000261667 001__ 261667
000261667 005__ 20190212152430.0
000261667 022__ $$a1932-7447
000261667 02470 $$a000435611900031$$2isi
000261667 0247_ $$2doi$$a10.1021/acs.jpcc.8b03935
000261667 037__ $$aARTICLE
000261667 245__ $$aExploring the Limitation of Molecular Water Oxidation Catalysts
000261667 260__ $$c2018$$aWashington$$bAMER CHEMICAL SOC
000261667 269__ $$a2018-06-14
000261667 336__ $$aJournal Articles
000261667 520__ $$aLinear free energy scaling relationships (LFESRs) and volcano plots are routinely used to assess the performance of heterogeneous electrocatalysts and have only recently been concretely exploited in homogeneous catalysis. These tools efficiently compare and provide a global evaluation of catalyst performance while highlighting the limitations for a given reaction. In the framework of solid-state water oxidation, a minimal overpotential of 0.4 eV has been predicted on the basis of LFESRs. Considering the very different nature of homogeneous catalysts compared to solid-state systems, the validity of scaling relationships determined for the former cannot be assumed. To evaluate the global limitations of molecular O-2 evolution catalysts, LFESRs are established for all key intermediates for different metal (Mn, Co, Ru, Rh, Ir) and ligand (corrole and perfluoro-porphyrin) combinations assuming a mononuclear mechanism that proceeds through *=OH, *=O, and *-OOH intermediates. Our computations indicate that the LFESRs strongly depend on the choice of density functional. Using GMC-QDPT2 as a benchmark, strong scaling relationships between all intermediates are observed, but the relationships between *-OH and *=O significantly differ from those found in solid-state systems. Consequently, the shape of the molecular volcano plot changes drastically from its solid-state counterpart and shows a broad plateau at the top where the overpotential is nearly independent of the choice of catalyst. This plateau renders the performance of molecular catalysts extremely robust, but inhibits improvements by proceeding through alternative reaction mechanisms.
000261667 650__ $$aChemistry, Physical
000261667 650__ $$aNanoscience & Nanotechnology
000261667 650__ $$aMaterials Science, Multidisciplinary
000261667 650__ $$aChemistry
000261667 650__ $$aScience & Technology - Other Topics
000261667 650__ $$aMaterials Science
000261667 6531_ $$ageneralized gradient approximation
000261667 6531_ $$adegenerate perturbation-theory
000261667 6531_ $$aab-initio calculations
000261667 6531_ $$aself-consistent-field
000261667 6531_ $$aoxygen evolution
000261667 6531_ $$adensity functionals
000261667 6531_ $$aphotosystem-ii
000261667 6531_ $$aneutral ph
000261667 6531_ $$aadjustable-parameters
000261667 6531_ $$acorrelation-energy
000261667 700__ $$0248530$$aBusch, Michael
000261667 700__ $$0249809$$aFabrizio, Alberto
000261667 700__ $$aLuber, Sandra
000261667 700__ $$aHutter, Jurg
000261667 700__ $$0242733$$aCorminboeuf, Clemence
000261667 773__ $$q12404-12412$$j122$$k23$$tJournal Of Physical Chemistry C
000261667 909C0 $$0252089$$pLCMD$$xU11799
000261667 909CO $$particle$$ooai:infoscience.epfl.ch:261667$$pSB
000261667 961__ $$amanon.velasco@epfl.ch
000261667 973__ $$rREVIEWED$$sPUBLISHED$$aEPFL
000261667 980__ $$aARTICLE
000261667 980__ $$aWoS
000261667 981__ $$aoverwrite