Abstract

The effects of thermal disorder on the electronic properties of organic/inorganic halide perovskites were investigated using ab initio molecular dynamics simulations. It was generally found that band gap variations due to effects of thermal disorder are the largest in materials with the smallest lattice constant. The factors that may lead to departure from this trend include the degree of rotational and translational motion of the organic cation and the strength of its dipole. It was found that the contribution of the flexible organic part to the band gap variations is considerably smaller than the contribution of the inorganic part of the material. The results of our simulations indicate that band gap variations in halide perovskites fall within the range exhibited in inorganic semiconductors.

Details

Actions