000262015 001__ 262015
000262015 005__ 20181221182138.0
000262015 022__ $$a2469-9950
000262015 022__ $$a2469-9969
000262015 02470 $$2isi$$a000449515500004
000262015 0247_ $$2doi$$a10.1103/PhysRevB.98.184409
000262015 037__ $$aARTICLE
000262015 245__ $$aNon-Abelian chiral spin liquid in a quantum antiferromagnet revealed by an iPEPS study
000262015 269__ $$a2018-11-08
000262015 260__ $$c2018-11-08
000262015 336__ $$aJournal Articles
000262015 520__ $$aAbelian and non-Abelian topological phases exhibiting protected chiral edge modes are ubiquitous in the realm of the fractional quantum Hall (FQH) effect. Here, we investigate a spin-1 Hamiltonian on the square lattice which could, potentially, host the spin liquid analog of the (bosonic) non-Abelian Moore-Read FQH state, as suggested by exact diagonalization of small clusters. Using families of fully SU(2)-spin symmetric and translationally invariant chiral projected entangled pair states (PEPS), variational energy optimization is performed using infinite-PEPS methods, providing good agreement with density matrix renormalization group (DMRG) results. A careful analysis of the bulk spin-spin and dimer-dimer correlation functions in the optimized spin liquid suggests that they exhibit long-range "gossamer tails". From the investigation of the entanglement spectrum, we observe sharply defined chiral edge modes following the prediction of the SU(2)(2) Wess-Zumino-Witten theory and exhibiting a conformal field theory (CFT) central charge c = 3/2, as expected for a Moore-Read chiral spin liquid. Using the PEPS bulk-edge correspondence, we argue the "weak" criticality of the bulk is in fact a finite-D artifact of the chiral PEPS, which quickly becomes (practically) irrelevant as the PEPS bond dimension D is increased. We conclude that the PEPS formalism offers an unbiased and efficient method to investigate non-Abelian chiral spin liquids in quantum antiferromagnets.
000262015 650__ $$aMaterials Science, Multidisciplinary
000262015 650__ $$aPhysics, Applied
000262015 650__ $$aPhysics, Condensed Matter
000262015 650__ $$aMaterials Science
000262015 650__ $$aPhysics
000262015 6531_ $$ahall states
000262015 6531_ $$aexcitations
000262015 6531_ $$aformulation
000262015 6531_ $$astatistics
000262015 6531_ $$aanyons
000262015 700__ $$aChen, Ji-Yao
000262015 700__ $$aVanderstraeten, Laurens
000262015 700__ $$aCapponi, Sylvain
000262015 700__ $$aPoilblanc, Didier
000262015 773__ $$j98$$k18$$q184409$$tPhysical Review B
000262015 8560_ $$fbeatrice.marselli@epfl.ch
000262015 909C0 $$0252557$$pIPHYS$$xU13149
000262015 909CO $$ooai:infoscience.epfl.ch:262015$$particle$$pSB
000262015 961__ $$afantin.reichler@epfl.ch
000262015 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000262015 980__ $$aARTICLE
000262015 981__ $$aoverwrite