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This paper presents solutions for the classical one-dimensional (radial and Cartesian) problem of Langmuir
probes in a collisionless, isothermal plasma. The method is based on two-fluid equations derived from the first
two moments of Vlasov’s equation. In contrast to commonly-used approximations, electron inertia and ion
temperature are not neglected so that the fluid equations are symmetric in the terms for electrons and ions.
The fluid equations are reduced analytically so that the electric potential is the only remaining spatial function,
which is numerically determined using Poisson’s equation. The single radial solution applies continuously over
the whole region from the probe up to the unperturbed plasma, in contrast to theories which separate the
probe boundary region into a charged sheath and a quasi-neutral pre-sheath, and is valid for all values of
probe bias potential. Current-voltage characteristics are computed for cylindrical and spherical probes, which
exhibit non-saturation of the ion and electron currents. The 1D Cartesian case is also analysed, and the Bohm
criterion is recovered only in the limit of large radius probes.

I. INTRODUCTION

A body immersed in a plasma acts as a sink for charged
particles. Because of the large difference in mobility be-
tween electrons and ions, the former tend to be lost more
rapidly to the body, thus creating a charged region in
the vicinity of the surface, commonly called the sheath.
When the immersed object is electrically floating, the
space charge distribution in the sheath evolves towards
an equilibrium where ion and electron fluxes are equal
and no more charge is transferred to the body. If the im-
mersed object is biased, the sheath adapts to the imposed
boundary potential and a current is collected.

A fundamental diagnostic in plasma physics, the Lang-
muir probe, relies on the analysis of the current-voltage
characteristic obtained by sweeping the bias potential on
an immersed metallic pin. The method is technically
simple, but the analysis of Langmuir probe characteris-
tics is difficult, mainly because of the theoretical issues
inherent to the plasma sheath problem.1 This was no-
tably addressed by Langmuir and colleagues2,3 and has
since been a major topic in plasma physics. A funda-
mental set of equations involved in this problem arises
from the moments of Boltzmann’s equation which de-
scribe the electrons and ions as two fluids in terms of
their mean densities and velocities. The successive mo-
ments by themselves do not constitute a closed set of
equations and have to be completed by a closure expres-
sion. Furthermore, the two fluid equations are coupled
through Poisson’s equation which determines the electric
potential.

In the early stages of sheath theory,4 Langmuir intro-
duced two approximations which have been almost uni-
versally adopted up till now: The first is to separate
the continuous region next to the probe into a space-
charge sheath and a quasi-neutral plasma;1–18 the in-
terpretation of the plasma-sheath transition has caused

much debate.1,4,15,16 The second approximation is to ne-
glect the electron inertia in the associated momentum
conservation equation, which results in the commonly-
used Boltzmann relation for the electron density,1–28

ne = n0 exp
∆V
Te

, where ∆V and Te are respectively a
potential difference and the electron temperature, here
expressed in volts.28

In this work, we present two-fluid solutions of a colli-
sionless, isothermal plasma with singly-charged positive
ions, for the simplified situations of one-dimensional (1D)
radial and Cartesian geometries. To be precise, the prob-
lem is solved analytically until the point where Poisson’s
equation has to be integrated, which is performed nu-
merically. Specific features of the solution method are
the retainment of electron inertia and ion temperature
in the fluid momentum equations, the use of Lambert’s
function,29–31 and the respect of particle flux conserva-
tion everywhere from the unperturbed plasma up to the
probe surface. Boundary conditions are of prime impor-
tance because they define the probe fluxes; these are cal-
culated from the self-consistent convective flow velocity
of each species.

As a first consequence, the separation of space into
sheath and quasi-neutral plasma regions is no longer nec-
essary for radial probes because a single, collisionless so-
lution is considered. Secondly, the fluid equations are
symmetric in the terms for electrons and ions (account-
ing for charge sign), hence the solution is valid for all
probe bias voltages. Current-voltage characteristics can
be derived analytically for the 1D Cartesian case, whereas
for cylindrical and spherical probes, two parameters still
have to be determined numerically.
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A. Brief review of probe theory

The dominant approach to describe the perturbed re-
gion adjacent to a plane probe consists in splitting this
region into two distinct ones. The first sub-region, the
sheath, extends from the probe surface to a point, the
sheath entrance, at which the electron and ion densi-
ties are taken to be equal. Beyond this point there
extends a second sub-region, the pre-sheath, character-
ized by the quasi-neutrality hypothesis. Collisionless and
isothermal 1D Cartesian models are generally applied to
describe the sheath region, which is then characterized
by constant particle fluxes. The Bohm criterion5 was
developed to account for the ion velocity at the sheath
entrance. Ionization must then be considered to pro-
vide the necessary ion flux in the pre-sheath. This divi-
sion between sheath and pre-sheath regions gives rise to
2-scale theories.3,5,6,11,12 Different assumptions and ap-
proximations are made in these domains, for example,
collisional ionisation in the pre-sheath and no collisions
in the sheath,6 so it is clear that matching problems will
occur at the sheath/pre-sheath interface.7,12 This can be
partly redressed by interposing another domain, a tran-
sition layer, on an intermediate scale, which accounts for
space charge and the dominant pre-sheath processes.12 In
this way, as more layers are added, the approximations
are successively improved for the various scale lengths.
It is clear, however, that a single analytical solution for
plasma-to-wall is precluded, by definition.7 Ideally, the
exact Boltzmann equation would be solved over the whole
region to give a single solution. In the absence of such
analytical solutions, single profiles were obtained by nu-
merical computations which do not require multi-scale
assumptions7,32–35 although their accuracy of course de-
pends on any approximations made. Furthermore, real
finite-sized plane probes collect ions from an ill-defined
hemispherical shape so that, in practice, an infinite plane
wall plasma-sheath transition does not exist1,20 and at
least a 2D approach would be necessary.31

To avoid the difficulties associated with infinite plane
walls, this paper goes on to consider a two-fluid, 1D solu-
tion for radial Langmuir probes (cylindrical and spheri-
cal) in collisionless, isothermal plasma. The term ”fluid”
conventionally refers to collisional conditions; however,
the macroscopic variables for electrons and ions are
here described by velocity moments of two collisionless
distribution functions, often known as a two-fluid ap-
proach. In the case of radial probes, the ion accelera-
tion due to inward flux concentration in the ”geometric
pre-sheath” means that a collisionless pre-sheath solu-
tion relaxes asymptotically to the unperturbed, field-free
plasma at infinity, without requiring ionisation or other
collisional processes which are necessary in the 1D plane
wall situation.11,12 Hence a collisionless, single, 1D ra-
dial solution would appear possible for both the sheath
and the pre-sheath, i.e. over the whole domain.1 In fact,
the applicability,18 or necessity,1,7,20,35 of the Bohm cri-
terion is less clear for cylindrical and spherical probe ge-

ometries. Calculations in the limit of probe radius much
larger than the sheath width36 are used here to reconcile
the 1D radial model with conventional 1D sheath/pre-
sheath models11,12 which invoke the Bohm criterion.

Fluid models for non-saturated probe ion currents cal-
culate the increase of the effective ion collection area
due to a thicker sheath at higher values of probe bias
voltage. Non-saturated currents are also predicted in
the framework of kinetic approaches, notably in orbital-
motion-limited (OML) theories.2,8,19,21,27 In these, the
conservation of individual particle angular momentum
plays a central role. In the present work, we develop
a two-fluid solution under the hypothesis of isotropic
temperatures and Maxwellian distributions. These as-
sumptions are common,11,25,30–32 and fair agreement is
found with a kinetic model.37 However, it means that
any distortions of the Maxwellian distributions due to
truncation,7,27,31,38,39 anisotropic temperatures,37 angu-
lar momentum conservation or trapped orbits21,32 can-
not be accounted for. This does not mean that kinetic
effects are unimportant; in fact, orbital motion kinetic
effects are expected to be more and more relevant as the
probe diameter becomes smaller, making the assumption
of Maxwellian distributions close to the probe surface
less valid. This is probably a limit of validity of the
present Maxwellian approach. To have a better two-
fluid collisionless description, one should calculate the
distortions of the distribution functions due to kinetic ef-
fects (such as in OML theory) before performing Vlasov
equation moments. Instead, this two-fluid model tacitly
assumes that like-particle collisions are sufficiently fre-
quent to maintain Maxwellian distributions, even near
to an adsorbing wall, but that unlike-particle collisions
are sufficiently rare for friction and ionisation to be neg-
ligible. Alternatively, there may be other processes, such
as turbulence or electric field micro-instabilities, which
maintain a Maxwellian distribution even when collisions
are rare; this is known as Langmuir’s paradox.25 Finally,
fluctuations and instabilities such as ion acoustic waves
could affect experimental measurements but are not con-
sidered in the stationary solutions presented here.31,40 To
summarize, this fluid model might not represent physi-
cal situations generally, but it is a solution to a classical
problem of probes in collisionless, isothermal plasma.

B. Structure of the paper

The analytical model for a probe in a collisionless
plasma is developed in three stages corresponding to the
three geometries in Fig. 1:

1. Fig. 1(a) shows a 1D Cartesian model for collision-
less plasma flow to an infinite plane wall. The wall
does not represent a non-intrusive Langmuir probe
causing only a small perturbation to the plasma.1,31

Nevertheless, this 1D Cartesian model serves the
purpose of introducing the mathematical method in
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FIG. 1. Basic description of the probe geometries, showing
the probe applied voltage Va, and the ion and electron con-
vective velocities ui0 and ue0. The dashed lines represent
the limit of large distance from the probe up to the equilib-
rium plasma at infinity. (a) Infinite plane wall (1D Carte-
sian solution) in Section II, with incoming particle velocities
from a supposed plasma source at infinity.41 (b) Cylindrical
and spherical probes (1D radial solution) of Sections III and
IV, with vanishing particle velocity from infinity. (c) Big ra-
dius probe in Section V, with space charge sheath and quasi-
neutral pre-sheath, showing the ion and electron convective
velocities uish and uesh at the plasma-sheath interface.

Section II, and provides a comparison in the limit
of large-radius probes in Section V.

2. Fig. 1(b) shows a 1D radial model to represent
collisionless plasma flow to a probe. In contrast
to the 1D Cartesian model, the flux to a small
radius Langmuir probe causes only a small per-
turbation to the plasma, which is maintained by
some independent source. Almost all of the ion-
isation rate due to this independent source is as-
sumed to be in equilibrium with particle loss rates
to other electrodes and surfaces. The assump-
tion of collisionless plasma in the locality of the
probe remains a reasonable approximation for a
perturbed region around the probe which is small
compared to the mean free path for particle col-
lisions. The length-scale of the solution then de-
termines the lower limit of the mean free path
and hence the upper pressure limit for solution
validity.34 For perturbation scale lengths < 1 mm
calculated in this work, collisionless conditions are
expected to be satisfied for argon gas pressures up
to about 1 Pa, where the mean free path for colli-
sions λc ∼ 1 cm (for ion charge-exchange collision
cross-sections28,34 ∼ 4 ·10−19 m2). Cylindrical and
spherical probe 1D radial solutions are presented in
Sections III and IV respectively.

3. Fig. 1(c) shows part of the wall of a big radius probe
in a 1D radial model. Section V compares the limit

of large probe radius with the 1D Cartesian plane
wall solution and a classical sheath model.

Discussions and conclusions are presented in Sections
VI and VII respectively. Finally, Appendixes A and B
explain the Lambert solution and describe a practical
method to interpret probe IV characteristics.

II. 1D CARTESIAN CASE OF AN INFINITE PLANE
WALL

A. Conservation of particles and of momentum for
electrons and ions

Taking the first velocity moment of Vlasov’s equation,
a momentum conservation equation for ions and electrons
can be written for a two-fluid description as follows:

msns

[
∂us

∂t
+ (us.∇)us

]
= qsnsE−∇ ·Ps, (1)

for a collisionless, non-magnetized plasma, where ns is
the number density of species s, us the convective ve-
locity, ms the particle mass, qs the electric charge (sign
included), Ps the pressure tensor, and E the electric field.

We consider here the 1D Cartesian problem (∇ → ∂x)
of a semi-infinite plasma facing a wall with steady state
flow (∂t → 0) in Fig. 1(a). The solutions here are re-
stricted to the case of electrons and a single ion species
with a single positive charge (|qs| = q, the elementary
charge). The treatment of different ion species, multiply-
charged ions, and negative ions, although possible, is be-
yond the scope of this work. As a closure expression
for (1) we assume an isothermal relation for equilibrium,
with isotropic Maxwellian velocity distributions for each
species.25,31,40 Under these conditions the pressure tensor
is diagonal and isotropic, and by using the ideal gas law
the scalar pressure can be expressed as ps = nsqTs. Here,
Ts is the s species mean temperature defined in volts in
order to simplify expressions involving ratios of voltage
and temperature.28 The relation between Ts in volts, and
the temperature Ts in Kelvin, is given by qTs = kBTs,
where kB is Boltzmann’s constant, by which the conven-
tional expressions can be recognised.

The resulting fluid equations for electron and ion mo-
mentum are:

meneue∂xue − qne∂xV + qTe∂xne = 0,

miniui∂xui + qni∂xV + qTi∂xni = 0, (2)

where V is the electric potential. Here, the densities,
fluid velocities, and potential are all functions of x.

In the literature, at this point, the electron inertia con-
vective term (proportional to me) is almost universally
neglected in (2), and as such, the electron density is de-
scribed by a Boltzmann relation.1–28 Furthermore, the
cold ion approximation is usually applied (Ti = 0) in
which case the ion pressure gradient is neglected and (2)

howling
Highlight
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leads to the free fall solution for the ion density. A con-
sequence of these approximations is that the sheaths are
only properly described for large negative bias potentials
with respect to the plasma potential. In the following, we
break with tradition and keep all terms in (2). In fact,
the only way to guarantee validity for the whole range
of probe bias potential is to maintain symmetry between
the electron and ion terms.32 It will be seen that the elec-
tron and ion variables are interchangeable in all the exact
expressions - accounting for charge sign - as is necessary
for a model where the probe bias potential can be lower
or higher than the plasma potential.
We assume ne, ni ̸= 0 for all x, and define thermal ve-

locities uthe =
√
qTe/me and uthi =

√
qTi/mi, the root

mean square velocity in any single direction. The mathe-
matical expressions can be simplified by introducing the
dimensionless functions Ue, Ui which are the squares of
the convective velocity normalized to the thermal veloc-
ity, for electrons and ions respectively:

Ue =

(
ue

uthe

)2

and Ui =

(
ui

uthi

)2

.

Equations (2) then become:

1

2
∂xUe −

1

Te
∂xV + ∂x ln(ne) = 0,

1

2
∂xUi +

1

Ti
∂xV + ∂x ln(ni) = 0. (3)

Neglecting ionisation and recombination processes,
consistent with the collisionless assumption, the particle
flux conservation is expressed from the zeroth moment of
Vlasov’s equation as:

∂tns +∇ · (nsus) = 0, (4)

which, according to our assumptions, leads to:

∂x(neue) = 0, and ∂x(niui) = 0. (5)

Equations (3) and (5) can be directly integrated to give:

Ue

2
− V

Te
+ ln(ne) = Ce,

Ui

2
+

V

Ti
+ ln(ni) = Ci, (6)

neue = ϕe, and niui = ϕi, (7)

where the integration constants Ce, Ci, ϕe, ϕi depend
on the boundary conditions. ϕe, ϕi are the constant flux
densities (particles per second per unit area) for electrons
and ions respectively. Electrons and ions are assumed to
disappear by neutralization at the wall, with no processes
such as secondary emission. For the plasma at infinity,
we set an equal density n0 for electrons and ions, and the
plasma potential is set to V0. Because we aim to treat
the artificial 1D Cartesian problem of a semi-infinite colli-
sionless plasma facing a plane wall, we must, considering
(7), set non-vanishing injection velocities us0 from infin-
ity to ensure the conservation of particle fluxes, as shown
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FIG. 2. Plot of the Lambert function branches W0 (circles)
and W−1 (squares) which have purely real and negative values
for − 1

e
≤ α ≤ 0.

in Fig. 1(a). We therefore define the non-vanishing val-
ues at infinity for the normalized square velocities to be
Us0 = (us0/uths)

2. Applying these boundary conditions
to (6) and (7), the integration constants Ce, Ci, ϕe and
ϕi are determined so that we can express ne and ni as:

ne = n0 exp

(
Ue0 − Ue

2
+

V − V0

Te

)
,

ni = n0 exp

(
Ui0 − Ui

2
− V − V0

Ti

)
, (8)

and the particle flux conservation (7) as:

n2
eUe = n2

0Ue0, and n2
iUi = n2

0Ui0.

The particle density equations (8) are a more general
form of the Boltzmann relation, known as the ”Boltz-
mann distribution law” in kinetic theory, where the den-
sity, fluid velocity and potential can be non-uniform.42

Combining these relations to eliminate the particle den-
sities gives expressions for the particle fluid velocities in
terms of the potential:

−Uee
−Ue = −Ue0e

−Ue0−
2(V −V0)

Te ,

−Uie
−Ui = −Ui0e

−Ui0+
2(V −V0)

Ti . (9)

The transcendental equations (9) have for solutions:

Ue = −W
[
−Ue0e

−Ue0−
2(V −V0)

Te

]
= −W [αe],

Ui = −W

[
−Ui0e

−Ui0+
2(V −V0)

Ti

]
= −W [αi], (10)

where W denotes the Lambert function29 defined by
α = zez ⇔ z = W [α]. This gives the functional depen-
dence of the fluid velocities and densities on the electric
potential, which is then the only remaining function to be
determined using Poisson’s equation. In the following we
will first analyse the consequences of solutions (10); the
full solution requiring integration of Poisson’s equation
is carried out in Sec. IID.
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The Lambert function, which cannot be expressed
in terms of elementary functions, is multi-valued and
therefore has several branches. Because Ue and Ui are
square velocities, the solutions (10) must be real and
positive, which implies that the Lambert functions must
be real and negative. Fortunately, regarding the former
condition, only two branches of the Lambert function,
W0 and W−1, have purely real values. Furthermore, in
order to obtain negative values, the arguments for W0

and W−1 must be restricted to the interval [− 1
e , 0]. The

representations of branches W0(α) and W−1(α) in this
interval are shown in Fig. 2. The branch point, α = − 1

e ,
is of particular interest as it is the only value for which
the condition W0(α) = W−1(α) can be fulfilled. Note
that, as W0,−1(−1

e ) = −1, the condition αs = −1
e is

equivalent to us = uths. Then, considering a given s
species, the W0 branch of the Lambert function must
be applied to describe the fluid velocity us when it is
known to be less than, or equal to, the thermal velocity.
On the contrary, if us ≥ uths, the fluid velocity must be
described by the W−1 branch. Using these properties
of the Lambert function, and under the important hy-
pothesis of a monotonic spatial variation of the electric
potential V (x), from infinity where V (x) = V0 up to the
wall surface where a bias potential Va is applied, the
analysis of conditions αe,i ∈ [− 1

e , 0] (see Appendix A)
leads to the following conclusions:

The applied potential Va = V0 plays a particular role
in this problem because it corresponds to a field free
situation. For Va < V0, ions are the attracted species
and electrons are repelled, while the opposite happens
when Va > V0. The roles of ions and electrons are then,
in a way, symmetric with regard to the plasma potential.

For Va ≤ V0:

Ue = −W0 [αe] and Ui = −W−1 [αi] , (11)

with the conditions on initial velocities:

Ui0 ≥ 1,

0 ≤ Ue0 ≤ Umax
e0 = −W0

[
−e

2(Va−V0)

Te
−1
]
≤ 1. (12)

The relations (12) imply that ions come from infinity
with an initial convective velocity ui0 greater or equal
to uthi. The initial velocity of electrons, ue0, is limited
to a maximum value umax

e0 . For ue0 = umax
e0 , the electron

velocity at the wall is also maximum and is equal to the
thermal velocity uthe.

For Va ≥ V0:

Ue = −W−1 [αe] and Ui = −W0 [αi] , (13)

with the conditions on initial velocities:

Ue0 ≥ 1,

0 ≤ Ui0 ≤ Umax
i0 = −W0

[
−e

− 2(Va−V0)

Ti
−1

]
≤ 1. (14)

As stated above, the roles of electrons and ions are
inverted when Va crosses the plasma potential value, so
that electrons now come from infinity with an initial
convective velocity higher than their thermal velocity,
while the maximal ion velocity at the wall is uthi.

Now consider the Va = V0 case. Obviously, the so-
lutions for Va ≤ V0 (11) and Va ≥ V0 (13) must give
the same value for Va = V0. This leads to the condition
W0(αe,i) = W−1(αe,i), which was shown to be satisfied
only for αe,i = −1

e , and is equivalent to Ui = Ue = 1.
Then, the convective velocity for both species must be
uths from infinity up to the wall. This notably implies
that the flux density at the wall in the field-free sit-

uation is given by ϕs = n0uths = n0

√
qTs

ms
. This is

different from the classical kinetic theory flux density

ϕs = 1
4n0v̄s = 1√

2π
n0uths, (where v̄s =

√
8qTs

πms
is the

mean thermal velocity) which is conventionally assumed
for the repelled species at the wall surface in sheath
models.1–3,8,9,13,19,26–28,32,43,44 We will come back to this
point in the final discussion, Section VIB.

B. Criterion on initial velocities

To complete the solutions we have to determine Ue0

and Ui0. A criterion on these initial velocities can be
found, for any probe potential Va, by requiring a mono-
tonic decrease of the charge density modulus |Q| =
q|ni−ne| towards infinity where V = V0; a local condition
which can be expressed as [∂V |Q|]V0 ≤ 0.45 According to
our solution (10), after some algebra this inequality be-
comes:

Ti(Ui0 − 1) + Te(Ue0 − 1) ≥ 0. (15)

This relation for the initial convective velocities, which
is symmetric in electron and ion terms, can be seen as
a generalization of the classical Bohm criterion.5,11 By
rewriting (15) in a more conventional way to express the
minimal velocity for ions entering a sheath we obtain:

ui0 ≥

√
q(Te + Ti)−meu2

e0

mi
. (16)

The Bohm criterion5 ui0 ≥ uBohm =
√

qTe

mi
is recov-

ered for cold ions (Ti = 0) and negligible electron inertia
(me = 0). Persson’s23 expression is obtained when ion
temperature is accounted for, and the complete expres-
sion (16) of Baalrud et al46 is recovered when electron
inertia is also included. Note that criterion (15) implies
a general coupling between ion and electron initial veloc-
ities for all bias potentials.

Interestingly, the inequality (15) is directly related to
the required convective kinetic energy density at infinity,
E∞, which can be expressed for any value of the applied
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potential as follows:

E∞(Va) = n0

(
1

2
miu

2
i0 +

1

2
meu

2
e0

)
=

1

2
qn0 (TiUi0 + TeUe0) . (17)

When Va = V0, as Ui0 = Ue0 = 1, (17) gives

E∞(V0) = E0 =
1

2
qn0 (Ti + Te) . (18)

Taking the energy difference E∞(Va)−E∞(V0) we obtain:

E∞(Va)− E∞(V0) =
1

2
qn0 [Ti(Ui0 − 1) + Te(Ue0 − 1)] .

(19)
Then the criterion (15) can be interpreted as follows:
E∞(V0) corresponds to a minimum of required convective
kinetic energy density at infinity. For any other value of
Va the required kinetic energy density can only increase.
Consequently, a saturation of criterion (15), i.e. taking
Ti(Ui0 − 1) + Te(Ue0 − 1) = 0, corresponds to a mini-
mization of E∞(Va) which then takes the constant value
E0 = 1

2qn0 (Ti + Te) for any applied potential Va.
Furthermore, it can be verified from (27) that, by sat-

urating (15), the electrical field intensity at the wall is
minimized, and therefore that the total charge in the
wall-perturbed region is also minimized. Hence the sat-
uration of the general criterion (15) corresponds to the
minimal perturbation to the plasma by the biased wall.
On the basis of these arguments we postulate the cri-
terion (15) to be always saturated. But then what de-
termines the partition of the constant convective kinetic
energy density E0 between ions and electrons?
To clarify this question we consider the Va ≤ V0 case.

Saturating (15), Ui0 can be expressed as a function of
Ue0:

Ui0 = 1 +
Te

Ti
(1− Ue0). (20)

From (12), Ue0 is constrained to lie in an interval
[0, Umax

e0 ]. From (20) it is obvious that in order to min-
imize the ion initial velocity one should maximize Ue0

and take Ue0 = Umax
e0 . By doing so, the electron con-

vective velocity at the wall is implicitly set to uthe for
any value of the applied potential Va ≤ V0, and not only
for Va = V0 when it must be so. One could question
the choice of minimizing the initial velocity of the field-
accelerated species at the expense of the field-repelled
one. The problem can also be stated as follows: The re-
pelled species is adsorbed at the wall by sole virtue of its
random thermal motion, which does not depend on the
bias potential in the framework of an isothermal model.
We know from our solution that the convective velocity
for both species must be uths in the field-free situation.
It should then remain uths for any value of Va as long as
the considered species is repelled.
The evolution of the initial ion velocity as a function

of Va, in comparison with the Bohm velocity, is shown
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FIG. 3. Evolution of the initial ion velocity ui0, normalized
to the Bohm velocity, for the infinite plane probe for three
different values of the ion temperature Ti. Fixed parameters:
Argon gas, n0 = 1017 m−3, Te = 3 V, V0 = 20 V.

on Fig. 3 for three different ion temperatures. It then
appears that taking the Bohm velocity as an initial
velocity for ions is an acceptable approximation for low
Ti and large negative biasing.

To resume the 1D Cartesian result, we first remind
that αe and αi, from (10), are given by:

αe = −Ue0e
−Ue0−

2(V −V0)

Te ,

αi = −Ui0e
−Ui0+

2(V −V0)

Ti .

The 1D Cartesian moment equations for Va ≤ V0 are
finally reduced to

Ue = −W0 [αe] and Ui = −W−1 [αi] ,

where Ui0 = 1 +
Te

Ti
(1− Ue0), and

Ue0 = −W0

[
−e

2(Va−V0)

Te
−1
]
. (21)

The electron fluid velocity at the wall is always equal to
the thermal velocity uthe. The corresponding loci of the
electron and ion fluid velocities are shown on a Lambert
function diagram in Fig. 4.

For Va ≥ V0, the roles of electrons and ions are ex-
changed, accounting for charge sign:

Ue = −W−1 [αe] and Ui = −W0 [αi] ,

where Ue0 = 1 +
Ti

Te
(1− Ui0), and

Ui0 = −W0

[
−e

− 2(Va−V0)

Ti
−1

]
. (22)

C. Wall current-voltage characteristics

Now that Ui0 and Ue0 are known, the current per unit
area collected at the wall according to this 1D Cartesian
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solution can be calculated using

Jwall = qn0(ui0 − ue0). (23)

The current-voltage (IV ) characteristic is a continuous
solution as shown in Fig. 5, for an arbitrary set of plasma
parameters. The ion and electron currents show very
pronounced saturation for Va ≪ V0 and Va ≫ V0 re-
spectively, as expected for an infinite plane probe.1,2 The
plasma parameters were chosen as follows: The pressure
of ∼ 1 Pa (estimated in Section I.B) is characteristic
of low temperature, non-equilibrium plasmas, for which
Te ∼ 3 V is a typical value imposed by particle balance.28

The ion temperature is generally above ambient temper-
ature (0.025 V), and a relatively high value, Ti = 0.2 V,
was chosen here to show its effect in the figures. The
plasma density, n0 ∼ 1017 m−3 corresponds to a rep-
resentative degree of ionisation n0/ngas ∼ 10−4, and the

electron Debye length λDe = (ε0Te/(n0q))
1/2 is 0.04 mm.

The plasma potential, V0 = 20 V, is an arbitrary refer-
ence level chosen here so that the floating potential Vf is
not far from 0 V, because the sheath voltage at a floating
probe is often not very different from the sheath voltage
at the ground electrode.28 Figures can be re-calculated
for other plasma parameters by using the analytical ex-
pressions given in the text.
The influence of Ti on the value of the electron satu-

ration current and on the shape of the IV characteristic
around Va = V0 is illustrated in Fig. 6. The curve for
Ti = Te is later compared with a numerical result of Par-
rot et al,36 in the limit of probe radius much larger than
the sheath thickness, in Fig. 15.
The expression for the floating potential Vf of the wall

is deduced by setting Jwall = 0 in (23):

V wall
f = V0 −

Te

2
(lnA+ 1/A− 1) , (24)
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where A = Te(mi+me)
me(Te+Ti)

.

D. Potential and electric field

The ultimate step for a complete solution would be to
obtain the spatial profiles by integrating Poisson’s equa-
tion,

∂2
xV = − q

ε0
(ni − ne). (25)

To our knowledge, an analytical solution cannot be
found, but at least the square electric field intensity
E2 = (−∂xV )2 can be expressed everywhere by the fol-
lowing calculation:
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Multiplying (25) by ∂xV gives

∂xV ∂2
xV =

1

2
∂x[(∂xV )2] = − q

ε0
(ni − ne)∂xV. (26)

Using the fluid equations for electron and ion momen-
tum (2), and making use of particle conservation (neue =
n0ue0 = ϕe and niui = n0ui0 = ϕi), we have:

meϕe∂xue − qne∂xV + qTe∂xne = 0,

miϕi∂xui + qni∂xV + qTi∂xni = 0.

By summing these two equations,

−q(ni − ne)∂xV = meϕe∂xue + qTe∂xne

+miϕi∂xui + qTi∂xni.

Then (26) can be directly integrated to find the expres-
sion for the square electric field, the integration constant
being defined by the limits at infinity:

ε0
2
E2 = −qTi(n0 − ni)− qTe(n0 − ne)

−miϕi(ui0 − ui)−meϕe(ue0 − ue). (27)

Equations (25) or (27) can be integrated numerically
starting from a point supposed far enough from the wall
so that we can take as initial conditions ne = ni = n0,
Ui = Ui0, Ue = Ue0, and V = V0. An initial infinitesimal
gradient for V is imposed and the spatial evolution of the
potential is computed until the condition V = Va is sat-
isfied, which corresponds to the wall. Alternatively, since
we know the electric field at the wall surface from (27),
we can also integrate Poisson’s equation starting from
the wall. Both methods give the same result, although
the integration starting from the wall tends to diverge
and needs much smaller integration steps. For examples,
plots of computed profiles for Va lower, and greater, than
V0 are shown in Figs. 7(a) and (b), respectively. The
ion-rich perturbed region in Fig. 7(a) is several Debye
lengths wide, but much smaller than the mean free path
λc, which is characteristic of a collisionless thin sheath
for a classical Langmuir probe.47 The electron-rich per-
turbation in Fig. 7(b) is narrower and more similar to
the Debye length. In Fig. 7(a), the ion initial convective
velocity is slightly greater than the Bohm velocity (see
Fig. 3 for Va = 15 V), and the electron convective velocity
at the wall equals their thermal velocity35 as discussed
in Section II B. Note that the electron initial convective
velocity in the Va > V0 case is slightly higher than their
thermal velocity uthe, as shown also by Scheiner et al.31

E. Discussion of the 1D infinite plane wall case

As already emphasized, the 1D Cartesian collisionless
example above, corresponding to an infinite plane wall
and a semi-infinite plasma, clearly does not apply to the
physical case of a real probe immersed in a plasma.1 The
wall acts more like an electrode than a probe in this
case, and a pre-sheath must be considered.11,12,30 The
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for Va = 15 V < V0 = 20 V; and (b) for Va = 25 V > V0 =
20 V. Same plasma parameters as for Fig. 5.

fundamental drawback of this 1D Cartesian collisionless
solution is that conservation of particle flux requires a
non-zero convective velocity plasma source from infinity
(Fig. 1(a)), whereas for real finite-sized bodies, particle
flux conservation imposes a limit of zero convective veloc-
ity from infinity (Fig. 1(b)), as will be shown in the next
section. In many conventional 1D models, conditions for
finite-sized bodies are nevertheless imposed at infinity
(ns = n0, V = V0, Us = 0), and as such, the 1D Carte-
sian particle conservation is violated, unless ionization is
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included in a collisional pre-sheath.6 As a consequence
there is an artificial separation of space into a collision-
less sheath, with a 1D Cartesian constant particle flux,
and a collisional pre-sheath where the flux is increasing
up to the sheath entrance (Fig. 1(c)), with considerable
difficulties to match the two solutions. This problem is
considered further in section V in the framework of the
big radius probe approximation.

III. 1D RADIAL GEOMETRY FOR CYLINDRICAL
PROBES

For radial symmetry, the fluid equations for electron
and ion momentum are found to be identical to the 1D
Cartesian situation (3):

1

2
∂rUe −

1

Te
∂rV + ∂r ln(ne) = 0,

1

2
∂rUi +

1

Ti
∂rV + ∂r ln(ni) = 0. (28)

In cylindrical geometry, however, the steady state radial
particle flux conservation is expressed as 1

r∂r(rnsus) = 0,
hence

2πrneue = Γe, and 2πrniui = Γi, (29)

where Γe,i is the constant particle flux per unit length of
the probe, for electrons and ions respectively. As for the
1D Cartesian case, we set at infinity an equal density n0

for electrons and ions, and the plasma potential V0. This
being stated, it is clear from (29) that both electron and
ion fluid velocities must tend toward zero as r tends to-
ward infinity to ensure a finite flux (see Fig. 1(b)). Then,
the integration of (28), making use of the boundary con-
ditions at infinity, leads to

ne = n0 exp

(
−Ue

2
+

V − V0

Te

)
,

ni = n0 exp

(
−Ui

2
− V − V0

Ti

)
. (30)

Because the fluxes Γe,i can no longer be defined by
boundary conditions at infinity, we use instead a defi-
nition at the cylindrical probe surface located at r = Rp:

2πRpneauea = Γe, and 2πRpniauia = Γi, (31)

uea and uia being the electron and ion fluid velocities at
the probe and nea and nia the corresponding densities
according to (30), with the potential of the probe being
defined as Va. We further redefine the normalized square
velocities at the probe as

Uea =

(
uea

uthe

)2

and Uia =

(
uia

uthi

)2

. (32)

Then the combination of (29) to (32) leads to the solu-
tions for the square velocities Ue and Ui, which take the

following forms:

Ue = −W

[
−
R2

pUea

r2
e−Uea+

2(Va−V )
Te

]
= −W [αe] ,

Ui = −W

[
−
R2

pUia

r2
e
−Uia− 2(Va−V )

Ti

]
= −W [αi] .(33)

As in the 1D Cartesian case, both Ue and Ui are real and
positive, so they can only be described by the W0 and
W−1 branches of the Lambert function, and αe,i must
lie in the interval [−1

e , 0]. We still assume for this radial
case a monotonic variation of the electric potential with
r. In the 1D Cartesian geometry, the monotonicity of
V (x) implies the monotonicity of the Lambert function
arguments αe,i(x), so that the analysis of the conditions
αe,i(x) ∈ [−1

e , 0] concerns only the boundary conditions
at infinity and at the wall surface, as shown in Appendix
A. In cylindrical geometry this is no longer true, because
of the direct dependence on r of αe,i(r). In fact, taking
the spatial derivative of αe and αi one finds:

∂rαe =
−2αe

Te

(
Te

r
+ ∂rV

)
,

∂rαi =
−2αi

Ti

(
Ti

r
− ∂rV

)
. (34)

To understand the meaning of this, we focus in the
following on the Va < V0 case. Upon the monotonicity
hypothesis, the potential continuously increases with r
so that ∂rV > 0. For electrons, (34) never vanishes for
∂rV > 0 and the argument αe(r) is still monotonic. As
in the 1D Cartesian model, the condition αe ∈ [−1

e , 0]
implies that the electron convective velocity at the probe
lies in the interval [0, uthe]. We have shown in the 1D
Cartesian Section II.B that taking uea = uthe corre-
sponds to a minimal perturbation to the plasma by the
biased wall. We postulate in the following that this re-
mains true in radial geometry, or, in other words, that the
adsorption mechanism of the repelled species at the probe
does not depend on the geometry considered. Then, set-
ting uea = uthe the electron density at the probe surface
is known using (30):

nea = n0e
− 1

2 e
Va−V0

Te . (35)

For ions, according to (34) the argument αi reaches its
minimum at a radius RS for which [∂rV ]RS = Ti/RS .
Consider then the ion velocity evolution (33) starting
from infinity toward the probe, as shown schematically
in Fig. 8. For large r, Ui tends toward zero and can
then only be represented by the first branch of Lambert
functions, W0. Approaching the probe, αi decreases, and
the ion velocity increases up to the minimum of αi when
r = RS . Beyond this point, as αi now increases, the ion
velocity would decrease if it were to remain represented
by W0. As, on the contrary, we expect the ion velocity to
continuously increase even for r < RS , this implies that
the solution must switch to the second Lambert branch,



10

-0.4 -0.3 -0.2 -0.1 0
0

1

2

3

4

a = -1/e

a
i

U
i

=
-
W

(a
)

zero initial velocity

U
ia

ion thermal velocity
at the sonic radius

Ui =1

ion velocity at the probe

i

FIG. 8. Locus of the ion normalized square fluid velocity for
the case Va ≤ V0 of a cylindrical probe, showing the zero
initial velocity (circle), the ion thermal velocity at the sonic
radius (triangle), and the ion velocity at the probe (square).
The y axis is inverted with respect to Fig. 2. The locus of
the electron velocity (not shown) also begins at the origin
and traverses the branch W0, but ends on the probe at the
electron thermal velocity, point [− 1

e
, 1].

W−1. However, to ensure a continuous solution, the con-
tinuity between the two branches W0 and W−1 must be
satisfied at r = RS . This can only be achieved by set-
ting αi(RS) = −1

e , which implies that the ion convective
velocity at RS must be uthi. RS can then be defined
as the ion sonic radius (this is not the same as the ion
acoustic speed associated with Bohm’s velocity). Clearly,
for probe theories with cold ions (Ti = 0), the ion sonic
radius could have no meaning.
An interesting question arises when the applied po-

tential Va approaches V0. Clearly, for the field-free case
Va = V0, a sonic radius RS can no longer be defined
because ∂rV = 0 everywhere. Then, there must be a
limit value Va = Vlim for which RS coincides with Rp,
implying that the ion convective velocity at the probe is
uthi for this case. Above Vlim the ion convective velocity
could be thought to fall below uthi. On the other hand,
according to the 1D Cartesian solution, for the field-free
situation (Va = V0) we expect the ion and electron con-
vective velocities at the probe to be uthi,the, and we have
indeed already postulated that this remains true in the
radial case by setting uea = uthe above. This then im-
plies that the convective velocities of ions and electrons
in the zone between the two limit potentials Vlim (one for
Va < V0 when [∂rV ]Rp = Ti/Rp, and one for Va > V0

when [∂rV ]Rp = −Te/Rp ) are to be constant at uthi and
uthe, respectively.
Under this assumption, in this ”constant velocity

zone”, both ion and electron densities at the probe are
known, using (30), and can be expressed for any probe
radius Rp as:

nea = n0e
− 1

2 e
Va−V0

Te ,

nia = n0e
− 1

2 e
−Va−V0

Ti . (36)

Going back to the more general case for which an ion
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FIG. 9. Cylindrical probe 1D radial profiles of potential, den-
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electron sonic radius RS in (b), is also shown for each probe.
Fixed parameters: Argon gas, n0 = 1017 m−3, Ti = 0.2 V,
Te = 3 V.

sonic radius can be defined (Va < Vlim < V0), the electron
convective velocity at the probe (r = Rp) being known
to be uthe, and the ion convective velocity at the sonic
radius (r = RS) to be uthi, we can rewrite (33) to obtain:

Ue = −W0

[
−
R2

p

r2
e

2(Va−V )
Te

−1

]
,
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Ui = −W0

[
−R2

S

r2
e

−2(VS−V )

Ti
−1

]
, V ≥ VS ,

Ui = −W−1

[
−R2

S

r2
e

−2(VS−V )

Ti
−1

]
, V ≤ VS . (37)

VS is the value of the electric potential at the sonic radius
RS , and both parameters are to be determined. Recalling
that these are defined by the following conditions on the
electric potential:

[∂rV ]RS =
Ti

RS
, and V (RS) = VS , (38)

and that in 1D radial coordinates Poisson’s equation
takes the form:

1

r
∂r(r∂rV ) =

1

r
∂rV + ∂2

rV = − q

ε0
(ni − ne), (39)

RS and VS can be determined by requiring that the so-
lution of Poisson’s equation satisfies the boundary con-
ditions:

V (Rp) = Va, and V (r → ∞) = V0.

As far as we know, no analytical solution for Poisson’s
equation can be found, as also in the 1D Cartesian case,
and we have to perform numerical integrations starting
from RS . If the correct pair (RS , VS) is used as initial
conditions, the integration of (39) towards the probe sur-
face (decreasing r) will respect the boundary condition
V (Rp) = Va, while the integration towards infinity (in-
creasing r) must lead to the limiting value V0. The po-
tential profile can then be computed iteratively (see Ap-
pendix B 2) in order to simultaneously satisfy these two
boundary conditions. Note that, apart from a numerical
determination, the value for VS can be analytically re-
stricted to quite narrow intervals on the basis of simple
arguments concerning the charge density and the density
gradients at r = RS , as shown in Appendix B 1.
As a first illustrative result we show on figures 9(a)

and (b) the ion and electron density profiles computed
for a same value of applied potential Va (Va < V0 for
figure 9(a) and Va > V0 for (b)), for three probe radii.
We first remark that, although the probe radii vary from
0.05 mm to 0.25 mm, the widths of the ion-rich perturba-
tion in Fig. 9(a) are all several Debye lengths thick. This
is much narrower than the mean free path λc, and is
characteristic of a collisionless thin sheath for a classical
Langmuir probe,47 qualitatively similar to the 1D Carte-
sian case in Fig. 7(a). The electron-rich perturbation in
Fig. 9(b) is again narrower and more similar to the De-
bye length. It is generally found that the sonic distance
(RS −Rp) increases with increasing probe radius.
A second observation concerns the non-monotonic ion

density profiles on figure 9(a) which appear for small
probe radius and which are expected according to pre-
vious works, notably Laframboise.32 Note that the pro-
files of voltage and convective velocity remain monotonic,
even when the charge densities are not. It is shown here
that the same effect is expected for electrons (figure 9(b))
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the ion non-saturation and floating potentials. Fixed param-
eters: Argon gas, n0 = 1017 m−3, Ti = 0.2 V, Te = 3 V,
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when Va > V0. It should also be noted that the charge
separation at the ion sonic radius RS is very small (typi-
cally 0.01-0.1%) for Va < V0, and this remains true up to
values of Va very close to V0. On the other hand, when
Va > V0 the charge separation at the electron sonic ra-
dius RS is large (typically 50%) even for large positive
bias. It then appears that if the ion sonic radius RS could
be thought of as a possible definition of a quasi-neutral
sheath edge in the Va < V0 case (at least for Va ≪ V0),
it is not generalizable to the Va > V0 case.

A. IV characteristics for cylindrical probes

Figure 10 shows the predicted IV characteristics for
three different probe diameters. The results are pre-
sented as collected current per unit area (A/m2) for
comparison. The noise in the characteristics, especially
for the smallest probe, is due to the numerical reso-
lution of RS . The first important result concerns the
observation of non-saturating electron and ion currents.
The two-fluid solution presented here accounts for this
experimental fact, which arises due to an increase in
RS (Appendix B 3), without reference to orbital-motion-
limited (OML) theory.2,19,21,27,48–50 Furthermore, the
non-saturation is more pronounced for small probe radii,
also as observed.32 The floating potential depends on the
probe radius, as can be seen in the inset. It can generally
be expressed as

V cyl
f = V0 −

Te

2
ln

[
mi

me

Te

Ti

R2
p

R2
S

e
2(VS−V0)

Ti

]
. (40)

Fig. 10 also shows the IV characteristic predicted
by the 1D Cartesian solution from Fig. 5. Clearly,
the large cylindrical probe characteristic (for example,
Rp = 0.65 mm in Fig. 10) does not seem to tend toward
the 1D Cartesian result as could be expected. This
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Te = Ti = 3 V.

contradiction will be explained in Section V in the
framework of the big radius probe approximation.

Figure 11 shows the flux of attracted species calcu-
lated for the special case Ti = Te, in order to com-
pare with graphical results of Laframboise.32 The agree-
ment is good for the larger probes (probe radius to elec-
tron Debye length, Rp/λDe = 10, 50), although the non-
saturation for the small probe (Rp/λDe = 2) is more
pronounced for the present model.
In order to fully exploit this radial solution for the

analysis of measured characteristics, one has to know the
dependence of the sonic radius RS and of the sonic po-
tential VS with the applied voltage Va. However, we
show in Appendix B 4 how the main plasma param-
eters, n0 and Te, can be conveniently extracted from
experimentally-measured characteristics, upon the as-
sumption of a constant ion current contribution between
floating and plasma potentials.

IV. 1D RADIAL GEOMETRY FOR SPHERICAL PROBES

The analysis of the spherical probe can be carried out
by following the same method as for the cylindrical probe.
The 1D radial expressions are similar and one has just
to perform a r → r2 substitution to switch from the
cylindrical case to the spherical one. Attention has nev-
ertheless to be paid to the fact that the sonic radius RS

is now defined by the relation:

[∂rV ]RS
= ±2Ti,e

RS
. (41)
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FIG. 12. Current density-voltage characteristics predicted for
a cylindrical and a spherical probe, both with radius Rp =
0.15 mm. The inset shows the ion non-saturation and floating
potentials. Fixed parameters: Argon gas, n0 = 1017 m−3,
Ti = 0.2 V, Te = 3 V, V0 = 20 V.

Figure 12 shows the IV characteristics (current per
unit area) predicted for a cylindrical probe (Rp =
0.15 mm) and a spherical probe of same radius. It can be
seen that the non-saturation of spherical probes is more
pronounced than for cylindrical ones, as seen in experi-
mental observation and numerical results.32

V. 1D RADIAL GEOMETRY IN THE LIMIT OF BIG
RADIUS PROBES

Intuitively, the cylindrical 1D radial solution should
tend toward the 1D Cartesian solution when the probe
radius Rp becomes very large compared to the perturbed
region. It can be seen on figure 10 that when the probe
diameter is increased the IV characteristic becomes more
and more saturated for large biasing, as expected. How-
ever, the values of the ion and electron saturation cur-
rents are higher for the 1D Cartesian solution than for the
cylindrical one with large Rp. This apparent contradic-
tion arises from an incompatibility between the boundary
conditions taken for the velocities at infinity in the two
geometries, which can be explained as follows:

For both models, an equal density n0 for ions and elec-
trons and a uniform electric potential V0 can certainly be
imposed at infinity. The difference then comes from the
particle conservation equations

nsus = ϕs for 1D Cartesian,

2πrnsus = Γs for 1D cylindrical.

At infinity, where ns = n0, us cannot vanish for the 1D
Cartesian case because the constant particle flux den-
sities ϕs must be non-zero (Fig. 1(a)). On the other
hand, to ensure constant, finite values of Γs, the velocity
must tend to zero at infinity in the cylindrical situation
(Fig. 1(b)). Therefore, in the limit of large Rp, the 1D
Cartesian result can never be recovered because, however
large the probe radius, the initial velocities at infinity
must be zero. Another consequence of vanishing initial
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velocities is that the particle densities at the probe for
Va = V0 are n0e

− 1
2 in the cylindrical analysis (see (35))

and not n0 as in the 1D Cartesian model.
We therefore focus now on the big radius probe prob-

lem. The fluid equations for electron and ion momentum
(28) do not depend on Rp and will not be changed in
the framework of the large probe approximation. Then
equations (30) remain valid:

ne = n0 exp

(
−Ue

2
+

V − V0

Te

)
,

ni = n0 exp

(
−Ui

2
− V − V0

Ti

)
.

Consider now particle conservation in cylindrical 1D ra-
dial systems for a distance x above the probe surface:

rnsus = (Rp + x)nsus =
Γs

2π
= Rpnsausa, (42)

where nsa and usa are respectively the density and the
velocity of the considered species at the probe surface. If
we take the probe radius to be very large with respect
to the sheath length scale, then x can be neglected with
regard to Rp in (42) and we directly obtain the 1D Carte-
sian particle conservation law in this limit:

nsus = nsausa = ϕs. (43)

Boundary conditions are necessary to solve the problem
as in the 1D Cartesian section, but x cannot extend to
infinity in the framework of this approximation. Instead,
we have to state an upper boundary for our solution at
a given position xsh ≪ Rp. The only condition we will
require at this radius is an equal density nsh for ions and
electrons, by analogy with the sheath defining the bound-
ary of quasi-neutrality with respect to the pre-sheath in
conventional models.5,11,12 By doing so, we employ the
classical notions of sheath and pre-sheath, but it has to
be noted that conditions other than quasi-neutrality at
the sheath edge could, or even should, be envisaged.

A. The sheath in the limit of big radius probes

The potential at xsh is set to be Vsh while the initial
electron and ion velocities at the sheath edge are uesh and
uish (Fig. 1(c)). With these definitions, the combination
of (30) and (43) gives the solutions

Ue = −W

[
−n2

sh

n2
0

Ueshe
− 2(V −V0)

Te

]
,

Ui = −W

[
−n2

sh

n2
0

Uishe
2(V −V0)

Ti

]
, (44)

where we have reintroduced the normalized initial square
velocities Uesh = (uesh/uthe)

2 and Uish = (uish/uthi)
2. In

order to be self-consistent, (44) must lead to Ue = Uesh
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FIG. 13. Current density-voltage characteristics predicted for
three different cylindrical probe radii (0.05, 0.15 and 0.65mm)
and for the big radius probe approximation. The inset shows
the ion non-saturation. Fixed parameters: Argon gas, n0 =
1017 m−3, Ti = 0.2 V, Te = 3 V, V0 = 20 V.

and Ui = Uish for V = Vsh. From these two conditions
we obtain

Vsh = V0 −
TeTi(Uish − Uesh)

2(Te + Ti)
, (45)

nsh = n0e
−TiUish+TeUesh

2(Te+Ti) . (46)

As in the 1D Cartesian model, we express the condition
for a continuous variation of the net charge density at
the sheath edge as:

[∂V Q]Vsh
= [∂V (ni − ne)]Vsh

≤ 0,

which according to (30) and (44-46), after some algebra,
gives again the general criterion (15):

Ti(Uish − 1) + Te(Uesh − 1) ≥ 0.

Now consider the case for which Va < V0, the ion-rich
sheath. As explained in the 1D Cartesian section, we
then take the initial normalized square velocity for elec-
trons Uesh to be Umax

esh , its maximum value. Therefore,
taking (15) to be saturated gives

Uish = 1 +
Te

Ti
(1− Umax

esh ).

Then, according to this expression for Uish, (45) and (46)
become

Vsh = V0 −
Te

2
(1− Umax

esh ), (47)

nsh = n0e
− 1

2 , (48)

with

Umax
esh = e

2(Va−V0)

Te . (49)

Interestingly, in the framework of this big radius probe
approximation, we find the classical result of a potential
drop (with regard to plasma potential) at the sheath edge
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of approximatively Te/2, at least for Va sufficiently lower
than V0. We furthermore find that the plasma density
at the sheath edge is n0e

−1/2, which is also a classical
result.27

For Va > V0, saturating (15) we get:

Uesh = 1 +
Ti

Te
(1− Umax

ish ).

This also leads to nsh = n0e
−1/2, and the potential at

the sheath edge becomes

Vsh = V0 +
Ti

2
(1− Umax

ish ), (50)

with

Umax
ish = e

− 2(Va−V0)

Ti . (51)

B. IV characteristics in the limit of big radius probes, and
comparison with a classical model

The IV characteristic according to the big radius probe
approximation is shown on figure 13 in comparison with
the IV curves calculated for cylindrical probes with
different Rp, which resolves the apparent contradiction
noted in Section IIIA regarding the discrepancy of the
1D Cartesian solution in Fig. 10.
The predictions of this model differ significantly

from those of conventional theory,28 as illustrated on
Fig. 14(a). The main reason for these differences arises
from the modification of the electron current expression
in the two models:

Jclassical
e = q

n0

4
e(

Va−V0
Te

)
√

8qTe

πme
,

Jbig radius
e = qn0e

− 1
2 e(

Va−V0
Te

)
√

qTe

me
,

for Va < V0, as shown in Fig. 14(b).
The ion current contributions for both models are also

represented on figure 14(b). In classical theory, the ion
current is taken to be constant for any value of the ap-
plied potential, whereas the big probe solution implies
a continuously decreasing ion current as Va approaches,
and passes, the plasma potential. This being said, the
electron contribution to the total current is much higher
than the ion current in this region, so the approximation
of a constant ion flux is fairly reasonable. With regard to
the ion saturation currents (figure 14(c)), the expressions
for the two models can be compared as follows:

Jclassical
isat = −qn0e

− 1
2

√
qTe/mi,

Jbig radius
isat = −qn0e

− 1
2

√
q(Te + Ti)/mi,

where the big radius probe expression accounts for non-
zero ion temperature.
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FIG. 14. (a) IV characteristics for a classical model (red lines)
compared with the big radius probe approximation (black
lines); (b) semi-log plot of the electron currents, Je, and mag-
nitude of the ion currents, Ji; (c) expanded scale to show the
ion saturation currents and the floating potentials Vf . Fixed
parameters: Argon gas, n0 = 1017 m−3, Ti = 0.2 V, Te = 3 V,
V0 = 20 V.

The modification of electron and ion flux expressions
naturally implies different values for the floating poten-
tial:

V classical
f = V0 −

Te

2

[
ln(

mi

2πme
) + 1

]
= V0 −

Te

2
ln

e1mi

2πme
,

V big radius
f = V0 −

Te

2
ln

Te(mi +me)

me(Te + Ti)
∼= V0 −

Te

2
ln

mi

me
,

which differ by Te

2 ln( e1

2π )
∼= 0.4Te as shown in Fig. 14(c).

Finally, Fig. 15 shows the IV characteristic predicted
in the framework of the big probe approximation for
the special case Te = Ti, in order to compare with
the numerical result of Parrot et al,36 also obtained in
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FIG. 15. Normalized current-voltage characteristics for the
big radius probe, the 1D Cartesian case, and the numerical
simulation of Parrot et al36 for the special case of Ti = Te

and ionized oxygen atoms. n0 = 1017 m−3, Ti = Te = 3 V.

the limit of probe radius much larger than the sheath
thickness. The correspondence between both curves is
excellent and suggests a convergence of both approaches
in the big radius probe limit, similarly to Fig. 11. Fig. 15
also shows the IV characteristic for the 1D Cartesian
infinite plane wall, which differs from the big radius
probe limit due to their different boundary conditions
at infinity.

In conclusion, it has been shown that the classical 1D
Cartesian model of a collisionless sheath applies only in
the limit of large radius cylindrical (or spherical) probes.
This is why non-saturation effects observed experimen-
tally for small probes could not be described by the clas-
sical sheath model. The big radius probe approxima-
tion relies on the supposition that the probe radius is
much bigger than the typical length scale of the sheath,
or plasma perturbation. We note that, with our set of
parameters, this typical length scale is about 1 mm, and
therefore a ”big probe” would in reality be several cen-
timeters in diameter, and would rather be qualified as a
big body.

VI. DISCUSSION

A. Concerning the extension of solutions up to infinity

Clearly, whichever geometry is considered, an infinite
plasma has no meaning if ionization is included, because
an infinite plasma would generate infinite particle fluxes
that would have to be adsorbed by the wall or the im-
mersed body. In such models, a probe must be taken
to be immersed in plasma of limited extent, or in other
words, enclosed in a vessel. If the probe is small enough
to be non-perturbing, the majority of the ionization con-
tributes to fluxes toward external walls. Considering a
simplified axisymmetric system in Fig. 16, the flux for a
given species is oriented toward the probe in its vicin-

FIG. 16. Schematic of flows to a cylindrical probe and to a
cylindrical wall, showing the watershed radius r0.

ity while it is oriented toward the vessel wall far away
from the probe. There is therefore a certain watershed
radius r0 at which the particle flux must vanish.3 The
flux adsorbed by the probe is then given by the inte-
gral of all ionizations between the probe radius Rp and
r0. For a given flux to the probe, decreasing the ioniza-
tion rate leads to increasing r0, which tends to infinity in
the collisionless (ionizationless) limit. As a consequence,
the extension of the perturbed region for cylindrical and
spherical probes to infinity seems in fact to be required
in the framework of collisionless models.

Then, consistent with the collisionless hypothesis, our
solution extends from the probe to infinity, without any
distinction possible between sheath and pre-sheath be-
cause the charge separation evolves continuously over the
whole domain. This being said, although the solution
is mathematically valid over the whole space, it is not
physically valid everywhere: If the collisionless hypoth-
esis is acceptable for low pressure in the vicinity of the
probe (i.e. in the ”sheath” where the charge separation
is significant), over larger distances, collisions are deter-
minant and can no longer be neglected. It should be
noted, however, that there is a fundamental difference
between 1D Cartesian and radial geometries: In the 1D
Cartesian case, a collisional (ionization) presheath is re-
quired to justify the flux at the sheath entrance,6 while
for radial probes, the inward flux concentration in the
geometric presheath allows a collisionless presheath to
relax asymptotically to the unperturbed plasma.11,12

B. Concerning the repelled species convective velocity at
the probe surface

In the 1D Cartesian demonstration it was shown that
the repelled species, sr, has a convective velocity at the
probe surface, usra, which is undetermined but must lie
in an interval [0, uthsr ]. It was further shown that, in
the field free situation, uthsr is the only possible value
for usra in order to ensure continuous solutions when the
bias of the wall crosses the plasma potential. We then
extended this result to all bias potentials for the repelled
species. By doing so we actually converge with the con-
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ventional approach in which the electron flux at the wall
surface is taken to be given by the random thermal ki-
netic flux1–3,8,9,13,19,26–28,32,43,44 1

4neav̄e = 1√
2π

neauthe,

at least, for the case Va < V0. The only difference is the
factor 1√

2π
which does not appear in our solution. The

classical kinetic theory flux, 1
4nea

√
8qTe

πme
, applies to the

case of non-interacting particles in front of an adsorbing
wall: In a kinetic description, the velocity distribution is
truncated because no particles return from the wall. The
classical kinetic theory result thus corresponds to the flux
of a half-Maxwellian velocity distribution. However, in
the fluid approach considered here, Maxwellian velocity
distributions are assumed to persist up to the adsorbing
wall surface. Our solution then self-consistently demon-
strates that the predicted net flux convected to the wall,

nea

√
qTe

me
, is larger than the classical kinetic theory result

by a factor
√
2π.

In the cylindrical and spherical 1D radial cases the re-
pelled species velocity at the probe is also found to lie
in the interval [0, uthsr ], but no condition was found for
the field free situation. On the contrary, we have demon-
strated the existence of a zone in terms of probe bias,
in the vicinity of the plasma potential V0, in which the
convective velocities of both repelled and field acceler-
ated species could fall below uths. Our main question
here concerns the application of 1D Cartesian results to
cylindrical and spherical 1D radial cases. In fact, to solve
the 1D radial problem we postulated that the field-free
convective velocity at the probe for the repelled species
is also uthsr , as it must be in the 1D Cartesian situation.
By doing so we have in fact made the conventional as-
sumption that the adsorption mechanism of the repelled
species at the biased surface does not depend on the ge-
ometry considered.

C. The criterion on initial velocities

According to our demonstration, a criterion on initial
velocities seems to have no meaning apart from the 1D
Cartesian model for which the flux conservation imposes
non-vanishing velocities at infinity, or at the sheath edge
in the framework of the big radius probe approxima-
tion. In 1D Cartesian systems, the criterion on initial
velocities arises from the requirement of a continuously-
decreasing charge density when going away from the wall,
up to infinity or to the sheath edge where electrons and
ions have the same density. In 1D radial geometries, all
the Lambert function arguments vanish in the limit of
large r, and the requirement of a continuously-decreasing
charge density up to infinity leads to the trivial condition
1/Te+1/Ti ≥ 0. In this case, another criterion is required
to determine the charge separation (or, equivalently, the
electric potential) at the sonic radius.

VII. CONCLUSIONS

The two-fluid equations were solved using the Lam-
bert function for the 1D cases of planar, cylindrical and
spherical Langmuir probes in a steady state, isother-
mal plasma. Because electron inertia and ion temper-
ature are both included, the fluid equations are sym-
metric in the terms for electrons and ions, hence the
solutions apply below and above the plasma potential.
The solution of the fluid equations allows ion and elec-
tron densities to be expressed as functions of the elec-
tric potential, which is then the only remaining func-
tion implied in Poisson’s equation. This final differ-
ential equation is integrated numerically to obtain the
full solution, i.e. the spatial dependence of all param-
eters. The calculated current-voltage characteristics for
radial probes correspond with general experimental ob-
servations, such as non-saturation of the ion and electron
saturation currents, which are more pronounced for small
probe radii. Furthermore, spherical probe currents show
stronger non-saturation than cylindrical probes for iden-
tical radius.

The model gives a single 1D solution for radial probes
extending from the probe surface up to infinity. The con-
nection with classical models considering a separation of
space between a 1D Cartesian collisionless sheath and
a quasineutral pre-sheath was made, and it was demon-
strated that this approach is valid only as an approxima-
tion in the framework of big radius probes for which the
sheath length scale can be considered to be very small
compared to the probe radius. In the limit of big radius
probes, the solution leads to several generalized results
which converge towards conventional ones provided that
proper approximations are applied. Notably, a criterion
on initial velocities was derived, generalizing the Bohm
criterion, which not only implies a minimal initial ve-
locity for ions entering an ion-rich sheath, but also for
electrons when the probe bias is higher than the plasma
potential. This unique expression for both species was
shown to be related to the total required kinetic energy
density of ions and electrons at the sheath entrance. Sat-
uration of the criterion minimizes this energy density, as
well as the total charge of the perturbed region; this case
then corresponds to the minimum perturbation to the
plasma by the probe for any given probe potential.

Another surprising result of the 1D Cartesian solu-
tion is the prediction, in the field free situation, of an
adsorbed particle flux by the wall that differs from the
usually-stated thermal kinetic flux by a factor 1√

2π
. This

arises from the requirement of continuous solutions when
the wall bias potential crosses the plasma potential. As
nothing distinguishes a charged particle from a neutral
one in the field free situation, this result can in principle
be generalized to neutral particle fluxes at an adsorbing
surface.
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Appendix A: 1D Cartesian solution

The solutions (10) must be real and positive, which im-
plies that the Lambert functions must be real and neg-
ative. The reality condition implies that Ue,i must be
described by the W0 and W−1 branches of Lambert func-
tion, and negative values are obtained only provided that
the arguments αe,i are restricted to the interval [−1

e , 0].
We therefore write:

−1

e
≤ −Ue0e

−Ue0−
2(V −V0)

Te = αe(Ue0, V ) ≤ 0,

−1

e
≤ −Ui0e

−Ui0+
2(V −V0)

Ti = αi(Ui0, V ) ≤ 0. (A1)

The upper limit is always satisfied and we have only
to deal with the lower one. These inequalities must be
satisfied for all space, from infinity where V = V0, to
the wall where a potential Va is applied. The solutions
depend on whether the probe applied potential Va is less
than, greater than, or equal to the plasma potential V0.
We consider here the case Va ≤ V0, the reasoning for the
case Va ≥ V0 being similar with inverted roles for ions
and electrons, accounting for charge sign.

The potential V is assumed to vary monotonically with
x for any applied potential Va. Under this condition,
for Va ≤ V0, the argument αe(Ue0, V ) reaches its min-
imum at the wall where V = Va, for any value of Ue0.
On the other hand, for any Ui0, the minimum value for
αi(Ui0, V ) is reached at infinity when V → V0. It then
appears that the inequalities (A1) in fact only concern
the boundary conditions at the wall and infinity. Plots
of αe(Ue0, Va) and αi(Ui0, V0) for these two extreme cases
are shown in figure 17.
For ions, (A1) is satisfied for any value of Ui0 and

then no condition on the initial velocity arises in this

Va ≤ V0 case. The potential V (x) decreases monoton-
ically when approaching the wall surface, and so αi in-
creases. The first branch of Lambert functions, W0(α),
tends monotonically toward 0 for increasing argument,
while the second branch, W−1(α), tends towards infinity
(Fig. 2). Then, if the ion square velocity Ui were to be
represented by the W0 branch, it would imply a decelera-
tion of ions when approaching the wall surface. However,
the ion velocity is expected to increase, and therefore the
W−1 branch must apply for the ion solution for the case
Va ≤ V0, and so Ui0 ≥ 1.

Regarding electrons, the argument αe(Ue0, Va) always
crosses the lower limit −1

e at two points in Fig. 17, whose
values for Ue0 are also given by Lambert functions using
(A1):

Umax
e0 = −W0

[
−e

2(Va−V0)

Te
−1
]
≤ 1,

Ue02 = −W−1

[
−e

2(Va−V0)

Te
−1
]
≥ 1. (A2)

For both points the electron square normalized velocity
at the wall takes the value Ue = 1, i.e. ue = uthe at
the wall, since αe = − 1

e in (10). The solutions with
Ue0 ≥ Ue02 correspond to initial velocities ue0 greater
than uthe and would be described by the W−1 branch of
the Lambert function. According to these solutions, the
electrons would come from infinity with a ”high” convec-
tive velocity and would be decelerated as they approach
the wall. However, considering particle flux conservation,
if the convective velocity of electrons was to decrease,
their density should on the contrary increase when ap-
proaching the wall to maintain the constant flux. As we
expect the opposite to occur, these solutions can be elim-
inated. On the other hand, solutions for Ue0 ≤ Umax

e0 ≤ 1
correspond to initial velocities lower than uthe and are
described by the W0 branch, for which electrons are
correctly predicted to be accelerated towards the wall.
Then, in this Va < V0 case the solutions to (10) are given
by (11) and (12).

Appendix B: 1D cylindrical solution

1. Around the ion sonic radius RS:

A mathematical difficulty arises at the sonic radius re-
garding density and velocity gradients for the field accel-
erated species, because both numerator and denominator
in the derivative of (30) and (37) vanish at r = RS . This
indeterminacy can be overcome by using a Taylor expan-
sion for the electric potential around RS and performing
a power series expansion29 of velocity and density ex-
pressions around RS . As an example we show here the
development for the Va ≤ V0 case.

We define the net charge density at r = RS to be:

QS = q(ni(RS)− ne(RS))
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= qn0

e− 1
2−

VS−V0
Ti − e

1
2W0

[
−

R2
p

R2
S

e
2(Va−VS)

Te
−1

]
+

VS−V0
Te

 .(B1)

Then from (38) and (39) we get:

[∂2
rV ]RS = −QS

ε0
− Ti

R2
S

. (B2)

According to (38) and (B2), a second order Taylor ex-
pansion of the potential around RS can be expressed as:

V = VS +
Ti

RS
ϵ− 1

2

(
QS

ε0
+

Ti

R2
S

)
ϵ2, (B3)

with ϵ = r − RS . Using (B3), the Taylor expansions of
Ui and ni around RS can be expressed, from which the
first derivatives at the sonic radius are identified to be:

[∂rUi]RS
= −

√
2QS

ε0Ti
,

[∂rni]RS
= n0e

− 1
2+

V0−VS
Ti

(√
QS

2ε0Ti
− 1

RS

)
. (B4)

It then appears that the charge separation QS gives di-
rectly the gradient of the ion square velocity at the sonic
radius. We also note from (B4) that the charge sepa-
ration at RS must be positive, ni(RS) ≥ ne(RS), for
[∂rUi]RS and [∂rni]RS to be real numbers, as expected
for Va ≤ V0. Furthermore, as in most cases we expect
the ion density to increase with r, we can express from
(B4) the condition:

[∂rni]RS
≥ 0 ⇒ QS ≥ 2ε0Ti

R2
S

. (B5)

The inequality (B5) defines an upper value for VS but
can unfortunately not be solved analytically.
In the Va ≥ V0 case the density and velocity gradients

for electrons at the sonic radius are given by:

[∂rUe]RS
= −

√
−2QS

ε0Te
,

[∂rne]RS
= n0e

− 1
2−

V0−VS
Te

(√
−QS

2ε0Te
− 1

RS

)
. (B6)

As expected the charge separation is now to be neg-
ative in order to obtain real quantities. The electron
density is expected to increase with r, such as we can
express from (B6) the following condition on the charge
separation at the sonic radius in the Va ≥ V0 case:

[∂rne]RS
≥ 0 ⇒ QS ≤ −2ε0Te

R2
S

. (B7)

Coming back to the general case, the range of possible
values for VS can be analytically limited by considering
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radius RS obtained by integration of Poisson’s equation for
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first that the density of the field accelerated species at the
sonic radius cannot exceed its initial density at infinity
n0, and secondly that the density of the field repelled
species at the sonic radius must be smaller than that of
the field accelerated one (QS ≥ 0 for Va ≤ V0 and QS ≤ 0
for Va ≥ V0).

Considering the case Va ≤ V0 we get:

V0 −
Ti

2
≤ VS ≤ V0 −

Θ

2
− Ti

2
W0[−

ΘR2
p

TiR2
s

e
2(Va−V0)

Te
− Θ

Ti ]

(B8)
where Θ = TeTi

Te+Ti
.

For Va ≥ V0 the range for VS is given by:

V0 +
Te

2
≥ VS ≥ V0 +

Θ

2
+

Te

2
W0[−

ΘR2
p

TeR2
s

e
−2(Va−V0)

Ti
− Θ

Te ]

(B9)

2. Iterative integrations

For a given RS the result of Poisson integration in
the direction of increasing r is extremely sensitive to the
value taken for QS (i.e. VS through (B1)). This is illus-
trated for a Va ≤ V0 case on figure 18 which represents
the evolution of the electron and ion densities for two very
close values of QS (0.04% variation). A too high charge
separation at RS (i.e. velocity and density gradients too
steep (B4)) leads to an ion density which diverges toward
+∞, while, on the other hand, a too low charge separa-
tion leads to an ion density which diverges toward −∞.
The divergences occur especially when the space charge
density Q becomes small, and are then so sensitive that
one can try to adjust the value of QS up to many decimal
places without really improving the obtained density pro-
files. Nevertheless, QS can then be iteratively determined
by detecting this positive/negative divergence switching.
Apart from this numerical determination, we would need
a criterion on QS that would ensure V (r → ∞) = V0.
Such a criterion cannot be deduced for the cylindrical
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FIG. 19. (a) Evolution of the sonic radius RS with probe
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the limit potential for Va ≥ V0. Fixed parameters: Argon gas,
n0 = 1017 m−3, Ti = 0.2 V, Te = 3 V, V0 = 20 V.

case in the same way as for the 1D Cartesian case (using
[∂V |Q|]V0 ≤ 0) because all the expressions vanish at in-
finity. Fortunately, the integration of Poisson’s equation
towards the probe (decreasing r) is not so sensitive to the
value taken for QS , and only a few iterations are needed
to estimate the voltage profile between RS and Rp with
a sufficient resolution (1% in Fig. 9).

3. Voltage dependence of the sonic radius parameters

The typical evolution (Rp = 0.15 mm) of the sonic
radius RS with the applied probe potential Va is shown
in Fig. 19(a). It can be seen that the ”constant veloc-
ity” zone for which RS = Rp, and both electron and
ion velocities are taken to be constant (us = uths), is of
small extent. It was found that the width of the ”con-
stant velocity” zone depends on the probe radius, lower
Rp leading to wider zones. The increase of RS with the
applied potential was found to be the only reason for the
non-saturation of the ion and electron currents. To illus-
trate this point we consider as an example the electron
current non-saturation for Va > V0. In this case, the
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the applied probe potential Va ≤ V0, for Rp = 0.15 mm. The
noisy black curve corresponds to computed values. The yellow
curve is the solution of (B5) while the red one corresponds to
the analytical upper value for VS according to (B8). Fixed
parameters: Argon gas, n0 = 1017 m−3, Ti = 0.2 V, Te = 3 V,
V0 = 20 V.

ion contribution to the total current can be neglected, so
that the electron flux to the probe Γe = 2πRSutheneS de-
termines the collected current. It can been verified (not
shown) that neS decreases slightly (by a few percent)
with increasing bias, and therefore the non-saturation of
the electron flux can only be due to the increase in RS

with Va. Similar reasoning can be applied for the non-
saturation of ion current.

Figure 19(b) shows the evolution of the sonic radius
potential VS with the probe potential. We first note that
the solution computed in the Va ranges for which RS can
be defined seems to tend tangentially toward the ”con-
stant velocity” zone solution VS(Va) = Va at both limit
potentials Vlim. Fig. 20 shows a zoom on VS(Va) for the
Va ≤ V0 range, along with the analytic upper limit for VS

given by (B8), which corresponds to a vanishing charge
separation at the sonic radius. The computed upper limit
given by (B5) expresses the condition for vanishing ion
density gradient at RS . The fact that the computed val-
ues of VS deviate only slightly from these limit curves is
a consequence of the very small charge separation at the
sonic radius for Va ≤ V0. This then cannot be general-
ized to the Va ≥ V0 case for which it was shown that the
charge separation at RS is large.

4. Analysis of cylindrical probe characteristics

We describe here how the cylindrical solution given
in this work can be used to analyse experimental IV
characteristics in a simple way. To illustrate the method
we consider as an example a theoretical characteristic
Jp(Va) computed for Rp = 0.15 mm, taken from Fig. 10,
as shown on Fig. 21(a).

First, radial probes characteristics are generally
expected to present an inflexion point in the vicinity of
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Te = 3 V, V0 = 20 V.

the plasma potential V0. This is illustrated on Fig. 21(a)
showing the first derivative ∂VaJp(Va), which reaches
its maximum slightly before Va = V0. Theoretically,
for big radius probes this inflexion point is exactly at
V0. It is sometime difficult to determine precisely this
point from real measurements, but it provides a fair
order of magnitude. Another particular point of the
characteristic is the floating potential Vf , for which
ion and electron contributions to the total current are
equal. We propose an analysis of the portion of the
curve comprised between the floating potential and the
plasma potential.

According to the model, electron and ion currents (Je
and Ji respectively) at the probe surface are given by:

Je = quthen0e
− 1

2 e
Va−V0

Te , (B10)

Ji = −quthin0

√
Ui(Va)e

−Ui(Va)

2 −Va−V0
Ti . (B11)

with

Ui = −W−1

[
−R2

S

R2
p

e
−2(VS−Va)

Ti
−1

]
.

Plots of Je and computed Ji in the range Va = [Vf , V0]
are shown on figure 21(b). The relation (B11) is quite
unpractical to use because both evolutions of RS and
VS with the applied bias Va are unknown, and must be
computed for a given probe radius Rp. But, as can be
seen on the inset of figure 21(b), the ion contribution Ji
to the total current Jp = Je+Ji is rapidly negligible with
respect to the electron one. In fact, we would make only
a small error by considering the ion contribution to be
constant between Vf and V0, this constant being given
by the value of Ji at the floating potential. According to
equation B10 we have:

Ji(Vf ) = −Je(Vf ) = −quthen0e
− 1

2 e
Vf−V0

Te ,

therefore the total collected current J(Va) in the [Vf , V0]
interval approximates to:

Japprox(Va) = Ji(Vf ) + Je(Va)

= quthen0e
− 1

2−
V0
Te

[
e

Va
Te − e

Vf
Te

]
. (B12)

We then obtain an expression which is independent of un-
known parameters RS and VS , and on the probe radius
Rp as well. The impact of Rp on the characteristic is in
fact taken into account through the experimental deter-
mination of the floating potential Vf , which depends on
the probe radius as can be seen in (40). The difference be-
tween the originally-computed characteristic Jp(Va) and
the approximate expression Japprox(Va) is so small as to
be practically indistinguishable on Figs. 21(a) and (b)
for Va ≤ V0.
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