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Homogenization and Scattering Analysis
of Second-Harmonic Generation in

Nonlinear Metasurfaces
Karim Achouri , Gabriel D. Bernasconi, Jérémy Butet, and Olivier J. F. Martin

Abstract— We propose an extensive discussion on the homog-
enization and scattering analysis of the second-order nonlinear
metasurfaces. Our developments are based on the generalized
sheet transition conditions (GSTCs) that are used to model
the electromagnetic responses of nonlinear metasurfaces. The
GSTCs are solved both in the frequency domain, assuming an
undepleted pump regime, and in the time domain, assuming
dispersionless material properties but a possible depleted pump
regime. Based on these two modeling approaches, we derive
the general second-harmonic reflectionless and transmissionless
conditions as well as the conditions of asymmetric reflection
and transmission. We also discuss and clarify the concept of
nonreciprocal scattering pertaining to nonlinear metasurfaces.

Index Terms— Generalized sheet transition conditions
(GSTCs), metasurface, nonlinear optics, susceptibility tensor.

I. INTRODUCTION

OVER the past decade, metasurfaces have attracted
tremendous attention due to their incredible capabil-

ities to control electromagnetic waves together with their
low weight, reduced thickness, and relative ease of fabrica-
tion [1]–[5]. More recently, nonlinear metasurfaces made their
apparition and were rapidly considered as a new paradigm
shift in nonlinear optics [6]–[8]. Indeed, the capability of
engineering the shape and the composition of the nonlinear
scattering particles composing the metasurfaces allows one to
strongly confine the electromagnetic fields and thus achieve
very high nonlinear effects, which may be several orders
of magnitude stronger than those obtainable in conventional
nonlinear crystals [7], [9], [10]. In addition, nonlinear meta-
surfaces may be used to manipulate the second- or third-
harmonic scattered fields in a very elaborate fashion and with
much more degrees of freedom compared to our current ability
of controlling linear fields in conventional linear metasur-
faces [11]–[15]. For instance, it was suggested that nonlinear
metasurfaces may be used to realize functionalities such as
optical switches, diodes, and transistors [16] and also generate
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multiple holographic images based on the Pancharatnam–
Berry phase effect [17], [18]. We also note the particularly
interesting potential of metasurfaces to exhibit magnetic non-
linear effects [19]–[21]. This ability to control both electric
and magnetic nonlinear responses is of utmost importance for
a complete control of the nonlinear scattered fields, as will be
discussed thereafter.

Even though nonlinear metasurfaces are already quite attrac-
tive, there still needs to be major theoretical and practical
works to be done before they achieve their full potential. This
paper tackles the theoretical aspect of the second-harmonic
generation in the second-order nonlinear metasurfaces. The
mathematical basis of this paper is a direct extension of our
previous works on linear [22]–[24] and nonlinear metasur-
faces [25]. It also extends other similar theoretical works per-
taining to the second-order nonlinear metasurfaces [26]–[31].
The theory presented in these papers mostly refers to relatively
specific situations, while we try here to be as general as
possible in our description of the second-harmonic scattering.

The goal of this paper is to provide the reader with a com-
prehensive discussion on the homogenization and scattered
field analysis of the second-order nonlinear metasurfaces and
more specifically on their properties in terms of the second-
harmonic generation. Accordingly, we propose a frequency-
and time-domain analysis of nonlinear metasurfaces, upon
which we notably derive the general reflectionless and trans-
missionless second-harmonic conditions. The mathematical
model that we use is based on rigorous zero-thickness transi-
tion conditions, which have been extensively used in the case
of linear metasurfaces [22]–[24], [32]–[34]. This model relates
the incident, reflected, and transmitted fields to the metasur-
face linear and now also nonlinear susceptibilities. Finally,
we also propose a discussion on the nonreciprocal behavior of
nonlinear metasurfaces and, more generally, nonlinear optical
structures [35]–[38]. This is to clarify certain misconceptions
about the definition of nonreciprocity in nonlinear optics.

This paper is organized as follows. In Section II, we start
by discussing the electromagnetic modeling of nonlinear
metasurfaces. More specifically, we explain how these
metasurfaces may be mathematically modeled by zero-
thickness transition conditions. Then, in Sections III and IV,
we present a frequency-domain and a time-domain approach,
respectively, to perform the homogenization and the scattering
analysis of these metasurfaces. In Section V, we briefly
conclude our discussion. In addition, we also provide several
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Fig. 1. Pump field at frequency ω being scattered at frequencies ω and 2ω
due to its interactions with the second-order periodically uniform nonlinear
metasurfaces. (a) Physical metasurface built from nonlinear scattering parti-
cles. (b) Homogenized metasurface with effective susceptibilities that produce
the same scattering as that in (a).

useful considerations in the appendices. These include
a discussion on the homogenization and scattering analysis of
linear metasurfaces in Appendix A and a discussion that aims
at clarifying the nonreciprocal behavior of linear and nonlinear
metasurfaces in Appendix B. Finally, we provide the general
reflectionless conditions of linear metasurfaces in Appendix D.

II. GSTCS’ MODELING OF THE SECOND-ORDER

NONLINEAR METASURFACES

Let us consider a periodically uniform metasurface made
of the second-order nonlinear scattering particles lying in the
xy plane at z = 0, as shown in Fig. 1(a). The period of
the scattering particles within the plane of the metasurface
is also much smaller than the wavelength with a typical unit
cell lateral dimension of λ/3–λ/5. From the perspective of an

incident pump field at frequency ω, the metasurface appears as
a perfectly uniform, homogeneous, and time-invariant medium
with effective susceptibilities independent of the coordinates
(x, y, t), as suggested in Fig. 1(b). Note that, in these figures,
we only represent the scattered fields at frequencies ω and 2ω
for convenience, while there may be higher order harmonics
generated by the metasurface.

Metasurfaces may, in most cases, be conveniently modeled,
assuming that they consist of zero-thickness sheets of excitable
electric and magnetic polarizations [32], [39]. This assumption
of zero thickness is a very good approximation, since metasur-
faces are electrically thin structures with a typical thickness, d ,
much smaller than the operation wavelength (d � λ). When a
metasurface is modeled as a zero-thickness sheet, it is possible
to relate its interactions with electromagnetic fields in a general
and complete fashion using the generalized sheet transition
conditions (GSTCs) [22], [32], [40].

From a general perspective, the relationship between the
incident, reflected, and transmitted fields and the linear and
nonlinear susceptibilities of the metasurface may be expressed
through the GSTCs. In the time domain, assuming a time
dependence e jωt , the GSTCs are given by [40]

z × �H = ∂

∂ t
P − z × ∇Mz (1a)

z × �E = −μ0
∂

∂ t
M − 1

�0
z × ∇ Pz (1b)

where P and M are the metasurface electric and magnetic
polarization densities, proportional to the susceptibilities, and
�E and �H are the differences of the electric and magnetic
fields on both sides of the metasurface, respectively [22]. Note
that the spatial derivatives on the right-hand sides of (1) only
apply to the xy plane.

The GSTCs may be used to perform three distinct oper-
ations [22]–[24]. They may be used to synthesize—find the
susceptibility functions—of a metasurface so that it scatters
light in a specified fashion. In this case, the susceptibilities
are mathematical functions and the corresponding scattering
particles need to be practically designed and realized. The
GSTCs may also be used to homogenize—find the effective
linear and nonlinear susceptibilities of—a metasurface made of
scattering particles with specific shapes and materials. Finally,
they may be used to analyze—find the fields scattered by—
a metasurface with known (effective) susceptibilities. These
operations may be realized by solving (1) to either express the
susceptibilities in terms of known electromagnetic fields (spec-
ified for the synthesis, and simulated or measured for the
homogenization) or to express the scattered fields in terms of
known susceptibilities to analyze the metasurface scattering.

In this paper, we will mostly discuss the last two operations,
i.e., the homogenization and scattering analysis of the second-
order nonlinear metasurfaces. This is because the synthesis of
such structures, although possible, is generally difficult due to
the very large number of susceptibility components, as will be
discussed shortly. Moreover, we will concentrate our attention
on the generation of the second-harmonic light since the study
of linear scattering is already very well documented in the
literature. We will also neglect the presence of all higher order
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harmonics that may emerge from the interactions of waves at
frequencies ω and 2ω (and so on) with the nonlinear medium.

In order to solve the system (1), we will consider two
different approaches: a frequency-domain approach, for which
we will assume that the pump at frequency ω is undepleted
and that the susceptibilities are dispersive so that in general
χ(ω) �= χ(2ω), and a time-domain approach, for which
the pump may be depleted but the susceptibilities are not
dispersive so that χ(ω) = χ(2ω). As we will see, these
two approaches present their own benefits and drawbacks.
Therefore, the most adequate approach mostly depends on the
needs of the user.

Note that the fact that the metasurface is spatially uniform
implies that no diffraction orders will be produced upon light
scattering. Therefore, an incident plane wave, impinging on the
metasurface at arbitrary angles (θi, φi), will be reflected and
transmitted with reflection and transmission angles obeying
Snell’s law. This is of particular importance since, for any
incidence angles, we know how the metasurface will scatter
light, which greatly simplifies the operations of homogeniza-
tion and scattered field analysis.

III. FREQUENCY-DOMAIN APPROACH

In this frequency-domain approach, we consider by approx-
imation that the interactions of an incident wave at frequency
ω with the metasurface linear and nonlinear susceptibili-
ties produce scattered fields only at frequencies ω and 2ω,
respectively. This assumption is almost always valid since the
amplitudes of the higher order (>3) harmonics generated by
a second-order nonlinear material are negligible [41]. We also
consider that the pump is not depleted. This assumption
violates the conservation of energy, but it greatly simplifies
the modeling of nonlinear metasurfaces and still provides the
excellent results as long as the power of the second-harmonic
is much smaller than that of the pump, which is usually the
case with current nonlinear metasurfaces [31].

With this assumption of undepleted pump, it is trivial
to homogenize and analyze the response of metasurfaces at
frequency ω. It may be easily done by following the well-
known techniques applied to linear bianisotropic metasurfaces.
In Appendix A, we briefly summarize the main steps to obtain
the effective linear susceptibilities of a metasurface and to
compute the fields scattered by a metasurface with the known
effective susceptibilities.

We are now interested in homogenizing the nonlinear
susceptibilities and analyzing the second-harmonic scattered
waves of a second-order nonlinear metasurface. To do so,
we consider the GSTCs in (1) and write them in the frequency
domain so that they relate the scattered fields and the polar-
ization densities both at frequency 2ω. They thus read1

z × �H2ω = j2ωP2ω − z × ∇M2ω
z (2a)

z × �E2ω = − j2ωμ0M2ω − 1

�0
z × ∇ P2ω

z (2b)

1Note that the time derivatives in (1) reduce to j2ω in this frequency-domain
representation.

where the electric and magnetic polarization densities are split
into linear and nonlinear terms as

P2ω = P2ω
lin + P2ω

nl (3a)

M2ω = M2ω
lin + M2ω

nl . (3b)

The linear polarizations correspond to the interactions of the
fields at 2ω with the linear metasurface susceptibilities at that
frequency and may be generally expressed as

P2ω
lin = �0χee · E2ω

av + �0η0χem · H2ω
av (4a)

M2ω
lin = χmm · H2ω

av + 1

η0
χme · E2ω

av (4b)

where η0 is the vacuum impedance, E2ω
av and H2ω

av are the
arithmetic averages of the fields on both sides of the metasur-
face, and χee, χmm, χme, and χem are the electric, magnetic,
magnetoelectric, and electromagnetic linear susceptibility
tensors, respectively [42].

The nonlinear polarizations correspond to the interactions
of the pump fields at ω with the nonlinear metasurface
susceptibilities. These polarizations can thus be considered as
the sources of the second-harmonic generation. Taking into
account all possible interactions of the fields, they may be
generally expressed as

P2ω
nl = 1

2
�0

�
χeee : Eω

av Eω
av + η0χ eem : Eω

av Hω
av

+ η2
0χemm : Hω

av Hω
av

�
(5a)

M2ω
nl = 1

2

�
η0χmmm : Hω

av Hω
av + χmem : Eω

av Hω
av

+ 1

η0
χmee : Eω

av Eω
av

�
(5b)

where we have used our own convention for the dimension of
the susceptibilities, by introducing the impedance parameter,
such that they all have the same dimension. Note that the factor
(1/2) in front of relations (5) comes from the time derivatives
in (1). This factor appears in (5) and not in (4) is because

∂

∂ t
E2ω

av ∝ ∂

∂ t
cos (2ωt) = −2ω sin (2ωt) (6)

while

∂

∂ t
Eω

av Eω
av ∝ ∂

∂ t
cos2 (ωt) = −ω sin (2ωt). (7)

Therefore, a factor of (1/2) must be considered for the
nonlinear polarization densities.

A. Homogenization Technique

The condition that must be met to be able to homogenize
a metasurface is that the latter does not produce diffraction
orders (besides the zeroth orders) when illuminated. This
condition is satisfied when the periodicity of the scattering
particles is less than the smallest wavelength considered mul-
tiplied by the background refractive index. In order to homog-
enize and thus find the effective nonlinear susceptibilities of a
metasurface, we have to solve (2) along with relations (3)–(5).
Considering plane wave illumination, the general nonlinear
GSTCs thus form a set of four equations that are given in
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−�H 2ω
y = j2ω�0

�
χ xi

ee E2ω
i + η0χ

xi
em H 2ω

i + 1

2
χ xi j

eee Eω
i Eω

j + 1

2
η0χ

xi j
eem Eω

i H ω
j + 1

2
η2

0χ
xi j
emm H ω

i H ω
j

�

− jk2ω
y

�
χ zi

mm H 2ω
i + 1

η0
χ zi

me E2ω
i + 1

2
η0χ

zi j
mmm H ω

i H ω
j + 1

2
χ zi j

mem Eω
i H ω

j + 1

2η0
χ zi j

mee Eω
i Eω

j

�
(8a)

�H 2ω
x = j2ω�0

�
χ yi

ee E2ω
i + η0χ

yi
em H 2ω

i + 1

2
χ yi j

eee Eω
i Eω

j + 1

2
η0χ

yi j
eem Eω

i H ω
j + 1

2
η2

0χ
yi j
emm H ω

i H ω
j

�

+ jk2ω
x

�
χ zi

mm H 2ω
i + 1

η0
χ zi

me E2ω
i + 1

2
η0χ

zi j
mmm H ω

i H ω
j + 1

2
χ zi j

mem Eω
i H ω

j + 1

2η0
χ zi j

mee Eω
i Eω

j

�
(8b)

−�E2ω
y = − j2ωμ0

�
χ xi

mm H 2ω
i + 1

η0
χ xi

me E2ω
i + 1

2
η0χ

xi j
mmm H ω

i H ω
j + 1

2
χ xi j

mem Eω
i H ω

j + 1

2η0
χ xi j

mee Eω
i Eω

j

�

− jk2ω
y

�
χ zi

ee E2ω
i + η0χ

zi
em H 2ω

i + 1

2
χ zi j

eee Eω
i Eω

j + 1

2
η0χ

zi j
eem Eω

i H ω
j + 1

2
η2

0χ
zi j
emm H ω

i H ω
j

�
(8c)

�E2ω
x = − j2ωμ0

�
χ yi

mm H 2ω
i + 1

η0
χ yi

me E2ω
i + 1

2
η0χ

yi j
mmm H ω

i H ω
j + 1

2
χ yi j

mem Eω
i H ω

j + 1

2η0
χ yi j

mee Eω
i Eω

j

�

+ jk2ω
x

�
χ zi

ee E2ω
i + η0χ

zi
em H 2ω

i + 1

2
χ zi j

eee Eω
i Eω

j + 1

2
η0χ

zi j
eem Eω

i H ω
j + 1

2
η2

0χ
zi j
emm H ω

i H ω
j

�
(8d)

reduced tensor notation for convenience2 in (8), as shown at
the top of this page, where i, j = {x, y, z} and where we
have transformed the gradients in (2) into ∇ → − jk2ω

u with
u = {x, y} since we are considering plane waves and where
j = √−1 is not to be confused with the tensor notation. Note
that the (1/2) factor discussed in (6) and (7) must also exist
in the case of the spatial derivatives in (2).

As discussed in Appendix A, the linear susceptibilities in (8)
can be obtained using the retrieval method applied to linear
metasurfaces [31]. For the nonlinear susceptibilities, the sys-
tem (8) must be solved so as to express the susceptibilities
in terms of the incident, reflected, and transmitted fields at
frequency 2ω that may be found from numerical simula-
tions. However, it is clear that this system of equations is,
in most cases, largely underdetermined. Indeed, assuming that
the nonlinear susceptibilities only have intrinsic permutation
symmetry (χ i j k = χ ikj as is the case of most nonlinear
systems [41]), there is a total number of 108 unknown
susceptibility components in (8) for only 4 equations. Note
that, in the case of linear susceptibilities, some susceptibility
components may be related to each other through the reci-
procity conditions (41) (see Appendix B), which reduce the
total number of independent unknowns. Such a consideration
is not (yet) possible for the case of the second-order nonlinear
susceptibility tensors, since there are currently no reciprocity
relations available that would apply to these nonlinear suscep-
tibility tensors, as discussed in Appendix B.

However, it must be emphasized that a scattering particle
generally only exhibits a few relevant nonlinear susceptibility
components, while most of the other terms are zero or at
least may be neglected [31]. The main reason for this is
the structural symmetries of the particles, which prevents
the generation of the second-harmonic light for some inci-
dent/scattered field polarization combinations. Therefore, one
may reduce the 108 nonlinear susceptibility components down

2Note that in these expressions, we have dropped the summation terms such
that Ai j Bi j = �

i, j Ai j Bi j . We have also dropped the “av” term for the fields
multiplying the susceptibilities for conciseness.

to just a few relevant terms. In addition, when the scattering
particle is symmetric in the metasurface plane, and then, its
response to x- or y-polarized waves will be the same. In this
case, the susceptibility tensors will exhibit further fundamental
symmetries in addition to the intrinsic permutation symmetry
considered earlier, hence greatly reducing the number of
independent susceptibility unknowns.

Unfortunately, even if the number of unknowns may be
reduced, the system (8) generally remains underdetermined.
To overcome this issue, we may exploit the same approach
as that conventionally used for linear metasurfaces: perform
several simulations, each time for different pump incidence
angles. Indeed, for each set of incidence angles (θi, φi),
the susceptibilities remain the same, but the incident and
scattered fields differ, thus increasing the number of linearly
independent equations, while keeping the same number of
unknowns. For example, if the total number of independent
nonzero susceptibility components is 8, then the system (8)
becomes fully determined when only two sets of pump inci-
dence angles are used.

Finally, we would like to mention that besides the homog-
enization technique discussed here, which is essentially the
nonlinear extension of the conventional method used to
homogenize linear metasurfaces, there is another approach
to retrieve the nonlinear susceptibilities. This alternative
approach is discussed in [43]. It consists in exciting the
structure with contrapropagating waves so that their mag-
netic (electric) fields cancel at the position of the struc-
ture, while their electric (magnetic) constructively interfere.
It is thus possible to selectively excite specific nonlinear
susceptibilities, for instance, only χeee. Then, by measuring
the scattered fields and by changing the parameters of the
contrapropagating waves, one may completely characterize the
metasurface susceptibilities.

B. Scattering Analysis

When the metasurface effective linear and nonlinear sus-
ceptibilities are known, it is possible to predict how the
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metasurface will scatter light for any pump incidence angles.
The general approach to compute the fields scattered by
the metasurface is to solve the system (8) for the unknown
reflected and transmitted fields.

In what follows and for simplicity, we concentrate our
attention on the particular case where the pump is normally
incident and the metasurface is spatially uniform. In this case,
the spatial derivatives in (2) are zero, since both the fields and
the susceptibilities are spatially uniform in the metasurface
plane, which greatly simplifies the scattered field analysis.
Indeed, since the spatial derivatives are zero, the presence
of normal polarizations (and hence susceptibilities) may be
ignored, since they do not contribute to the scattering. This
means that the only relevant components of the incident and
scattered electromagnetic fields, Ei and Hi in (8), as well as
the linear (χ i j ) and nonlinear (χ i j k) susceptibility tensors are
such that i, j, k = {x, y}.

This approach allows us to rigorously compute the fields
scattered by the metasurface. However, in many cases, the inci-
dent wave is not normally impinging on the metasurface
and/or the latter may be spatially varying. In these scenarios,
the spatial derivatives in (2) do not vanish. Nevertheless,
if the incidence angle is small and/or the spatial variations
of the susceptibilities are slow compared to the wavelength at
2ω, then it is possible to neglect the presence of the spatial
derivatives (small angle approximation). Accordingly, it is
possible to obtain an approximate evaluation of the scattering
from the metasurface, which gets worse as the incidence angle
and/or spatial variations increase [44].

To compute the second-harmonic scattering from nonlinear
metasurfaces, we simplify the GSTCs and write them in a
more compact and convenient form. To do so, we start by
expressing the magnetic field in terms of the corresponding
electric field in the case of normally propagating plane waves.
We thus only consider their transverse components. For plane
waves propagating in the forward (+z) and backward (−z)
directions, we, respectively, have that

H fw = 1

η0
J · Efw, Hbw = − 1

η0
J · Ebw (9)

where J is the rotation matrix defined as

J =
�

0 −1
1 0

�
. (10)

Then, by making use of (9), we express the average of the
pump electromagnetic field that is used in (5). When the pump
propagates normally in the forward direction, this average field
is given by

Eω
av,fw = 1

2
(I + S11 + S21) · Eω

0 (11a)

Hω
av,fw = 1

2η0
J · (I − S11 + S21) · Eω

0 (11b)

where Eω
0 is the amplitude of the pump electric field,

the matrices S are the linear scattering matrices obtained in
Appendix A, and I is the 2-D identity matrix. Note that ports
1 and 2 refer to the left (z < 0) and right (z > 0) sides of the
metasurface, respectively.

Similarly, if the pump is propagating in the backward
direction, then the average pump fields are

Eω
av,bw = 1

2
(I + S22 + S12) · Eω

0 (12a)

Hω
av,bw = − 1

2η0
J · (I − S22 + S12) · Eω

0 . (12b)

We now express the averages of the second-harmonic fields
that are used in (4). Since there is no wave impinging on the
metasurface at 2ω, these average fields are simply given by

E2ω
av = 1

2

�
E2ω

fw + E2ω
bw

�
(13a)

H2ω
av = 1

2η0
J · �

E2ω
fw − E2ω

bw

�
. (13b)

By the same token, the difference of the fields in (2) read

�E2ω = E2ω
fw − E2ω

bw (14a)

�H2ω = 1

η0
J · �E2ω

fw + E2ω
bw

�
. (14b)

The GSTCs may now be simplified by substitut-
ing (13) and (14), along with (3) and (4), into (2).
We thus get

E2ω
fw + E2ω

bw = − j
ω

c0

�
χee · �

E2ω
fw + E2ω

bw

� + χem · J

× �
E2ω

fw − E2ω
bw

�� − jωη0 P2ω
nl

(15a)

J · �E2ω
fw − E2ω

bw

� = − j
ω

c0

�
χmm · J · �E2ω

fw − E2ω
bw

� + χme

× �
E2ω

fw + E2ω
bw

�� − jωμ0 M2ω
nl

(15b)

where c0 is the speed of light in vacuum.
These two vectorial equations may now be solved so as

to express the backward and forward second-harmonic waves
as functions of the linear susceptibilities and the nonlinear
polarizations. They thus, respectively, read

E2ω
bw = 1

�0
C1 · P2ω

nl + η0C2 · J · M2ω
nl (16a)

E2ω
fw = 1

�0
C3 · P2ω

nl − η0C4 · J · M2ω
nl (16b)

where the matrices C, which contain the linear susceptibilities,
are explicitly provided in Appendix C. Relations (16) are the
general expressions for the second-harmonic fields scattered
by a nonlinear metasurface. In these expressions, the nonlinear
polarizations, P2ω

nl and M2ω
nl , play the role of nonlinear sources

excited by the pump at ω. These polarizations are given in (5)
and are different for different directions of pump propagation
according to (9).

C. Numerical Demonstration

In order to demonstrate the validity of the proposed homog-
enization and analysis method, we will now apply it to a
concrete example. First, we will use relations (16) to retrieve
the susceptibilities of a nonlinear metasurface and, second, use
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Fig. 2. Nonlinear metasurface unit cell. The dimensions of the T-shaped
particles are Lx = 165 nm and L y = 125 nm with a diameter of D = 40 nm,
and the separation between the two particles is Lz = 60 nm. The position
z = 0 is in-between the two T-shaped particles.

these susceptibilities to predict the amplitude of the nonlinear
scattered fields.

The chosen metasurface unit cells are composed of T-shaped
gold particles [45], which may be considered as simple build-
ing blocs to generate in-plane nonlinear dipolar moments. Each
unit cell consists of two T-shaped particles placed on top of
each other and with one being rotated 180◦ with respect to
the other, as shown in Fig. 2. This specific arrangement allows
one to generate a nonlinear electric dipole, px , when excited
with a y-polarized normally incident wave [45]. As will be
demonstrated in the following, an additional nonlinear mag-
netic moment, my , is created by the two parallel px dipoles in
each T-shaped particle. The metasurface consists of a periodic
array, with a subwavelength lattice period of 200 nm, formed
by the unit cell shown in Fig. 2. The background medium
is SiO2 with an assumed nondispersive relative permittivity
of �r = 2.22.

The homogenization of this metasurface is made difficult
by the complex geometry of its unit cells. Indeed, it is partic-
ularly difficult to know a priori which nonlinear susceptibility
components will play a major role and which ones may be
neglected. Nevertheless, one may still simplify the homoge-
nization procedure by taking into account the two following
considerations: 1) we know from the xz plane symmetry of
the structure that when excited with a y-polarized illumination,
it only produces an x-polarized second-harmonic light [45] and
2) we are here only interested in normally propagating waves
and thus decide to ignore the presence of z-oriented dipolar
responses and their corresponding susceptibility components.
This allows us to select, out of the six nonlinear susceptibility
tensors in (5), only six susceptibility components (one in each
tensor) that are χ

xyy
eee , χ

xyx
eem , χ x x x

emm, χ
yx x
mmm, χ

yyx
mem, and χ

xyy
mee.

All the other nonlinear susceptibility components may then be
neglected, as they do not play a role in the scattering response
of the metasurface.

Now, the homogenization procedure consists in numeri-
cally simulating the linear and nonlinear fields scattered by
the metasurface and then solving relations (16) in order to
obtain these six susceptibilities. However, the system (16)

Fig. 3. Retrieved normalized nonlinear susceptibilities for the metasurface
of Fig. 2. The susceptibility components χ xxx

emm and χ
yyx
mem are found to be

negligible and are thus not plotted.

is undertermined since it contains only two equations, while
there are six unknown susceptibilities. To overcome this
issue, we have to increase the number of equations so as
to match the number of unknowns, which may be achieved
by considering several independent illuminations, as explained
in Section III-A. Specifically, we consider a total of three
independent illuminations, which allows us to solve the sys-
tem (16) three times, one for each illumination, leading to a
total number of six equations in six unknowns.

In our case, we specify that these illuminations only prop-
agate normally with respect to the metasurface as we are not
interested in oblique illuminations or in retrieving suscepti-
bility components with z-oriented contributions. Accordingly,
we consider the three following pump illuminations:

Einc,1 = ye− j kz (17a)

Einc,2 = y(e− j kz + e jkz) (17b)

Einc,3 = y(e− j kz − e jkz) (17c)

where Einc,1 is a forward propagation plane wave, and
Einc,2 and Einc,3 are superpositions of forward and backward
propagating plane waves, which are in-phase and out-of-phase
at z = 0 (corresponding to the position of the metasurface),
respectively.

The nonlinear numerical simulations are performed with a
homemade surface integral equation (SIE) method [46], [47].
Note that this numerical method assumes an undepleted pump
regime. The pump illuminations’ wavelength covers the range
from 700 to 900 nm. Using the simulated linear and nonlinear
scattered fields, relations (16) are solved for the six unknown
susceptibilities, whose absolute values are plotted in Fig. 3.
We see that at the resonance peak (λ = 825 nm), the only sig-
nificant susceptibility components are χ

yyy
mee, χ

xyx
eem , and χ

xyy
eee ,

while all the other are essentially negligible. As expected,
the metasurface exhibits both electric and magnetic dipolar
responses.

Now that we know the effective nonlinear susceptibilities of
this metasurface, we use them to predict how the latter scatters
the second-harmonic light under a pump illumination different
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Fig. 4. Comparison of forward and backward normalized nonlinear scattered
fields computed using SIE (solid lines) and the GSTCs’ method (dashed lines).

than those in (17). Specifically, we consider a backward plane
wave illumination Einc,4 = ye jkz . Using (16), it is now
straightforward to find the nonlinear fields scattered by the
metasurface. The resulting forward and backward scattered
fields are plotted in Fig. 4 along with their SIE simulated
counterparts. This reveals an overall good agreement between
the predicted scattered fields and those obtained via numerical
simulations. The discrepancies are mostly due to the fact that
the GSTCs’ method assumes a perfectly zero-thickness sheet,
while the metasurface has an actual thickness of 140 nm
corresponding to about λNL/3. Nevertheless, this example
demonstrates the validity of the GSTCs’ method even for
metasurfaces that are not deeply subwavelength.

D. Simplification for Linearly Reflectionless Metasurfaces

From (16), we see that as it is the case for linear meta-
surfaces, the forward or backward scattering can be com-
pletely suppressed since the terms on the right-hand sides may
cancel each other if the linear and nonlinear susceptibilities
are properly engineered. It should be therefore possible to
obtain the second-order nonlinear counterparts of the Kerker
conditions [48]. However, in the very general formulation (16),
it is difficult to obtain the nonlinear reflectionless conditions
solely in terms of the susceptibilities, because the nonlinear
polarizations densities depend upon the scattering of the pump
fields, as can be seen in (11) and (12). Indeed, it is, in gen-
eral, particularly cumbersome to factor the linear scattering
matrices out of the double dot products in (5), since (11b)
[or (12b)] cannot be expressed in terms of (11a) [or (12a)].

Nevertheless, this issue may be overcome by considering
a specific but particularly interesting and insightful situa-
tion. The case where the metasurface is reflectionless at the
frequency of the pump. This means that at frequency ω,
the reflectionless conditions (48) in Appendix D are satisfied
and, hence, that S11 = S22 = 0 in (11) and (12). In that case,
the average forward and backward magnetic fields [see (11b)
and (12b)] are, using (9), simply given by

Hω
av,fw = 1

η0
J · Eω

av,fw, Hω
av,bw = − 1

η0
J · Eω

av,bw. (18)

Based on the assumption that the pump excitation is not
reflected, the nonlinear polarization densities in (5) may be
simplified using (18). For a forward propagating pump, they
become3

P2ω
nl,fw = �0

2

�
χeee : Eω

av,fw Eω
av,fw − χeem : Eω

av,fw Eω
av,fw · J

− χemm : J · Eω
av,fw Eω

av,fw · J
�

(19a)

M2ω
nl,fw = 1

2η0

� − χmmm : J · Eω
av,fw Eω

av,fw · J − χmem : Eω
av,fw

× Eω
av,fw · J+χmee : Eω

av,fw Eω
av,fw

�
(19b)

and for a backward propagating pump, they become

P2ω
nl,bw = �0

2

�
χeee : Eω

av,bw Eω
av,bw + χeem : Eω

av,bw Eω
av,bw · J

−χemm : J · Eω
av,bw Eω

av,bw · J
�

(20a)

M2ω
nl,bw = 1

2η0

� − χmmm : J · Eω
av,bw Eω

av,bw · J+χmem : Eω
av,bw

× Eω
av,bw · J+χmee : Eω

av,bw Eω
av,bw

�
. (20b)

We may now further simplify relations (19) and (20) by
applying the rotation matrices, J, directly on the nonlinear
susceptibility tensors instead of the electric field matrices,
Eω

av Eω
av. These rotations of the susceptibility tensors are

presented in Appendix C. With this simplification, it is possible
to factor the Eω

av Eω
av terms out of the polarization densities.

Consequently, the second-harmonic scattered fields in (16)
may thus be expressed in the following compact form:

E2ω
bw,fw = S

ω→2ω

11 : Eω
av Eω

av (21a)

E2ω
bw,bw = S

ω→2ω

22 : Eω
av Eω

av (21b)

E2ω
fw,fw = S

ω→2ω

21 : Eω
av Eω

av (21c)

E2ω
fw,bw = S

ω→2ω

12 : Eω
av Eω

av (21d)

where the first subscripts of the terms on the left-hand sides
correspond to the direction of propagation of the scattered
fields, while the second subscripts correspond to the direction
of propagation of the pump. In (21), we have introduced
the notion of nonlinear scattering tensors which are provided
in (22), as shown at the bottom of the next page, where the
primed tensors are those that have been rotated according
to the operations provided in Appendix C. Note that the
concept of nonlinear scattering parameters is only valid in the
undepleted pump approximation.

At this point, it is important to realize that the nonlinear
scattering tensors defined in (22) are the third-order tensors
and not just simple matrices such as the conventional linear
scattering tensors used in Appendix A and in (11) and (12).
Accordingly, there is a total number of 32 scattering parame-
ters in (22), while there is only 16 linear scattering parameters
in (39) in Appendix A.

3We have used the fact that E H = E · HT ∝ E · (J · E)T = E · ET ·
J
T = −E E · J, where T is the transpose operation and J

T = −J. Similarly,
H H ∝ − J · E E · J.
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In the absence of external time-odd bias, the metasurface is
linearly reciprocal (refer to Appendix B), which is the case of
the vast majority of metasurfaces. In that case, relations (42)
apply. Therefore, the 16 linear scattering parameters in (39)
are reduced to only 10 independent parameters.

According to the discussion in Appendix B, the nonlin-
ear scattering tensors (22) are not subjected to any recip-
rocal condition. However, they are affected by the intrinsic
permutation symmetries of the structure. This means that
Si jk

ab = Sikj
ab , where i, j, k = {x, y} and a, b = {1, 2}.

Consequently, the 32 scattering parameters in (22) are reduced
to 24 independent parameters. Hence, a second-order nonlinear
metasurface exhibits much more degrees of freedom available
to control the scattered fields compared with conventional
linear metasurfaces. More specifically, a nonlinear metasur-
face has the particularly interesting property of exhibiting
asymmetric second-harmonic generation. For instance, a non-
linear metasurface may be perfectly reciprocal and have4

Sω→2ω,x x x
21 �= Sω→2ω,x x x

12 , while, by reciprocity, in the linear
regime, the equality Sx x

21 = Sx x
12 must be satisfied accord-

ing to (42).
In order to understand why, for a reciprocal metasurface,

Sω→2ω,x x x
21 can be different from Sω→2ω,x x x

12 , let us consider
the two following idealized situations. In the first situation,
a pump at frequency ω illuminates a nonlinear metasurface
which only presents χ x x x

eee as a nonzero susceptibility, while
all other susceptibility terms are assumed to be zero or negli-
gible. In the second situation, the nonlinear metasurface only
presents χ

yyy
mmm as a nonzero susceptibility. For simplicity,

we consider that5 χ x x x
eee = χ

yyy
mmm = 1 m2/V.

These two metasurfaces are successively excited with a
pump propagating once in the forward direction and then in the
backward direction. In both cases, the pump excites the meta-
surface susceptibilities and, hence, the nonlinear polarizations
that are responsible for the second-harmonic generation.

The scattering (here, for simplicity, the second-harmonic
transmitted field only) from the electrically nonlinear meta-
surface is shown in Fig. 5(a) and (b) for the two excitation

4In [25], [28], [29], and [49], this inequality is presented as a nonreciprocal
operation. However, according to the upcoming discussion in this section as
well as that in Appendix B, we shall rather refer to it as an asymmetric rather
than a nonreciprocal operation.

5Note that we are using surface susceptibilities, and hence, the dimension
of linear susceptibilities is [m] instead of being dimensionless like it is the
case for bulk susceptibilities. Moreover, the nonlinear electric and magnetic
susceptibilities have the same dimension thanks to the convention that we
have used in (5).

Fig. 5. Comparison of the second-harmonic scattering from two different
nonlinear metasurfaces. In (a) and (b), the metasurface is electrically nonlinear
and nonlinear electric dipolar moments are excited within the metasurface.
In (c) and (d), it is magnetically nonlinear and nonlinear magnetic dipolar
moments are excited within the metasurface. In (a) and (c), the pump
propagates forward, while in (b) and (d), it propagates backward. In all figures,
the blue arrows around the dipolar moments represent the corresponding
scattered electric fields.

directions. Similarly, the scattering from the magnetically
nonlinear metasurface is shown in Fig. 5(c) and (d).

From these representations, it is clear that the electri-
cally nonlinear metasurface produces the same transmitted
field irrespective of the direction of pump propagation since
P2ω

x = χ x x x
eee E2

x is symmetric with respect to Ex and,
thus, Sω→2ω

21 = Sω→2ω
12 . However, the opposite occurs in

the case of the magnetically nonlinear metasurface since
M2ω

y = χ
yyy
mmm H 2

y is antisymmetric with respect to Hy when
the direction of propagation is reversed and thus Sω→2ω

21 �=
Sω→2ω

12 . This simple example shows that the presence of this
magnetic nonlinear susceptibility introduces an asymmetric
second-harmonic generation in transmission.

In what follows, we will consider the nonlinear scattering
tensors in (22) and generalize the concept of asymmetric
nonlinear scattering. We will also look into other important
aspects of nonlinear metasurfaces, which notably includes
the conditions that enable one to completely suppress the
forward or backward second-harmonic generation.

S
ω→2ω

11 = 1

2
C1 · �

χeee − χ
	
eem − χ

	
emm

� + 1

2
C2 · � − χ

	
mmm − χ

	
mem + χ

	
mee

�
(22a)

S
ω→2ω

22 = 1

2
C3 · �

χeee + χ
	
eem − χ

	
emm

� + 1

2
C4 · �

χ
	
mmm − χ

	
mem − χ

	
mee

�
(22b)

S
ω→2ω

21 = 1

2
C3 · �

χeee − χ
	
eem − χ

	
emm

� + 1

2
C4 · �

χ
	
mmm + χ

	
mem − χ

	
mee

�
(22c)

S
ω→2ω

12 = 1

2
C1 · �

χeee + χ
	
eem − χ

	
emm

� + 1

2
C2 · � − χ

	
mmm + χ

	
mem + χ

	
mee

�
(22d)
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TABLE I

NONLINEAR REFLECTIONLESS AND TRANSMISSIONLESS CONDITIONS AS WELL AS THE SUSCEPTIBILITIES RESPONSIBLE FOR ASYMMETRIC
REFLECTION AND TRANSMISSION FOR THREE DIFFERENT SCENARIOS: 1) IN THE ABSENCE OF BIANISOTROPY; 2) WHEN

THE LINEAR REFLECTIONLESS CONDITIONS ARE SATISFIED; AND 3) WHEN BOTH

CONDITIONS ARE SIMULTANEOUSLY SATISFIED

Table I summarizes the upcoming results. We consider
three different scenarios that are reported in the columns
of the table. In order of appearance, we consider: 1) the

absence of bianisotropy such that χem = χme = 0 at
all frequencies, which is usually the case if the surface is
symmetric in the longitudinal (z) direction and if it exhibits no
chirality (the scattered fields, at ω, have the same polarization
as the excitation, also at ω); 2) the linear reflectionless
conditions in (48) are satisfied at both ω and 2ω; and 3)
both conditions 1) and 2) are simultaneously satisfied. In the
corresponding rows of the table, we start by providing the

updated C tensors for the three respective scenarios. Then,
we present the general reflectionless and transmissionless
conditions for both forward and backward pump propagations.
Finally, we provide the properties of asymmetric reflection and
transmission.

Being able to suppress either the reflected or transmitted
fields is achieved by the superposition of the fields scattered
by both electric and magnetic dipolar moments. By controlling
the phase shift between these two dipoles, it is thus possible
to completely cancel the field scattered either in the back-
ward or the forward direction. In the case of linear structures,
this effect is referred to as the Kerker condition [48] and has
been extensively used to realize reflectionless (linear) meta-
surfaces. The case of nonlinear metasurfaces is fundamentally
identical when nonlinear electric and magnetic dipoles can be

excited. For instance, we see that an electrically (χeee �= 0)

and magnetically (χmmm �= 0) nonlinear metasurface, which
satisfies the linear reflectionless conditions, is nonlinearly

reflectionless for a forward propagating pump (S
ω→2ω

11 = 0)
when χeee = χ

	
mmm, which corresponds to the nonlinear

counterpart of (48a). However, for a backward propagating

pump, the corresponding reflectionless condition (S
ω→2ω

22 = 0)
is χeee = −χ

	
mmm. The fact that the reflectionless conditions

are not the same from both sides is another evidence of
the asymmetric second-harmonic scattering behavior of these
types of nonlinear metasurfaces. In fact, the two last rows of
the table provide the expressions of the susceptibility compo-
nents, respectively, responsible for the metasurface asymmetric

reflection (S
ω→2ω

11 �= S
ω→2ω

22 ) and transmission (S
ω→2ω

21 �=
S

ω→2ω

12 ). In the absence of bianisotropy, we see that the
susceptibility tensors χ

	
eem, χ

	
mmm, and χ

	
mee are inducing

some sorts of scattering asymmetry, which is a generalization
of the concept already shown in Fig. 5. However, in the pres-
ence of bianisotropy, all nonlinear susceptibilities are naturally
inducing asymmetric scattering since, to achieve bianisotropy,
the metasurface has to be spatially asymmetric, as discussed
earlier.

It is also interesting to note that the reflectionless and
transmissionless conditions provided in Table I are satisfied
when the terms on the left-hand sides are equal to the terms
on the right-hand sides of the equalities, since electric and
magnetic terms should cancel each other. Therefore, in the
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absence of magnetic nonlinear susceptibilities, if the electric
susceptibilities χeee, χ

	
eem, and χ

	
emm cancel out, then the

nonlinear scattering is completely suppressed both in reflection
and transmission. Note that such an effect, while theoret-
ically possible, is practically difficult to implement, since
many conditions on the susceptibilities must be simultaneously
satisfied.

IV. TIME-DOMAIN APPROACH

We shall now discuss the approach that consists in solv-
ing (1) in the time domain. This method is of practical interest
when the depletion of the pump must be considered. This
approach is generally mathematically more involved than the
frequency-domain technique. Indeed, for the latter, it is rela-
tively simple to obtain the second-order scattering response of
the metasurface, since we assume that the pump is undepleted.
In contrast, the time-domain approach naturally considers the
pump depletion as well as the generation of higher order
harmonic due to the interactions of the signals at ω and 2ω
(and so on) with the nonlinear metasurface. Moreover, in the
time-domain formulation, the dispersive nature of the suscep-
tibilities is conventionally expressed as time convolutions with
the acting field such that the polarization densities in (1) take
the following general form [50]:

P(r, t) = �0

	 t

−∞
dt 	χee(r, t − t 	) · E(r, t) + · · · . (23)

In order to overcome these additional difficulties, we next
assume that the susceptibilities are dispersionless. Although
this seems a rather stringent assumption, we shall remember
that the field interacting with the metasurface may generally
be expressed as E(r, ω) = �∞

n=1 En(r)e jnωt . Moreover,
the most important terms of this sum are typically those
for which n = 1 (linear) and n = 2 (second harmonic).
Considering (23), this means that in reality, the suscepti-
bilities must satisfy the condition χ(ω) = χ(2ω), which
corresponds to the conventional nonlinear phase match-
ing condition [41], rather than being dispersionless at any
frequency.

In what follows, we will solve (1) in the time domain and
discuss both the operations of homogenization and scattered
field analysis. However, we will not do it in a general fashion,
as we did for the frequency-domain method, because of the
complexity of the time-domain approach. We shall rather
illustrate the method to solve (1) with an example similar
to that used in [25]. Accordingly, let us consider the case
of an electrically and magnetically nonlinear metasurface that
only exhibits the following nonzero susceptibility components:
χ x x

ee , χ
yy
mm, χ x x x

eee , and χ
yyy
mmm. In that case, the time-domain

GSTCs reduce to

−�H = �0χ
x x
ee

∂

∂ t
Eav + �0χ

x x x
eee

∂

∂ t
E2

av (24a)

−�E = μ0χ
yy
mm

∂

∂ t
Hav + μ0η0χ

yyy
mmm

∂

∂ t
H 2

av (24b)

where we assume that the waves are x-polarized and normally
propagating. For a forward propagating pump and by making

use of (9), we have that

−Efw − Ebw + Epump

= η0�0

2
χ x x

ee
∂

∂ t
(Efw + Ebw + Epump)

+η0�0

4
χ x x x

eee
∂

∂ t
(Efw + Ebw + Epump)

2 (25a)

−Efw + Ebw + Epump

= μ0

2η0
χ yy

mm
∂

∂ t
(Efw − Ebw + Epump)

+ μ0

2η0
χ yyy

mmm
∂

∂ t
(Efw − Ebw + Epump)

2. (25b)

This system of equation may now be solved either to obtain
the susceptibilities in terms of known fields or to get the
scattered fields in terms of known susceptibilities. In [25],
we already provide the susceptibilities in terms of known
fields, and therefore, we do not present them here again.
However, the scattering from such a metasurface was only
presented for the particular case where the linear and non-
linear reflectionless conditions are satisfied, and thus, only the
transmission coefficients were provided. We shall now address
the more general situation where the linear and nonlinear
reflectionless are not necessarily satisfied leading to both
reflected and transmitted fields.

As it is, the system (25) forms a set of two first-order inho-
mogeneous coupled nonlinear differential equations, which
does not possess analytical solutions. It is, however, possible to
obtain approximate expressions of the scattered fields using the
perturbation theory. We assume that the forward and backward
scattered fields may be, respectively, expressed as

Efw ≈ E0,fw + γ E1,fw + γ 2 E2,fw + · · · + γ n En,fw (26a)

Ebw ≈ E0,bw + γ E1,bw + γ 2 E2,bw + · · · + γ n En,bw (26b)

where γ is a small quantity. We also consider the following
conditions on the susceptibilities:

χ x x
ee � χ x x x

eee ∼ γ, and χ yy
mm � χ yyy

mmm ∼ γ. (27)

These conditions reflect the difference in terms of amplitude
between the linear and nonlinear susceptibilities. For instance,
in conventional optical systems, the value of gamma is about
γ ∼ 10−12 [41].

It is now possible to obtain the approximate expression
of the backward, Ebw, and forward, Efw, scattered
fields by inserting (26) and (27) into (25) and using
Epump = E0 cos (ωt).

Now, for a given value of n, the nth term of expressions (26)
can be solved for by removing all terms proportional to γ m

with m > n, which greatly simplifies the complexity of
the system (25). By doing so, we derive the first 4 terms
of the backward and forward scattered fields’ expansions.
It turns out that each of these terms contains a certain number
of harmonics such that the nth term is proportional to the
following harmonic(s):

n = 0 → ω (28a)

n = 1 → 2ω (28b)

n = 2 → ω, 3ω (28c)

n = 3 → 2ω, 4ω. (28d)
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Finally, the fields scattered at frequency ω may be found by
combining the contributions from the n = 0 and n = 2 terms,
while the fields scattered at frequency 2ω may be found using
the n = 1 and n = 3 terms, and so on. The resulting fields
scattered at ω are6

Eω
fw = E0

4 + χ x x
ee χ

yy
mmk2

�
2 + jkχ x x

ee

��
2 + jkχ

yy
mm

� − 4E3
0k2

×

 �

χ x x x
eee

�2

�
1 + jkχ x x

ee

��
2−jkχ x x

ee

��
2 + jkχ x x

ee

�3

+
�
χ

yyy
mmm

�2

�
1+ jkχ

yy
mm

��
2−jkχ

yy
mm

��
2+ jkχ

yy
mm

�3

�

(29a)

Eω
bw = E0

2 jk
�
χ

yy
mm − χ x x

ee

�

�
2 + jkχ x x

ee

��
2 + jkχ

yy
mm

� − 4E3
0k2

×

 �

χ x x x
eee

�2

�
1 + jkχ x x

ee

��
2 − jkχ x x

ee

��
2 + jkχ x x

ee

�3

−
�
χ

yyy
mmm

�2

�
1+ jkχ

yy
mm

��
2− jkχ

yy
mm

��
2+ jkχ

yy
mm

�3

�

(29b)

where the first terms (proportional to E0) on the right-hand
sides correspond to the undepleted pump approximations.
In fact, these two terms are the solutions that are found for the
scattering of a conventional linear metasurface [22] and may
be derived directly from (38). The second terms (proportional
to E3

0) on the right-hand sides are correction terms that model
the depletion of the pump. Note that these correction terms are
directly proportional to the square of the wavenumber and the
nonlinear susceptibilities, this means that they are generally
weak compared with the linear contributions except for very
large values of E0.

We next present the solutions corresponding to the scattered
fields at 2ω. However, due to the length of these expressions,
we only provide the n = 1 terms, which read

E2ω
fw = −2 j E2

0k



χ x x x

eee
�
1 + jkχ x x

ee

��
2 + jkχ x x

ee

�2

+ χ
yyy
mmm�

1 + jkχ
yy
mm

�
(2 + jkχ

yy
mm)2

�

(30a)

E2ω
bw = −2 j E2

0k



χ x x x

eee
�
1 + jkχ x x

ee

��
2 + jkχ x x

ee

�2

− χ
yyy
mmm

�
1 + jkχ

yy
mm

��
2 + jkχ

yy
mm

�2

�

. (30b)

Again, these terms correspond to the undepleted pump approx-
imation. Adding the 2ω contributions from the n = 3
terms would provide a correction which takes into account
the depletion of the pump. As a consequence, the results
in (30) are exactly those that would be obtained using the
general frequency-domain scattering relations (16) with the
assumption that χ(ω) = χ(2ω).

6In these expressions, as well as in (30), the wavenumber is at frequency
ω, i.e., k = ω/c0.

The time-domain approach presented here is thus more
complicated to use than the frequency-domain one discussed
earlier. However, the main advantage of this time-domain
approach is that it allows one to consider the depletion of the
pump, which may be useful when the second-harmonic con-
version efficiency of nonlinear metasurfaces will become sig-
nificant. Finally, we also mention the fact that the time-domain
technique may also be converted into a finite-difference time-
domain technique, as discussed in [25].

V. CONCLUSION

In this paper, we have presented an elaborate discussion on
the electromagnetic theory of the second-harmonic generation
in nonlinear metasurfaces. We have focused our attention on
the homogenization and second-harmonic scattering analysis
of such structures. Both a frequency-domain and a time-
domain approach have been presented.

It is clear that with the current conversion efficiency of non-
linear metasurfaces, the frequency-domain approach, which
assumes an undepleted pump regime, is the most convenient
of the two techniques.

Moreover, we have tried to remain as general as possible
so as to cover all possible scenarios. Accordingly, we have
derived the general reflectionless and transmissionless condi-
tions and highlighted the fundamental reasons of asymmetric
reflection and transmission in these structures. We have also
clarified the concept of asymmetric scattering versus nonrecip-
rocal scattering in nonlinear media when changes in frequency
are considered.

APPENDIX A
HOMOGENIZATION AND SCATTERING

OF LINEAR METASURFACES

In this appendix, we briefly present the main steps required
to homogenize and obtain the scattering parameters of linear
bianisotropic metasurfaces [24]. We will here assume that
these metasurfaces are uniform and the incident wave prop-
agates normally so that the spatial derivatives in (1) may be
dropped.7 In the case of a bianisotropic linear metasurface,
the GSTCs read [22]

ẑ × �H = jω�0χee · Eav + jk0χem · Hav (31a)

�E × ẑ = jωμ0χmm · Hav + jk0χme · Eav. (31b)

It is often particularly convenient to cast this system of
equations into a matrix form to simplify the upcoming com-
putations. Accordingly, the system becomes

⎛

⎜⎜
⎝

�Hy

�Hx

�Ey

�Ex

⎞

⎟⎟
⎠ =

⎛

⎜
⎜⎜
⎝

�χ x x
ee �χ xy

ee �χ x x
em �χ xy

em

�χ yx
ee �χ yy

ee �χ yx
em �χ yy

em

�χ x x
me �χ xy

me �χ x x
mm �χ xy

mm

�χ yx
me �χ yy

me �χ yx
mm �χ yy

mm

⎞

⎟
⎟⎟
⎠

·

⎛

⎜⎜
⎝

Ex,av
Ey,av
Hx,av
Hy,av

⎞

⎟⎟
⎠ (32)

where the relationship between the susceptibilities
in (31) and the normalized susceptibilities in (32) is

7The very general case of oblique incidence may be treated following the
exact same procedure as that described in Section III-A
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given by
⎛

⎜⎜
⎜
⎝

χ x x
ee χ

xy
ee χ x x

em χ
xy
em

χ
yx
ee χ

yy
ee χ

yx
em χ

yy
em

χ x x
me χ

xy
me χ x x

mm χ
xy
mm

χ
yx
me χ

yy
me χ

yx
mm χ

yy
mm

⎞

⎟⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎝

j

ω�0
�χ x x

ee
j

ω�0
�χ xy

ee
j

k0
�χ x x

em
j

k0
�χ xy

em

− j

ω�0
�χ yx

ee − j

ω�0
�χ yy

ee − j

k0
�χ yx

em − j

k0
�χ yy

em

− j

k0
�χ x x

me − j

k0
�χ xy

me − j

ωμ0
�χ x x

mm − j

ωμ0
�χ xy

mm

j

k0
�χ yx

me
j

k0
�χ yy

me
j

ωμ0
�χ yx

mm
j

ωμ0
�χ yy

mm

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎠

.

(33)

We now write the matrix system (32) in the following
compact form:

� = �χ · Av (34)

where �, �χ , and Av refer to the field differences, the normal-
ized susceptibilities, and the field averages, respectively.

From this system of equations, we can now easily homog-
enize the metasurface. This may be done by illuminating the
metasurface with a normally incident plane wave and com-
puting the electric and magnetic scattered fields. From these
known fields, we can define the components of the field dif-
ferences, �, and averages, Av , and ultimately obtain the sus-
ceptibilities, �χ , by the matrix inversion of (34). However, this
system of equations contains 16 unknown susceptibilities for
only 4 equations and is thus underdetermined. In order to solve
it, we consider four different illuminations instead of just 1.
As a consequence, the system now contains 16 equations (4 for
each illumination) for the same 16 unknown susceptibilities
and is now fully determined. The four illuminations that we
consider are forward x-polarization, forward y-polarization,
backward x-polarization, and backward y-polarization.

For each of these illuminations and resulting scattered fields,
we express the corresponding electric and magnetic fields
in terms of scattering parameters. For instance, the incident,

reflected, and transmitted electric fields, in the case of a
forward x-polarized excitation, are, respectively, given by

Ei = x̂, Er = Sx x
11 x̂ + Syx

11 ŷ, Et = Sx x
21 x̂ + Syx

21 ŷ (35)

where Suv
ab , with a, b = {1, 2} and u, v = {x, y}, are the

scattering parameters. We consider that port 1 is on the left
(z < 0) of the metasurface, while port 2 is on its right (z > 0).
We also consider that the metasurface is surrounded on both
sides by different media with intrinsic impedances η1 and η2,
respectively.

Expressing the electromagnetic fields of the four illumina-
tions in the same fashion as in (35), leads, after simplification,
to the matrices � and Av given in the following [see (37)],
as shown at the bottom of this page, where the matrices Sab

and N are defined by:
Sab =

�
Sx x

ab Sxy
ab

Syx
ab Syy

ab

�
, N =

�
1 0
0 −1

�
. (36)

Instead of homogenizing a metasurface, we may use the
system (34) to find to fields scattered by a metasurface with
the known susceptibilities. To do this, we insert (37) into (34)
and solve for the scattering parameters. We thus obtain the
following relation:

S = M
−1

1 · M2 (38)

where S is a 4 × 4 matrix defined as

S =



S11 S12

S21 S22

�

(39)

and the resulting matrices M1 and M2 are given [see (40)],
as shown at the bottom of this page.

APPENDIX B
DISCUSSION ON THE NONRECIPROCITY

OF METASURFACES

Nonreciprocity is a theoretically and practically important
concept that is often misunderstood [51]. In what follows,
we provide a brief discussion on the concept of nonreciprocity
which applies to linear and nonlinear media so as to clarify
several points brought up in this paper.

� =



−N/η1 + N · S11/η1 + N · S21/η2 −N/η2 + N · S12/η1 + N · S22/η2

−J · N − J · N · S11 + J · N · S21 J · N − J · N · S12 + J · N · S22

�

(37a)

Av = 1

2



I + S11 + S21 I + S12 + S22

J/η1 − J · S11/η1 + J · S21/η2 −J/η2 − J · S12/η1 + J · S22/η2

�

(37b)

M1 =
⎛

⎝
N/η1 − �χee/2 + �χem · J/(2η1) N/η2 − �χee/2 − �χem · J/(2η2)

−J · N − �χme/2 + �χmm · J/(2η1) J · N − �χme/2 − �χmm · J/(2η2)

⎞

⎠ (40a)

M2 =
⎛

⎝
�χee/2 + N/η1 + �χem · J/(2η1)

�χ ee/2 + N/η2 − �χem · J/(2η2)

�χme/2 + J · N + �χmm · J/(2η1)
�χme/2 − J · N − �χmm · J/(2η2)

⎞

⎠ (40b)
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In the case of a linear and time-invariant (LTI) system
(a metasurface in our case), nonreciprocity may be achieved by
breaking the time-reversal symmetry of the system. According
to the Onsager–Casimir principle [52], [53], which provides
the time-symmetry relations of tensorial constitutive parame-
ters, the action of breaking time-reversal symmetry may be
realized by externally biasing the system with a time-odd
quantity [54]. For instance, Faraday isolators are well-known
systems that achieve nonreciprocity by biasing a ferrite with
a static magnetic field [55].

In the absence of external bias, the Onsager–Casimir sym-
metry relations reduce to the conventional reciprocity condi-
tions provided by the Lorentz reciprocity theorem [50]. In the
case of a bianisotropic medium, they are given by

χ
T
ee = χee, χ

T
mm = χmm, χ

T
me = −χem. (41)

An LTI metasurface is, thus, reciprocal if these conditions are
satisfied.

In order to assess the nonreciprocal response of a system,
it is often particularly convenient to analyze its scattering
parameters. In the case of a two-port system, the following
reciprocity conditions apply:

S
T

21 = S12, S
T

11 = S11, S
T

22 = S22 (42)

where the scattering matrices have the form of (36). These
conditions may naturally be extended to the case of an N-port
network [56]. An important consideration is that an LTI system

may exhibit asymmetric scattering such that S
T

21 �= S21,

while still being perfectly reciprocal, S
T

21 = S12. In fact,
a spatially asymmetric LTI system is always reciprocal expect
if it is externally biased with a time-odd quantity as mentioned
earlier.

The case of nonlinear media is more complicated. First of
all, there is no nonlinear counterpart to the Lorentz reciprocity
theorem [35]. Furthermore, spatial asymmetry is sufficient
to achieve nonreciprocity [57]. Finally, we should consider
two different situations: when the frequency of the excitation
is changed by the nonlinear process, it is for instance the
case with the second-harmonic generation, and when it is not
changed, it is for instance the case in the Kerr media [41]. For
that latter situation, it should be noted that in some particular
cases of four-wave mixing, where the input and output photons
have the same frequency, it is possible to obtain nonlinear
Onsager relations [35], [36]. However, this does not apply
to the case of second-order media that notably change the
frequency of the excitation and are the topic of this paper.

In what follows, we shall discuss the nonreciprocal behavior
of the second-order nonlinear media. We illustrate this dis-
cussion with a simplified example. Consider the following
1-D (with no spatial variations in the x- and y-directions,
i.e., ∂/∂y = ∂/∂x = 0) two-port problem consist-
ing of a second-order nonlinear metasurface surrounded by
ports 1 and 2 placed on its left- and right-hand sides, respec-
tively. The metasurface is illuminated from port 1 with a
pump field, E1, at frequency ω. The resulting transmitted field,
E2, is then measured at port 2. In a very general scenario,

the field E2 is proportional to all multiples of the fundamental
harmonic, ω. Assuming that all waves are x-polarized, the field
E2 can thus be expressed as

E2 = Sω→ω
21 E1 + Sω→2ω

21 E2
1 + Sω→3ω

21 E3
1 + · · · (43)

where the scattering parameters correspond to the complex
amplitude of the corresponding harmonic received at port 2.

The time-reversed (−t) operation of the process described
in (43) would consist in reversing the direction of wave prop-
agation, such that the field E2 (and all its harmonics) emerges
from port 2 and transmits back through the metasurface to then
be received at port 1 [36]. By symmetry, the field received at
port 1 is exactly the same as the original pump field E1 of the
direct time (t) scenario. Only in this case, would the system
be considered as reciprocal and we would have that

Sω→ω
21 = Sω→ω

12 , Sω→2ω
21 = S2ω→ω

12 , Sω→3ω
21 = S3ω→ω

12 , . . .

(44)

It is important to realize that this time-reversed operation is
a purely mathematical concept, which is practically impossible
to implement. Indeed, it would be impossible to generate all
the harmonics constituting E2 and reproduce the exact phase
shift between them so that the field received at port 1 is the
same as the original field E1 [36]. Therefore, the equalities
in (44) are generally not satisfied and the reversed operation
is thus nonreciprocal. Accordingly, we generally have that

Sω→ω
21 �= Sω→ω

12 , Sω→2ω
21 �= S2ω→ω

12 , Sω→3ω
21 �= S3ω→ω

12 , . . .

(45)

Note that if the system is spatially symmetric (in the
z-direction) and the field E2 is generated at port 2 such that
it contains only the fundamental harmonic, then the equality
Sω→ω

21 = Sω→ω
12 is respected, provided that the conditions (41)

are satisfied. However, if the field E2 contains only the
frequency 2ω, then the equality Sω→2ω

21 = S2ω→ω
12 is generally

not satisfied [even if the conditions (41) are satisfied]. Such
a scenario is discussed in [58] for the case of time-varying
metasurfaces that behave in a very similar fashion as nonlinear
metasurfaces.

Finally, we point out that a nonlinear metasurface may
exhibit asymmetric nonlinear scattering, which has to be
clearly differentiated from the nonreciprocal nonlinear scatter-
ing described by relations (45). Asymmetric second-hamonic
scattering is defined as Sω→2ω

21 �= Sω→2ω
12 , which essentially

means that the second-harmonic field scattered in transmission
by the metasurface is not the same as that when the latter
is spatially flipped on itself. While this effect has often
been referred to as a nonreciprocal process in the litera-
ture [25], [28], [29], [49], the fact that Sω→2ω

21 �= Sω→2ω
12

is not due to time-reversal symmetry breaking, such as the
inequalities in (45), but rather due to the asymmetric scattering
of electric and magnetic nonlinear dipolar moments, as shown
in Fig. 5. Accordingly, this effect should not be referred to as
nonreciprocal but rather as asymmetric scattering, which does
not make it less interesting or potentially useful.
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C1 = − j2A ·
�c0

ω
J + jχmm · J + jχme

�
·
�c0

ω
I + jχee + jχem · J

�−1
(46a)

C2 = − j2A · J (46b)

C3 = j2
�c0

ω
I+ jχee+ jχem ·J

�−1 ·
��c0

ω
I+ jχee− jχem · J

�
· A ·

�c0

ω
J + jχmm · J+ jχme

�
·
�c0

ω
I+ jχee + jχem · J

�−1−I

�

(46c)

C4 = − j2
�c0

ω
I + jχee + jχem · J

�−1 ·
�c0

ω
I + jχee − jχem · J

�
· A · J (46d)

A =
��c0

ω
J + jχmm · J − jχme

�
+

�c0

ω
J + jχmm · J + jχme

�
·
�c0

ω
I + jχee + jχem · J

�−1 ·
�c0

ω
I + jχee − jχem · J

��−1

(46e)

APPENDIX C
REDUCED TENSOR PARAMETERS

In this appendix, we first provide the reduced linear sus-
ceptibility matrix parameters that are used to define general
second-harmonic scattered field relations (16) as well as the
nonlinear scattering tensors in (21). These reduced matrices
are provided in (46), as shown at the top of this page.

Next, we provide the relationships between the rotated
nonlinear susceptibility tensors and their original form. These
rotations affect the inner matrices of these third-order tensors
such that

�
χ

	
eem

�
x = −(χeem)x · J

�
χ

	
eem

�
y = −(χeem)y · J (47a)

�
χ

	
emm

�
x = J · (χ emm)x · J

�
χ

	
emm

�
y = J · (χemm)y · J

(47b)
�
χ

	
mmm

�
x = −J · (χmmm)y · J

�
χ

	
mmm

�
y = J · (χmmm)x · J

(47c)
�
χ

	
mem

�
x = (χmem)y · J

�
χ

	
mem

�
y = −(χmem)x · J (47d)

�
χ

	
mee

�
x = −(χmee)y

�
χ

	
mee

�
y = (χmee)x . (47e)

APPENDIX D
REFLECTIONLESS CONDITIONS FOR LINEAR

BIANISOTROPIC METASURFACES

As discussed in Section III-B, the nonlinear reflectionless
conditions directly depend on both the linear and nonlinear
metasurface susceptibility tensors. Interestingly, it was shown
that these nonlinear reflectionless conditions are greatly sim-
plified when the linear reflectionless conditions are satisfied.
We thus provide here the general reflectionless conditions for
linear metasurfaces in the case of a normally incident plane
wave.

These linear reflectionless conditions are obtained in a
similar fashion as their nonlinear counter parts. The procedure
to obtain them is to set S11 = 0 and S22 = 0 in (38) and solve
for the susceptibilities. Accordingly, we get

χee = −J · χmm · J (48a)

χem = J · χme · J. (48b)

A particularly interesting scenario is when the metasurface
is (linearly) reciprocal, which is most often the case. In this

situation, the only way to simultaneously satisfy the condi-
tion (48b) and the reciprocity conditions (41) is when

χem = χme = κI (49)

where κ is a chiral coefficient. This equality implies that a
reciprocal bianisotropic metasurface can only be reflectionless
when it corresponds to a chiral bi-isotropic structure [42].
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