systematic reductions of spiking models to rate models started with Wilson and Cowan (1972) and

it consists in deriving, through some approximations or some heuristics, an equation (differential

or integral) that describes the evolution of the firing rate in time. The classical approach consists

of first determining the stationary input-output transformation (or gain function), that gives the

output rate in response to a certain input current. Then, one needs to determine the transient

behavior by which the stationary state is reached. Several techniques have been proposed to

tackle this problem, using integral equations (Gerstner (2000)), linear-nonlinear Poisson models

(Aviel and Gerstner (2006); Ostojic (2011)) or multi-dimensional rate models (Mattia and Del

Giudice (2002); Schaffer et al. (2013)). In this introduction however, we will focus only on

phenomenological rate models of the form

τy ẏ(t ) =−y(t )+ I (t ) , (1.18)

where y is an intermediate variable, from which the rate r can be obtained by applying an

appropriate gain function g , i.e. r = g (y). The timescale τy of the intermediate variable is

typically chosen to be on the same order as the membrane timescale τm .

1.3.1 Slowness in rate models: Attractor dynamics

Imagine a minimal “network” consisting only of one neuron connected to itself. Substituting the

self-connection for the current in Eq. (1.18), we have

τy ẏ(t ) =−y(t )+wr g (y(t )) , (1.19)
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1.3. Slow dynamics in networks of rate neurons

where wr is the strength of the self-connection. If the neuron is quiet in the absence of input, i.e.

g (0) = 0, the point y = 0 is a fixed point of the system. By linearizing the dynamics, we find that

the fixed point is stable if g ′(0)wr < 1. The effective timescale of the system in the stable regime

behaves as

τeff =
τy

1− g ′(0)wr
. (1.20)

If g ′(0)wr → 1−, the system becomes infinitely slow. This result is also true for other fixed points

of Eq. (1.19): by fine-tuning the self-connection strength, one can slow down the relaxation

dynamics to the fixed point.

This mechanism can be generalized to a network of N rate neurons. We can write the analogous

of Eq. (1.19) for a network of N units as

τy ẏi (t ) =−yi (t )+
N∑

j=1
wi j g (y j (t )) , (1.21)

where wi j is the synaptic strength from neuron j to neuron i . A stable fixed point in a neural

network is also called attractor, since the dynamics attract the network to this state, and it is

analogous to a Hopfield pattern (see section 1.2). If y0
i are the components of the attractor state,

stability theory requires that all the eigenvalues of the matrix J , whose elements are

Ji j =−δi j +wi j g ′
(

y0
j

)
, (1.22)

have negative real parts. If this condition is satisfied and the connectivity matrix is normal, then

the slowest effective timescale of the system is given by

τeff =
τy

|Re(λmax)| , (1.23)

where λmax is the eigenvalue of J with the largest real part (see section 1.1.4). Again, tuning the

connectivity allows to slow down the dynamics arbitrarily in the vicinity of an attractor.

Attractor models in networks of rate or spiking neurons have a long history (see Amit (1989)

for a nice introduction to the topic) and have been proposed as models of working memory

(Brunel and Wang (2001); Mongillo et al. (2003)). Some studies looked in particular at slow

dynamics while approaching an attractor state. For example, the derivative feedback approach

proposed by Lim and Goldman (2013) allows to vary the effective speed at which the network

relaxes to a fixed point, while requiring less fine-tuning of the weights than in the typical attractor

picture. Similarly, line attractor models (Amari (1977); Ben-Yishai et al. (1995); Compte (2000))

are characterized by a connectivity structure that induces a stable one-dimensional manifold in

the dynamics. Due to heterogeneity in the network or to noise, such models can exhibit slow

drift (Seeholzer et al. (2018)), which could provide an interesting alternative approach to the

generation of slow dynamics.
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1.4 Chaotic dynamics in random rate networks

In the absence of external input or noise, a network of rate neuron models is a (typically high-

dimensional) deterministic dynamical system. As such, it can asymptotically be either at a fixed

point (attractor state), in a periodic (or quasi-periodic) orbit, or in a chaotic state. The first proof

of the existence of a chaotic phase in random rate networks was given by Sompolinsky et al.

(1988), for balanced networks, using dynamic mean-field theory (DMFT). It was later shown

that a transition to chaos appears quite generally in many different network models, that are

not necessarily balanced (Kadmon and Sompolinsky (2015)). For simplicity however, in this

introduction we will discuss the emergence of chaotic dynamics in the balanced case.

In randomly connected networks of spiking neurons, a global balance of excitation and inhibition

can be dynamically regulated (van Vreeswijk and Sompolinsky (1996); Brunel (2000)). If the

inhibitory feedback is stronger than the excitatory one, the network exhibits an asynchronous
irregular state, characterized by very low average firing rates (Brunel (2000)). In this state, the

spike times are essentially chaotic (van Vreeswijk and Sompolinsky (1996)), which renders them

largely unpredictable. This motivates the description of the balanced state in terms of firing rates,

which are more reliable quantities.

Since in the balanced state the mean firing rate is relatively stable, it is convenient to describe

the system in terms of the deviations from the mean values (effective rates), i.e. ri (t )− r0 (see

Hennequin (2013) for a simple introduction to this topic). We can rewrite the network Eq. (1.21)

as

τx ẋi (t ) =−xi (t )+
N∑

j=1
Ji jφ(x j (t )) , (1.24)

where φ is the effective gain function of a neuron embedded in a network in the balanced state,

and it transforms deviations of the intermediate variable x into deviations from the mean rate.

If a neuron is momentarily firing at a lower rate than average, then the effect on the other units

should be negative, i.e. φ(x) < 0 if x < 0. Analogously, we should choose φ such that φ(x) > 0

if x > 0. Finally, φ is bounded from below by −r0, since the rate cannot be negative. A widely

used choice consists in setting φ(x) = tanh(x) (Sompolinsky et al. (1988)), which is amenable to

theoretical analysis due to its symmetry. A more realistic choice, used by Rajan et al. (2010), is

φ(x) =
⎧⎨
⎩

r0 tanh
(

x
r0

)
for x ≤ 0

(2− r0)tanh
(

x
2−r0

)
for x > 0

, (1.25)

which provides a larger range of firing rates above the average than below.

In the next section I briefly review the fundamental steps and assumptions needed to study the

network dynamics using DMFT.
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1.4. Chaotic dynamics in random rate networks

1.4.1 Dynamic mean-field theory

Consider a fully-connected neural network described by Eq. (1.24), in which we assume that

the synaptic weights are i.i.d. sampled from a normal distribution, i.e. Ji j ∼N
(
0, g 2/N

)
. Using

a distribution with zero mean is necessary in order to have balance between excitation and

inhibition. Scaling the variance with 1/N , allows to have the input variance independent of N . In

this way, both the mean input and its fluctuations remain finite when N →∞ (Sompolinsky et al.

(1988)). From the physics point of view, this type of neural network is an example of a disordered
system, in which the quenched disorder is represented by the randomly chosen synaptic weights.

Since φ(0) = 0, the network has a fixed point at xi = 0 ∀i = 1, . . . , N . In the N →∞ limit, the

eigenvalues of the connectivity matrix J obtained by the sampling process described above are

known to lie uniformly on a disk in the complex plane, centered in zero and of radius g (Girko

(1985)). If for simplicity we assume that φ′(0) = 1, the zero fixed point is therefore stable for

g < 1. In this regime, the network relaxes to the attractor at zero with a timescale that becomes

slower as g → 1−, as we expect from the discussion of section 1.3 (Fig. 1.3A).

How does the network behave above the instability, i.e. for g > 1? Empirically, one observes

that the network enters a state of irregular fluctuations that are self-sustained (Fig. 1.3B).

To understand the dynamics of the network in this regime, one needs to resort to mean-field

techniques. The crucial step in the derivation of Sompolinsky et al. (1988) is to understand

that, in the limit of N →∞ and when averaged over the quenched disorder, neurons become

independent. This result can be justified using statistical physics techniques based on the path-

integral description of disordered systems (Schücker et al. (2016a); Crisanti and Sompolinsky

(2018)). Thanks to the independence of the neurons, one can approximate the input to each

neuron with a Gaussian process η(t ) and replace the average over initial conditions, neurons and

weight realizations with an average over the statistics of η. The dynamics of each unit can be

seen as a realization of the following stochastic differential equation

τx ẋ(t ) =−x(t )+η(t ) , (1.26)

with 〈η(t )〉 = 0 and 〈η(t )η(s)〉 = g 2〈φ(x(t ))φ(x(s))〉, which means that the statistics of η need to

be self-consistently matched to the ones of x. For this reason, solving Eq. (1.26), i.e. finding the

statistics of x, is hard. However, Sompolinsky et al. (1988) were able to find the set of possible

solutions and to conclude that the only one consistent with the stability analysis requires that the

autocorrelation of x goes to zero as the time interval goes to infinity. This behavior of the mean

field variable x corresponds to chaotic dynamics in the microscopic network.

In contrast to the case discussed here, neural networks in the brain are not fully connected. To be

consistent with this observation, one could set each weight independently to be nonzero with a

probability p = K /N , so that each neuron receives on average input from K pre-synaptic units. To

make this setup tractable, all the nonzero connections are usually chosen to have the same value.

Notice that in this case, to be in the balanced regime one would need to consider at least two
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Chapter 1. Introduction

Figure 1.3 – Dynamical
regimes of a random net-
work. A: Eigenvalue spec-

trum for g < gc (left), where

the dashed line indicates the

imaginary axis. On the right,

the evolution of a subset

of rates over time, for the

same value of g . B: Same

as A, but for g > gc . In

this regime, the fluctuations

are self-sustained and rather

slow.

interacting populations, one inhibitory and one excitatory (Brunel (2000)). If K is large, one can

approximate the effect of this connectivity by a fully-connected Gaussian connectivity, the mean

and variance of which can be matched to have the same statistics as for the sparse connectivity

(Kadmon and Sompolinsky (2015)). For small K , one can simplify the system by assuming that

each neuron receives exactly K inputs, which again allows to use DMFT tools (Mastrogiuseppe

and Ostojic (2017)).

In the chaotic state, the network exhibits rich dynamics with multiple timescales. One straight-

forward way to quantify the effective timescale of the network is to compute (or measure) the

decay time of the autocorrelation, which gives an indication of how long a typical xi variable

remains correlated with itself. As it is typical of critical systems, the correlation time diverges as

g → 1+. In contrast to the slowing down happening below the criticality (g → 1−), in this case

the slow dynamics is self-sustained and therefore does not end. A more sophisticated approach

to quantify the timescale of the network consists in computing the duration of a memory trace

induced by an external stimulus, based on optimal readout theory (Toyoizumi and Abbott (2011);

Schücker et al. (2016b)). This approach leads to the conclusion that the network has a longer

memory above the criticality than below, which suggests an interesting functional role of the

chaotic state (Toyoizumi and Abbott (2011)).

The rate model considered in this introduction is highly simplified. Yet, how network dynamics

are modified when considering different rate models has not been explored. In chapter 3 and

4 we address exactly this question, for the case of rate models with adaptation and for general

linear rate models.
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1.4. Chaotic dynamics in random rate networks

1.4.2 Training chaotic networks

Thanks to their rich dynamics, chaotic networks have been proposed to constitute an ideal

substrate for learning. The problem of modifying the recurrent weights according to a desired

network dynamics is indeed notoriously hard to solve. The back-propagation-through-time

algorithm (Rumelhart et al. (1986)), suffers from instabilities due to the problem of vanishing

and exploding gradients (Hochreiter and Schmidhuber (1997)). In machine learning this issue is

addressed by using long-short term memory networks (Hochreiter and Schmidhuber (1997)), that

do not however have an obvious counterpart in the brain. Moreover, it is unclear if it is possible to

implement the back-propagation algorithm with local learning rules (Marblestone et al. (2016)).

The idea of reservoir computing (Maass et al. (2002); Jaeger and Haas (2004)) is to exploit

the dynamical richness of a randomly connected recurrent neural network to linearly read out

interesting temporal patterns. By “linear read out” we mean that the network output z depends

only on a linear combination of the outputs of the units, i.e. z(t ) =∑N
i=1 wRO

i φ(xi (t )). The main

advantage of this approach is that only the readout weights wRO
i are modified, which makes the

learning process more stable and amenable to be performed using local learning rules.

To increase the robustness of the learned trajectories, one can introduce feedback from the

output to the network (Sussillo and Abbott (2009)). These feedback connections also modifies

the dynamics of the network, since they constitute a rank-one perturbation of the connectivity

matrix. The dynamics of random networks with low-rank perturbations has been recently studied

using mean-field techniques (Mastrogiuseppe and Ostojic (2018)), which allowed to construct

networks able to solve interesting tasks while maintaining the typical variability of chaotic

networks. Finally, recently proposed strategies to learn the full connectivity of the recurrent

network (Gilra and Gerstner (2017); DePasquale et al. (2018)) represent a promising approach

toward a biologically plausible learning algorithm for complex tasks.
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1.5 Thesis contribution

This thesis summarizes the research I performed during my Ph.D. at EPFL, from 2013 to 2018,

in the laboratory of Prof. Wulfram Gerstner. The main goal of my work was to understand to

which extend the presence of a build-in structure impacts the capability of a recurrent neural

network to exhibit slow timescales. “Structure” is intended in a broad sense: it can refer either

to a non-random network connectivity, or to additional properties of the neuron model under

consideration. This questions are motivated by the necessity of producing (or being sensitive to)

slow dynamics during most behavioral tasks that involve a sequence of actions.

In chapter 2, we investigate the generation of periodic orbits by recurrent networks of binary

neurons which evolve synchronously, in discrete time and in a purely deterministic fashion. Our

main result is a constructive proof which allows to design weight matrices in such a way that

the corresponding network evolves along a maximally-long orbit. In other words, a network

of N units visits all possible 2N states before visiting one state twice, so that the length of the

orbit scales exponentially with the number of units. This result is obtained by considering highly

structured sequences of patterns, and has the downside of requiring an exponential fine-tuning of

the weights. An interesting feature of the resulting orbit is that it naturally exhibits a hierarchy of

timescales, which can be advantageous in producing both fast and slow sequences.

In chapter 3, we shift our attention to the interaction between the properties of single neurons

and the recurrent network dynamics. In particular, our goal was to understand how slow intrinsic

mechanisms, such as rate adaptation, influence the dynamics of recurrent networks. We show that

adaptation stabilizes the dynamics of a random network, by increasing the critical connectivity

strength at which the transition to chaos occurs. The network with adaptation also exhibits a new

chaotic phase, that we call “resonant chaos”, in which the statistics of the dynamics are dominated

by a specific resonance frequency. Strikingly, this resonance frequency does not depend on the

connectivity strength and can be predicted purely based on single neuron properties. The recurrent

connections interact with the adaptation mechanism by increasing the coherence of the oscillatory

behavior typical of the single neuron. On the other hand, this can decrease the correlation time by

increasing the amount of correlation at short time lags.

In chapter 4, we generalize the theoretical approach introduced in chapter 3 to networks of

multi-dimensional rate units. Multi-dimensional rate models are of theoretical and practical

interest because they can be used both to better capture the transient behavior of a population

of spiking neurons and to include additional mechanisms such as adaptation or refractoriness.

We find that a transition to chaos occurs consistently across different models, at values of the

connectivity strength that depend on the model parameters. Consistently with the findings of the

previous chapter, the properties of the single neuron model, and in particular its linear response

function, are predictive of the qualitative features of the recurrent network dynamics in the chaotic

phase.

In the two final chapters, we divert from the study of network dynamics to consider possible roles
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of adaptation in learning slow and complex sequential tasks. Both chapters present preliminary

results, that were obtained in parallel to the study of the dynamics, and that require further

investigation. In chapter 5, we probe the network with adaptation described in chapter 3 in learning

tasks requiring slow timescales. To focus on the intrinsic benefits deriving from the introduction

of adaptation, we use a reservoir learning approach and find that adaptation has in general a

positive effect on the performance of the network, with only minor negative consequences on

the performance on fast tasks. In chapter 6, we propose a hierarchical network architecture that

allows to produce sequences that have a hierarchical structure, while representing them in a

compact way. This architecture might be suited to perform biologically plausible learning of

sequence generation and has similarities to the way humans seem to learn such tasks.

My specific contribution to the different projects is explicitly stated at the end of every chapter.

In appendix A, I list and briefly summarize additional publications to which I did not contribute

as first author.
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2 Exponentially long orbits in binary
networks

This chapter presents the paper (Muscinelli et al. (2017))

Exponentially Long Orbits in Hopfield Neural Networks. Samuel P. Muscinelli, Wulfram

Gerstner and Johanni Brea. Neural Computation 2017 29:2, 458-484

2.1 Introduction

Humans and some animals can learn complex sequential behavior, such as dancing, singing,

playing a musical instrument or writing. These complex sequential behaviors require precise

coordination of many muscles on the timescale of seconds or minutes. That the brain achieves

this coordination is remarkable, in particular, given that typical processes on a neuronal level,

like action potentials or synaptic transmission, operate on a timescale of milliseconds.

To introduce a neuronal mechanism that could underlie such computations, we give an operational

definition of sequence: a sequence is a map from a ordered set of indices to a set of sequence
elements. We can take for example the natural numbers as the ordered index set and lowercase

roman letters as the sequence elements. An example of a map is 1 �→ s, 2 �→ e, 3 �→ q, 4 �→ u, 5 �→
e, 6 �→ n, 7 �→ c, 8 �→ e. A putative neuronal mechanism uses a recurrent network of neurons to

represent the ordered set of indices and a group of readout neurons to represent the set of sequence

elements (see Figure 2.1A). Each neuronal activity pattern in the index network encodes an index

and the ordering is established by the autonomous dynamics. Neurons in the index network

are recurrently connected to each other such that when the network is initialized in a particular

state, the activity patterns evolve through a fixed sequence. The activity in readout neurons could

encode motor commands that lead to a specific coactivation of muscles. To produce complex

movements, it is sufficient to learn a map from index patterns to motor commands such that the

first motor command is activated by the first index pattern and so forth.

It has been hypothesized that songbirds use this mechanism to learn songs (Fee et al. (2004)).

For example, zebra finches produce songs that consist of motifs (sequences), each defined by a
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specific ordering of sounds (elements). The activity in premotor area RA is highly correlated with

the vocalization of single sounds and can thus be seen as encoding sequence elements. Neurons

in RA receive input from brain area HVC. Most of the neurons in HVC that project to RA are

active only once during a motif and the time of activity is locked relative to the onset of the motif

itself (Hahnloser et al. (2002)). This observation leads to the hypothesis that neurons in HVC

form a recurrent neural network that produces a chain-like activity pattern, where one group of

neurons excites the next group of neurons and so forth (see Figure 2.1B). This can be seen as

implementing the index network, where an index is associated to the activity of a particular group

of neurons. In this way, each neuron is active only once during a sequence.

The main limitation of reading out from a chain-like activity is the maximal length of the sequence

that can be generated in the recurrent network. Indeed, with each neuron in the recurrent network

being active only once during a sequence, the length of learnable sequences is severely limited.

The maximal length scales linearly with the number of neurons. If each recurrently connected

neuron would be allowed to spike more than once, one would expect that the recurrent network

could generate much longer sequences. Here we focus on intrinsically generated sequential

activity that allows to overcome the linear scaling limit.

Models of recurrent neural networks come in different flavors. We can distinguish between

discrete and continuous temporal dynamics, between deterministic and stochastic updates and

between binary (spiking) and real-valued (rate-based) signal transmission. Each flavor comes

with its own ways to overcome the linear scaling limit.

In systems with an infinite state space, which is typically the case for models with continuous

temporal dynamics, a better scaling behavior is possible by exploiting the chaotic regime. Under

specific conditions, transients in random networks of coupled oscillators (Zumdieck et al. (2004))

have been shown to scale exponentially with the number of units. A similar phenomenon can

also be observed in spiking networks (Zillmer et al. (2009)). Rate-based networks were shown to

be useful to implement the index network (Sussillo and Abbott (2009); Laje and Buonomano

(2013)). In this case each index corresponds to a certain configuration in the state space and the

order is determined by the intrinsic dynamics of the network.

The linear scaling limit can also be overcome in rate-based networks without relying on chaotic

trajectories. One remarkable example is the coding strategy of grid cells, where the combination

of cells with different (real-valued) periods leads to a representation capability that is exponential

in the number of units (Fiete et al. (2008); Sreenivasan and Fiete (2011); Mathis et al. (2012)).

Although grid cells code for space, a translation of the same mechanism to the temporal domain

could be possible (Gorchetchnikov and Grossberg (2007); Eichenbaum (2014)).

Here we consider discrete dynamics with binary signal transmission, which does not allow to

make use of the chaotic regime, since the state space is finite. More specifically, we study

Hopfield neural networks with synchronous update and asymmetric weights. The dynamics of

these networks converges usually to a limit cycle with a short period or to a fixed point. Indeed,
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sequence generation in a Hopfield network can be related to linear separability in perceptron

learning (Gardner and Derrida (1988); Brea et al. (2013)). This implies that the expectation of

having an admissible sequence made of random patterns goes to zero when its length is larger

than 2N , where N is the number of units. Therefore, using random patterns does not lead to any

significant advantage with respect to the activity chain approach.

However, there are examples of very long sequences that can be generated with such networks.

Distinct subnetworks could for example produce activity chains of different lengths. A network of

10 units produces a periodic orbit of length T = 2 ·3 ·5 = 30 steps, if it is divided into subnetworks

of 2, 3 and 5 units with each subnetwork generating an activity chain of corresponding length.

Generally, combinations of chains of co-prime length yield a very fast growth of the sequence

length. This idea is related to the already mentioned coding strategy of grid cells (see e.g. Fiete

et al. (2008)).

The occurrence of long periodic orbits in Hopfield networks raises the question: what are the

longest sequences that such a network can generate? Here we prove that for each network size, it

is possible to find weights such that the dynamics generates an orbit of maximal length. Moreover,

our proof provides an algorithm to construct the weight matrix. In contrast to the network with

chains of co-prime lengths, this network produces orbits of length T = 2N and it cannot be split

into distinct subnetworks. Finally, we show that this networks is surprisingly robust to dynamical

noise, and that small perturbations of the optimal weights lead to networks that are likely to

produce nonmaximal but long orbits.

2.2 Results

We consider a recurrent neural network of N binary neurons, whose state at time t is specified by

the single neuron activities

ξi (t ) ∈ {1,−1}, i ∈ {1, . . . , N } . (2.1)

Such a network has 2N possible states, corresponding to all possible N -tuples made of 1 and −1.

Geometrically, the network states correspond to the 2N vertices of an N -dimensional hyper-cube.

The set of all possible network states is called state space.

Time is treated as discrete and the network dynamics is synchronous, i.e. all neurons update their

state at every time step. The update rule is

ξi (t ) = sign

(
N∑

j=1
wi jξ j (t −1)

)
t ∈N, (2.2)

where sign(·) is the sign operator with the convention that sign(0) = 1. Every neuron updates its

state based on the status of the full network at the previous time step. The influence of neuron

j on neuron i is weighted by wi j ∈R . Since the system is deterministic and there are only 2N
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different network states, the dynamics in Eq.(2.2) can only lead to a fixed point or to a periodic

orbit. We define the length T of a periodic orbit as its smallest period. The maximal length of a

periodic orbit is equal to 2N .

A specific N -dimensional sequence of length T

X =

⎛
⎜⎜⎝

x1(1) . . . x1(T )
...

...

xN (1) . . . xN (T )

⎞
⎟⎟⎠ , (2.3)

where xi (t ) ∈ {−1,+1}, is a periodic orbit of the system if we can find weights wi j such that the

dynamics in Eq.(2.2) leads to that sequence, for a certain set of initial conditions, i.e.

∃ t0 : ξi (t0 +kT + t ) = xi (t ) ∀k ∈N . (2.4)

Here and in the remainder we consider i ∈ {1, . . . , N } and t ∈ {1, . . . ,T }, unless differently stated.

The main result of this paper is the proof of the existence of a maximal length orbit for arbitrary
N . First, we present a necessary condition for a sequence to be an orbit of maximal length. Then,

we present an iterative method to construct a maximal length orbit, for which we can find the

weights explicitly. In the main text we only give the intuition of the mechanism, while the formal

proof is given in the appendix.

Maximal length orbits need reflection symmetry

In this section, we prove a necessary condition that sequences have to satisfy in order to be

maximal-length orbits for the dynamics in Eq.(2.2). We notice that if the dynamics in Eq.(2.2)

produces a sequence X , then

xi (t )
N∑

j=1
wi j x j (t −1) > 0 , (2.5)

since Eq.(2.2) implies that xi (t ) and
∑N

j=1 wi j x j (t−1) have the same sign. We use in Eq.(2.5) and

in the following the convention that xi (0) = xi (T ), ∀i ∈ {1, . . . , N }. The converse is also true, i.e. if

a sequence satisfies Eq.(2.5) then the dynamics in Eq.(2.2) admits it as an orbit. We will refer to

Eq.(2.5) as the condition of linear separability, in analogy with the geometrical concept (Elizondo

(2006); Hertz et al. (1991)). The formulation in Eq.(2.5) allows us to prove the following lemma.

Lemma 1. If there exists a set of weights such that a N -dimensional sequence of length T = 2N ,
with the property that xi (t ) �= xi (t ′) if t �= t ′, satisfies Eq.(2.5) for t ∈ {1, . . . ,2N } and i ∈ {1, . . . , N },
then

xi (t ) =−xi
(
t +2N−1) , t ∈ {1, . . . ,2N−1} , (2.6)

which means that the second half of the sequence should be the sign-inverted copy of the first
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half.

Proof. The sequence covers the whole state space, therefore it exists a τ for which xi (t +τ−1) =
−xi (t −1) for all i ∈ {1, . . . , N }. Since the sequence is linearly separable,

0 < xi (t +τ)
N∑

j=1
wi j x j (t +τ−1) = xi (t +τ)

N∑
j=1

wi j ·
(−x j (t −1)

)
. (2.7)

The comparison with the linear separability condition, Eq.(2.5), at time t implies

xi (t +τ) =−xi (t ) , (2.8)

i.e. also the state at time t +τ is the reflection of the state at time t . The argument can be iterated,

implying that x (t +τ+1) =−xi (t +1) and so on, until the whole state space is covered. Iterating

the argument above τ times we get

xi (t +2τ) =−x(t +τ) = xi (t ) , (2.9)

therefore τ should be equal to the half of the length of the sequence.

Sequences that satisfy the hypothesis of lemma 1 will be referred to as maximal-length orbits.

Lemma 1 illustrates a necessary condition that a maximal-length sequence needs to satisfy in

order to be linearly separable, that is, implementable in a recurrent network. However, the

condition is not sufficient and one could construct maximal-length sequences that have the

reflection symmetry but are not linearly separable.

Existence of maximal length period orbit

In this section we illustrate a recursive procedure that allows us to construct linearly separable

sequences of maximal length. The procedure is inspired by lemma 1. Suppose we have a

sequence of maximal length for a network of n units. We denote this sequence by Xn . To

increase its dimensionality, we add a unit to the network. This new unit takes a constant value,

so that we obtain a (n +1)-dimensional sequence that explores half of the (n +1)-dimensional

state space. Lemma 1 tells us that the second half should be the reflection of the first half in

order to allow linear separability. The reflection step concludes the construction of an (n +1)-

dimensional sequence Xn+1 of length 2n+1 starting from Xn . Algorithm 1 summarizes the

sequence construction algorithm.

In the appendix we prove that the sequences devised according to Algorithm 1 are linearly

separable and that the weights wi j for an implementation in a recurrent neural network can be

constructed recursively. Here we provide the intuition of the proof and a simple algorithm for the

construction of the weights.
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Figure 2.1 – Network architectures and maximal-length sequences. A Schematic representa-

tion of the index network connected to the sequence network. B Schematic representation of the

hypothetical mechanism of song generation in the Zebra finch. Neurons in HVC are connected to

form a chain and are only active once during a song. Neurons in RA read out their activity and can

activate more than once. C Maximal length sequence for N = 4, constructed according to Eq.(1).

Units are arranged from top to bottom according to their indices. A black rectangle indicates that

the unit is active at that time step. D Maximal length sequence for N = 5, constructed according

to Algorithm 1. Highlighted in red is the state at the critical time step t = 2N−1.
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Algorithm 1 Construction of a maximal length sequence.

1: for n ∈ {1, . . . , N } do
2: for t ∈ {1, . . . ,2n−1} do
3: xn(t ) = 1
4: end for
5: for t ∈ {2n−1 +1, . . . ,2n} do
6: for i ∈ {1, . . . ,n} do
7: xi (t ) =−xi (t −2n−1)
8: end for
9: end for

10: end for

The proof is done by induction, i.e. assuming that we have a linearly separable sequence Xn−1

for the (n −1)-dimensional case, we look for the existence of one in the n-dimensional case

(Xn). We notice that the dynamics in Eq.(2.2) is symmetric under a simultaneous sign change

of both xi (t −1) and xi (t ), since this would correspond to a sign change of both sides of the

equation. Given that Xn is constructed according to Algorithm 1, i.e. the second half is the

reflection of the first, we only have to show that the first half of the sequence, i.e. from t = 1 to

t = 2N−1, is linearly separable. Notice that this first half of Xn is different from Xn−1, since it is

its n-dimensional extension. We restrict to the case in which we do not modify the weights wi j ,

for i , j < n. We introduce new weights to and from the added unit, wi n , wni , i ≤ n. The proof

consists in showing that the new weights can be chosen in a way that the n-dimensional sequence

is linearly separable.

As we can see in Figure 2.1C, the n-th unit stays constant for the whole first half of the sequence.

It flips its sign at t = 2n−1 and stays then constant for the second half. Due to the special role of

the switching point, we will refer to it as the critical time point. The activity of the first n −1

units evolves as in the (n −1)-dimensional case except for the critical time point. Indeed, while

in the (n −1)-dimensional case all the n −1 units go from the state at t = 2n−1 to the all-plus

state (Figure 2.1C), in the n-dimensional case the first n −1 units should go to the all-minus

state (Figure 2.1D). Since we do not change the weights between these units, this new transition

should be caused by the interaction with the added unit.

These requirements can be translated into conditions on the new weights. We start by considering

the input received by the n-th unit. A positive recurrent weight wnn ensures constant sign if it

can overcome potentially negative input from the other units. However, since we want the n-th

unit to flip sign at the critical time point, we need to have the input from the first n −1 units

maximally negative at the critical time point. To obtain this, we set the weight from unit i to the

new unit n equal to its activity xi at time t = 2n−1.

wni =−xi (2n−1), i ∈ {1, . . . ,n −1}, (2.10)
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which yields

n−1∑
j=1

wn j x j (2n−1) =−
n−1∑
j=1

x j (2n−1)x j (2n−1) =−(n −1) . (2.11)

This choice ensures that at any time point different from the critical one the input from the first

n −1 units is

n−1∑
j=1

wn j x j (t ) ≥
n−1∑
j=1

j �= j�

wn j x j (2n−1)−wn j�x j�(2n−1) =−(n −3), t ∈ {1, . . . ,2n−1} , (2.12)

since it exists a t� for which xi (t�) = xi (2n−1) for all i �= j�, i ∈ {1, . . . ,n −1}. Therefore, by

choosing

wnn = n −1− 1

2
, (2.13)

we have a recurrent excitation which is always larger than the negative input from the first n −1

units except at the critical time point. The reason behind the choice of wnn = n −1− 1
2 and not,

say, wnn = n −2 is due to the presence of a stricter bound, as explained in the appendix and as

can be seen in the next section. However, this stricter bound is necessary only if we want to be

able to extend the system by another dimension, i.e. going to n +1 dimensions. If this is not the

case, a larger range of weights gives rise to valid solutions.

We now consider the input received by each of the first n −1 units. The weights from the n-th

unit to all the other ones should be negative to cause the transition to the all-minus state at the

critical time point

wi n < 0, i ∈ {1, . . . ,n −1} . (2.14)

The input from neuron n to neuron i should be bigger in magnitude than the one unit i receives

from the other n −1 units at the critical point

|wi n | >
n−1∑
j=1

wi j x j (2n−1), i ∈ {1, . . . ,n −1} , (2.15)

but this should be the only time point in which the n-th unit influences the others. This can be

obtained if we set

wi n =−
(

n−1∑
j=1

wi j x j (2n−1)+ 1

2n−1

)
, i ∈ {1, . . . ,n −1} . (2.16)

Intuitively, this corresponds to adding a “precision” bit to the lower bound of |wi n |. This choice is

rigorously motived in the appendix, where we also provide exact bounds on the new weights. The

recursive procedure for the weight construction is summarized in Algorithm 2, and an example
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of a weight matrix built according to it is shown in Figure 2.2A.

Algorithm 2 Construction of a maximal length orbit weight matrix.

1: for n ∈ {1, . . . , N } do
2: wnn = n − 3

2
3: if n > 1 then
4: for i ∈ {1, . . . ,n −1} do
5: wni =−xi (2n−1)

6: wi n =−
(

n−1∑
j=1

wi j x j (2n−1)+ 1

2n−1

)

7: end for
8: end if
9: end for

Exact bounds on the weights

Algorithm 2 is a special case within the more general conditions that the weights must satisfy.

In the appendix, we derive the exact bounds that the new weight elements have to satisfy at

each recursive step. Here we only report these bounds. In the following equations, xi (t ) are the

elements of the maximal length orbit constructed according to Algorithm 1.

• Elements of the added row:

wni =−xi (2n−1)|wni |, i ∈ {1, . . . ,n −1} , (2.17)

i.e. while their signs are constrained, their magnitudes are arbitrary.

• Diagonal element:

n−1∑
j=1

|wn j |− min
j∈{1,...,n−1}

|wn j | < wnn <
n−1∑
j=1

|wn j | . (2.18)

• Column elements: wi n =−|wi n | and

|wi n | >
n−1∑
j=1

wi j x j (2n−1)

|wi n | < 1

2

{
min

t∈T +
i (2,2n−1)

[n−1∑
j=1

wi j x j (t −1)

]
+

n−1∑
j=1

wi j x j (2n−1)

}
,

i ∈ {1, . . . ,n −1} , (2.19)

where T +
i (2,2n−1) is the set of all time points t from t = 2 to t = 2n−1 for which xi (t ) = 1.

Eq.(2.19) represents the “tightest” bound to be satisfied. As we can see in Figure 2.2B, both the

upper and lower bound on the new column elements go exponentially to zero with n, as well as
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Figure 2.2 – Weight matrix. A Realization of the weight matrix according to Algorithm 2 for

N = 10. Due to the exponential decrease of the super-diagonal weights, the color map is not

able to capture its fine structure. B Exact bounds on the new column elements depending on the

postsynaptic index. Due to the logarithmic scale both the bounds and the distance between them

go to zero exponentially.

the distance between them. This means that new column elements need to be exponentially fine

tuned.

Comparison to co-prime chains

As mentioned in the introduction, it is straightforward to find weights such that a network of

N units produces a chain-like activity pattern, where ξi (t ) = 1 if t mod N = i −1 and ξi (t ) =−1

otherwise (e.g. wi j = 1 for j mod N = i −1 and wi j = 0 otherwise). If K such networks with

N1, . . . , NK units are combined into one network with N =Σ(K ) =∑K
k=1 Nk units, and if N1, . . . , Nk

are co-prime, i.e. their greatest common divisor is 1, then the combined network will show a

periodic orbit of length T =Π(K ) =∏K
k=1 Nk . Figure 2.3A shows an example with N1 = 2 and

N2 = 3. Even though the sequence length grows asymptotically like Π(K ) ∼ e(1+o(1))K logK (Sloane

and Conway (2011)) and thus much faster than the number of units Σ(K ) ∼ 1
2 K 2 logK (Bach and

Shallit (1996)), the orbit length of co-prime chains is considerably below the maximal sequence

length, i.e. Π(K ) � 2Σ(K ) (see Fig. 2.3B).

In contrast to the network with chains of co-prime lengths, the maximal length orbit is produced

by a network that cannot be split into distinct subnetworks; the weight matrix in figure 2.2A does

not show block structure but reveals all-to-all connectivity of the network.
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Figure 2.4 – Effect of dynamical noise and weight noise. A Top: Jump size distribution as a

function of the dynamical noise level. Small jump sizes dominate (note the logarithmic grayscale).

There is a slight asymmetry towards positive jumps, as revealed by the mean jump size (orange

dots). Bottom: Jump distribution for γd = 1.0 B Distribution of longest orbits for perturbed

weight matrices. For every N , the longest orbit was determined for 100 different weight matrices

obtained according to Eq.(2.21) with γw (N ) = 0.5
N . We notice that at least in this range of N , the

orbit lengths lie approximately between the orbit lengths of co-prime chains and the maximal

lengths.

Robustness to noise

Given the tightness of the bounds on the weight matrix, one may wonder whether the maximal

length orbit is robust to perturbations. We considered two types of noise: Dynamical noise, i.e.

perturbations of the total input onto each unit, and weight noise, i.e. perturbations of the weight

matrix.

Dynamical noise

In the presence of dynamical noise, the update rule becomes

ξi (t ) = sign

(
N∑

j=1
wi jξ j (t −1)+γdεi (t )

)
t ∈N, (2.20)

where εi (t ) ∼N (0,1) and γd is a parameter controlling the dynamical noise intensity.

The maximal length orbit covers the whole state space, therefore the orbit cannot be attractive.

Indeed, for any “mistake” in the update, the network state jumps to a different point of the orbit.

We define the size of a jump as the distance measured along the noiseless orbit and we estimate

the distribution of jump sizes for different network sizes and noise intensities γd . The result for

the case N = 7 can be seen in Figure 2.4A. The probability of having a jump of a certain size

decreases rapidly with the size itself and increases with γd . This result is due to the fact that the

average distance from threshold of the input onto a unit increases approximately linearly with the
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unit index (not shown), and to the fact that large jumps require a large-index unit to flip sign. The

distributions are slightly asymmetric towards positive jump sizes, as can be seen by looking at

their means (orange dots). Nonetheless, since the probability of mistakes increases with N and

due to the asymmetry in the jump size distribution, errors accumulate more for larger N , causing

an effective shortening of the orbit for high levels of noise.

Weight noise

In the presence of weight noise, the weights wi j obtained with algorithm 2 are perturbed according

to

wnoi s y
i j = wi j +γw (N )εi j , (2.21)

where εi j ∼ N (0,1) and γw (N ) is a parameter regulating the weight noise intensity that can

depend on N . The fact that the wi j span increasing orders of magnitude for increasing N ,

suggests that this type of noise could be detrimental for the length of the orbit for large N . For

this reason, we decided to characterize how the period of the orbits scales with N in the presence

of weight noise, using three different functional forms of γw (N ). For all the forms of γw (N ) and

for each N = 2, . . . ,17, we generated 100 independent weight matrices according to Eq.(2.21),

and measured the longest orbit that is produced by each matrix. In the analysis of the effect

of the weight noise, we removed the dynamical noise to assess the effects independently. If

γw (N ) ∼O
(
2−N
)
, we found (not shown), that the orbit length still scales exponentially with N . If

γw (N ) ∼O
( 1

N

)
, the distribution of orbit length seems to slowly saturate, as shown in Figure 2.4B.

However, it is interesting to notice that the distribution, for this range of Ns and noise levels, lies

almost entirely between the maximal lengths and the length of co-prime chains constructed with

the same number of units. This is noteworthy because it shows the existence of other weight

matrices that produce very long orbits. Finally, if the noise scales as O (1), we found the presence

of a critical N (γw ), above which the distribution of orbit lengths becomes dominated by very

short orbits.

A substrate to read out slow sequences

We are interested in evaluating how the orbit we devised can be used for the readout of sequences.

In this section we will refer to the recurrent network with the weight matrix constructed according

to algorithm 2 as the reservoir network. We consider two types of readout units: Binary units and

real-valued units. Binary readout units 1 ≤ i ≤ M are driven by the network activity according to

yi (t ) = sign

(
N∑

j=1
vi jξ j (t −1)+bi

)
, (2.22)
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Figure 2.5 – Examples of readout unit activities. A Example of a real-valued readout unit in

which the slow component of the oscillations is clearly visible. The reservoir network has N = 7
units (T = 27 = 128) and γd = 0.05. The addition of noise to the network dynamics does not

disrupt the slow component, adding only small shifts, with a tendency for forward jumps, as also

observed in Figure 2.4A. B Example of a binary readout unit set up to be a pattern detector. Its

period, 128 time steps in the noiseless case, is perturbed when noise is added to the dynamics

of the reservoir network. However, for small levels of noise, the distribution of periods remain

centered around a value close to the noiseless case.

vi j are readout weights and bi is a bias parameter, i ∈ {1, . . . , M } and j ∈ {1, . . . , N }. Similarly,

real-valued readout units evolve according to

yi (t ) =
N∑

j=1
vi jξ j (t −1)+bi . (2.23)

Using these simple linear units, it is not possible to read out arbitrary sequences. This can be seen

for example in the case of binary readout units. Suppose we want to generate a desired output

sequence so that at each time point we fix an arbitrary target

yi (t ) =±1 for t ∈ {1, . . . ,2N } . (2.24)

Finding the readout weights v i = (vi 1, . . . , vi N ) for one binary readout unit is equivalent to finding

a hyperplane that separates two sets defined on the vertices of an N -dimensional hypercube. The

two sets are determined based on the desired activity yi (t ), for t ∈ {1, . . . ,2N }. One set corresponds

to the points in which yi (t ) =+1 and the other to the points in which yi (t ) =−1. Finding such a

hyperplane is not possible for all arbitrary pairs of sets, therefore we cannot read out an arbitrary

output sequence of length 2N (Hertz et al. (1991)).

However, the orbit constructed according to Algorithm 1 is well suited to read out sequences

with slow timescales. Indeed, if we measure the average number of time steps between two

switches across the whole sequence for each unit (mean inter-switch interval), we see that it is

exponentially increasing with the index (not shown). We can therefore say that higher index units
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have longer effective timescales, because they change their state with an average interval much

longer than the intrinsic timescale, which is equal to one time step. It is therefore possible to read

out sequences that evolve on a slow timescale. A trivial example is a readout unit that copies

the activity of one of the slow units. Combining the activity of several “slow” units, one could

generate nontrivial sequences. Since the readout is not the main focus of this paper, we only

provide two examples of how this can be done.

If a real-valued variable is read out from our maximal-length orbit, it will produce some form

of oscillations on possibly multiple timescales. Figure 2.5A shows an example, generated with

random readout weights, in which the slow timescales are well visible. As expected, if we add

dynamical noise to the reservoir network, the slow timescales are maintained more than the fast

ones. Noise has indeed the effect of producing small shifts either backwards or forward, but it

will very rarely cause a jump to a very distant point.

A second possible application could be the readout of a “pattern detector”, i.e. a binary readout

unit that takes the value +1 only when the network is in a specific pattern. Since the reservoir

network is in a specific pattern only once per cycle, the unit will be regularly active at intervals of

2N time steps, in the noiseless case. For this reason, this type of readout unit could also be seen as

a delay-counter. In order to set up this kind of readout, one could choose v1 j = x̄ j , where x̄ j are

the components of the pattern that we want to detect and b1 =−N +1. As before, we can study

what happens in the presence of noise in the reservoir dynamics. In Figure 2.5B, we show the

distribution of the activation periods of the readout unit, for N = 7. We see that for small amounts

of noise, the performance of this type of readout unit degrades gracefully, with an asymmetric

diffusion caused by the positive bias of jump sizes that was observed in Figure 2.4A.

2.3 Discussion

We have shown that a simple recurrent binary neural network with deterministic synchronous

update dynamics can exhibit periodic orbits of maximal length T = 2N . To prove this result we

explicitly built a weight matrix that produces such an orbit. Although in principle it would have

been possible to perform a search of long orbits or transients using random weights, the limit

of learnability in the perceptron (Hertz et al. (1991); Gardner and Derrida (1988)) suggests that

the expectation of finding a long orbit or transient would have been very low. However, the

improvement on the length of the orbit comes at the cost of fine tuning the weights: the bounds in

Eq.(2.19) become progressively tighter and the weights need to span multiple orders of magnitude.

This requirement is rather unlikely to be exactly met by biological neural networks. But the

simulations with weight noise showed that very long orbits are also possible with less fine-tuning.

The bounds in Eq.(2.19) were found in a constructive proof that relies, in the inductive step (N to

N +1), on appending a row and a column to the N ×N -weight matrix while keeping the rest of

the weight matrix fixed. It is possible that using a different procedure one would find a larger

region of the weight space whose elements produce the desired orbit. However, the limit of

learnability in the perceptron (Hertz et al. (1991); Gardner and Derrida (1988)) suggests that fine
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tuning would be necessary anyway.

In a paper appeared after the publication of this work presented in this chapter, Hwang et al.

(2018) studied the distribution of limit cycle for binary networks with the same dynamics as

the one considered in this chapter, but in the presence of random connectivity. More precisely,

they studied the number of periodic orbits of a certain length for variable symmetry degree of

the connectivity matrix. Interestingly, they found that, while for almost-symmetric connectivity

matrices the dynamics is dominated by short cycles, for larger degrees of asymmetry the number

of longer limit cycles is large enough that the average cycle length diverges with N .

Other maximal length orbits

The sequence presented above is not the unique maximal length orbit. Trivially, if we have one
maximal length orbit, we can find other ones by relabeling unit indices, provided that one also

permutes rows and columns of the weight matrix accordingly. Another allowed operation is to

flip the sign of one unit along the entire orbit. Indeed, it is easy to show that changing the signs

of all the weights in the row and column containing the flipped index, except for the diagonal

element, one can produce the modified orbit.

On the other hand, lemma 1 provides a tool to exclude linear separability of other maximal length

sequences. Two examples are binary count and Gray code (Gray (1953)), which do not have

reflection symmetry and are therefore not linearly separable.

Noise robustness and other approaches

In the results section we have shown that, in the presence of dynamical noise, the network state is

unlikely to jump to an exponentially distant state on the orbit, but rather to the vicinity of the

“correct” state. On the other hand, already small perturbations of the weights can significantly

reduce the length of the longest orbit produced by the system, unless the noise level is also scaled

down exponentially with N . This behavior is in contrast to what happens with co-prime chains

that are robust to weight noise, since no fine-tuning of the weights is needed. However, dynamical

noise is detrimental for co-prime chains. First, if individual chains are unstable, the activity in

one subnetwork may vanish (all units inactive) or saturate at a maximal level (all units active).

Second, even if we enforce only one unit per subnetwork to be active at each time step, such

that jumps relative to the noiseless orbit can be measured as described in the paragraph after

Eq.(2.20), the distribution of jumps is not peaked around small values (not shown). This is not

surprising, since the subnetworks are uncoupled. For similar reasons, temporal versions of grid

cell coding with different periods (Fiete et al. (2008); Sreenivasan and Fiete (2011); Mathis et al.

(2012)) are likely to suffer from a high sensitivity to dynamical noise.

Models with continuous state space that rely on chaos to produce long transients, are by definition

sensitive to noise. It has been shown that the time interval in which the activity of a noisy network
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is reliable scales only linearly with the number of neurons (Ganguli et al. (2008)). Therefore,

reading out from a chaotic or nearly-chaotic network also presents severe limitations in terms of

noise robustness.

Although there is no obvious mapping between a binary network and a biological system,

Hopfield networks have been shown to be useful conceptual tools. For example, the Hopfield

model (Hopfield (1982)) had a strong conceptual influence on many associative memory models

(Amit et al. (1985); Amit and Fusi (1994); Brunel (2000)). Moreover, a Hopfield network can

be approximately mapped to a biological substrate, e.g. a multistable neural population (Zenke

et al. (2015)). Seen from this perspective, the orbit discussed above could provide a method to

produce long timescale sequences in a system that has only fast timescales, without exploiting

any intrinsic slow time scale. Interestingly, this feature of the orbit would be largely robust

to dynamical noise, because as we have already mentioned, the “slower” units are also more

resistant to dynamical perturbations.

2.4 Methods: Proof of the theorem

For convenience, we rewrite here the theorem of the results section.

Theorem For all N ∈ N there are weights wi j , i ∈ {1, . . . , N } and j ∈ {1, . . . , N } such that the

dynamics in Eq.(2.2) admits a maximal length sequence X � as orbit, i.e.

∃ t0 : ξi (t0 +k ·2N + t ) = xi (t ) ∀k ∈N . (2.25)

The sequence covers the whole state space, i.e. it has the property xi (t ) �= xi (t + τ), ∀t ∈
{1, . . . ,2N }, ∀i ∈ {1, . . . , N }, ∀τ ∈ {1,2, . . . ,2N −1}.

Proof. To prove the theorem, we need to show the existence of at least one sequence that covers

the whole state space and that is linearly separable. Our approach is to explicitly construct one
particular maximal-length sequence and to show that it is linearly separable. The theorem does

not contain any restriction on the structure of the weights, therefore we are free to constrain them

in any way as long that we show their existence.

We proceed by induction, building recursively both the sequence X �, according to Algorithm

1, and the weight matrix wi j . For X � to be a periodic orbit of the dynamics in Eq.(2.2), the

weights have to satisfy linear separability constraints. We choose to perform the inductive step

by extending the weight matrix, i.e. adding one column and one row without changing the other

matrix elements. We stress that this does not restrict the statement of the theorem since it only

requires the existence of one set of weights, regardless of how this is constructed.
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Our inductive hypothesis contains the linear separability of the sequence for the (N−1)-dimensional

case and an additional constraint on the weights that is necessary to be able to construct the

weights by extension. This procedure not only shows the existence of a linearly separable

sequence of maximal length but also provides a construction method for both X � and wi j .

Inductive hypothesis and base case

The inductive hypothesis for a given N ∈N contains the linear separability constraints

xi (t ) ·
N∑

j=1
wi j x j (t −1) > 0, i ∈ {1, . . . , N }, t ∈ {1, . . . ,2N } . (2.26)

Additionally, in order to prove the linear separability of X � constructing wi j recursively, we

assume that wi j satisfies

N∑
j=1

wi j x j (2N ) < min
t∈T +

i (2,2N )

[ N∑
j=1

wi j x j (t −1)

]
, i ∈ {1, . . . , N } , (2.27)

where T +
i (2,2N ) is the set of all time points from t = 2 to t = 2N for which xi (t ) =+1.

We now prove the base case of the linear separability. For N = 1 The maximal length sequence is

(1,−1). The sequence is linearly separable since for w11 =−|w11| we have

x1(t = 2) w11 x1(t = 1) =−1 · (−|w11|) ·1 > 0 (2.28)

x1(t = 1) w11 x1(t = 2) = 1 · (−|w11|) · (−1) > 0 . (2.29)

The base case of the property in Eq.(2.27) is given by N = 2, since for N = 1 the min(·) operator

would be evaluated in an empty set. For N = 2, Eq.(2.27) is satisfied by choosing

w11 < 0 (2.30)

w22 > 0 . (2.31)

We notice that the first inequality is consistent with the one derived previously.

The inductive step for linear separability requires bounds
on the weights

We now assume that both Eq.(2.26) and Eq.(2.27) are true for N −1 and we prove that they also

hold true for N .

We start with the linear separability condition. We split the sum in Eq.(2.26) into the contributions
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that were already present in the case N −1 and into the new one

xi (t )
N−1∑
j=1

wi j x j (t −1)+xi (t )wi N xN (t −1) > 0, i ∈ {1, . . . , N }, t ∈ {1, . . . ,2N }. (2.32)

Then we divide the time range into four distinct sets

t = 1 ⇒ xN (t ) = 1, xN (t −1) =−1

t ∈ {1, . . . ,2N−1} ⇒ xN (t ) = 1, xN (t −1) = 1

t = 2N−1 +1 ⇒ xN (t ) =−1, xN (t −1) = 1

t ∈ {2N−1, . . . ,2N } ⇒ xN (t ) =−1, xN (t −1) =−1

and for each of these sets we consider separately the case i = N and i ∈ {1, . . . , N −1}. In the

remainder of the proof the range of index i is between 1 and N −1. We arrive at a system of eight

inequalities:

N−1∑
j=1

wN j x j (t −1)+wN N > 0, t ∈ {1, . . . ,2N−1}

−
N−1∑
j=1

wN j x j (t −1)+wN N > 0, t ∈ {2N−1 +1, . . . ,2N }

N−1∑
j=1

wN j x j (2N )−wN N > 0

−
N−1∑
j=1

wN j x j (2N−1)−wN N > 0

xi (1)
N−1∑
j=1

wi j x j (2N )−xi (1)wi N > 0

xi (2N−1 +1)
N−1∑
j=1

wi j x j (2N−1)+xi (2N−1 +1)wi N > 0

xi (t )
N−1∑
j=1

wi j x j (t −1)+xi (t )wi N > 0, t ∈ {1, . . . ,2N−1}

xi (t )
N−1∑
j=1

wi j x j (t −1)−xi (t )wi N > 0, t ∈ {2N−1 +1, . . . ,2N } . (2.33)

Using the symmetry of X � (line 7 in Algorithm 1), these equations can be reduced to four by
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performing the substitution xi (t ) →−xi (t −2N−1):

N−1∑
j=1

wN j x j (t −1)+wN N > 0, t ∈ {1, . . . ,2N−1}

−
N−1∑
j=1

wN j x j (2N−1)−wN N > 0

−xi (1)
N−1∑
j=1

wi j x j (2N−1)−xi (1)wi N > 0

xi (t )
N−1∑
j=1

wi j x j (t −1)+xi (t )wi N > 0, t ∈ {1, . . . ,2N−1} . (2.34)

In the remainder we consider t ∈ {1, . . . ,2N−1} unless explicitly stated. Intuitively, the first two

inequalities represent the requirements on the influence of the first N −1 units on the N -th one

and on the influence the N -th unit has on itself, while the last two inequalities represent the

requirements on the influence of the N -th unit on the others.

From the first two inequalities in Eq.(2.34) we have, for the new diagonal element:

wN N >−
N−1∑
j=1

wN j x j (t −1)

wN N <−
N−1∑
j=1

wN j x j (2N−1) ⇒ (2.35)

⇒−
N−1∑
j=1

wN j x j (t −1) < wN N <−
N−1∑
j=1

wN j x j (2N−1) . (2.36)

We now show that it is possible to construct wi j in such a way that the last inequality is satisfied.

We take wN j =−x j (2N−1)|wN j | with |wN j | �= 0, ∀ j ∈ {1, . . . , N −1} and we find

N−1∑
j=1

|wN j |x j (2N−1)x j (t −1) < wN N <
N−1∑
j=1

|wN j | . (2.37)

The consistency condition
∑N−1

j=1 |wN j |x j (2N−1)x j (t −1) <∑N−1
j=1 |wN j | is always satisfied since

to have an equality we would need that ∃t ∈ {1, . . . ,2N−1} such that

x j (2N−1)x j (t −1) = 1, j ∈ {1, . . . , N −1} , (2.38)

but this is not possible due to the structure of X �. The case in which the lower bound in Eq.(2.37)

is the closest to the upper one is when only one unit is flipped with respect to the state x j (2N−1),

for which we obtain

N−1∑
j=1

|wN j |−2min
j

|wN j | < wN N <
N−1∑
j=1

|wN j | . (2.39)
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Eq.(2.39) gives upper and lower bounds on wN N . We notice that w11 is not constrained by

Eq.(2.39) but only by w11 < 0.

We now perform a similar analysis on the last two inequalities in Eq.(2.34).

xi (1)wi N <−xi (1)
N−1∑
j=1

wi j x j (2N−1)

xi (t )wi N >−xi (t )
N−1∑
j=1

wi j x j (t −1) . (2.40)

Since the right hand side of the first equation is negative due to the inductive hypothesis and since

xi (1) = 1 due to the way the sequence is devised, we need

wi N =−|wi N |

|wi N | >
N−1∑
j=1

wi j x j (2N−1) > 0 (2.41)

xi (t )|wi N | < xi (t )
N−1∑
j=1

wi j x j (t −1) . (2.42)

The first inequality gives us a lower bound to the value of |wi N |, while we can derive an upper

bound from the second one.

For all i , we can divide the time interval into the time point in which xi (t ) = 1 from those in

which xi (t ) =−1. If xi (t ) =−1 the inequality is satisfied since the left hand side is negative while

the right hand side is positive due to the inductive hypothesis, Eq.(2.26). If xi (t ) = 1 we have

|wi N | <
N−1∑
j=1

wi j x j (t −1), t ∈ {2, . . . ,2N−1}, where xi (t ) = 1 . (2.43)

Therefore the upper bound is

|wi N | < min
t∈T +

i (2,2N−1)

[N−1∑
j=1

wi j x j (t −1)

]
. (2.44)

For the wi N to exist, we need the lower bound Eq.(2.41) and the upper bound Eq.(2.44) to be

consistent, i.e.

N−1∑
j=1

wi j x j (2N−1) < min
t∈T +

i (2,2N−1)

[N−1∑
j=1

wi j x j (t −1)

]
, (2.45)

which is ensured by the weight constrains that are part of the inductive hypothesis, Eq.(2.27).
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The inductive step on the weight constraints requires tighter bounds on the weights

We now prove that Eq.(2.27) holds true given the inductive hypothesis.

We write the left hand side of Eq.(2.27) as

N∑
j=1

wi j x j (2N ) =
N−1∑
j=1

wi j x j (2N )+wi N xN (2N ) . (2.46)

As before, we treat the case i = N and i ∈ {1, . . . , N −1} separately.

For i = N we have to ensure that

N−1∑
j=1

wN j x j (2N )+wN N xN (2N ) < min
t∈T +

N (2,2N )

[N−1∑
j=1

wN j x j (t −1)+wN N xN (t −1)

]
. (2.47)

Using the structure of wi j obtained previously and the properties of X �, we can rewrite this

inequality as

N−1∑
j=1

|wN j |−wN N < min
t∈{2,...,2N−1}

[
−

N−1∑
j=1

|wN j |x j (2N−1)x j (t −1)

]
+wN N

⇒ wN N > 1

2

{ N∑
j=1

|wN j |− min
t∈{2,...,2N−1}

[
−

N−1∑
j=1

|wN j |x j (2N−1)x j (t −1)

]}

⇒ wN N > 1

2

{N−1∑
j=1

|wN j |+ max
t∈{2,...,2N−1}

[N−1∑
j=1

|wN j |x j (2N−1)x j (t −1)

]}
. (2.48)

Following the same reasoning used in the previous section for the lower bound on the diagonal

elements (after Eq.(2.37)), we rewrite the last bound as

wN N >
N−1∑
j=1

|wN j |−min
j

|wN j | . (2.49)

This expression gives a stricter lower bound for the diagonal elements of the weight matrix. The

bounds then read

N−1∑
j=1

|wN j |−min
j

|wN j | < wN N <
N−1∑
j=1

|wN j | . (2.50)

We now consider the case i ∈ {1, . . . , N − 1}. We can rewrite the left hand side of

Eq.(2.46) as

N−1∑
j=1

wi j x j (2N )+wi N xN (2N ) =
N−1∑
j=1

wi j x j (2N )+|wi N |, . (2.51)
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Then we rewrite the right hand side of Eq.(2.27) as:

min
t∈T +

i (2,2N )

[ N∑
j=1

wi j x j (t −1)

]

= min

{
min

t∈T +
i (2,2N−1+1)

[ N∑
j=1

wi j x j (t −1)

]
,

min
t∈T +

i (2N−1+2,2N )

[ N∑
j=1

wi j x j (t −1)

]}

= min

{
min

t∈T +
i (2,2N−1+1)

[N−1∑
j=1

wi j x j (t −1)−|wi N |
]

,

min
t∈T +

i (2N−1+2,2N )

[N−1∑
j=1

wi j x j (t −1)+|wi N |
]}

. (2.52)

First, we suppose that the second term is the minimum. Therefore in order to prove Eq.(2.27) we

need to show that the following inequality holds:

N−1∑
j=1

wi j x j (2N )+|wi N | < min
t∈T +

i (2N−1+2,2N )

[N−1∑
j=1

wi j x j (t −1)

]
+|wi N |

⇒−
N−1∑
j=1

wi j x j (2N−1) < min
t∈T +

i (2N−1+2,2N )

[N−1∑
j=1

wi j x j (t −1)

]
. (2.53)

The terms inside the minimum operator on the right hand side are all positive since we are

considering only terms that lead to xi (t ) = 1 and because of the inductive hypothesis on linear

separability, as can be seen by performing the substitution t ′ = t −2N−1. For the same inductive

hypothesis the left hand side is negative. Therefore this inequality is always satisfied and it does

not bring any additional requirements on the weights.

We now consider the case in which the first term in Eq.(2.52) is the minimum. We require that

the following inequality holds:

N−1∑
j=1

wi j x j (2N )+|wi N | < min
t∈T +

i (2,2N−1)

[N−1∑
j=1

wi j x j (t −1)

]
−|wi N |

|wi N | < 1

2

{
min

t∈T +
i (2,2N−1)

[N−1∑
j=1

wi j x j (t −1)

]
+

N−1∑
j=1

wi j x j (2N−1)

}
. (2.54)

Note that in the time range of the minimum operator we could remove the time point t = 2N−1+1

since we consider only xi (t ) = 1 and xi (2N−1 +1) =−1 ∀i ∈ {1, . . . , N −1}. We also exploited

again the symmetry of X � (line 7 of Algorithm 1), i.e. x j (2N ) =−x j (2N−1) for j < N .

Eq.(2.54) gives us a new stricter upper bound on |wi N |. Finally we need to show that this bound
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is consistent with the lower one, i.e.

N−1∑
j=1

wi j x j (2N−1) < 1

2

{
min

t∈T +
i (2,2N−1)

[N−1∑
j=1

wi j x j (t −1)
]
+

N−1∑
j=1

wi j x j (2N−1)

}
, (2.55)

which can be rewritten as

N−1∑
j=1

wi j x j (2N−1) < min
t∈T +

i (2,2N−1)

[N−1∑
j=1

wi j x j (t −1)

]
, (2.56)

which is ensured by the inductive hypothesis on Eq.(2.27)
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3 Dynamics of recurrent rate networks
with adaptation

This chapter presents research carried out in collaboration with Tilo Schwalger and Wulfram

Gerstner.

3.1 Introduction

History-dependent phenomena are ubiquitous in neuronal systems and are supported by multiple

biophysical mechanisms that operate on different timescales. Among those, spike-frequency

adaptation (SFA) has received great attention. Being present in neurons at all stages of sensory

processing, SFA is believed to play a crucial role for efficient coding of external stimuli (Benda

and Herz (2003)). Moreover, SFA over multiple timescales represents an efficient solution for

information transmission of sensory signals whose statistics change dynamically (Fairhall et al.

(2001); Lundstrom et al. (2008); Pozzorini et al. (2013)). Neurons exhibiting SFA are also

widespread in highly recurrent networks, such as association cortex or motor cortex. Yet, the

effect of SFA on the dynamics of recurrent networks is not well understood.

In the context of single neuron models, SFA shapes the f −I curve (Ermentrout (1998); Richardson

et al. (2003)) as well as the higher-order statistics of the output spike train (Schwalger and Lindner

(2013)). When spiking neuron models are connected together in a recurrent network, the statistics

of the stationary activity need to be computed self-consistently and this is known to be a hard

analytical problem in the presence of SFA. One approach to tackle this problem is to use the

Fokker-Planck formalism, which combined with linear response theory and with a slow-adaptation

approximation, allows to obtain a good description of the statistics of the recurrent dynamics

(Richardson (2009)). Adaptation does not only shape the statistics of the stationary state, but

could also explain the emergence of population burst (Gigante et al. (2007)). Alternatively, using

quasi-renewal theory (Naud and Gerstner (2012)), it is possible to obtain a mean-field description

of a homogeneous population of spiking neurons, allowing to predict the role of adaptation in

shaping the statistics of input noise (Deger (2014)). Moreover, this approach was extended to

systematically include the effect of finite-size effects and their interaction with SFA (Schwalger
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et al. (2017)).

The interest for adaptation in recurrent circuits is additionally motivated by neural network models

that exploit adaptation to solve particular tasks. For example, adaptation has been proposed to

play a role in sequential memory retrieval (Deco and Rolls (2005)), perceptual bistability (Shpiro

et al. (2009)) and decision making (Theodoni et al. (2011)). Thanks to its slower dynamics,

adaptation is also appealing for tasks that require slow sequential dynamics, for which one could

exploit adaptation-induced slow activity propagation (Setareh et al. (2018)). Recently, SFA

was shown to have beneficial consequences both for reservoir computing approaches (Nicola

and Clopath (2017)) and for spiking neuron-based machine learning architectures (Bellec et al.

(2018)). The possible role of adaptation in performing tasks that require slow timescales will be

considered in more detail in chapter 5.

In this chapter, we use dynamic mean-field theory (DMFT) (Sompolinsky et al. (1988)) to describe

the dynamics of randomly connected networks of rate units with adaptation. While being limited

to rate models, DMFT is one of the few approaches that allows the self-consistent computation

of the statistics of a recurrent network beyond the fixed-point regime, and it has been used to

show the emergence of chaotic dynamics in large rate networks. The formalism that we use in

this chapter is described in detail in chapter 4, where we study the general problem of DMFT

for a network of D-dimensional rate units. Here we apply the results of chapter 4 to the specific

case of rate units with adaptation, a two-dimensional instantiation of the D-dimensional model

discussed in chapter 4. Using this theoretical framework, we are able to show how adaptation

stabilizes the dynamics and how it shapes the statistics of the chaotic regime.

3.2 Results

3.2.1 Microscopic model and dynamical regimes

We are interested in studying the dynamics of a randomly connected recurrent network of rate

units that undergo a simplified form of rate adaptation. The rate φ(xi ) should in fact be interpreted

as the deviation of the actual rate ri from a reference rate r0, i.e. φ(xi ) = ri − r0, where r0 could

be the long-term average of the rate. Thus, φ(xi ) can take positive and negative value, but it must

be bounded by φ(x0) ≥−r0. We describe the system by the following set of differential equations

τx ẋi (t ) = −xi (t )+
N∑

j=1
Ji jφ(x j (t ))−ai (t )+ Ii (t ) (3.1)

τa ȧi (t ) = −ai (t )+βxi (t ) , (3.2)

where Ji j ∼ N
(
0, g 2/N

)
, with i , j = 1, . . . , N are elements of a random matrix, sampled i.i.d.

from a Gaussian distribution with mean zero and variance g 2/N ; β is a positive parameter that

controls the strength of adaptation; Ii (t ) is an external stimulus whose statistics will be assumed
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to be stationary in what follows; φ(·) is the gain function of the rate model. In principle it could

be left arbitrary, but for the simulation and for the mean-field theory results we use a piecewise

linear gain function, given by

φPL(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−1 for x <−1

x for −1 < x < 1

1 for x > 1

. (3.3)

To simplify our notation, we multiply Eq. (3.2) by γ ··= τx /τa and we rescale time by τx , so that

the new time variable is unit-less

ẋi (t ) = −xi (t )+
N∑

j=1
Ji jφ(x j (t ))−ai (t )+ Ii (t )

ȧi (t ) = −γai (t )+γβxi (t ) . (3.4)

We begin by studying the different dynamical regimes of the network. The point (xi , ai ) = 0, ∀i =
1, . . . , N is a fixed point of the system if φ(0) = 0. In what follows, we will consider this condition

satisfied and for simplicity we will also assume that φ′(0) = 1. Both conditions are fulfilled for

the piecewise linear function of Eq. (3.3). We study the stability of this fixed point, assuming a

state vector (xi , . . . , xN , a1, . . . , aN ). We need to compute the eigenvalues of the Jacobian of the

system at the point (xi , ai ) = 0, i.e.

B ··=J |(x ,a)=(0,0) =
(
−IN + J −IN

γβIN −γIN

)
, (3.5)

where each block is a N -by-N matrix, J is the connectivity matrix whose elements are Ji j and IN

is the N -dimensional identity matrix. The eigenvalues λB of B can be expressed as a function of

the eigenvalues λJ of J by solving the general formula in Eq. (4.4) (see also section 3.4.2)

λB(λJ) = 1

2

(
−1−γ+λJ ±

√
(λJ −1+γ)2 −4γβ

)
. (3.6)

In the large-N limit, the eigenvalues λJ are known to be uniformly distributed in a disk in the

complex plane, centered at zero and with radius g (Girko (1985)). The critical value of g for

which the stability of the fixed point is lost is given by

gc (γ,β) =
⎧⎨
⎩
√

1−γ(γ+2β)+2
√

γ2β(2γ+2β+2) if β>βH (γ)

1+β if β≤βH (γ)
, (3.7)

where βH (γ) =−1−γ+
√

2γ2 +2γ+1. Obtaining this result from the eigenvalue formula (Eq.

(3.6)) is non obvious. However, one can more easily find the critical value of g from the linear

stability analysis of the mean-field theory (see section 3.4.4), and then use Eq. (3.6) to verify
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that the expression for gc given by Eq. (3.7) gives the critical eigenvalue (in the N →∞ limit).

Examples of the eigenvalue spectrum of B are shown in the insets of Fig. 3.1. If g < gc (γ,β), the

network exhibit a transient dynamics before it settles at the zero fixed-point (Fig. 3.1A,B). From

Eq. 3.7 we notice that gc (γ,β) ≥ 1, since both γ and β are positive. In the limit γ→ 0 or β→ 0

we retrieve the same dynamical regime as for the network without adaptation, for which gc = 1

(Sompolinsky et al. (1988)). If the contribution of adaptation to the input of x increases, due to

either an increase in γ or in β, the value of gc also increases (see Fig. 3.2C,D), as expected from

the role of adaptation as a source of negative feedback. The introduction of adaptation therefore

stabilizes the dynamics of the network.

The bifurcation that characterizes the loss of stability depends on two parameters, viz. the ratio

of timescales γ and the strength of the adaptation β. To further characterize the bifurcation

at g = gc (γ,β), we can study the imaginary part of the critical eigenvalue, i.e. the one with

real part equal to zero at g = gc (γ,β). It can be shown that, if the parameter β that determines

the strength of the adaptation has a value β ≤ βH (γ), then the imaginary part of the critical

eigenvalue is equal to zero and we have a saddle-node bifurcation at g = gc (γ,β). On the other

hand, if β>βH (γ), then the critical eigenvalue is effectively a pair of complex-conjugate, purely

imaginary eigenvalues, a signature of a Hopf bifurcation. Therefore, we introduce the curve

β=βH (γ), which separates the positive quadrant of the γ−β plane in two regions: in one region

we have, at the critical value gc (γ,β), a saddle-node bifurcation, whereas in the other one we

have a Hopf bifurcation (Fig. 3.2A). In the Hopf-bifurcation region, the imaginary part of the

critical eigenvalues can be computed analytically and predicts the frequency fm of low-amplitude

oscillations close to the bifurcation, if these are stable. In the finite-N regime, we find numerically

that low-amplitude oscillations are stable in the vicinity of the bifurcation. When N →∞ however,

we find that chaotic dynamics onset right above the bifurcation (see 3.2.3). We find

Im(λc
B) =

√
−γ2 +

√
βγ2(β+2γ+2) =·· 2π fm . (3.8)

The frequency is monotonic in β but non-monotonic in γ (Fig. 3.2B), indicating that a slower

adaptation variable (smaller γ) does not always correspond to slower oscillations. Finally, if

g > gc (γ,β), the network exhibit self-sustained, irregular fluctuations (Fig. 3.1C,D) that will be

characterized in the next sections.

3.2.2 Mean-field description in the frequency domain

The dynamics of the 2N -dimensional dynamical system in Eqs. (3.1,3.2) for large N is too

high-dimensional to be studied at the microscopic level. In contrast, using dynamic mean-field

theory (Sompolinsky et al. (1988)), we can find properties of the network dynamics that are

independent of the specific connectivity realization. The mean-field approximation, valid in the

large-N limit of the randomly connected network (see Fig. 3.3D), can be obtained by replacing

the recurrent input in Eq. (3.1) by a Gaussian process η, as described in detail in chapter 4 (see

also Schücker et al. (2016a); Crisanti and Sompolinsky (2018)). The mean and the autocorrelation
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Figure 3.1 – Dynamical regimes of the network with adaptation. A: Evolution of the rate

φ(xi ) in time. A randomly chosen subset of units is shown, out of N = 1000 units. Network

parameters are γ = 0.2, β = 0.5 and g = 0.96gc (γ,β). For these parameters the network is in

the Hopf-bifurcation regime. Inset: Eigenvalue spectrum of the Jacobian at the fixed point,

in the complex plane. The dashed line indicates Re(λ) = 0. B: Same as A, but in the saddle-

node bifurcation regime, with γ= 1, β= 0.1 and g = 0.96gc (γ,β) C: Same as A, but above the

instability, with γ= 0.2, β= 0.5 and g = 1.3gc (γ,β). D: Same as B, but above the instability, with

γ= 1, β= 0.1 and g = 1.3gc (γ,β).
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Figure 3.2 – Stability of the fixed point and local properties. A: Regions of the γ−β plane in

which for increasing g we encounter a Hopf (blue region) or a saddle-node (red region) bifurcation.

The two regions are separated by the curve βH (γ) (dashed). Cross and filled circle: parameters

used in Fig. 3.1. B: Imaginary part of the eigenvalue with zero real part at the instability (g = gc ),

in the γ−β plane. The inset shows Im(λ(gc )) plotted against γ for β= 0.5 (dashed gray line). C:
Critical value of the parameter g plotted against β, for γ= 1. The color-code indicates the type

of bifurcation encountered when g = gc . D: Critical value gc of the parameter g plotted against

γ, for different values of β. Larger values of β or γ stabilize the dynamics with respect to the

network without adaptation, which is retrieved by setting γ= 0 or β= 0.
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of η should be matched to the statistics of the input that a neuron receives from the network. The

mean-field equations read

ẋ(t ) =−x(t )−a(t )+η(t )+ I (t ) (3.9)

ȧ(t ) =−γa(t )+γβx(t ) , (3.10)

with 〈η(t )〉 = 0 and 〈η(t +τ)η(t )〉 = g 2〈φ(x(t +τ))φ(x(t ))〉, i.e. the second-order statistics of η

and those of x depend on each other and therefore need to be matched self-consistently. We can

express the self-consistency condition in the Fourier domain (see section 3.4.3)

Sx ( f ) = |χ̃0( f )|2 (g 2Sφ(x)( f )+SI ( f )
)

, (3.11)

where δ( f − f ′)Sx ( f ) ··= 〈x̃∗( f )x̃( f ′)〉 is the power spectral density of x, and analogously for

Sφ(x)( f ). The factor |χ̃0( f )|2 coincides with the linear response function of a single unit, defined

as χ̃0( f ) = x̃( f )/Ĩ ( f ). Notice that since for a single unit the relationship between I and x is linear,

there is no need to consider small I in the definition of χ̃0( f ). The factor |χ̃0( f )|2 in Eq. (3.11)

can be shown to be equal to (see section 3.4.3)

|χ̃0( f )|2 = γ2 + (2π)2 f 2

(2π)4 f 4 + (1+γ2 −2βγ)(2π)2 f 2 +γ2(1+β)2 . (3.12)

In order to solve Eq. (3.11), we need to compute Sφ(x)( f ) as a functional of Sx ( f ), which is

known to be a hard problem and not possible in general. However, as discussed in section 4.6.2,

the effect of the nonlinearity φ can be evaluated numerically or semi-analytically. Moreover,

the transformation can be computed analytically in an integral form, which allows for a much

faster computation of Sφ(x)( f ) (see section 4.6.2). In the next section we show how the qualitative

features of the dynamics of the network in the fluctuating regime can be predicted by the properties

of the single unit linear response function |χ̃0( f )|2.

3.2.3 Adaptation drives the network in a new chaotic regime

In the mean-field description, the dynamical state of the network is entirely described by the

second-order statistics of the Gaussian process x, i.e. the power spectral density Sx ( f ) in the

Fourier domain or the autocorrelation Cx (τ) in time domain. Using the iterative method described

in chapter 4, we find that if g < gc (γ,β), then Sx ( f ) = 0, ∀ f , i.e. the mean-field variable x is

constantly equal to zero. This is consistent with the presence of a stable fixed-point at zero and it

indicates that, in the large-N limit, the fixed-point solution is the only possible one.

On the other hand, if g > gc (γ,β), the mean-field network is characterized by a nonzero, continu-

ous power spectral density. This is an indication that, at the microscopic level, the network is in a

chaotic state. However, we stress that a more rigorous proof of chaos would require the computa-

tion of the maximum Lyapunov exponent of the network. For the network without adaptation

(Sompolinsky et al. (1988)) the chaotic state is always of the same type, i.e. characterized by a
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Figure 3.3 – Dynamical regimes in the mean-field description A: Power spectral density of

the mean-field network (solid line) compared with microscopic simulations (light blue, dashed)

for γ = 0.25, β = 1 and g = 2gc (γ,β). The dashed, dark blue line the power spectral density

of a network of independent neurons, driven by white noise with variance g 2 and with the

same adaptation parameters. Inset: Normalized mean-field autocorrelation Cx (τ) for the same

parameters, plotted against the time lag in units of τx . B: Same as A, but with γ= 1, β= 0.1 and

g = 2gc (γ,β). The theory deviates from simulations in the tail of the power spectral density, due

to numerical errors in the iterative method.

C: Maximum-power frequency fp of the recurrent network plotted against γ, for different

β. Circles indicate the fp obtained for the mean-field network, crosses the one measured for

microscopic simulations and the dashed lines indicate the prediction based on the single neuron

response function f0. Notice that for γ= 0 all curves are superimposed at fp = 0. D: Distributions

P (x) of the activation x from microscopic simulation (N = 2000, solid lines) and theoretical

prediction (dashed lines). The adaptation parameter were γ= 0.25 and β= 1.
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monotonically-decaying autocorrelation or, equivalently, by a power spectral density dominated

by low frequencies. In contrast, we find that in the presence of adaptation the network can be

in two qualitatively different chaotic regimes. For very weak and/or fast adaptation, the chaotic

fluctuations are qualitatively the same as for the network without adaptation (Fig. 3.3B). We refer

to this regime as to the non-resonant regime. On the other hand, for strong and/or slow adaptation,

the mean-field network settles in a new regime, that we refer to as resonant regime, characterized

by an autocorrelation that decays to zero via damped oscillations or, equivalently, by a power

spectral density that exhibits a resonance band around a nonzero resonance frequency fp (Fig.

3.3A). The decaying autocorrelation function and the continuous power spectral density are an

indication that also this regime corresponds to microscopic chaos. This new dynamical state, that

we refer to as resonant chaos, is qualitatively different from the one of the non-resonant regime

and from the one of the non-adaptive network, and it is unique to the network with adaptation.

Strikingly, whether the network settles in the resonant or in the non-resonant regime can be

predicted purely based on the single-unit adaptation properties. More precisely, if β< βH (γ),

then the linear response function |χ̃0( f )|2 is monotonically decreasing with the frequency f (see

section 3.4.3), which is typical of a low-pass device (Fig. 3.3B). This behavior is reflected in

the power spectral density of the spontaneous activity of the recurrent network, which turns out

to be dominated by low frequencies. This corresponds to the non-resonant regime discussed

above. In contrast, if β > βH (γ), then |χ̃0( f )|2 has a maximum at a nonzero frequency f0 =
1

2π

√
−γ2 +

√
βγ2(β+2γ+2), which is typical of the response of a band-pass filter (Fig. 3.3A).

The frequency f0 matches the imaginary part of the critical eigenvalue at the Hopf bifurcation,

given in Eq. (3.8) (the reason of this match is detailed in section 3.4.4). The single neuron linear

response characteristics are qualitatively preserved in the fluctuating activity of the recurrent

network, which also exhibit a power spectral density dominated by a nonzero frequency fp .

Interestingly, the resonance frequency is not affected by the introduction of recurrent connections,

since we find that fp = f0 (Fig. 3.3C). We notice that this result is consistent with the fixed point

stability analysis, since the resonant and non-resonant regimes are matched to the regions in

which we observe Hopf or saddle-node bifurcations, respectively.

3.2.4 Recurrent connections increase the coherence of the oscillations

While the resonance frequency in the resonant regime depends solely on the single-neuron

properties, the introduction of recurrent connections does influence how coherent the resonant

behavior is, i.e. the width of the resonance band. The narrower the resonance band, the more

coherent the oscillatory behavior will be. To quantify the increase of coherence of the oscillations,

we study the total area under the normalized autocorrelation, in absolute value (Fig. 3.4A), i.e.

s =
∫∞

0

∣∣∣∣Cx (τ)

Cx (0)

∣∣∣∣dτ . (3.13)

As expected, the area s diverges when approaching the criticality, i.e. when g → gc (γ,β) (Fig.

3.4B), since the dynamics approach regular oscillations. Changes in the adaptation parameters
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affect this behavior only by shifting the values of s. Interestingly, the total area s does not depend

strongly on the time constant of adaptation, since if we increase τa (γ→ 0), s saturates around

few tens of τx independently of how slow adaptation is (Fig. 3.4C). This behavior seems to be

inherited from the single unit model, since also the network of independent neurons driven by

white noise exhibits the same saturation of the total area.

To provide a more complete picture, we also study the correlation time, defined as

tc =
∫∞

0 τ |Cx (τ)|dτ∫∞
0 |Cx (τ)|dτ

. (3.14)

While for relatively fast adaptation the introduction of recurrent connections also yields an

increase of the correlation time tc (Fig. 3.4D), for slow adaptation we observe the opposite

effect. This is due to the fact that in this regime the correlation time of the single unit driven by

white noise is dominated by the long tail of the autocorrelation. The introduction of recurrent

connections increases the oscillatory component, giving a larger “weight” to the short time lags

and therefore decreasing tc .

3.2.5 Response of the recurrent network to an external input

In this section, we go beyond the study of the spontaneous activity of the network by considering

its response to an external drive. An interesting class of external drives are oscillatory signals,

since we can study the locking properties of the network depending on the frequency and

amplitude of the signal. Similarly to Rajan et al. (2010), we provide oscillatory input to each unit

in the microscopic network, randomizing the phase

Ii (t ) = AI cos
(
2π fI t +θi

)
, (3.15)

where θi ∼ U(0,2π). The corresponding power spectral density of the input is given by SI ( f ) =
A2

I /4
(
δ( f − fI )+δ( f + fI )

)
. Thanks to the phase randomization, the network still reaches a

stationary state and the mean 〈x(t )〉 remains at zero. In Fig. 3.5A we see an example of how

the presence of the input affects the dynamics of the mean-field network, quantified by the

second-order statistics here summarized by the power spectral density. A sharp peak at the

driving frequency fI and multiples thereof is elicited by the external input, while the nearby

frequencies are suppressed (notice the log-scale in Fig 3.5A). For fI > fp , as in the example, the

relative peaks of the spectrum are slightly shifted toward larger values. The opposite happens

if fI < fp . Notice that both this shift and the suppression of spontaneous activity are nonlinear

effects due the recurrent dynamics. As an additional nonlinear effect, the network activity also

exhibits harmonics of the external input.

The formation of a sharp peak together with the suppression of other modes is an indication

that at the microscopic level the network is driven towards a limit cycle while chaotic activity is

suppressed. We quantify this effect by defining the chaos-suppression coefficient, similarly to
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Figure 3.4 – Correlation time and effect of recurrent connections. A: Example autocorrelation

and definition of relevant measures. B: Total area under the autocorrelation s of the recurrent

network as a function of g /gc , for different values of γ and fixed β= 1. As expected, s increases

when g approaches the critical value. The black line indicates s for the network without adaptation.

C: Total area under the autocorrelation s as a function of γ for different values of β and fixed

g = 1.3gc , both for the recurrent network (solid lines) and for the a single neuron driven by white

noise (dashed lines). Black lines (solid and dashed) indicate the behavior of the network without

adaptation (recurrent and independent neurons, respectively). Notice that the behavior of s for

β= 0.1 is qualitatively different from the other cases, since in this case for larger γ the network is

in the non-resonant regime. D: Correlation time tc as a function of γ, for different values of β,

for both the recurrent network (solid lines) and for a single unit driven by white noise (dashed

lines).
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Figure 3.5 – Response of the mean-field network to an oscillatory input. A: Effect of the

external input on the power spectral density Sx ( f ). In the example, γ= 0.25, β= 1, g = 2gc (γ,β),
fI = 0.12 and AI = 5 ·10−1. Simulation (solid blue) and theory (dashed blue) are superimposed.

B: Chaos-suppression coefficient (KC S , solid line), defined as in section 3.2.5, for different values

of the input frequency fI . Network parameters: γ= 0.25, β= 1, g = 2gc (γ,β) and AI = 5 ·10−1.

(Rajan et al. (2010)), as the amplitude of the power spectral density at the peak divided by the

mean power at the other frequencies, i.e.

KC S = Sx ( fI )[
Sx ( f )

]
f �= fI

, (3.16)

where the square brackets indicate the average over frequencies, excluding the input frequency

fI . We find that chaos suppression is more effective with input frequencies that are close to the

resonance frequency of the network fp (Fig. 3.5B).

3.3 Discussion

We showed that adaptation stabilizes the dynamics of a recurrent network of rate units, since

the transition from a fixed-point regime to a fluctuating regime happens at g = gc ≥ 1, i.e. for

higher coupling strength than for the network without adaptation. Above the criticality and

for slow adaptation, the dynamics settles in a state of resonant chaos that, unlike the chaotic

activity of networks of rate units without adaptation, is dominated by a nonzero resonance

frequency. Surprisingly, we observe empirically that the position of the resonance frequency

can be computed purely based on the single unit properties and it is therefore independent of

the connectivity strength g . Consistent with this result, the eigenvalue spectrum of the Jacobian

at the fixed point indicates the appearance of a Hopf bifurcation. On the other hand, recurrent

connections increase the coherence of the oscillations and therefore influence the correlation time.

Indeed, as it is typical of critical behavior, the correlation time in the chaotic phase diverges when

approaching the criticality. In the presence of adaptation, this happens because the oscillations
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get more coherent and the system approaches a limit cycle.

It is interesting to observe that, while coherence of the oscillations is increased by recurrent

connections, in the slow adaptation regime the correlation time is decreased by the introduction of

recurrent connections, due to the increased correlation at short time lags. Despite this reduction,

the correlation time increases with the adaptation timescale, and this is particularly interesting

when considering the evidences for a beneficial role of adaptation in tasks requiring memory over

long time lags (Nicola and Clopath (2017); Bellec et al. (2018)). The relation between correlation

time and performance however is much more complex and requires further investigation.

The analysis was carried out using a linear model of adaptation. In spiking neurons, SFA is

believed to have at least two sources (Pozzorini et al. (2013)): sub-threshold effects, e.g. voltage-

dependent hyperpolarizing currents (Richardson et al. (2003)) and spike-triggered effects, such

as sodium channel inactivation (Fuortes and Mantegazzini (1962); Geisler and Goldberg (1966)).

The type of adaptation we considered is therefore more closely linked to sub-threshold adaptation

in spiking neurons. Close to the criticality however, most of the units operate in the linear part of

the transfer function φ and therefore we do not expect strong deviations if considering nonlinear

adaptation.

3.4 Methods

3.4.1 Numerical methods

All numerical procedures were carried out using custom code written in Julia (Bezanson et al.

(2017)). When using the sampling-based version of the iterative method, we considered the

number of samples M = 10000. Network simulations were carried out using the fourth-order

Runge-Kutta numerical integration method, with a time step d t = 0.1τx . For Fig. 3.1 we used

N = 1000, for Fig. 3.3A,B we used N = 3000, for Fig. 3.3C we used N = 10000, for Fig. 3.3D

we used N = 2000 and for Fig. 3.5A we used N = 2000.

3.4.2 Calculation of the eigenvalue spectrum

In this section we provide the details of the derivation of the transformation from the eigenvalues

of J to the eigenvalues of B. For clarity, we rewrite here B, i.e. the Jacobian at the fixed point

B =
(
−IN + J −IN

γβIN −γIN

)
, (3.17)

where each block is a N -by-N matrix, J is the connectivity matrix whose elements are Ji j and

IN is the N -dimensional identity matrix. To find the eigenvalues of B, we need to compute the

determinant of B−λI2N , which is in the form

(
C11 C12

C21 C22

)
. For block matrices of this form,
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if C21 and C22 commute i.e. C21C22 = C22C21, the following formula for the determinant holds

(Silvester (2000))

det

(
C11 C12

C21 C22

)
= det(C11C22 −C12C21) . (3.18)

Since in B both C21 and C22 are proportional to the identity matrix IN , the commutation condition

is satisfied, so that we find from Eq. (3.18)

det

(
(−1−λB)IN + J −IN

γβIN (−γ−λB)IN

)
= det

((
(−1−λB)(−γ−λB)+γβ

)
IN + (−γ−λB)J

)
.

(3.19)

We now rewrite the last expression in the form det
(
J−λJ(λB)IN

)= 0, that gives us λJ as a function

of λB by definition. Then, we invert λJ(λB ) and get

λB(λJ) = 1

2

(
−1−γ+λJ ±

√
(λJ −1+γ)2 −4γβ

)
. (3.20)

We notice that for every eigenvalue λJ we obtain two eigenvalues λB , corresponding to the two

choices of the sign in Eq. (3.20). This is consistent with the fact that the dimensionality of B is

twice the dimensionality of J.

3.4.3 Self-consistent equation for the power spectral density and properties of
|χ̃0( f )|2

In this section, we show how we derived Eq. (3.11). First, we Fourier-transform the mean field

equations (Eq. (3.9,3.10)), to get

x̃( f ) = γ+2πi f

−(2π)2 f 2 +2πi (γ+1) f +γ(1+β)

(
η̃( f )+ Ĩ ( f )

)
(3.21)

ã( f ) = γβ

γ+2πi f
x̃( f ) . (3.22)

From this expression we can find the power spectral density of x, by multiplying Eq. (3.21) by

x̃∗ and averaging over the statistics of the input η. We obtain

Sx ( f ) = γ2 + (2π)2 f 2

(2π)4 f 4 + (1+γ2 −2βγ)(2π)2 f 2 +γ2(1+β)2

(
Sη( f )+SI ( f )

)
, (3.23)

where we can recognize the factor |χ̃0( f )|2, defined in Eq. (3.12).

We stress that |χ̃0( f )|2 is the linear response function of a single unit or, equivalently, of a network

of uncoupled neurons. To see this, it is sufficient to set η̃( f ) = 0, which gives us the case of
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uncoupled neurons. From Eq. (3.21) we get

x̃( f ) = γ+2πi f

−(2π)2 f 2 +2πi (γ+1) f +γ(1+β)
Ĩ ( f ) =·· χ̃0( f )Ĩ ( f ) . (3.24)

It is trivial to verify that the definition of χ̃0( f ) is consistent with Eq. (3.12).

To study whether the single unit is in the resonant or non-resonant regime, we study the position

of the maximum of |χ̃0( f )|2. The derivative of |χ̃0( f )|2 has five zeros, symmetric with respect to

f = 0, given by

f ∈
{

0, ± 1

2π

√
−γ2 ±

√
βγ2(β+2γ+2)

}
. (3.25)

Among these, the only three that can take real values are

{
0, ± 1

2π

√
−γ2 +

√
βγ2(β+2γ+2)

}
.

To have a non-monotonic |χ̃0( f )|2, we require that

1

2π

√
−γ2 +

√
βγ2(β+2γ+2) =·· f0 ∈R , (3.26)

which is satisfied if

γ2 <
√

βγ2(β+2γ+2) . (3.27)

By solving this inequality with respect to β, we find the condition β>βH (γ).

3.4.4 Mean-field derivation of the full linear response function at the fixed point

In this section, we show how to compute the mean-field approximation of the full linear response

function of the network at the fixed point in zero. For a similar derivation, see Kadmon and

Sompolinsky (2015). Starting by the equations of the microscopic network (Eq. (3.1,3.2)),

we find a set of differential equations for the linear response functions χx
i k (t , t ′) ··= δxi (t )

δhk (t ′) and

χax
i k (t , t ′) ··= δai (t )

δhk (t ′) , where hk (t ′) is a small perturbation given to the variable xk at time t ′, i.e.

Ik (t ) = hk (t )δ(t − t ′). We obtain

(∂t +1)χx
i k (t , t ′) =φ′(0)

N∑
j=1

Jk jχ
x
k j (t , t ′)−χax

i k (t , t ′)+δi kδ(t − t ′) (3.28)

(∂t +γ)χax
i k (t , t ′) = γβχax

i k (t , t ′) . (3.29)

Since we are at the fixed point, we consider only the time difference τ ··= t − t ′. Moreover, all

the coefficients are time independent so that we can easily Fourier-transform them and solve for
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χ̃x
i k (t , t ′)

(
2πi f +1+ γβ

2πi f +γ

)
χ̃x

i k ( f ) =
N∑

j=1
Jk j χ̃

x
k j ( f )+δi k , (3.30)

where we set φ′(0) = 1 for simplicity. The factor in parenthesis on the left-hand side is the inverse

of the single-unit linear response defined in section 3.4.3. We now multiply this last equation by

its complex conjugate to obtain

|χ̃x
i k ( f )|2 =|χ̃0( f )|2

N∑
j , j ′=1

Jk j Jk j ′ χ̃
x
k j ( f )

(
χ̃x

k j ′( f )
)∗

+δi k |χ̃0( f )|2
(

1+
N∑

j=1
Jk j χ̃

x
k j ( f )+

N∑
j=1

Jk j

(
χ̃x

k j ( f )
)∗)

.

(3.31)

Finally, we average over the quenched disorder and get

|χ̃x
i k ( f )|2 = g 2|χ̃0( f )|2|χ̃x

i k ( f )|2 +|χ̃0( f )|2 , (3.32)

from which we can solve for the mean-field linear response function

|χ̃x
i k ( f )|2 = |χ̃0( f )|2

1− g 2|χ̃0( f )|2 . (3.33)

From this equation we can conclude that in the N → ∞ limit the fixed point is stable if

g 2|χ̃0( f )|2 < 1 ∀ f . By imposing this condition for f = f0 in the resonant regime (or f = 0

in the non-resonant one), we find the result for gc given by Eq. (3.7).

3.4.5 Spectral coherence of the mean-field network in the presence of an external
input

We repeat here the definition of the spectral coherence given in section 3.2.5

Γ( f ) ··= |SxI ( f )|2
Sx ( f )SI ( f )

. (3.34)

The cross-spectrum SxI ( f ) is given by

SxI ( f ) = χ̃0( f )SI ( f ) . (3.35)

On the other hand, one can express Sx ( f ) using Eq. (3.11) as Sx = |χ̃0( f )|2 (g 2Sφ(x)( f )+SI ( f )
)
.

Using these two expressions we can write the spectral coherence as

Γ( f ) = SI ( f )

g 2Sφ(x)( f )+SI ( f )
. (3.36)
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3.4.6 Time domain approach to the mean-field theory

For completeness, in this section we write down the explicit equation for the autocorrelation

in time domain. Starting from Eq. (3.11), transforming back to time domain and defining

Δ(τ) = 〈x(τ)x(0)〉 the autocorrelation in the stationary regime, we obtain a fourth-order differential

equation

[
∂4
τ+ (2βγ−γ2 −1)∂2

τ+γ2(β+1)2]Δ(τ) = (γ2 −∂2
τ)g 2Cφφ(τ) , (3.37)

where Cφφ(τ) is the autocorrelation of the rates, that results from imposing the self-consistent

condition on the autocorrelation of η. Notice that we have to search for a self-consistent solution

of Eq.(3.37), since its right-hand side depends ultimately on x as the left hand side. To see this

self-consistency explicitly, we notice that Cφφ = fφ(Δ(τ);Δ0), where

fφ(Δ(τ);Δ0) =
∫∫

φ

(√
Δ0 − Δ2(τ)

Δ0
x + Δ(τ)�

Δ0
z

)
φ
(√

Δ0z
)

DxDz , (3.38)

where Dx and Dz are normalized Gaussian measures. We use the chain rule and Price’s theorem

(Price (1958)) to rewrite the derivative with respect to τ on the right-hand side of Eq. (3.37),

resulting in

[
∂4
τ+ (2βγ−γ2 −1)∂2

τ+γ2(β+1)2]Δ(τ) =g 2γ2 fφ(Δ(τ),Δ0)

−g 2(∂τΔ(τ))2 fφ′′(Δ(τ);Δ0)

−g 2(∂2
τΔ(τ)) fφ′(Δ(τ);Δ0) .

(3.39)

We can rewrite this fourth-order differential equation as a system of four first-order differential

equations

Δ̇(τ) =Δ1(τ) (3.40)

Δ̇1(τ) =Δ2(τ) (3.41)

Δ̇2(τ) =Δ3(τ) (3.42)

Δ̇3(τ) = (1+γ2 −2γβ)Δ2(τ)−γ2(β+1)2Δ(τ)+ g 2γ2 fφ(Δ(τ),Δ0) (3.43)

− g 2Δ2
1(τ) fφ′′(Δ(τ);Δ0)− g 2Δ2(τ) fφ′(Δ(τ);Δ0) .

Using the symmetry properties of the autocorrelation and assuming that it is a smooth function,

we have that Δ1(0) =Δ3(0) = 0. There are therefore two constants to be determined, Δ0 and Δ2(0),

the first of which also directly enters the system of differential equations.

In the case without adaptation, the resulting system of ODEs is two-dimensional, so only Δ0 needs

to be determined. Δ0 can be found by imposing the boundary conditions Δ(∞) = 0, Δ1(∞) = 0,

corresponding to a chaotic solution (Sompolinsky et al. (1988)). Since in that case the system is

conservative, these boundary conditions are then transformed in an initial condition by exploiting

energy conservation (Sompolinsky et al. (1988)). In the case with adaptation however, the
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Chapter 3. Dynamics of recurrent rate networks with adaptation

system is non-conservative. Therefore, we cannot transform equivalent boundary conditions (all

variables go to zero for τ→∞) into initial conditions. In order to do so, we would need to find

two conserved quantities of the system. Finding conserved quantities in a dynamical system

is known to be a very hard problem, and we were not able to find any conserved quantity for

our system. An alternative solution would be to use a shooting method to determine the two

initial conditions. However, since we need to determine two initial conditions, such method is

computationally very expensive.

3.5 Author contributions

SPM and TS designed the project. SPM performed the derivations, with the help of TS. Simulation

and numerical integration code was written by SPM. SPM, WG and TS wrote the manuscript.
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4 Dynamics of multi-dimensional rate
units

This chapter presents research carried out in collaboration with Wulfram Gerstner and Tilo

Schwalger.

4.1 Introduction

The brain exhibits very rich dynamics at multiple scales. Single neurons, beside integrating

their input and emitting action potentials, also undergo a variety of spike-history-dependent

effects, such as refractoriness and spike-frequency adaptation. Neurons in the cortex are usually

embedded in highly recurrent networks, whose dynamics is shaped by both the connectivity and

single neuron properties. How these two factors interact and contribute to the spontaneous and

evoked dynamics of a recurrent neural network, is poorly understood.

Groups of spiking neurons are often described using firing rate models, i.e. by discarding the

information about the exact spike-timing of single neurons. Despite being an approximation, such

models have the advantage of being easier to study analytically, so that their dynamics can often be

fully characterized. Firing rate models can also be combined to form networks, whose collective

dynamics can be understood using mean-field techniques (Sompolinsky et al. (1988)), or that

can be used to learn complex tasks (Sussillo and Abbott (2009); Mastrogiuseppe and Ostojic

(2018)). However, commonly-used rate models (or classic rate models) are one-dimensional

and as such cannot fully capture the dynamics of the mean activity of a population of spiking

neurons. For example, classic rate models fail to account for rapid synchronization of neurons in

response to a stimulus (Mainen and Sejnowski (1995); Bair and Koch (1996)), an effect that is

readily observed even in simple spiking neuron models, such as the leaky integrate-and-fire model

(Knight (1972); Konig et al. (1996); Gerstner (2000); Brette and Guignon (2003)). To capture

rapid synchronization after stimulus onset, it is necessary to consider at least two-dimensional

rate models (Mattia and Del Giudice (2002); Schaffer et al. (2013); Montbrió et al. (2015)). If

in addition we want to account for history-dependent biophysical mechanisms present at the

single neurons level such as refractoriness or spike-frequency adaptation, multiple auxiliary
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Chapter 4. Dynamics of multi-dimensional rate units

variables should be added (Naud and Gerstner (2012); Deger (2014); Schwalger et al. (2017)),

since the underlying spiking models are themselves multi-dimensional. Other examples of multi-

dimensional spiking models have been developed to account for synaptic filtering (Fourcaud and

Brunel (2002); Schwalger and Schimansky-Geier (2008)), subthreshold resonance (Richardson

et al. (2003)) or for the effect of dendritic compartments (Ostojic (2015); Doose et al. (2016)).

In this chapter we study the dynamics of recurrent networks constructed by randomly connecting

multi-dimensional rate models. We will see that a transition to chaos seems to occur consistently

across different rate models, at a critical value of the connectivity strength that depends on the

rate-model parameters. On the other hand, the characteristic of the chaotic regime are strongly

dependent on the properties of the rate model under consideration, suggesting that the chaotic

attractor in which the dynamic settles is model-dependent. This chapter also illustrates the general

theoretical framework that we used in chapter 3 to analyze the network with adaptation.

4.2 Microscopic model and fixed-point stability

We consider a network of randomly connected, multi-dimensional firing-rate units where each

unit is described by a set of D variables. We assume that the first variable defines the output rate

via a nonlinear gain function φ, that we leave arbitrary for the moment, i.e. y(t ) =φ(x1
i (t )). The

remaining D −1 variables are auxiliary variables. In isolation, each unit obeys a system of D

first-order linear differential equations

ẋα
i (t ) =

D∑
β=1

Aαβxβ

i (t ) . (4.1)

For the entire chapter, subscripts (in Latin letters) indicate the index of the unit in the network

and run from 1 to N , while superscripts (in Greek letters) indicate the index of the variable in

the rate model and run from 1 to D. The matrix A is assumed to be non-singular and to have

eigenvalues with negative real parts. We assume that the rate φ(x1
i (t )) is the only signal that unit

i uses to communicate with other units. Conversely, the signals coming from other units only

influence the variable x1
i , i.e. the rate of a unit is not directly coupled to the auxiliary variables of

other units. Unit i receives input from all the other units, via a set of random connections Ji j .

When incorporating these assumptions, the network equations read

ẋα
i (t ) =

D∑
β=1

Aαβxβ

i (t )+δα1

(
N∑

j=1
Ji jφ(x1

j (t ))+ Ii (t )

)
, Ji j ∼N

(
0, g 2/N

)
(4.2)

where δαβ is the Kronecker delta symbol and Ji j are the randomly-chosen synaptic strengths.

The external input Ii (t ) is assumed to have stationary statistics and zero mean.

Eq. (4.2) is a system of N ·D coupled nonlinear differential equations that becomes clearly

intractable for large N . However, if φ(0) = 0 the system has a fixed point in xα
i = 0, ∀i , ∀α,

whose stability can be studied thanks to the clustered structure of the system. The Jacobian at the
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4.3. Mean-field approximation

fixed point is given by

B ··=J |xα
i =0 =

⎛
⎜⎜⎜⎜⎝

A11IN +φ′(0)J A12IN . . . A1D IN

A21IN A22IN . . . A2D IN

. . . . . . . . . . . .

AD1IN AD2IN . . . ADD IN

⎞
⎟⎟⎟⎟⎠ , (4.3)

where J is the random connectivity matrix and IN is the N -dimensional identity matrix. The

matrix B is of size N D ×N D and it therefore admits N D eigenvalues. Since all the blocks of B

commute with each other, we can apply the result of Silvester (2000) to find a relation between

the eigenvalues of J, A and B

λJ =
∏D

i=1

(
λB −λi

A

)
φ′(0)

∏D−1
j=1

(
λB −λ

j
A−

) , (4.4)

where A− is the matrix obtained by removing the first column and the first row from the matrix

A. This expression is valid for all the eigenvalues of B that are not coincident with those of A−.

Eq. (4.4) is a degree-D polynomial equation in λB, so that for every value of λJ we obtain D

eigenvalues of B, as expected. From now on we will assume that, for simplicity, φ′(0) = 1.

In the N →∞ limit, the eigenvalues λJ are known to be uniformly distributed on a disk in the

complex plane, centered in zero and of radius g (Girko (1985)). If one can invert Eq. (4.4) it

becomes computationally fast to compute the eigenvalues of the Jacobian in the N →∞ limit

without having to deal with finite-size effects. Whether one can obtain an explicit inverse formula

depends on the dimensionality and on the entries of the matrix A.

Examples of the eigenvalue spectrum of the Jacobian of the network at the fixed point, obtained

by solving Eq. (4.4) with respect to λB, are shown in Fig. 4.1A,D. We show the examples of a

three-dimensional model and a four-dimensional model, whose parameters are summarized in

Table 4.1, for three different values of g each.

4.3 Mean-field approximation

In order to study the dynamics of the system beyond the fixed point regime, we use a mean-field

approach. The reason for this choice is twofold: first, the mean-field approximation allows us to

describe the system dynamics for very large N , in which a study of the full microscopic system

would be hopeless. Second, we are interested in the properties of a typical network and not

of a specific realization of the connectivity matrix. This requires an average over the disorder,

i.e. over the ensemble of matrices J. Following Sompolinsky et al. (1988), we approximate the

network input to a representative unit i with a Gaussian process η and substitute the average over

time, initial conditions and network realizations with the average over realizations of η. This

approximation is valid in the large-N limit, in which neurons become independent (Schücker

et al. (2016a); Crisanti and Sompolinsky (2018)). Notice that we are interested in the regime in
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Chapter 4. Dynamics of multi-dimensional rate units

which the number of auxiliary variables per unit D remains finite. In the mean-field description,

the activity of each individual unit in the network follows a realization of the following system

of D stochastic differential equations, to which we refer to as mean-field equations (see section

4.6.3 for more details)

ẋα
i (t ) =

D∑
β=1

Aαβxβ

i (t )+δα1 (η(t )+ I (t )
)

, (4.5)

where η(t ) is a Gaussian process with mean zero and whose autocorrelation needs to be deter-

mined self-consistently by imposing

〈η(t )η(s)〉 = g 2〈φ(x1(t ))φ(x1(s))〉 . (4.6)

Thanks to the mean-field approximations, we reduced a ND-dimensional, deterministic, nonlinear

system to a D-dimensional, stochastic, linear system. The effect of the nonlinearity however,

needs to be considered when performing the self-consistent moment matching.

One advantageous aspect of the mean-field equations is that all nonlinear effects are summarized

in the self-consistency condition (Eq. (4.6)). The mathematical structure of Eq. (4.5) enables a

straightforward Fourier transform. After inverting the matrix equation,we solve for x̃α( f ) and

find

x̃α( f ) =
[(

2πi f −A
)−1
]α1 (

η̃( f )+ Ĩ ( f )
)

, (4.7)

where
[(

2πi f −A
)−1
]α1

indicates the αth element of the first column of the matrix
(
2πi f −A

)−1
.

In analogy with the theory of linear time-invariant (LTI) systems (see for example Hespanha

(2009)), we define the linear response function of a network of uncoupled neurons (i.e. obtained

by setting η= 0) in the frequency domain as

χ̃α1
0 ( f ) =

[(
2πi f −A

)−1
]α1

. (4.8)

Since we assume a stationary input with zero mean, the mean of all variables is equal to zero. The

second-order statistics are summarized, in the frequency domain, by the power spectral density

matrix, whose elements are defined by δ( f − f ′)Sαβ
x ( f ) = 〈(x̃α)∗( f )x̃β( f ′)〉, where the average is

over the Gaussian process η. Sαβ
x ( f ) is the Fourier transform of the cross-correlation between the

variable xα and the variable xβ. The elements of the matrix of power spectral densities obeys the

following set of algebraic equations

Sαβ
x ( f ) = (χ̃α1

0 ( f )
)∗

χ̃
β1
0 ( f )

(
Sη( f )+SI ( f )

)
. (4.9)

Moreover, to the self-consistency condition reads, in frequency domain

Sη( f ) = g 2Sφ(x1)( f ) . (4.10)

68



4.4. Qualitative study of the mean-field solution

Among the set of equations in Eq.(4.9), the only difficult one equation for α=β= 1, which we

need to solve self-consistently; the other equations can be trivially solved if the solution for S11
x ( f )

is known. We rewrite Eq. (4.9) for the case of S11
x ( f ) and insert the linear response function

S11
x ( f ) = |χ̃11

0 ( f )|2 (Sη( f )+SI ( f )
)=
∣∣∣[adj(2πi f −A)

]11
∣∣∣2∏D

i=1 |2πi f −λi
A|2

(
Sη( f )+SI ( f )

)
, (4.11)

where we used the expression for the inverse of the matrix
(
2πi f −A

)−1
in terms of its adjoint

adj
((

2πi f −A
)−1
)
. We notice that in the numerator we have the squared absolute value of a

polynomial of degree D − 1, i.e. a polynomial of degree 2D − 2. On the other hand, in the

denominator we find a polynomial of degree 2D. We can see two examples of the behavior

of |χ̃11
0 ( f )|2 in Fig. 4.1B,E (solid lines). The parameters of the corresponding rate model are

summarized in Table 4.1. Notice that the linear response function can be non-monotonic and

even multi-modal, while for a one-dimensional model it is always monotonic.

In section 4.6.1, we show that |χ̃11
0 ( f )|2 allows to compute the critical value of g more easily than

Eq. (4.4). We find that gc is implicitly defined by

g 2
c max

f
|χ̃11

0 ( f )|2 = 1 . (4.12)

In the next section we show that |χ̃11
0 ( f )|2 has a crucial role in shaping the statistics of the

dynamics in the fluctuating regime.

4.4 Qualitative study of the mean-field solution

The traditional approach in the DMFT literature is to consider the time-domain version of Eq.

(4.9). This can be obtained by applying an inverse Fourier transform, which leads to a differential

equation of order 2D . However, the problem of determining the initial conditions becomes harder

for increasing D. For this reason, we remain in the frequency domain and apply an iterative

approach to solve Eq. (4.9) self-consistently (i.e. introducing Eq.(4.10)). Iterative methods

to solve self-consistent problems have already been proposed both in the context of spiking

networks (Dummer et al. (2014); Wieland (2015)) and of DMFT (Stern et al. (2014)). Here we

discuss how such a method in the frequency domain allows to qualitatively understand several

features of the network dynamics.

The difficulty in solving the self-consistent problem in the frequency domain lies in calculating

the nonlinear effect that φ has on the statistics of x. Concretely, we need to express Sφ(x1) as

a functional of S11
x ( f ). While this calculation cannot be carried out analytically for a general

nonlinearity, it is possible to compute it numerically or semi-analytically. The idea of using

an iterative method is to start with an arbitrary initial power spectral density S(0)
φ(x1)

( f ), which

could be, for example, the one of white noise. We then apply multiple iterations each consisting

of a linear step followed by a nonlinear step. At each iteration, the linear step is simply a
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multiplication by g 2|χ̃11
0 ( f )|2 and it allows us to compute (S11

x )(n+1)( f ). The nonlinear step

afterwards transforms (S11
x )(n+1)( f ) into S(n+1)

φ(x1)
( f ). Depending on the nonlinearity φ that we

consider, this step can introduce numerical errors of variable magnitude. Due to the importance

of understanding the effect of the nonlinearity on the second order statistics, the discussion on

how to numerically or semi-analytically implement the nonlinear step is treated separately in

section 4.6.2.

For a qualitative understanding of the effect of the iterations on the power spectral density, we

exploit the fact that x1 is a Gaussian process, since η was assumed to be a Gaussian process. For

Gaussian processes, the following formula holds (Stratonovich (1967))

Cφ(x1)(τ) =
∞∑

n=0

1

n!

(〈
d nφ

d(x1)n

〉)2

C n
x1 (τ) , (4.13)

where the angular brackets indicate the mean over the statistics of x1. Eq. (4.13) gives the effect

of a nonlinearity φ on a the autocorrelation of a Gaussian process x1. By truncating the series

after the first term, we get

Cφ(x1)(τ) � (〈φ′(x1)
〉)2

Cx1 (τ) . (4.14)

Fourier transforming this equation we get an approximation of the power spectral density of

φ(x1)

Sφ(x1)( f ) � s1

(∫∞

−∞
S11

x ( f ′)d f ′
)

S11
x ( f ) , (4.15)

where we rewrote
(〈
φ′(x1)

〉)2 =·· s1
(∫∞

−∞ S11
x ( f ′)d f ′) to highlight the fact that the coefficient that

multiplies S11
x ( f ) depends on the area under the power spectral density, i.e. on the variance of

x1. We stress that retaining only the first term in Eq. (4.13) is different than considering a linear

approximation of φ, since the dependence of the coefficient on the variance would not appear in

that case.

Using this approximation, we can express the power spectral density at the nth iteration of the

iterative method, as a function of the initial power spectral density S(0)
φ(x1)

( f ) from which we

started to iterate. We obtain

(S11
x )(n)( f ) =

(
n−1∏
k=1

s(k)
1

)(
g 2|χ̃11

0 ( f )|2)n S(0)
φ(x1)

( f ) , (4.16)

where s(k)
1

··= s1
(∫∞

−∞(S11
x )(n)( f ′)d f ′). If we take S(0)

φ(x1)
( f ) to be constant and we define an =(∏n−1

k=1 s(k)
1

)
, we can rewrite the above expression as

(S11
x )(n)( f ) = an

(
g 2|χ̃11

0 ( f )|2)n . (4.17)

If g > gc , there will be a range of frequencies for which g 2|χ̃11
0 ( f )|2 > 1, which implies that its
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nth power diverges when n grows. In a purely linear network, this phenomenon would lead

to a blow-up of the power spectral density, in agreement with the fact that activity in a linear

network is unbounded for g > gc . If φ is a compressive nonlinearity however, the coefficient

an will tend to zero for growing n, counterbalancing the unbounded growth of
(
g 2|χ̃11

0 ( f )|2)n .

Notice that this constraint on the coefficient an is necessary independently of the truncation

of the series in Eq. (4.13), since all the neglected terms are positive and would not provide a

different mechanism for contrasting the growth of the first term. Based on Eq. (4.17), we would

predict that all the modes for which |χ̃11
0 ( f )|2 > 1/g 2 will get amplified over multiple iterations,

while all the other modes will get suppressed. While this is a highly simplified description, the

suppression and the amplification of modes is clearly visible when comparing the dynamics of the

self-consistent solution (Fig. 4.1C,F) to the corresponding linear response function (Fig. 4.1B,E).

When truncating the series after the first order however, the mean-field network does not admit a

self-consistent solution, for which we need to retain also higher order terms. The presence of

those terms will be reflected, among others, in the interference among amplified modes.

We now consider also higher order terms of the sum, which allow the existence of a self-consistent

solution and that are responsible for the formation of harmonics. For example, the second order

term in Eq. (4.13) is given by

1

2

(〈
φ′′(x1)

〉)2 (
Cx1 (τ)

)2 F T−−→ 1

2
s2

(∫∞

−∞
S11

x ( f ′)d f ′
)(

S11
x ∗S11

x

)
( f ) (4.18)

where s2 is defined analogously to s1. In general, higher-order terms will contain convolutions of

the power spectral density with itself, which are responsible for the creation of higher harmonics.

Indeed, if a function has a bump-shaped profile, then its n-times self-convolution shifts the center

of the bump to the nth multiple of the bump center. This implies that if the power spectral density

is resonant, i.e. if it has a peak at a nonzero frequency, then to be self-consistent it should also

exhibit harmonics.

In Fig. 4.1A,B,C we consider a three-dimensional rate model that has the global maximum at

zero frequency and a local maximum at a higher frequency. For the weakest connectivity strength

(g = g1), only the modes near the global maximum are amplified (Fig. 4.1C), in agreement with

our qualitative analysis. At the other extreme, i.e. for very strong connectivity (g = g3), also

the modes near the second local maximum survive in the self-consistent solution. Finally, for

intermediate connectivity strength (g = g2), the interference among modes is strong enough to

prevent the amplification of the modes close to the local maximum, so that only those next to the

global one survive. Similar observations can be made for the four-dimensional model shown in

Fig. 4.1D,E,F.

4.5 Robustness of the iterative method

The formalism we presented is independent of the choice of the nonlinearity and the only

assumptions that we made in deriving the existence of a microscopic fixed-point in zero is that
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Chapter 4. Dynamics of multi-dimensional rate units

Figure 4.1 – Two examples of multi-dimensional rate models. A-B-C: Analysis of a three-

dimensional rate model. Eigenvalue spectra (A) corresponding to the coupling values g1 = 1.28,

g2 = 1.4 and g3 = 2. The dashed line indicates the imaginary axis. In B we plot the linear response

function of the single unit |χ̃11
0 ( f )|2 (solid line), and the instability threshold corresponding to the

three coupling values g1, g2 and g3 (dashed lines). In C we plot the solution of the mean field

theory obtained with the iterative method for the three values of g , g1 = 1.5, g2 = 2 and g3 = 3.

D-E-F: Same as A-B-C, but for a four-dimensional rate model.

72



4.5. Robustness of the iterative method

Fig. 4.1A,B,C Fig. 4.1D,E,F Fig. 4.2

⎛
⎝ −1 −1 −1

0.1 −0.1 1.7
0.1 −0.4 −0.5

⎞
⎠
⎛
⎜⎜⎜⎝

−1 −1 −1 −1
1 −0.5 −0.65 −0.6
1 0.35 −0.05 −0.57
1 0.35 0.28 −0.005

⎞
⎟⎟⎟⎠
( −1 −1

0.25 −0.25

)

Table 4.1 – Parameters of the models in the examples. Matrix A defining the rate model for

the different example in Fig. 4.1 and 4.2.

φ(0) = 0. In solving the mean-field theory for the examples presented in Fig. 4.1, we used a

piecewise-linear approximation of the hyperbolic tangent, given by

φPL(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−1 for x <−1

x for −1 ≤ x ≤ 1

1 for x > 1

. (4.19)

The self-consistent solution that we obtain does not vary qualitatively when considering similar

gain functions, such as the hyperbolic tangent or a cubic approximation of it (shown in Fig. 4.2A,

for the two-dimensional model studied in chapter 3). However, since the cubic gain function

is unbounded, the dynamics will be unstable above a certain g∗
c , which is different from gc in

general.

The evolution of the power spectral density S11
x ( f ) over iterations is shown in Fig. 4.2C, where

the formation of harmonics over iterations is clearly visible. While we have no guarantee that

the iterative method converges, empirical tests of the method indicate convergence properties

that match the one of stability of the network itself, i.e. if the network converges, so does the

iterative method. The mean-squared distance between the power spectral density at consecutive

realizations decreases approximately exponentially after an initial transients (Fig. 4.2B) and

saturates at a value dependent on the numerical error made in performing the nonlinear pass. The

iterative method is also robust over different initializations of S11
x ( f ). To follow the evolution

of S11
x ( f ) over iterations, we measure total area under it, i.e.

∫+∞
−∞ S11

x ( f )d f = Var(x1) and the

maximum height of the power spectral density max f (S11
x ( f )). Despite different initializations,

the trajectories in the subspace of these two measures converge quite rapidly to a one-dimensional

sub-manifold (Fig. 4.2D).

Discussion

We analyzed how the dynamics of a random network of multi-dimensional rate units is influenced

by the properties of the rate model itself. We used DMFT, a well-established theoretical tool,
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Figure 4.2 – Stability of the iterative method for a two-dimensional rate model. A: Power

spectral density S11
x ( f ) for three different nonlinearities, as indicated in the legend. B: Mean-

squared distance (MSD) between two consecutive iterations of S11
x ( f ). Conventions are the same

as in A. Notice that the curve corresponding to the hyperbolic tangent is saturating at a much

higher value than for the other nonlinearities, which is due to the sampling method used to

evaluate the nonlinear pass. C: Evolution of the power-spectral density over iterations, shown

for piecewise linear nonlinearity. D: Evolution of the total area under the power spectral density

Var(x) and of the maximum amplitude of Sx ( f ), over iterations. Shown for piecewise linear

nonlinearity.
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to reduce the high-dimensional, deterministic network model to a low dimensional system of

stochastic differential equations. Standard approaches to solve the mean-field equations were

not fruitful in the multi-dimensional setting. However, a qualitative study of the semi-numerical

solution lead us to conclude that the linear response function of the rate model plays a crucial role

in shaping the statistics of the recurrent dynamics. More precisely, bands of preferred frequencies

in the linear response function become narrower due to recurrent connections. Moreover, if

multiple resonance bands are present, they seem to interfere so that in the self-consistent dynamics

exhibit only one dominant frequency.

One interesting application of multi-dimensional rate models is to spike-frequency adaptation

(SFA). A phenomenological 2-dimensional rate model that include a form of SFA has been

studied in detail in chapter 3. However, SFA is known to have multiple timescales that are

power-law distributed (Lundstrom et al. (2008); Pozzorini et al. (2013)). The example models

shown in Fig. 4.1 are instantiations of this type of adaptation. Interestingly, if no coupling is

present between different adaptation variables, the linear response function exhibits only one

band of preferred frequencies. On the other hand, if there is coupling, the linear response function

can be multimodal and this can be reflected also in the recurrent dynamics (as shown in Fig. 4.1).

We carried out our analysis for the case of balanced network, i.e. in which the mean of the

input is zero. There are no conceptual obstacle in extending the analysis to include more recent

developments. For example, the case of non-balanced input was considered in (Kadmon and

Sompolinsky (2015); Mastrogiuseppe and Ostojic (2017)), in which it was shown that a transition

to chaos can be observed in many different network architectures and in some cases also for

unbounded nonlinearities. We expect this observation to hold when considering multi-dimensional

rate models. As another example, Mastrogiuseppe and Ostojic (2018) extended the formalism to

include the effect of low-rank perturbation of the random connectivity, showing that the resulting

dynamics becomes effectively low dimensional and that it allows the network to perform complex

tasks. It is an open question how the properties of the multi-dimensional rate model would shape

this effective low-dimensional dynamics.

4.6 Additional details

4.6.1 Mean-field linear stability analysis

In this section, we generalize the calculation performed in section 3.4.4 to find the linear response

function, at the fixed point, in the mean-field approximation. The steps are conceptually the

same as in section 3.4.4. However, here we consider the full matrix of linear response functions

(see below), to conclude that the only quantity that matters for the stability at the fixed point is

|χ̃11( f )|2.

Starting from the microscopic network equations (Eq. (4.2)), we derive a set of differential
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equations, that we write in matrix form

(ID∂τ−A)χi k (τ) =
N∑

j=1
Ji jΔ1χ j k (τ)+δi k IDδ(τ) , (4.20)

where Δ1 = δα1δβ1 is a matrix whose only nonzero element is [Δ1]11 = 1. χi k (τ) is a D by D

matrix, whose component are defined as χ
αβ

i k (τ) = δxα
i (τ)

δhβ

k (0)
, where hβ

k is a small perturbation given

to the variable xβ

k at time τ= 0. Notice that in deriving Eq. (4.20), we have assumed stationarity

and that φ′(0) = 1. We now Fourier transform Eq. (4.20) and get

(
2πi f ID −A

)
χ̃i k ( f ) =

N∑
j=1

Ji jΔ1χ̃ j k ( f )+δi k ID . (4.21)

Inverting the matrix
(
2πi f ID −A

)
and recognizing the linear response function of the single unit

χ̃0( f ), we obtain

χ̃i k ( f ) =
N∑

j=1
Ji j χ̃0( f )Δ1χ̃ j k ( f )+δi k χ̃0( f ) , (4.22)

where χ̃0( f ) is a D by D matrix whose elements are χ̃
αβ
0 ( f ), defined in section 4.3.

Since in the mean-field approximation the mean of the linear response function is zero, we look

for the second moments (Kadmon and Sompolinsky (2015)). We multiply every element of the

matrix equation (Eq. (4.22)) by its complex conjugate and average over the quenched disorder.

We obtain

|χ̃( f )|2 = g 2|χ̃0( f )Δ1χ̃( f )|2 +|χ̃0( f )|2 , (4.23)

where the absolute value is intended element-wise. Due to the structure of the matrix Δ1, we have

that |χ̃0( f )Δ1χ̃( f )|2 = |χ̃0( f )|2Δ1|χ̃( f )|2, as it can be verified simply by using the definition of

Δ1. Finally, we can solve for |χ̃( f )|2

|χ̃( f )|2 = (ID − g 2|χ̃0( f )|2Δ1
)−1 (|χ̃0( f )|2) . (4.24)

Since the only nonzero eigenvalue of the matrix |χ̃0( f )|2Δ1 is |χ̃11
0 ( f )|2, the stability condition

for the fixed point is given by

g 2 max
f

|χ̃11
0 ( f )|2 < 1 . (4.25)

4.6.2 Effect of nonlinearities on second order statistics

In this section, we provide some additional details on how to compute the effect of nonlinearities

on the second order statistics (autocorrelation or power spectral density) of a Gaussian process. We
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consider three cases of interest: polynomials, piecewise linear functions and arbitrary nonlinear

functions. To simplify our notation, we drop the superscript of and consider a generic Gaussian

process x1.

The effect of polynomial nonlinearities can be expressed in closed form in time domain. This

can be seen by considering again the infinite series expression (Eq. 4.13), valid for stationary

Gaussian processes x

Cφ(x)(τ) =
∞∑

n=0

(〈
d nφ

d xn

〉)2

C n
x (τ) , (4.26)

where the angular brackets indicate the average over the statistics of x. In the case in which φ is

a polynomial of degree p, only the terms in the sum up to p are nonzero. As an example, we can

compute the effect of a cubic approximation of the hyperbolic tangent, i.e. φ(x) �φ3(x) ··= x− x3

3

Cφ3(x)(τ) = (1+C 2
x (0)−2Cx (0)

)
Cx (τ)+ 2

3
C 3

x (τ) . (4.27)

As expected, the effect of the nonlinearity depends on Cx (0) i.e. on the variance of x itself. Notice

that the coefficient of the first term is compressive (i.e. smaller than one) only if Cx (0) is smaller

than one itself. This type of behavior is expected since φ3 is unbounded.

Another interesting case are piecewise linear nonlinearities. In this case, we use Price’s theorem

twice to get

∂2Cφ(x)(t )

∂(Cx (t ))2 =Cφ′′(x)(t ) . (4.28)

For a piecewise linear φ, the second derivative φ′′ is a sum of Dirac’s delta functions with variable

coefficients. More precisely, we consider

φPL(x) =Θ(x1 −x)c0x +
P−1∑
p=1

Θ(x −xp )Θ(xp+1 −x)cp xp +Θ(x −xP )cP x , (4.29)

where xp are the points in which the first derivative is discontinuous, cp are some arbitrary

coefficients and Θ(·) is the Heaviside function. The second derivative of φPL is given by

φ′′
PL(x) =

P∑
p=1

(cp −cp−1)δ(x −xp ) . (4.30)

The delta functions allow us to compute the correlation function Cφ′′
PL

(t ) explicitly

Cφ′′
PL

(t ) =
P∑

p,p ′=1

(cp −cp−1)(cp ′ −cp ′−1)

2πCx (0)
√

1−ρ2(t )
exp

(
−

x2
p +x2

p ′ −2ρ(t )xp xp ′

2Cx (0)(1−ρ2(t ))

)
, (4.31)

where we defined ρ(t ) ··= Cx (t )
Cx (0) . Inserting Eq. (4.31) in Eq. (4.28) and integrating twice with
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respect to Cx (t ) we get

CφPL (x)(t ) = fφ (0;Cx (0))+ fφ′ (0;Cx (0))Cx (t )+
P∑

p,p ′=1

∫Cx (t )

0

∫σ′

0

(cp −cp−1)(cp ′ −cp ′−1)

2πCx (0)
√

1− σ2

C 2
x (0)

×

× exp

⎛
⎝−x2

p +x2
p ′ −2 σ

Cx (0) xp xp ′

2Cx (0)
(
1− σ2

C 2
x (0)

)
⎞
⎠dσdσ′ .

(4.32)

In the case in which φ is an odd function, the term fφ (0;Cx (0)) is equal to zero. For the specific

case of the piecewise linear approximation of the hyperbolic tangent considered in this chapter,

i.e.

φPL(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−1 for x <−1

x for −1 < x < 1

1 for x > 1

, (4.33)

the expression in Eq. (4.32) reduces to

CφPL (x)(t ) =Erf2
(

1�
2Cx (0)

)
Cx (t )+ 2

πCx (0)

∫Cx (t )

0

∫σ′

0

1√
1− σ2

C 2
x (0)

×

× exp

⎛
⎝− 1

Cx (0)
(
1− σ2

C 2
x (0)

)
⎞
⎠sinh

⎛
⎝ σ

C 2
x (0)
(
1− σ2

C 2
x (0)

)
⎞
⎠dσdσ′ . (4.34)

For the piecewise linear function, an alternative approach based on the infinite series in Eq. (4.13)

and on Hermite polynomials was proposed by Kruscha and Lindner (2016).

For an arbitrary nonlinear function, we can use two methods. The first method is a semi-analytical

approach that relies on the integral form of the autocorrelation of the rate Cφ(x)(τ) as a functional

of the autocorrelation Cx (τ) of x (Schücker et al. (2016a))

Cφ(x)(τ) =
∫∫

φ

⎛
⎝
√

Cx (0)− C 2
x (τ)

Cx (0)
x + Cx (τ)�

Cx (0)
z

⎞
⎠φ(√Cx (0)z

)
DxDz , (4.35)

where Dx = e−x2/2d x. Notice that a slightly different version of this formula was already

proposed in Sompolinsky et al. (1988). Therefore, to obtain the effect of φ on the power spectral

density, one should 1) inverse Fourier transform Sx ( f ) to get Cx (τ) 2) apply Eq.(4.35), by

computing the two integrals numerically 3) Fourier transform Cφ(x)(τ) to get Sφ(x)( f ). Practically,

this procedure requires the application of the fast Fourier transform algorithm and the numerical

evaluation of two integrals.

The second method is fully numerical and it can be useful in cases in which the integrals in the
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first method are expensive to evaluate numerically. This method consists in approximating the

power spectral density Sφ(x) via Monte Carlo sampling. More precisely, we sample multiple

realizations in frequency domain of the Gaussian process with zero mean and power spectral

density Sx ( f ). We then transform each sample to time domain and apply the nonlinearity φ(x) to

each sample x(t ) individually. Finally, we transform back to Fourier domain and get Sφ(x) by

averaging. This method, whose steps are summarized in Alg. 3, introduces additional errors due

to the finite amount of samples that one considers. Despite being computationally more expensive

than the closed form expressions, this sampling method provides a solution of the mean-field

theory for an arbitrary nonlinearity and it is computationally much cheaper that running the full

microscopic simulation.

Algorithm 3 Computation of the effect of an arbitrary nonlinearity φ on the power spectral

density.

1: M = number of samples

2: for m ∈ {1, . . . , M } do
3: x̃m( f ) = samplefrom(Sx ( f ))
4: xm(t ) = F T −1[x̃m( f )]
5: φ̃m( f ) = F T [φ(xm(t ))]
6: end for
7: Sφ(x)( f ) = 1

T M

∑M
m=1 φ̃

∗
m( f )φ̃m( f )

4.6.3 Derivation of mean-field theory

In this section, we will extend the derivation of the dynamic mean-field theory (DMFT) for the

case of the network of multi-dimensional rate units. Since there are no additional complication

with respect to the standard case, we report here only the main steps. For a review of the path-

integral approach to DMFT, see e.g. (Schücker et al. (2016a); Crisanti and Sompolinsky (2018)).

The moment-generating functional corresponding to our differential equations is

Z [ j x , j̃
x

](J ) =
∫

DxD x̃ exp
[

S0[x , x̃]− (x̃1)T Jφ(x1(t ))+ j T x + j̃
T

x̃
]

, (4.36)

where

S0[x , x̃] ··= x̃T (ID∂t − A)x (4.37)

and we introduced the notation x̃T x = ∑α
∑

i
∫

x̃α
i (t )xα

i (t )d t . The integral is over paths and

bold symbols indicate vectors, over both the network space and the rate model space, so that

Dx ··=∏α
∏

i Dxα
i .

We are interested in properties that are independent of the particular realization of the coupling

matrix J. In order to extract those properties, we average over the quenched disorder by defining
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the averaged generating function

Z̄ [ j x , j̃
x

] ··=
∫∏

i j
d Ji j N

(
0,

g 2

N
, Ji j

)
Z [ j x , j̃

x
](J) . (4.38)

The average over each Ji j can be computed by recognizing that the terms corresponding to

different Ji j factorize and the integral can be solved using the square-completion method. Since

the details of this calculation are analogous to the one-dimensional case, we directly report the

result

Z̄ [ j x , j̃
x

] =
∫

DxD x̃ exp
[

S0[x , x̃]+ j T x + j̃
T

x̃
]
×

×exp

[
1

2

∫∞

−∞

(∑
i

x̃1
i (t )x̃1

i (t ′)

)(
g 2

N

∑
j
φ(x1

j (t ))φ(x1
j (t ′))

)]
. (4.39)

We now aim to decouple the interaction term in the last line by introducing the auxiliary field

Q1(t , s) ··= g 2

N

∑
j
φ(x1

j (t ))φ(x1
j (s)) . (4.40)

We rewrite the averaged generating functional as a field theory for two auxiliary fields Q1,Q2.

The result is, following the same steps for the one-dimensional case,

Z̄ [ j , j̃ ] =
∫

DQ1DQ2 exp

(
− N

g 2 QT
1 Q2 +N ln Z [Q1,Q2]+ j T Q1 + j̃ T Q2

)

Z [Q1,Q2] ··=
∫

DxD x̃ exp

(
S0[x , x̃]+ 1

2
(x̃1)T Q1x̃1 +φ(x1)T Q2φ(x1)

)
, (4.41)

where we extended our notation to QT
1 Q2 ··=

∫∫
Q1(s, t )Q2(s, t )d sd t . The crucial observation to

make is that essentially all factors associated to different units factorized yielding the factor N .

For this reason, the integration is now only over all rate model indices but over only one unit

index. The remainder is the problem of one unit, characterized by D variables, interacting with

two external fields Q1,Q2.

The final step is to perform a saddle-point approximation, i.e. replace Q1,Q2 by their values that

make the action stationary. After this step, the averaged generating functional reduces to

Z̄∗ ∝
∫

DxD x̃ exp

(
S0[x , x̃]+ g 2

2
(x̃1)T Cφ(x1)x̃1

)
. (4.42)

This is the statistical field theory corresponding to D linearly interacting variables, with x1 that

receives a Gaussian noise whose autocorrelation is given by Cφ(x1). Writing the corresponding

differential equations results in our mean-field description (Eq. 4.5).
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5 Reservoir computing using networks
of neurons with adaptation

This chapter presents preliminary work that I carried out during the last year of my PhD, in

parallel to the projects presented in the previous two chapters. Some interesting and novel results

have been obtained, but a more careful analysis should still be conducted and the mechanisms

should be investigated in depth.

5.1 Introduction

The ability to integrate information over long timescales in a variety of contexts is fundamental

in several complex tasks that humans and some animals are able to solve. For example, when

listening to somebody speaking, the meaning of a word that appears at the end of a sentence

might be correctly understood only if we are able to relate it to what was said at the beginning of

the sentence.

In chapter 3 we analyzed the dynamics of recurrent networks with a rate adaptation mechanism,

and we found that this additional feature increases correlation time in the recurrent network. On

the other hand, the interaction between recurrent connections and adaptation sharpens the linear

response function of a single rate unit, resulting in an increased amount of correlation at short

time lags.

Recurrent networks have proven to be very successful in machine learning tasks that require

integration of information over time. However, these networks are notoriously hard to train. State

of the art performance is obtained with so-called long-short term memory (LSTM) networks

(Hochreiter and Schmidhuber (1997)), in which additional multiplicative mechanisms are added

to the units to facilitate memory retention and training. In a recent publication, Bellec et al.

(2018) used a recurrent network of spiking neurons with spike-frequency adaptation, trained

with back-propagation-through-time, to obtain performance close to LSTM networks. Reservoir

learning approaches differ from the aforementioned techniques in that only readout weights,

or a subset of the recurrent weights, are trained. This facilitates learning, but it requires a rich

enough dynamics of the recurrent network (or reservoir), to achieve a good performance. In
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this chapter, we explore the possibility of using random recurrent networks with adaptation in

reservoir computing.

From the theoretical perspective, one of the advantages of reservoir computing is that the

dynamics of the network prior to learning is relatively well understood using mean-field theory

approaches. In the more recent reservoir learning techniques (Sussillo and Abbott (2009)) the

recurrent connections are partially modified in that only a rank-one perturbation of the recurrent

weights is learned. The dynamics of recurrent networks in which the random connectivity is

perturbed via a rank-one matrix can also be studied analytically (Mastrogiuseppe and Ostojic

(2018)), which allows to implement complex computation with such perturbations.

One of the limitations of reservoir computing is the relatively poor performance in tasks that

require bridging long time intervals, either during the generation of very long temporal patterns or

during sequence recognition, which might require integration of information over long timescales.

The results of chapter 3 regarding the correlation time motivate the study of the performance of

the network with adaptation on tasks requiring slow timescales. Moreover, the evidence from the

literature discussed above indicates a beneficial role of adaptation for learning, at least in networks

of spiking neurons. In this chapter, we begin a systematic study of the effect that adaptation has

in the context of reservoir computing with rate units. From our preliminary analysis, it appears

that the benefits of adaptation for learning are dependent on the task under consideration.

5.2 Results

Our aim is to compare the performance of a network with adaptation (also called adaptive
network in what follows) to the performance obtained without adaptation, on tasks that require to

maintain information over long time lags. Both networks are constructed by introducing a linear

readout unit z in a random recurrent network, of the type described in section 1.4 (standard)

and in chapter 3 (adaptive). The value of this linear readout unit is fed back to the network via

some fixed feedback connections (Sussillo and Abbott (2009), see section 5.4.1). We train only

the readout weights, i.e. those that connect the recurrent network to z, using the supervised

learning algorithm proposed by Sussillo and Abbott (2009). The tasks we devise all require

the network to retain information over long timescales. It is important to stress that we neither

aim at achieving the best performance for machine-learning type of applications, nor to propose

biologically plausible mechanisms that real neural networks might use to solve such tasks. In

contrast, we consider these tasks as additional probing tools for the dynamics of the network and

in particular for its capability of generating slow dynamics.

For all tasks described below, we used g = 1.5gc for both networks, where gc = 1 for the standard

network while it depends on the adaptation parameters for the adaptive network (see Eq. (3.7)).

The adaptation parameters are τa = 10τx and β= 0.5.
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5.2.1 Network traces during different trials decorrelate over time

The first task we consider is a delayed-recognition (DR) task (Fig. 5.1A), which is designed

to test for how long the trace of an input stimulus can be read out. At time t = 0 (beginning of

the trial), the network receives an input pattern which is fixed over trials but randomized over

sessions. The network target output is zero at all times, except at a fixed delay d after the stimulus,

at which the network has to emit a brief pulse. We consider a trial successful if a pulse at the

required time point can be isolated via a thresholding procedure on the output z (see section

5.4.4).

If the stimulus is strong or long enough to drive the network to exactly the same state at every

trial, then the task is perfectly solvable as long as 1) the dynamics remains chaotic for at least

a time d after the stimulus is released and 2) the state-space is sufficiently high-dimensional to

linearly separate the state of the network at the pulse time from its state at all the previous time

points. In realistic conditions however, the stimulus has a finite strength and duration, which

implies that the state of the network when the stimulus is released varies from trial to trial. Since

the dynamics is chaotic, trajectories associated to different trials decorrelate with a rate related

to the maximum Lyapunov exponent, which implies that the performance decreases when we

increase the delay d (Fig. 5.1B,D).

First, we check for the dependence of the performance on the number of units N . We find that

for N ≥ 200, the performance consistently drops at d ∼ 300τx (Fig 5.1B). The reason for the

significantly worse performance for N = 100 is that due to finite-size effects the network settles

in either a fixed point or in a limit cycle before the expected response time.

We then compare the performance of the adaptive network to that of the standard one. We did not

observe any significant difference between the two networks (Fig. 5.1D), but we should stress

that we did not conduct a careful exploration of the adaptation parameter space. When comparing

the evolution of the readout over time for the two networks (Fig. 5.1B), we qualitatively observe

that the adaptive network exhibits a higher trial-to-trial variability. This is most likely due to the

longer correlation time of the adaptation variable, which implies that the stimulus is less effective

in driving the adaptive network into a consistent state. Based on this argument, we would expect

adaptation to even worsen the performance. However, this effect does not seem to be significantly

strong.

5.2.2 Adaptation improves sequence discrimination over long timescales

The network performance on the DR task seems to be limited by the speed of decorrelation of

the dynamics across different trials. To test the ability of the network to integrate information

across long time lags, we test its performance on a delayed matching-to-sample (DMTS) task

(Fig. 5.2A). In this task, the network is exposed to two stimuli S1 and S2, with Si ∈ {A,B}, where

A and B are patterns chosen randomly for every session and kept fixed within each session (see

section 5.4.1). S1 and S2 are separated by a delay d1 and a short go-cue is delivered after a second
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Figure 5.1 – The network without adaptation has limited integration time. A: Schematic of

the delayed-response (DR) task. A fixed pattern S is presented to the network for a time tS = 10τx

and the network has to output a pulse after a fixed delay of length d . B: Performance of the

network without adaptation on the DR task, plotted against d for different N . The performance

is defined as the fraction of trials in which the network produce a response pulse with correct

timing, averaged over initial conditions and over network realizations. The performance in each

single trial is either one, if the pulse at correct timing can be isolated, or zero otherwise. C:
Linear readout z during multiple trials for the same session, for the network without adaptation

(top) and with adaptation (bottom). In this plot, d = 100τx . The dashed line indicates the target

response time. The task and network parameters are summarized in Table 5.1. D Comparison

of the performance for the network with (blue) and without (red) adaptation, for N = 500 and

variable d .

86



5.2. Results

delay d2 from S2. Similarly to the DR task, the target output of the network is zero for most of

the trial duration. If S1 = S2 however, the network has to respond with a brief pulse after the

go-cue.

For this task, adaptation yields a much higher performance across the whole range of delays d

(Fig. 5.2B). In fact, the standard network seems to be unable to solve the task even for rather

short delays and it simply learns to respond with a pulse independently of the stimulus identities

(Fig. 5.2C). The reason for this failure is that the second stimulus quenches the variability across

trials, effectively making the network “forget” about the identity of the first stimulus. Thanks to

the longer correlation time of the adaptation variable, however, the adaptive network preserves

a memory of the first stimulus even after the second one, which allows to correctly solve the

task. We can visualize this mechanism in a low-dimensional projection of the network activity

(see Fig. 5.2D). For the standard network, the second stimulus drives the network into the same

state independently of the identity of the first, and from that point the network continues along a

stereotyped trajectory. In the case of the adaptive network on the other hand, different trajectories

are brought closer to each other by the second stimulus but not to the point to be indistinguishable.

It is interesting to notice the role of the go-cue, which causes an additional quenching of the

variability, allowing a more reliable readout.

We were interested in seeing whether the network is able to retain information for long time lags,

while at the same time being exposed to continuous additional stimuli. To this end, we tested the

network on a sequence discrimination task, in which the network has to discriminate between a

correct (or Go) sequence and a wrong (or No-Go) one (Fig. 5.3A). Both sequences are formed by

a concatenation of random patterns. Crucially, the second half of the sequence is the same for

both sequences, while the first half is different. This task is conceptually similar to the DMTS

task. However, in the previous case the network underwent brief but strong stimulation, while in

this case the stimulation is continuous but weaker.

We find that the adaptive network performs this task moderately better than the standard one (Fig.

5.3B). The explanation for this observation seems to be similar to that of the DMTS task: the

coherent input during the second half erases the trace of the first half more easily for the standard

network (Fig. 5.3C,D). In contrast, the trajectories of the adaptive network dynamics remain

clearly well-separated throughout the trial (Fig. 5.3D).

5.2.3 Adaptation increases robustness to noise

Finally, we tested the performance of the two networks in the presence of input noise, both during

training and during testing, for the three tasks described above. As expected, the performance

is decreased with respect to the noiseless case for all tasks (Fig. 5.4). The DR and the DMTS

tasks seemed to be the most sensitive to noise, while the performance of the networks on the

sequence discrimination task seems to be more robust. Interestingly, the presence of adaptation

makes the performance more robust to noise. Indeed, a difference in performance between the
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Figure 5.2 – Performance on a delayed matching-to-sample task (DMTS). A: Schematics

of the task. Colored rectangles indicate random patterns. B: Comparison of the performance

on the DMTS task of the network with or without adaptation. The dashed line indicates the

chance level, which is at performance= 0 (see section 5.4.4 for the definition of the performance).

C: Output traces for the network without adaptation (top) and with adaptation (bottom), for

d = 80τx . Dashed colored lines indicate the mean of the readout, across trials of the same type.

The dashed black line indicates the target response time. D: Evolution of the network activity in

a two-dimensional random projection space, for the network without adaptation (top) and with

adaptation (bottom). The evolution of the activity is plotted during the presentation of the second

input pattern (solid lines) and during the following delay period (dashed lines). Color conventions

and task parameters are the same as in panel C. Notice that for the network without adaptation

the input drives the network into the same state, independently of the initial condition.
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Figure 5.3 – Performance on a two-sequence discrimination task. A: Schematics of the task.

Geometrical shapes are associated to specific random patterns. B: Comparison of the performance

on the two-sequence discrimination task of the network with or without adaptation. The dashed

line indicates the chance level, which is at performance= 0 (see section 5.4.4 for the definition of

the performance) C: Output traces for the network without adaptation (top) and with adaptation

(bottom). Dashed colored lines indicate the mean of the readout, across trials of the same type.

The dashed black line indicates the target response time. D: Evolution of the network activity

in a two random projection space, for the network without adaptation (top) and with adaptation

(bottom), for T = 250τx . The evolution of the activity is plotted from t0 = 120[τx ] to t1 = 250[τx ],
for T = 250 i.e. shortly before and during the time when the two input sequences coincide. The

crosses indicate the respective network states at t = t0. Notice that for the network without

adaptation the input drives the network into the same state, independently of the initial condition.
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Figure 5.4 – Effect of adaptation on noise robustness. A: Performance of the two network

with and without adaptation in the delayed-response task, in the presence of noise, for different

values of the delay d . B: Same as A, but for the delayed matching-to-sample task. C: Same as

A, but for the sequence-discrimination task. In this case the performance is plotted against the

sequence length T . In panels B and C, the dashed line indicates the chance level.

Task Task parameters

Delayed reaction s = 10, ts = 10τx , Rmin = 10τx , Rmax = 50τx

Delayed matching-to-sample s = 10, ts = 10τx , Rmin = 10τx , Rmax = 50τx , sGC = 1, tGC = 5τx

Sequence discrimination s = 1, Rmin = 20τx , Rmax = 40τx

Table 5.1 – Task parameters.

two networks can be seen also for the DR task and in the sequence discrimination task, for which

we did not observe a strong difference in the noiseless case. This effect is particularly visible

for the sequence discrimination task, in which the adaptive network maintains an almost perfect

performance until d ∼ 100τx , while the standard one drops to chance level.

5.3 Discussion

We have shown that recurrent networks with adaptation might have advantageous properties for

some tasks that require integrating information over long time intervals. More precisely, the

adaptation variables can maintain a trace of input stimuli for a longer time than the activation

variable. This makes the network more robust to the memory erasing effect of incoming stimuli,

and allows the network to generate specific output depending on the characteristics of the input

even if relevant inputs are separated by long time lags. For the very same reasons, it is harder

to set a desired initial condition on the network with adaptation, since this requires a stronger

stimulus than for the standard one.

Adaptation seems to play an interesting role also in increasing the robustness of the network to

noise, but the mechanisms underlying this effect need to be investigated more. It is important to

notice that the feedback connections do not play an important role for the tasks we considered.
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This is due to the fact that the output is required to be zero for most of the time at each trial, which

prevents the network from learning fixed points or limit cycles. To verify this, we ran preliminary

simulations with no feedback present (not shown), that resulted in a slightly worse performance.

This could be because the feedback can still have a beneficial role in stabilizing the dynamics.

The idea that adaptive mechanisms could be helpful in solving temporal tasks was also proposed

in a recent paper (Bellec et al. (2018)), in which the authors managed to obtain a performance

comparable with state-of-the-art LSTM approaches using spiking neural networks. It is tempting

to hypothesize that the effect that adaptation has in reducing the sensitivity to noise could be

related to the results of Bellec et al. (2018). Due to the complexity of the neural model however,

such claims are highly speculative.

Adaptation mechanisms are ubiquitous in real brain circuits, and have multiple timescales. Spike-

frequency adaptation (SFA) in particular is present in multiple neuron types and in some cases

it exhibits a scale-free profile (Lundstrom et al. (2008)), which is thought to have beneficial

consequences for sensory processing (Fairhall et al. (2001)). For this reason, it would be

interesting to study the effect of scale-free SFA in rate- or spiking-based learning tasks.

5.4 Methods

5.4.1 Network setup and simulation

In this chapter we considered two types of networks, one without adaptation (standard network)

and one with adaptation (adaptive network). The neurons in the standard network follow the

system of N differential equations

τx ẋi (t ) =−xi (t )+
N∑

j=1
Ji jφ(x j (t ))+wF B

i z(t )+ Ii (t ) , (5.1)

where z(t ) =∑ j wRO
j φ(x j (t )) and φ is a nonlinear transfer function, which will be chosen to be

the hyperbolic tangent in what follows. On the other hand, the adaptive network follows the

modified equations

τx ẋi (t ) =− xi (t )+
N∑

j=1
Ji jφ(x j (t ))−ai (t )+wF B

i z(t )+ Ii (t )

τa ȧi (t ) =−ai (t )+βxi (t ) , (5.2)

where z and φ are defined in the same way as in the standard case. Notice that in both cases,

due to the linear read-out z, the output-feedback loop represents a rank-one perturbation of the

weight matrix J, given by wRO ∧wF B . All time intervals and time constants were measured in

units of τx . For the adaptive network, we used in all tasks τa = 10τx and β= 0.5.

The recurrent connections were initialized by sampling from a Gaussian distribution with mean
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zero and variance g 2/N and kept fixed during one session. g is a parameter that varied depending

on the task and on the analysis under consideration. The readout weights wRO were initialized

at zero and trained using the FORCE procedure (Sussillo and Abbott (2009)), which consists

in performing a recursive least-squares regression on the output, choosing P(0) = I for the

initialization of the running estimate of the inverse of the correlation matrix P (see Sussillo and

Abbott (2009), Eqs. 5,6). The feedback weights wF B were initialized by sampling from a uniform

distribution between -1 and 1 and kept fixed during one session.

The equations were integrated using the Euler method with time step equal to 0.1τx , while the

FORCE update rule was applied every two time steps, as in the original publication (Sussillo and

Abbott (2009)). We also tested a fourth order Runge-Kutta integration method, which did not

yield significantly different results.

5.4.2 Task implementation

Delayed-Response task In the Delayed-Response (DR) task, in each trial the network receives

an input pattern of duration s = 10τx after which it has to wait for a certain delay d and then

respond with a short pulse of length tR = τx . For every learning session, an N -dimensional input

pattern was chosen randomly by sampling each input component from a uniform distribution

defined in the interval (−s, s).

Delayed Matching-To-Sample task In the Delayed Matching-To-Sample (DMTS) task, in

each trial the network receives two input patterns (S1 and S2) separated by a delay of duration d ,

after which it has to wait for a second delay of the same duration and eventually respond with a

pulse if S1 = S2. At every session, two patterns were generated independently in the same way as

for the DR task. In this task, the moment at which the network has to respond was signaled by a

short go-cue, a very brief (tgc = τx) input pattern that was the same throughout a session and that

was sampled independently from the other patterns.

Sequence discrimination task In the sequence discrimination task, in each trial the network

receives one out of two sequences. The two sequences consist of eight patterns each, concatenated

in time and of equal duration τ = T /8. The total duration of each sequence is indicated by T

and is a variable task parameter. The first sequence was constructed by randomly choosing eight

patterns from a set of ten random patterns (generated as in the other tasks), that were the same for

all the sessions. The second sequence was constructed to have the same second half as the first

one, but again choosing randomly the first half. In this way, the two sequences share the same

input during the second half. The first half, in contrast, can have different degrees of similarity

across sessions. The network has to respond with a pulse directly after the end of the correct

sequence.
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5.4.3 Learning procedure

For all tasks, the learning session was organized in multiple epochs, themselves being divided

into multiple trials. Each trial was followed by a relaxation period of a duration randomly chosen

between Rmin and Rmax, after which the next trial was started. The randomness of the duration

of the relaxation period has the purpose of randomizing the initial condition at the beginning of

each trial. The distinction between sessions and epochs is merely due to the fact that at the end

of each epoch the performance of the network was tested in order to monitor the advancement

of learning. A learning session ended if either the network achieved perfect performance in the

inter-epoch testing phase, or if the maximum number of epochs was reached. After learning, a

testing session of n = 50 trials was used to assess performance.

We should stress that the distinction between learning and testing in this context is simply due to

the presence or absence of weight change respectively. The input patterns were the same for both

learning and testing since we were not interested in the network generalization capabilities but

rather in the ability to integrate information over long timescales.

5.4.4 Performance measure

In order to compute the performance, we need to identify response pulses in the network output.

This was done by first low-pass filtering the network output z with a timescale τ f = 10τx in order

to avoid detection of multiple pulses due to fast fluctuations. The filtered output was then passed

through a Heaviside function zth(t ) =Θ(z(t )−θ). For each testing session, the threshold θ was

optimized to match the number of pulses in the network output to the number of pulses in the

target.

For the DR task, the performance was simply the number of trials in which the output pulse

could be isolated at the correct time point. For the DMTS and sequence-discrimination task,

the performance was calculated as the number of correct pulses minus the number of wrong

pulses, i.e. pulses not produced at the right moment, normalized by the total number of pulses. In

formulas,

P = ncp −nw p

nt
, (5.3)

where ncp is the number of correctly predicted pulses in the network output, nw p is the number

of wrongly predicted pulses and nt is the total number of pulses in the target. In this way the

performance will lie between -1 and 1, and even if all the pulses are correctly predicted the

performance will still be penalized if the network emits extra pulses.

5.5 Author contributions

SPM designed the project and wrote the simulation code. SPM and WG wrote the text.
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6 Towards hierarchical sequence genera-
tion

This chapters summarizes unfinished work that I carried out in the first part of my PhD, before

starting to work on the projects presented in chapters 2 to 5. A toy model for hierarchical sequence

generation is motivated and discussed. Despite the fact that this work was chronologically the

first, it represents a logical outlook for this thesis.

The research presented in this chapter was carried out in collaboration with Johanni Brea and

Wulfram Gerstner.

6.1 Introduction

In chapter 2 and in chapter 3 we discussed the possibility of producing slow dynamics by

connectivity tuning or by adding rate adaptation, respectively. We have seen that obtaining slow

dynamics by acting on the recurrent connections leads to a trade-off between precision on the

weights and slowness of the dynamics. On the other hand, slow biophysical mechanisms like

adaptation seem to allow the network to act on both fast and slow timescales (see chapter 5).

This can be advantageous in order to learn to generate patterns that feature slow timescales or to

recognize signals that require integration of information over long time intervals.

Besides containing long timescales, sequences that humans face in behaviorally relevant situations

also exhibit complex structures that are often organized in a hierarchical fashion. Manifest

examples of such organization are language and music. More generally, motor sequences

are usually formed by binding together motor primitives to form complex movements, which

themselves can be chained together to achieve a certain goal. Hierarchical organization seems

therefore widespread in behaviorally relevant sequences, but is this property also reflected in the

sequence generation mechanisms? Ever since Lashley’s seminal work (Lashley (1951)) there is

general consensus that the answer to this question is yes, supported by an increasing amount of

evidences coming from behavioral studies in humans (see Rosenbaum et al. (2007) for a review).

For example in sequential tapping tasks, the existence of a hierarchical motor generation system

is supported both by the timing patterns of different actions and by the distribution of mistakes
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that subjects make (Rosenbaum et al. (1983)).

From the behavioral modeling and artificial intelligence perspective, the way in which humans

manage to perform complex sequences of actions by subdividing them in simpler tasks has

inspired hierarchical modeling approaches. In particular hierarchical reinforcement learning

(Sutton et al. (1999); Barto and Mahadevan (2003)) might provide a way out from the curse of

dimensionality from which classic reinforcement learning approaches suffer in large state spaces.

More generally hierarchical Bayesian models, beside accounting for how sequences of actions

are learned or performed, might also be a powerful way to abstract knowledge (Tenenbaum

et al. (2011)). Recent approaches to language and relational reasoning combined traditional

hierarchical models with connectionist architectures to obtain relevant insights of how humans

might be able to infer relations and to understand sentences (Doumas et al. (2008); Martin and

Doumas (2017)).

On the other hand, how hierarchical sequence generation could emerge from biologically plau-

sible networks of neurons is an open question. Kiebel et al. (2009), proposed a combination

of a dynamical system approach to neural dynamics and Bayesian inference as a model for

hierarchical sequence recognition. The same dynamical system framework was used as a model

for hierarchical sequence generation (Rabinovich et al. (2014); Fonollosa et al. (2015)). While

these models bear interesting similarities with experimental findings of hierarchical timescales

in both human and primate cortices (Hasson et al. (2008); Murray et al. (2014)), a description

at the neural population level that also explains the learning process with biologically plausible

learning rule, is still missing.

In this chapter, we propose a toy model that illustrates how the slow dynamics generated by

the combination of adaptation and recurrent connections can be combined with a hierarchical

network architecture to obtain a model that generates sequences that exhibit a hierarchical

structure. Despite its simplicity, the model allows to generate a large class of sequences while

requiring a relatively small number of units. We will not explicitly address the problem of

learning the parameters of the model, but we discuss how Hebbian plasticity could allow learning

of some parts of the hierarchical structure. We first describe the simple mechanism that allows to

produce transitions between network states with flexible timescales, an approach that is closely

related to the idea of stable heteroclinic channels (Rabinovich et al. (2008)). Then, we present

the network architecture and show how it can generate sequences with hierarchical structure.

Finally, we discuss the possibility of introducing plasticity in the system to partially learn the

connectivity.
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Figure 6.1 – Implementation of elementary sequence generation. A: Phase-plane diagram

for a single unit with adaptation. In most cases there is only one fixed point, which can be

stable (filled circle) or unstable (empty circle). The external bias I changes both the position of

the ν-nullcline and the stability of the fixed point. B: Example of generation of an elementary

sequence with three elements, using the small network depicted in the inset. In this example,

τa = 100τx and I1 > I2 > I3.

6.2 Results

6.2.1 Generation of elementary sequences using bistable units with adaptation

We consider a network of N rate units, each described by two differential equations:

τνν̇i (t ) =−νi (t )+σ

(
wR

i νi (t )−∑
j �=i

w Iν j (t )−ai (t )+ I ext
i (t )

)
(6.1)

τa ȧi (t ) =−ai (t )+βνi (t ) , (6.2)

where all parameters are positive and σ(·) is a sigmoid nonlinearity. Self-excitation in combination

with lateral inhibition introduces competition among units, such that at any given time there

is only one unit that has a high rate while all the other units have firing rates close to zero, a

behavior known as winner-take-all (WTA). Due to adaptation however, the temporary “winner”

will eventually transition to a low-rate level while a new high-rate unit takes over. In this way, the

network produces a sequence of activations that can be seen as an elementary sequence and that

can be used as a building block to generate more complex sequences.

The order in which different units activate is mostly determined by I ext
i (t ). On the other hand,

the time that each unit is in a state of high firing rate (tH ) is mostly influenced by the adaptation
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parameters τa and β as well as by the self-excitation wR
i . We can qualitatively understand this last

point by assuming that because of the WTA behavior, the temporary winner unit is momentarily

uncoupled to the others, since their rates are approximately zero. The behavior of the winner unit

can then be studied in a phase-plane (Fig. 6.1A). It is crucial that the parameters of each unit,

namely the self-excitation wR
i and the adaptation parameters, are set up in such a way that the

fixed point is stable in the absence of input while it is unstable once the input is present. Since the

system is bounded, the theorem of Poincaré-Bendixson theorem implies that the system admits

one limit cycle, which means the winner unit will tend to oscillate. If the sigmoid is very sharp,

we can approximate it with a Heaviside function. In this approximation and in a regime of slow

adaptation (τν � τa), we can find a relation between the value of the synaptic connections and

the resulting tH (see also Additional details)

wR
i =β

(
1−e−

tH
τa

)
− I ext

i . (6.3)

From Eq. (6.3) we see that an exponential fine tuning on wR
i is required to have a linear precision

on tH . Despite this limitation, the above setup represents a simple way to obtain an effective

slow timescale that can be regulated by acting purely on the synaptic connections. We can see an

example of a length-three elementary sequence generated in this way in Fig. 6.1B. We notice

that during the first activation different units compete before the first element of a sequence is

determined, a process similar to the one proposed for some models of decision making (Wong

and Wang (2006)).

Since the excitatory units are not directly interacting, the different sequence elements maintain

their “identities”, in the sense that they are not bound to be in a particular order with respect

to other elements. Their order on the other hand, is determined by the external bias provided

by I ext
i . Using this approach, one can generate only Markovian sequences, i.e. each element

should be uniquely determined by the previous one. Moreover, while the length of an elementary

sequence is formally limited only by the size of the dictionary (i.e. the number of different

sequence elements), the longer the sequence to be generated the more fine tuning of the weights

is necessary. In the next section, we describe how to combine multiple of these elementary

sequences hierarchically so that each unit at a certain level of the hierarchy is biased by the units

in the level above and provides bias to the units in the level below.

6.2.2 Generation of hierarchical sequences by combining elementary blocks

The key idea in combining multiple elementary blocks in a hierarchical fashion is to assume

a hierarchical network with several layers where the external bias I ext
i to unit i in layer n is

generated by units in layer n +1. As a simple example, let us consider an elementary block that

consists of only two sequence elements, that we indicate as A-B. To produce this block, it is

sufficient to have a single biasing unit in the level above in the hierarchy that has a stronger bias

towards A than towards B. In this way, the unit corresponding to A is the first to become active,

i.e. to transition to a state of high firing rate, after a “decision” mechanism similar to the one used
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in models of decision-making processes (Wong and Wang (2006)). After a time ∼ tH , the unit

corresponding to B will become the active one, provided that the biasing unit is still active. To

have this last condition verified, we require that units in the higher layers have a longer activation

time tH than those in the lower layers. We also introduce bottom-up weights, i.e. connections

from a lower layer of the hierarchy to the one above it, in order to help synchronizing different

layers. By repeating this procedure across units and across layers, we set up a multi-layer network

in which units in the lowest layer are associated directly with sequence elements. In the second

layer from the bottom, there are units that code for elementary sequences (or chunks) of two or

three units. Finally, in the higher layers there are units that code for combinations of chunks. We

setup an independent WTA circuit in every layer, so that there can only be one unit per layer

active at any given time point. For simplicity, we introduce inter-layer connections only between

layers belonging to neighboring levels of the hierarchy. However, direct connections between

units belonging to more “distant” layers can also be introduced without harming the approach.

We provide some examples of these architecture in Fig 6.2, each one with eight sequence elements

(indicated by letters A to H, on colored disks), combined to form a length-eight sequence. If the

desired sequence is Markovian (see Fig. 6.2A, i.e. given one element the next one is uniquely

determined, then it could be produced simply by chaining elements together. By doing this

however, sequence elements would lose their “identities” since they would always appear as part

of the same sequence. By constructing the hidden structure as shown in Fig. 6.2A (left), one

would avoid this problem since no direct interaction is present among sequence elements. The

same result could be obtained with a delay-line of the same length as the desired sequence instead

of a hierarchical structure, in a single hidden layer. While this last solution has the advantage of

being applicable to any sequence, it has two drawbacks. First, it is expensive in terms of required

number of units, as it will be explained later; second, it does not allow to capture a possible

hidden structure in the sequence. Using our approach we can use a separate hierarchical structure

to generate a different sequence using the same elements, since we did non introduce any direct

relation among sequence elements. Non-Markovian sequences can also be generated by this

type of hierarchical structure (see Fig. 6.2B). A sequence is non-Markovian if to determine the

next sequence element we need to know a certain number of previous elements and not just the

last one. The hierarchical structure solves this problem by encoding the sequence history in a

hierarchical representation.

The advantage of the approach that we propose is that it allows to reuse chunks in different parts

of a sequence. For example, the network in Fig. 6.2C generates a sequence in which the chunk

A-B appears twice, and the network is connected in such a way that the same chunk-related unit

is activated twice during the sequence generation. We notice that in this case the sequence of

chunks is itself non-Markovian. This however does not pose additional problems since the same

strategy applied for the bottom layer can be used at any level of the hierarchy. This procedure for

sequence generation is not restricted to chunks of length two, but can also be used with longer

chunks as demonstrated in Fig. 6.2D, for length-3 chunks. However, as discussed in 6.2.1 longer

chunks require more fine-tuning and are therefore less robust, which makes the use of shorter

chunks advantageous.
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Figure 6.2 – Caption next page.
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Figure 6.2 – (Previous page) Generation of sequences with hierarchical structure. For all

panels, the desired sequence is on the bottom right whereas on the left we represent diagrammati-

cally the structure of the multi-layer network that allows to produce it. In the network structure

diagram, dark gray lines indicate stronger bidirectional connections, while light gray indicate

weaker bidirectional connections. Self-excitation and lateral inhibition within each layer is not

shown but always present. When the sequence-related unit in the topmost layer is activated by an

external input, the network produces the desired sequence of activations (right). A: Example of

Markovian sequence. B: Example of non-Markovian sequence with no hierarchical structure. C:
Example of non-Markovian sequence in which length-2 chunks are combined in a non-Markovian

fashion. D: Example of non-Markovian sequence in which length-3 chunks are combined in a

non-Markovian fashion.

We notice that chunks can be reused not only in different parts of a single sequence, but also

across sequences. For example, the chunk A-B and others appear multiple times in different

sequences in the examples of Fig. 6.2. Whenever this happens, the same chunk-related unit can

be reused, leading to a big advantage in terms of used resources. The same is not possible when

using the delay-line approach, which instead would require an entirely separate hidden structure

for each sequence. As a practical example, to generate all the examples of Fig. 6.2 we used 18

hidden units, while by using the delay-line approach one would need 32 units.

6.2.3 Learning asymmetric biases

In the previous section we showed that a hierarchical hidden structure provides a flexible way

to generate complex sequences in a compact form thanks to the possibility of reusing different

chunks of the sequence multiple times, within or across sequences. However, all the networks

in Fig. 6.2 were hand-wired, so it is natural to ask whether they could also be learned in a

biologically plausible way. While it seems unlikely that such a structure could emerge from a

purely random initialization of the hidden connections without using non-local learning rules

such as back-propagation, some assumptions on initialization of the weights might introduce the

right inductive bias to converge to the desired hierarchical structure. Even more problematically,

supervisory signals are available only at the terminal level, i.e. for the sequence element-related

units, while for all the higher layers in the hierarchy learning should happen in a fully unsupervised

way.

One possible approach could be to introduce some spatial structure in the connectivity, so that

the network would spontaneously exhibit a richer dynamics (Litwin-Kumar and Doiron (2012);

Setareh et al. (2017)). In particular, one could use either a bimodal or a power-law distribution

of the out-degree, depending on whether one considers also connections between more distant

layers or not, to obtain a hidden structure similar to the ones in Fig. 6.2. Moreover, since we

are interested in obtaining largely symmetric structures, i.e. networks in which most of the

connections are bi-directional, the in- and out-degree should be highly correlated. Together

with variability in the level of self-excitation, this might lead to a natural hierarchy of activation
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timescales.

Thank to the built-in hierarchy of timescales, units with slower effective dynamics will co-activate

with multiple “faster” units, which through Hebbian learning will lead to potentiation of the

synaptic connections. As a consequence, when “presenting” a sequence by activating the units

corresponding to different elements, “slower” units will naturally tend to get associated to multiple

“faster” units and therefore become chunk-related.

One last feature of the hand-wired networks of Fig. 6.2 is that the biases are asymmetrical,

meaning that chunk-related units are more strongly connected to the lower-layer units that appear

earlier in the chunk than to those that appear in a later position. In other words, the strength

of the top-down connections decreases with the position of the downstream unit in the chunk.

Developing such a position-dependent connectivity using biologically plausible rules might be

challenging, but we can take advantage of the adaptation of the chunk-related unit. Indeed, the

value of the adaptation variable of the pre-synaptic unit naturally encodes the time since that unit

is active, and therefore it also encodes the position of the downstream units in the chunk. To

exploit this property, we propose two approaches: one would be that plasticity directly depends

on the pre-synaptic adaptation variable, which does not violate locality. More precisely, one

would assume that it is harder to induce LTP when the pre-synaptic neuron is in an adapted

state. The second option is to exploit the effect of adaptation only indirectly by its effect on the

pre-synaptic rate, which influences plasticity in any Hebbian-type plasticity rule. More precisely,

the higher the value of the adaptation variable, the lower the rate (if all the other inputs are the

same), which in turn implies less potentiation in commonly used plasticity rules.

6.3 Discussion

We propose an approach to sequence generation that relies on a hierarchical hidden structure

from which complex sequences can be read out. The main advantage is the possibility of reusing

chunk-related hidden units both within and across sequences, which is particularly convenient

when sequences share several subparts, as it often happens in behavior. The hierarchical hidden

structure is built by combining multiple elementary sequence generators, constructed using the

same computational mechanism at different scales.

The elementary sequence generator that we proposed relies on adaptation and competition

between units to obtain a form of “winnerless competition” (Rabinovich et al. (2008)). Thanks to

the large adaptation timescale, elementary sequences can be very slow with respect to the synaptic

timescales, but their speed can still be tuned by modifying the amount of self-excitation. This is a

useful feature in the context of behavioral sequences, which often need to be generated on the

timescale of seconds. A limitation of the implementation that we proposed in this chapter is that

it is unclear how to implement two consecutive appearances of the same element/chunk. Indeed

the winnerless competition mechanism is by design producing transitions from an element/chunk

to a second one and not to itself. While the duration of each element could be extended or even
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doubled by acting on the parameters, inactivation and subsequent reactivation of the same element

seems to be hard to achieve in such a setting.

There could be alternative implementations of the elementary sequence generator, that might

have different properties with respect to the one discussed in this chapter. For example, one

could use the same connectivity structure discussed in chapter 2 to efficiently generate units

that evolve on multiple timescales without the need of any intrinsic slow mechanism. Moreover,

while the winnerless competition mechanism proposed in this chapter requires an exponential

fine tuning of the weights to obtain a linear precision on the timescale, using the approach of

chapter 2 allows to have exponential control on the timescale by requiring exponential precision.

Alternatively, different elementary sequences could be produced as trajectories of a recurrent

network, as discussed in chapter 5. Consistently with the approach presented in this chapter,

which trajectory gets executed could depend on a bias coming from an upstream network with

slower dynamics. Using a reservoir instead of a WTA circuit would require an entirely different

approach to learning with respect to the one discussed in section 6.2.3. However, promising recent

results on unsupervised chunking using reservoir computing (Asabuki et al. (2017)) make this

approach worth additional investigation. Finally, despite the limitations of using a delay-line to

read out a full sequence (see section 6.2.2), it might still be advantageous to use short delay-lines

to implement the elementary sequence generator. Indeed, it is impossible to construct networks

in which different populations activate in a consecutive way with very different timescales, from

very fast as in a synfire chain (Diesmann et al. (1999)) to much slower, by exploiting intrinsic

slow mechanisms as adaptation (Setareh et al. (2018))

A similar approach to hierarchical sequence generation and chunking was proposed by Rabinovich

et al. (2014); Fonollosa et al. (2015), in which a hierarchy of three layers is constructed by having

a system of generalized Lotka-Volterra equations in each layer that gives rise to a winnerless

competition among units. From the mathematical point of view the two implementations share

strong similarities, in that both result in a series of transitions between quasi-stable states. One

main conceptual difference is that in our approach any interaction between elements/chunks at

the same level of the hierarchy is absent, while in the approach proposed by Rabinovich et al.

(2014); Fonollosa et al. (2015) the sequential outcome is a consequence of both direct connections

between elements and top-down interaction.

One interesting feature of our implementation of a hierarchical structure is that to become active

each unit has to win after a “decision” process. If a new chunk needs to be started, then both the

element-related unit and the chunk-related unit need to become the winner in their respective

layers, and this will happen in a serial fashion from top to bottom. Therefore, chunks that are

higher in the hierarchy will require more time to get initialized. This property resembles what is

observed in motor sequence generation studies (Rosenbaum et al. (1983); Koch and Hoffmann

(2000)), in which subjects are asked to repeatedly perform the same finger tapping sequence

as fast as possible, while the latencies between consecutive taps and the possible mistakes are

recorded. If the sequence being performed has a clear chunk-separable structure, then subjects

will exhibit a distinctive pattern of latencies, in which taps that correspond to the beginning of a
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chunk require longer time before getting initiated than those in the middle. Moreover, subjects are

more likely to make mistakes on the first element of a chunk, which is compatible with our model

since, in the presence of noise, each decision process would be a possible source of mistake.

Another interesting consequence of our approach is that it might enforce chunking and hierarchical

sequence production even when the sequence under consideration does not have any hierarchical

structure, as in the Markovian example in Fig. 6.2A. This seems to be a strategy also used

by humans (Sakai et al. (2003)) when learning sequences. This strategy might not only be a

bi-product of a hidden structure optimized for recognition of hierarchical structures, but also a

way to overcome the limitations of working memory. The capability of humans in retaining in

memory multiple items belonging to the same category is limited to a few items (Miller (1956)).

However, we are clearly able to overcome these limitation in some situations, e.g. when retaining

a phone number in memory. Chunking might be a strategy to solve this problem, i.e. grouping

together items might reduce the interference of different working memory representation.

Similarly, chunking a sequence to construct a hierarchical structure is a way to compress it. One

possible approach to quantify the compressibility of a sequence is in terms of its Kolmogorov

complexity, which is defined as the length of the shortest computer program that produces the

sequence as output (in a predefined programming language). The smaller the Kolmogorov

complexity, the more a certain sequence can be compressed by storing the program that generates

it. Our approach to sequence generation carries some similarities with this idea, in that the

hierarchical hidden structure can be seen as a simple program that generates a sequence after

having compressed some features such as chunk repetitions.

6.4 Additional details

6.4.1 Relation between synaptic connections and time in the high-rate state

If adaptation is very slow compared to the rate timescale (τν � τa), we can use the separation of

timescales approach, i.e. we assume that for all values of ai (t ), νi (t ) immediately reaches the

temporary fixed point, given by the solution of the system of equations

ν̄i =σ

(
wR

i ν̄i +
∑
j �=i

w I
i j ν̄ j −ai (t )+ I ext(t )

)
. (6.4)

We are interested in the case in which the system has only one unit with high rate, while all the

other units have firing rate close to zero, therefore we will set ν̄ j � 0∀ j �= i . If we approximate

σ(·) with the Heaviside function Θ(·), we can can find the condition for the existence of the

high-rate state for unit i

ai (t )− I ext
i (t )−wR

i > 0 . (6.5)
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Therefore, the high-rate fixed point is lost when ai (t ) = a∗
i
··= I ext

i (t )+wR
i By solving the linear

differential equation for the adaptation with νi (t ) = ν̄i and looking for the time point at which

ai (t ) = a∗
i , we can find an approximation for the time in the high-rate state, that we indicate as

t̄H , for the case of constant I ext

t̄H ··= τa ln

(
β

β−w R
i − I ext

i

)
. (6.6)

Notice that in general, t̄H is an approximation of tH , since it does not take into account nonzero

rates of the other units, different values of the adaptation variables when the unit is activated, and

the real shape of the nonlinearity.

6.5 Author contributions

SPM, JB and WG designed the project. SPM performed the work, wrote the simulation code,

and wrote the text, with the help of WG.
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A Additional publications

A.1 Algorithmic Composition of Melodies with Deep Recurrent Neu-
ral Networks

Florian Colombo, Samuel P. Muscinelli, Alexander Seeholzer, Johanni Brea and Wulfram

Gerstner

Published in: Proceeding of the 1st Conference on Computer Simulation of Musical Creativity,

Huddersfield University (DOI: 10.13140/RG.2.1.2436.5683; Colombo et al. (2016))

Summary

Algorithmic music composition exemplifies very well the challenges discussed in this thesis.

Music has a hierarchical structure on multiple scales, which in a machine learning approach

should be extracted from the examples in the dataset. For these reasons, a model for algorith-

mic composition that is both easily trainable and able to reproduce the long-range temporal

dependencies typical of music is still lacking.

Here we investigate how artificial neural networks can be trained on a large corpus of melodies

and turned into automated music composers able to generate new melodies coherent with the style

they have been trained on. To capture the long timescales present in the dataset, we employ gated

recurrent unit networks which are related to long-short term memory (LSTM) units. Thanks to

multiplicatives gates, these type of units have been shown to be particularly efficient in learning

complex sequential activations with arbitrary long time lags. Our model processes duration and

pitch in parallel while modeling the relation between these two properties.

Once the network was trained on a dataset of Irish folk songs, we could verify the acquisition

of the distinctive song feature by running the network in a generative mode. We performed a

musical analysis of the generated songs, and observed that they have coherent metrical structure,

present some recurrent distinctive features.
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Author contributions

The model was conceived by FC, SPM, JB and AS. The model implementation was done by FC.

SPM performed the musical analysis. All authors designed the project and wrote the publication.

A.2 Optimal stimulation protocol in a bistable synaptic consolida-
tion model

Chiara Gastaldi, Samuel P. Muscinelli and Wulfram Gerstner

Preprint published at ArXiv:1805.10116 (2018) (Gastaldi et al. (2018))

Summary

In the introduction of this thesis, we have seen how synaptic plasticity includes a large variety of

mechanisms and timescales. Among these, synaptic consolidation is responsible for late-LTP and

it allows to maintain the synaptic changes induced by neural activity over a timescale of hours. In

experiments, synaptic consolidation can be induced by repeating a stimulation protocol several

times. However, the effectiveness of consolidation depends crucially on the repetition frequency

of the stimulations.

Here we propose a simple mathematical model that allows to systematically study the interaction

between the stimulation protocol and synaptic consolidation. The model consists of a two-

dimensional, nonlinear dynamical system in which both variables are intrinsically bistable and

feature different timescales. We show the existence of optimal stimulation protocols in our model

which, similarly to LTP experiments, depend on the repetition frequency of the stimulation.

Interestingly, this sensitivity to a particular frequency is more pronounced when the difference in

timescale between the two variables is strong.

Our results show that the complex dependence of LTP on the stimulation frequency emerges

naturally from a minimal model with only two bistable variables. In the context of this thesis,

this result highlights a different aspect of systems with multiple intrinsic timescales, namely the

emergence of a non-trivial response to external stimulation.

Author contributions

CG performed most of the derivations, with the help of SPM. SPM performed the bifurcation

analysis. CG wrote the code and ran the experiments. All authors conceived the study and wrote

the manuscript.
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