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ABSTRACT: We consider two metal—organic frameworks as
identical if they share the same bond network respecting the
atom types. An algorithm is presented that decides whether
two metal—organic frameworks are the same. It is based on
distinguishing structures by comparing a set of descriptors that
is obtained from the bond network. We demonstrate our
algorithm by analyzing the CoRe MOF database of DFT
optimized structures with DDEC partial atomic charges using
the program package ToposPro.

B INTRODUCTION

A primary concern of materials science is the discovery of new
materials and the prediction and understanding of their
properties. With steadily increasing computer power, computa-
tional studies have become an inevitable tool for both analysis
and prediction of materials. Large databases contain not only
naturally occurring”” and synthesized materials but also
thousands upon thousands of structures that are generated in
silico.”™"” These databases provide the ground for computa-
tional studies, in particular screening studies to identify
interesting materials for different applications.”"' ™" Less
known is that these databases, as we will demonstrate below,
can contain many variations of the same structure. Clearly, one
would like to avoid spending valuable resources on studying
similar structures but, more importantly, having an unspecified
number of duplicated structures will make the statistics of any
screening study unreliable. Therefore, developing a systematic
methodology to identify whether two deposited structures are
duplicates not only is an important fundamental question but
also is of practical importance. This is in particular the case if
the number of structures is so large that manual inspection is
out of the question.

To illustrate our approach of comparing structures, we focus
on a popular class of materials called metal—organic frame-
works (MOFs).'® These are potentially porous 3D, 2D, and 1D
crystalline materials, which consist of metal nodes connected by
organic ligands.'”~"” MOFs have gained much attention during
the past decade due to their huge variety. By changing a metal
type or substituting the functional group of an organic linker,
one can in principle systematically change the properties of a
known MOF. This not only makes MOFs and related
nanoporous materials such as COFs, ZIFs, PPN, etc. intriguing
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material classes for basic research but also suggests them for
many potential applications, ranging from gas separation and
storage to sensing and catalysis.'*™>*

For complex compounds such as MOFs, we have to be
careful how to define two materials as being equivalent, since
similarities exist on different levels. For example, if two crystals
do not have the same space groups or similar lattice parameters,
they are considered as different materials from a strict
crystallographic viewpoint and are listed as two separate entries
in most databases. However, from a MOF point of view two
structures are considered identical if they share the same bond
network, with respect to the atom types and their embedding:
ie, if two structures can in principle be deformed into each
other without breaking and forming bonds. We do not consider
a particular MOF as a new material after, for example, rotating a
ligand. However, such a small change can change the space
group and hence can be reported as a new material in these
databases. There exist several algorithms to compare crystals,
but either they are restricted to structures with the same space
group”®™** or they evaluate the differences between atomic
positions,””*® which is useful to detect small differences
between crystals due to slightly different experimental
conditions. However, while the traditional crystallographic
approaches are important for solid-state chemistry, the unit
cells of porous MOFs and related materials are much larger and
are filled with solvents. This often causes substantial deviations
of the crystal parameters for the activated evacuated material
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and the representatives with guest molecules,”’ and a different
method is required to compare MOFs.

Most synthesized MOFs are deposited in the Cambridge
Structural Database (CSD).>* These materials often contain
remaining solvent molecules, as do their structural files in the
CSD. If a material is experimentally obtained under changed
conditions, the remaining solvent molecules can differ, ligands
can be differently aligned, and the unit cells can be distorted
with respect to each other. All these versions of a material are
stored independently in the CSD, and different versions of one
MOF can have different chemical and physical behavior such as
the narrow- and large-pore versions of the highly flexible MIL-
53. However, from a fundamental point of view, one is often
interested in understanding the properties of the underlying
framework: i.e., the material without solvent molecules that are
not believed to be part of the true framework. Before
computational studies are performed, structures are usually
“cleaned”: i.e., solvents are artificially removed and disorders
often neglected. This leads to duplications in the resulting
databases since many materials, in particular those on which
considerable experimental efforts have been spent, are reported
in numerous variations: the CSD contains for example more
than S0 structures that all describe the famous CuBTC.”
Clearly, if the number of duplicates is this large, it will bias
these databases.

Another postprocess that can cause multiple entries is
relaxation: both experimentally known and hypothetical
structures are often relaxed to obtain well-defined and
energetically most stable representations of the materials before
they are studied by simulations. Since it is impossible to ensure
that an energetic minimum is global, it is possible that different
relaxations find varying local minima that lead to multiple
entries in a database.

In this article, we show how to systematically find topological
duplicates in these material databases. We demonstrate how to
compare frameworks of MOFs, but a small variation of the
algorithm can also consider other classes of materials such as
molecular crystals by considering the patterns of hydrogen
bonds and van der Waals interactions. Similarly, it is possible to
distinguish different versions of flexible MOFs by including van
der Waals interactions in the bond network. In a representative
study, we analyze a subset of the so-called “computationally
ready” MOFs of experimentally known structures (CoRe MOF
database): namely, the database of 502 frameworks®® (502
CoRe MOF database) that contains the structures of that are
relaxed using density functional theory (DFT) and to which
density derived electrostatic and chemical (DDEC) partial
atomic charges are assigned. The files stored in the CoRe MOF
database are mainly derived from the CSD by removing
solvents and sometimes adding missing hydrogens. The results
are of interest in their own right, since this database is
frequently used for screening studies. Alternative databases of
cleaned MOFs can be obtained by applying the MOF detection
and the user-adopted solvent-removal algorithms that have
been made available by the CSD.”" The prospective generation
of databases of existing and new MOFs made the development
of a tool for removing duplicates relevant and urgent.

The issue of duplication in databases is well-known. For
example, the authors of the CoRe MOF databases already
eliminated some duplicates: two cleaned CSD structures were
considered equivalent if they share the numbers and type of
atoms and if the root-mean-square deviation of the atomic
positions of their Niggli cells is smaller than 0.1A.*° While this
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approach is intuitive, it is neither necessary nor sufficient to
determine duplicates. Clearly, all duplicates have the same
number of atoms and atom types. However, the atomic
positions can vary largely between different representations of
the same material. Indeed, we still find many duplicates in the
CoRe MOF databases. The fundamental problem is, that
allowing larger root-mean-square deviation does not address
the problem of detecting duplicates correctly. Increasing the
limit allows us to find more duplicates but also falsely identifies
more nonidentical structures as duplicates.

We present a systematic and rigorous way of distinguishing
structures that describe different materials, by introducing a set
of descriptors that each give the same value for identical
structures (invariants). Therefore, two structures with different
descriptors are necessarily different. According to our notion of
equivalence, atom types and atom numbers as well as all
properties that are derived from the graph describing the bond
network are invariants. We consider the following invariants:
atom types, ligand graph, ligand coordination mode, and
properties derived from the bond network and from several of
its simplified versions, such as the dimensionality of the net, its
topological indices, and possible interpenetration. In contrast to
atomic positions, symmetries, cell parameters, volumes, or
surface areas, our methodology is independent from distortion,
which makes it very robust and reliable. Our set of invariants
does not provide a complete invariant, meaning that there
might exist different structures that cannot be distinguished by
the set of descriptors. Such an example would be a pair of
structures whose bond networks were practically indistinguish-
able by their topolo%ical indices (e.g, net topology, vertex
symbol, point symbol”®), which is the case for stereoisomers.
Excluding one couple of enantiomers, we have not come across
an example in the 502 CoRe MOF database where our
invariants wrongly identify two structures as identical.

All analyses have been performed using the software package
ToposPro.”” We found that the 502 CoRe MOF database of
502 relaxed structures with DDEC partial atomic charges
contains 48 structures with duplicates, some of them being
reported several times, leading to 78 redundant entries. MOF-5
is the most often listed structure with 17 entries.

B SIMILARITIES OF REPORTED MATERIALS

Given the large number of deposited structures, it is inevitable
to use an algorithm to automatically detect similar structures
and duplicates. The results of our representative study of the
502 CoRe MOF database, the CSD refcodes of each structure
(with all bibliographic references), all chemical data, the
analyses of the nets, and a list of all duplicates is given in the
Supporting Information.

At present, we often rely on visual inspection to determine
whether a newly reported crystal structure is similar to one of
the existing materials, which is, given the ever-increasing
number of reported MOF structures, close to impossible.
Interestingly, even for a single pair of frameworks visual
inspection might not be sufficient to determine with confidence
whether they are identical or not. To illustrate this point, we
consider three structures with the simple composition [Li-
(isonicotinate)], XUNGOD, XUNHAQ, and XUNGU]J, which
contain only C, H, Li, N, and O atomic species and which all
form three-dimensional porous networks. The experimental
structures contain different solvent molecules (morpholine, N-
methylpyrrolidinone, and dimethylformamide, respectively)
and have different space groups (P1, P2,, and P2,/n). They
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are reported in the same publication®® and are correctly stored
as different structures in the CSD. Figure 1 shows a striking
similarity, and one could easily conclude that the frameworks
have the same topology.

Figure 1. XUNGOD (left) and XUNGUJ (right) in [100] projection
(top) and [010] projection (bottom). The two frameworks have
different topologies, as can be seen by simplifying the adjacency matrix.

Indeed, the authors assigned to all frameworks the same
topological type sra (with Li,O, dimers as 4-c node), without
naming it. (We use the RCSR three letter names” for net
topologies, when available, or else ToposPro TTD names.*’)
However, the ligands of XUNGOD have a connectivity to the
metals different from that of the ligands of XUNHAQ and
XUNGUJ. All three frameworks contain infinite rod-shaped
structural units aligned parallel to each other, which is clearly
seen after removing dangling atoms (1-c vertices) and
suppressing 2-coordinated atoms (2-c vertices). (Figure 2).

Figure 2. Underlying nets after simplification of 1-c and 2-c vertices,
grown up to the fifth coordination sphere around the O atom for
XUNGOD (left) (CS: 3,7,14,26,40) and XUNGU]J (right) (CS:
3,7,14,26,42). The central O atom is marked in red, yellow balls are
vertices belonging to the second to fourth coordination spheres, and
green balls denote vertices of the fifth coordination sphere.

The analysis of the coordination sequence (CS) of atoms in
the simplified net shows that XUNHAQ and XUNGU]J have
the same CS for all atoms and share the net topology, while the
CS of XUNGOD is different. For example, the CS of the O
atom differs for the fifth coordination sphere (Figure 2). The
frameworks of XUNHAQ and XUNGUJ are duplicates but are
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consequently different from XUNGOD. These subtleties
cannot be found by visual inspection but are only detectable
by a more sensitive graph analysis using the simplified
adjacency matrix and topological indexes such as the
coordination sequences (CS).

An example of two structures that have identical frameworks
is the pair AMILUE and AMIMEP,"' two versions of
[Zn,(urotropin),(2,6-naphtalenedicarboxylato),]. They arise
from a study of different framework—host interactions:
AMIMEP contains guest ferrocene molecules that are not
present in AMILUE. However, the frameworks (Figure 3) are

Figure 3. AMILUE (left) and AMIMEP (right) in [001] (top) and
[100] (middle, bottom) projection. The cleaned frameworks are
identical.

too complicated to be reliably identified as identical by visual
inspection, which is additionally hindered by the difference in
the cell parameters and a shift of the unit cells.

Two identical frameworks of [Zn,(bpdc);bpy] (bpdc®™ =
biphenyldicarboxylate dianion, bpy = 4,4'-bipyridine), which
were originally reported as two different structures, are
HEGJUZ" and XUVHEB.” The two publications do not
refer to each other. This is not surprising, since HEGJUZ has
space group P2;/n and some disorder on the solvated
dimethylformamide, while XUVHEB has space group Pbcn
and no disorder on the solvate molecules but instead contains
two additional uncoordinated waters (Figure 4).

Finally, we illustrate that an analysis of the net topology
alone is also not sufficient in general to distinguish frameworks,
since frameworks with different composition can share their net
topologies. Clearly, substituting one atom type with another
will change the structure but not the net. An example is
IBICED*" (or its analogue IBIDAA™), which differs from
IBICAZ** only by the type of halogen atom in the
[Zn(Hal)(mpmab)] framework (Figure S). A more complex
reason for two different structures to share the same net can be
that they are formed from enantiomeric ligands. An example is
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Figure 4. Frameworks of HEGJUZ (left) and XUVHEB (right) in
[010] projection. HEGJUZ and XUVHEB only differ in water
clathrates and a disorder of HEGJUZ. The cleaned frameworks are
identical.

Figure S. Identical frameworks of IBICED (top left) and IBIDAA
(bottom left). IBICON (top right) is their mirror image. IBICAZ
(bottom right) is only distinguished from IBICED and IBIDAA by the
atom types: Br (orange balls) is substituted by Cl (green balls).

IBICON, which is the enantiomeric isomer of IBICED and
IBIDAA. While IBICED and IBIDAA are constructed with the
chiral L ligand and belong to the chiral space group P6,,
IBICON has space group P65 using the D ligand. Comparing
the space groups of chiral structures (e.g, P6; and P6;) will tell
enantiomeric pairs apart, but this is a difficult task for
frameworks taken from the CoRe MOF databases, since all
relaxed structures are stored in the space group P1 and the
original information on the space group is lost.

B METHODS

To automatically search for duplicates, we first compare the atom
types of networks and the composition and the graph of linkers and
subsequently analyze topological properties of the bond network and
its simplifications as described below. This analysis is very robust in
distinguishing networks of different topologies as well as in detecting
skeleton isomers. In principle, it is also possible to find stereoisomers
(enantiomers, cis/trans isomers, conformers) usincg information about
crystal symmetry and geometrical fingerprints.*>*

The bond network of a structure is the graph whose vertices
correspond to the atoms and whose edges correspond to interatomic
bonds. A network, net, or graph is a particular combinatorial structure
that consists of vertices and edges attached to the vertices. The degree
of a vertex is the number of end points of edges connected to it. The
degree of a vertex corresponds to the coordination of an atom. The
bond network is equivalent to the adjacency matrix of a structure: ie.,
the matrix that lists all atoms and the bonds between them. An
underlying net of a structure is a simplified version of the bond network.
It is constructed by adding a vertex for each structural group and
connecting a pair of vertices with an edge if the corresponding
structural groups have a bond between them.*>*” We perform three
different simplifications on the bond network, which we further
analyze. They are illustrated for MOF-$ in Figure 6a.

(1) The simplified adjacency matrix is obtained by deleting isolated
and dangling atoms and suppressing atoms that have only two

Figure 6. Simplifications of MOEF-$ (SAHYOG™): (a) original MOF-S; (b) simplified adjacency matrix, net topology mof; (c) standard
simplification, net topology fff; (d) clusters of the cluster simplification; (e) cluster simplification, net topology pcu; (f) 2-fold interpenetrated

version of MOE-5 (HIFTOG™).
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bonds. Every vertex of the underlying net with degree 1 is
removed together with its adjacent edge, and edges with an end
point of degree 2 are contracted iteratively until the minimal
degree of the graph is 3 (the resulting graph is independent of
the order in which the deletions and edge contractions are
performed) (Figure 6b).

(2) The standard simplification considers metal atoms and organic
ligands of a MOF as its structural units and substitutes the
atoms of each ligand by one dummy atom, usually placed at the
center of mass. In more general terms, anything that is not a
metal is contracted to its center of mass. That applies not only
to organic ligands but also to single nonmetal atoms, such as
oxygen, halogen, or multiatomic noncoordinated species
(anion, cation, solvent) (Figure 6¢).

(3) The motivation of the cluster simplification is to recognize
clusters of atoms by decomposing the structure into pieces with
high connectivity. For each bond, the smallest ring of bonds is
found that contains the bond. The ring sizes are sorted by
increasing values into the sequence a, < g, < ... < ay, where N
is the number of bonds in the structure. If the sequence
contains a pair g, a;,; such that a; — a;,, > 2, bonds whose
smallest rings are formed with fewer than i + 1 bonds are
considered to belong to a cluster while the other bonds connect
two clusters (Figure 6d). The cluster simplification for i is
obtained by substituting each cluster with a dummy atom and
keeping the bonds between clusters (Figure 6e). If there exist
several gaps in the sequence a,, the structure permits several
different cluster simplifications and one cluster simplification is
obtained for each index. Note that identical structures have the
same sets of cluster simplifications.

An unlimited number of simplifications can be performed on top of
each other, and it clearly matters in which order the simplifications are
performed. However, only finitely many nonidentical simplified nets of
a given structure can be obtained, as at some point it is impossible to
further simplify a net. To facilitate the analysis of the network
topology, we perform an adjacency matrix simplification on top of
both the standard simplification and the cluster simplification. While
the topology of the net obtained from simplifying the adjacency matrix
is often too specific to match one of the common three-letter
topologies, the net obtained by the cluster simplification is the most
simplified one and usually carries the topology that is commonly
assigned to a structure. For example, the topology of the net obtained
by simplifying the adjacency matrix of MOF-S got its own name mof
only because it is such a famous structure. However, one would usually
consider MOF-S to be of primitive cubic topology pcu, which indeed
is the topology of the net obtained by performing a cluster
simplification and subsequently simplifying the adjacency matrix.
Simplifying the adjacency matrix of the standard simplified MOF-5
yields a net with topological type fIf.

The standard and cluster descriptions coincide in many cases (239
from 488 structures in the 502 CoRe MOF database: 49%): namely, if
the structure building unit is a single metal atom and the ligand is not
branched, which prevents the underlying net from splitting into several
vertices with degree greater than 2. For example, both simplified
versions of [Cd(isonicotinate),] AVAQIX™® have dia (diamond)
topology.

The topological type of a net is a invariant, as are (extended) point
and vertex symbols. These are weaker notions than the net topology,36
but the combination of the extended point symbol and the vertex
symbol is in praxis able to distinguish different topologies. If a
topology is not identified because it is not contained in the ToposPro
database of topologies, the point symbol and vertex symbol can still be
used to compare two structures. However, two nets with the same net
topology might have different structural building units. For example,
KAYBIX and KAYBUJ®" have the same composition C,CaH;NO,, and
their standard simplified nets both have 5,5T7 topology. However,
they are not duplicates since their ligands are isomers: pyridine-2,5-
dicarboxylate anion and pyridine-2,4-dicarboxylate anion, respectively.
Such a difference can be detected by comparing the graphs of ligands,

which were analyzed by computing the coordination modes of ligands
and metals following the approach of Serezhkin et al.>* A difference in
one of the obtained graph descriptors, namely the coordination mode
of the ligand (in brackets) and an identifier for their composition (in
braces), is sufficient to conclude that two structures are chemically
different. Examples are given in Table 2. Coordination isomers and
illustrated in Figures SII and SI2.

The topological type of a framework contains no information on
interpenetration, but ToposPro is able to determine the degree of
interpenetration. We add this check to our analysis and distinguish
differently interpenetrated versions of a structure. For example,
HIFTOG" is a 2-fold interpenetrated version of MOEF-5 (Figure
6f). It is also possible to detect rare cases of entanglement isomers by
using the extended ring net.>>>*

To analyze the 502 CoRe MOF database, we performed the steps
given below. They turned out to give a test, which is not only sufficient
but also necessary to distinguish MOFs up to enantiomers.

We did not compare the exact number of atoms, since the CoRe
MOF database contains structures given in multiples of the unit cell
(e.g, Figure 7ab), but the ratios between elements and between

Figure 7. (a) SAKRED and SEFBOV, (b) KAXQOR and ZERQOE,
and (c¢) GOMRAC and GOMREG are duplicates in the 502 CoRe
MOF database since their physical structures differ only by some
disorder.

central atoms and ligands were determined. At each step, uniquely
determined structures were filtered out and sets of indistinguishable
structures compared during the following steps.

(1) composition (atom types and stoichiometry), ie. empirical
formula

(2) central atom type: ligand graph, composition, and coordination

(3) topological type of the net obtained by standard simplification

(4) topological type of the net obtained by simplifying the
adjacency matrix

(5) topological type of the net obtained by cluster simplification

(6) degree of interpenetration

Clearly, the order of the steps can be interchanged. In particular, the
cost of computing the net type of a more complicated net competes
with the cost of highly simplifying a net. Therefore, interchanging
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Table 1. Compounds with Isomeric Ligands®

refcode compound
MIMVE]  [Zn(nicotinato),]
WIDZOA  [Cd(succinato)(3,3’-(hydrazine-1,2-diylidenedieth-1-yl-1-ylidene)
dipyridine)]
UBACOR  [Zn,(1,1'-biphenyl-2,2",6,6'-tetracarboxylato) (4,4 -bipyridyl) ]
BERGAI [Zn,(3-amino-1,2,4-triazolato),(terephthalato)]
KAYBIX [Ca(pyridine-2,5-dicarboxylato)]
ESEVIH [Zn,(OH)(benzene-1,3,5-tricarboxylato) ]

“The differences are highlighted in boldface.

refcode compound
VACFUBO1  [Zn(isonicotinato), ]
WIFBAQ [Cd(succinato)(4,4’-(hydrazine-1,2-diylidenedieth-1-yl-1-ylidene)
dipyridine) ]
XUYXAR [Zn,(1,1'-biphenyl-2,2',4,4’-tetracarboxylato) (2,2 -bipyridyl)]
QIFLIC [Zn,(3-amino-1,2,4-triazolato), (isophthalato) ]
KAYBUJ [Ca(pyridine-2,4-dicarboxylato)]
FAGREM [Zn,(OH)(benzene-1,2,4-tricarboxylato) ]

steps 3 and 5 will require more effort to compute the simplifications
but less effort to compute the net topologies.

B RESULTS AND DISCUSSION

We investigated the 502 CoRe MOF database with 502 DFT
relaxed structures with assigned DDEC partial atomic charges
as an example. Of these, 488 were considered to be reliable for
comparative analysis. While searching for duplicates, we
performed some simple tests on the integrity of the 502
CoRe MOF database, such as searching for too short
interatomic contacts and wrongly coordinated atoms. That
flagged 66 entries with potential problems. Before we
performed our analysis, we replaced in 46 structures erroneous
atom coordinates by their positions before relaxation to
maintain the net. We furthermore detected errors in 14
structures that were mainly caused by the removal of solvents
that are structural building blocks or attached to the structure
and chemically important or by the removal of charged anions
without balancing the charges. In these cases, it is not surprising
that the DFT optimization dramatically changes the network by
breaking and rejoining valence bonds. We excluded 14
structures, for which hydrogens (CISMATO1, CUNXIS,
CUNXIS10, GIHBII, XUWVEG), anions (AVEMOE, BIC-
DAU, SENWAL, SENWIT, SENWOZ), or cations (VAHSIH,
MODNIC) were missed or excess atoms were present
(JIROY, YIWMIA). Among the removed structures is
AVEMOE,* from which a bridging coordinate sulfate anion
was removed together with a terminal water ligand. As a result,
the removed charge is not balanced and the DFT relaxed
structure has not only a very different cell but even
uncoordinated Ag atoms and the underlying net consequently
differs from the original one. The atomic charges are also
incorrect for BICDAU,*® where terminal acetate ligands were
excluded from the structure and thus could not be taken into
account in the DFT calculations. Details and the list of
problematic structures are given in the Supporting Information.

Duplicates. As can be expected from the generation of the
CoRe MOF database, most of its duplicates originate from
structures in the CSD that differ only by their clathrate solvents.
The CSD refcode of each structure, all chemical data, the
results from the analyses of the nets, and a list of all duplicates
are contained in the Supporting Information. In addition, a list
of structures that should be removed to obtain a duplicate-free
version of the database is given in the Supporting Information.
Here, whenever one representative was correct and the other
erroneous, the correct one is kept, and if all representatives
were correct but were reported with different multiples of the
unit cell, the representative with larger cell volume is removed.
Examples are discussed below.

We followed the procedure outlined in Methods. In the first
step, we found 325 materials uniquely determined by their
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composition and detected a further 163 structures distributed
among 59 unique empirical formulas. We then examined the
structures with the same empirical formula separately by
comparing them in the next step. The second step found a
further 28 uniquely determined structures from the 163, and
the resulting 135 structures with duplicate ligand sets were
distributed among 47 representatives. Among the 28 unique
compounds are six pairs of structures with isomeric ligands (see
Table 1 and Methods for anexplanation).

In the same set of 28 structures, 10 coordination isomers are
found, which differ in the coordination mode of the ligand (in
brackets) in complexes of the same composition (identified by
the same number in braces) (see Table 2).

Table 2. Compounds with the Same Stoichiometric
Compositions and Ligands but Different Modes of Ligand
Coordination

compound refcode ligand
[Cd(ug-biphenyl- HEKTUO C,sH,04[G42]{196}
tlzica,rboxylato)z]
QEKLID, QEKLIDO1  C,H,04[G51]{196}
[Y(benzene-1,3,5- SEHTEF CoH,04[G22]{158}
tricarboxylato)]
LAVSUY CoH,04[G42]{158}
NADZEZ C,H,04[G6]{158}
[Y,(terephthalate);] LAGNOY CgH,0,[K22]{78}
CsH,0,[K4]{78}
LAGNUE CgH,0,[K4]{78}
[Y,(pyridine-3,5- SERJUV C,H,NO,[K22]{290}
dicarboxylato),]
C,H,NO,[K31]{290}
C,H,;NO,[K4]{290}
SERKEG C,H,NO,[K22]{290}

For example, there are two types of [Cd;(u¢-biphenyl-3,4',5-
tricarboxylato),] complexes, in which the hexadentate ligand is
either coordinated in G** mode (HEKTUO®") or in G*' mode
(QEKLID,*® QEKLIDO1°? see Figure SI1). The difference in
the coordination mode also leads to different underlying
topologies of the standard simplified nets, 4,4,6T38 and
4,4,6T24, respectively. The original structures (in the CSD)
differ in addition by terminal ligands, namely dimethylaceta-
mide (HEKTUO) and dimethylformamide (QEKLID, QEKL-
ID01), and water solvates contained in QEKLID and
QEKLIDO1 but not in HEKTUO. Other examples are the
three different clathrate structures of [Y(benzene-1,3,S-
tricarboxylato)] that are distinguished by the coordination
mode of the tricarboxylate: G** (SEHTEF;* dimethylforma-
mide and dimethyl sulfoxide), G** (LAVSUY;* dimethylfor-
mamide), and G° (NADZEZ;"* dimethylformamide and water)
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Table 3. Skeleton Isomers Revealed at the Third Step of the Analysis (Comparing the Topologies of the Nets Obtained from

Standard Simplification)”

isomeric

compound refcode net refcode net
Different Clathrates
[AIPO,] LOFZUB SAV GOMRAC, GOMREG LAU
[Zn(imidazol-1,3-diyl), ] HIFVOIL dft GIZJOP, VEJYUFO01, VEJYUF02 cag
[Zn(HCO,),] KAVROQ  33666T1S  RATDAS02, TESGOO, TESGUU, TESHAB, TEVZEA, TEVZIE, TEVZOK, TEVZUQ  3,6,6T1
[Cu(3,4’-biphenyldicarboxylato)] MOYYEF 4,4T69 MOYY]J 4,4T74
Different (Removed) Terminal Ligands

[Zn(4-(tetrazol-S-yl)benzoato)] WENDIE 4,4,4,4T59 FECWOBO01 gis

“The seven unique structures are underlined.

Chart 1. Detecting Duplicates in the 502 CoRe MOF Database

14 325 28 7

2 39 pairs

removed unique unique unique unique 5 triplets
f I I f ! gl
502 488 163 135 128 126 126 126 | — 2quartets
in 59 in 47 in 45 in 46 in 46 in 48 —~—
Step 1| groups | Step 2 | groups | Step 3 [ groups | Step 4 | groups | Step 5 | groups | Step 6 | groups 1 octet
empirical formula  ligand graph stand. simpl. matrix simpl. cluster simpl.  interpenetration AN

1 septemdecitet

(see Figure SI2). The topologies of the underlying nets
obtained by standard simplification are also different: namely 4-
c sra, 6,6T2, and 6-c htp, respectively. One more striking
example is the pair SERJUV®” and SERKEG,’” which can be
distinguished by the coordination modes of their ligands as well
as by the topologies of their simplified adjacency matrices, while
the topological type of their nets obtained from standard
simplification is stp for both.

Examination of the remaining 135 structures in step 3, i.e.
comparison of their nets obtained from standard simplification,
identifies an additional 7 structures as unique (see Table 3).
The 128 structures so obtained with potential duplicates occur
in 45 unique combinations of composition, ligand symbol, and
topology of the net obtained from standard simplification.

Comparing the topological types of the nets obtained from
the matrix simplification in step 4 detects two more unique
structures (NUTQEZ and XUNGOD), and one quartet of
[Ca(4,4’-sulfonyldibenzoato)] structures (ZERQOE,” KAX-
QOR,** KAXQIL,** KAXQORO01%), originally containing
different clathrates, is split into two pairs of isomers
(ZERQOE-KAXQOR, KAXQIL-KAXQORO01). KAXQOR
and KAXQORO! are the only examples of real polymorphs
in the 502 CoRe MOF database. Therefore, the number of
possible duplicated structures reduces to 126 and the number
of unique representatives increases to 46.

Comparing the topological types of the nets obtained from
cluster simplification in step S does not distinguish any
additional structures, which can be explained by this commonly
used representation being the simplest notion of underlying
nets."” Even on analyzing the large CoRE MOF database with
more than 4700 structures, we did not find any structures that
step S distinguishes but which were not already differentiated
by the previous steps. However, we include the cluster
representation in our analysis for it captures the net topology
that is usually used to classify and describe the topology of a
MOF. Furthermore, the order in which the steps of the
algorithm can be performed is a matter of choice as described
in Methods.

Counting the degree of interpenetration in step 6 allows
differentiation of four isomers. The [Zn,(2,2’-bitiophene-5,5’-
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dicarboxylato),(4,4'-bipyridyl)] framework is twice listed as 2-
fold interpenetrated (GUYLOC, GUYMAP) and the 3-fold
interpenetrated analogue is given two times as well (GUYLUI,
GUYLUIO1). The well-known MOF-5 framework of the
composition [Zn,O(benzene-1,4-dicarboxylato);] is found
twice in its 2-fold interpenetrated version (HIFTOG,
HIFTOGO02), and is listed 17 times as single framework.
Consequently, the number of possibly distinct structures in the
previous list of 126 structures is now 46 + 2 = 48. The
remaining 126 structures cannot be uniquely described by
applying our set of invariants. Indeed, all of the indistinguish-
able structures have multiple entries: we find 39 pairs, 5 triples,
2 quadruples, one structure that is deposited 8 times, and
MOF-5 with 17 entries. Most duplicates are caused by the
removal of different clathrates/solvent molecules from the
original structure. For example, KAXQOR®* and ZERQOE®
(Figure 7b) only differ in the CSD by the CO, adsorbed in
ZERQOE. Similarly, WOWGEU® and GUXLIU® are
independently listed in the CSD only because they contain
different numbers of clathrate water molecules in the pores of
the framework [ALF,(ethylenediphosphonato)]. Two struc-
tures, _]AVNIE68 and FUSW].A,69 differ by water coordinated to
the copper atoms of the framework [Cu;CL,(5-(4-pyridyl)-
tetrazolato),], which is present in JAVNIE but absent in
FUSWIA, as well as by the clathrate molecules dimethylforma-
mide and methanol in FUSWIA and dimethylformamide and
water in JAVNIE. More examples of duplicates caused by
different solvent molecules are the pairs AMIMEP*' and
AMILUE,*" and HEGJUZ** and XUVHEB," which are
discussed in Methods (Figures 3 and 4), SAKRED”’ and
SEFBOV,”" and KAXQOR®* and ZERQOE® (Figure 7a,b).
However, the pair GOMRAC”> and GOMREG’” of AIPO, is a
duplicate due to neglect of the metal disorder (Figure 7c). In
both materials, a third of the aluminum sites are substituted, but
while GOMRAC contains zinc, GOMREG contains manga-
nese. Although the two materials are different, they are both
stored with full occupation of aluminum in the 502 CoRe MOF
database and must therefore be counted as duplicates.

In Chart 1 we summarize the structures that are
distinguished during the six steps of our algorithm applied to
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the 502 CoRe MOF database, leaving 126 duplicates in 48
groups (UNIQUE structures: 325 + 28 + 7 + 2 + 48 = 410):
16% of 488 structures are redundant.

Statistical Errors Caused by Multiple Entries in a
Database. We close with an example of the significance of
cleaning databases from duplicates before drawing statistical
conclusions. The following examination of interpenetration
gives a simple example for a misleading statistical analysis
caused by multiple entries: if we consider all 502 structures of
the 502 CoRe MOF database, we find 58 2-fold, 16 3-fold, 9 4-
fold, 3 S-fold, 1 6-fold, 3 7-fold, and 2 8-fold interpenetrated
structures. However, if duplicates are removed, we find that
there is only one 7-fold interpenetrated structure of [Zn(4-(2-
(pyridin-4-yl)vinyl)benzoato),]: namely, UVARIT = UVAROZ
= UVASAM” (dia). Similarly, the 3-fold interpenetrated
structures contain the double GUYLUI’* and GUYLUIO1,”
and the 2-fold interpenetrated structures contain 7 doubles.
The numbers of interpenetrated structures should instead read
as 51 2-fold, 15 3-fold, 9 4-fold, 3 5-fold, 1 6-fold, 1 7-fold, and
2 8-fold interpenetrated structures (see Chart 2). The degree of
interpenetration is given in the file dealing with duplicates in
the Supporting Information.

Chart 2. Statistics of the Interpenetration

60
Hinterpenetrations without removing duplicates

Hinterpenetration after removing duplicates
50

40

0 I.-_.—

2fold  3fold  4fold  5fold  6fold  7fold  8fold

B CONCLUSIONS

We have presented a rigorous method to distinguish MOFs
that is based on an analysis of the bond network. In contrast to
approaches that rely on comparing atom numbers and cell
parameters or properties such as atom positions, pore volume,
and surface area, we are able to reliably distinguish structures
and respectively detect duplicates, even when frameworks are
distorted. Although superimposable duplicates would be found
by purely geometrical descriptors, even large differences in any
of them do not allow the conclusion that two structures are
different. However, nonidentical structures can be more similar
than two different relaxations of one structure with respect to
purely geometrical descriptors. For example, if a symmetry is
broken by relaxation or if different clathrates induce distinct
symmetries, multiples of the original unit cell can be needed to
describe the relaxed cleaned structure, which makes it useless to
compare the number of atoms or cell parameters. In contrast,
the properties that we obtain from the bond network such as its
atom types, topology, dimensionality, interpenetration, and
point and vertex symbols remain unchanged for all
representations of a structure. It immediately follows that in
order to distinguish two structures, it is sufficient that they
differ in one of these properties.
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As an example, the 502 CoRe MOF database of 502 DFT
relaxed MOFs with assigned DDEC partial atomic charges was
investigated, showing that 15.5% (78) of the structures are
redundant duplicates. A total of 9.2% (46) structural files
contains incorrect atomic coordinates that affect the network
topology and were replaced before the study, and 2.8% (14)
structures have wrong framework compositions. In all, 502 —
78 — 14 = 364 structures are reliable, which is 72.5% of the
database. The analysis was performed using ToposPro.
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