Photophysics of Deep Blue Acridane- and Benzonitrile-Based Emitter Employing Thermally Activated Delayed Fluorescence

We designed and synthesized a new organic light-emitting diode (OLED) emitter, SBABz4, containing spiro-biacridine donor (D) in the core surrounded by two benzonitrile acceptors (A). The dual A-DxD-A structure is shown to provide pure-blue emission in relation to its single A-D counterpart. Time-resolved photoluminescence (TRPL) recorded in the broad dynamic range from solutions and solid films revealed three emission components: prompt fluorescence, phosphorescence, and efficient thermally activated delayed fluorescence (TADF). The last is independently proven by temperature-dependent TRPL and oxygen-quenching PL experiment. From the PL lifetimes and quantum yield, we estimated maximum external quantum efficiency of 7.1% in SBABz4-based OLEDs and demonstrated 6.8% in a working device.


Published in:
Journal Of Physical Chemistry C, 122, 39, 22796-22801
Year:
Oct 04 2018
Publisher:
Washington, AMER CHEMICAL SOC
ISSN:
1932-7447
Keywords:
Laboratories:




 Record created 2018-12-13, last modified 2019-06-19


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)