
Proceedings of the 2nd International Symposium on Distributed Objects and Applications (DOA’00)

September 21-23, 2000, Antwerp, Belgium Nieva et al.

Jini Technology Applied to Railway Systems

Txomin Nieva a, b, *, Andreas Fabri b, Abdenbi Benammour a

a Institute for computer Communications and
Applications (ICA)

Communication Systems Dept. (DSC)
Swiss Federal Institute of Technology (EPFL)

CH-1015 Lausanne, Switzerland
http://icawww.epfl.ch

{txomin.nieva, abdenbi.benammour}@epfl.ch

b Industrial Software Systems CHCRC.C2
Information Technologies Dept.
ABB Corporate Research Ltd.
CH-5405 Baden, Switzerland

http://www.abb.ch/chcrc
{txomin.nieva, andreas.fabri}@ch.abb.com

* Corresponding author.

Abstract

In the world of pervasive computing where large
management systems, as well as small devices, all become
interconnected, the problem of the configuration and
management of networks is becoming increasingly complex.
System administrators have to deal with many problems
due to the increasingly distributed architecture of systems.
Jini, a new paradigm for the development and management
of distributed systems, provides mechanisms that enable
systems to plug together to form an impromptu community.
This practice report demonstrates how Jini can be applied
in an industrial environment, or more exactly how it can be
used in the integration of embedded devices on-board
trains in the back-office IT infrastructure of railway
operators. We present two use cases: the first is about an
on-board service that allows for remote access to an on-
board diagnosis database; the second is about
automatically installing new services on-board trains. The
results are encouraging and prove that Jini is the
appropriate technology to link application servers and
service gateways in embedded servers.

1. Introduction

The Internet, having caused a revolutionary impact on
office automation, is currently provoking a large effect on
industrial automation and information systems. The
emergence of the Internet provides a framework that
enables for communication with any piece of hardware
and/or software, regardless of where it is physically located.
Heterogeneous distributed embedded systems, which were

commonly isolated in the past, are increasingly connected
to networks and integrated within information systems. The
management of distributed embedded systems has become
a huge task for embedded systems providers, operators and
service organizations that want to offer to their customers a
high quality of service. The interconnection of distributed
embedded systems and information systems brings
significant benefits and offers new business opportunities.

The problem is that the configuration and management
of networks is becoming increasingly complex. System
administrators have to deal with many problems due to
network unavailability, systems down, high latency and
other typical problems of any distributed system.

Recently, Sun Microsystems proposed a new paradigm
for the development and management of distributed
systems. This new technology, called Jini, provides simple
mechanisms that enable systems to plug together to form an
impromptu community - a community put together without
any planning, installation, or human intervention. Each
system provides services that other systems in the
community may use. Jini simplifies interactions with
networks, by eliminating the cost of manual administration
of services.

In the framework of an R&D project [1] for the railway
manufacturer Adtranz, we experimented with Jini
technology in order to evaluate it in an industrial
application. We identified two potential application
domains. The first application domain concerns the
embedded devices on a train. They are interconnected with
a train communication network. As the composition of a
train changes over time, the communication network must
configure itself automatically when the train is powered up,
and it should reconfigure automatically when locomotives
and cars are added to or removed from the train.

http://icawww.epfl.ch/
mailto:{txomin.nieva, abdenbi.benammour}@epfl.ch
http://www.abb.ch/chcrc
mailto:txominnievaandreasfabri@ch.abb.com

Proceedings of the 2nd International Symposium on Distributed Objects and Applications (DOA’00)

September 21-23, 2000, Antwerp, Belgium Nieva et al.

The second application domain is the integration of the
on-board systems of a vehicle fleet into the back office
system of an operator and a manufacturer. Typical
examples are off-board databases that store disturbance data
for all devices of all vehicles of a fleet for the entire life
cycle of the fleet. These systems generate work orders and
allow for the development of new maintenance strategies
based on data analysis. Another typical example is the
remote management of on-board services. Installation,
removal, or updates of on-board services is very complex
and expensive because operators have to schedule train
stops to allow maintenance staff to go on-board a train and
perform the tasks manually.

The back office integration application domain also has
a dynamic behavior. Sometimes, this communication
provides a high latency and low bandwidth, e.g., when the
train is only reachable via GSM. Other times, the
communication is only possible at certain times, e.g., when
a train is in a train station or a garage equipped with a
WLAN. Furthermore, the services available on each vehicle
may vary among the vehicles in the fleet.

In this project we concentrated on the back office
integration. We present the main results of a research
project done by the ICA institute of EPFL and ABB
Corporate Research in close collaboration with the railway
manufacturer Adtranz. The objective of this project was to
study the applicability of Jini in two use cases of railway
systems. The first is an on-board service that allows for the
remote access to an on-board diagnosis database with
diagnosis information. The second is the automatic
installation of services on-board trains.

We implemented these use cases on a demonstration
platform in the laboratory. As we used the same equipment
as the equipment used in the field, a future deployment to
the field should not be a problem. By using the same
equipment as the equipment used in the field we ensure that
the results obtained from our experiments are reliable.
However, a future implementation in the field would
provide additional information, which cannot be obtained in
the laboratory, in regards to the behavior of the system in a
real environment.

This paper is organized as follows. First, we briefly
present the main concepts of Jini. Second, we develop in
detail the two use cases. Then, we discuss some relevant
aspects from the analysis and design of these use cases.
Finally, we present some conclusions from the actual work.

2. Jini

Jini technology [2-4] provides a simple infrastructure for
providing services in a network. It enables spontaneous
interactions between applications. The result is a network of
services connected together dynamically. Services can join
or leave the network in a robust manner. Clients can rely
upon the availability of visible services. The purpose of Jini

is to federate groups of hardware and/or software
components into a single, dynamic, distributed system. The
resulting federation provides the simplicity of access and
ease of administration. It guarantees the reliability and
scalability of the whole system. Let us first describe the
goals of Jini:

• Network plug-and-play. A service is visible after it

is plugged into the network. There is no need to
configure the system. The “network” announces the
availability of a new service. Any interested client is
then able to use the service. To deploy a new
service, we have only to plug it into the Jini-enabled
network.

• Spontaneous networking. When services plug into
the network they become available spontaneously.
They can be discovered and used by clients and by
other services. Clients and services work in a
flexible network. They can organize themselves in
the most appropriate way for the set of services that
are actually available in the environment. When a
plugged service is disconnected, the network
withdraws automatically the service.

• Service-based architecture. Products can be
designed as services instead of stand-alone
applications. As Jini enables services to collaborate
with each other to perform particular tasks, service
developers gain in reusability and modularity.

• Simplicity. Jini is concerned with how services
connect to one another. There is no constraint on
what services provide and how they should work.
Jini is based on Java. However, services can be
written in languages other than Java, if they provide
a chunk of Java code that can participate in the Jini
mechanisms.

• Reliability. Jini supports interactions between
distributed services. It helps programs to find
services, and ensures spontaneous availability.
Services can appear to and disappear from the Jini
federation in a very lightweight way. Interested
parties can be automatically notified when the set of
cooperating services changes. When damage occurs
in the network, Jini is able to repair itself.

We now briefly present the key concepts of Jini. The

main concepts of Jini and their relationships are described
in the conceptual model shown in Figure 1.

• Jini Service. A Jini service is an entity that can be

used by a person, a program or another service. A
service may be a computing program, a hardware
device or a component of the Jini system. Members
of a Jini system federate to share access to services.
A Jini system consists of services that can be
collected together for the performance of a particular

Proceedings of the 2nd International Symposium on Distributed Objects and Applications (DOA’00)

September 21-23, 2000, Antwerp, Belgium Nieva et al.

task. The dynamic nature of a Jini system enables
services to be added or withdrawn from the
federation at any time. Services in a Jini system
communicate with each other by using a service
protocol represented by a set of interfaces (written in
Java).

• Service Item. A Jini service has a service item. A
service item is an object that represents this service
in the Jini federation. A service item is composed of
a service identifier, a set of attributes and a proxy
object.

• Service ID. A service identifier is a global unique
identifier for a service. This identifier is assigned by
a lookup service (further detailed) the first time a
service registers in the Jini federation. Once a
service ID is assigned to a service, the service must
remember it.

• Service Proxy. A service proxy is an object that
encapsulates the mechanisms that a service and a
client communicate with. When a client system
looks for a service it receives from a lookup service
a proxy object enabling the communication with the
requested service.

• Service Attribute. Service attributes represent
relevant characteristics of a service; relevant features
that distinguish one service from another in ways
that are not reflected by the type of the proxy. In this
way, Jini clients can perform rather complex
searches of services based on these attributes.

• Jini Group. Jini services are structured within
groups. A group usually represents a rather small
(typically the size of a workgroup) community of
services. The default group is called “public”. Group
names are only unique within the naming space of a
network.

• Jini Federation. The Jini federation is an abstract
concept that represents the full set of communities
(or groups) of Jini Services.

• Jini Client. A Jini client is a system that uses a Jini
service. A Jini client can eventually be another Jini
service or just another entity. In an ideal Jini
federation there would be nothing but Jini services
that collaborate to perform certain tasks.

• Lookup Service. Services are found and resolved by
a Jini Lookup Service (JLS). The JLS is the central
bootstrapping mechanism for the system. It provides
the major point of contact between services. It is
essentially a process that keeps track of all of the
services that have joined the Jini community. The
JLS resembles a name server. However, the
matching is more powerful. We can search for
services that implement some interfaces, or belong
to special classes. We can also specify a search
based on service attributes. Services register
themselves within a JLS by publishing their service

item. Jini can be seen as an implementation of the
Broker architectural pattern described in [5] by
Buschmann et al., where the JLS plays the role of
the broker.

Jini Service

Service
Proxy

Service
Attribute

Service
ID

Jini Lookup
Service

has
has

has

Jini Client

Service Item

is stored in

has

is assigned
by

1

1

1

*

*

1*

registers
on

*

*

*

seek services on **

uses

*

*

communicates with*

Jini Group

belongs
to

*

1
Jini

Federation
1*

belongs
to

Jini Client
Service

*

has

Figure 1. Jini conceptual model

Finally, we describe the key mechanisms of Jini.

• Discovery Protocol. Entities that wish to start

participating in a distributed Jini system must first
obtain references to one or more JLSs. The protocols
that govern the acquisition of these references are
known as the discovery protocols. A Jini discovery
protocol is the means by which Jini entities find Jini
communities. There are several discovery protocols
that can be used according to each particular
situation. The “Multicast Request Protocol” is
employed by entities that seek to discover nearby
(on the local network) JLSs. The “Unicast
Discovery Protocol” is used when an entity already
knows the particular JLS it wishes to talk to. The
“Multicast Announcement Protocol” is used by JLSs
to announce their presence. As a result of the
discovery process, a Jini entity disposes of
references to JLSs.

• Join Protocol. A Jini entity, using references to
JLSs obtained during the discovery process, can
advertise the services it offers. The join protocol
regulates how services join Jini communities. A
service joins a JLS by publishing its service item.
The first time a given service joins a JLS, the JLS
will assign it a serviceID. The service must
remember this and use it when it registers itself with
all JLSs in the future.

Proceedings of the 2nd International Symposium on Distributed Objects and Applications (DOA’00)

September 21-23, 2000, Antwerp, Belgium Nieva et al.

• Lookup Protocol. A Jini entity, using a reference to
a JLS obtained during the discovery process, can
search all the service items provided by this JLS to
find services of interest. This search can be based on
the type of the service proxy, on the unique
identifier of a service, or the attributes contained in a
service item.

• Leasing. In distributed systems, there are situations
when different parts of a cooperating group are
unable to communicate - either because one of the
members has crashed or because the connection
between the members of the group has failed. To
deal with these problems, the notion of lease was
introduced. Rather than granting services or
resources until that grant has explicitly cancelled, a
leased resource or service grant is time based. When
the time for the lease has expired, the service ends or
the resource is freed. The time period for the lease is
negotiated when the lease is first granted. Leases
may be renewed or cancelled before they expire by
the holder of the lease. In the case of no action,
caused by a service crash or a network failure, the
lease simply expires.

• Remote Events. Jini entities occasionally need to be
notified when certain interesting changes happen in
their environment. To do that, Jini has the notion of
remote events. An event is an object that contains
information about some external state change that an
entity may be interested in, e.g., an expected service
joins the Jini community. The notification is sent to
listeners that have subscribed interest in receiving a
particular event.

• Transactions. Jini supports the notion of
transactions. Transactions provide a way to group a
series of related operations so either all the
operations succeed, or all the operations fail. Jini
uses a two-phase commit process. First, a transaction
manager signals each of the participants to go into a
pre-commit phase. Then, each of these participants
notifies the transaction manager whether the
operation was successfully completed or if it failed.
If any of the operations failed, the transaction
manager tells every participant to abort. Otherwise
the transaction manager tells the participants to
commit, which causes them to make their changes
permanent. Jini only defines the transaction protocol
as an interface but it does not implement the
protocol. The transaction protocol must be
implemented by each service.

3. System Architecture

In this section, we introduce the system architecture that
we used to implement our Jini-enabled use cases. This
corresponds to the architecture we used successfully in

several projects over the last years ([6, 7]), before
introducing Jini technologies. This system architecture,
shown in Figure 2, is composed of three-tiers:

(i) An on-board train service gateway is connected by

one way to the train communication network, e.g.,
TCN [8], and by other way to the Internet using a
wireless network, e.g., via GSM or WLAN. This
gateway machine runs on-board services. As an
example, a service provides remote access to the on-
board diagnosis database.

(ii) A ground station acts as a middle tier between
clients and gateways. This ground station is an
application server that offers stand-alone services to
users, but also services that make use of remote on-
board train services. In the latter case, the
application server consolidates and dispatches
requests to associated trains. The ground station is
also a router that automatically establishes
communication links with gateway machines, either
via GSM or WLAN.

(iii) Finally, a client machine, using nothing but an
Internet browser, uses services offered by a ground
station; independently these services are stand-alone
services or services that make use of remote on-
board train services.

Ground Station

Internet
(Wireless
Network)

Service Gateway

Internet

Client Machine

Figure 2. System architecture before applying Jini

The administrator of the system is responsible for
updating, removing or adding services on the gateway and
ground station machines. Due to the distributed nature of
the system, this is a complex and tedious task, especially
when a service must be installed on hundreds of trains.
Another problem is that as trains are mobile systems,
remote on-board services may be available only during
certain periods of time, e.g., when a train enters a train
station with a WLAN. It is difficult for a ground station to
manage this dynamic behavior of services. In addition, the
clients’ perception of the quality of service of the
application server is poor because ground stations may
offer services that are not currently available.

In order to be able to run Jini enabled services, it is
necessary to introduce at least one machine, running a Jini
Lookup Service (JLS), connected in the same LAN to the
ground station. Eventually, we could also run the JLS on
the same machine as the ground station. Additionally, some

Proceedings of the 2nd International Symposium on Distributed Objects and Applications (DOA’00)

September 21-23, 2000, Antwerp, Belgium Nieva et al.

other JLSs all over the Internet, train stations and garages
may be used. These JLSs would forward service
subscriptions and other events to each other by tunneling.
Tunneling is just an optimization mechanism, which for
simplicity it is not described in this paper. The new system
architecture is shown in Figure 3.

Ground Station

LAN

Jini
Lookup
Server

Service Gateway

Jini
Lookup
Server

Jini
Lookup
Server

Internet
(Wireless
Network)

Internet

Client Machine

Figure 3. Jini-enabled system architecture

4. Use Case 1: Access to On-board Diagnosis
Database

This section presents the use case to provide remote
access to an on-board diagnosis database. First, we describe
the system that existed before we applied the Jini
technology. Then, we discuss problems we encountered
with this system. Finally, we describe the Jini enabled
system.

4.1. System Description

The use case corresponding to the system that existed
before we applied the Jini technology is shown in Figure 4.

DB Consumer

Access
Diagnosis DB

Train

System Administrator

Figure 4. Access to on-board diagnosis DB
use case before applying Jini

The actors that play in this use case are:

• DB Consumer: an entity (typically operator
maintenance staff) that wants to get access to
diagnosis information stored on the on-board
database.

• Train: a train with an on-board diagnosis database
that collects diagnosis data.

• System Administrator: responsible for manually
setting up the system. For example, the system
administrator has to find out which are the currently
available trains and how they can be accessed.

An on-board service allows the access of the on-board

diagnosis database to a service in a ground station. This
system is shown in Figure 5.

DB
Consumer

request

response

request

response

Ground Station Service Gateway

1

4

2

3

Figure 5. Access to on-board diagnosis DB
system before applying Jini

The sequence of actions is the following:

1. A DB Consumer contacts a ground station and

requests access to a database on-board a particular
train.

2. The ground station consolidates and dispatches the
requests to the corresponding train gateway.

3. The train gateway processes the request and sends
the response back to the client.

4. The ground station consolidates and sends the
response back to the client.

4.2. Problems

We encountered the following problems with this
system:

• Trains are not always available when requested:

thus, the services that access on-board diagnosis
databases are not always available either. Moreover,
these services are not able to automatically notify
the system when they are available or not.

• High configuration work done manually by the
administrator: the administrator must manually
configure associations between train identifiers and
their current location on the network.

• Static and non-flexible architecture: the architecture
does not respond well to dynamic changes on the
configuration. As all connections are established

Proceedings of the 2nd International Symposium on Distributed Objects and Applications (DOA’00)

September 21-23, 2000, Antwerp, Belgium Nieva et al.

manually, if a connection is lost there is no
automatic reconfiguration. In addition, there is no
way to enhance the accessibility of a train service,
e.g., when a train enters a rail station with a WLAN.

4.3. Description of the Jini-enabled system

The use case corresponding to the Jini-enabled system is
shown in Figure 6.

DB Consumer

Access
Diagnosis DB

Train

Jini Lookup Service

Figure 6. Jini-enabled access to on-board
diagnosis DB use case

In this use case, the JLS replaces the system
administrator. The JLS allows us to automate the actions
that were manually performed by a system administrator.
The JLS allows on-board services to automatically register
within the Jini community. On-board services are lease
based and they must renew periodically their lease in order
not to be removed from the community. A ground station
acts as a Jini client. It subscribes to receive notifications
when on-board services appear or disappear from the
community. The new Jini-enabled system is shown in
Figure 7.

DB

request

response

request

response

Ground Station Service Gateway

JLS

lookup/subscribenotify

discover/join
Wireless
Network

1

4

2

3

5

67

Figure 7. Jini-enabled access to on-board
diagnosis DB system

The new sequence of actions is the following:

1. A ground station registers in the JLS for a particular
remote event, namely an on-board DB access service
joining the federation. This registration enables the
ground station to be notified when trains take part in
the Jini community.

2. After startup, a Jini service on-board a train
discovers and joins the JLS.

3. The ground station receives a notification in form of
a remote event that contains a reference to the proxy
object of the service.

4. Clients contact the ground station and request access
to a database on-board a particular train, which
figures in the set of registered trains. This set of
trains is up-to-date as trains that do not renew the
lease of their joint operation are removed from the
system.

5. The ground station searches for the corresponding
proxy, which in turn contacts the on-board service
on the associated train.

6. The on-board service processes the request and
sends the response back to the proxy in the ground
station.

7. The ground station sends the response back to the
client.

5. Use Case 2: Automatic Deployment of
Services

This section presents the use case to deploy new services
on-board a train. First, we describe the system that existed
before we applied the Jini technology. Then, we discuss the
problems encountered with this system. Finally, we
describe the Jini-enabled system.

5.1. System Description

The use case corresponding to the system that existed
before we applied the Jini technology is shown in Figure 8.

Service Developer

Deploy Service

Train

System Administrator

Figure 8. Deploy service use case
before applying Jini

The actors that play in this use case are:

Proceedings of the 2nd International Symposium on Distributed Objects and Applications (DOA’00)

September 21-23, 2000, Antwerp, Belgium Nieva et al.

• Service Developer: a service developer that wants to

deploy a service to a train.
• Train: a train where a service must be deployed.
• System Administrator: this actor is responsible for

manually setting up the system. For example, the
system administrator has to find out which are the
currently available trains and how they can be
accessed.

A service developer submits a service to a ground

station. Then, the ground station installs the service on the
corresponding train. This system is shown in Figure 9.

Service
Developer

install

notify

submit

notify

Ground Station Service Gateway

1

4

2

3

Figure 9. Service deployment system
before applying Jini

The sequence of actions is the following:

1. A service developer submits a service to a ground

station.
2. The ground station installs the service on the

corresponding train.
3. The train notifies to the ground station that the

service has successfully been installed on the train.
4. The ground station sends the notification back to the

service developer.

Note that the described system is an oversimplification

of a real system. A real system should keep records of
versions of services already installed on vehicles.
Furthermore, a real system should address security issues,
e.g., to manage people authorized to install services or to
establish times when services may be installed, started,
stopped, or uninstalled.

5.2. Problems

The encountered problems are basically the same as
described in the first use case, mainly due to unavailability
of trains at certain times. In addition, this use case reflects
the problem that in the case a service developer wants to
install a service on a fleet of trains, he has to perform the
process manually for each train, which is rather inefficient
and error prone.

5.3. Description of the Jini-enabled system

As in the first use case, the JLS is a new player in the
use case. The JLS replaces the system administrator. This
fulfils the requirements of automatic configuration of the
system. Additionally, we introduce a Temporary Service
Store, where services are temporarily stored until they have
been installed on all target trains. The new use case is
shown in Figure 10.

Service Developer

Deploy Service

Train

Jini Lookup ServiceTemporary Service Store

Figure 10. Jini-enabled deploy service use case

A JLS, which represents the Jini federation, allows train
installation services to automatically register within the Jini
community. In addition, the Temporary Service Store stores
a service locally until it is installed on all target trains. The
new Jini-enabled system is shown in Figure 11. For
simplicity, the Temporary Service Store is in the same
machine as the ground station, which it is not always
necessarily the case.

Service
Developer

install

notify

submit

notify

Ground Station/
Temporary Service Store

Service Gateway

JLS
lookup/subscribe

notify

discover/join
Wireless
Network

1

4 2

3

5

67

Figure 11. Jini-enabled service deployment
system

The new sequence of actions is the following:

1. A service developer submits a service (typically as a
bundle or package) to a ground station. He specifies
the identifier of each target train.

Proceedings of the 2nd International Symposium on Distributed Objects and Applications (DOA’00)

September 21-23, 2000, Antwerp, Belgium Nieva et al.

2. The Temporary Service Store registers with the JLS
to be notified when trains with installation services
join the Jini community.

3. When a train enters a rail station, its installation
service initiates a discover and join process with the
JLS.

4. The join is notified to the ground station. The
notification is stamped with a proxy object of the
installation service.

5. The Temporary Service Store gets the service
installation proxy object and contacts the installation
service on the target train to install the service on the
train.

6. The installation service notifies the Temporary
Service Store that the installation has been
successfully done.

7. When all target trains are updated, the Temporary
Service Store notifies the service developer.

6. Discussion

We implemented both use cases in a demonstration
platform in the laboratory. However, in order to have
reliable results, we used the same equipment as the
equipment used in the field. For our experiments, we used
the version 1.0.1 of the Jini implementation of Sun
Microsystems. The on-board gateway is based on Sun
Microsystems’s Java Embedded Server [9], a service
gateway that runs on any Java platform. Service gateways
allow system administrators to remotely manage (add,
remove or update) on-board services. Currently, service
gateways are under standardization by the Open Service
Gateway Initiative (OSGI) [10]. Jini does not replace
service gateway functionality. Rather, Jini services can
enhance service gateways by enabling automatic
management of services. A good example of this is offered
by the automatic installation service use case. In this use
case, we enhance the service gateway by a Jini-enabled
installation service. This service is installed on the service
gateway. When this service becomes active (typically when
the service gateway is powered on), it registers in the Jini
community enabling the automatic deployment of pending
services to these service gateways from a “Temporary
Service Store”. Deployed services can be either simple
services or Jini-enabled services. During this project we
demonstrated that Jini and service gateways are
complementary technologies. This is in concordance with
what the OSGI [10] says:

“The OSGi specification works with various device
access standards and is compatible with and can enhance a
JINI environment... An OSGi compliant system provides an
excellent focal point for the deployment and management of
JINI services.”

The first use case provides an efficient multi-user remote
monitoring service. This service allows authorized clients

to browse data from any registered train with location
transparency. As the communication protocol is embedded
within the proxy object of a Jini service, the communication
protocol used to communicate with this service is
transparent for a client entity. This gives service developers
a great flexibility because they can implement services
based only in services’ API ignoring the actual
communication protocol. Thus, Jini offers an ideal
framework for implementing distributed applications that
use heterogeneous communication protocols.

The only currently available implementation of Jini,
provided by Sun Microsystems, is based on Java Remote
Method Invocation (RMI) [11] middleware. This may
dissuade the use of Jini in certain cases, e.g., when there is
a firewall between services and their clients. This is not a
problem in our application as the ground stations, as well as
the embedded servers, are in the same domain.

We take full advantage of Java’s dynamic class loading
feature. The classes of the service proxies are dynamically
loaded from the embedded servers. This allows for the
different implementations of service proxies on different
vehicles, with only different versions of the same class. Not
only the class of the service proxy can be downloaded, but
also classes of objects referenced by the proxy. The proxy
can hence be arbitrarily complex and interact with the
application server that hosts it. When classes are loaded
dynamically, security becomes an issue. This is another
reasons why Jini has not taken off yet. It is not so much an
issue in our system as we only use our own services.

The current implementation of Jini needs a Java2
Runtime Environment. This dissuades the use of Jini on
small devices with few megabytes of memory available. In
fact, this was one of the reasons we did not investigate the
first application domain mentioned in the introduction:
Controllers in devices hooked on the train communication
network, typically, are too small to host a Java virtual
machine. Lack of memory and CPU was not an issue in the
back office integration application domain, the embedded
server is an industrial PC.

Another reason we did not Jini enable the controllers,
was the fact that the train communication network does not
support TCP/IP. We then had to first develop the Jini
protocol for this particular network. This could be an
interesting approach to investigate but it was not in the
scope of our experiments.

Finally, the experiments demonstrated that the current
implementation of Jini does not perform exceptionally well.
The JLS provided by Sun Microsystems is slow to register
new services and notify service registrations to service
listeners. Jini services and clients implemented with the
current libraries provided by Sun Microsystems have a too
long response time. However, it is reasonable to expect that
future implementations of the JLS and Jini libraries by Sun
Microsystems and/or third companies will speed up
response times improving considerably the performance of

Proceedings of the 2nd International Symposium on Distributed Objects and Applications (DOA’00)

September 21-23, 2000, Antwerp, Belgium Nieva et al.

Jini services. Therefore, we consider the performance as a
minor transitory problem due to the early versions of the
current implementations of Jini.

7. Conclusions & Future Work

The use of Jini technology simplifies the development of
distributed systems because Jini forces distributed systems
developers to deal with the network in early stages of
development. Jini is not just a programming library to
implement distributed systems, but a new paradigm for
distributed system development. Using Jini, distributed
systems developers can automate the, usually tedious,
configuration process of such systems. Jini enables the
search for particular services based on complex attributes.
Jini provides self-healing communities of services as it uses
the concept of leases. Regardless of minor problems of the
current implementation of Jini and the lack of
standardization of services, we demonstrated that Jini offers
an efficient approach for developing distributed
applications. We also demonstrated that Jini technology and
service gateways are complementary technologies.

Jini is a young technology. Even if the concepts are well
defined, currently there are few Jini services available. Jini
will have real success when service developers can dispose
of a huge number of standardized services all over the
world. Before Jini becomes ubiquitous, it will be found in
distributed applications as the one described in this paper:
where the application is a service provider and, at the same
time, the only user of these services. As our experience
with Jini was positive, we recommend the use of Jini for
implementing services in distributed industrial applications.

We plan to deploy our experiments in the field in order
to validate them in a real environment. This deployment
should not be a problem as we used the same equipment as
the equipment used in the field. We believe that the
experiments in the field will validate the results obtained in
the laboratory. Experiments in the field will provide
additional information, which cannot be obtained in the
laboratory, in regards to the behavior of the system in a real
environment. Although there are no major technical
problems that impede the implementation of Jini in a real
environment, there are some issues that must be addressed
before deploying Jini in a real environment. These
problems mainly concern administration tasks (such as how
to identify train equipment and how to define appropriate
attributes that enable a particular train, vehicle or
equipment to be found) and some security issues (such as
defining who is allowed to seek a particular train
equipment).

Acknowledgements

Thanks to Adtranz who brought a real framework to the
discussions and the implementation of our hypotheses, and
to Holly Cogliati, from ICA, for proofreading this paper.

References

[1] A.Benammour, Swiss Federal Institute of Technology
(EPFL), “Jini-enabled Trains (JET)”, Diploma Project,
March, 2000,
http://icawww.epfl.ch/nieva/DiplomaProjects/99-
00/Abdou/jet.htm.

[2] K.Arnold, B.O'Sullivan, R.W.Scheifler, and J.Waldo, “The
Jini specification”, Addison-Wesley, 1999.

[3] K.Edwards, “Core Jini”, Prentice Hall, 1999.

[4] Jini User Group, “Jini Homepage”, 2000,
http://www.jini.org.

[5] F.Buschmann, R.Meunier, H.Rohnert, P.Sommerlad, and
M.Stal, “Pattern - Oriented Software Architecture: A System
of Patterns”, Wiley, 1996.

[6] R.Itschner, C.Pommerell, and M.Rutishauser, “GLASS:
Remote Monitoring of Embedded Systems in Power
Engineering” in IEEE Internet Computing, vol 2, 1998.

[7] A.Fabri, T.Nieva, and P.Umiliacchi, “Use of the Internet for
Remote Train Monitoring and Control: the ROSIN Project”
presented at Rail Technology '99, London, UK, September
7-8, 1999,
http://icawww.epfl.ch/nieva/thesis/Conferences/RailTech99/
article/RailTech99.PDF.

[8] IEC, “Electric Railway Equipment - Train Bus - Part 1:
Train Communication Network”, IEC 61375-1, 1999.

[9] Sun Microsystems, “The Java Embedded Server”, 2000,
http://www.sun.com/software/embeddedserver/.

[10] OSGI, “Open Service Gateway Initiative Homepage”, 2000,
http://www.osgi.org.

[11] Sun Microsystems, “Java Remote Method Invocation White
Paper”, 1999,
http://java.sun.com/marketing/collateral/javarmi.html.

	Introduction
	Jini
	System Architecture
	Use Case 1: Access to On-board Diagnosis Database
	System Description
	Problems
	Description of the Jini-enabled system

	Use Case 2: Automatic Deployment of Services
	System Description
	Problems
	Description of the Jini-enabled system

	Discussion
	Conclusions & Future Work

