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Abstract

Cloaking via transformation optics was introduced by Pendry, Schurig, and Smith (2006) for
the Maxwell system and Leonhardt (2006) in the geometric optics setting. They used a singular
change of variables which blows up a point into a cloaked region. The same transformation
had been used by Greenleaf, Lassas, and Uhlmann (2003) in an inverse context. This singular
structure implies difficulties not only in practice but also in analysis. To avoid using the
singular structure, regularized schemes have been proposed. One of them was suggested
by Kohn, Shen, Vogelius, and Weinstein (2010) for which they used a transformation which
blows up a small ball instead of a point into the cloaked region. In this thesis, we study the
approximate cloaking via transformation optics for electromagnetic waves in both the time-
harmonic regime and time-dependent regime. In the time-harmonic regime, the cloaking
device only consists of a layer constructed by the mapping technique, no (damping) lossy-
layer is required. Due to the fact that no-lossy layer is required, resonance might appear. The
analysis is therefore delicate and the phenomena are complex. In particular, we show that the
energy can blow up inside the cloaked region in the resonant case and/whereas cloaking is
achieved in both non-resonant and resonant cases. Moreover, the degree of visibility depends
on the compatibility of the source inside the cloaked region and the system. These facts are
new and distinct from known mathematical results in the literature. In the time-dependent
regime, the cloaking device also consists of a fixed lossy layer. Our approach is based on
estimates on the degree of visibility in the frequency domain for all frequency in which the
frequency dependence is explicit. The difficulty and the novelty in the analysis are in the
low and high frequency regimes. To this end, we implement the variational technique in low
frequency and the multiplier and duality techniques in high frequency domain. The first part
of the thesis is inspired by the work of Nguyen (2012) and the second part by the work of
Nguyen and Vogelius (2012) on the wave equation.
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Résumé

Linvisibilité basée sur la transformation optique a été introduite par Pendry, Schurig et Smith
(2006) pour I’équation de Maxwell et Leonhardt (2006) dans 'optique géométrique. Ils ont
utilisé un changement singulier de variables qui explose un point dans une région a rendre
invisible. La méme transformation avait été utilisée par Greenleaf, Lassas et Uhlmann dans un
contexte inverse. Cette structure singuliere implique des difficultés non seulement dans la
pratique mais aussi dans I’analyse. Pour éviter d'utiliser la structure singuliere, des régimes
régularisés ont été proposés. L'un d’eux a été suggéré par Kohn, Shen, Vogelius, et Weinstein
(2010) dans lequel ils ont utilisé une transformation qui fait exploser une petite balle a la
place d’'un point dans la région a rendre invisible. Dans cette these, nous étudions I'invisibilité
approximative via la transformation optique des ondes électromagnétiques en régime harmo-
nique et temporel. Dans le régime harmonique, on utilise uniquement une couche construite
par la technique de transformation, aucune couche avec perte n’est requise. En raison du
fait qu’aucune couche avec perte n’est requise, une résonance peut apparaitre. L'analyse est
donc délicate et les phénomenes sont complexes. En particulier, nous montrons que 'énergie
peut exploser a 'intérieur de la région a rendre invisible dans le cas de résonance et / tan-
dis que I'invisibilité est obtenu a la fois dans les deux cas non-résonance et résonance. De
plus, le degré de visibilité dépend de la compatibilité entre la source dans la région a rendre
invisible et le systéeme considéré. Ces faits sont nouveaux et distincts des faits connus dans
la littérature. Dans le régime temporel, le systeme est également constitué d'une couche a
pertes fixe. Notre approche est basée sur les estimations du degré de visibilité dans le domaine
de fréquences pour toutes les fréquences dans lesquelles la dépendance en fréquence est
explicite. La difficulté et la nouveauté de I'analyse se situent dans les régimes de basses et
hautes fréquences. Pour arriver a cette fin, nous mettons en ceuvre la technique de variations
en basses fréquences et la technique de multiplicateur et dualité dans le domaine des hautes
fréquences. La premiere partie de la these s'inspire du travail de Nguyen (2012) et la seconde
partie par les travaux de Nguyen et Vogelius (2012) sur les équations des ondes.
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Introduction

In simple terms, invisibility cloaking (cloaking) is to make a target object invisible. In the past
decades, it emerges as an interesting topic that appeals many mathematicians and physicists.

In 2006, Pendry, Schurig, and Smith in [49] suggested a cloaking method based on a trans-
formation for the Maxwell system. The method was also introduced in the same year by
Leonhardt [27] in the geometric optics setting. They used a singular change of variables which
blows up a point into a cloaked region. The same transformation had been used by Greenleaf,
Lassas, and Uhlmann to establish the non uniqueness of Calderon’s problem in [18]. The
singular nature of the cloaks presents various difficulties in practice as well as in theory: (1)
they are hard to fabricate and (2) in certain cases the correct definition of the corresponding
electromagnetic fields is not obvious. To avoid using the singular structure, various regularized
schemes have been proposed. One of them was suggested by Kohn, Shen, Vogelius, and
Weinstein in [24] in 2008, in which they used a transformation which blows up a small ball of
radius p instead of a point into the cloaked region.

In the acoustic context, the approximate cloaking schemes introduced in [24] have been
studied extensively in [16, 17, 23, 36, 35, 46, 10, 3, 21, 19]. Both time-harmonic and time
regime have been well considered. In the time-harmonic regime, without the lossy (damping)
layer, the field inside the cloaked region might depend on the field outside, and resonance
might appear and affect the cloaking ability of the cloak, see [35]. With a fixed lossy layer, the
cloaking is always achieved and the degree of visibility is known to be p in R3. Approximate
cloaking was also investigated for the time-dependent acoustic waves in [45]. Cloaking was
shown to be achieved with the same order of visibility as in the time-harmonic case.

There are other ways to achieve cloaking effects, using plasmonic coating [2], active exterior
sources [52], complementary media [25, 38], or via localized resonance [33, 29, 37, 39].

The objective of the thesis is to study the cloaking scheme based on the regularized transfor-
mations proposed in [24] in the electromagnetic context. Similar to the acoustic context, we
want to analyze the following aspects of the cloaking:

* In the time-harmonic context, no lossy layer is required. In this context, both non-
resonant and resonant cases are considered. We provide the optimal degree of visibility
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for each case and study the asymptotic behavior of the energy inside the cloaked region
as the regularized parameter p tends to 0.

e In the time-dependent context, we consider an additional fixed lossy layer. We estimate
the cloaking effect by analyzing the Fourier’s transform in time of the electromagnetic
waves. In doing this, the analysis involves estimating the degree of visibility in the
time-harmonic regime where the dependence on the frequency is explicit.

The more rigorous formulation and statements of results will be stated in Chapter 1 and 2.
However, to give the reader an idea on the settings and the results without going too much
into definitions and assumptions, we try to summarize them below.

The cloaking device via transformation optics

Assume for simplicity that the target cloaked object occupies the region By /» and is character-
ized by a pair of permittivity, permeability (eo, o). The cloak (cloaking device) occupies the
annular region B, \ By 2. For 0 < p < 1, define

X inR3\ By,
2-2
F,= (—p+ﬂ)i in By \ By,
p 2—-p 2-p) x|
X .
; 1an.

The medium composed of the target object, the cloak, and the homogeneous medium outside
the cloak is described by the triple (e, ¢, 0.) below

(I,1,0) inR3\ By,
(F,,I,F,,1,0) inBy\By,
p p
Eoleo)=4 (0.0.1)
(I,1,0) inBl\Bl/g,
(€0, 140,0) in By.

For a matrix A € R3*3 and for a bi-Lipschitz homeomorphism T, we use following notation is

being used:

DT(x)A(x)DTT (x)
|det DT (x)|

One may consider o = 0 (no lossy layer) or o =1 (fixed lossy layer). A schematic sketch of the

T. A(y) =

with y = T(x).

cloaking device without the lossy layer is provided in Figure 1.

Cloaking in the time-harmonic regime
With the cloak and the object, in the time-harmonic regime of frequency w > 0, the electromag-
netic field generated by current J € [L?(R%)]3 is the unique (Silver-Miiller) radiating solution
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FP*I’FP*I

Figure 1: Schematic sketch of the cloaking object (the green part) and cloaking device (the red
part) without the lossy layer, in term of permittivity and permeability of the medium.

(E¢, H,) € [Hoc(curl,R%)]? of the system

VxE.=iwu.H. in R3,
(0.0.2)
Vx H,=—iweE.+J] inR3.

The electromagnetic field generated by J|gs\, in homogeneous medium is the unique (Silver-
Miiller) radiating solution (E, H) € [Hj,c(curl, R3)]? to the system

VxE=iwH in R3,
(0.0.3)
Vx H=—iwE+]JIgs\p, inR>.

Our goal consists of estimating (E., E;) — (E, H) in R3\ B, and thereby confirming the cloaking
effect for the proposed system.

Cloaking for electromagnetic waves via transformation optics has been mathematically in-
vestigated by several authors. Greenleaf, Kurylev, Lassas, and Uhlmann in [16] and Weder
in [55, 56] studied cloaking for the singular scheme mentioned above by considering finite
energy solutions. Concerning this approach, the information inside the cloaked region is not
seen by observers outside. Approximate cloaking for the Maxwell equations using schemes
in the spirit of [24] was considered in [7, 4, 26]. In [4], Ammari et al. investigated cloaking
using additional layers inside the transformation cloak. These additional layers depending on
the cloaked object were chosen in an appropriate way to cancel first terms in the asymptotic
expansion of the polarization tensor to enhance the cloaking property. In [7], Bao, Liu, and
Zou studied approximate cloaking using a lossy layer inside the transformation cloak. Their
approach is as follows. Taking into account the lossy layer, one easily obtains an estimate for
the electric field inside the lossy layer. This estimate depends on the property of the lossy layer
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and degenerates as the lossy property disappears. They then used the equation of the electric
field in the lossy layer to derive estimates for the electric field on the boundary of the lossy
region in some negative Sobolev norm. The cloaking estimate can be finally deduced from the
integral representation for the electric field. This approach essentially uses the property of the
lossy-layer and does not provide an optimal estimate of the degree of visibility in general. For
example, when a fixed lossy layer is employed, they showed that the degree of visibility is of the
order p?, which is not optimal. In [26], Lassas and Zhou considered the transformation cloak
in a symmetric setting, dealt with the non-resonant case (see Definition 1.1.2) and studied
the limit of the solutions of the approximate cloaking problem near the cloak interface using
separation of variables. Other regularized schemes are considered in [14].

We consider the situation where the cloaking device only consists of a layer constructed by
the mapping technique and there is no source in that layer. Due to the fact that no-lossy
(damping) layer is required, resonance might appear and the analysis is subtle. Our analysis is
given in both non-resonant and resonant cases (Definition 1.1.2) and the results can be briefly
summarized as follows.

i) In the non-resonant case, cloaking is achieved, and the energy remains finite inside the
cloaked region.

ii) In the resonant case, cloaking is also achieved. Nevertheless, the degree of invisibil-
ity varies and depends on the compatibility (see (1.1.12) and (1.1.17)) of the source
with the system. Moreover, the energy inside the cloaked region might explode in the
incompatible case. See Theorems 1.1.2 and 1.1.3.

iii) The degree of visibility is of the order p® for both non-resonant and resonant cases if no
source is inside the cloaked region (Theorems 1.1.1 and 1.1.2).

We also investigate the behavior of the field in the whole space (Theorems 1.1.1, 1.1.2, and
1.1.3) and establish the optimality of the convergence rate (Section 1.4). Our results are
new and distinct from the works mentioned above. First, cloaking takes place even if the
energy explodes inside the cloaked region as 6 goes to 0. Second, in the resonant case with
finite energy inside the cloaked region, the fields inside the cloaked region satisfy a non-local
structure. Optimal estimates for the degree of visibility are derived for all cases. In particular,
in the case of a fixed lossy layer (non-resonant case), the degree of visibility is of the order p*
instead of p? as obtained previously . Both non-resonant and resonant cases are analyzed in
details without assuming the symmetry of the cloaking setting.

Our approach is different from the ones in the works mentioned. It is based on severals
subtle estimates for the effect of small inclusion involving the blow-up structure. Part of the
analysis is on Maxwell’s equations in the low frequency regime, which is interesting in itself.
Our approach in this regime is inspired from [35] where the acoustic setting was considered.
Nevertheless, the analysis for the electromagnetic setting is challenging and requires further

4
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new ideas due to the non-standard structure coming from the mapping technique and the
complexity of electromagnetic structures/phenomena in comparison with acoustic ones. The
Helmholtz decomposition and Stokes’ theorem are involved in the Maxwell context.

The analysis of the cloaking for time-harmonic Maxwell’s equation is presented in Chapter 1.

Cloaking in the time regime

In this regime, we use the time - dependent Maxwell equations. With the cloaking device and
the cloaked object, the electromagnetic wave generated by _# with zero data at the time 0 is
the unique weak solution (&, #,) € L ([0, 00), [L2(R%)15) to the system

loc

08
eca—;:vxyfc—j—acgc in (0, +00) x R3,

¥
He— t“ =-Vx& in (0, +00) x R3, (0.0.4)
&:(0,) = A.(0,) =0 in RS,

In the homogeneous space, the field generated by _# with zero data at the time 0 is the unique
weak solution (&,.7) € L° ([0,00), [L*(R*)]°) to the system

08

3 =VxF—_ ¢ in(0,+00) xR3,

0.7

5, = "Vxé in (0, +00) x R3, (0.0.5)

&(0,)=7(0,)=0 inR5.

Analogous to the time-harmonic regime, we would like to estimate (&, #;) — (&, ) in R3\ B,
and thereby confirm the cloaking effect for the proposed system.

Concerning the analysis, we first transform the Maxwell equations in the time domain into a
family of the Maxwell equations in the time-harmonic regime by taking the Fourier transform
of the solutions with respect to time. After obtaining appropriate estimates on the near-
invisibility for the Maxwell equations in the time-harmonic regime, we simply invert the
Fourier transform. This idea has its roots in the work of Nguyen and Vogelius in [45] (see also
[47]) in the cloaking context and was used to establish the validity of impedance boundary
conditions in the time domain in [40]. To implement this idea, the heart matter is to obtain the
degree of visibility in which the dependence on frequency is explicit and well-controlled. The
analysis involves the variational method, the multiplier technique, and the duality methods
in different ranges of frequency. An intriguing fact about the Maxwell equations in the time-
harmonic regime worthy mentioned is that the multiplier technique does not fit for the
cloaking purpose in the very large frequency regime and the dual method is involved instead.

Another key technical point is the proof of the radiating condition for the Fourier transform in
time of the weak solutions of general Maxwell equations, a fact which is interesting in itself.
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The analysis of the cloaking for time-dependent Maxwell’s equations is in Chapter 2.



1] Cloaking for time-harmonic Maxwell’s
equations

In this chapter, we study the cloaking for the time-harmonic Maxwell equations. We consider
the waves at a fixed frequency w > 0. The chapter uses the materials of the submitted version
of [41] by H. M. Nguyen and L. Tran.

1.1 Mathematical setting and statement of the main results

In this section, we describe the problem and state the main results for cloaking in the time-
harmonic setting. For simplicity of notations, we suppose that the cloak occupies the annular
region B, \ By and the cloaked region is the unit ball By in R® in which the permittivity and the
permeability are given by two 3 x 3 matrices ¢, u respectively. Here and in what follows, for
r >0, let B, denote the open ball in R? centered at the origin and of radius r. Through this
chapter, we assume that

€, b are real, symmetric, (1.1.1D)

and uniformly elliptic in By, i.e., for a.e. x € B} and for some A =1,
1
TP = €80, (g & < AR forall eR’, (1.1.2)

We assume in addition that &, u are piecewise C! in order to ensure the well-posedness of
Maxwell’s equations in the frequency domain (via the unique continuation principle). In the
spirit of the scheme in [24], the permittivity and permeability of the cloaking region are given
by

(€cypte) := (Fp I, Fy 1) in By \ By,
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where Fj, : R3 — R3 with p €(0,1/2) is defined by

x inR3\ By,
E,= (%+%)% in By\ B,
% in Bp.
We denote

Fo(x) = lim F, (x) for x € R3.
p—0

As usual, for a matrix A € R3*3 and for a bi-Lipschitz homeomorphism T, the following

notation is used:
DT(x)Ax)DTT (x)

|det DT (x)|

Assume that the medium is homogeneous outside the cloak and the cloaked region. In the

T.A(y) = with y = T(x).

presence of the cloaked object and the cloaking device, the medium in the whole space R is
given by (e, 1tc) which is defined as follows

(I,D in[R3\ By,
(e ) =% (Fp,I,Fp,I) inBy\By, (1.1.3)
(8)1'0 in Bl-

With the cloak and the object, in the time-harmonic regime of frequency w > 0, the electromag-
netic field generated by current J € [L2(R%)]3 is the unique (Silver-Miiller) radiating solution
(E¢, H;) € [Hpc(curl, R3)]2 of the system

V x E. = iou:H, in R3,
(1.1.4)
Vx H.=—iwe.E.+] inR3.

For an open subset U of R?, denote
H(curl, U) := {¢> e LX) Vxpe [L2(U)]3}

and

loc

loc

Hige(curl, U) = {(p € L2 ()3 Vx pe 12 (U)]3}.

Recall that, for w > 0, a solution (E, H) € [Hjo(curl, R\ Bg)]?, for some R > 0, of the Maxwell



1.1. Mathematical setting and statement of the main results

equations
VxE=iwH inR®\Bp,
Vx H=—-iwE inR3\Bpg
is called radiating if it satisfies one of the (Silver-Muller) radiation conditions
Hxx—|x|[E=0(1/|x]) and Exx+|x|H=0(1/|x]|)as |x| — +oo. (1.1.5)

Here and in what follows, for a € R, O(]x|*) denotes a quantity whose norm is bounded by
C|x|* for some constant C > 0.

Denote Jox and Jin; the restriction of J into R\ B; and B; respectively. It is clear that

Jext in Rs\Bl,
J= (1.1.6)
Jint in By.

In the homogeneous medium (without the cloaking device and the cloaked object), the
electromagnetic field generated by Jex is the unique (Silver-Miiller) radiating solution (E, H) €
[Hjoc(curl, R3)]? to the system

VxE=iwH in R3,
(1.1.7)
Vx H=—iwE+ Joxr inR3.

We next introduce the functional space .4 which is related to the notion of resonance and
plays a role in our analysis.

Definition 1.1.1. Let D be a smooth bounded subset of R such thatR3\ D is connected. Set
N (D) := {(E,H) € (H(curl, D)1? : (E, H) satisfies the system (1.1.8)},
where
VxE=iouH inD,
VxH=—-iweE inD, (1.1.8)
VXxE-v=VxH-v=0 onadD.
In the case D = By, we simply denote N (By) by A .

The notions of resonance and non-resonance are defined as follows:

Definition 1.1.2. The cloaking system (1.1.3) is said to be non-resonant if / ={(0,0)}. Other-
wise, the cloaking system (1.1.3) is called resonant.
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Our main result in the non-resonance case is the following theorem. The cloaking is always
achieved as indicated in (1.1.9). This can be seen by taking K = R%\ B, in (1.1.9) and noting
that F, = Id in R3\ B,. Moreover, the behavior of (E,, H.) outside 9B is also described (see
(1.1.9) and (1.1.10)). More precisely, we have

Theorem 1.1.1. Letp € (0,1/2), Ry > 2, and let J € L*(R®) be such that supp Jex; =< Bg, \ B. Let
(E¢, Hp), (E, H) € [Hjpc(curl, R3)12 be the radiating solutions of (1.1.4) and (1.1.7) respectively.
Assume that system (1.1.3) is non-resonant. We have, for all K cc R3\ B,

I(Fy " 5 B, By Ho) = (B, ED a0 = C (9* W et 215 + 02U imdl 23y (1:1.9)
for some positive constant C depending only on Ry, w, K, 11, €. Moreover,

hn(l)(Ec; He) = CL(0, Jiny) in [H(curl, By)1?, (1.1.10)
p—)
where CIL(0, Jiny) is defined in Definition 1.1.3. The following notation is used
F,'%E.:= (DF,E)oF, and F,'xH.:=(DF, Hc)oF,.
Remark 1.1.1. Note that F,;l * above is different from Fl;l , inthe definition of pic, €.

The notation CI(-,-) used in Theorem 1.1.1 is defined as follows.

Definition 1.1.3. Assume that & = {(0,0)}. Let 01,0, € [L?>(B)]3. Define C1(01,60,) = (Ey, Hy)
where (Ey, Hy) € [H(curl, By)]? is the unique solution to the system

V x Ey= iwuH0+91 in By,
V x Hy=—-iweE, +02 in By, (1.1.11)
VxEy-v=VxHy-v=0 onoB.

Remark 1.1.2. The existence and the uniqueness of (Ey, Hp) are established in Lemma 1.3.4.

Remark 1.1.3. In [56], the conditions
VxEp-V|int=V x Hy*V]int =0

are also imposed on the boundary of the cloaked region. This is different from [16], where the
following boundary conditions are given

Ey x V|int = Hy x Vl]int = 0.
The novelty of Theorem 1.1.1 relies on the fact that no lossy layer is required. The result holds

for a general class of pair (¢, ). Applying Theorem 1.1.1 to the case where a fixed lossy-layer
is used, one obtains that the degree of visibility is of the order p3 which is better than p? as

10



1.1. Mathematical setting and statement of the main results

established previously in [7] for the case Jin¢ = 0. In contrast with [7, 4, 14], in Theorem 1.1.1,
the estimate of visibility is considered up to the cloaked region and the behavior of the
electromagnetic fields are established inside the cloaked region.

We next consider the resonance case. We begin with the compatible case, i.e., (1.1.12) below
holds.

Theorem 1.1.2. Letp € (0,1/2), Ry > 2, and J € [L*(R®)]® be such that supp Jext =< Bg, \ Bo. Let
(E¢, H.), (E, H) € [Hiyc(curl,R3)1? be the radiating solutions of (1.1.4) and (1.1.7) respectively.
Assume that system (1.1.3) is resonant and the following compatibility condition holds:

f Jint-Edx=0 forall(E H) €. (1.1.12)
B,
We have, for all K cc R3\ By,

IF,"  Ec, Fy % Ho) = (B, Dl cunt 0 = C (0 Wl 23y + 9 Winell 2wy ) (1.1.13)

for some positive constant C depending only on Ry, w, K, i, and €. Moreover,

lim (E,, He) = CL(0, Jiny) in [H(curl, B)I?, (1.1.14)
p—»
where CI(0, Jiny) is defined in Definition 1.1.4.

In Theorem 1.1.2, we use the following notion:

Definition 1.1.4. Assume that A #{(0,0)}. Let 01,05 € [L*(B;)]® be such that

f (62-E-0,-H)dx=0 forall (EH) €e.¥. (1.1.15)
B,

Let (Ey, Hy, E*+, H') € [Hipc(curl,R®)]? x A be the unique solution of the following systems

VxEy=VxHy=0 inR3\ By, VxEt=iopH+  inB,
divEy =divHy =0 inR3\ By, Vx H' = —iweEY  inB,
X and A« (1.1.16)
VxEy=iwuHy+0; inBj, eEL-v=Ey-Vlexx —0noB,
V x Hy=—-iweEy+0, inBj, ,uHL-v:Ho-vlext onoB;.
such that

|(Eo(x), Ho(x))| = O(lx| ™) for large | x.

Denote Cl(01,05) the restriction of (Ey, Hp) in By.

Remark 1.1.4. We note that the definition of C1(0, Jin) varies between Definition 1.1.3 and

11



Chapter 1. Cloaking for time-harmonic Maxwell’s equations

Definition 1.1.4 depending on the resonance of the system (1.1.3). To indicate the limit of (E, H.)
in By and to simplify the set of notations, we use C1(0, Jin) for both cases.

Remark 1.1.5. In Definition 1.1.4, (Ey, Hy) is determined by a non-local structure (1.1.16). This
is new to our knowledge.

Here and in what follows, .4 (D)* denotes the orthogonal space of .4 (D) with respect to the
standard scalar product in [L?(D)]%. The uniqueness and the existence of (Eo, Hy, E*, H*) are
given in Lemmas 1.3.5 and 1.3.6.

In the incompatible case, we have

Theorem 1.1.3. Lerp € (0,1/2), Ry > 2, and J € [L*(R®)]? be such that supp Jext =< Bg, \ B. Let
(E¢, H;), (E, H) € [Hypc(curl, R3)12 be the radiating solutions of (1.1.4) and (1.1.7) respectively.
Assume that system (1.1.3) is resonant and the compatibility condition does not hold, i.e.,

f Jint-Edx#0  for some (E,H) € N . (1.1.17)
B,

We have, for all K cc R3\ By,

I(F, " % Ee, Fy' % He) = (B, D)l feurl k) < C(p3||Jext||Lz(BRO\BZ> + P||]int||L2(Bl)) (1.1.18)
and

ligliglfpn (Ee, He)ll 123,y > 0. (1.1.19)

Some comments on Theorems 1.1.2 and 1.1.3 are in order. Theorems 1.1.2 and 1.1.3 imply in
particular that cloaking is achieved even in the resonance case. Moreover, without any source
in the cloaked region, one can achieve the same degree of visibility as in the non-resonant
case considered in Theorem 1.1.1. Nevertheless, the degree of visibility varies and depends
on the compatibility of the source inside the cloaked region. More precisely, the rate of the
convergence of (E;, H;) — (E, H) outside Bj in the compatible case is of the order p2 which is
better than the incompatible resonant case where an estimate of the order p is obtained. The
rate of the convergence is optimal and discussed in Section 1.4. By (1.1.19), the energy inside
the cloaked region blows up at least with the rate 1/p as p — 0 in the incompatible case.

We now describe briefly the ideas of the proofs of Theorems 1.1.1, 1.1.2 and 1.1.3. Set
(Ep, 7o) = (F,' % Ec, F,' « H)  inR. (1.1.20)
It follows from a standard change of variables formula (see, e.g., Lemma 1.2.9) that (&, #) €

12



1.2. Preliminaries

[Hyoc(curl, R3)]? is the unique (Silver-Miiller) radiating solution to

Vx&p=iwpu, )y inR3,
VxHpy=—-iwe,Ep+]p in R3, R
where
(1,1) inR*\ B,
(e 1p) = (Fy' €0, Fy' pie) = » . _ (1.1.22)
(0~'eC/p), 0~ u-/p)) in By,
and
Jext inR3\ By,
Jo=1{ 0 *Jm(-/p) in By, (1.1.23)
0 otherwise.

We can then derive Theorems 1.1.1, 1.1.2, and 1.1.3 by studying the difference between
(&p,#p) and (E, H) in R®\ B; and the behavior of (&, #,)(p-) in B;. It is well-known that
when material parameters inside a small inclusion are bounded from below and above by
positive constants, the effect of the small inclusion is small (see, e.g., [53, 5]). Without this
assumption, the effect of the inclusion might not be small (see, e.g., [24, 36]) unless there is an
appropriate lossy-layer, see [7, 4, 14]. In our setting, the boundedness assumption is violated
(see (1.1.22)) and no lossy-layer is used. Nevertheless, the effect of the small inclusion is still
small due to the special structure induced from (1.1.22).

It is worth noting that System (1.1.11), which involves in the definition of resonance and
non-resonance, and the condition of compatibility (1.1.12), appears very naturally in our
context. Indeed, note that if (E,, H,) is bounded in [H(curl, B;)]?, one can check that, uptoa
subsequence, (0 &, p ) (p") = (E., H) converges weakly in [H(curl, B))]? to (Ey, Hy) which
satisfies system (1.1.11) with (81,6) = (0, J).

The chapter is organized as follows. In Section 1.2, we establish some basic facts and recall
some known results related to Maxwell’s equations. These materials will be used in the proofs
of Theorems 1.1.1, 1.1.2, and 1.1.3. The proofs of Theorems 1.1.1, 1.1.2, and 1.1.3 are given
in Section 1.3. Finally, in Section 1.4, we discuss the optimality of the convergence rate in
Theorems 1.1.1, 1.1.2, and 1.1.3.

1.2 Preliminaries

In this section, we establish some basic facts and recall some known results related to Maxwell’s
equations that will be repeatedly used in the proofs of Theorems 1.1.1, 1.1.2, and 1.1.3. In what
follows in this section, D denotes a smooth bounded open subset of R? and on its boundary v

13



Chapter 1. Cloaking for time-harmonic Maxwell’s equations

denotes its normal unit vector directed to the exterior. We begin with a variant of the classic
Stokes’ theorem for an exterior domain.

Lemma 1.2.1. Assume that R3\ D is simply connected and let u € Hy.(curl, R3\ D) be such
that

Vxu=0in R3\D and|u(x)| = O(x|™?) for large | x|. (1.2.1)
There exists ¢ € HY. (R*\ D) such that

Vé=u in R\D and [Ex)| = O(le_l)for large | x|. (1.2.2)

Proof. By [15, Theorem 2.9], there exists n,, € H' (B, \ D) for large n such that

Vn,=uinB,\D and N, =0.
0B,

It follows that, for m > n large,
NMm =MNnin By \ D.

Let 7 be the limit of 7),, as n — +oco. Thenn € H. (R*\ D) and
Vn=uinR*\D.
Fixx,y € R3 large enough with |y| > |x| and denote % = x/|x| and y = y/|y|. Using (1.2.1), we

have, by the fundamental theorem of calculus,

C vy c
In(x)—n(y)lSIn(lylfl)—n(IyIfC)I+In(|y|56)—n(IXIfC)IsE+fll —ar (123)

for some positive constant C independent of x and y. It follows that

cC C
nx)—ny) < —+—. (1.2.4)
vl x|

Hence | llim 1(x) exists. Denote this limit by 1,. By letting | y| — +oo in (1.2.4), we obtain
X[—00

C
M(X) = Nool = Tk for |x| large enough.
X

The conclusion follows with ¢ =1 — 1. O
Let U be a smooth open subset of R3. Denote
H(div, U) := {¢p € [L2()1* : divep € L*(U)}.

Concerning a free divergent field in a bounded domain, one has the following result which is
related to Stokes’ theorem, see, e.g., [15, Theorems 3.4 and 3.6].

14
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Lemma 1.2.2. Assume that D is simply connected and let u € H(div, D) be such that

divu=0inD and u-v =0 for all connected componentT'; of 6D. (1.2.5)
Iy

There exists ¢ € [H' (D)]® such that
Vx¢=uinD and divg =0 in D.
Assume in addition that u-v =0 on 0D. Then ¢ can be chosen such that

¢xv=00no0D and f ¢-v =0 for all connected componentT'; of 6D.
r;

Moreover, such a ¢ is unique and, for some positive constant C,

”(»b”Hl(D) = C||u||L2(D)-

The following result is a type of Helmholtz decomposition. It is a variant of [15, Corollary 3.4]
where o is a positive constant.

Lemma 1.2.3. Assume that D is simply connected and let o be a 3 x 3 uniformly elliptic matrix-
valued function defined in D. Forany v € [L2(D)]3, there exist peH YD) and ¢oelH L(D)13 such
that

v=0Vp+Vx¢inD, divp=0inD and ¢xv=00ndD. (1.2.6)
Moreover,

Pl e oy + 10l 5 Dy = Cllvliz2(py)- (1.2.7)

Proof. The proof given here is in the spirit of [15] as follows. By Lax-Milgram’s theorem, there

exists a unique solution p € H' (D) with f pdx =0 to the equation
D

fUVqudx:f v-Vgdxforall ge H (D).
D D

Moreover,

[Pl 1Dy = Cllvli2p)- (1.2.8)
Then

diviv—oVp)=0inD and (v—-oVp)-v=0o0nadD. (1.2.9)

15
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By Lemma 1.2.2, there exists ¢ € [H 1(D)]13 such that

Vx¢p=v-0oVp inD,

diV(/)ZO inD, and ”(;b”Hl(D)SC”U_UVPHLZ(D)' (1210)
¢$xv=0 on oD,
Combining (1.2.8), (1.2.9), and (1.2.10), we reach the conclusion for such a pair (p, ¢). O

We next present two lemmas concerning the uniqueness of the exterior problems for electro-
static settings. They are used in the study of the exterior problems in the low frequency regime,
see Lemma 1.3.1. The first one is

Lemma 1.2.4. Assume that R3\D is simply connected. Let u € Hyyc(curl, R3\D)n Hio(div, R3\
D) be such that

Vxu=0 inR3\D,
divu=0 in R3\D,

u-v=0 on 0D,
and
lu(x)| = O(1x|7?) for large | x|. (1.2.11)

Thenu=0in R3\ D.

Proof. By Lemma 1.2.1, there exists ¢ € H._(R®\ D) such that

Véi=uinR3\D and [E(x)|= O(le_l) for large | x|. (1.2.12)
Since divu = 0, we have

Aé=0inR3\ D.

Since V&-v = u-v =0 on 0D, it follows that £ = 0 in R3\ D, see, e.g., [32, Theorem 2.5.15].
Therefore, u = 0. O

The second lemma is

Lemma 1.2.5. Assume that R3\ D is simply connected and u € Hyo(curl, R3\ D) N Hjoc(div, R3\
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D) is such that

Vxu=0 inR*\D,
divu=0 inR3\D, f u-v =0 for all connected componentT'; of 0D,
T

uxv=0 onaobD,

and
lu(x)| = O(1x|™?) for large | x|. (1.2.13)
Thenu=0in R3\ D.
Proof. By Lemma 1.2.1, there exists ¢ € HllOC(IRE3 \ D), such that
(1.2.14)

Vé=uinR3\D and |&(x)|=0(xI"Y) forlarge|x|.

. 1 (m3 3
There exists ¥ € [HIOC(IR \ D)]°, such that

Vxy=uinR*\D.

Fix0 € C'(R®) such that 0<60 < 1,0 =1in B; and suppf c B,. For r >0, set 8, (-) =0(-/r) in R
Let ¢t > s> 0 be large enough (arbitrary) such that D cc Bg. Since u x v =0 on 0D, we obtain,

by integration by parts, that

f VX(Qtw)-V(Gsf)dx:—f Htt//-V(Hsf)xvds:—f w-ixvds=0.
R3\D oD 0D

Letting t — +o0, we derive that
(1.2.15)

f u-vV@$dx =0.
R3\D

We have

f |u||El|VOs|dx < C|Bys\ Bgls ?s 's'<Cs™! - 0as s — +oo. (1.2.16)
2s s

Using the fact that
U-V(0sé) = u(0;VE +EVOy) = O5lul® + uévos in R\ D,

and combining (1.2.15) and (1.2.16), we obtain

f lul®>dx =0,
R3\D
O

which yields # = 01in R3\ D.
17



Chapter 1. Cloaking for time-harmonic Maxwell’s equations

The following result is a consequence of the Stratton - Chu formula.

Lemma 1.2.6. Let 0 < k < ko. Assume that D cc By and (E, H) € [Hpc(curl, R\ D)]2 isa
radiating solution to the Maxwell equations

VxE=ikH in R3\D,
VxH=—ikE in R3\D.

We have

C
(o, H)| < o (L kI, D2y for 61 >3, (1.2.17)

for some positive constant C independent of x and k.

Proof. Set
eiklx=yl 3
Gr(x,y) = —— fi ,V€ER”, .
(X, ) arlx =yl orx,y X#£Yy

Itis known that, see, e.g., [12, Theorem 6.6 and (6.10)], the following variant of the Stratton-Chu
formula holds, for x e R3\ D,

E(x) =Vyx faB v(y) x E(3)Gr(x, »)dy

+ikfaB v(y) x H(y)Gk(x,y)dy—foaB v(y)-E(y)Gr(x,y)dy. (1.2.18)

Using the facts
C
IVGr(x, )| < —= (1 + kl|x|) for y € 0Bo, x e R®\ By

|x|?
and, since AE+k2E=0inR3\ D,
| Ell 7B, < ClIEll12(8;\p), for some positive constant C depending only on ko,
we derive from (1.2.18) that
C
|E(x)| < W(l + Kklx1) | (E, H) |l 12 (8,\p) for |x] > 3. (1.2.19)
Similarly, we obtain

C
|H(x)| < W(l + k| xI) | (E, H) || 12(p,\py for |x] > 3. (1.2.20)

The conclusion now follows from (1.2.19) and (1.2.20). O

We next recall compactness results related to H(curl,-) and H(div,-).
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Lemma 1.2.7. Let € be a measurable symmetric uniformly elliptic matrix-valued function
defined in D. Assume that one of the following two conditions holds

i) (Un)nen < H(curl, D) is a bounded sequence in H(curl, D) such that

(div(euy)), o converges in H YD) and (tn x V) e cOnVerges in HY20D).

ii) (Un)nen < H(curl, D) is a bounded sequence in H(curl, D) such that

(div(eun)), p is bounded in L2(D) and (eun - V), ep converges in HY2D).
There exists a subsequence of (Uy) nen Which converges in (L2(D))3.

The conclusion of Lemma 1.2.7 under condition i) is [36, Lemma 1] and has its roots in [20]
and [13]. The conclusion of Lemma 1.2.7 under condition ii) can be obtained in the same way.
These compactness results play a similar role as the compact embedding of H! into L? in the
acoustic setting and are basic ingredients in our approach.

In what follows, we denote
HV2(divr, T) := {q) e (H 23 ¢-v=0and divrp H‘”Z(r)},
”(rb”H_l/Z(din,r) = ||¢||H—1/2(r) + ” diV[‘(,b”H—l/Z(r).

The following trace results related to H(curl,-) and H(div,-) are standard, see, e.g., [1, 9, 15].

Lemma 1.2.8. SetI' =0D. We have
i)
v x VIl g-12(give,r) < ClVI Hcunt, Dy for v € H(curl, D).
ii)
lv- V”H‘”Z(F) <C| V”H(diV,D) for ve H(div, D).

Moreover, for any h € H™'/?(divr,dD), there exists ¢ € H(curl, D) such that

¢ xv=hondD, and || gcur,p) < ClAl g-112(giv00)-

Here C denotes a positive constant depending only on D.
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Chapter 1. Cloaking for time-harmonic Maxwell’s equations

We finally recall the following change of variables for the Maxwell equations. It is the basic
ingredient for cloaking using transformation optics for electromagnetic fields.

Lemma 1.2.9. Let D,D' be two open bounded connected subsets of R® and F : D — D' be
a bijective map such that F € C'(D),F~' € CY(D"). Lete, u e [L®(D)1**3, and j € [L*>(D)]°.
Assume that (E, H) € [H(curl, D))? is a solution of the Maxwell equations

VxE=iwuH inD,
(1.2.21)
VxH=-iweE+j inD.
Set, in D',
E:=F+«E:=(DF 'E)oF' and H :=F+H:=(DF "TH)oF .
Then (E', H') € [H(curl, D"))? satisfies
VxE =iouy H inD',
(1.2.22)
VxH =—-iwe'E'+j inD,
where
DFeDFT DFuDFT DFj
£ =F,e:=———oF Y, y:=F,u:= 'U—OF_I, and j :=F.j= 2 gt
|det DF| |det DF| |det DF|

Remark 1.2.1. It is worth noting the difference of Fx* in the definition of E' and H', and F; in
the definition of ¢/, u/, and j'.

1.3 Proofs of the main results

This section is devoted to the proof of Theorems 1.1.1, 1.1.2, and 1.1.3 and is organized as
follows. In the first subsection, we establish various results related to (&, 7). The proof of
Theorem 1.1.1 is given in the second subsection and the ones of Theorems 1.1.2 and 1.1.3 are
given in the third subsection.

1.3.1 Some useful lemmas

In this section, D c B; denotes a smooth open bounded subset of R, and € and p denote two
3 x 3 matrices defined in D which are both real, symmetric, and uniformly elliptic in D. We
also assume that D and R3 \ D are simply connected and ¢, u are piecewise C'. The following
lemma provides the stability of the exterior problem in the low frequency regime.

Lemma 1.3.1. Let0 < p < pg and let (E,, Hp) € [Hioc(curl, R3\ D)|? be a radiating solution to
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the system

VxE,=ipH, inR*\D,

(1.3.1)
VxH,=-ipE, inR>\D.
We have, for R > 1,
I Epy Ho)lcun, 50 < Cr(1Ep * VIl -0y + I Hp VIl 1201 (13.2)
and
1 Ep, Ho)l rcun, 50y = Cr(I1Ep VIl -ve(apy + I Hp % VIl 1291 ) (1.3.3)

for some positive constant Cr depending only on py, D, and R.

Remark 1.3.1. A similar estimate to (1.3.2) but switching the role of E, and H, also holds true.

Proof. We begin with the proof of (1.3.2). Since (E,, H)) satisfies (1.3.1), it suffices to prove
that

1Ep, Ho)ll 25000 < Cr(I1Ep x Vil 2oy + 1 Hp Vil 2o | (1.3.4)

for R > 3. Fixing R > 3, we prove (1.3.4) by contradiction. Suppose that there exist a sequence

(0n)nen < (0, po) and a sequence of radiating solutions ((Ep, Hp)), ., < [H(curl,R3\ D)]? of the

neN
system

VxE,=ipy,H, inR3\D,

(1.3.5)
VxHy,=-ippE, inR3\D,
such that
I (En, H)ll 128 \py = 1 for neN, (1.3.6)
and
Bim (1B Vil -vzopy + 1 oVl -1ga ) = 0. (1.3.7)

Without loss of generality, one might assume that p, — peo as n — co for some p, € [0, pol.
We only consider the case po, = 0. The case p, > 0 can be proven similarly. From (1.3.5) and
(1.3.6), we have

I(E,, Hy) ||H(cur1,BR\D) <C. (1.3.8)
Here and in what follows in this proof, C and C; denote positive constants independent of r.
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Applying Lemma 1.2.6, we have
I (Eny H) | cur,B,\p) < Cr  forall r>3. (1.3.9

Since
AE, +p?Ey=AH, +p°H, =0in R*\ D,

it follows from (1.3.9) that, for r > 3,
ICEn, H) Il i (B,.,\B,_) < Cr-

By the trace theory, we have
I (En, Hp) ”H”Z(aB,) = Cr.

Since the embedding of H'/?(8B,) into H~'/2(dB,) is compact, by applying i) of Lemma 1.2.7
to (E;) and by applying ii) of Lemma 1.2.7 to (H,,), without loss of generality, one might assume
that (E,,, H,) converges in [L? (R3\ D)]%. Moreover, the limit (E, H) € [H,c(R3 \ D)]? satisfies

loc

VxH=0 inR3\D, VxE=0 inR3\D,
divH=0 inR3\D, and divE=0 inR3\D, (1.3.10)
H-v=0 onoaD, Exv=0 ondD.

Applying Lemma 1.2.6 to (E,, Hy) and letting n — +oo (p;, — 0), we have

I(E(x), H(0)| = O(lx| %) for large |x|. (1.3.11)
1
On the other hand, since E,, = ———V x H,, in R3\ D, we have
ipn
f E,-v=0for all connected component I'; of dD. (1.3.12)
r;

Since (E,) converges to E in [LIZOC(IR{E" \ D)]3 and divE,, = divE = 0 in R3\ D, it follows that (E,,)
converges to E in Hjy(div, R3\ D). This in turn implies, by (1.3.12),

fr. E-v =0 for all connected component I'; of dD. (1.3.13)
Applying Lemma 1.2.4 to H, we derive from (1.3.10) and (1.3.11) that

H=0inR*\D. (1.3.14)
Similarly, applying Lemma 1.2.5 to E, from (1.3.10), (1.3.11), and (1.3.13), we obtain

E=0inR3\ D.! (1.3.15)
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From (1.3.6), (1.3.14), and (1.3.15) and the fact that (E,, H;) converges to (E, H) in 2

loc (RS \ D),
we reach a contradiction. The proof of (1.3.2) is complete.

We next deal with (1.3.3). The proof of (1.3.3) is similar to the one of (1.3.2). However, instead
of obtaining (1.3.10) and (1.3.13), we have

VxH=0 inR3\D, VxE=0 inR3\D,
divH=0 inR3\D, and divE=0 inR3\D,

Hxv=0 onoD, Exv=0 onoD,

and

f H-v= f E-v =0 for all connected component I" of 6D.
T r

By the same arguments, we can derive that (E, H) = (0,0) in R3, which also yields a contradic-
tion. The details are left to the reader. a

Remark 1.3.2. We have
divp(Ep xv)=Vx Ey-v=ipH,-vonadD.

It follows that, for0 < p <1,

1
”Ep X V“H—l/Z(din’aD) < ”Ep X V”H—I/Z(aD) + ”Hp 'V”H—UZ(@D) < ;”Ep X 'V”H—I/Z(divr,aD),

i.e., the bound in the estimate (1.3.2) is an intermediate quantity between | Ep x V|| g-12 divy 00)
and p_l 1 Ep x VIl gr-v2(divy,00) -

The next lemma gives an estimate for solutions of Maxwell’s equations in the low frequency
regime, which in turn implies an estimate for the effect of a small inclusion after a change of
variables.

Lemma 1.3.2. Let0< p < 1/2, R > 1/2, and let (E,, Hp) € [Hoc(curl,R*\ D)]? be a radiating
solution to the system

VxE,=iwpH, inR*\D,
(1.3.16)
Vx H,=-iwpE, inR*\D.
We have

|(Eo (0, Ho))| = CoPIEp, Hp)llzsmy  for € Bsnsp \ Banip,

IWhen poo > 0, instead of being a solution of (1.3.10), (E, H) is the radiating solution of (1.3.1) with p = peo and
E xv=0o0n0D. This also implies that (E, H) = (0,0) in R3\D.
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for some constant C depending only R.

Proof. We only deal with small p, since otherwise the conclusion is just a consequence of
Stratton-Chu’s formula. We have, for x € R\ B, (see (1.2.18))

Ep(x)=faB V.Gi(x,y) x (v(y) x Ep(y))dy

+ia)pfaB v(y) x Hp(y)Gk(x,y)dy—faB v(y) - Ep(MVxGi(x,y)dy, (1.3.17)

where k = wp. We claim that

E,xv
faB1 P

< Coll(Ep, Hp)l 12(B,\ D) (1.3.18)
and

prv

s = Cpll(Ep, Hp) l 12B,\D)- (1.3.19)
1

Assuming this, we continue the proof. We have

1
f v-Epds=— v-VxHyds=0. (1.3.20)
0B, lwp JoB,

Rewrite (1.3.17) under the form
Ep(x) =

faB ViGr(x,0) x (v(y) pr(y))dy+faB (VxGr(x, ) = VxGi(x,0)) x (v(3) x Ep(3))dy

1

+ iwpfaB v(y) x Hp(y)Gr(x,0)dy + iwpfaB v(y) x Hp(y)(Gk(x, ) — G (x,0))dy

_faB V(y)-Ep(y)Vka(x,O)dy—faB V(1) - Ep(1)(VxGr(x, y) — V4G(x,0))dy.
1 1
Using the facts, for |x| € (2R/p,3R/p) and y € 0B,

IGr(x,¥) = Gi(x,0)| = Cp®,  [VG(x,y) — VGi(x,0)| = Cp®,

and
[ (Ep; Hp) ”LZ(GBI) <Cl (Ep: Hp) ”LZ(BZ\D)’

we derive from (1.3.18), (1.3.19), and (1.3.20) that
|Ep(x)] < Co*I1(Ep, Hp) | 12(8,\p) fOT X € B3g/p \ Borsp- (1.3.21)
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1.3. Proofs of the main results

Similarly, we have
|Hp(x)] < col (Ep, Hp)ll12(8,\p) fOr X € B3p/p \ B2g/p. (1.3.22)

The conclusion now follows from (1.3.21) and (1.3.22).

It remains to prove Claims (1.3.18) and (1.3.19). We only prove (1.3.18), the proof of (1.3.19) is
similar. Let (Ep, Hp) € [H(curl, B;)]? be the unique solution to the system

VxE,=iwp(1+i)H, inBy,
VxH,=-iwp(l+i)E, inBy, (1.3.23)

Eyxv=E,xv on 0B;.

The well-posedness of (1.3.23) follows immediately from Lax-Milgram’s theorem. We now
prove by contradiction that

Il (Ep» gp)lle(Bl) = C(”Ep X V|ext”H*1/2(aBl) + ”Hp : Vlext”H*I/Z(aBl))- (1.3.24)

Assume by contradiction that there exists (p,),, < (0, 1) convergingto 0, (E;, H,),, < [H(curl, B))1?
satisfying

VxE,=iwp,(1+i)Hy in By,

(1.3.25)
V x H, = —iwp,(1+i)E, inBj,
and that
I(En, H)ll 28,y = 1, forall n €N, (1.3.26)
but
N1En % Vil 11298, + | Hp -Vl g-12 95,y — O (1.3.27)

Using Lemma 1.2.7, one can assume that (E,, H,) converges to some (E, H) € [H(curl, Bl)]2 in
[L?(B1)1®. It clear from (1.3.25) and (1.3.27) that the limit satisfies

VxE=0 inB;y, VxH=0 inB;y,
divE=0 inB;y, and divH=0 inB;y,

Exv=0 onodB, H-v=0 onodBy,

These equations only have zero solutions, thus (E,, H,) — (0,0) in [L?(B;)]1®. This fact contra-
dicts (1.3.26). We obtain (1.3.24).
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Chapter 1. Cloaking for time-harmonic Maxwell’s equations

It follows that
I (Ep, I:Ip)”LZ(BI) < CIl(Ep, Hp)l 12(B,\D)- (1.3.28)
Since
f Ey,xvds| = f prvds = f Vprdx =’f wp(1+i)FIpdx ,
0B, 0B, B, By
claim (1.3.18) follows from (1.3.28).
The proofis complete. O

The following compactness result is used in the proof of Theorems 1.1.1, 1.1.2, and 1.1.3.

Lemma 1.3.3. Let ((En, Hy)),, be a bounded sequence in [H(curl, D)]* and let ((61,,,02,1)),, be
a convergent sequence in [L2 (D)]G. Assume that

VxE,=iuH,+6,, inD,
(1.3.29)
Vx Hp=—ieEy+0s, inD,

and
((Vx E,-v,V x Hy-v)), converges in [H "'?(0D)]*. (1.3.30)

Then, up to a subsequence, ((E 1 Hn))n converges in [H(curl, D))2.

Remark 1.3.3. A comparison with Lemma 1.3.3 is necessary. The difference between Lemma 1.3.3
and part i) Lemma 1.2.7 is that the sequence (E,, x v),, or (H x v), is not required to be conver-
gent in H~'/2(dD). The difference between Lemma 1.3.3 and part ii) Lemma 1.2.7 is that the
sequence (div(¢Ey)),, or (div(uHy)), is not required to be bounded in L?(D). Nevertheless, in
Lemma 1.3.3, (1.3.29) is assumed.

Proof. It suffices to prove that, up to a subsequence, ((Ej, Hn))n converges in [L?(D)]%. By
Lemma 1.2.3, there exist (g,), < H' (D) and (pn)nc [H'(D)]? such that, for all n,

eE,=eVq,+Vx¢,inD, divg,=0inD, and ¢,xv=00ndD. (1.3.31)
Moreover, we have
lgnll 1oy + 1Pnll i (D)3 < ClERlr2py = C, (1.3.32)

for some positive constant C independent of n. From (1.3.32), without loss of generality, one
might assume that

(Gn)n and (¢b,,) , converge in L?(D) and [L?(D)]® respectively. (1.3.33)
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1.3. Proofs of the main results

From (1.3.31) and an integration by parts, we derive that, for all n,
fDEVqWVpdx:/DsEnondxforpEHI(D). (1.3.34)
This implies, by (1.3.29), for m,neN,
[ €9V = dx = [ et En)- (G-

=i [ (V% (Ha= i) = o= 02,00) V(s = G .

An integration by parts yields

fD«fV(qn—qm)-V(c‘/n—qm)dx
= ifaDV X (Hn—Hm) vV (Gn—qm)ds— ifD(Gz)n_HZ,m)'V(C_In—ﬁ_lm)dX.

By (1.3.30) and the convergence of (01,,,,602,,) in [L?(D)]°, the LHS of the above identity con-
verges to 0 as m, n — oo. Hence, by the ellipticity of €, (Vg,), is a Cauchy sequence and thus
converges in [L2 (D)]3. From (1.3.31), we have

fDe‘le(¢n—¢m)-Vx(cﬁn—qu)dxszvX(En—Em)-(an—ém)dx.

By the ellipticity of € and the convergence of (¢b,) in L? (D), we derive that (V x ¢,,) ,, is a Cauchy
sequence in [L2(D)]® and thus converges in [L2(D)]3. Since

En=Vqn+e 'Vx¢,,

(En)y, converges in [L2(D)]3.

Similarly, up to a subsequence, (H,), converges in [L?(D)]. O

Using Lemma 1.3.3 and applying the Fredholm theory, one can prove the well-posedness of
(Ey, Hp) in Definitions 1.1.3 and 1.1.4. The first result in this direction is

Lemma 1.3.4. Let0,,0, € [L*(D)]3. The system

VxE=iuH+6 inD,
VxH=—ieE+0, inD, (1.3.35)

VxE-v=VxH-v=0 onoD,
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Chapter 1. Cloaking for time-harmonic Maxwell’s equations

has a solution (E, H) in [H(curl, D)]? if and only if

f@g-de—f 0,-Hdx=0 forall (E H) €./ (D).
D D

(1.3.36)

In particular, system (1.3.35) has a unique solution (E, H) € N (D)* ifand only if (1.3.36) holds.

Proof. Lemma 1.3.4 is derived from the Fredholm theory. Since € and pu are uniformly elliptic,

by Lemma 1.2.3, there exist p;, p» € H'(D) and ¢, ¢, € [H' (D)) such that
01 =uVp1+Vx¢y, 0,=eVpry+Vx¢yinD,
and
Vx¢p1-v=Vxe¢y-v=00ndD.
Set (Ey, Hp) := (=iVp2,iVpy) in D. Then (Ey, Hp) € [H(curl, D)]? is a solution to
V x Ey=1ipuHy+puVp; in D,
Vx Hy=—ieEy+€Vpr in D,
VxEy-v=VxHy-v=0 onodD.
We have

fesz-de—f uVp:-Hdx=0 forall (E,H) e & (D).
D D

(1.3.37)

(1.3.38)

(1.3.39)

(1.3.40)

From (1.3.37), (1.3.38), (1.3.39), and (1.3.40), by considering (E — Ey, H — Hp) instead of (E, H),

one might assume that (6,,0,) € H(div, D),
div(6;) =div(f2) =0in D and 6;-v=0,-v=00nadD.

This is assumed from now on.

Set

\/:{(peH(curl,D):div(ecp):O, ep-v=00n0dD, VX(p-v:OonaD}.

(1.3.41)

Since ¢ and p are real, symmetric and uniformly elliptic, V is a Hilbert space equipped with

the scalar product
<E,¢p>vv=f;f1VxE-V><(pdx+f eE-pdx forE,peV.
D D
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Let A:V — V be defined by

<AE,¢p ><\/’V>=_2f eE-pdxforallpeV. (1.3.43)
D

Since € is symmetric, one can easily check that A is self-adjoint. Since € and p are symmetric
and uniformly elliptic, by Lemma 1.2.7, A is compact.

Let g € V be such that

<gy ><\/,\/>=f i0, -q‘)+f ,u_lel -Vx@forallpeV. (1.3.44)
D D
We claim that
system (1.3.35) has a solution in [H (curl, D)]?
if and only if the equation u + Au = gin V has a solutioninV  (1.3.45)
and
(E, H) is a solution of (1.3.35) if and only if
E+AE=ginVand H=-ip " (VxE-6). (1.3.46)

Assuming this, we continue the proof. By (1.3.45) and the Fredholm theory, see, e.g., [8,
Chapter 6], system (1.3.35) has a solution if and only if

(&, p)vyv=0forall pe Vsuchthatgp+ Ap=0inV, (1.3.47)

since A is self-adjoint. Applying (1.3.46) with g = 8, = 8, = 0 and using (1.3.42), (1.3.43), and
(1.3.44), we derive that condition (1.3.47) is equivalent to the fact that

f@z-l‘zdx—fel-ﬁdxzo for all (E,H) € A4 (D),
D D

which is (1.3.36).

The rest of the proof is devoted to establishing Claims (1.3.45) and (1.3.46). Let (E, H) €
[H(curl, D)]? be a solution to (1.3.35). From (1.3.41), we derive that E € V. Fix ¢ € V. Then
V x¢@-v=0o0ndD. By Lemma 1.2.2, there exists ¢ € [H!(D)]® such that

Vx@po=Vx@inD, divpy=0inD, and ¢yxv=00ondD. (1.3.48)
Since V x (¢¢ — ¢) = 0 and D is simply connected, there exists { € H 1(D) such that
po—@=V¢inD. (1.3.49)
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Chapter 1. Cloaking for time-harmonic Maxwell’s equations

We have, for p e V,

fp_1V><E-V><(pdx=if H-Vx@+u10,-Vx@dx.
D D

Using (1.3.48) and an integration by parts, we obtain

fH-VX(Z)dXzfH-VX(ﬁodx:[VXH‘(ﬁde-
D D D

Using (1.3.49) and the fact V x H-v =0 on dD, we also get, by an integration by parts,

foH-(pde:fVXH-(pdx.

D D

This implies, by (1.3.51),
fH-VX(pdx=foH-(pdx.
D D

A combination of (1.3.50) and (1.3.52) yields
f,u‘WxE-Vx@dx:ifV><H-<p+p‘101-V><(pdx.
D D

We derive from (1.3.35) and (1.3.53) that

fp‘1VxE-Vx¢dx:f£E-(pdx+if 62-(;')dx+f p -V x@dx.
D D D D

It follows from (1.3.42), (1.3.43), and (1.3.44) that

E+AE=ginV.

Conversely, assume that there exists u € V such that u+ Au = g. Set

E=uand H=—ipg Y(Vx E-6)) in D.

(1.3.50)

(1.3.51)

(1.3.52)

(1.3.53)

(1.3.54)

Using (1.3.54), one can check that (E, H) satisfies the first two equations of (1.3.35). It is clear
that V x E-v =0 on dD by the definition of V. Since Vx H=—ieE+60,in D, eE-v=00n 0D

(E€V),and 6,-v=00ndD by (1.3.41), we obtain
VxH-v=0o0nodD.

The proofis complete.

Remark 1.3.4. One of the key points in the proof of Lemma 1.3.4 is the identity

fH-Vxde=foH-de,
D D
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1.3. Proofs of the main results

if E,H € H(curl,D)issuchthat Vx E-v=V x H-v=0o0n 0D, see (1.3.52). This ensures the
variational character of system (1.3.35).

The following lemma yields the uniqueness of (Ey, Hp) in Definition 1.1.4.

Lemma 1.3.5. Let [(E, H), (E, H)] € [Hjoc(curl, R3)]? x A (D) be such that

VxE=VxH=0 inR3\D, VxE=iuH inD,
divE=divH=0 inR3\D, Vx H=—iceE inD,
< and < (1.3.55)
VxE=iuH inD, EE-V=FE-V|ext onoD,
Vx H=-icE inD, ,uI:I-v:H~v|ext onoD,
and
|(Eo, H)| = 0017 for large x| (1.3.56)

Then (E, H) = (0,0) inR3 and (E, H) = (0,0) in D.

. — . . 1 3
Proof. Applying Lemma 1.2.1 to E, there exists a function 6 € H, _(R’\ D) such that
VO = EinR3\ D and |6(x)| = O(|x|™}) for large | x|. (1.3.57)

For R > 0 large, since divE = 0 in R® \ D, we have

f |E|2dx:f E-Vde:f (E-v)@ds—f (E-V)| o 0ds.
Br\D Br\D 0Bpg 0D

Letting R tend to +o0 and using (1.3.56) and (1.3.57), we obtain
f |E>dx = —f (E-V)|og0ds. (1.3.58)
R3\D aD

Extend 0 in D so that the extension belongs to HIIOC(IR3) and still denote this extension by 6.
We derive from the system of (E, H) in (1.3.55) that

—f (E-V)Iext9d3=—f (£E~v)0ds=—f £E~V8dx—f div(eE)0 dx
oD 4D D D

:f —iVxH-VOdx=—i H-(V@xv)ds:—if H-(Exv)ds.
D 0D

oD
(1.3.59)

Combining (1.3.58) and (1.3.59) yields
f |E|2dx=—if H-(Exv)ds. (1.3.60)
R3\D oD
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Chapter 1. Cloaking for time-harmonic Maxwell’s equations

Similarly, we have

f |H|2dx=if E-(Hxv)ds. (1.3.61)
R3\D 0D

An integration by parts implies

H-(Exv)ds—f E-(Hxv)ds

oD oD

:fVXﬁ-de—[VXE-de—fVXE-de+fV><H-de.
D D D D

Using the equations of (E, H) and (E, H) in D in (1.3.55), we obtain

H-(Exv)ds—f E-(Hxv)ds=0. (1.3.62)
oD oD

A combination of (1.3.60), (1.3.61), and (1.3.62) yields

f (IE1>+|H*)dx = 0.
R3\D

We derive that E = H =0 in R®\ D. This implies, by the unique continuation principle see, e.g.,
[48, Theorem 1],
E=H=0inD

and, since (E, H) € &/ (D)*,
E=H=0inD.

The proofis complete. O

1.3.2 Approximate cloaking in the non-resonant case - Proof of Theorem 1.1.1

The key ingredient in the proof of Theorem 1.1.1 is the following lemma whose proof uses
various results in Section 1.2 and Section 1.3.1

Lemma1.3.6. Ler0 < p < pg, 0, = (01,5,02,) € [L>(D)1®, and hy, = (h1,p, ha,p) € [H™?(divr,0D)1%.
Let (Ep, Hp) € [Ng>1 H(curl, Bg \ 0D)1? be the unique radiating solution to the system

VxE,=ipH, inR3\ D,

Vx H,=-ipE, inR*\ D,
SVxE,=iuH,+01, inD,

Vx H,=-icEy+0, inD,

[Ep xV]=hyp,[HyxVv]l=hy, onoD.
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Assume that A (D) = {(0,0)}. We have
I(Ep, Hp) 25, < C(nep iz + ||h,,||H_m(din,aD)), (1.3.63)
for some positive constant C depending only on py, €, u. Assume in addition that

})1_1;(1) 2ol gr-12divy0p) =0 and })1_1%0p =0 in[L°(D)]°,

for some 0 = (01,0>) € [L*(D)]%. We have

lim (Ey, Hy) = C1(61,62) in [H(curl D)*. (1.3.64)
p—»

Here and in what follows on 0D, [u] denotes the jump of u across dD for an appropriate
(vectorial) function u, i.e., [u] = u|ext — Ulint On D. Moreover the following notation is used in
the thesis

ﬂ H(curl, BR\0D) = {u :R® - R3such that u € H(curl, D) and u € H(curl, Bg\D) for all R > 1}
R>1

Proof. By Lemma 1.2.8, without loss of generality, one might assume that hy , = hz p =0 on
0D. This is assumed from now on.

We first prove (1.3.63) by contradiction. Assume that there exist sequences (o), < (0, po),
((En, Hp)),, < [Hioc(curl, R)1?, ((01,n,02,1)),, < [L*(D)]° such that

VxE,=ip,Hy, inR3\ D,

VxH,=-ipnEp inR3\ D,
3 (1.3.65)
VxE,=iuH,+01, in D,

VxH,=-i¢E,+0,, inD,

I (En, Ho)ll12(,) = 1 forall n €N, (1.3.66)
and
nEHloo I161,1,02,)  12(py = 0. (1.3.67)

Without loss of generality, one might assume that p;,, — p € [0, pol. We only consider the case
Poo = 0. The case po, > 0 can be proved similarly.
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Chapter 1. Cloaking for time-harmonic Maxwell’s equations

We have

V x Ep Ve =V % Ep-Vleg = ipnHp  Vley — 0in H V?(3D) as n — oo. (1.3.68)
Similarly, we obtain

V x Hy vl — 0in HY2(0D) as n — co. (1.3.69)

Applying Lemma 1.3.3 to ((Ej, Hy)),, in D, without loss of generality, one might assume that
((En, Hp)),, converges in [H (curl, D)% as n — oo. (1.3.70)
Applying i) of Lemma 1.2.8, we derive that
((En x v, Hy x v))n converges in [H™ "2 (divr,dD)]? as n — oo.
It follows from (1.3.66), Lemma 1.2.6, and i) of Lemma 1.2.7 that

((En, Hp)),, converges in [L (R*\ D)]° as n — oo. (1.3.71)

Let (E, H) be the limit of (E,,, Hy,) in [L2. (R3)]®. Then (E, H) € [Hiyc(curl, R%)]2 and ?

loc
VxE=VxH=0 inR3\D,
divE=divH=0 inR3\D,

3 (1.3.72)
VxE=iuH in D,

Vx H=—-ieE in D.
We derive from (1.3.68) and (1.3.69) that

VX E-V]int =V x H-V|int =0 on 0D. (1.3.73)
Applying Lemma 1.2.6, we have

[(E(x), H(x))I < % for |x| >3, (1.3.74)

for some positive constant C. Combining (1.3.72) and (1.3.73) yields that (E, H)|, € A (D).
Since A4 (D) = {(0,0)}, it follows that E = H =0 in D. Hence

Exv=Hxv=00onoD. (1.3.75)

2In the case poo > 0, the limit (E, H) satisfies the radiating condition and is a solution to Maxwell equations in
R3 with vanished data. It follows that (E, H) = (0,0), which also gives a contradiction.
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1.3. Proofs of the main results

We have, for each connected component I" of D,

. . 1
fE'Wext: lim fEnlext'V: lim — f(VXHn)‘Wext:O
T n—oo jr n T

and similarly

f H'V|ext =0.
T

Using (1.3.72), (1.3.74), and (1.3.75), and applying Lemma 1.2.5 to (E, H) in R3\ D, we obtain
E=H=0inR*\D.

Thus E = H = 0 in R3, which, by using (1.3.70) and (1.3.71), contradicts (1.3.66). Therefore,
(1.3.63) is proved.

We next establish (1.3.64). Fix an arbitrary sequence (p;), converging to 0. From (1.3.63), one
obtains that

I(Ep,» Hp, )l 128y < C(H@pn 2oy + 1 A, ”H*l’z(divr,@D)) =C.

Using the same argument as above, one obtains that, up to a subsequence, (E,,, Hp,) con-
verges in [H(curl,R%)]? to (E, H), the unique solution of

VxE=VxH=0 inR3\D,

divE=divH=0 inR3\D,
X (1.3.76)
VxE=iuH+6, inD,

VxH=—-ieE+0, inD.
This system implies V x E-v|int = V x H-Vv|ipe = 0 on dD. Since A (D) = {(0,0)}, we have

(E,H)|p = Cl(68,,07). Since (p,) — 0 arbitrarily, assertion (1.3.64) follows. The proofis com-
plete. O

We are ready to give the

Proof of Theorem 1.1.1. Let (Ej 5, H ) € [Hioc(curl, R\ B,)]? be the unique radiating solution
to the system

Vx Eyp=iwH, in R3\ By,
VxHyp=—-iwE p+Jexx nR\B, (1.3.77)
E1pxv=0 on 4By,
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Chapter 1. Cloaking for time-harmonic Maxwell’s equations

extend (Ey,p, Hy,p) by (0,0) in By, and still denote this extension by (E ,, Hj,p). Define
(E2,p, Ha,p) := (E, H) = (E1,p, H1,p) and (E3p, H3p):=(8p, #p) — (E1,p, H1p) in R®.
Then (E3 p, H>,p) € [Hoc(curl, R3\ Bp)]2 is the unique radiating solution to the system
VxEyp=iwH,, inR*\B,,
VxHyp=—-iwE,, inR*\B,,
Epxv=Exv ondB,,
and (E3p, H3 p) € [Nr>1 H(curl, Bg \ (9Bp)]2 is the unique radiating solution to the system
V x E3p=iwpyHsp inR*\ 0B,
Vx Hs,=—iwepEsp+JpxB, inR>\0B,, (1.3.78)
[E3pxv]=0,[HspxV]=—Hjp*xVlexx 0noBy,

where yp denotes the characteristic function of a subset D of R3. Recall that Jp is defined in
(1.1.23). Set

By p(x) = Ep(px) and Hy p(x) = Hp(px) for x e R*\ By.
Then (Egvp, Hg, p) € [H(curl, R3\ B;)1? is the unique radiating solution to the system
VxEy,=iwpH,, inR*\By,
VxH,,=-iwpE,, nR3\By, (1.3.79)
Ez,va:E(p-)xv on 0B;.
By Lemmas 1.3.1 and 1.3.2 (also Remark 1.3.2), we have, for R > 1/2 and for x € Bsg \ Bag,

(AR

< CO°l(Ea,p, Ha,p)ll 2(8,\B))

< CP*(IE(p.) x Vil g-128,) + p~ 1 divag, (E(p) x V)|l g-1295,)
< CP*(IE(p.) x Vil g-1268,) + | H(p.) VI g-112(58,))-

Here and in what follows in this proof, C denotes a positive constant depending only on pg,
Ry, and R. It follows from the definition of (Ez, 0 f‘[zy o) that

1(E2,0, Ho,0) 112 By \Bog) < CO° Wextll 2o\ By - (1.3.80)
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From now on in this proof, for any vector field v, we denote 3

() :=pv(p-). (1.3.81)
We claim that
”I:II,p X Vlextll g-12(98,) + ||El,p “Vlextll -1268,) < COWl extll 12@3\B,) (1.3.82)

and, for R >1/2,

I1(E3,p, H3,0) | 12(By 1\ Byg) < C(Ps||]ext||L2(R3\Bg) + p2||]int”L2(Bl))- (1.3.83)

It is clear that (1.1.9) follows from (1.3.80) and (1.3.83). Moreover, by Lemma 1.3.6, assertion
(1.1.14) now follows from (1.3.82) and the fact that (E., H,) = (E3,p, Iflg,p) in B;.

It remains to establish (1.3.82) and (1.3.83). Itis clear that (Es 5, H3 ) € [N H(curl, BR\dB;)]?
is the unique radiating solution to the system

VXE&‘O = iwpflgvp in R3\ By,
V x Hg,p = —ia)pﬁ"g,p inR3\ B,
1V xE3p=iwpfs, in By, (1.3.84)
V x Hgyp = —iwsﬁgyp + Jint in By,
[E‘g'p xv] =0, [Hglp x V] = —Eﬁ,p X V|ext ONOBj.

By Lemma 1.3.6, we have
1B, B3, p)  tcurt 5y = C(Iimell 225y + 11 p % Vlextll r-veaivg o) ) (1.3.85)
Applying Lemma 1.3.1 to (Ezyp, ﬂg,p), by (1.3.81), we obtain

||H2,p X V|ext”H—1/2(aBl) + ”EZ,p : Vlext”H-l/Z(aBl) = CP||]ext||L2(R3\BZ)-

Since
(Ez,p, Ho,p) = (E, H) — (E1p, H1,p) in R\ By,

it follows that

| Hy,p % Vlextll r-1208,) + 1 E1,p - Vlextll r-1298,) = Co Il extl 2 ®3\B,)»

which is (1.3.82).

3With this notation, one has (E¢,He)(x) = (E"p, Hp) in Bj. It is worth noting that #(-) # v(p ).
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Chapter 1. Cloaking for time-harmonic Maxwell’s equations

Combining (1.3.82) and (1.3.85) yields

|| (E'?,,p, I:IS,p) ”H(curl,B5) =C (”]int”LZ(Bl) + P||]ext||L2(R3\Bz)) . (1-3-86)

Applying Lemma 1.3.2, and using (1.3.86), we obtain

[5ol3) 0 5)

This implies (1.3.83). The proofis complete. O

< Cp® (Iintll 12(8,) + P/ extll ;2 s\5,)) for x € Bsg\ Bag.

1.3.3 Approximate cloaking in the resonant case - Proofs of Theorems 1.1.2 and
1.1.3

The key ingredient in the proof of Theorems 1.1.2 and 1.1.3 is the following variant of Lemma 1.3.6.

Lemma1.3.7. Let0 < p < po, 0, = (01,p,02,) € [L>(D))%, and hy, = (h1,p, ha,p) € [HY?(divr,dD))?,
and let (E,, Hp) € [Nr>1 H(curl, Bg \dD)]? be the unique radiating solution to the system

VxE,=ipH, inR*\ D,

Vx H, =-ipE, inR*\ D,
S VXE,=iuH,+0, inD,

VxH,=—ieEy,+0,, inD,

[Ep x vl =hyp,[HyxV]=hy, ondD.

Assume that A (D) # {(0,0)}. We have

|Ep, Hp)ll 255) < C(0~ 10p 120y + 1l -0y + 0 N divie gl oy ). (1.3.87)
Assume in addition that, for all p € (0, py),

fD (02,0-E—061,,- H)dx =0 for all (E,H) € /& (D). (1.3.88)
Then

I1(Ep, Ho)l 12(B,) < C(IIQp 22y + 1ol 125y + p~ Il divr hyp IIH—I/Z(aD))- (1.3.89)
Here C denotes a positive constant depending only on p, €, and u. Moreover, if

llrr(l) (” hp ”H—l/Z(aD) + p_l ” diVI“ hp”H—llz(aD)) =0 and hII})HP =0 in [LZ (D)]G,
p= =
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1.3. Proofs of the main results

for somef = (0,,0-) € [L2(D)]8, then

lim (Ep, Hp) = C1(01,0,) in [H(curl, D). (1.3.90)
pgr

Remark 1.3.5. In comparison with (1.3.63) in Lemma 1.3.6, in the resonant case A (D) #

{(0,0)}, estimate (1.3.87) is weaker. Under the compatibility condition (1.3.88), estimate

(1.3.89) is stronger than (1.3.87). Note that the term || divr /|| 125 p) in (1.3.63) of Lemma 1.3.6
is replaced by p Yl divp hollg-129p) in (1.3.89). However, this does not affect the estimate

for the degree of visibility in the compatible resonant case (in comparison with the non-
resonant case) since in the proof of Theorem 1.2, we apply Lemma 1.3.7 to the situation

where | h, || 129 p) and ot divy holl 125y are of the same order. It is worth noting that the

estimates in Lemma 1.3.7 are somehow sharp because of the optimality of the estimates in

Theorems 1.1.2 and 1.1.3; this is discussed in Section 1.4.

Proof. We will give the proof of (1.3.89) and (1.3.90) and explain how to modify the proof of
(1.3.89) to obtain (1.3.87).

We prove (1.3.89) by contradiction. Assume that there exist sequences (0,), < (0, po), ((En, Hp)) nC
[Nrso H(curl, BR\OD)I, (0) 5 = ((01,1,02,1)),, < [L*(D)]° such that (1.3.88) holds for (01,,02,,),

VxE,=ip,H, inR3\ D,
Vx Hy=—ipuEp inR3\ D,
SVxE,=ipuH,+01, in D, (1.3.91)
VxH,=-ieE,+0s, in D,
[Ey, x V] = hy,p, [Hy x V] = hy,,, on 6D,

II (E,, Hyp) ||L2(B5) =1forallne N, (1.3.92)
and
Tim (102l 20) + 12l 120y + 03 1 iV Bl -1 0| = 0. (1.3.93)

Without loss of generality, we assume that p, — p € [0, po]. We will only consider the case
Poo = 0. The proofin the case ps, > 0 follows similarly and is omitted.

Similar to (1.3.68) and (1.3.69), we have, by (1.3.93),

lim VxE,line-v=0 and lim Vx Hy,-v|ip=0in H 2@D). (1.3.94)

n—-+oo n—-+oo

39



Chapter 1. Cloaking for time-harmonic Maxwell’s equations

Applying Lemma 1.3.3 and using (1.3.92), without loss of generality, one might assume
that ((E,, Hy)),, converges in [L*(D)]® and hence also in [L{ (R*\ D)]° by applying (1.3.3)
of Lemma 1.3.1 and i) of Lemma 1.2.7 to Bg \ D. Moreover, the limit (E, H) € [ Hjoc(curl, R3)]?
satisfies

VxE=VxH=0 inR3\D,

divE=divH=0 inR3\D,

{ (1.3.95)
VxE=iuH in D,

VxH=-icE in D,

and, by applying Lemma 1.2.6 and letting p,, — 0,
|(E(x), H(x))| = O(lx|~?) for large |x|. (1.3.96)
Since

f (02,n-E—061,,-H) dx =0 for all (E,H) € 4 (D),
D
by Lemma 1.3.4, there exists a unique (E1,,, H1,,) € N (D)* solving

VXELn: l.,U,HLn +91,n in D,
VXHler:—iEELn +02,n in D,
VXELn-V:VXHLn~V:0 ondD.

Denote by (Ez,;,, Hz,,) the projection of (Ey,, Hy,) — (E1,,, H1,,) onto A4 (D) and define

En=p, (En—E1n—E2n) and Hy,=p, (Hy,—Hy,—H,) inD.

Then
(En, Hy) € ¥ (D) (1.3.97)
and
VxE,=iuH, in D,
Vx H,=-icE, in D,
4 (1.3.98)

VxEy-v=p,'VxE, Vljny onaD,

Vx Hy-v=0,'VxHy, V|t onaD.
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We have

p;lv x Ep+Vlint = p;lv X Ep+V]ext + p;l divr by, = iHp Viext + p;l divr hy,, on dD.
This implies, by (1.3.98),

pHy, -v=Hy-V|ex — ip," divy by , on dD. (1.3.99)
Similarly, we have

€E,-v=Ep-Vlex —ip), divy hy,, on dD. (1.3.100)
Using (1.3.93), we derive from (1.3.94), (1.3.99), and (1.3.100) that

(€Ep-v, uHy-v) = (E-Vlext, H- Vlext) in H/?(dD) as n — oo. (1.3.101)

It follows from Lemma 1.3.8 below that ((En, Hn)) is bounded in [L2(D)]S. Applying Lemma
n

1.3.3to (En, Hn), one can assume that
(E,, H,) converges to some (E, H) € 4 (D) in [H(curl, D)]%. (1.3.102)
Moreover, from (1.3.98) and (1.3.101), we have
VxE=iuH in D,
Vx H=—-i¢E in D,

1 (1.3.103)
EE-Vv=E-V|exx 0nobD,

,uI:I-v =H-V|exx onodD.

Applying Lemma 1.3.5 to (E, H) defined in R® and (E, H) defined in D and using (1.3.95),
(1.3.96), and (1.3.103), we deduce that E = H = 0 in R3, which contradicts (1.3.92). The proof
of (1.3.89) is complete.

We next establish (1.3.90). Fix a sequence (p,) converging to 0. From (1.3.89), one obtains that
Il (Epn’Hpn)”Lz(B5) = C(ngn ||L2(D) + |l ]’lp ||H‘”2(6D) + p;l |I din hpn ||H‘”2(6D)) <C.

Define (Epn» Hpn) in D from (E,,,, Hp,) as in the definition of (E,,, Hy,) from (E,,, Hy,). Using the
same arguments to obtain (1.3.102), we have

(Ep,, H,,) converges to (E, H) € 4 (D)* in [H(curl, D). (1.3.104)
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Chapter 1. Cloaking for time-harmonic Maxwell’s equations

Up to a subsequence, (E,,, Hp,) converges to (E, H) in [HlOC (curl, IRQ?’)]2 and
I(E(x), H(x))| = O(lx|~?) for large |x|. (1.3.105)

Moreover, as in (1.3.103), one can show that (1.1.16) holds. Since the limit is unique, asser-
tion (1.3.90) follows.

We finally show how to modify the proof of (1.3.89) to obtain (1.3.87). The proofis also based
on a contradiction argument and is similar to the one of (1.3.89). However, we denote by
(E2,n, Hy, ) the projection of (E,, H,) onto & (note that E; ,, and H;,, might not exist in this
case)) and define

Ep=p,"(E,—Ezp)inD and H,=p,'(H,-H,)in D.
Then
VxEy=iuH,+p, 01, in D,
Vx Hy,=-ieE,+p,; 0z in D,

4 (1.3.106)
VxEy-v=p,'VxE, Vlnt onaD,

Vx Hy-v=0,'VxH, V|t onaD.

Since (0;,'0,)» — (0,0) in [L*(D)]°, the sequence ((Ey,, Hy)), converges to (E, H) in [L*(D)]°.
Similar to the proof of (1.3.89), one also derives that (E, H) = (0,0) in R3. This yields a contra-
diction. The proof is complete. O
In the proof of Lemma 1.3.7, we used the following lemma:
Lemma 1.3.8. Assume that D is simply connected and (E, H) € & (D)* satisfies
VxE=ipHinD and VxH=-i¢EinD. (1.3.107)
We have
I (E, )l (curl,p) < CI(€E -V, uH - V)|l g-12(9)>

for some positive constant C depending only on D, €, 1.

Proof. Tt suffices to prove that
I(E, DIl ;2 (py < CIEE v, uH -Vl 120p) - (1.3.108)
The proof is via a standard contradiction argument. Assume that there exists a sequence
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((En, Hp)),, < A (D)* such that

VxE,=iuH,inD and VxH,=-icE,inD, (1.3.109)

” (Enan) “LZ(D) =1 for all n, (13110)
and

(¢En-v, uH,-v) —0in [HY2(0D))°. (1.3.111)

Applying Lemma 1.3.3, one might assume that (E;,, H,) converges to some (Ey, Hyp) in [H (curl, D))2.
Then (Ey, Hy) € A (D)* and

V x Ey=iuHy in D,
V x Hy = —ieEp inD, (1.3.112)
VxEy-v=VxHy-v=0 onoD.

It follows that (Ey, Hy) € A (D)X n A (D). Hence (Ey, Hy) = (0,0) in D, which contradicts

(1.3.110). O

We are ready to give the

Proof of Theorem 1.1.2. In this proof, we use the same notations as in the one of Theo-
rem 1.1.1. Similar to the proof of Theorem 1.1.1, using Lemmas 1.3.1 and 1.3.2, we have, for
R>1/2,

1(E2,0, Ho,o) |l 12 (By\Bog) < CO° I extll 12wy - (1.3.113)

Involving the same method used to prove (1.3.82) and (1.3.83), however, applying (1.3.89) in
Lemma 1.3.7 instead of Lemma 1.3.6, we have

”HLp X Vlextll g-12(58,) + ||El,p “Vlextll -1268,) < COWl extll 12@3\B,) (1.3.114)
and
1(E3,0, H3,p) Il 12 By \ Byp) = C(ps||]ext||L2([Rz3\Bz) + p2||]int”L2(Bl))- (1.3.115)

Itis clear that (1.1.13) follows from (1.3.113) and (1.3.115). Moreover, by Lemma 1.3.6, assertion
(1.1.14) now follows from (1.3.114) and the fact that (E., H,) = (Eg'p, I:\Ig,p) in B;. O

Proof of Theorem 1.1.3. In this proof, we use the same notations as in the one of Theo-
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Chapter 1. Cloaking for time-harmonic Maxwell’s equations

rem 1.1.1. Similar to the proof of Theorem 1.1.1, using Lemmas 1.3.1 and 1.3.2, we have, for
R>1/2,

1(Ez2,p, Ha,p) | 12(By\Bo) < C0° W extll 12 we18y)- (1.3.116)

Using the same method used to prove (1.3.83), however, applying (1.3.87) in Lemma 1.3.7
instead of Lemma 1.3.6, we have

1 H1,p % Vlextll r-1208,) + 1 E1,p - Vlextll -112a8,) < Coll extll 12m3\B,) (1.3.117)

and

1 (E3,p, H3,0) 1 12(By\Byg) = C(P3||]ext||L2([R3\Bz) + o intl z2(8,))- (1.3.118)

It is clear that (1.1.18) follows from (1.3.116) and (1.3.118).

It remains to prove (1.1.19). Using the linearity of the system and applying Theorem 1.1.2, one
can assume that Jext = 0, and Jin: = Eg for some (Eg, Hp) € A\ {(0,0)}. From the definition of
A, we have

Eo;‘éO and HoiOiﬂBl.

Note that (E., H,) € [ Hjoc(curl, R%)]? is the unique radiating solution to the system

VxE, = ia)pﬁlc inR3\ By,
Vx H, = —iwpE, inR3\ By,
4 (1.3.119)
VxE;=iwuH, in By,
Vx H.=—-iweE.+Ey in B;.

We prove (1.1.19) by contradiction. Assume that there exists a sequence (p ”)n c (0,1/2)
converging to 0 such that

lim o, (En, H))ll128,) = 0, (1.3.120)
n—oo

where (E;, Hy,) € [Hjoc(curl, R3)]2 is the unique radiating solution to the system

V x E, = iwp,Hy in R3\ By,
V x Hy=—iwpnEy inR3\ By,

3 (1.3.121)
VxE,=iwuH, in By,

Vx H, =—-iweE,+Ey in Bj.
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Applying Lemma 1.2.8 to (E;, H,) in B; and using (1.3.120) and (1.3.121), we obtain

lim oy (En x v, Hy x V)l g-12(08,) = 0. (1.3.122)
By Lemma 1.3.1, we have

lim p,ll(En, Hu)ll28,18,) = 0. (1.3.123)
Since divE,, =divH, =0in R3\ B;, we have, by Lemma 1.2.8 and (1.3.123),

r}i_l:rolopn” (En -V, Hn . V) ”H—l/Z(aBl) =0.
It follows that

r}grf)lo I(dive (En x v), dive (Hp x V)| 129,y = r}l_{glo I(V x Ey,-v,V x Hp - V)|l g-112(98,) = 0.

(1.3.124)

Using the fact that (Eg, Hp) € A/, we derive from (1.3.121) that

,u_IVxEo-VxEndx—wzf

€Ey-E,dx = —iwf (vx E,)-Hods,
B,

B] aBl

and

,u_IVxEn-VXEde—wa

€E,-Eodx = —iw[
By

(vx H,) -Eods+ iwf Ey -Eo.
0B,

By By

Considering the imaginary part of the two identities yields

m{f (van)~E0ds+f (vxEn)~I:Iods}: |Eg|? > 0. (1.3.125)
0B, 0B, B

However, since V x Hy-v =0 on 0By, by Lemma 1.2.2, there exists H € H(curl, By) such that
VxHy=VxHinB; and Hxv=00n0dB;.

Since V x (Hyp—H) =0 in B;, by Lemma 1.2.1, there exists ¢ € H'(By) such that
Hy-H=V{in By,

and hence
Hoxv =V¢xvondB;.

We have thus

f (vxEn)-ﬁods:f (vxEn)-Véds:f divr(VXEn)fds—>0asn—>+oo, (1.3.126)
6B1 6B1 aBl
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Chapter 1. Cloaking for time-harmonic Maxwell’s equations

thanks to (1.3.124). Similarly, we obtain
f (vx H,) Egds — 0as n— +oo. (1.3.127)
aBl

Combining (1.3.125), (1.3.126), and (1.3.127), we obtain a contradiction. Hence (1.1.19) holds.
The proofis complete. O

1.4 Optimality of the degree of visibility

In this section, we present various settings that justify the optimality of the degree of visibility
in Theorems 1.1.1, 1.1.2, and 1.1.3. In what follows in this section, we assume that

€ = p = I (the identity matrix) in B;. (1.4.1)

Let h;” (n €N) be the spherical Hankel function of first kind of order n and let j,, y, denote
respectively its real and imaginary parts. For —n < m < n,n € N, denote Y, the spherical
harmonic function of order n and degree m and set

U™(R):=Vop, Y/'(®) and V(%) := & x U™ (X) for % € 0B,.

We recall that Y, (%)%, U})*(%), and V" (%) for —n < m < n, n € N form an orthonormal basis of
[L?(@B))]°.

We have

Lemma 1.4.1. System (1.1.3) is non-resonant if and only if j,(w) # 0 foralln = 1.

Proof. Assume that j,(w) = 0 for some n = 1. Fix such an n and define, in By,

nn+1)

1
Eo (%) = ju(wr)V2(%) and Hy(x) = jnlwr) Y,?(fc)fc+m[jn(wr) +or ] (nNUZ),

where r = |[x| and X = x/|x|. Then (Eg,Hy) € .A4". System (1.1.3) is hence resonant. Conversely,
assume that j,(w) # 0 for all n € N. Using separation of variables (see, e.g., [22, Theorem 2.48]),
one can check that if (Ey, Hy) € A then (Ey, Hp) = (0,0) in B;. O

The following result implies the optimality of (1.1.9) with respect to Jex. For computational
ease, instead of considering fields generated by Jex;, we deal with fields generated by a plane
wave. In what follows, we assume that 0 < p < 1/2. We have

Proposition 1.4.1. Set v(x) := (0, 1,0)e!®%s forxe R3. Forw > 0 such that Ji1(w) #0, we have
IEcl 2B \By) = CP3,
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for some positive constant C independent of p. Here (E;, H) € [Hjoc(curl,R3)1? is uniquely
determined by

VxE=iouH inR3,

Vx H=—-iweE in R3,
whereE=E.+vand H=H; + %V x v and by the radiation condition. Here (€, [1.) is defined
by (1.1.3) where (&, p) is given in (1.4.1).
Proof. Let w >0 be such that j; (w) #0. Set

(Ep, Hp) = (F,' % E,F,' « H)inR’,

and define
(Ep—v,#p—7=Vxv) InR3\B,,
(Eppr) = .
(Ep,Hp) in Bp.
Set
(E,, Hp) = (E,, Hp)(p) and #=v(p) inR>.
We have
VxE,=ipwH, inR3\ By,
VxH,=—-ipwE, inR3\ By,
1 VxE, =iwH, in By, (1.4.2)
VxH,=-iwE, in By,
[E, xvl=-0xv, [Hy,xv]= —l.pr(Vx 7)xv ondB;.
Denote

Aext = f f':P|ext ’ Vll ds and A= f Ep|int' Vll ds.
3B, 0B,

Using the transmission condition for E, x v on dB; and considering only the component with
respect to V! for E, (see, e.g., 22, Theorem 2.48]), we have

Aext — Aint = @, (1.4.3)

where
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Using the transmission condition for H, x v on dB; and considering the component with
respect to U11 for ﬁp (see, e.g., [22, Theorem 2.48]), we have

Aext (WP) Aext — Qint (W) Aine = B, (1.4.4)

where

(K1) + eV ()
—irhﬁl) (r)

AGEIIHG))
—irji(r)

Aext (1) = , Qint (1) = , and f=aan(wp).

Combining (1.4.3) and (1.4.4) yields

:B — aaint (W)

Aext = .
et Gext (WP) — Aint (W)

(1.4.5)
Since

Y (x) = i = +i , for xeR, (1.4.6)

x2 x2

d e sinx—xcosx  xsinx-—cosx
dx x
we derive that

limi(l)lfp_l | Gext(@P) = Gine(@)| ™ > 0. (1.4.7)
p—>

Since, by separation of variables, (see, e.g., [22, Theorem 2.48]),

f -7 ds‘ =
9B,

we have

Jilwp)

: v-Vlds
J1(@) Jom,

)

Clp<lal<Cp (1.4.8)
for some positive constant C independent of p. From (1.4.8) and the fact that

|aint(wp)| = Cp ™",
we have

ligli(r)lf| B — adin ()| > 0. (1.4.9)
Combining (1.4.7) and (1.4.9) yields

1im151fp‘1|Aext| >0. (1.4.10)
p—>
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Since, again by separation of variables,

3 _ Y wpr)
f Ep(rd)- V(D di = — 55— Aexy
0B, 1 (wp)

and, by Lemma 1.2.9,
Ep(x/p) =Ep(x) =&, (x) — v(x) = Ec(x) for x € B4\ B,

we obtain the conclusion from (1.4.6) and (1.4.10). O

We next show the optimality of (1.1.9) with respect to Jin¢.

Proposition 1.4.2. Assume that the system is non-resonant and Jex; = 0 inR3\ B,. There exists
Jint € [L*(B)]? such that

lif)niélfp_2 I Hellz2B,\B,) > 0.

Proof. Consider
Jint(x) = j1(@r) V] (%) in By, (1.4.11)
where r = |x| and X = x/|x|. Set
1 .
Eo = Jinrand Hy= —V xEy inB;.
iw
Then

VXEOZinQ il’lBl,
(1.4.12)

VXHOI—inO inBl.

Define
(Ep, Hy) = p(&p, 7,) (p7) inR®,

where (&), #)) is given in (1.1.20). Then
VxE, = ipwH, inR3\ By,
VxI:Ip=—ipwl:ZP in[R3\Bl,

foip: iwﬁp in By,

VxHp=-iwE,+Ey inB.
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We have

f(vxﬁp)-EOds—f (vxEp)-Hods= | |El*>0.
631 aBl Bl

We claim that

liminf =0.

p—0

f (v x Ep) -Hyds
0B,
Assuming this, we have, from (1.4.13),

liminf > 0.
p—0

f (v x flp) -Eods
631
This implies, since j; (w) # 0 by Lemma 1.4.1, that

H,0]ds
3B,

liminf > 0.

p—0

On the other hand, by the separation of variables (see, e.g., [22, Theorem 2.48]),

Y (wpr) + wprh (wpr)

H,(r%) - Ul (%) dx = H,(®) - Ul(®)dz.
o, ! r(hgl)(wp)-kwph’ll(wp)) o, " !
Using the fact
1
liminfp 2 T : >0,
p—0 |7y (a)p)+a)ph’1 (wp)|

and taking r = R/p with R € (2,4) in (1.4.15), we obtain

liminfp~3

4
p—0 2

f H,(R%/p)- U] (£)d%| dR>0.
0B,

This implies, since H.(RX) = A, (RX) = p_1 H,(R%/p) for R€ (2,4) and X € 0By,

ligli(r)lfp_z | Hellz2(,\B,) > 0,

which is the conclusion.

It remains to prove (1.4.14). Since

(1.4.13)

(1.4.14)

(1.4.15)

1 2 1
Hy(x) = EV><1~:0(x) = i—jl(a)r)Yll(fc)fc+m[jl(wr)anrj{(wr)]Ull(fc) in By, (1.4.16)

wr

where r = |x| and X = x/|x|, using the separation of variables (see, e.g., [22, Theorem 2.48]), we
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1.4. Optimality of the degree of visibility

have
liminf f (v x Ep)-Hodx| < Climinf f E,(®)- V] (%) dx (1.4.17)
p—0 |JoB, p—0 |JoB,
.. | —iwp IR 1y a
= Climinf f H,(X)|ext - (Y7 (X)X) dX|.
p—>0 \/z 631 P ext !
Since, by Lemma 1.3.6,
”I:Ip ||H(curl,B5) = C;
we have
.. | miwp - Ay 1A
liminf f H,|ext (Y7 (X)X dXx| =0. (1.4.18)
p_)O \/E 6B1 P ext !
Thus, (1.4.14) follows from (1.4.17) and (1.4.18). O

We finally show the optimality of (1.1.18) in the case where Jext = 0 and Jin¢ does not satisfy the
compatibility condition.

Proposition 1.4.3. Assume that Jexc =0 in R3\ B, and Jji1(w) = 0. There exists Jint € [L2(B)))®
such that

IEclz2B,\B,) = Cps

for some positive constant C independent of p.

Proof. Define Jin¢ by (1.4.11). We use the notations in the proof of Proposition 1.4.2. We have
f (vxHp) -Eods—f (v xEp)-Hods = f |Eo | > 0. (1.4.19)
631 631 Bl

Since j; (w) =0, it follows that
f (v x ﬁp) -Eods=0.
0B,

We derive from (1.4.19) that *

liminf > 0.
p—0

(v xEp)-Hods
B,

This implies, by (1.4.16),

liminf
p—0

> 0. (1.4.20)

f E,(2)- V] (1) d*
0B;

4This is the difference between the resonant and the non-resonant cases.
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Chapter 1. Cloaking for time-harmonic Maxwell’s equations

By the separation of variables (see, e.g., [22, Theorem 2.48]), for r > 2, we obtain

hil) (wpr)

E,rd) V@) di=—-L—2"
faBl g ' P p)

f E,(%)- V] (%) dx. (1.4.21)
0B,
hY(wR)

0 |> 0, we obtain from (1.4.20)
hy” (wp)

Taking r = R/p with R € (2,4) in (1.4.21), since lir% p‘2
p—

that
liminfp 2 dR > 0.

4
E,(Rx/p)-V (%) dx
p—0 2 faB1 P p !

This implies
R |
11£n161fp IEcll z2(,\B,) > 0,

which is the conclusion. O
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¥4 Cloaking for time-dependent
Maxwell’s equations

In this chapter, we study the time-dependent Maxwell equations. It can be considered as the
continuation of the previous work in Chapter 1 in that the cloaking in time-harmonic regime
is the main ingredient for our method in the time-dependent setting. The chapter uses the
material of [42] by H. M. Nguyen and L. Tran.

2.1 Mathematical setting and statement of the main results

Let us now describe the problem in more details. For simplicity, we suppose that the cloaking
device occupies the annular region B, \ By/» and the cloaked region is the ball By, in R3 in
which the permittivity and the permeability are given by two 3 x 3 matrices €, j1o respec-
tively. In this chapter, for r > 0, we denote B, the ball centered at the origin and of radius r.
Throughout this chapter, we assume that, in By/»,

€0, lo are real, symmetric, (2.1.1)

and uniformly elliptic, i.e.,
1
sz <(e0(0E, ), (Ho()E, &) < AlE* VEeR?, (2.1.2)

for a.e. x € By/» and for some A = 1. We also assume ¢, tp are piecewise C! to ensure the
uniqueness of solutions via the unique continuation principle (see [48, 9] and also [51]).

Letp€e (0,1) andlet F, : R3 — R3 be defined by

X in R3\B,,
F (2_2p+ £l ) X inB,\B
= —+——|— in )
X
— ian.

o
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Chapter 2. Cloaking for time-dependent Maxwell’s equations

The cloaking device in By \ By/» constructed via transformation optics technique is character-
ized by the triple of permittivity, permeability, and conductivity and contains two layers. The
first one in By \ B; coming from the transformation technique using the map F, is

(Fp I,F,,1,0)
and the second one in Bj \ By/» which is a fixed lossy layer is
(I, 1,1).
Here and in what follows, for a diffeomorphism F and a matrix-valued function A, one denotes

DFADFT o

F,Ai=—o
|det DF]

(2.1.3)
Remark 2.1.1. Different fixed lossy-layer can be used but for the simplicity of notations and
to avoid several unnecessary technical points, the triple (/, I, 1) is considered.

Assume that the medium is homogeneous outside the cloaking device and the cloaked region.
In the presence of the cloaked object and the cloaking device, the medium in the whole space
R3 is described by the triple (e, i¢,0¢) given by

(I,1,0) inR3\B,,
(Fp,I,F,,1,0) inBy\B,
(Ecy e, 0¢) =4 (2.1.4)
(I,1,1) in By \ By,

(€0, 10,0) in By /.

Let _# represent a charge density. We assume that

# € L}(]0,00); [L*(®R*)]®) with supp_# < [0, T] x (Bg, \ Bz), for some T >0,Ry >2 (2.1.5)
and

div ¢ =0in R, x R>. (2.1.6)

With the cloaking device and the cloaked object, the electromagnetic wave generated by _#

with zero data at the time 0 is the unique weak solution (&,,.7,) € L ([0,00), [L?(R®)]) to the

(0]
loc
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2.1. Mathematical setting and statement of the main results

system
08
Ec a; =VxH,— F—-0:8. in(0,+00)xR3,
0.7,
He at” =-Vx& in (0, +00) x R3, 2.1.7)
gc(oy) :L%C(O,) =0 in R3.

In the homogeneous space, the field generated by _# with zero data at the time 0 is the unique
weak solution (&,.7) € L (10,00), [L*(R*)]°) to the system

g_f:vXJf—j in (0, +00) x R3,
a(;if = _Vx& in (0, +o0) x R3, =18

&0,)=7#0,)=0 inR>.
The meaning of weak solutions, in a slightly more general context, is as follows

Definition 2.1.1. Lete¢, p, € [L®(R®)]3*3, 0,,, 0, € L°(R®) be such that € and u are real, sym-
metric, and uniformly elliptic in R3, and o, and o, are real and nonnegative in R3, and let
fer fm € L, .(10,00); [L2(R*)1%). A pair (&, 7€) € L2 ([0,00), [L*(R*)1°) is called a weak solution of

08
E—=VXAH -0+ fm in (0, +oo) x R3,

ot

A
p =~V E=om I+ fo in(0,+00)x R3, (2.1.9)
&(0,)=0;#(0,)=0 inR3,

d

%(Eg(ty -):E> + (Ueéa(tr ))E> - <<;£(tv );v X E) = (fm(t; -))E>J

| fort>0, (2.1.10)
E(Mff(l‘,-),H>+(Umff(l‘,-),H>+(<5"(t,-),V>< H) =(fe(t,.), H),

forall (E, H) € [H(curl,R*)?, and

£(0,.) = #(0,.) =0 inR>. 2.1.11)

Some comments on Definition 2.1.1 are in order. System (2.1.10) is understood in the distribu-
tional sense. Initial condition (2.1.11) is understood as

(€€(0,.),E) = (u#(0,.), Hy =0 forall (E, H) € [H(curl, R)]%. (2.1.12)
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Chapter 2. Cloaking for time-dependent Maxwell’s equations

From (2.1.10), one can check that
(€8(1,), E), (ur(t,.), H) € W, ([0, +00)). (2.1.13)

This in turn ensures the trace sense in (2.1.12).

Concerning the well-posedness of (2.1.9), we have, see, e.g., [46, Theorem 3.1],

Proposition 2.1.1. Let f,, fn € L] ([0,00); [L*(R*)]*). There exists a unique weak solution
(&,.7) € L (10,00), [L*([®R*)]°) of (2.1.9). Moreover, for each T > 0, the following estimates hold

2

ds forte|0,T], (2.1.14)

L?(R?)

t
fw 181, 02 + |71, %) Pdx < C(f | (o650, fns.)
0

for some positive constant C depending only on the ellipticity of € and p.

Remark 2.1.2. We emphasize here that the constant C in Proposition 2.1.1 is independent
of T. This fact is later used in the proof of the radiating condition. In [46], the authors
considered dispersive materials and also dealt with Maxwell equations which are non-local in
time. However, this version suffices for our analysis.

We are ready to state the main result of the chapter which is proved in Section 2.3.

Theorem 2.1.1. Let p € (0,1) and let (&.,.7,),(&,.7) € LY ([0,00), [L*(R*)]®) be the unique
solutions to systems (2.1.7) and (2.1.8) respectively. Assume that ¢ € C°°((0, +00); Rg)) satisfying
(2.1.5) and (2.1.6). Then, for K cc R3\B;,

” (gc,cyfc) - (8,%) ”L°°((0,T);L2(K)) < Cp3”j”Hll((o)oo);[LZ(RS)]S), (2.1.15)

for some positive constant C depending only on K, Ry, and T.

Remark 2.1.3. Assertion (2.1.15) is optimal since it gives the same degree of visibility as in the
frequency domain in [41] where the optimality is established.

Remark 2.1.4. Estimate (2.1.15) requires _¢ is regular. The condition on the regularity of ¢ is
not optimal and the optimality would be studied elsewhere.

Our approach is inspired by the work of Nguyen and Vogelius in [45] (see also [47, 40]) where
they study approximate cloaking for the acoustic setting in the time domain. The main idea can
be briefly described as follows. We first transform the Maxwell equations in the time domain
into a family of the Maxwell equations in the harmonic regime by taking the Fourier transform
of solutions with respect to time. After obtaining the appropriate degree of near-invisibility
for the Maxwell equations in the time harmonic regime, where the dependence on frequency
is explicit, we simply invert the Fourier transform. The analysis in the frequency domain w
(in Section 2.2) can be divided into three steps which deal with low and moderate (0 < w < 1),
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2.2. Frequency analysis

moderate and high (1 <w < 1/p), high and very high frequency (w > 1/p) regimes. The analysis
in the low and moderate frequency regime (in Section 2.2.1) is based on a variational approach.
In comparison with [41], one needs, in addition, to derive estimate for small frequency in
which the dependence on the frequency is explicit. In the moderate and high frequency
regime, to obtain appropriate estimates, on one hand, we use the multiplier technique for a
lossy region. The test functions are inspired from the scalar case due to Morawetz (see [31]).
Nevertheless, there is a significant difference between the scalar case and the Maxwell vectorial
case. It is known in the scalar case that one can control the normal derivative of a solution to
the exterior Helmholtz equation in homogeneous medium by its value on the boundary of a
convex bounded subset of R3. However, in contrast with the scalar case, one cannot either
use tangential components of the electromagnetic fields to control the normal component
in the same Sobolev norms and conversely. This fact can be seen from the explicit solutions
outside a unit ball of Maxwell equations (see, e.g., [22, Theorem 2.50]). This is the reason for
which we use the multiplier technique for a lossy region. This point again reveals the distinct
structure of Maxwell equations in the time harmonic regime in comparison with the one of
the Helmholtz equations. The analysis in the moderate and high frequency regime is given
in Section 2.2.2. The analysis in the high and very high frequency regime in Section 2.2.3 is
based on the duality method inspired from [28]. The proof of Theorem 2.1.1 based on the
frequency analysis is given in Section 2.3. A key technical point to make use of the analysis in
the frequency domain is the establishment of the radiating condition for the Fourier transform
with respect to time of the solutions of Maxwell equations. The rigorous proof on the radiating
condition in a general setting is new to our knowledge and is interesting in itself.

The chapter is organized as follows. Section 2.2 is devoted to the estimates for Maxwell’s
equations in frequency domain. Section 2.3 gives the proof of Theorem 2.1.1. The assertion
on the radiating condition is also stated and proved there.

2.2 Frequency analysis

In this section, we provide estimates to assess the degree of visibility in the frequency domain.
We first recall some notations. Let U be a smooth open subset of R3. We denote

Hecurl,U):={¢p € LX) : Vx g e (PP},

H(div, U) := {¢> e (LX) divg e L2(U)}.
We also use the notations H,.(curl, U) and H,.(div, U) with the usual convention.

Given J € [L2(R%)]® with compact support, let (E,H) € [Hjyc(curl, R3)]2 and (Ep,Hp) € [Hjoc(curl, R3))2
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Chapter 2. Cloaking for time-dependent Maxwell’s equations

be the corresponding unique radiating solutions of the following systems

VxE=ioH in R3,
(2.2.1)
VxH=-iwE+J inR3
and
VxE, = ioppH, in R3,
(2.2.2)
VxH,=—iwe,Ep+0pEp+J  inR3.
Here
(I,1,0) in R3\ By,
(€p o 0p) =% (p'Lp™'Lp™'D)  inBp\ By, (2.2.3)

(F,' €0, F," 110,0) in By

Recall that, for w > 0, a solution (E, H) € [Hjo(curl, R\ Bg)]?, for some R > 0, of the Maxwell
equations

VxE=iwH inR3\Bp,
Vx H=-iwE inR3\Bg
is called radiating if it satisfies one of the (Silver-Muller) radiation conditions
Hxx—|x|E=0Q1/|x]) and Exx+|x|H=0(/|x]) as |x|— +oo. (2.2.4)

Here and in what follows, for a € R, O(|x|*) denotes a quantity whose norm is bounded by
C|x|% for some constant C > 0.

Throughout this section, we assume
divl=0 and suppJcBg,\By, (2.2.5)

for some Ry > 2. One sees later (in Section 2.3) that if (éA"C,J?C) and (é’,J?) are the corre-
sponding Fourier transform with respect to ¢ of (&.,.#;) and (&,#°) and if one defines
(&p,#,) = (DF! &c, DF} 7;) o F, in R® then (8, #) and (8,,.7,) satisfy (2.2.1) and (2.2.2)
respectively (for some J). This is the motivation for the introduction of (E,H) and (E,,H)).

The goal of this section is to derive estimates for (E,,H,) — (E,H) in which the dependence on
the frequency w and p is explicit. More precisely, we establish the following three results
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2.2. Frequency analysis

Proposition 2.2.1. Let0 < p < pg and 0 < w < wy. We have
” (Ep’ lH]p) - ([E’ IH]) ”LZ(BR\BZ) = CRp3w_1 ” J]”LZ(RS),

for some positive constant Cr depending only on Ry, R, wy, and py.

(2.2.6)

Proposition 2.2.2. Let0< p < pg and0 < wy <w < wp~' and assume that p, is small enough

and wy is large enough. We have, for R > 2,
IEp, Hp) = M)l 25,15, < Cro’ 0° 191 2 g,

for some positive constant Cp depending only on R, Ry, wy, and 0.

Proposition 2.2.3. Let0< p<1,w; >0, andw > w1p'. We have, for R > 2,
I(Ep,Hp) — (E,H)ll 12(B\B,) < CRwlwzpsll\J]llems),

for some positive constant Cr depending only on Ry, R, and w.

To motivate the analysis in this section, we define

(Ep,Hp) — (E,H)  inR*\ By,
(Eppr) =
([Epr[H]p) in Bp,
and set

(E,, Hp) = (Ep,Hp)(p-) in R>.

As in the previous chapter, the following notation is used in the thesis

(2.2.7)

(2.2.8)

(2.2.9)

(2.2.10)

ﬂ H(curl, BR\0D) = {u ‘R® -~ R%suchthatue H(curl, D) and u € H(curl, Bg\D) for all R > 1}

R>1

Then (EP, ﬁp) € [LIZOC(IR{:“’)]6 with (Ep,ﬁp) € Ng>1 H(curl, Bg \ 0By) is the unique radiating solu-

tion of
VxE, = iwfiH, inR3\ 0B,
VxH, =-iwé E,+6,E, inR*\aB,

[prv]:—[E(p-)xv on 0Bj,

[ﬁva]:—H(p~)xv on 0B;,

(2.2.11)
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Chapter 2. Cloaking for time-dependent Maxwell’s equations

where

(pI,p1,0) inR*\By,
(Epflp,Gp) = (I,I,1)  inB;\Byjz, (2.2.12)

(€0,10,0) in Byj.

Here and in what follows for a bounded smooth subset D of R, we denote [u] := tlext — Ulint
on 0D for an appropriate (vectorial) function u. We will study (2.2.11) and using this to derive

estimates for (E,,H,) — (E,H) in the following three subsections.

2.2.1 Low and moderate frequency analysis - Proof of Proposition 2.2.1

This section is devoted to the proof of Proposition 2.2.1 and contains two subsections. In the
first subsection, we present several useful lemmas and the proof of Proposition 2.2.1 is given
in the second subsection.

Some useful lemmas

In this subsection, Lemma 2.2.1, 2.2.2 and 2.2.3 are basic results that will be used several
times later on. Lemma 2.2.5 is the main result of this subsection. The setting of this lemma
resembles that of Proposition 2.2.1. Lemma 2.2.4 is an intermediate result, which will be used
in the proof of Lemma 2.2.5.

We first recall the following known result which is the basic ingredient for the variational
approach.

Lemma 2.2.1. Lete be a measurable, symmetric, uniformly elliptic, matrix-valued function
defined in D. Assume that one of the following two conditions holds

i) (Un)nen < H(curl, D) is a bounded sequence in H(curl, D) such that

(div(eun)), o converges in H (D) and (wn x V), convergesin HY26D).
ii) (un)nen < H(curl, D) is a bounded sequence in H(curl, D) such that
(div(eun)), o converges in L2(D) and (eun)-v), o convergesin HY2D).

There exists a subsequence of (Uy,) nen Which converges in [L2(D)]3.

The conclusion of Lemma 2.2.1 under condition i) is [36, Lemma 1] and has its roots in
[20, 13, 54]. The conclusion of Lemma 2.2.1 under condition ii) can be obtained in the same
way.
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2.2. Frequency analysis

We have

Lemma 2.2.2. Let0 < w < wy and D be a simply connected, bounded, open subset of R® of class
Cl and denoteT =0D. Leth e H_l/z(divr,F) and E € H(curl, D). We have

|ﬁEhd$) < C((U”E”LZ(D) + ||V><E||L2(D)) (”h”H—l/Z(I‘) +(1)_1|| din h”H‘”z(F))’ (2.2.13)

for some positive constant C depending only on D and wy.

Here and in what follows, i&i denotes the complex conjugate of u.

Proof. Let (E°, HY) € [H(curl, D)]? be the unique solution to
VxE'=iw(l+i)H® inD,
Vx H'=-iw(1+i{)E° inD,
EOxv=nh onTl.
We prove by contradiction that
ICE®, HO 2(py < C (1l vz ey + @7 L dive Bl goavery) (2.2.14)

for some positive constant C depending only on wg. Assume that there exist sequences
((E,,, Hyp)) < [H(curl, D)1?, (w,) < (0,we) and (h,,) € H™Y?(divr,T) such that

I(Epn, Hy)ll =1 forall n, (2.2.15)

I 2nll vz ry + w;l | divr Ayl 121y converges to 0, (2.2.16)
and
VxE,=iw,1+i)H, in D,
VxH,=-iw,(1+)E, inD, (2.2.17)
E,xv=h, inT.

Without loss of generality, one can assume that w;, — w*. Applying Lemma 2.2.1, one might

assume that (E,, H,) converges to some (E, H) € [L2(D)]5. We only consider the case w, =0,
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Chapter 2. Cloaking for time-dependent Maxwell’s equations

the case where w, > 0 is standard. Then

VxE=0 1inD, VxH=0 1inD,
divE=0 inD, and divH=0 inD,
Exv=0 onT, H-v=0 onl.

We also have, for each connected component I'; of T,

1
f E-vds= lim E,-vds= lim —f (Vx Hy)-vds| =0.
Fj n—oo Fj n—oo _lwn(1+l) Fj

Since D is simply connected, it follows (see, e.g., [15, Theorems 2.9 and 3.1]) that E =V x {g
and H = V¢ for some ¢, iy € HY(D). We derive from the systems of E and H that

f|VX€E|2dx=0 and flVéledxzo.
D D

This yields that E = H = 0 in D. We have a contradiction. Therefore, (2.2.14) is proved.

We have
fE-hds:fE-(onv)ds:f (VxE)-Ede—f E-(V x E° dx (integration by parts)
r T D D
=f(VxE)-E0dx—iw(l+i)f E-H%dx.
D D

It follows from Holder’s inequality and (2.2.14) that

fE-hds
r

which is (2.2.13). O

< (@Bl 2y + 1V % Ell 2 JIE, HO)l 20

= C((U”E”LZ(D) + ”V X E”LZ(D)) (llh”H—l/Z(r) +(U_1|| diV]" hlIH—I/Z(r)),

The following simple result is used in our analysis.

Lemma2.2.3. Let D bea C' bounded open subset of R® and denotel = 0D. Leth € H™'/?(divr,T)
and u € H(curl, D). We have

| fr - h| = Cllul cunt | Al - v - (2.2.18)

for some positive constant C independent of h, and u.

Proof. The result is standard. For the convenience of the reader, we present the proof. By the
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trace theory, see, e.g., [1], there exists ¢ € H(curl, D) such that
¢xv=honl' and |¢llgecul,p < C||h||H—1/2(din'r)

for some positive constant C depending only on D. Then, by integration by parts, we have

fra-h:fra-(cva):fl)wa-gb—fDa-vw.

The conclusion follows by Holder’s inequality. O

We next present an estimate for the exterior domain in the small and moderate frequency
regime.

Lemma 2.2.4. Let Ry > 2, 0 < k < ko and D < By be a smooth open subset of R3 such that
R3\ D is connected. Let (f1, f») € [H(div,R3\ D)]? with support in Bg, \ D and assume that
(E, H) € [Ngs1 H(curl, Bg\ D)% isa radiating solution of

VxE=ikH+fi inR3\D,
(2.2.19)
VxH=-ikE+f, inR3\D.
We have, for R > 2,

1B, Dl 25,00 = Cr{ICEx v, Hx W) gvagopy +I(fi, f) 2+ kN (div fi,div )l 2, (2.2.20)

for some positive constant Cr depending only on D, kg, Ry, and R.

Proof. By the Stratton-Chu formula, we have, for x € R3\ B,

E(x) =fﬁB ViGi(x,y) x (v(y) x E(y))dy
Ro+1/2

+ik v(y) x H(y)Gk(x,y)dy—f v(y)-E(Y)VxGi(x, y)dy,
0BRry+1/2 0BRy+1/2
and
H(x) zf ViGi(x, ) x (v(y) x E(y))dy
0BRry+1/2
+ik v(y) x H(y)Gk(x,y)dy—f v(y)-E(Y)VxGi(x,y)dy,
0BRry+1/2 0BRry+1/2
where
eiklx=yl
Ge(x,y) = —— fi . 2.2.21
(X, ) prep— orx#y. ( )
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Chapter 2. Cloaking for time-dependent Maxwell’s equations

It follows that, for R > Ry + 1,
I(E, )l 2B\ Dy < CRII(E, H)||L2(BRO+1\DJ' (2.2.22)

It hence suffices to prove (2.2.20) for R = Ry + 1 by contradiction. Assume that there exist
sequences (k;) < (0, ko), ((f1,n,f2,n)) c 2R3\ D) with support in Bg, \ D, and ((En,Hn)) c
[Ngs>1 H(curl, Bg \ D)]? such that ||(E,,, H,) |l [2(Byyo\D) = 1,

nl—i>IPoo(|| (En x v, Hy x V)| g-129py + 1 (f1, 00 fo,n) 12 + kﬁl I (div f,5,div />, ) ||L2) =0,
and

VxE,=ikyHy+ fi, inR3\D,
(2.2.23)

Vx Hy=—iknEn+ fo, inR3\D.

Without loss of generality, one might assume that k,, — k. as n — +oo. Using Lemma 2.2.1
and (2.2.22), one can assume that (E;, H;) converges to (E, H) in L[%(Bgr \ D). We first consider
the case k. = 0. We have

VxE=0 inR3\D, VxH=0 inR3\D,
(2.2.24)
Exv=0 onoD, Hxv=0 onoD,
divE=0inR*\D divH=0inR3\D, (2.2.25)
and
|E(x)| = O(x|™®) and |H(x)| = O(|x|™?) for large x. (2.2.26)

Assertion (2.2.26) can be derived again from the Stratton-Chu formula using the factlim,,_. .o k;, =
0. It follows from (2.2.24) and (2.2.26) that, see, e.g., [41, Lemma 3.1] (see also [15, Chapter I]),
there exist ¢, ¢y € H. (R3\ D) such that

E(x)=Ve¢gp(x) and H(x)=Veg(x),

and
lpe(0)|=0(xI™) and  |@x(x)| = 0(x|™") for large x.

From (2.2.25) and the fact E x v= H x v =0 on 0D, we derive that

f (Vog,Vog) = f Vo, Vo) =0.
R3\D R3\D
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2.2. Frequency analysis

This yields
E=Vor=0 and H=Vey=0inR*\D.

We have a contradiction with the fact || (E};, Hy) ||L2(BR0+1\D) =1.

We next consider the case k. > 0. In this case, we have (E, H) satisfies the radiating condition

and
VxE=ikiH inR*\ D,
VxH=-ik,E inR*\D, (2.2.27)
Exv=Hxv=0 ondD.

One also reaches that (E, H) = (0,0) in R3 \ D and obtains a contradiction. O

In the same spirit, we have

Lemma2.2.5. Let0< p < pg,0<w <wg,1/2<r<1,andRy>2. Leth = (hy, hy) € [H™'/?(divyp,,0B1)]°.
Assume that (E, H) € [L?_ (R3\ B,)1® with (E, H) € [Ng>1 H(curl, (Br \ B;) \0B)1? is a radiating

loc
solution of

VxE=iofipH in (R*\ B,)\ 0By,
VxH=-iwé,E+G,E  in(®R*\B,)\dB;, (2.2.28)
[ExV]=hy,[Hxvl=hy, onoB;.
We have, for R > 2,
ICE, D)l z2(By\B,) < CR(” (E xv, HxV)llg-125p,) + | (h1, h2) | 11298,
+ oV (divep, b1, divep, ho)l H_m(aB])), (2.2.29)

for some positive constant Cg independent of (hy, h2), (f1, f2), p, and w.

Proof. As argued in the proof of Lemma 2.2.4, using Stratton-Chu’s formulas, it suffices to
prove

ICE, )l 12(B,\B,) < CR(” (Exv, Hx V)|l g-125p,) + | (h1, h2)ll 1128,
+ 07V (divap, hn,divos, Bl pepy), (2230
by contradiction. Assume that there exist sequences (w;) < (0, wy), ((fl,n’ fz,n)) c 2R3\ B,)
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with support in By \ By, and ((Ep, Hp)) < [Ngs1 H(curl, Bg \ D)]? such that

I (En, Ho) lz2(B,\B,) = 1, (2.2.31)

Jim (I v, Hy x V)L g,y + 100, B ) L,
+w;, ' [(divep, by, divep, hZ,n)“H*l’Z(aBl)) =0, (2.2.32)
and
V x Ey = iwnfip, Hy inR3\ B,
Vx Hy=—-iwnép,En+6p,E, InR*\B,, (2.2.33)
[Epxv]=hypn[Hy*xVvV]l=hs, onodB.

Without loss of generality, one might assume that w, — w. and p, — p« as n — +oo. We first
consider the case p. = 0. Since, as n — +oo,

(~iwn +VEp - Vlint = —i0npnEn - Vlex: — divop, ha,n — 0in H V?(0By)

and
HpVline = pnHp - Vlext — (iwy) " divog, by, — 0in HV2(0By),

using (2.2.32) and applying Lemma 2.2.1, one can assume that (E;, H,) converges to (E, H) in
L*(B; \ B;). Moreover,

VxE=iw,H in B;\ B,,
VxH=-iw,E+E inB;\B,,
{divE=divH=0 in B\ B,, (2.2.34)

Exv=Hxv=0 on 0B,

E-v=H-v=0 on 0B;.

As in (2.2.45) below, it is clear that E,, — 0 in [L?(B \ By)]3. It follows that (E, H) = (0,0) in
B \ B,. We derive that

nlier I (Epn, Ho)ll128,\B,) =0 (2.2.35)
and, by [20, Lemma Al],

lim ||[(E,, x v, H,, xV)|; - =0.
lim [, n *Wlintl g-128,) =0
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This yields

HETOO I(E, x v, Hy x V)lext”H-l/Z(Bz\Bl) =0. (2.2.36)
This in turn implies, by Lemma 2.2.4, that

nl—l»IPOO I (En, Ho)l12(B,\B,) = 0. (2.2.37)

Combining (2.2.31), (2.2.35), and (2.2.37), we obtain a contradiction.

We next consider the case p. > 0. The proof in this case is similar to the one in Lemma 2.2.4
and omitted (see also [36, Lemma 4] for the case w. > 0). O

Remark 2.2.1. The proof gives the following slightly sharper estimate

ICE, )l 12(By\B,) < CR(” (E x v, Hx V)|l g-125p,) + 1 (h1, h2) | 1268,

+ o™ (divas, P, divos, Bl pep,). (22.38)

We are ready to give the main result of this section

Lemma 2.2.6. Let0< p < po and 0 < w < wy, and let hy, hy € H™"?(divsp,,0B1). Let (E,, Hy) €
[Ngr>1 H(curl, By \ 8B))]? be the unique radiating solution of

VxE=iwfi,H inR3\ 4B,
VxH=-iwg,E+G,E  inR3\B, (2.2.39)
[ExV]=hy,[Hxv]=hy, onoB;.
We have
1B, D 28,130 < Coo™ (1101, ho)ll -1 0,y + 07 diva, P, divas, ho)ll v oy ),

for some positive constant C depending only on pg and wy.

Proof. Multiplying the first equation of (2.2.39) by ﬂ;lv x E and integrating over Bg \ 0B;, we
have, for R > 1,

f ﬁ;)leE-VxE'dx:iwf H-VxEdx
BR\GBl BR\aBI

= iw[ (—in‘pE+6pE)-de+iwf (Hxv)-Edx
BR\631 aBR

v fa (Ve Eless= (H X Vi Bl
1
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Chapter 2. Cloaking for time-dependent Maxwell’s equations

Using the definition of &, and considering the imaginary part, we have

f IElzdx=9‘%( hy - Elext dXx — hy - Hlint dx) -R (Hxv)-Edx. (2.2.40)
Bl\Bl/z 631 aBR

Letting R — oo and using the radiation condition, we derive from (2.2.40) that

f |E*dx <
Bi\By2

<

hy - E|ext - thhnt ds
0B,

(2.2.41)

hl : H|ext ds
aBl

h2 -E |ext
0B,

+ +

f (]:l1><V)'hzdS.
aBl

Applying Lemma 2.2.2 with D = B, \ B;, we have

hy - E'ext ds

; <Cul (E»H)”U(BZ\BI)(” h?-”H‘”Z(aBl) +ow ! || divp hZ”H—”Z(aBl)) (2.2.42)
By

and

hy - Hlext ds
0B,

< Coll(E, D)l 12(5,\5,) (||h1 1295, + o~ I dive T | Hfm(aBl)). (2.2.43)
Applying Lemma 2.2.3, we obtain

‘f (fllxv)-hgds
631

2

= C”(hl) h2)”H_1/2(diVaBl 0B))" (2244)
Denote

M= || (hl, hg) ”H‘l/z(OBl) + w‘l || (din hl,din hz) ||H‘”2(0B1)'
Combining (2.2.41), (2.2.42), (2.2.43) and (2.2.44) yields

f |E]? dx < c(an (B, HDll ;28,1 ,) + MZ). (2.2.45)

B1\Bi)2

From the equations of (E, H) in By \ By /2, we have

AE+w?E—iwE=0in B; \ By 2.

It follows from (2.2.45) that

1EI2 05, + IVEI2 0, ) < C@MI(E, DIl 25,1, + MP), (2.2.46)
which yields
1B D12, g, < C(w_lMII(E, H) 208,05, + arZMZ). (2.2.47)
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2.2. Frequency analysis

Using (2.2.47) and applying Lemma 2.2.5 with r = 2/3, we derive that

1B, Do 15,0 < 07 MIKE, D230y + 072 MP),

Br\By3

and the conclusion follows. O

We end this subsection with

Lemma2.2.7. Let0 < p < 1 and pw < ko, and let D c By be a smooth, open subset of R3. Assume
that (E, H) € [Ng>2 H(curl, B\ D)I? isa radiating solution to the system

VxE=iwpH inR3\D,
Vx H=-iwpE inR3\D.
We have, for R= 1 and x € B3g;p \ B2r/p,
B = Crp®((@ + DIEN 25,0 + @+ Dl Hl 23,10

for some positive constant C depending only on ky and R.

Proof. By Stratton-Chu’s formula, we have, for x € R3\ B,
E(x) =fﬁB ViGi(x,y) x (v(y) x E(y))dy
1

+ia)pfaB v(y) x H(y)Gk(x,y)dy—faB v(y) - E(y)VGi(x,y)dy, (2.2.48)

where k = wp and G is given in (2.2.21).
Let (E, H) € [H(curl, B;)]? be the unique solution to the system
VxE=iwp(l+i)H inB,
Vx H=-iwp(1+i)E inB, (2.2.49)
Exv=Exv on 0B;.
By a contradiction argument, see, e.g., [41] (see also the proof of Lemma 2.2.6), we obtain
I(E, H) lz2(B,) < CIE X Vext, H - Vlextll g-112(5p,)- (2.2.50)

Since

’

f wp(1+i)Hdx
B,

fExvds fﬁxvds [VXde
631 631 Bl
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Chapter 2. Cloaking for time-dependent Maxwell’s equations

we obtain
A/avB Exvds SCwP”(E,H)HLz(BZ\D). (2.2.51)
1
Similarly, we have
s Hxvds| < Cwpl(E, H)l128,\D)- (2.2.52)
1
One has
1
f v-Eds=—— v-Vx Hds=0. (2.2.53)
0B, LwWpP JoB,

Rewrite (2.2.48) under the form

E(x) =

faB V.Gr(x,0) x (v(y) xE(y))dy+f6 (VxGr(x,y) — VGi(x,0)) x (v(y) x E(y))dy

By

+ ikfaB v(y) x H(y)Gi(x,0)dy + ikfaB v(y) x H(Y)(Gr(x,y) — Gi(x,0))dy

_faB V(y)-E(y)Vka(x,O)dy—faB v(y)-E(y)(VxGr(x,y) — V<G(x,0))dy.
1 1
Using the facts, for |x| € (2R/p,3R/p) and y € 0By,
1Gr(x, ) — Ge(x,0)] < CA +w)p*,  |VG(x,¥) = VGi(x,0)] < C(1 + 0?)p?,

IElz208,) < CllEl2(8,\py and [[Hll;28,) < ClHl12(8,\D)»

we derive the conclusion from (2.2.51), (2.2.52), and (2.2.53). O

Proof of Proposition 2.2.1
Applying Lemma 2.2.6 to (Ep,ﬁp), we have
IEp, Hp)ll 12(8,\8,) < Co I (E(p.),H(p )l 12(08,)- (2.2.54)

Since divJ = 0, we have
AE+w’E=—iwJin R

It follows that, for x € By,

E(x) =—iwf J()Gy(x,y)dy and [H](x):—Vxxf J()Gy(x,y)dy. (2.2.55)
R3 R3
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2.2. Frequency analysis

This yields

IECp.),H(p) sy = CllIN 2 ws).- (2.2.56)
From (2.2.54) and (2.2.56), we obtain

IEp, Hp)ll 2(8,\8,) < Co 191l 2 gs)- (2.2.57)
Applying Lemma 2.2.7 to (Ep, ﬁp), we have, for x € Bsrip\ Bar/p,

|(Ep (x),ﬁp (x))’ < Crw_1p3IIJ||Lz(R3) forr>1/2,

Since (E,,Hp) — (E,H) = (Ep, Hp)(p~!+) in R®\ By, the conclusion follows. O

2.2.2 Moderate and high frequency analysis - Proof of Proposition 2.2.2

This section contains two subsections. In the first subsection, we present several lemmas
used in the proof of Proposition 2.2.2. The proof of Proposition 2.2.2 is given in the second
subsection. The main objective of the first subsection is Lemma 2.2.9 which is analogous to
Lemma 2.2.6 in the low frequency regime. To this end, we use a priori estimate in a bounded
domain (in high frequency) in Corollary 2.2.1, which is obtained from Lemma 2.2.8.

Some useful lemmas

We begin with the following lemma that provide a priori estimate for the Maxwell equations in
high frequency. The method of multiplication is used.

Lemma 2.2.8. Let w > w, and let Q be a convex bounded subset of R® of class C'. Let j €
H(div,Q) and let u € H(curl,Q) n H(div,Q) be such that

Vxqu—wzuzjinQ, (2.2.58)

andu-v, (Vx u)-veL%0Q). Then

(wuxv,(Vxu) x V2o

< C(Iw,V x )l 20y + 1 @u-v, (¥ x 1)Vl 200y + 120y + 0 vl 20 ),
(2.2.59)

for some positive constant C depending only on Q and wy.

Proof. The analysis is based on the multiplier technique. We first consider div j = 0. Multiply-
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Chapter 2. Cloaking for time-dependent Maxwell’s equations

ing (2.2.58) by (V x @1) x x and integrating over Q, we obtain

fQj-(VxL't)xxdx:fQVX(Vxu)-(Vxﬁ)xxdx—wzfgw(vxa)xxdx. (2.2.60)
Set
Ilzz—wzfﬂu'(szl)xxdx, and 12:=fQV><(qu)'(Vxﬁ)xxdx.
We have
Ilz—wzfgu-(VxL't)xxdx:wzfg(vxm-(uxx)dx
=a)2fQIZ~V><(uxx)dx—wzfaﬂ(ﬁ><v)~(u><x)ds (by integration by parts).

Recall that, for all v € [H'(Q)]3,
Vx(vxx)=—xx(Vxv)+v+V(w-x)—xdivy inQ. (2.2.61)

Using (2.2.61), and the fact divu = div j = 0 in Q, we derive that

Ilz—wzf a-[xX(qu)]dx+w2f lul* dx
Q Q

+w2f L't-V(u~x)dx—w2f (kxv)-(uxx)ds
Q Q0

:—I_1+w2[f|u|2dx+f (L't-v)(u-x)—f (ﬁxv)-(uxx)ds].
Q 00 le)
This implies
w?
%Ilz—(flulzdx+f (L't-v)(u-x)—[ (L'txv)-(uxx)ds). (2.2.62)
2 Ua 00 00

Similarly, we have

%Igzl(f Iqulzdx+f ((Vxﬁ)-v)((qu)-x)—f (Vxa)xv)-(Vxu)xx)ds]|.
2 \Ja 00 00
(2.2.63)

Combining (2.2.60), (2.2.62), and (2.2.63) yields
f w2|u|2+|V>< u|2dx—f wz(ﬁxv)~(uxx)+((Vx Wxv)-(Vxu)xx)ds
Q 00

+f wz(ﬁ~v)(u~x)+((VxL't)'v)((qu)~x)ds=§R{/j'(an)xxdx}. (2.2.64)
0Q Q
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Using Schwarz’s inequality for the RHS, this implies (2.2.59) in the case divj =0 in Q.

We next consider arbitrary div j. Let ¢ € H& (Q) be the unique solution of

Ap=divj inQ,
It is clear that

Pl gy = Clljll 2 (2.2.65)
and

VP x Vii20) < Cldll g2y < Clldiv jli 12(q)» (2.2.66)
for some positive constant C depending only on Q. Set

i=u—w2Vein Q. (2.2.67)
We have

VxVxii—w?ii=j-Ve¢in Q.

Since div(j — V¢) = 0 in Q, applying the previous case to ii, we obtain the conclusions from
(2.2.65), (2.2.66) and (2.2.67). O

As a consequence of Lemma 2.2.8, we can prove

Corollary 2.2.1. Let w > wy. Let j € H(div,B; \ B3;4) and let (E, H) € [H(curl, B \ B3/4)1% be
such that E-v,H-v € [L2(0By)]3. Assume that

VxE=iwH il’lBl\Bg/4,
and divj=0inB;\ Bsy,.
VxH=—-iwE+j inBy\Bsj.

We have
I(Exv,HxV)|268,) < C(” (E, H)l12(B,\Byyy) + I(E-v, H-V)ll128B,) + ||j||L2(B1\B3/4))»

for some positive constant C depending only on wy.

Proof. Let0 < ¢ <1 be asmooth function in B; such that ¢(x) = 0in By/s5, and ¢(x) =1in By \
Bs/6. Extend u and j by 0 in B34 and set u = ¢E in B;. Then

VxVxu—ow’u=iogj+Vx((V¢xE)+Vedx (VxE)in B. (2.2.68)
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Since AE + w’E = iwjin By \ Bs;4, we have

IVEN 28,0080 = Co (I 208,18y + 1711208,840 ) (2.2.69)

Applying Lemma 2.2.8 and using (2.2.68) and (2.2.69) one obtains the conclusion. O

The main result of this section is the following lemma which is a variant of Lemma 2.2.6 in the
case wyg <w < wlp_l.

Lemma 2.2.9. Let0< p < pg and0 < wp <w <w,/p. Suppose that hy, hy € L?(divr,dB,) and
let (E, H) € [Ng>1 H(curl, Bg \ 0B;)]? be the unique radiating solution to the system

VxE=iwfi,H inR?,
VxH=-iwé,E+G6,E inR% (2.2.70)

[EXV]Zhl,[HXV]th OI’laBl.
If po is small enough and w, is large enough, we have that
I(Exv, Hx V)int”LZ(aBl) = C(”(hl, hy) ”LZ(OBI) +o7! ||(diV631 hl,diVagl hy) ”LZ(OBI))’ (2.2.71)

for some positive constant C depending only on wy, w1, and py.

Proof. Applying Corollary 2.2.1, we have

= C(IE M2, (2.2.72)

2
I CE x Vling, H x Vind I, o)

JHIE-v, H- ) linel

(0B, (B1\Bs/s

One has, see, e.g., [13],

IE-v, H-W)lext 7255, < c(n(Ex Vo HxVlextl 3255 ) + 1E, H) Il 128,08, + ||(E,H>||Lz(asz))-

(0B, L2(0B1)

for some C = C,,, > 0. By Lemma 2.2.4, we obtain

IE v, H-V)lexll52 CIE x v, H x V)l exill72 (2.2.73)

0By = 3By)

Since
.1 I I
(1-(iw) )E-vl,-m=pE-vlext+5d1VaBIhg and H-vlim=pH-v|ext+%dlvaBlhl
we derive from (2.2.73) that

IE v, HeV)lindl 5y < C(02 1B x v, Hx Wlext oo + 02 divap, (hr, B 25 )
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From the transmission conditions on 0B;, we deduce that

I(E-v,H- V)|int”i2(031)

< C(PPNE v, Hx Vlintlaop) + 02101, B 12, 5 + 072 divo, (rn, 1) 125 5 )
(2.2.74)

On the other hand, asin (2.2.41), we have

f |Ef*dx <
B1\B1»

< C(woll (1, o)1,

ho ‘Elext - h1H|intds
0B,

(2.2.75)

-1 2
o + 00 IE <V, Hx Vel ).

Since AE + w?E — iwE =0 in By \ By », it follows that

+0g I E v, HxWlextlagp, - 2:2.76)

| i VER dx = ool Bl
Bs/4\Bay3

An Integration by parts yields, for 2/3 < r < 3/4, that

wzf |H|2dx—w2f |E|2dx
B1\B, By \B,

= ®{iw f Eline(H x Vi) ds — iw f Elin(H xVlin) ds}.  (2:2.77)
0B; 0

r

Combining (2.2.75), (2.2.76) and (2.2.77) yields

(2.2.78)

fB o VBP+IHF dx < CloollUnn, Bo) T2 g,y + 05 N EX ¥, H X Wlinela o, )
1 3/4

From (2.2.72), (2.2.74) and (2.2.78), one obtains that, for p small enough,

2
| (E % V]ine, H x Vling) ”LZ(OBl)

< C(woll (1, B 2 5y + 05 N CE X v, H x Wi 22 5, + 0~ divp, (1, B o )

(2.2.79)

(0B1)

This implies
1B % Vling, H x Vi) a5,y < C(I1Ch1, ho) o) + 02N divap, (1, By ), (2.2.80)

for wg large enough and p small enough. O
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Proof of Proposition 2.2.2.
Apply Lemma 2.2.9, we have

IEp, Ho)ll r2(8,8,) < CI(E(0 ), H(0 )l 1208,)- (2.2.81)
Since w > wy large, by (2.2.55), one has

IEC0.),H(p )l 1268)) +o divyp, (E(p.) x v,divap, H(p.) x V)ll1298,) < Coll Il 12g3). (2.2.82)

Applying Lemmas 2.2.9 and 2.2.4, we obtain

I Ep, Hp)ll12(8,\5,) =< Coll Il 2 o)-
The conclusion now follows from Lemma 2.2.7 in the case wp < 1 and from Lemma 2.2.12 in

the case wp > 1. O

2.2.3 High and very high frequency analysis - Proof of Proposition 2.2.3

This section contains two subsections. In the first subsection, we present several lemmas
used in the proof of Proposition 2.2.3. The proof of Proposition 2.2.3 is given in the second
subsection.

Some useful lemmas

We begin this section with a trace-type result for Maxwell’s equations in a bounded domain.
The analysis is based on the Aubin—Nitsche duality argument, see e.g., [11, Lemma 4.8] (or
dual method, see, e.g., [28]). In this subsection, D denotes an open smooth bounded subset of
R3.

Lemma 2.2.10. Letw > wo > 0 and f € H(div, D). Assume that (E, H) € [H(curl, D)]? satisfies
the equations

VxE=iwH inD,
(2.2.83)
VxH=-iwE+f inD.

Then

1Bl o120y + @ H x Vil oy < C@2 1 El oy + 01l Fll 2oy + 07 1V Fll) )
for some positive constant C depending only on D and w,.
Remark 2.2.2. Itis crucial to our analysis that the constant C is independent of w.
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Proof. We have, from (2.2.83),
1
AE+w?E=V(divE) -V x (Vx E) + w’E = —V(div f) — iwf in D. (2.2.84)
L

Fix¢ e (HY2(0D))? (arbitrary). By [15, Theorem 1.6], there exists ¢ € [H?(D)]3 such that

0
{=00ndD, a—f =¢ondD, (2.2.85)
v
and
11 2Dy < Cllpll 2oy (2.2.86)

Here and in what follows, C denotes a positive constant depending only on D and wy. Multi-
plying (2.2.84) by ¢ and integrating by parts, we obtain

f(AEHoZé)E—f E¢=[(AE+w2E)E=f —_idivfdiv.«f—iwff (2.2.87)
D 0D D D lw

We derive from (2.2.86) that

faDEgbds

which implies, since ¢ is arbitrary,

< C(wzuEuLz(D) + ol fllzmp +o | divfan(D)) 1Pl 1172 6y

”E”H—UZ(aD) < C(U)Z ”E”LZ(D) +(1)||f||L2(D) +(1)_1 || din”LZ(D)). (2288)

It remains to prove
”H X V”H—S/Z(aD) = C((,U”E”LZ(D) + ||f"L2(D) + U)_zll din”LZ(D)). (2289)

Fix ¢ € H3'26D) (arbitrary), consider an extension of ¢ in D such that its H?(D)-norm is
bounded by Cll¢| y312(5p), and still denote this extension by ¢. Such an extension exists by the
trace theory, see, e.g., [15, Theorem 1.6]. We have

wapds=f(vX(p-H—vXH«<p)dx. (2.2.90)
oD D
Since

:w_l

U Vx@-Hdx
D

fVX(p-Vxde
D

= w_l

foVx<p-de+f E-(Vx@)xv)ds|,
D oD
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Chapter 2. Cloaking for time-dependent Maxwell’s equations

and V x H = iwE + f, it follows from (2.2.88) that

‘fDV x (,0~HdX’ < C(wllEHLZ(D) +1fllzzy + @72 din”B(D))||‘P||H3/2(0D)
and
(va x H-@dx| < (0Bl 2oy + 120 ) 10l oy

Combining (2.2.90), (2.2.91), and (2.2.92) yields

Hxv-@pds
aD

Since ¢ is arbitrary, assertion (2.2.89) follows. The proof is complete.

Using Lemma 2.2.10, we establish

< C(NEll 2y + 112y + @20V fll 20y 19 2 0

(2.2.91)

(2.2.92)

Lemma 2.2.11. Letw; >0,0< p < 1, and assume that wp > w;. Given hy, hy € H>'?(divr,dB;),

let (E, H) € [Ng>; H(curl, Bg \ 0B;)]? be the unique radiating solution of
VxE=iwfi,H inR3,
VxH=-iwE,E+G0,E inR>,
[EXV]=h1;[H><V]=h2 Oi’laBl,

where (€p, [1p,0p) is defined in (2.2.12). We have

(2.2.93)

4 3
I E X Vlintll g-112(98,) + @I H X Vlintll 312 (9p,) < C((U 2l gz 9B, + @ ”h1”H3/2(6B1))r

for some positive constant C depending only on w; .

Proof. Asin (2.2.41), we have

f |EI*dx <
B1\Bi)2

This implies

h; - E|ext - h1H|intds .
631

2
f |EI" dx < | hall g2,y | Elintll 1258,
Bi\Bi)2

2
+ 1l gz oy 1 H X Viintll 320,y + ”h2”L2(631) (2.2.94)

Applying Lemma 2.2.10 to (E, H) with f = E in By \ By/2, we have
IElinll 1298,y + @I H x VI g-sr20p,) < Cw® | Ell 128,18, -
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2.2. Frequency analysis

It follows from (2.2.94) that

1El 12B,\By ) < C(wzll hall g2 ap,) + @l Ay IIHS/z(aBI)). (2.2.95)
Applying Lemma 2.2.10 to (E, H) with f = E in By \ By, again, one has

1E X Vlintl 1200, + O H % Vlindl 1320, < C(0* 12l vzgay) + @1l oy |

Using the transmission condition at dB;, one reaches the conclusion. O

We end this subsection by a simple consequence of Stratton-Chu'’s formula.

Lemma 2.2.12. [et0<p <1, w >0 with wp > w,, and D c B,. Assume that (E,H) €
[Hloc(curl, R3\ D)]2 is a radiating solution to the Maxwell equations

VxE=iwpH inR3\D,
Vx H=—-iwpE in R3\D.
We have

C|wp|3/2 Clwp|5/2

|E(x)| < |x| ”E X V”H—I/Z(aD) + ”Hx V”H—S/Z(aD) forx € Bg/p \Bl/p, (2.2.96)

for some positive constant C independent of x, w, and p.

Proof of Proposition 2.2.3.

Apply Lemma 2.2.9, we have

IEp x VIl 112 (g, gy + WIHp X VIl 32,0\,

< C‘(J)3 ”[E(p ') X VI|H3/2(aBl) + C(U4|||H](p ') X V”Hl/Z(aBl). (2.297)
Since w > wy large, by (2.2.55), one has
3 4 6 1/2
w ”[E(p ) X V||H3/2(6Bl) +w ”[H](p ‘) X V||H“2(6B1) <Cw P ”J]”LZ(RS). (2.298)

Applying Lemma 2.2.12, we derive from (2.2.97) and (2.2.98) that

= 15/2 .3
”EP ”L2(33\31/2) =Cw p

190 2 sy »
which yields

17/2 3
P

IH,ll 2 (8,\8,) < Co 190 2o -

The proofis complete. U
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Chapter 2. Cloaking for time-dependent Maxwell’s equations

2.3 Proofof Theorem 2.1.1

To implement the analysis in the frequency domain, let us introduce the notation of Fourier
transform with respect to ¢:

i, x) = u(t, x)et dt, 2.3.1)

7k

for an appropriate function u € L% ([0, +00), L?(R3)); here we extend u by 0 for ¢ < 0.

o0
loc
The starting point of the frequency analysis is based on the following result:

Proposition 2.3.1. Let f,, f, € L?([0,00); [L?(R®)]%) n L' ([0, 00); [L?(R3)]3). Assume that (&, 7€)
€ L}s ([0, +00), [L?(R3)]%) be the unique weak solution of (2.1.9). Assume that there exists Ry > 0
such that supp fe(t,-), supp fim(t,+), suppoe, suppo,, < Br,. Then, for almost every v > 0,
&, 7)(w,.) € [Hioc(curl,R3)1? is the unique radiating solution to the system

Vxé(,.) = iop#w,)—onHw,)+ fow,) ink3,

- A A . (2.3.2)
Vx Hw,)=-iwed(w,.)+0.8,.) - fmw,) inR3.
Proof. Let (85,#5) € L2 (10,00), [L*(R*)]°) be the unique weak solution to
0&
Ea—:=Vx%5—ae£5—6£5+fm in (0, +00) x k3,
0/,
#0_1‘6 =-Vx&s—0mHs—075+f, in(0,+00)xR3, (2.3.3)
&5(0,) = 0;#5(0,) =0 in R3.
By the standard Galerkin approach, one can prove that
+o00
o[ [ 165 08 +15€5(s 0 dds < U fudls oy (2.3.4)
o Jrs +

for some positive constant independent of 6 and (fe, f;;,). Hence &5, #5 € L2((0,00); [L2(R®)]3),
and thus é%(g,a?g € L2((0,00); [L2(R3)]3) by Parserval’s theorem. It follows, for a.e. w > 0, that
(635,}?5) € H(curl, R3) is the unique solution to

Vx&s(,.) = iopHsw,.) — (0m+8)Hsw,)+ folw,) inR3,

(2.3.5)
Vx Hs(w,.) = —iweds(,.) + (0o +8)Es5®,.) — fmw,) inR3.
For 0 < w; < w < wy < 0o, one can check that the solution of (2.3.5) satisfies
185, 765) (@, M recur, B = Cll fer fn) @, I 2@y = CI(feor frnd 11 (0,00, 12 @) - (2.3.6)
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2.3. Proof of Theorem 2.1.1

for some positive constant C depending only on ¢, i, R, w;, and w;. Letting 6 — 0 and using
the limiting absorption principle, see e.g., [36, (2.28) and the following paragraph], one derives
that

(&5, H5) (w,) — (Eo, H) (w,.) weakly in [Hig (curl, R*)]? as § — 0, (2.3.7)

where (&, ) (w,.) € [Hjoc(curl, R3)]2 is the unique radiating solution to the system

Vx&y(w,.)=iousy(w,.) —ondy+ fe(w, ) in R3,
. (2.3.8)
V x #y(w,.) = —iwegy(w,.) + 0.6 (0,.) — fn(w,) inR3.
From (2.3.6) and (2.3.7), we have
(&,J&s) — (&, #) in distributional sense in R, x R as § — 0. (2.3.9)
We claim that
(é"g,ﬁg) — (cﬁ",e}‘?) in distributional sense in R, x R3. (2.3.10)

and the conclusion follows from (2.3.9) and (2.3.10).
It remains to prove (2.3.10). Let ¢ € [C°((0,00) x R?)]®. We have

fwfw &5, x) — & (W, X)W, x) dxdw = fRfRS (&s(t,x) - &L, )Pt x) dxdt. (2.3.11)
We have, by applying Proposition 2.1.1 to (5 — &, /5 — A),

1Es(t,.) =&, M zms < C5f0t 1(&Cs,.), #6(s, D 2 gs) ds for £ >0,
and, by applying Proposition 2.1.1 for (&, #),

1(E(s,.), (s, N2y < Cl(fer [ | 11 (0,00, 112318 fOT £> 0.
It follows that

18s(t,.) =&, I 2@sy = COL. (2.3.12)
From (2.3.12), we have

ff (gg(t,x)—g(t,x))(z_)(t,x)dxdtsC5ftIIJ)(t,.)IILz(Rs)dt. (2.3.13)
RJR3 R

From (2.3.13) and the fast decay property of ¢, we derive that
é”g — & in distributional sense in R, x R®.
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Chapter 2. Cloaking for time-dependent Maxwell’s equations

Similarly, one can prove that
A5 — 2 in distributional sense in R, x R3.

The proofis complete. O

We are ready to give

Proof of Theorem 2.1.1. Fix K cc R3\ B and T > 0. Using the fact that &,(—k, x) = 67"6(16, X)
and &(—k, x) = &(k, x) for k >0, one has, for0< t < T,

(e o]

T
1Ec(t,) =&, ) 2 5[ 10:Ec(t,)—=0:E (L, ) 2) < Tf wléc(w,) =&, ) xdw.
0 0
(2.3.14)

We have, by Proposition 2.2.1,

1 1
f wlée,) - 8w, pxdo=<C f P°1.7 @, ) 2@y do < CO° | £ 5 g2y (2-315)
0 0

by Proposition 2.2.2 (here for simplicity of notations we assume that wg = 1),

1/p 1/p

f wllée(,) - &, )z xdw < Cp* f 0l £ (@, )l 2@y do, (2.3.16)
1 1

and, by Proposition 2.2.3,

+00 +00
f wléc(,.) - &, ) zxdo < Cp® f 02| Z(,) 2@ do, (2.3.17)
1/p 1

P

A combination of (2.3.16), and (2.3.17) yields

oo

N N +00 1 —
f wléo,)-Ew, ) xdo < Cp® fl —107" 7 @, 2y dov (2.3.18)
1

3
=Co I 2 g w,12®3))

We derive from (2.3.14), (2.3.15) and (2.3.18) that, for0< ¢t < T,

166(2,) — &t M 200 < CTP° 12 i 12

The proofis complete. O
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Conclusion

The approximate cloaking for electromagnetic waves is achieved through the transformation
optics method in both the time-harmonic and time-dependent regime. In the time-harmonic
regime, using only a layer constructed by the mapping technique, the energy may blow up
inside the cloaked region in the resonant case and/whereas cloaking is always achieved.
Moreover, the degree of visibility varies among p, p? and p°® depending on the resonance or
non-resonance of the system and the compatibility of the source inside the cloaked region.
These facts are new and distinct from known mathematical results in the literature.

With a fixed lossy layer, estimates on the degree of visibility in the frequency domain for all
frequency are established. We implement the variational technique in low frequency and the
multiplier and duality techniques in high frequency domain. The frequency dependence is
explicitly provided for different frequency ranges. In turn, using these estimates, we show that
cloaking is achieved with the degree of visibility p3 in the time-dependent regime.

Using only the layer constructed by the mapping technique, it is natural to expect that cloaking
is also achieved for the time-dependent Maxwell equations. However, in this case, one may
not have good control of the frequency dependence. In turn, the use of Fourier’s transform
to imply cloaking effect in time domain is not obvious. This problem is closely related to the
cloaking without lossy layer for the scalar wave equation, which has not been studied. These
questions are interesting and can be the subject of researches in the future.
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