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SUMMARY

The discovery of cancer-associated alterations has
primarily focused on genetic variants. Nonetheless,
altered epigenomes contribute to deregulate tran-
scription and promote oncogenic pathways. Here,
we designed an algorithmic approach (RESET) to
identify aberrant DNA methylation and associated
cis-transcriptional changes across >6,000 human tu-
mors. Tumors exhibiting mutations of chromatin re-
modeling factors and Wnt signaling displayed DNA
methylation instability, characterized by numerous
hyper- and hypo-methylated loci. Most silenced and
enhanced genes coalesced in specific pathways
including apoptosis, DNA repair, and cellmetabolism.
Cancer-germlineantigens (CG)were frequentlyepige-
nomically enhanced and their expression correlated
with response to anti-PD-1, but not anti-CTLA4, in
skin melanoma. Finally, we demonstrated the poten-
tial of our approach to explore DNA methylation
changes inpediatric tumors,which frequently lackge-
netic drivers and exhibit epigenomic modifications.
Our results provide a pan-cancer map of aberrant
DNAmethylation to inform functional and therapeutic
studies.
INTRODUCTION

The cell epigenome provides a fundamental infrastructure to co-

ordinate spatiotemporal gene expression and cell-type-specific

patterns (Shen and Laird, 2013). This organization ranges from

directly decorating DNA molecules and histone proteins (Jones,

2012; Zhou et al., 2011) to shaping long-range DNA contacts be-

tween regulatory elements (Bonev and Cavalli, 2016; Fatica and

Bozzoni, 2014; Long et al., 2016). Acting through multiple hierar-

chical layers, epigenetic modifications enable and repress tran-

scription and stably determine cell identity. Cancer cells exhibit

profound modifications of this epigenetic infrastructure (Baylin
1066 Cell Reports 25, 1066–1080, October 23, 2018 ª 2018 The Auth
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and Jones, 2011; Esteller, 2008), starting from its foundation,

DNA methylation (Esteller, 2007; Klutstein et al., 2016). Aberrant

DNA methylation in cancer has primarily been observed in the

form of global hypo-methylation within intergenic regions, espe-

cially those enriched for Alu and LINE-1 repeats (Ehrlich, 2009),

punctuated by hyper-methylation of CpG dense regions,

referred to as CpG islands (CGI). Unlikemost of DNA hypo-meth-

ylated regions, hyper-methylated CGI are frequently located at

gene promoters and have been associated with silencing of tu-

mor suppressors (Esteller, 2007) and incomplete differentiation

(Widschwendter et al., 2007), directly linking DNA methylation

changes to oncogenic transformation. In turn, the development

of pharmacological inhibitors of DNA methylation has provided

novel therapeutic opportunities (Swisher et al., 2017).

Aberrant DNA methylation in human cancers has mostly been

investigated through two main approaches: (1) analysis of global

DNAmethylation patterns (Noushmehr et al., 2010; Toyota et al.,

1999) and differentially methylated regions (Amabile et al., 2015),

and (2) identification of mRNA silencing of genes of interest by

hyper-methylation (Esteller, 2007; Cancer Genome Atlas

Research Network, 2012). The first approach has gained

momentum with the application of high-throughput arrays to

thousands of human tumors. Importantly, clustering of cancer

samples based on variably DNA methylated loci led to the iden-

tification of molecularly and clinically relevant subtypes, most

notably tumors characterized by frequent hyper-methylation at

CGI, also known as CpG island methylator phenotype (CIMP)

(Issa, 2004). Recurrently hyper-methylated loci in cancer were

found enriched for polycomb targets involved in cell differenti-

ation, thus likely to sustain a stem cell phenotype (Widsch-

wendter et al., 2007), and associated with a mitotic signature

upregulated in cancer and pre-cancerous lesions (Yang et al.,

2016). The oncogenic role of specific targets within hyper-meth-

ylated regions has been highlighted by targeted profiling of

known and candidate tumor suppressors. Gene silencing by

promoter hyper-methylation have been found for established

cancer genes, such as VHL (Herman et al., 1994) and CDKN2A

(Cancer Genome Atlas Research Network, 2012) and has pro-

vided markers of therapeutic response, such as for MGMT

(Weller et al., 2010) andBRCA1 (Cancer Genome Atlas Research

Network, 2011). More recently, unbiased approaches have been
or(s).
creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. RESET Identifies Hyper- and Hypo-Methylation Events across Human Cancers

(A) Schematic pipeline of the first step of the RESET algorithm.

(B and C) Hyper-methylation (B) and hypo-methylation (C) event frequencies in 6,010 human tumors (black dots) across 23 cancer types. Frequencies are

estimated as the percentage of probes found hyper-methylated (hypo-methylated) compared to normal tissues. Tumor types are sorted by increasing hyper-

methylation (hypo-methylation) mean frequency. Molecular subtypes associated with hyper-methylation (hypo-methylation) event frequencies are shown at the

bottom (p value < 0.05), samples are sorted by aberrant methylation frequency, samples with the indicated annotation are color-coded, otherwise they are left

white).

(legend continued on next page)
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proposed to analyze DNAmethylation changes in cancer. Exam-

ples are methods integrating multiple data types to study hyper-

methylation within pathway modules (Jiao et al., 2014) or

develop cancer risk predictors (Teschendorff et al., 2012).

Finally, explorations of silenced genes by DNA hyper-methyl-

ation have utilized statistical tests to assess gene expression dif-

ferences between methylated and unmethylated tumors in an

unbiased and systematic way (Hinoue et al., 2012; Sepulveda

et al., 2016; Cancer Genome Atlas Network, 2015). However,

these approaches often suffer from sample size biases that favor

frequently altered genes (see STARMethods), and have focused

on silencing events within specific tumor types.

Overall, in contrast to systematic pan-cancer investigations of

genetic alterations (Bailey et al., 2018; Beroukhim et al., 2010;

Lawrence et al., 2013), analyses of aberrant DNA methylation

and associated transcriptional changes have so far largely

been limited to specific tumor types or genes of interest. As

such, several questions remains outstanding: How does the

extent of aberrantly methylated loci compare among different tu-

mor types?Which genes and pathways are frequently aberrantly

methylated? How genetic alterations and DNA methylation

events associate in cancer? And what are the functional and

therapeutic implications of such alterations? Here, we explore

these questions by systematically and unbiasedly investigating

the genetic, DNA methylation, and transcriptomic profiles of

more than 6,000 human tumors (Table S1), using a newly de-

signed algorithmic approach.

RESULTS

To systematically identify candidate functional DNA methylation

changes in cancer, we (1) first, identify gene transcription start

sites with aberrant methylation states in cancer samples

compared to normal tissue (hyper- and hypo-methylation calling)

and (2) second, we query whether aberrant methylation states

associate with silenced or enhanced mRNA expression of the

corresponding genes (silencing and enhancing events identifica-

tion). This two-step approach models the distributions of DNA

methylation at specific loci in normal and tumor samples and

quantifies the strength (or effect size) of the associations be-

tween DNA methylation and mRNA expression changes (see

STAR Methods). Our computational algorithm is thus a resource

to detect epigenetically silenced and enhanced targets in cancer

(RESET). In the following, we will separately present the results

associated to each step (1 and 2) and, unless stated otherwise,

the term ‘‘epigenetic’’ will be used to connotate processes asso-

ciated to DNA methylation.
(D) We tested 505 genetic alterations for their association with increased hyp

FDR q values are reported as –log10(q) and significant associations (q < 0.01) are

cytoband for amplifications (A) and deletions (D). Candidate targets of focal amp

ACC, adrenocortical carcinoma; AML, acute myeloid leukemia; BLCA, bladde

luminal/B. luminal, luminal breast invasive carcinoma; CESC, cervix squamous

noma; GBM, glioblastoma multiforme; HNSC, head and neck squamous cell car

carcinoma; KIRP, kidney renal papillary cell carcinoma; LGG, low grade glioma; L

squamous cell carcinoma; OV, ovarian carcinoma; PRAD, prostate adenocarci

THCA, thyroid papillary carcinoma; UCEC, uterine corpus endometrial carcinoma

available in Table S1.

See also Figure S1 and Table S2.
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Hyper- and Hypo-Methylation across 24 Human Cancer
Types
We applied RESET to 23 cancer cohorts (Table S1) molecularly

profiled by The Cancer Genome Atlas (TCGA) for a total of

6,010 human tumors with available DNA methylomes gener-

ated by the Illumina Infinium HM450 array. For 5,633 samples,

we had matched RNA-sequencing data. In addition, we sepa-

rately analyzed a cohort of 600 serous ovarian tumors that

were profiled by TCGA using the HM27 array, 265 of which

were analyzed by RNA-sequencing. To estimate the methyl-

ation status in normal conditions, we collected DNA methyl-

ation data for 702 normal tissue samples from 14 TCGA cancer

cohorts. In this study, we focused on pan-cancer DNA methyl-

ation events and, thus, we studied only probes that exhibited

a consistently high or low methylation status across all the

normal tissues that we analyzed (Figures S1A and S1B). Probes

were further filtered to include only those proximal to gene

transcription start sites (TSS probes) (Figures S1C–S1H;

STAR Methods). In total, we identified 64,414 probes—map-

ping to 12,053 genes—that have low DNA methylation across

all normal samples, and 3,423 probes—mapping to 2,006

genes—that have high DNA methylation across all normal sam-

ples (Table S2).

The fractions of hyper- and hypo-methylated TSS probes

determined by RESET (step 1, Figure 1A) varied across tumor

types and were associated with molecular subtypes (Figures

1B, 1C, and S1I for ovarian cancer). Our results recapitulated

known associations between recurrent hyper-methylation and

tumor subtypes characterized by IDH1 (R132) and IDH2 (R140

and R172) mutations in glioma (Noushmehr et al., 2010), micro-

satellite instability (MSI) in uterine, colorectal, and stomach can-

cers (Cancer Genome Atlas Network, 2012; Kandoth et al., 2013;

Cancer Genome Atlas Research Network, 2014), and viral infec-

tion (EBV) in stomach cancer (Figure 1B). Conversely, IDH-wild-

type glioma and HPV-negative cervical tumors exhibited high

percentages of hypo-methylated loci. Interestingly,MSI stomach

tumors also exhibited a significantly higher percentage of hypo-

methylated loci than micro-satellite stable tumors (Figure 1C).

Overall, the fraction of aberrantly methylated probes did not

correlate with tumor purity, ploidy, or infiltration of specific

immune cell populations (Figure S2A; Table S2). Instead, the

fraction of hypo-methylated probes correlated with a recently

proposed stemness signature based on hypo-methylation of

specific loci (Malta et al., 2018) and with the extent of chromo-

somal alterations in lung, prostate, stomach, and uterine carci-

noma, supporting a link between DNA hypo-methylation and

chromosomal instability (Gaudet et al., 2003).
er- (top) and hypo-methylation (bottom) within each tumor type. Wilcoxon

color-coded (blue/red) and labeled by gene symbol for somatic mutations or

lifications and deletions are reported in brackets.

r carcinoma; BRCA basal/B. basal, basal breast invasive carcinoma; BRCA

cell carcinoma; CRC, colon and rectum carcinoma; ESCA, esophageal carci-

cinoma; KICH, kidney chromophobe carcinoma; KIRC, kidney renal clear cell

IHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung

noma; STAD, stomach adenocarcinoma; SKCM, skin cutaneous melanoma;

; UCS, uterine carcinosarcoma. The number of samples for each tumor type are
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Figure 2. DNA Methylation Instability

(A and B) Comparison of rank positions obtained by each tumor type with respect to hyper-methylation (top) or hypo-methylation (bottom) event frequencies.

(A) For 19 tumor types the rank positions based on hyper- and hypo-methylation shift by at most 8 positions (corresponding to one-third of the total) showing a

high rank correlation (Spearman’s correlation = 0.74, p = 0.0005). These 19 cancer types were grouped into cancers with low, medium, and high aberrant

methylation frequency, as indicated by the color key.

(B) Only 5 tumor types scored at the top of one rank and at the bottom of the other.

(legend continued on next page)
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Next, we tested a set of 505 recurrent genetic alterations in

cancer (Mina et al., 2017) for association with aberrant DNA

methylation (Table S2). Many of the alterations that scored as

significant (q < 0.01) were reported enriched in the molecular

subtypes highlighted above. These include IDH1, CIC, and

NOTCH1 mutations in glioma, which characterize IDH mutant

tumors with 1p/19q co-deletion (Brat et al., 2015), BRAF muta-

tions in MSI colorectal cancer (Cancer Genome Atlas Network,

2012), and PIK3CA and ARID1A mutations in EBV+ stomach

tumors (Cancer Genome Atlas Research Network, 2014) (Fig-

ure 1D). Significant associations with hypo-methylation events

were found for NSD1 mutations in head and neck cancer,

BRAF mutations in thyroid carcinoma, and alterations associ-

ated with chromosomal instability, such as CDKN2A deletions

in glioma and papillary kidney tumors, and TP53 mutations and

copy number amplifications in stomach and uterine cancer

(Figure 1D). The latter were consistent with the observed corre-

lation between the fraction of hypo-methylated probes and chro-

mosomal instability in these tumor types (Figure S2A).

The majority of tumor types (19 out of 24) with low (high) mean

hyper-methylation frequency also exhibited low (high) mean

hypo-methylation frequency (Figure 2A, Spearman rank correla-

tion = 0.74, p = 0.0005). Notable exceptions were low grade gli-

oma (LGG) and acute myeloid leukemia (AML), which were both

enriched for IDH1/2 mutations and hyper-methylated loci (Fig-

ure 2B). A considerable number of samples exhibited high

numbers of both hyper- and hypo-methylated TSS probes (Fig-

ure 2C). We refer to these samples as characterized by DNA

methylation instability (DMI), to distinguish them from cases

where only hyper-methylation or hypo-methylation is frequent.

We scored the extent of DMI in each sample by combining the

percentages of hyper- and hypo-methylated loci using the

F2-measure (color-coded in Figure 2C). DMI scores did not corre-

late with tumor purity, ploidy, or immune infiltration (Figure S2B).

Using these scores, we assessed the association between

recurrent genetic alterations and DMI, both within each tumor

type and at a pan-cancer level (Table S3). The two analyses

concordantly identified a set of recurrent mutations as enriched

in samples with high DMI scores (Figure 2D). DMI-associated

mutated genes were enriched for chromatin remodeling factors

(p = 4.2E�8, false discovery rate [FDR] <2E�4, Table S3), such

as H3K36 methyltransferases NSD1 and SETD2, SWI/SNF com-

ponents ARID2 and ARID1B, and lysine methyl-transferases

KMT2C and KMT2D. Additionally, alterations of Wnt signaling

were significantly associated with DMI (p = 3.3E�4, FDR <0.05),

especiallymutations of b-catenin (CTNNB1) and theWnt-inhibitor

RNF43. These mutations were previously found associated with

micro-satellite instability (MSI) in gastric tumors (Cancer Genome

Atlas Network, 2012; Cancer Genome Atlas Research Network,
(C) Percentage of probes in each tumor sample that are hyper- (x axis) and hypo-m

(DMI) score (see STAR Methods).

(D)We tested 505 genetic alterations for their association with DMI scores both wit

Wilcoxon p value) and at a pan-cancer level (y axis, ANOVAp value). Alterations sig

green, amplifications in red) and labeled as in Figure 1D.

(E) Normalized fraction of hyper- (H) and hypo-methylated (h) probes in low grad

stomach adenocarcinoma (STAD). The following tumor subtypes are highlighted:

AML samples with IDH1 (yellow) and IDH2 (brown) mutations, EBV-positive STAD

See also Figure S2 and Table S3.
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2014), in apparent contradiction with reported associations be-

tween MSI and CIMP (Hinoue et al., 2009). This observation

prompted us to re-evaluate tumors subtypes in the TCGA cohort

that were previously classified CIMP. Tumors with IDH1/2 muta-

tions (IDH mutant) and EBV-positive stomach adenocarcinoma

were characterized by high fractions of hyper-methylated and

low fractions of hypo-methylated TSS probes (Figure 2E).

Conversely, MSI tumors and FHmutant renal papillary carcinoma

exhibited high fractions of both hyper- and hypo-methylated TSS

probes (Figures 2E and S2C). These results indicate that, by ac-

counting for both aberrant hyper- and hypo-methylation, we can

distinguish between ‘‘pure’’ CIMP (i.e., tumors exhibiting highly

recurrent hyper-methylation of gene TSS but not hypo-methyl-

ation), and tumors characterized by DMI (i.e., frequent hyper

and hypo-methylation of gene TSS).

Epigenetically Silenced and Enhanced Targets across
24 Human Cancers
RESET was run independently in each of the 24 cancer cohorts

(Figure 3A), and genes scoring as significant in at least one tumor

type were retained and ranked based on the sum of their signifi-

cant scores (Figures 3B and 3C; Table S4). In total, we identified

581 epigenetically silenced and 85 epigenetically enhanced

genes (Figures 3B and 3C). Silenced targets included previously

reported targets of recurrent hyper-methylation such as MLH1,

BRCA1, FANCF, and CHFR (Lahtz and Pfeifer, 2011; Cancer

Genome Atlas Research Network, 2011; Cancer Genome Atlas

Network, 2012; Toyota et al., 2003) and other cancer-associated

genes including the cell-cycle-regulatorCDKN1C, the transform-

ing growth factor b (TGF-b) signaling genes TGIF1 and ACVR1C,

and the pro-apoptotic genes FAS, BIRC3, TNFRSF1A, and

TNFRSF10A. Similarly, epigenetically enhanced targets included

positive controls such as MAGEC2 (Van Tongelen et al., 2017)

and SYCP2 (Degli Esposti et al., 2017), and known oncogenes,

such as MYCN, BCL2L10, CTNNB1, IRS2, and IGF2. Only 3 out

of 581 silenced and 3 out 85 enhanced target genes showed sig-

nificant associations between their alteration patterns and the

estimated fraction of infiltrated non-tumor cells (q value <0.1,

fold-change >1.5, Table S4) and, for each gene, this association

was found only within one tumor type.

The roster of silenced and enhanced targets identified by

RESET included several genes whose roles in cancer are still

largely unexplored, such as PXMP4 and PNLDC1, that scored

as significant across multiple tumor types (Figures 3D and 3E).

PXMP4 is a peroxisome component and was previously shown

to become silenced in an androgen-insensitive prostate cancer

subline (AI-LnCAP), whereas its transient re-activation was able

to impair cell proliferation (Wu and Ho, 2004). Here, PXMP4

was found to be hyper-methylated and silenced in 8 tumor types,
ethylated (y axis). Samples are color-coded by their DNAmethylation instability

hin each single tumor type (top scoring association for each event on the x axis,

nificant in both tests (FDR <0.1 for both analyses) are color-coded (mutations in

e glioma (LGG), acute myeloid leukemia (AML), colorectal cancer (CRC), and

LGG IDH mutant (yellow) and LGG IDH-mut with 1p/19q co-deletion (brown),

(black), and STAD and CRC tumors with micro-satellite instability (MSI, pink).
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(legend continued on next page)
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with incidences varying between 3% (skin melanoma) to 31%

(endometrial cancer) (Figure 3D). PNLDC1 encodes for a deade-

nylase enzyme expressed in mouse embryonic stem cells and

suppressed byDNAmethylation during cell differentiation (Anas-

tasakis et al., 2016). PNLDC1 was altered in 9 tumor types, with

incidences varying from 1% (luminal breast cancer) to 22%

(head and neck carcinoma) (Figure 3E). Both genes are thus

altered across multiple tumor types, albeit only epigenetically,

and are associated with potential oncogenic pathways such as

cell proliferation and differentiation.

To support the association between aberrant DNAmethylation

andmRNA expression for our set of epigenetically altered genes,

we analyzed colorectal and lung cancer cell lines that were pro-

filed by RNA-sequencing before and after treatment with the

DNA-demethylating agent 50azacitidine (50AZAdC). In all cases,

the vast majority of RESET-targets (n = 581) that were methyl-

ated in the analyzed cell lines increased expression upon treat-

ment with 50AZAdC (Figure S3D). Next, we selected 4 top scoring

genes (PXMP4 and H2AFJ among silenced targets, PNLDC1

and SYCP2 among enhanced targets) and verified their methyl-

ation and expression status in a broader panel of cancer cell lines

(Iorio et al., 2016). Reported mRNA expression of these genes

was negatively correlated with promoter DNA methylation (Fig-

ures 3F, 3H, and S3F). We validated mRNA levels of the 4 genes

by quantitative PCR (qPCR) (Figure S3G) and re-assessed them

after 7 days of treatment with 50AZAdC. The treatment restored

expression of all tested genes in the cell lines where they were

silenced, and this effect wasmore pronounced in cell lines where

the targets exhibited the most extreme DNA methylation and

transcriptional downregulation (Figures 3G, 3I, and S3H). These

results indicate that RESET can identify bona fide epigenetically

regulated genes in cancer.

Interdependencies between Genetic and Epigenetic
Events
Out of the 581 silenced and 85 enhanced targets identified by

RESET, only a handful had been previously found as recurrently

mutated,deleted,oramplified incancer (Minaet al., 2017) (Figures

4A and 4B). A few targets in our datasets exhibited patterns of co-

occurrence between promoter hyper-methylation and loss of het-

erozygosity, among which genes in chromosomes 1p and 19q,

which are frequently deleted in IDH mutant LGG. These included

the candidate tumor suppressors CD58 (Challa-Malladi et al.,

2011) andEMP3 (Alaminos et al., 2005) that exhibited significantly
(D) PXMP4 mRNA expression (y axis) is compared in epigenetically silenced (b

epigenetic silencing of PXMP4 was significant.

(E) PNLDC1 mRNA expression (y axis) is compared in epigenetically enhanced

epigenetic enhancement of PNLDC1 was significant.

(F) DNA methylation (x axis) and mRNA expression (y axis) of PXMP4 in 6 cancer c

gene and summarized by boxplots.

(G) Relative PXMP4 expression measured by qPCR in cell lines with high methyla

(black filled bars) compared to untreated cells (black contoured bars).

(H) DNAmethylation (x axis) andmRNA expression (y axis) of PNLDC1 in 3 cancer

gene and summarized by boxplots.

(I) Relative PNLDC1 expression measured by qPCR in cell lines with high methyla

(black filled bars) compared to untreated cells (black contoured bars).

In all the analyses, qPCR experiments were repeated three times and averaged.

See also Figure S3 and Table S4.
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lower expression when copy number losses were accompanied

by promoter hyper-methylation (Figures S4A and S4B). Similarly,

we found synergistic CTNNB1 upregulation in cervical carci-

nomas with concurrent promoter hypo-methylation and gain-of-

function mutations (Figure S4C). Within each tumor type, genetic

alterations associated with specific molecular subtypes (e.g.,

MSI, CIN, EBV+, and IDH mutant gliomas) were associated with

an increased number of epigenetic silencing and/or enhancing

events (Figure 4C; Table S5). To correct for tumor types and sub-

types, we assessed co-occurrence and mutual exclusivity be-

tween genetic and epigenetic alterations within the pan-cancer

cohort using the SELECT algorithm (Mina et al., 2017) (Table S5).

BRAFmutations were found frequently mutually exclusive with

multiple silencing events (Figure 4D), especially occurring in skin

melanoma, whereas, IDH1mutations co-occurred with the high-

est number of epigenetic silencing events (Figure 4E). Silenced

genes co-occurrent with IDH1mutations included several meta-

bolic regulators involved in oxidation-reduction processes

(p value = 1.8E�5) and nicotinamide adenine dinucleotide

(NAD) cycle (Chiarugi et al., 2012), such as NMRAL1, ACADS,

CYB5R1, and NMNAT3. The latter two were also concurrent

with IDH2 mutations. In addition, silencing of the candidate tu-

mor suppressors HTATIP2 (Dong et al., 2015) and SH2D4A

(Ploeger et al., 2016) (Figure 4F) was co-occurring with IDH1mu-

tations in both glioma and melanoma. Interestingly, mutations of

CTNNB1 and NSD1 were significantly associated with DMI (Fig-

ure 2D) and, consistently, co-occurrent with both silencing and

enhancing events (Figure 4E). CTNNB1 was significantly co-

occurrent with 5 enhancing and 10 silencing events (Figure 4G),

most of them prevalent in liver hepatocellular carcinoma and tar-

geting Wnt-related genes. These included enhanced expression

of the glutamine synthetaseGLUL, a direct Wnt and Hippo target

(Cox et al., 2016; Lachenmayer et al., 2012), and of the synovial

sarcoma associated gene SSX1, recently implicated in Wnt-

target activation (Cironi et al., 2016). Similarly, the Wnt repressor

NPHP4 (Borgal et al., 2012) was found frequently silenced in

CTNNB1 mutant tumors. In addition, CTNNB1 mutations signif-

icantly co-occurred with silencing of the heat-shock factor

DNAJA4 in skin melanoma, liver, adrenocortical, and stom-

ach carcinoma. DNAJA4 has been shown to promote ApoE

expression, which in turn suppresses invasion and metastasis

in melanoma (Pencheva et al., 2012). These results suggest

DMI is associated with both the emergence and selection of

epigenetic alterations promoting oncogenic processes.
lue-contoured dots) and wild-type (gray dots) cases in 8 tumor types where

(red-contoured dots) and wild-type (gray dots) cases in 9 tumor types where

ell lines. DNA methylation values are reported for each probe that maps to the

tion of PXMP4 is strongly enhanced upon treatment with 50AZAdC for 7 days

cell lines. DNAmethylation values are reported for each probe that maps to the

tion of PNLDC1 is strongly enhanced upon treatment with 50AZAdC for 7 days
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Figure 4. Interdependencies between Genetic and Epigenetic Alterations

(A and B) Gene targets of epigenetic silencing (blue contoured circle, A) and enhancing (red contoured circle, B) events are intersected with gene targets of

recurrent somatic mutations (green circles), copy number deletions (blue circle, A) and copy number amplifications (red circle, B).

(C) We tested 505 genetic alterations for their association with the incidence of epigenetic silencing (top) and enhancing (bottom) events within each tumor type.

Wilcoxon FDR q values are reported as –log10(q) and significant associations (q < 0.01) are color-coded (blue/red) and labeled as in Figure 1D.

(D and E) Using SELECT, we tested 505 recurrent genetic alterations in cancer for mutual exclusivity and co-occurrence with our set of 581 epigenetic silencing

and 85 enhancing events in cancer. Genetic alterations that are mutually exclusive (D) or co-occurrent (E) with multiple epigenetic silencing (blue) or enhancing

(red) events. Genetic alterations are ranked by the sumof SELECT scores and the actual number of significant associations found by SELECT are reported (# hits).

Genetic alterations are labeled as in Figure 1D.

(F and G) Co-occurrence (left) and mutual exclusivity (right) interactions between IDH1 (F) or CTNNB1 (G) and silencing and enhancing events. Significant events

(above the red dotted line) are color-coded (silencing events, blue contoured dots; enhancing events, red contoured dots) and representative targets are labeled.

See also Figure S4 and Table S5.
Cancer Pathways Affected by Epigenetically Silencing
and Enhancing Events
Functional enrichment analysis performed on epigenetically

silenced genes found transcriptional regulation, apoptosis, and
cell metabolism as the most enriched categories (Figure 5A;

Table S4). In addition, frequently methylated polycomb targets

(Widschwendter et al., 2007) were also moderately enriched

within our set of silenced genes (p value = 0.025). In contrast,
Cell Reports 25, 1066–1080, October 23, 2018 1073
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epigenetically enhanced geneswere highly enriched for germcell

development, corresponding to a high presence of cancer-germ-

line (CG) antigen genes (CG genes), as well as cell proliferation

and chromatin organization, both associated with epigenetic

enhancing of oncogenes and transcriptional regulators such as

MYCN, CTNNB1, and IGF2 (Figure 5B).

Cell metabolism is characteristically altered in most cancers

(Cairns et al., 2011), and mutations of the isocitrate dehydroge-

nases IDH1 and IDH2 establish a critical link between altered

metabolic processes and increased DNA methylation (Lu and

Thompson, 2012). IDH-mutations in our dataset characterized

77% of LGG, and LGG tumors exhibited the highest incidence

of silenced metabolic genes. However, most of these silencing

events were rarely found in other tumor types (Figure 5C). The

majority of metabolic genes that were silenced across multiple

tumor types were associated with mitochondrial reactive oxygen

species (ROS) generation including a broad class of dehydroge-

nases, inhibitors of H2O2, and components of the electron trans-

port chain (ETC) (Figures 5C and 5D). Because the predicted

downstream effect of silencing these targets is an increased

generation of ROS, we scored each tumor using (1) an mRNA

expression signature derived from silenced mitochondrial ROS

genes identified by RESET, and (2) an experimentally derived

signature composed of genes overexpressed upon H2O2 induc-

tion (Parikh et al., 2010). Scores from these signatures were

significantly anti-correlated in almost all tumor types, supporting

the association between silencing of ROS inhibitors and genera-

tion of mitochondrial ROS (Figure 5E).

CG antigens, or CG-genes, are predominantly expressed in

germ cells and trophoblasts, but upregulated in tumors by epige-

netic mechanisms (Simpson et al., 2005) (Figure S5A). Not all tu-

mor types presented an equal extent of upregulated CG-genes,

which were either enhanced across multiple cancers or specif-

ically in a single tumor type (Figure S5B). While their oncogenic

role remains unclear (Simpson et al., 2005), CG antigens have

been recognized as highly immunogenic and have been identi-

fied as targets of antitumor T cell immune response in patients
Figure 5. Cancer Pathways Affected by Epigenetic Silencing and Enha

(A) Gene Ontology (GO) categories significantly enriched (FDR q-value on the y

on 3 main groups: metabolism and ROS generation, apoptosis, and transcription

(B) GO categories significantly enriched (FDR q-value on the y axis) for epigenetic

cancer-germline (CG) antigens, cell proliferation, and chromatin organization.

(C) Frequency of silencing genes involved in the ROS generation pathway segreg

activity (annotated on the right) that can be grouped into dehydrogenases (blu

transport chain (ETC, dark blue), and hypoxia inhibitors (blue contoured).

(D) Pathway schematic of mitochondrial ROS generation highlighting the function

(E) Correlation between a gene expression signature composed of genes overexp

silenced targets involved in mitochondrial ROS generation (x axis). The two signat

tumor types (here represented by blue dots with size proportional to the inciden

(F) Normalized mean expression differences (y axis) of CG- and CG-like genes (

(CR, complete responders; PR, partial responders; PD, progressive disease). CG

RESET in the TCGA melanoma cohort. mRNA expression differences come from

anti-PD-1 therapeutic antibody. Expression differences are normalized as the sum

values in PD cases divided by the total sum of expression values.

(G) Comparison of CG signature scores betweenmelanoma patients with a progre

dots) or a complete response (CR, red-filled dots) to anti-PD-1.

(H) Overall survival of melanoma patients treated with anti-PD-1. Patients were pa

high scores (score >0.5, red line) showing significant better survival than those w

See also Figure S5 and Table S4.
receiving tumor-infiltrating adoptive T cell therapy (Stevanovi�c

et al., 2017). To assess the prognostic value of epigenetically

enhanced CG-genes, we collected mRNA expression data for

a cohort of skin melanoma patients that were treated with an

anti-PD-1 therapeutic antibody (Hugo et al., 2016). The majority

of CG-genes that RESET found epigenetically enhanced in mel-

anoma were more highly expressed in patients that either

completely (CR) or partially (PR) responded to therapy than in pa-

tients with a progressive disease (PD) (Figure 5F). Moreover, an

mRNA expression signature comprising an extended set of

CG-genes (Almeida et al., 2009) (CG-signature) was associated

with beneficial responses to anti-PD-1. Indeed, complete re-

sponders exhibited significantly higher values of the CG-signa-

ture than non-responding patients (p = 0.017, Figure 5G), and

patients stratified based on this signature had significantly

different overall survival (Figure 5H). Vice versa, in skin mela-

noma patients treated with another immune-checkpoint inhibi-

tor, anti-CTLA4 (Van Allen et al., 2015), high CG-scores were

associated with worse prognosis, even though not reaching sta-

tistical significance (Figure S5C). Recently, expression of the

CG-antigen MAGE-A was found predictive of resistance to

anti-CTLA4, but not to anti-PD1 (Shukla et al., 2018). Together,

these results warrant further investigations on the prognostic

value of CG-genes expression for patients treated with immune

checkpoint inhibitors.

Aberrant DNA Methylation in Pediatric Tumors
Pediatric tumors typically display a low mutation burden (Law-

rence et al., 2013), and their pathogenesis have been frequently

associatedwithspecificalterations inepigenetic regulatorymech-

anisms (McKenna and Roberts, 2009). Therefore, we explored

the potential of using RESET to investigate aberrant DNAmethyl-

ation in pediatric cancer. Recently, the NCI’s Therapeutically

Applicable Research to Generate Effective Treatments (TARGET)

initiative has profiled a large cohort of Wilms tumors, the most

common form of kidney cancer in children (Gadd et al., 2017).

This cohort included 84 favorable histology cases that relapsed
ncing Events

axis) for epigenetically silenced genes. GO categories are color-coded based

al regulation.

ally enhanced genes. GO categories are color-coded based on 3 main groups:

ated by cancer type. Silenced targets include several genes with mitochondrial

e), promoters of H2O2 degradations (light blue), components of the electron

al categories that group most of the epigenetically silenced genes shown in (C).

ressed in the presence of H2O2 and a gene expression signature composed of

ures are significantly anti-correlated (linear fit q-value on the y axis) in almost all

ce of epigenetic silencing of mitochondrial ROS inhibitors).

x axis) in melanoma patients responding versus non-responding to anti-PD-1

- and CG-like genes were tested if they were found epigenetically enhanced by

an independent skin melanoma patient cohort that underwent treatment with

of expression values in responders (CR and PR) minus the sum of expression

ssive disease (PD, gray dots) or exhibiting a partial response (PR, red contoured

rtitioned in two groups based on their CG signature scores with patients having

ith low scores (score <0.5, gray line).
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Figure 6. Aberrant DNA Methylation in Pediatric Wilms Tumors

(A) Percentage of probes for each tumor sample that are hyper- (x axis) and hypo-methylated (y axis). Tumor samples are color-coded based on their histological

subtype: favorable histology (FHWT, black contoured dots) and diffuse anaplasia (DAWT, black filled dots).

(B and C) Distribution comparison of the percentage of hypo- (B) and hyper-methylated (C) probes between the two histological subtypes (Wilcoxon test).

(D) Map overview of selected genetic and epigenetic alterations in Wilms tumors. Columns are tumor samples and each row is one selected alteration including

epigenetic silencing (blue contoured bars) and enhancing (red contoured bars) events, copy number amplifications (red bars), and somatic mutations (green

squares).Wild-type cases are in gray. Two separatemaps are generated for FHWT andDAWT cases. The alteration frequencies of each event in the two subtypes

are compared by taking the difference between the percentage of altered DAWT cases (%DA) and the percentage of altered FHWT cases (%FH) (bar plot, black

(legend continued on next page)
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(FHWT) (Figure S6A) and 42 cases characterized by diffuse

anaplasia (DAWT) and associated with unfavorable prognosis

and TP53mutations (Figure S6B).

UsingRESET,we first estimated the extent of hyper- and hypo-

methylation in these tumors (RESET-step 1). DAWT and FHWT

had comparable extent of hypo-methylation (Figure 6A), but

DAWTexhibitedsignificantlyhigherhyper-methylation (Figure6B)

and combined percentages of hyper and hypo-methylated TSS

probes indicated that these tumors exhibited DMI (Figure 6C).

Concordantly, epigenetic silencing and enhancing events

(RESET-step 2, Table S6) were in general more frequent in

DAWT cases that in FHWT (Figure 6D) and affected genes

involved in nuclear factor kB (NF-kB) and AKT-signaling as well

as apoptosis, DNA repair, cell metabolism, and cell proliferation

(Figure6D). Inparticular,we found that virtually all casesexhibited

hypo-methylation of theMYCN oncogene, sometimes concomi-

tant with copy number amplifications or somatic mutations.

MYCN has been reported as frequently upregulated in Wilms tu-

mors and altered through different mechanisms (Williams et al.,

2015). Our results indicate that hypo-methylation of this locus is

a hallmark of this tumor type.

Given that the unfavorable prognosis subtype, DAWT, had an

overall higher incidence of epigenetic events than tumors with

favorable histology (FHWT), we asked whether the occurrence

of epigenetic alterations was associated with worse outcome in

FHWT.Epigenetic silencingofTNFRSF10D,TRIP4, andNMRAL1

(FigureS6C)wasassociatedwith significantlyworsesurvival (Fig-

ures 6E–6G). BecauseTNFRSF10D andTRIP4 almost always co-

occurred with silencing of NMRAL1, we tested whether they had

independent prognostic value. Interestingly, we found that FHWT

tumors exhibiting silencing ofNMRAL1 and of eitherTNFRSF10D

or TRIP4 had significantly worse outcome than NMRAL1-only

altered samples (Figure 6H). These targets have all been impli-

cated in NF-kB signaling (Degli-Esposti et al., 1997; Jung et al.,

2002; Lian and Zheng, 2009), making this pathway a candidate

driver of Wilms tumor development and progression.

DISCUSSION

Over the last decade, several large-scale cancer genomics

studies have explored and characterized the landscape of ge-

netic modifications across thousands of human tumors. The re-

sulting catalog of pan-cancer associated variants misses an

important second dimension represented by cancer-selected

epigenetic alterations. Here, we explored DNA methylation

changes occurring across 24 human cancers. Our results stem

from an approach, RESET, that couples the concept of aberrant

methylation calling with an unbiased and systematic identifica-

tion of silencing and enhancing events. To draw an analogy
contoured bars are for negative values, i.e., %FH > %DA, black filled bars are fo

p value < 0.05) are indicated by a star. Pathway annotations for silencing and enha

and red dots for annotations of enhanced genes).

(E–G) Kaplan-Meier survival analysis comparing FHWT cases with epigenetic sile

type cases (gray curves). Altered and wild-type groups are tested for significant

(H) Kaplan-Meier survival analysis comparing FHWT cases with epigenetic silenc

cases with epigenetic silencing of NMRAL1 only (light blue curve), and wild-type

log-rank test (p values are reported).

See also Figure S6 and Table S6.
with computational methods to analyze DNA sequencing, the

first step of our approach resembles somatic variant calling,

whereas the second step is analogous to the search for candi-

date functional mutations.

By focusing of both hyper- and hypo-methylation at gene TSS,

we could identify a class of tumors exhibiting both numerous hy-

per-methylated TSS and numerous hypo-methylated TSS. We

refer to this phenotype as DNA methylation instability or DMI.

In particular, we showed that tumor subtypes previously re-

ported exhibiting a CpG island methylator phenotype (CIMP)

are actually characterized by DMI. DMI was significantly associ-

ated with mutations of chromatin remodelers, strengthening a

link between histone and DNA methylation and suggesting that

both need to be considered to understand the impact of recur-

rent mutations of chromatin remodeling complexes in cancer

(Lu and Allis, 2017; Suvà et al., 2013).

By exploring the interplay between genetic and epigenetic alter-

ations, we found examples of functional convergence. Indeed,

silencing and enhancing events co-occurrent with IDH1 and

CTNNB1 mutations frequently affected genes involved in their

respective pathways: cell metabolism and Wnt-signaling.

Silenced and enhanced events were further enriched for genes

involved in apoptosis, transcriptional regulation, especially Zinc-

finger proteins, cell metabolism, and for CG antigens. Inhibitors

of mitochondrial ROS generation were frequently silenced across

multiple tumor types, potentially favoring survival signals in stress

conditions (López-Otı́n et al., 2013). Interestingly, epigenetically

enhancedexpressionofCG-antigenswas significantly associated

with sensitivity to anti-PD-1, but not anti-CTLA4, in skin mela-

noma. In light of recent studies on the use of demethylating agents

in the clinic, these results lead to the suggestive hypothesis that

therapeutic reactivationofCG-antigenscouldpotentiate theeffec-

tiveness of the anti-PD1 checkpoint inhibitor (Siebenkäs et al.,

2017), whereas it could be deleterious in combination with anti-

CTLA4 (Shukla et al., 2018), and offer cancer-specific targets to

therapeutic approaches based on T cells engineering.

The pilot study that we conducted on Wilms tumors demon-

strates the potential for using our approach to explore clinically

relevant epigenetic modifications in pediatric tumors. Pediatric

tumors typically harbor few genetic alterations and are mostly

associated with epigenetic abnormalities affecting their differen-

tiation potential. Accordingly, they may represent a particularly

relevant setting for systematic investigation of aberrant DNA

methylation patterns.

Finally, here, we explored modification of DNA methylation

with respect to normal tissues and associated with in cis

changes of gene expression. However, adjacent normal tissues

not necessarily represent a tumor’s cell of origin, and expression

changes might not be direct consequence of DNA methylation
r positive values, i.e., %DA > %FH). Significant differences (Fisher’s exact test

ncing events are shown on the right (blue dots for annotations of silenced genes

ncing of TNFRSF10D (E), TRIP4 (F), or NMRAL1 (G) (blue curves) versus wild-

different survival by log-rank test (p values are reported).

ing of NMRAL1 and at least one of TNFRSF10D and TRIP4 (blue curve), FHWT

cases (gray curve). Each group pair is tested for significant different survival by
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changes and/or not be a necessary condition for DNA methyl-

ation changes to be functional (Widschwendter et al., 2007).

While functional investigations of specific targets will be

required to validate the cancer specificity and causal relation-

ships of epigenetic and transcriptional changes, DNA methyl-

ation signatures could be designed to infer the cell of origin of

different tumor subtypes enabling a more robust distinction be-

tween cancer-driven and cancer-predisposing events (Capper

et al., 2018).

Overall, DNA methylation constitutes a simple mechanism to

control gene function in both normal and malignant condi-

tions. Systematic investigations of how cancer cells exploit this

mechanism to deregulate specific targets and processes can

fill a major gap in our understanding of disease manifestation,

by capturing and functionally implicating cancer-associated

methylation events and exploiting the therapeutic opportunities

they offer.
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Chemicals, Peptides, and Recombinant Proteins

5-Aza-20-deoxycytidine Sigma A3656

Critical Commercial Assays

RNeasy kit QIAGEN 74106

PrimeScript RT Master Mix Takara Bio Europe SAS RR036A

Rotor-Gene SYBR Green PCR Kit QIAGEN 204076

Deposited Data

TCGA cohort - PanCanAtlas TCGA PanCanAtlas data; Sanchez-Vega

et al., 2018

https://portal.gdc.cancer.gov/

TCGA cohort - FireHose TCGA Consortium https://gdac.broadinstitute.org/

TCGA cohort - cBioPortal TCGA Consortium http://www.cbioportal.org/

FANTOM5 TSS data Forrest et al., 2014 http://fantom.gsc.riken.jp/5/

TARGET cohort TARGET initiative website https://ocg.cancer.gov/programs/

target/data-matrix

Gene Ontology and GO Annotation Gene Ontology Consortium http://www.geneontology.org/

GDSC dataset (GSE32323, GSE29060, GSE5816) Genomics of Drug Sensitivity in Cancer https://www.cancerrxgene.org/

GTEx database Gene Expression Database http://gtexportal.org/home/datasets

Genome Annotation (hg19) UCSC Genome Browser http://hgdownload.soe.ucsc.edu/

goldenPath/hg19/database/

RNA-seq cell line datasets Gene Expression Omnibus GEO: GSE32323, GSE29060, and

GSE5816

Experimental Models: Cell Lines

MDA.MB.453 ATCC HTB-131; RRID:CVCL_0418

HCC70 ATCC CRL-2315; RRID:CVCL_1270

UACC.893 ATCC CRL-1902; RRID:CVCL_1782

BT.20 ATCC HTB-19; RRID:CVCL_0178

BT.474 ATCC HTB-20; RRID:CVCL_0179

NCI.H522 ATCC CRL-5810; RRID:CVCL_1567

SW1573 ATCC CRL-2170; RRID:CVCL_1720

PC.3 ATCC CRL-1435; RRID:CVCL_0035

DU.145 ATCC HTB-81; RRID:CVCL_0035

VCAP ATCC CRL-2876; RRID:CVCL_2235

FADU ATCC HTB-43; RRID:CVCL_1218

CHL.1 ATCC CRL-1935; RRID:CVCL_4585

A375 ATCC CRL-1619; RRID:CVCL_0132

Oligonucleotides

PXMP4 Frw Primer: ACCTGGCACGGTTTGTGTT This paper N/A

PXMP4 Rev Primer: CCACCTGGGTTCAGGGATG This paper N/A

SYCP2 Frw Primer: TTCTGCTGGTCATACATGATGTC This paper N/A

SYCP2 Rev Primer: GAACAAATGCGAGGTACGAAAC This paper N/A

PNLDC1 Frw Primer: GGCAGGTCTGGACATAGAGTT This paper N/A

PNLDC1 Rev Primer: CGGGTCTTTAGATACCACTCCG This paper N/A

H2AFJ Frw Primer: ACGAGGAGTTAAACAAGCTGC This paper N/A

H2AFJ Rev Primer: TCATTTGCTCTTCGTCTTCTGAC This paper N/A
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GAPDH Frw Primer: GGAGCGAGATCCCTCCAAAAT This paper N/A

GAPDH Rev Primer: GGCTGTTGTCATACTTCTCATGG This paper N/A

Software and Algorithms

RESET This paper http://ciriellolab.org/reset/reset.html

Mendeley Database: https://doi.org/

10.17632/xgfm8y6mmf.1.

SELECT Mina et al., 2017 http://ciriellolab.org/select/select.html

http://ciriellolab.org/

EPIC Racle et al., 2017 N/A

xCELL Aran et al., 2017 N/A

ABSOLUTE Carter et al., 2012 N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and software should be directed to and will be fulfilled by the Lead Contact, Giovanni

Ciriello (giovanni.ciriello@unil.ch).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines used in this study
All the human cancer cell lines used in this study (Breast Cancer cell lines: MDA.MB.453, HCC70, UACC.893,BT.20, BT.474; Lung

adenocarcinoma cell lines: NCI.H522, SW1573; Prostate adenocarcinoma cell lines: PC.3, DU.145, VCAP; Head and Neck squa-

mous carcinoma cell lines: FADU; Melanoma cell lines: CHL.1, A375) were purchased from ATCC (supplied by LGC Standards

GmbH, Wesel, Germany).

Cell culture and experimental conditions
The cell lines were treated according to their recommended medium (http://www.atcc.org/products?geo_country=us) and all the

culture media contained 10% FBS. For 5-Aza-20-deoxycytidine (5-AZAdC, A3656 Sigma) treatment, cells were plated at 105 cells/ml

in 100mm culture plate and allowed to attach and grow for 24 hours before the treatment.

5-AZAdC treatment
Cells were subjected to a 7-day treatment during which the medium was changed every day, and 5-AZAdC was added in aqueous

solution at a final concentration of 1mM.

RNA isolation and RT-PCR
mRNA extractions from cultured cell lines were performed with the QIAGENRNeasy kit (74106). Reverse transcription into cDNAwas

performed with PrimeScript RT Master Mix (Takara Bio Europe SAS). RT-PCR was carried out with probes designed according to

PrimerBank database (https://pga.mgh.harvard.edu/primerbank/index.html) and synthesized by Microsynth AG, Balgach,

Switzerland.

Primers

PXMP4 Frw Primer: ACCTGGCACGGTTTGTGTT

PXMP4 Rev Primer: CCACCTGGGTTCAGGGATG

SYCP2 Frw Primer: TTCTGCTGGTCATACATGATGTC

SYCP2 Rev Primer: GAACAAATGCGAGGTACGAAAC

PNLDC1 Frw Primer: GGCAGGTCTGGACATAGAGTT

PNLDC1 Rev Primer: CGGGTCTTTAGATACCACTCCG

H2AFJ Frw Primer: ACGAGGAGTTAAACAAGCTGC

H2AFJ Rev Primer: TCATTTGCTCTTCGTCTTCTGAC

GAPDH Frw Primer: GGAGCGAGATCCCTCCAAAAT

GAPDH Rev Primer: GGCTGTTGTCATACTTCTCATGG

All RT-PCR reactions were performed in triplicates using the 7900HT Fast RT-QPCT System (Applied BiosystemsTM), and the

results were normalized to the housekeeping gene GAPDH.
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METHODS DETAILS

Data collection
TCGA cohort data collection

Molecular and clinical data for 24 tumor types profiled by The Cancer Genome Atlas (TCGA) consortium were collected in July 2017

from FireHose (https://gdac.broadinstitute.org/) and cBioPortal (http://www.cbioportal.org/) (Cerami et al., 2012) data repositories.

Only the data publicly available at that time were used in our study (Table S1). The dataset includes somatic point mutation (whole

exome sequencing), copy number changes (Illumina SNP6 array), gene expression profiling (Illumina HiSeq, RSEM normalized

counts), and DNA methylation data (Illumina Infinium array). DNA methylation data were generated by Infinium HM450 array

(485,577 CpG site targeting probes), except for the ovarian cancer cohort that was analyzed with the Infinium HM27 array (27,578

CpG site targeting probes). All data was generated and processed by The Cancer Genome Atlas research network as described

in the corresponding manuscripts (see Table S1). The latest update regarding tumor types and subtype annotations were taken

from (Sanchez-Vega et al., 2018).

TARGET cohort data collection

Molecular and clinical data for the cohort of Wilms tumors were collected from TARGET initiative website (https://ocg.cancer.gov/

programs/target/data-matrix). It includes somaticmutation (whole exome sequencing andwhole genome sequencing), copy number

changes (Affymetrx 6.0 SNP arrays), gene expression profiling (Illumina HiSeq, RPKM normalized counts), and DNAmethylation data

(Illumina InfiniumHM450 array). Methods, including data generation and processing, and validate somatic mutations used in Figure 6

were reported in Gadd et al. (2017).

Other datasets

DNAmethylation and mRNA expression data for the cancer cell lines used in this manuscript (Figures 3F–3I and S3D–S3H) were ob-

tained from the GDSC database (https://www.cancerrxgene.org) and Gene Expression Omnibus (GEO): GSE32323, GSE29060, and

GSE5816. mRNA expression values for normal tissue samples (Figure S5A) was obtained from the GTEx database (http://gtexportal.

org/home/datasets). Genetic alterations (somatic point mutations, copy number amplifications and deletions) and the list of 505

recurrent events used in the enrichment had been previosly derived from the same TCGA datasets used in this manuscript (Mina

et al., 2017). Genome annotations used for the methylation probes characterization (Figures S1C–S1E) was obtained from UCSC

Genome Browser (http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/).

DNA methylation probe selection and analysis

DNA methylation probe selection

Probes were further filtered to include only those mapping to TSSs including both canonical TSS within 50UTRs and unconventional

exonic TSS, as defined by cap analysis of gene expression (CAGE) by the FANTOM5 consortium (Forrest et al., 2014) (Table S2 and

Figure S1A). The genomic intervals flanking the TSSs (300 nt upstream to 300 nt downstream) were considered as gene promoter

regions (Figure S1A). Only probes mapping to a gene promoter region were considered in the downstream analysis.

Analysis of DNA methylation probe distribution

Probed loci were mapped to the canonical isoform of the corresponding gene according to FANTOM annotations or genomic prox-

imity to generate unique location distributions. Probes genomic locations were characterized by defining 7 classes: 1) upstream: up

to 1kb upstreamof the TSS, 2) 50UTR: interval between the TSS and coding start site, 3) exonic: inside the exons, 4) intronic: inside the

introns, 5) 30UTR: interval between coding end site and transcription end site (TES), 6) downstream: up to 1kb downstream of TES, 7)

intergenic: more than 1kb upstream or more than 1kb downstream of the TSS or TES, respectively. We manually verified that all

probes corresponding to silenced and enhanced genes identified by RESET and classified as intergenic were actually mapping to

non-canonical isoforms, hence the ‘‘intergenic’’ category has been renamed to ‘‘non-canonical’’ for these distributions. The set of

selected TSS probes included themajority of probes less than 1KB upstream or at 50UTR of the canonical isoform of the correspond-

ing gene, whereas only a minor fraction was downstream (< 1KB) or within the 30UTR of the canonical isoform (Figure S1C). Selected

probes that fell within the gene body were preferentially exonic, rather than intronic, despite the latter type was overall more frequent

(Figure S1C). Probes associated with silenced and enhanced targets followed the same distribution (Figures S1D and S1E). Overall,

less than 1% of the selected probes mapped to Alu and LINE-1 repeats.

The RESET algorithm
RESET analyzes large-scale DNA methylation sample cohorts to (i) test for the presence of aberrant DNA methylation at gene TSS

and (ii) assess whether aberrant methylation states lead to epigenetic silencing or enhancing of gene expression. RESET is based on

four steps: 1) probe selection and modeling, 2) aberrant methylation states analysis, 3) epigenetic silencing and enhancing (ESE)

score evaluation, and 4) statistical significance analysis of the ESE scores. The output consists of (i) sample-level methylation states

for each probe mapping to a gene promoter, i.e., normal, hyper-methylated, or hypo-methylated, and (ii) the collection of silencing

and enhancing events with a statistically significant effect on gene transcription. A schematic representation of the pipeline is shown

in Figures 1A and 3A.

Input data

RESET requires methylation data of both normal and tumor samples (unmatched), and transcriptomic profiles of the tumor samples.

Additionally, a map between DNA methylation array probes and gene TSS must be provided.
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Step 1: Probe selection and modeling of DNA methylation in normal samples

In bisulfite-genomic DNA sequencing analysis, the extent of DNAmethylation in a CpG locus is reported as the ratio of the number of

methylated probedmolecules over the total number of probedmolecules. These ratios assume values between 0 and 1, can be char-

acterized by a b-distribution and are thus referred to as b-values. Actual b-values for all probes in our dataset followed a bimodal

distribution with modes in the low (< 0.1) and the high (> 0.8) extremes of the possible range. To ensure changes of DNA methylation

in cancer samples are not due to the expected variability of DNA methylation measured at a specific locus, RESET discards probes

with high variability in normal samples (Figure S2B), and defines two probe sets:

1. Low DNA Methylation probes: probes with mean b-values lower than 0.1 and standard deviation lower than 0.005 in normal

samples.

2. High DNA Methylation probes: probes with mean b -values higher than 0.8 and standard deviation lower than 0.005 in normal

samples.

RESET then uses these sets of DNA methylation probes with consistent status across normal samples to infer the expected

distribution of values at each locus (probe specific distribution) and at all loci with the same status, i.e., either low or high DNAmethyl-

ation (probe set distribution). The density function of a beta distribution is described by the two positive parameters, a and b:

fðx;a;bÞ= xa�1ð1� xÞb�1

Bða;bÞ ;

where Bða;bÞ=GðaÞGðbÞ=Gða+ bÞ and G(z) is the gamma distribution. To determine both probe specific and probe set distributions,

RESET estimates the a and b parameters for each probe x from the observed mean and variance of beta values observed in normal

samples, according to the following formulas:

Meanx =
a

a+ b
Varx =
ab

a+ bð Þ2 a+ b+ 1ð Þ:

The R library MASS to fit the global beta distribution models to the methylation beta values. The parameter space of the estimated

b-distributions in cancer samples for our set of selected probes is consistent with peaked distributions around 0 for probes with low

methylation in normal samples and around 1 for probes with high methylation in normal samples (Figures S1F–S1H).

Step 2. Methylation status analysis

To evaluate the DNA methylation status of a probe in a tumor sample, RESET compares its b-value to the probe specific and probe

set distributions estimated in step 1. A probe x with methylation value y in a specific sample is considered hyper-methylated if the

following conditions are met:

x ˛ Low DNA methylation probe set
CDFx�probe specific b distributionðyÞR0:995
CDFLow�probe set b distributionðyÞR0:995

where CDF is the cumulative density function of the distribution fitted in step 1.

Similarly, a probe x with methylation value y is considered hypo-methylated if

x ˛ High DNA methylation probe set
CDFx�probe specific b distributionðyÞ%0:005
CDFHigh�probe set b distributionðyÞ%0:005

The output of this step is a discrete description of the DNAmethylation state of each probe in each tumor sample, where a probe can

be normal-methylated, hyper-methylated, or hypo-methylated, with the latter two also defined as aberrant DNA methylation states.
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Step 3. Epigenetic silencing and enhancing score

After determining the methylation status of each probe in each tumor sample, RESET evaluates the effect of aberrant DNA methyl-

ation states on gene transcription. Specifically, RESET quantifies the associations between hyper- (hypo-) methylation of a probe p

and a significant decrease (increase) ofmRNA expression of the gene gwhose TSSmaps to p. In all the analyses that follow, RNA-seq

RSEM normalized counts have been rank transformed using a qq-normalization (R function qqnorm). To evaluate the association

between DNA methylation and gene transcription, we defined a score as the product of two distances: the centroid distance and

the rank distance.

The Centroid Distance (CD) is meant to capture the global difference in gene expression between tumor samples where a probe is

hyper-/hypo-methylated (altered samples) and tumor samples where the probe is normal-methylated (wild-type or WT samples). CD

is defined as the geometric mean of the centroids of altered and wild-type tumor samples in the 2D space defined by the b-values (x)

of p and mRNA expression values (y) of g across all the samples:

CDp =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jcentroidðxWTÞ � centroidðxalteredÞj3 jcentroidðyWTÞ � centroidðyalteredÞj

p
RNA-seq qq-transformed values are here rescaled to the [0,1] interval to be within the same range of values as beta values.

The Rank Distance (RD) is designed to evaluate the inverse correlation between DNA methylation and mRNA expression. Here,

samples are first binned into four classes (B1-4) according to their beta values falling within the intervals: [0,0.25], (0.25,0.5],

(0.5,0.75], and (0.75,1]. In an ideal situation, where gene expression is perfectly anti-correlated with DNAmethylation values, all sam-

ples in the bin i have lower mRNA expression values than samples in bin i-1 and higher mRNA expression values than samples in bin

i+1. Formally, if Nk; k ˛ f1;2;3;4g, is the number of samples in bin k, rs the ranking of sample s according to its expression level (from

higher to lower) and b�
sthe ideal bin [1-4] to which s is assigned based on its DNA methylation value, then:

rs ˛ ½1; N1� c s jb�
s = 1
rs ˛ ½N1 + 1; N1 +N2�c s jb�
s = 2
rs ˛ ½N1 +N2 + 1; N1 +N2 +N3� c s jb�
s = 3
rs ˛ ½N1 +N2 +N3 + 1; N1 +N2 +N3 +N4�c s jb�
s = 4

Note that the rank of samples within a bin is irrelevant. The Rank Distance quantifies the distance of the observed associations be-

tween rs and bs for all samples s from the ideal scenario just described and it is defined as follow:

RDp =
X4
k= 1

 
1+

jIk j
Nk +a

�
PjOk j

i= 1

��b�
i � bi

��
Nk +a

!
;

where Ik is the set of samples in Bk when Bk corresponds to their ideal bin ðb�
i = biÞ, whereas Ok is the set of samples in Bk when Bk is

not their ideal bin ðb�
i sbiÞ. Finally, a positive constant is added to the denominator of each component, to limit the variance of RD

when Nk is small. In this study we set a = 4.

Step 4. Statistical significance analysis

To determine the significance of the observed scores, we adopted the strategy previously proposed in the Significance Analysis of

Microarrays (SAM) (Tusher et al., 2001). This technique is based on a permutation of the observed data to estimate the false discovery

rate (FDR) associated to a significance threshold of themeasured effect size. Precisely, for a threshold t, the number of False Positive

(FPt) out of the observed number of measurements exceeding t (set of positive solution or Pt) is estimated as the average number of

measurements exceeding t after multiple random permutations of the input values, and the FDR of t is defined as:

FDRt =
FPt

Pt

:

In our analysis, Pt is determined by counting the number of probes that obtain a score higher than a given threshold t. To permute the

expression data, we pooled the normalized expression values of all genes in samples belonging to the same DNAmethylation bin Bk,

with k = 1,2,3,4. The distributions of normalized mRNA expression values in each bin confirmed an overall inverse correlation be-

tween DNA methylation and mRNA expression (data not shown). For a given probe p and sample s, the corresponding expression

value is then sampled from the pool corresponding to the bin associated to s (bs). Once expression values are sampled for all sam-

ples, the score of p is re-computed. We repeat this process 100 times to generate 100 random distributions of scores and from these

distributions we determine FPt as described above. The smallest t that guarantees an FDR < 0.1 in all our analyses is chosen as the

significance cut-off threshold t*, and genes matched to probes with a score greater than t* are considered as epigenetically silenced
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(if p is a hyper-methylated probe) or epigenetically enhanced (if p is a hypo-methylated probe). In this work, we additionally required

the score to be always greater than 1.5, to guarantee a minimum effect size.

Comaprison of RESET to other methods

Previous approaches to identify epigenetically silenced and enhanced genes had been based either on defining altered and not-

altered samples based on an arbitrary b-value threshold (hyper-methylated if b-value > 0.3, hypo-methylated if b-value < 0.1) and

then testing the two groups for differential expression (Hinoue et al., 2012; Cancer Genome Atlas Network, 2015), or on identifying

significant anti-correlation between b-values andmRNAexpression (Sepulveda et al., 2016). Independently of the adopted test, com-

mon pitfalls of all these methods are that their results are invariably dependent on the alteration frequency, and, for large cohorts,

highly significant p values can be obtained even for small effect sizes, leading to large numbers of significant hits even after correction

for multiple testing (Tusher et al., 2001). As an example, we implemented and applied thesemethodologies to the luminal breast can-

cer cohort and test all genes for epigenetic silencing. Independently of the adopted test, they all show a string dependency with alter-

ation frequency and return more than 1,000 significant hits with an FDR < 0.01 (Figure S3A). Overall, these methods rank candidate

silenced and enhanced genes based on the obtained p value, even though altered and non-altered sample sets have variable sizes

that depend on the gene being tested. As a consequence, genes altered in �50% of the cases will be more likely to be top scoring

because their sample size guarantees the maximum statistical power (Figure S3A). This is exemplified by computing the best

possible p value of aWilcoxon test as a function of the size of the altered sample set (Figure S3B). In contrast, RESET put an emphasis

on the strength (or effect size) of the inverse association betweenDNAmethylation andmRNA expression, here defined by the RESET

score, and it directly estimates the false discovery rate associated with specific scores to determine a significance threshold. Impor-

tantly, this score is independent of the alteration frequency and sample size (Figure S3C). For completeness, t test andWilcoxon test

based analyses were repeated using the methylation calls generated by the step 1 of RESET, yielding similar results. The method-

ologies were run on both the FPKM/RSEM normalized count data and the qq-normalized gene expression. We should note that the

use of t test with RSEM values or log-transformed RSEM-values should be avoided given the non-normal distribution of these data.

To evaluate the performance of RESET and other conventional methods using experimental models, we exploited publicly avail-

able RNA sequencing datasets regarding cell lines treatedwith 5-AZAdC (Figure S3E). Methylome data for non-treated cell lines were

also downloaded fromGDSC database. First, for each cell line, we obtained a list of reactivated genes upon 5-AZAdC treatment. For

gene x to be considered as reactivated, it needed to be hypermethylated in non-treated condition (average beta-value of all probes

mapping to gene x TSS be larger than 0.7), and have expression fold-change bigger than 1.5 (5-AZAdC treated versus non-treated).

Second we applied all the methods to the cell lines’ tissue-of-origins in TCGA cohort (CRC and LUAD), and derived the silenced

genes proposed by each method. Percentage of reactivated genes for each cell line/method was obtained by intersecting the list

of reactivated gene in each cell line and the silenced genes proposed by each method (Figure S3E).

Application of RESET to the pan-cancer TCGA dataset

In this study, we ran RESET on the pan-cancer TCGA dataset considering the 170,953 probes that map to FANTOM5 TSSs. Given

that only 14 tumor types have DNA methylation data available for normal tissue samples (BLCA, BRCA-Basal, BRCA-Non Basal,

CRC, ESCA, HNSC, KIRC, KIRP, LIHC, LUAD, LUSC, PRAD, THCA, UCEC), we defined a set of pan-cancer probes including

only the probes consistently classified as Low (or High) DNA methylation probes across all normal tissues available. The results pre-

sented in the manuscript were obtained by running RESET separately on each tumor type using the pan-cancer probe set. For tumor

types without methylation data for normal samples, the pool of normal samples from the all tissue types was used to build the refer-

encemethylationmodels. The aggregated set of pan-cancer epigenetic silencing and enhancing events was taken as the union of the

results from each tumor type. Aberrant DNAmethylation at genes scoring as significant in at least one tumor type was re-assessed in

all cohorts, and each gene was considered as significant in all cohorts where the score was greater than 1.5. Finally, RESET was also

run on each individual tumor type using all the probes (not only the pan-cancer probe set) selected at Step 1 based on the corre-

sponding normal tissue samples (when available). These results thus include tissue-specific methylation events, i.e., silencing and

enhancing of genes whose methylation status is tissue-dependent. While the discussion of these results is beyond the scope of

this manuscript, all results are made available at http://ciriellolab.org/reset/reset.html.

Application of RESET to the TARGET dataset

The Wilms tumor cohort did not include methylation data for normal samples, hence we used for this analysis the previously-defined

pan-cancer Low (or High) DNA methylation probe sets. Moreover, the pool of normal samples used in TCGA dataset for the tumors

without normal methylation data was used to build the reference methylation models. In this analysis, enhancing events were

selected with a score associated to FDR < 0.1.

QUANTIFICATION AND STATISTICAL ANALYSIS

All the statistical analyses described in this section were performed with R.

Association between genomic alterations and percentage of hyper/hypo methylated probes
We tested whether recurrent genomic alterations (Mina et al., 2017) are enriched on samples with a higher percentage of hyper/hypo

methylated probes, separately for each individual tumor type. The Wilcoxon’s rank-sum test (one sided) was used in the individual

tumor type analysis, contrasting wild-type and altered samples. The same procedure was applied to test the enrichment of tumor
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subtypes among samples with high fraction of hyper-/hypo-methylated probes (Figures 1B–1D). P values were corrected formultiple

hypothesis testing with the Benjamini-Hochberg method.

DNA Methylation Inversion (DMI) score calculation and genomic alteration enrichment in DMI samples
The DMI score, designed with the aim of capturing the concomitant increase in both hyper- and hypo-methylation events, is defined

as the Fb-measure) of hyper- (H) and hypo- (h) methylation frequencies:

DMI=
�
1+ b2

� Hh

b2H+ h
:

We used b = 2 in our analyses, to compensate for the asymmetric distribution of hyper- and hypo-methylation frequencies. The

enrichment of each genomic alteration on samples with high DMI score was studied both within each individual tumor type and at

pan-cancer level. The Wilcoxon’s rank-sum test (one sided) was used for the individual tumor type analyses, contrasting wild-

type and altered samples. For the pan-cancer analysis we perfomed a type II ANOVA analysis separately for each genomic alteration,

testing only alterations with at least 4 occurrences. The alteration occurrence in each sample was used as binary independent var-

iable, whereas the DMI score was used as dependent variable. For the pan-cancer analysis we considered tumor type as co-factor,

and for each particular alteration x, the tumor types with no occurrence of the alteration x were excluded from the ANOVA analysis.

P values were corrected for multiple hypothesis testing with the Benjamini-Hochberg method.

Association between genomic alterations and epigenetic silencing and enhancing events

We performed enrichment analysis of genomic alterations at two different levels: global and event-specific. In the global analysis, we

sought to understand whether specific genomic alterations were enriched in samples with high epigenetic silencing or enhancing

events. In this case we repeated the enrichment analysis performed for the hyper/hypo methylated probes, described above. The

analysis was performed separately on each single tumor type, using the same procedure, detailed above, for testing the enrichment

of genomic alterations in DMI samples.

For the event-specific analysis, instead, we identified the patterns of co-occurrence and mutual-exclusivity between individual

epigenetic silencing and enhancing events identified by RESET and the set of 505 recurrent cancer-associated genetic alterations,

using the SELECT algorithm (Mina et al., 2017). The analysis was performed in a pancan fashion, considering all the tumor samples

together and using tumor type and subtype as covariates of the SELECT analysis to remove tumor type effects.

Estimation of samples’ purity, cell type composition, chromosomal instability and stemness score: the following datasets/pipelines

were used to evaluate different qualities of tumor samples:

d ABSOLUTE (Carter et al., 2012): estimation of samples purity and ploidy.

d EPIC (Racle et al., 2017): estimation of immune cells infiltration

d xCell (Aran et al., 2017): estimation of immune, microenvironment, and stroma scores

d Chromosomal instability was measure with (i) the number of amplified and deleted segments in each sample (normalized copy

number value > 0.3, segment count), and (ii) the percentage of genes amplified or deleted (fraction AMP/DEL genes). The

segment file from the TCGA Pan-Cancer Atlas cohort and the discrete gene-level copy number changes derived by GISTIC

were used as input data.

d Stemness signatures were derived using a dataset provided in Malta et al. (2018).

Association between EPIC cell type composition and epigenetic silencing and enhancing events
Associations between epigenetic silencing and enhancing events and immune cell type composition estimated by EPIC were tested

on each individual tumor type. For each epigenetic event, EPIC scores in altered samples were compared to score in non-altered

samples by Wilcoxon one-tail test. P values were corrected for false discovery rate using the Benjamini-Hochberg procedure. Asso-

ciations were considered significant if the obtain a q value < 0.1 and altered samples had score at least 1.5 fold higher than non-

altered samples.

Gene Ontology (GO) Terms enrichment analysis
GO Terms enrichment analysis was performed using the online webservice based on the Molecular Signatures Database (MSigDB)

(http://software.broadinstitute.org/gsea/msigdb/index.jsp). Enriched GO terms were defined as GO biological process (BP) and

molecular function (MF) terms obtaining a FDR-adjusted P value < 0.01, retreiving a maximum of 100 terms.

Gene expression signature enrichment analysis
Single sample Gene Set Enrichment analysis (Barbie et al., 2009) (ssGSEA), implemented in the R package GSVA, was used to calcu-

late an expression score for each gene expression signature and each sample. The default parameters from the GSVA package were

used. In this study, we used the following gene signatures:

Mitochondrial-ROS: GPX1, IVD, HSD17B4, ACADS, DECR1, CPT1A, CROT, PECI, NUDT19, ETFB, ALDH7A1, AASS, CYB5A,

PECR, HSD17B8, NNT, ALDH1B1, CYB5R1, UQCRH, PRDX1, AIFM2, ALKBH3, P4HTM, CYB561, SCCPDH, TXNRD2.
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H2O2-signature: PCF11, TMEFF1, NRIP1, SERPINB9, EFNB2, OXTR, ATP6V0E1, ATRX, LUC7L3, SUV420H1, PTPRO, SCAMP1,

SP100, SOCS5, THAP10, YTHDC2, FLRT3, RAB2A, C1orf103, HOMER1, MYBL1, BAALC.

CG-signature: ACRBP, ACTL8, ADAM2, ADAM29, AKAP3, AKAP4, ANKRD45, ARMC3, ARX, ATAD2, BAGE, BAGE2, BAGE4,

BAGE5, BRDT, CABYR, CAGE1, CALR3, CASC5, CCDC110, CCDC33, CCDC36, CCDC62, CCDC83, CEP290, CEP55,

COX6B2, CPXCR1, CRISP2, CSAG1, CT45A1, CT45A3, CT45A4, CT45A5, CT45A6, CT47A1, CT47A10, CT47A11, CT47A2,

CT47A3, CT47A4, CT47A6, CT47A7, CT47A8, CT47B1, CTAG1A, CTAG1B, CTAG2, CTAGE1, CTAGE5, CTCFL, CTNNA2,

DCAF12, DDX43, DDX53, DKKL1, DMRT1, DNAJB8, DPPA2, DSCR8, ELOVL4, FAM133A, FAM46D, FATE1, FBXO39, FMR1NB,

FTHL17, GAGE1, GAGE12B, GAGE12C, GAGE12D, GAGE12E, GAGE12F, GAGE12H, GAGE12I, GAGE12J, GAGE13, GAGE2A,

GAGE4, GAGE5, GAGE6, GAGE7, GAGE8, GPAT2, GPATCH2, HORMAD1, HORMAD2, HSPB9, IGSF11, IL13RA2, KIAA0100,

LDHC, LEMD1, LIPI, LUZP4, LY6K, MAEL, MAGEA1, MAGEA10, MAGEA11, MAGEA12, MAGEA2, MAGEA2B, MAGEA3,

MAGEA4, MAGEA5, MAGEA6, MAGEA8, MAGEA9, MAGEB1, MAGEB2, MAGEB3, MAGEB4, MAGEB5, MAGEB6, MAGEC1,

MAGEC2, MAGEC3, MORC1, NLRP4, NOL4, NR6A1, NXF2, NXF2B, ODF1, ODF2, ODF3, ODF4, OIP5, OTOA, PAGE1,

PAGE2, PAGE2B, PAGE3, PAGE4, PAGE5, PASD1, PBK, PIWIL2, PLAC1, POTEA, POTEB, POTEC, POTED, POTEE, POTEG,

POTEH, PRAME, PRM1, PRM2, PRSS54, PRSS55, RBM46, RGS22, ROPN1, RQCD1, SAGE1, SEMG1, SLCO6A1, SPA17,

SPACA3, SPAG1, SPAG17, SPAG4, SPAG6, SPAG8, SPAG9, SPANXA1, SPANXA2, SPANXB1, SPANXC, SPANXD, SPANXN1,

SPANXN2, SPANXN3, SPANXN4, SPANXN5, SPATA19, SPEF2, SPO11, SSX1, SSX2, SSX2b, SSX3, SSX4, SSX4B, SSX5, SSX6,

SSX7, SSX9, SYCE1, SYCP1, TAF7L, TDRD1, TDRD6, TEKT5, TEX101, TEX14, TEX15, TFDP3, THEG, TMEFF1, TMEFF2,

TMEM108, TMPRSS12, TPPP2, TPTE, TSGA10, TSPY2, TSPY3, TSSK6, TTK, TULP2, VENTXP1, XAGE1B, XAGE1E, XAGE2,

XAGE3, XAGE5, ZNF165, ZNF645.

Correlation Analysis between gene expression signatures
To evaluate the degree of correlation between two signature scores in the tumor samples, we used the R ‘‘cor’’ function to retrieve the

Pearson correlation coefficient. To estimate the significance of the correlation value, we used R ‘‘lm’’ function to fit a linear model and

retrieve the corresponding FDR-adjusted P values.

Survival analysis
Kaplan–Meier survival analysis was used to assess the relationship of the signature scores with overall survival. We applied the Cox

proportional hazard model for multivariable analysis, to determine the associations between predictor variables and to obtain

adjusted hazard-ratios. These analyses were performed with the R package ‘‘survival.’’

DATA AND SOFTWARE AVAILABILITY

The R implementation of the RESET algorithm, the processed TCGA data and the results of the RESET analysis are publicly available

either at http://ciriellolab.org/reset or at the Mendeley Database: https://doi.org/10.17632/xgfm8y6mmf.1.
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