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Abstract
Cloaking via transformation optics was introduced by Pendry, Schurig, and Smith (2006) for

the Maxwell system and Leonhardt (2006) in the geometric optics setting. They used a singular

change of variables which blows up a point into a cloaked region. The same transformation

had been used by Greenleaf, Lassas, and Uhlmann (2003) in an inverse context. This singular

structure implies difficulties not only in practice but also in analysis. To avoid using the

singular structure, regularized schemes have been proposed. One of them was suggested

by Kohn, Shen, Vogelius, and Weinstein (2010) for which they used a transformation which

blows up a small ball instead of a point into the cloaked region. In this thesis, we study the

approximate cloaking via transformation optics for electromagnetic waves in both the time-

harmonic regime and time-dependent regime. In the time-harmonic regime, the cloaking

device only consists of a layer constructed by the mapping technique, no (damping) lossy-

layer is required. Due to the fact that no-lossy layer is required, resonance might appear. The

analysis is therefore delicate and the phenomena are complex. In particular, we show that the

energy can blow up inside the cloaked region in the resonant case and/whereas cloaking is

achieved in both non-resonant and resonant cases. Moreover, the degree of visibility depends

on the compatibility of the source inside the cloaked region and the system. These facts are

new and distinct from known mathematical results in the literature. In the time-dependent

regime, the cloaking device also consists of a fixed lossy layer. Our approach is based on

estimates on the degree of visibility in the frequency domain for all frequency in which the

frequency dependence is explicit. The difficulty and the novelty in the analysis are in the

low and high frequency regimes. To this end, we implement the variational technique in low

frequency and the multiplier and duality techniques in high frequency domain. The first part

of the thesis is inspired by the work of Nguyen (2012) and the second part by the work of

Nguyen and Vogelius (2012) on the wave equation.
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Résumé
L’invisibilité basée sur la transformation optique a été introduite par Pendry, Schurig et Smith

(2006) pour l’équation de Maxwell et Leonhardt (2006) dans l’optique géométrique. Ils ont

utilisé un changement singulier de variables qui explose un point dans une région à rendre

invisible. La même transformation avait été utilisée par Greenleaf, Lassas et Uhlmann dans un

contexte inverse. Cette structure singulière implique des difficultés non seulement dans la

pratique mais aussi dans l’analyse. Pour éviter d’utiliser la structure singulière, des régimes

régularisés ont été proposés. L’un d’eux a été suggéré par Kohn, Shen, Vogelius, et Weinstein

(2010) dans lequel ils ont utilisé une transformation qui fait exploser une petite balle à la

place d’un point dans la région à rendre invisible. Dans cette thèse, nous étudions l’invisibilité

approximative via la transformation optique des ondes électromagnétiques en régime harmo-

nique et temporel. Dans le régime harmonique, on utilise uniquement une couche construite

par la technique de transformation, aucune couche avec perte n’est requise. En raison du

fait qu’aucune couche avec perte n’est requise, une résonance peut apparaître. L’analyse est

donc délicate et les phénomènes sont complexes. En particulier, nous montrons que l’énergie

peut exploser à l’intérieur de la région à rendre invisible dans le cas de résonance et / tan-

dis que l’invisibilité est obtenu à la fois dans les deux cas non-résonance et résonance. De

plus, le degré de visibilité dépend de la compatibilité entre la source dans la région à rendre

invisible et le système considéré. Ces faits sont nouveaux et distincts des faits connus dans

la littérature. Dans le régime temporel, le système est également constitué d’une couche à

pertes fixe. Notre approche est basée sur les estimations du degré de visibilité dans le domaine

de fréquences pour toutes les fréquences dans lesquelles la dépendance en fréquence est

explicite. La difficulté et la nouveauté de l’analyse se situent dans les régimes de basses et

hautes fréquences. Pour arriver à cette fin, nous mettons en œuvre la technique de variations

en basses fréquences et la technique de multiplicateur et dualité dans le domaine des hautes

fréquences. La première partie de la thèse s’inspire du travail de Nguyen (2012) et la seconde

partie par les travaux de Nguyen et Vogelius (2012) sur les équations des ondes.
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Introduction

In simple terms, invisibility cloaking (cloaking) is to make a target object invisible. In the past

decades, it emerges as an interesting topic that appeals many mathematicians and physicists.

In 2006, Pendry, Schurig, and Smith in [49] suggested a cloaking method based on a trans-

formation for the Maxwell system. The method was also introduced in the same year by

Leonhardt [27] in the geometric optics setting. They used a singular change of variables which

blows up a point into a cloaked region. The same transformation had been used by Greenleaf,

Lassas, and Uhlmann to establish the non uniqueness of Calderon’s problem in [18]. The

singular nature of the cloaks presents various difficulties in practice as well as in theory: (1)

they are hard to fabricate and (2) in certain cases the correct definition of the corresponding

electromagnetic fields is not obvious. To avoid using the singular structure, various regularized

schemes have been proposed. One of them was suggested by Kohn, Shen, Vogelius, and

Weinstein in [24] in 2008, in which they used a transformation which blows up a small ball of

radius ρ instead of a point into the cloaked region.

In the acoustic context, the approximate cloaking schemes introduced in [24] have been

studied extensively in [16, 17, 23, 36, 35, 46, 10, 3, 21, 19]. Both time-harmonic and time

regime have been well considered. In the time-harmonic regime, without the lossy (damping)

layer, the field inside the cloaked region might depend on the field outside, and resonance

might appear and affect the cloaking ability of the cloak, see [35]. With a fixed lossy layer, the

cloaking is always achieved and the degree of visibility is known to be ρ in R3. Approximate

cloaking was also investigated for the time-dependent acoustic waves in [45]. Cloaking was

shown to be achieved with the same order of visibility as in the time-harmonic case.

There are other ways to achieve cloaking effects, using plasmonic coating [2], active exterior

sources [52], complementary media [25, 38], or via localized resonance [33, 29, 37, 39].

The objective of the thesis is to study the cloaking scheme based on the regularized transfor-

mations proposed in [24] in the electromagnetic context. Similar to the acoustic context, we

want to analyze the following aspects of the cloaking:

• In the time-harmonic context, no lossy layer is required. In this context, both non-

resonant and resonant cases are considered. We provide the optimal degree of visibility
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for each case and study the asymptotic behavior of the energy inside the cloaked region

as the regularized parameter ρ tends to 0.

• In the time-dependent context, we consider an additional fixed lossy layer. We estimate

the cloaking effect by analyzing the Fourier’s transform in time of the electromagnetic

waves. In doing this, the analysis involves estimating the degree of visibility in the

time-harmonic regime where the dependence on the frequency is explicit.

The more rigorous formulation and statements of results will be stated in Chapter 1 and 2.

However, to give the reader an idea on the settings and the results without going too much

into definitions and assumptions, we try to summarize them below.

The cloaking device via transformation optics

Assume for simplicity that the target cloaked object occupies the region B1/2 and is character-

ized by a pair of permittivity, permeability (εO ,μO). The cloak (cloaking device) occupies the

annular region B2 \ B1/2. For 0 < ρ < 1, define

Fρ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x in R3 \ B2,(
2−2ρ

2−ρ
+ |x|

2−ρ

)
x

|x| in B2 \ Bρ ,

x

ρ
in Bρ .

The medium composed of the target object, the cloak, and the homogeneous medium outside

the cloak is described by the triple (εc ,μc ,σc ) below

(εc ,μc ,σc ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(I , I ,0) in R3 \ B2,(
Fρ∗I ,Fρ∗I ,0

)
in B2 \ B1,

(I , I ,σ) in B1 \ B1/2,

(εO ,μO ,0) in B1/2.

(0.0.1)

For a matrix A ∈R3×3 and for a bi-Lipschitz homeomorphism T , we use following notation is

being used:

T∗A(y) = DT (x)A(x)DT T (x)

|detDT (x)| with y = T (x).

One may consider σ= 0 (no lossy layer) or σ= 1 (fixed lossy layer). A schematic sketch of the

cloaking device without the lossy layer is provided in Figure 1.

Cloaking in the time-harmonic regime

With the cloak and the object, in the time-harmonic regime of frequency ω> 0, the electromag-

netic field generated by current J ∈ [L2(R3)]3 is the unique (Silver-Müller) radiating solution
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Fρ∗I ,Fρ∗I

εO ,μO

Figure 1: Schematic sketch of the cloaking object (the green part) and cloaking device (the red
part) without the lossy layer, in term of permittivity and permeability of the medium.

(Ec , Hc ) ∈ [Hloc(curl,R3)]2 of the system⎧⎪⎨
⎪⎩
∇×Ec = iωμc Hc in R3,

∇×Hc =−iωεc Ec + J in R3.
(0.0.2)

The electromagnetic field generated by J |R3\B1
in homogeneous medium is the unique (Silver-

Müller) radiating solution (E , H) ∈ [Hloc(curl,R3)]2 to the system⎧⎪⎨
⎪⎩
∇×E = iωH in R3,

∇×H =−iωE + J |R3\B1
in R3.

(0.0.3)

Our goal consists of estimating (Ec ,Ec )− (E , H ) in R3 \ B2 and thereby confirming the cloaking

effect for the proposed system.

Cloaking for electromagnetic waves via transformation optics has been mathematically in-

vestigated by several authors. Greenleaf, Kurylev, Lassas, and Uhlmann in [16] and Weder

in [55, 56] studied cloaking for the singular scheme mentioned above by considering finite

energy solutions. Concerning this approach, the information inside the cloaked region is not

seen by observers outside. Approximate cloaking for the Maxwell equations using schemes

in the spirit of [24] was considered in [7, 4, 26]. In [4], Ammari et al. investigated cloaking

using additional layers inside the transformation cloak. These additional layers depending on

the cloaked object were chosen in an appropriate way to cancel first terms in the asymptotic

expansion of the polarization tensor to enhance the cloaking property. In [7], Bao, Liu, and

Zou studied approximate cloaking using a lossy layer inside the transformation cloak. Their

approach is as follows. Taking into account the lossy layer, one easily obtains an estimate for

the electric field inside the lossy layer. This estimate depends on the property of the lossy layer

3
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and degenerates as the lossy property disappears. They then used the equation of the electric

field in the lossy layer to derive estimates for the electric field on the boundary of the lossy

region in some negative Sobolev norm. The cloaking estimate can be finally deduced from the

integral representation for the electric field. This approach essentially uses the property of the

lossy-layer and does not provide an optimal estimate of the degree of visibility in general. For

example, when a fixed lossy layer is employed, they showed that the degree of visibility is of the

order ρ2, which is not optimal. In [26], Lassas and Zhou considered the transformation cloak

in a symmetric setting, dealt with the non-resonant case (see Definition 1.1.2) and studied

the limit of the solutions of the approximate cloaking problem near the cloak interface using

separation of variables. Other regularized schemes are considered in [14].

We consider the situation where the cloaking device only consists of a layer constructed by

the mapping technique and there is no source in that layer. Due to the fact that no-lossy

(damping) layer is required, resonance might appear and the analysis is subtle. Our analysis is

given in both non-resonant and resonant cases (Definition 1.1.2) and the results can be briefly

summarized as follows.

i) In the non-resonant case, cloaking is achieved, and the energy remains finite inside the

cloaked region.

ii) In the resonant case, cloaking is also achieved. Nevertheless, the degree of invisibil-

ity varies and depends on the compatibility (see (1.1.12) and (1.1.17)) of the source

with the system. Moreover, the energy inside the cloaked region might explode in the

incompatible case. See Theorems 1.1.2 and 1.1.3.

iii) The degree of visibility is of the order ρ3 for both non-resonant and resonant cases if no

source is inside the cloaked region (Theorems 1.1.1 and 1.1.2).

We also investigate the behavior of the field in the whole space (Theorems 1.1.1, 1.1.2, and

1.1.3) and establish the optimality of the convergence rate (Section 1.4). Our results are

new and distinct from the works mentioned above. First, cloaking takes place even if the

energy explodes inside the cloaked region as δ goes to 0. Second, in the resonant case with

finite energy inside the cloaked region, the fields inside the cloaked region satisfy a non-local

structure. Optimal estimates for the degree of visibility are derived for all cases. In particular,

in the case of a fixed lossy layer (non-resonant case), the degree of visibility is of the order ρ3

instead of ρ2 as obtained previously . Both non-resonant and resonant cases are analyzed in

details without assuming the symmetry of the cloaking setting.

Our approach is different from the ones in the works mentioned. It is based on severals

subtle estimates for the effect of small inclusion involving the blow-up structure. Part of the

analysis is on Maxwell’s equations in the low frequency regime, which is interesting in itself.

Our approach in this regime is inspired from [35] where the acoustic setting was considered.

Nevertheless, the analysis for the electromagnetic setting is challenging and requires further

4
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new ideas due to the non-standard structure coming from the mapping technique and the

complexity of electromagnetic structures/phenomena in comparison with acoustic ones. The

Helmholtz decomposition and Stokes’ theorem are involved in the Maxwell context.

The analysis of the cloaking for time-harmonic Maxwell’s equation is presented in Chapter 1.

Cloaking in the time regime

In this regime, we use the time - dependent Maxwell equations. With the cloaking device and

the cloaked object, the electromagnetic wave generated by J with zero data at the time 0 is

the unique weak solution (Ec ,Hc ) ∈ L∞
loc([0,∞), [L2(R3)]6) to the system

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

εc
∂Ec

∂t
=∇×Hc −J −σcEc in (0,+∞)×R3,

μc
∂Hc

∂t
=−∇×Ec in (0,+∞)×R3,

Ec (0, ) =Hc (0, ) = 0 in R3.

(0.0.4)

In the homogeneous space, the field generated by J with zero data at the time 0 is the unique

weak solution (E ,H ) ∈ L∞
loc([0,∞), [L2(R3)]6) to the system

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂E

∂t
=∇×H −J in (0,+∞)×R3,

∂H

∂t
=−∇×E in (0,+∞)×R3,

E (0, ) =H (0, ) = 0 in R3.

(0.0.5)

Analogous to the time-harmonic regime, we would like to estimate (Ec ,Hc )− (E ,H ) in R3 \ B2

and thereby confirm the cloaking effect for the proposed system.

Concerning the analysis, we first transform the Maxwell equations in the time domain into a

family of the Maxwell equations in the time-harmonic regime by taking the Fourier transform

of the solutions with respect to time. After obtaining appropriate estimates on the near-

invisibility for the Maxwell equations in the time-harmonic regime, we simply invert the

Fourier transform. This idea has its roots in the work of Nguyen and Vogelius in [45] (see also

[47]) in the cloaking context and was used to establish the validity of impedance boundary

conditions in the time domain in [40]. To implement this idea, the heart matter is to obtain the

degree of visibility in which the dependence on frequency is explicit and well-controlled. The

analysis involves the variational method, the multiplier technique, and the duality methods

in different ranges of frequency. An intriguing fact about the Maxwell equations in the time-

harmonic regime worthy mentioned is that the multiplier technique does not fit for the

cloaking purpose in the very large frequency regime and the dual method is involved instead.

Another key technical point is the proof of the radiating condition for the Fourier transform in

time of the weak solutions of general Maxwell equations, a fact which is interesting in itself.

5
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The analysis of the cloaking for time-dependent Maxwell’s equations is in Chapter 2.
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1 Cloaking for time-harmonic Maxwell’s
equations

In this chapter, we study the cloaking for the time-harmonic Maxwell equations. We consider

the waves at a fixed frequency ω> 0. The chapter uses the materials of the submitted version

of [41] by H. M. Nguyen and L. Tran.

1.1 Mathematical setting and statement of the main results

In this section, we describe the problem and state the main results for cloaking in the time-

harmonic setting. For simplicity of notations, we suppose that the cloak occupies the annular

region B2 \ B1 and the cloaked region is the unit ball B1 in R3 in which the permittivity and the

permeability are given by two 3×3 matrices ε,μ respectively. Here and in what follows, for

r > 0, let Br denote the open ball in R3 centered at the origin and of radius r . Through this

chapter, we assume that

ε,μ are real, symmetric, (1.1.1)

and uniformly elliptic in B1, i.e., for a.e. x ∈ B1 and for some Λ≥ 1,

1

Λ
|ξ|2 ≤ 〈ε(x)ξ,ξ〉,〈μ(x)ξ,ξ〉 ≤Λ|ξ|2 for all ξ ∈R3. (1.1.2)

We assume in addition that ε,μ are piecewise C 1 in order to ensure the well-posedness of

Maxwell’s equations in the frequency domain (via the unique continuation principle). In the

spirit of the scheme in [24], the permittivity and permeability of the cloaking region are given

by

(εc ,μc ) := (Fρ∗I ,Fρ∗I ) in B2 \ B1,

7



Chapter 1. Cloaking for time-harmonic Maxwell’s equations

where Fρ : R3 →R3 with ρ ∈ (0,1/2) is defined by

Fρ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x in R3 \ B2,(
2−2ρ

2−ρ
+ |x|

2−ρ

)
x

|x| in B2 \ Bρ ,

x

ρ
in Bρ .

We denote

F0(x) = lim
ρ→0

Fρ(x) for x ∈R3.

As usual, for a matrix A ∈ R3×3 and for a bi-Lipschitz homeomorphism T , the following

notation is used:

T∗A(y) = DT (x)A(x)DT T (x)

|detDT (x)| with y = T (x).

Assume that the medium is homogeneous outside the cloak and the cloaked region. In the

presence of the cloaked object and the cloaking device, the medium in the whole space R3 is

given by (εc ,μc ) which is defined as follows

(εc ,μc ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(I , I ) in R3 \ B2,(
Fρ∗I ,Fρ∗I

)
in B2 \ B1,

(ε,μ) in B1.

(1.1.3)

With the cloak and the object, in the time-harmonic regime of frequency ω> 0, the electromag-

netic field generated by current J ∈ [L2(R3)]3 is the unique (Silver-Müller) radiating solution

(Ec , Hc ) ∈ [Hloc(curl,R3)]2 of the system⎧⎪⎨
⎪⎩
∇×Ec = iωμc Hc in R3,

∇×Hc =−iωεc Ec + J in R3.
(1.1.4)

For an open subset U of R3, denote

H(curl,U ) :=
{
φ ∈ [L2(U )]3; ∇×φ ∈ [L2(U )]3

}
and

Hloc(curl,U ) :=
{
φ ∈ [L2

loc(U )]3; ∇×φ ∈ [L2
loc(U )]3

}
.

Recall that, for ω> 0, a solution (E , H) ∈ [Hloc(curl,R3 \ BR )]2, for some R > 0, of the Maxwell

8



1.1. Mathematical setting and statement of the main results

equations⎧⎪⎨
⎪⎩
∇×E = iωH in R3 \ BR ,

∇×H =−iωE in R3 \ BR

is called radiating if it satisfies one of the (Silver-Muller) radiation conditions

H ×x −|x|E =O(1/|x|) and E ×x +|x|H =O(1/|x|) as |x|→+∞. (1.1.5)

Here and in what follows, for α ∈ R, O(|x|α) denotes a quantity whose norm is bounded by

C |x|α for some constant C > 0.

Denote Jext and Jint the restriction of J into R3 \ B1 and B1 respectively. It is clear that

J =
⎧⎨
⎩

Jext in R3 \ B1,

Jint in B1.
(1.1.6)

In the homogeneous medium (without the cloaking device and the cloaked object), the

electromagnetic field generated by Jext is the unique (Silver-Müller) radiating solution (E , H ) ∈
[Hloc(curl,R3)]2 to the system⎧⎪⎨

⎪⎩
∇×E = iωH in R3,

∇×H =−iωE + Jext in R3.
(1.1.7)

We next introduce the functional space N which is related to the notion of resonance and

plays a role in our analysis.

Definition 1.1.1. Let D be a smooth bounded subset of R3 such that R3 \ D is connected. Set

N (D) :=
{

(E,H) ∈ [H(curl,D)]2 : (E,H) satisfies the system (1.1.8)
}

,

where⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∇×E = iωμH in D,

∇×H =−iωεE in D,

∇×E · ν=∇×H · ν= 0 on ∂D.

(1.1.8)

In the case D = B1, we simply denote N (B1) by N .

The notions of resonance and non-resonance are defined as follows:

Definition 1.1.2. The cloaking system (1.1.3) is said to be non-resonant if N = {(0,0)}. Other-

wise, the cloaking system (1.1.3) is called resonant.

9



Chapter 1. Cloaking for time-harmonic Maxwell’s equations

Our main result in the non-resonance case is the following theorem. The cloaking is always

achieved as indicated in (1.1.9). This can be seen by taking K ⊂R3 \ B2 in (1.1.9) and noting

that Fρ = I d in R3 \ B2. Moreover, the behavior of (Ec , Hc ) outside ∂B1 is also described (see

(1.1.9) and (1.1.10)). More precisely, we have

Theorem 1.1.1. Let ρ ∈ (0,1/2), R0 > 2, and let J ∈ L2(R3) be such that supp Jext ⊂⊂ BR0 \B2. Let

(Ec , Hc ), (E , H) ∈ [Hloc(curl,R3)]2 be the radiating solutions of (1.1.4) and (1.1.7) respectively.

Assume that system (1.1.3) is non-resonant. We have, for all K ⊂⊂R3 \ B̄1,

‖(F−1
ρ ∗Ec ,F−1

ρ ∗Hc )− (E , H)‖H(curl,K ) ≤C
(
ρ3‖Jext‖L2(BR0 \B2) +ρ2‖Jint‖L2(B1)

)
, (1.1.9)

for some positive constant C depending only on R0,ω,K ,μ,ε. Moreover,

lim
ρ→0

(Ec , Hc ) =C l (0, Jint) in [H(curl,B1)]2, (1.1.10)

where C l (0, Jint) is defined in Definition 1.1.3. The following notation is used

F−1
ρ ∗Ec := (DF T

ρ Ec )◦Fρ and F−1
ρ ∗Hc := (DF T

ρ Hc )◦Fρ .

Remark 1.1.1. Note that F−1
ρ ∗ above is different from F−1

ρ ∗ in the definition of μc ,εc .

The notation C l (·, ·) used in Theorem 1.1.1 is defined as follows.

Definition 1.1.3. Assume that N = {(0,0)}. Let θ1,θ2 ∈ [L2(B1)]3. Define C l (θ1,θ2) = (E0, H0)

where (E0, H0) ∈ [H(curl,B1)]2 is the unique solution to the system⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∇×E0 = iωμH0 +θ1 in B1,

∇×H0 =−iωεE0 +θ2 in B1,

∇×E0 ·ν=∇×H0 ·ν= 0 on ∂B1.

(1.1.11)

Remark 1.1.2. The existence and the uniqueness of (E0, H0) are established in Lemma 1.3.4.

Remark 1.1.3. In [56], the conditions

∇×E0 ·ν|int =∇×H0 ·ν|int = 0

are also imposed on the boundary of the cloaked region. This is different from [16], where the

following boundary conditions are given

E0 ×ν|int = H0 ×ν|int = 0.

The novelty of Theorem 1.1.1 relies on the fact that no lossy layer is required. The result holds

for a general class of pair (ε,μ). Applying Theorem 1.1.1 to the case where a fixed lossy-layer

is used, one obtains that the degree of visibility is of the order ρ3 which is better than ρ2 as
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1.1. Mathematical setting and statement of the main results

established previously in [7] for the case Jint ≡ 0. In contrast with [7, 4, 14], in Theorem 1.1.1,

the estimate of visibility is considered up to the cloaked region and the behavior of the

electromagnetic fields are established inside the cloaked region.

We next consider the resonance case. We begin with the compatible case, i.e., (1.1.12) below

holds.

Theorem 1.1.2. Let ρ ∈ (0,1/2), R0 > 2, and J ∈ [L2(R3)]3 be such that supp Jext ⊂⊂ BR0 \ B2. Let

(Ec , Hc ), (E , H) ∈ [Hloc(curl,R3)]2 be the radiating solutions of (1.1.4) and (1.1.7) respectively.

Assume that system (1.1.3) is resonant and the following compatibility condition holds:∫
B1

Jint · Ēd x = 0 for all (E,H) ∈N . (1.1.12)

We have, for all K ⊂⊂R3 \ B̄1,

‖(F−1
ρ ∗Ec ,F−1

ρ ∗Hc )− (E , H)‖H(curl,K ) ≤C
(
ρ3‖Jext‖L2(BR0 \B2) +ρ2‖Jint‖L2(B1)

)
, (1.1.13)

for some positive constant C depending only on R0,ω,K ,μ, and ε. Moreover,

lim
ρ→0

(Ec , Hc ) =C l (0, Jint) in [H(curl,B1)]2, (1.1.14)

where C l (0, Jint) is defined in Definition 1.1.4.

In Theorem 1.1.2, we use the following notion:

Definition 1.1.4. Assume that N �= {(0,0)}. Let θ1,θ2 ∈ [L2(B1)]3 be such that∫
B1

(
θ2 · Ē−θ1 · H̄

)
d x = 0 for all (E,H) ∈N . (1.1.15)

Let (E0, H0,E⊥, H⊥) ∈ [Hloc(curl,R3)]2 ×N ⊥ be the unique solution of the following systems⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇×E0 =∇×H0 = 0 in R3 \ B1,

divE0 = div H0 = 0 in R3 \ B1,

∇×E0 = iωμH0 +θ1 in B1,

∇×H0 =−iωεE0 +θ2 in B1,

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇×E⊥ = iωμH⊥ in B1,

∇×H⊥ =−iωεE⊥ in B1,

εE⊥ ·ν= E0 ·ν|ext on ∂B1,

μH⊥ ·ν= H0 ·ν|ext on ∂B1.

(1.1.16)

such that

|(E0(x), H0(x)
)| =O(|x|−2) for large |x|.

Denote C l (θ1,θ2) the restriction of (E0, H0) in B1.

Remark 1.1.4. We note that the definition of C l (0, Jint) varies between Definition 1.1.3 and

11



Chapter 1. Cloaking for time-harmonic Maxwell’s equations

Definition 1.1.4 depending on the resonance of the system (1.1.3). To indicate the limit of (Ec , Hc )

in B1 and to simplify the set of notations, we use C l (0, Jint) for both cases.

Remark 1.1.5. In Definition 1.1.4, (E0, H0) is determined by a non-local structure (1.1.16). This

is new to our knowledge.

Here and in what follows, N (D)⊥ denotes the orthogonal space of N (D) with respect to the

standard scalar product in [L2(D)]6. The uniqueness and the existence of (E0, H0,E⊥, H⊥) are

given in Lemmas 1.3.5 and 1.3.6.

In the incompatible case, we have

Theorem 1.1.3. Let ρ ∈ (0,1/2), R0 > 2, and J ∈ [L2(R3)]3 be such that supp Jext ⊂⊂ BR0 \ B2. Let

(Ec , Hc ), (E , H) ∈ [Hloc(curl,R3)]2 be the radiating solutions of (1.1.4) and (1.1.7) respectively.

Assume that system (1.1.3) is resonant and the compatibility condition does not hold, i.e.,∫
B1

Jint · Ēd x �= 0 for some (E,H) ∈N . (1.1.17)

We have, for all K ⊂⊂R3 \ B̄1,

‖(F−1
ρ ∗Ec ,F−1

ρ ∗Hc )− (E , H)‖H(curl,K ) ≤C
(
ρ3‖Jext‖L2(BR0 \B2) +ρ‖Jint‖L2(B1)

)
(1.1.18)

and

liminf
ρ→0

ρ‖(Ec , Hc
)‖L2(B1) > 0. (1.1.19)

Some comments on Theorems 1.1.2 and 1.1.3 are in order. Theorems 1.1.2 and 1.1.3 imply in

particular that cloaking is achieved even in the resonance case. Moreover, without any source

in the cloaked region, one can achieve the same degree of visibility as in the non-resonant

case considered in Theorem 1.1.1. Nevertheless, the degree of visibility varies and depends

on the compatibility of the source inside the cloaked region. More precisely, the rate of the

convergence of (Ec , Hc )− (E , H) outside B̄1 in the compatible case is of the order ρ2 which is

better than the incompatible resonant case where an estimate of the order ρ is obtained. The

rate of the convergence is optimal and discussed in Section 1.4. By (1.1.19), the energy inside

the cloaked region blows up at least with the rate 1/ρ as ρ→ 0 in the incompatible case.

We now describe briefly the ideas of the proofs of Theorems 1.1.1, 1.1.2 and 1.1.3. Set

(E ρ ,H ρ) = (F−1
ρ ∗Ec , F−1

ρ ∗Hc ) in R3. (1.1.20)

It follows from a standard change of variables formula (see, e.g., Lemma 1.2.9) that (E ρ ,H ρ) ∈

12



1.2. Preliminaries

[Hloc(curl,R3)]2 is the unique (Silver-Müller) radiating solution to⎧⎪⎨
⎪⎩
∇×E ρ = iωμρ H ρ in R3,

∇×H ρ =−iωερ E ρ+Jρ in R3,
(1.1.21)

where

(
ερ ,μρ

)= (
F−1
ρ ∗εc ,F−1

ρ ∗μc
)=

⎧⎨
⎩

(
I , I

)
in R3 \ Bρ ,(

ρ−1ε(·/ρ),ρ−1μ(·/ρ)
)

in Bρ ,
(1.1.22)

and

Jρ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Jext in R3 \ B2,

ρ−2 Jint(·/ρ) in Bρ ,

0 otherwise.

(1.1.23)

We can then derive Theorems 1.1.1, 1.1.2, and 1.1.3 by studying the difference between

(E ρ ,H ρ) and (E , H) in R3 \ B1 and the behavior of (E ρ ,H ρ)(ρ·) in B1. It is well-known that

when material parameters inside a small inclusion are bounded from below and above by

positive constants, the effect of the small inclusion is small (see, e.g., [53, 5]). Without this

assumption, the effect of the inclusion might not be small (see, e.g., [24, 36]) unless there is an

appropriate lossy-layer, see [7, 4, 14]. In our setting, the boundedness assumption is violated

(see (1.1.22)) and no lossy-layer is used. Nevertheless, the effect of the small inclusion is still

small due to the special structure induced from (1.1.22).

It is worth noting that System (1.1.11), which involves in the definition of resonance and

non-resonance, and the condition of compatibility (1.1.12), appears very naturally in our

context. Indeed, note that if (Ec , Hc ) is bounded in [H(curl,B1)]2, one can check that, up to a

subsequence, (ρE ρ ,ρH ρ)(ρ·) = (Ec , Hc ) converges weakly in [H(curl,B1)]2 to (E0, H0) which

satisfies system (1.1.11) with (θ1,θ2) = (0, J ).

The chapter is organized as follows. In Section 1.2, we establish some basic facts and recall

some known results related to Maxwell’s equations. These materials will be used in the proofs

of Theorems 1.1.1, 1.1.2, and 1.1.3. The proofs of Theorems 1.1.1, 1.1.2, and 1.1.3 are given

in Section 1.3. Finally, in Section 1.4, we discuss the optimality of the convergence rate in

Theorems 1.1.1, 1.1.2, and 1.1.3.

1.2 Preliminaries

In this section, we establish some basic facts and recall some known results related to Maxwell’s

equations that will be repeatedly used in the proofs of Theorems 1.1.1, 1.1.2, and 1.1.3. In what

follows in this section, D denotes a smooth bounded open subset of R3 and on its boundary ν

13



Chapter 1. Cloaking for time-harmonic Maxwell’s equations

denotes its normal unit vector directed to the exterior. We begin with a variant of the classic

Stokes’ theorem for an exterior domain.

Lemma 1.2.1. Assume that R3 \ D is simply connected and let u ∈ Hloc(curl,R3 \ D) be such

that

∇×u = 0 in R3 \ D and |u(x)| =O(|x|−2) for large |x|. (1.2.1)

There exists ξ ∈ H 1
loc(R3 \ D) such that

∇ξ= u in R3 \ D and |ξ(x)| =O(|x|−1) for large |x|. (1.2.2)

Proof. By [15, Theorem 2.9], there exists ηn ∈ H 1(Bn \ D) for large n such that

∇ηn = u in Bn \ D and
∫
∂B2

ηn = 0.

It follows that, for m > n large,

ηm = ηn in Bn \ D.

Let η be the limit of ηn as n →+∞. Then η ∈ H 1
loc(R3 \ D) and

∇η= u in R3 \ D.

Fix x, y ∈R3 large enough with |y | > |x| and denote x̂ = x/|x| and ŷ = y/|y |. Using (1.2.1), we

have, by the fundamental theorem of calculus,

|η(x)−η(y)| ≤ |η(|y |ŷ)−η(|y |x̂)|+ |η(|y |x̂)−η(|x|x̂)| ≤ C

|y | +
∫|y |

|x|
C

|r |2 dr (1.2.3)

for some positive constant C independent of x and y . It follows that

|η(x)−η(y)| ≤ C

|y | +
C

|x| . (1.2.4)

Hence lim
|x|→∞

η(x) exists. Denote this limit by η∞. By letting |y |→+∞ in (1.2.4), we obtain

|η(x)−η∞|≤ C

|x| , for |x| large enough.

The conclusion follows with ξ= η−η∞.

Let U be a smooth open subset of R3. Denote

H(div,U ) := {
φ ∈ [L2(U )]3 : divφ ∈ L2(U )

}
.

Concerning a free divergent field in a bounded domain, one has the following result which is

related to Stokes’ theorem, see, e.g., [15, Theorems 3.4 and 3.6].

14



1.2. Preliminaries

Lemma 1.2.2. Assume that D is simply connected and let u ∈ H(div,D) be such that

divu = 0 in D and
∫
Γi

u ·ν= 0 for all connected component Γi of ∂D. (1.2.5)

There exists φ ∈ [H 1(D)]3 such that

∇×φ= u in D and divφ= 0 in D.

Assume in addition that u ·ν= 0 on ∂D. Then φ can be chosen such that

φ×ν= 0 on ∂D and
∫
Γi

φ ·ν= 0 for all connected component Γi of ∂D.

Moreover, such a φ is unique and, for some positive constant C ,

‖φ‖H 1(D) ≤C‖u‖L2(D).

The following result is a type of Helmholtz decomposition. It is a variant of [15, Corollary 3.4]

where σ is a positive constant.

Lemma 1.2.3. Assume that D is simply connected and let σ be a 3×3 uniformly elliptic matrix-

valued function defined in D. For any v ∈ [L2(D)]3, there exist p ∈ H 1(D) and φ ∈ [H 1(D)]3 such

that

v =σ∇p +∇×φ in D, divφ= 0 in D and φ×ν= 0 on ∂D. (1.2.6)

Moreover,

‖p‖H 1(D) +‖φ‖H 1(D) ≤C‖v‖L2(D). (1.2.7)

Proof. The proof given here is in the spirit of [15] as follows. By Lax-Milgram’s theorem, there

exists a unique solution p ∈ H 1(D) with
∫

D
p d x = 0 to the equation

∫
D
σ∇p ·∇q d x =

∫
D

v ·∇q d x for all q ∈ H 1(D).

Moreover,

‖p‖H 1(D) ≤C‖v‖L2(D). (1.2.8)

Then

div(v −σ∇p) = 0 in D and (v −σ∇p) ·ν= 0 on ∂D. (1.2.9)
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Chapter 1. Cloaking for time-harmonic Maxwell’s equations

By Lemma 1.2.2, there exists φ ∈ [H 1(D)]3 such that⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∇×φ= v −σ∇p in D,

divφ= 0 in D,

φ×ν= 0 on ∂D,

and ‖φ‖H 1(D) ≤C‖v −σ∇p‖L2(D). (1.2.10)

Combining (1.2.8), (1.2.9), and (1.2.10), we reach the conclusion for such a pair (p,φ).

We next present two lemmas concerning the uniqueness of the exterior problems for electro-

static settings. They are used in the study of the exterior problems in the low frequency regime,

see Lemma 1.3.1. The first one is

Lemma 1.2.4. Assume that R3 \D is simply connected. Let u ∈ Hloc(curl,R3 \D)∩Hloc(div,R3 \

D) be such that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇×u = 0 in R3 \ D,

divu = 0 in R3 \ D,

u ·ν= 0 on ∂D,

and

|u(x)| =O(|x|−2) for large |x|. (1.2.11)

Then u = 0 in R3 \ D.

Proof. By Lemma 1.2.1, there exists ξ ∈ H 1
loc(R3 \ D) such that

∇ξ= u in R3 \ D and |ξ(x)| =O(|x|−1) for large |x|. (1.2.12)

Since divu = 0, we have

Δξ= 0 in R3 \ D.

Since ∇ξ ·ν = u ·ν = 0 on ∂D, it follows that ξ = 0 in R3 \ D, see, e.g., [32, Theorem 2.5.15].

Therefore, u = 0.

The second lemma is

Lemma 1.2.5. Assume that R3 \D is simply connected and u ∈ Hloc(curl,R3 \D)∩Hloc(div,R3 \
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1.2. Preliminaries

D) is such that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇×u = 0 in R3 \ D,

divu = 0 in R3 \ D,

u ×ν= 0 on ∂D,

∫
Γi

u ·ν= 0 for all connected component Γi of ∂D ,

and

|u(x)| =O(|x|−2) for large |x|. (1.2.13)

Then u = 0 in R3 \ D.

Proof. By Lemma 1.2.1, there exists ξ ∈ H 1
loc(R3 \ D), such that

∇ξ= u in R3 \ D and |ξ(x)| =O(|x|−1) for large |x|. (1.2.14)

There exists ψ ∈ [H 1
loc(R3 \ D)]3, such that

∇×ψ= u in R3 \ D.

Fix θ ∈C 1(R3) such that 0 ≤ θ ≤ 1, θ = 1 in B1 and suppθ ⊂ B2. For r > 0, set θr (·) = θ(·/r ) in R3.

Let t > s > 0 be large enough (arbitrary) such that D ⊂⊂ Bs . Since u ×ν= 0 on ∂D , we obtain,

by integration by parts, that∫
R3\D

∇× (θtψ) ·∇(θs ξ̄)d x =−
∫
∂D

θtψ ·∇(θs ξ̄)×νd s =−
∫
∂D

ψ · ū ×νd s = 0.

Letting t →+∞, we derive that∫
R3\D

u ·∇(θs ξ̄)d x = 0. (1.2.15)

We have∫
B2s \Bs

|u||ξ||∇θs |d x ≤C |B2s \ Bs |s−2s−1s−1 ≤C s−1 → 0 as s →+∞. (1.2.16)

Using the fact that

u ·∇(θs ξ̄) = u
(
θs∇ξ̄+ ξ̄∇θs) = θs |u|2 +uξ̄∇θs in R3 \ D,

and combining (1.2.15) and (1.2.16), we obtain∫
R3\D

|u|2 d x = 0,

which yields u = 0 in R3 \ D .

17



Chapter 1. Cloaking for time-harmonic Maxwell’s equations

The following result is a consequence of the Stratton - Chu formula.

Lemma 1.2.6. Let 0 < k ≤ k0. Assume that D ⊂⊂ B1 and (E , H) ∈ [
Hloc(curl,R3 \ D)

]2 is a

radiating solution to the Maxwell equations⎧⎨
⎩

∇×E = i kH in R3 \ D̄ ,

∇×H =−i kE in R3 \ D̄ .

We have∣∣∣(E(x), H(x)
)∣∣∣≤ C

|x|2
(
1+k|x|)‖(E , H)‖L2(B3\D) for |x| > 3, (1.2.17)

for some positive constant C independent of x and k.

Proof. Set

Gk (x, y) = ei k|x−y |

4π|x − y | for x, y ∈R3, x �= y.

It is known that, see, e.g., [12, Theorem 6.6 and (6.10)], the following variant of the Stratton-Chu

formula holds, for x ∈R3 \ D̄ ,

E(x) =∇x ×
∫
∂B2

ν(y)×E(y)Gk (x, y)d y

+ i k
∫
∂B2

ν(y)×H(y)Gk (x, y)d y −∇x

∫
∂B2

ν(y) ·E(y)Gk (x, y)d y. (1.2.18)

Using the facts

|∇Gk (x, y)| ≤ C

|x|2 (1+k|x|) for y ∈ ∂B2, x ∈R3 \ B3

and, since ΔE +k2E = 0 in R3 \ D ,

‖E‖L∞(∂B2) ≤C‖E‖L2(B3\D), for some positive constant C depending only on k0,

we derive from (1.2.18) that

|E(x)| ≤ C

|x|2
(
1+k|x|)‖(E , H)‖L2(B3\D) for |x| > 3. (1.2.19)

Similarly, we obtain

|H(x)| ≤ C

|x|2
(
1+k|x|)‖(E , H)‖L2(B3\D) for |x| > 3. (1.2.20)

The conclusion now follows from (1.2.19) and (1.2.20).

We next recall compactness results related to H(curl, ·) and H(div, ·).
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Lemma 1.2.7. Let ε be a measurable symmetric uniformly elliptic matrix-valued function

defined in D. Assume that one of the following two conditions holds

i) (un)n∈N ⊂ H(curl,D) is a bounded sequence in H(curl,D) such that

(
div(εun)

)
n∈N converges in H−1(D) and

(
un ×ν

)
n∈N converges in H−1/2(∂D).

ii) (un)n∈N ⊂ H(curl,D) is a bounded sequence in H(curl,D) such that

(
div(εun)

)
n∈N is bounded in L2(D) and

(
εun ·ν)n∈N converges in H−1/2(∂D).

There exists a subsequence of (un)n∈N which converges in [L2(D)]3.

The conclusion of Lemma 1.2.7 under condition i ) is [36, Lemma 1] and has its roots in [20]

and [13]. The conclusion of Lemma 1.2.7 under condition i i ) can be obtained in the same way.

These compactness results play a similar role as the compact embedding of H 1 into L2 in the

acoustic setting and are basic ingredients in our approach.

In what follows, we denote

H−1/2(divΓ,Γ) :=
{
φ ∈ [H−1/2(Γ)]3; φ ·ν= 0 and divΓφ ∈ H−1/2(Γ)

}
,

‖φ‖H−1/2(divΓ,Γ) := ‖φ‖H−1/2(Γ) +‖divΓφ‖H−1/2(Γ).

The following trace results related to H(curl, ·) and H(div, ·) are standard, see, e.g., [1, 9, 15].

Lemma 1.2.8. Set Γ= ∂D. We have

i)

‖v ×ν‖H−1/2(divΓ,Γ) ≤C‖v‖H(curl,D) for v ∈ H(curl,D).

ii)

‖v ·ν‖H−1/2(Γ) ≤C‖v‖H(div,D) for v ∈ H(div,D).

Moreover, for any h ∈ H−1/2(divΓ,∂D), there exists φ ∈ H(curl,D) such that

φ×ν= h on ∂D, and ‖φ‖H(curl,D) ≤C‖h‖H−1/2(divΓ,∂D).

Here C denotes a positive constant depending only on D.
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Chapter 1. Cloaking for time-harmonic Maxwell’s equations

We finally recall the following change of variables for the Maxwell equations. It is the basic

ingredient for cloaking using transformation optics for electromagnetic fields.

Lemma 1.2.9. Let D,D ′ be two open bounded connected subsets of R3 and F : D → D ′ be

a bijective map such that F ∈ C 1(D̄),F−1 ∈ C 1(D̄ ′). Let ε, μ ∈ [L∞(D)]3×3, and j ∈ [L2(D)]3.

Assume that (E , H) ∈ [H(curl,D)]2 is a solution of the Maxwell equations⎧⎪⎨
⎪⎩
∇×E = iωμH in D,

∇×H =−iωεE + j in D.
(1.2.21)

Set, in D ′,

E ′ := F ∗E := (DF−T E)◦F−1 and H ′ := F ∗H := (DF−T H)◦F−1.

Then (E ′, H ′) ∈ [H(curl,D ′)]2 satisfies⎧⎪⎨
⎪⎩
∇×E ′ = iωμ′H ′ in D ′,

∇×H ′ = −iωε′E ′ + j ′ in D ′,
(1.2.22)

where

ε′ := F∗ε := DFεDF T

|detDF | ◦F−1, μ′ := F∗μ := DFμDF T

|detDF | ◦F−1, and j ′ := F∗ j = DF j

|detDF | ◦F−1.

Remark 1.2.1. It is worth noting the difference of F∗ in the definition of E ′ and H ′, and F∗ in

the definition of ε′, μ′, and j ′.

1.3 Proofs of the main results

This section is devoted to the proof of Theorems 1.1.1, 1.1.2, and 1.1.3 and is organized as

follows. In the first subsection, we establish various results related to (E ρ ,H ρ). The proof of

Theorem 1.1.1 is given in the second subsection and the ones of Theorems 1.1.2 and 1.1.3 are

given in the third subsection.

1.3.1 Some useful lemmas

In this section, D ⊂ B1 denotes a smooth open bounded subset of R3, and ε and μ denote two

3×3 matrices defined in D which are both real, symmetric, and uniformly elliptic in D. We

also assume that D and R3 \ D are simply connected and ε,μ are piecewise C 1. The following

lemma provides the stability of the exterior problem in the low frequency regime.

Lemma 1.3.1. Let 0 < ρ < ρ0 and let (Eρ , Hρ) ∈ [Hloc(curl,R3 \ D)]2 be a radiating solution to
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the system⎧⎪⎨
⎪⎩
∇×Eρ = iρHρ in R3 \ D,

∇×Hρ =−iρEρ in R3 \ D.
(1.3.1)

We have, for R > 1,

‖(Eρ , Hρ)‖H(curl,BR \D) ≤CR

(
‖Eρ×ν‖H−1/2(∂D) +‖Hρ ·ν‖H−1/2(∂D)

)
(1.3.2)

and

‖(Eρ , Hρ)‖H(curl,BR \D) ≤CR

(
‖Eρ×ν‖H−1/2(∂D) +‖Hρ×ν‖H−1/2(∂D)

)
, (1.3.3)

for some positive constant CR depending only on ρ0, D, and R.

Remark 1.3.1. A similar estimate to (1.3.2) but switching the role of Eρ and Hρ also holds true.

Proof. We begin with the proof of (1.3.2). Since (Eρ , Hρ) satisfies (1.3.1), it suffices to prove

that

‖(Eρ , Hρ)‖L2(BR \D) ≤CR

(
‖Eρ×ν‖H−1/2(∂D) +‖Hρ ·ν‖H−1/2(∂D)

)
(1.3.4)

for R > 3. Fixing R > 3, we prove (1.3.4) by contradiction. Suppose that there exist a sequence

(ρn)n∈N ⊂ (0,ρ0) and a sequence of radiating solutions
(
(En , Hn)

)
n∈N ⊂ [H (curl,R3 \ D)]2 of the

system⎧⎪⎨
⎪⎩
∇×En = iρn Hn in R3 \ D,

∇×Hn =−iρnEn in R3 \ D,
(1.3.5)

such that

‖(En , Hn)‖L2(BR \D) = 1 for n ∈N, (1.3.6)

and

lim
n→0

(
‖En ×ν‖H−1/2(∂D) +‖Hn ·ν‖H−1/2(∂D)

)
= 0. (1.3.7)

Without loss of generality, one might assume that ρn → ρ∞ as n →∞ for some ρ∞ ∈ [0,ρ0].

We only consider the case ρ∞ = 0. The case ρ∞ > 0 can be proven similarly. From (1.3.5) and

(1.3.6), we have

‖(En , Hn)‖H(curl,BR \D) ≤C . (1.3.8)

Here and in what follows in this proof, C and Cr denote positive constants independent of n.
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Chapter 1. Cloaking for time-harmonic Maxwell’s equations

Applying Lemma 1.2.6, we have

‖(En , Hn)‖H(curl,Br \D) ≤Cr for all r > 3 . (1.3.9)

Since

ΔEρ+ρ2Eρ =ΔHρ+ρ2Hρ = 0 in R3 \ D,

it follows from (1.3.9) that, for r > 3,

‖(En , Hn)‖H 1(Br+1\Br−1) ≤Cr .

By the trace theory, we have

‖(En , Hn)‖H 1/2(∂Br ) ≤Cr .

Since the embedding of H 1/2(∂Br ) into H−1/2(∂Br ) is compact, by applying i) of Lemma 1.2.7

to (En) and by applying ii) of Lemma 1.2.7 to (Hn), without loss of generality, one might assume

that (En , Hn) converges in [L2
loc(R3 \ D)]6. Moreover, the limit (E , H) ∈ [Hloc(R3 \ D)]2 satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇×H = 0 in R3 \ D,

div H = 0 in R3 \ D,

H ·ν= 0 on ∂D,

and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇×E = 0 in R3 \ D,

divE = 0 in R3 \ D,

E ×ν= 0 on ∂D.

(1.3.10)

Applying Lemma 1.2.6 to (En , Hn) and letting n →+∞ (ρn → 0), we have

|(E(x), H(x)
)| =O(|x|−2) for large |x|. (1.3.11)

On the other hand, since En =− 1

iρn
∇×Hn in R3 \ D , we have

∫
Γi

En ·ν= 0 for all connected component Γi of ∂D . (1.3.12)

Since (En) converges to E in [L2
loc(R3 \ D)]3 and divEn = divE = 0 in R3 \ D , it follows that (En)

converges to E in Hloc(div,R3 \ D). This in turn implies, by (1.3.12),∫
Γi

E ·ν= 0 for all connected component Γi of ∂D . (1.3.13)

Applying Lemma 1.2.4 to H , we derive from (1.3.10) and (1.3.11) that

H = 0 in R3 \ D. (1.3.14)

Similarly, applying Lemma 1.2.5 to E , from (1.3.10), (1.3.11), and (1.3.13), we obtain

E = 0 in R3 \ D.1 (1.3.15)
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From (1.3.6), (1.3.14), and (1.3.15) and the fact that (En , Hn) converges to (E , H ) in L2
loc(R3 \D),

we reach a contradiction. The proof of (1.3.2) is complete.

We next deal with (1.3.3). The proof of (1.3.3) is similar to the one of (1.3.2). However, instead

of obtaining (1.3.10) and (1.3.13), we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇×H = 0 in R3 \ D,

div H = 0 in R3 \ D,

H ×ν= 0 on ∂D,

and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇×E = 0 in R3 \ D,

divE = 0 in R3 \ D,

E ×ν= 0 on ∂D,

and ∫
Γ

H ·ν=
∫
Γ

E ·ν= 0 for all connected component Γ of ∂D .

By the same arguments, we can derive that (E , H) = (0,0) in R3, which also yields a contradic-

tion. The details are left to the reader.

Remark 1.3.2. We have

divΓ(Eρ×ν) =∇×Eρ ·ν= iρHρ ·ν on ∂D.

It follows that, for 0 < ρ < 1,

‖Eρ×ν‖H−1/2(divΓ,∂D) ≤ ‖Eρ×ν‖H−1/2(∂D) +‖Hρ ·ν‖H−1/2(∂D) ≤
1

ρ
‖Eρ×ν‖H−1/2(divΓ,∂D),

i.e., the bound in the estimate (1.3.2) is an intermediate quantity between ‖Eρ×ν‖H−1/2(divΓ,∂D)

and ρ−1‖Eρ×ν‖H−1/2(divΓ,∂D).

The next lemma gives an estimate for solutions of Maxwell’s equations in the low frequency

regime, which in turn implies an estimate for the effect of a small inclusion after a change of

variables.

Lemma 1.3.2. Let 0 < ρ < 1/2, R > 1/2, and let (Eρ , Hρ) ∈ [Hloc(curl,R3 \ D)]2 be a radiating

solution to the system⎧⎪⎨
⎪⎩
∇×Eρ = iωρHρ in R3 \ D,

∇×Hρ =−iωρEρ in R3 \ D.
(1.3.16)

We have∣∣∣(Eρ(x), Hρ(x)
)∣∣∣≤Cρ3‖(Eρ , Hρ)‖L2(B2\D) for x ∈ B3R/ρ \ B2R/ρ ,

1When ρ∞ > 0, instead of being a solution of (1.3.10), (E , H) is the radiating solution of (1.3.1) with ρ = ρ∞ and
E ×ν= 0 on ∂D . This also implies that (E , H) = (0,0) in R3 \ D .
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for some constant C depending only R.

Proof. We only deal with small ρ, since otherwise the conclusion is just a consequence of

Stratton-Chu’s formula. We have, for x ∈R3 \ B̄1, (see (1.2.18))

Eρ(x) =
∫
∂B1

∇xGk (x, y)× (
ν(y)×Eρ(y)

)
d y

+ iωρ
∫
∂B1

ν(y)×Hρ(y)Gk (x, y)d y −
∫
∂B1

ν(y) ·Eρ(y)∇xGk (x, y)d y, (1.3.17)

where k =ωρ. We claim that∣∣∣∣
∫
∂B1

Eρ×ν

∣∣∣∣≤Cρ‖(Eρ , Hρ)‖L2(B2\D), (1.3.18)

and ∣∣∣∣
∫
∂B1

Hρ×ν

∣∣∣∣≤Cρ‖(Eρ , Hρ)‖L2(B2\D). (1.3.19)

Assuming this, we continue the proof. We have∫
∂B1

ν ·Eρ d s = 1

iωρ

∫
∂B1

ν ·∇×Hρ d s = 0. (1.3.20)

Rewrite (1.3.17) under the form

Eρ(x) =∫
∂B1

∇xGk (x,0)× (
ν(y)×Eρ(y)

)
d y +

∫
∂B1

(∇xGk (x, y)−∇xGk (x,0)
)× (

ν(y)×Eρ(y)
)
d y

+ iωρ
∫
∂B1

ν(y)×Hρ(y)Gk (x,0)d y + iωρ
∫
∂B1

ν(y)×Hρ(y)
(
Gk (x, y)−Gk (x,0)

)
d y

−
∫
∂B1

ν(y) ·Eρ(y)∇xGk (x,0)d y −
∫
∂B1

ν(y) ·Eρ(y)
(∇xGk (x, y)−∇xG(x,0)

)
d y.

Using the facts, for |x| ∈ (2R/ρ,3R/ρ) and y ∈ ∂B1,

|Gk (x, y)−Gk (x,0)| ≤Cρ2, |∇Gk (x, y)−∇Gk (x,0)| ≤Cρ3,

and

‖(Eρ , Hρ)‖L2(∂B1) ≤C‖(Eρ , Hρ)‖L2(B2\D),

we derive from (1.3.18), (1.3.19), and (1.3.20) that

|Eρ(x)| ≤Cρ3‖(Eρ , Hρ)‖L2(B2\D) for x ∈ B3R/ρ \ B2R/ρ . (1.3.21)

24



1.3. Proofs of the main results

Similarly, we have

|Hρ(x)| ≤Cρ3‖(Eρ , Hρ)‖L2(B2\D) for x ∈ B3R/ρ \ B2R/ρ . (1.3.22)

The conclusion now follows from (1.3.21) and (1.3.22).

It remains to prove Claims (1.3.18) and (1.3.19). We only prove (1.3.18), the proof of (1.3.19) is

similar. Let (Ẽρ , H̃ρ) ∈ [H(curl,B1)]2 be the unique solution to the system

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∇× Ẽρ = iωρ(1+ i )H̃ρ in B1,

∇× H̃ρ =−iωρ(1+ i )Ẽρ in B1,

Ẽρ×ν= Eρ×ν on ∂B1.

(1.3.23)

The well-posedness of (1.3.23) follows immediately from Lax-Milgram’s theorem. We now

prove by contradiction that

‖(Ẽρ , H̃ρ)‖L2(B1) ≤C
(‖Eρ×ν|ext‖H−1/2(∂B1) +‖Hρ ·ν|ext‖H−1/2(∂B1)

)
. (1.3.24)

Assume by contradiction that there exists (ρn)n ⊂ (0,1) converging to 0, (En , Hn)n ⊂ [H (curl,B1)]2

satisfying⎧⎪⎨
⎪⎩
∇×En = iωρn(1+ i )Hn in B1,

∇×Hn =−iωρn(1+ i )En in B1,
(1.3.25)

and that

‖(En , Hn)‖L2(B1) = 1, for all n ∈N, (1.3.26)

but

‖En ×ν‖H−1/2(∂B1) +‖Hn ·ν‖H−1/2(∂B1) → 0. (1.3.27)

Using Lemma 1.2.7, one can assume that (En , Hn) converges to some (E , H) ∈ [H(curl,B1)]2 in

[L2(B1)]6. It clear from (1.3.25) and (1.3.27) that the limit satisfies⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∇×E = 0 in B1,

divE = 0 in B1,

E ×ν= 0 on ∂B1,

and

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∇×H = 0 in B1,

div H = 0 in B1,

H ·ν= 0 on ∂B1,

These equations only have zero solutions, thus (En , Hn) → (0,0) in [L2(B1)]6. This fact contra-

dicts (1.3.26). We obtain (1.3.24).
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It follows that

‖(Ẽρ , H̃ρ)‖L2(B1) ≤C‖(Eρ , Hρ)‖L2(B2\D). (1.3.28)

Since ∣∣∣∣
∫
∂B1

Eρ×νd s

∣∣∣∣=
∣∣∣∣
∫
∂B1

Ẽρ×νd s

∣∣∣∣=
∣∣∣∣
∫

B1

∇× Ẽρ d x

∣∣∣∣=
∣∣∣∣
∫

B1

ωρ(1+ i )H̃ρd x

∣∣∣∣ ,

claim (1.3.18) follows from (1.3.28).

The proof is complete.

The following compactness result is used in the proof of Theorems 1.1.1, 1.1.2, and 1.1.3.

Lemma 1.3.3. Let
(
(En , Hn)

)
n be a bounded sequence in [H(curl,D)]2 and let

(
(θ1,n ,θ2,n)

)
n be

a convergent sequence in [L2(D)]6. Assume that⎧⎨
⎩

∇×En = iμHn +θ1,n in D,

∇×Hn =−iεEn +θ2,n in D,
(1.3.29)

and

(
(∇×En ·ν,∇×Hn ·ν)

)
n converges in [H−1/2(∂D)]2. (1.3.30)

Then, up to a subsequence,
(
(En , Hn)

)
n converges in [H(curl,D)]2.

Remark 1.3.3. A comparison with Lemma 1.3.3 is necessary. The difference between Lemma 1.3.3

and part i ) Lemma 1.2.7 is that the sequence (En ×ν)n or (H ×ν)n is not required to be conver-

gent in H−1/2(∂D). The difference between Lemma 1.3.3 and part i i ) Lemma 1.2.7 is that the

sequence
(

div(εEn)
)

n or
(

div(μHn)
)

n is not required to be bounded in L2(D). Nevertheless, in

Lemma 1.3.3, (1.3.29) is assumed.

Proof. It suffices to prove that, up to a subsequence,
(
(En , Hn)

)
n converges in [L2(D)]6. By

Lemma 1.2.3, there exist (qn)n ⊂ H 1(D) and (φn)n ⊂ [H 1(D)]3 such that, for all n,

εEn = ε∇qn +∇×φn in D, divφn = 0 in D, and φn ×ν= 0 on ∂D. (1.3.31)

Moreover, we have

‖qn‖H 1(D) +‖φn‖[H 1(D)]3 ≤C‖En‖L2(D) ≤C , (1.3.32)

for some positive constant C independent of n. From (1.3.32), without loss of generality, one

might assume that

(qn)n and (φn)n converge in L2(D) and [L2(D)]3 respectively. (1.3.33)
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From (1.3.31) and an integration by parts, we derive that, for all n,∫
D
ε∇qn ·∇p d x =

∫
D
εEn ·∇p d x for p ∈ H 1(D). (1.3.34)

This implies, by (1.3.29), for m,n ∈N,∫
D
ε∇(qn −qm) ·∇(q̄n − q̄m)d x =

∫
D
ε(En −Em) ·∇(q̄n − q̄m)d x,

= i
∫

D

(
∇× (

Hn −Hm
)− (θ2,n −θ2,m)

)
·∇(q̄n − q̄m)d x.

An integration by parts yields

∫
D
ε∇(qn −qm) ·∇(q̄n − q̄m)d x

= i
∫
∂D

∇× (
Hn −Hm

) ·ν (q̄n − q̄m)d s − i
∫

D
(θ2,n −θ2,m) ·∇(q̄n − q̄m)d x.

By (1.3.30) and the convergence of (θ1,n ,θ2,n) in [L2(D)]6, the LHS of the above identity con-

verges to 0 as m,n →∞. Hence, by the ellipticity of ε, (∇qn)n is a Cauchy sequence and thus

converges in [L2(D)]3. From (1.3.31), we have∫
D
ε−1∇× (φn −φm) ·∇× (φ̄n − φ̄m)d x =

∫
D
∇× (En −Em) · (φ̄n − φ̄m)d x.

By the ellipticity of ε and the convergence of (φn) in L2(D), we derive that
(∇×φn

)
n is a Cauchy

sequence in [L2(D)]3 and thus converges in [L2(D)]3. Since

En =∇qn +ε−1∇×φn ,

(En)n converges in [L2(D)]3.

Similarly, up to a subsequence, (Hn)n converges in [L2(D)]3.

Using Lemma 1.3.3 and applying the Fredholm theory, one can prove the well-posedness of

(E0, H0) in Definitions 1.1.3 and 1.1.4. The first result in this direction is

Lemma 1.3.4. Let θ1,θ2 ∈ [L2(D)]3. The system⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∇×E = iμH +θ1 in D,

∇×H =−iεE +θ2 in D,

∇×E ·ν=∇×H ·ν= 0 on ∂D,

(1.3.35)
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has a solution (E , H) in [H(curl,D)]2 if and only if∫
D
θ2 · Ēd x −

∫
D
θ1 · H̄d x = 0 for all (E,H) ∈N (D). (1.3.36)

In particular, system (1.3.35) has a unique solution (E , H) ∈N (D)⊥ if and only if (1.3.36) holds.

Proof. Lemma 1.3.4 is derived from the Fredholm theory. Since ε and μ are uniformly elliptic,

by Lemma 1.2.3, there exist p1, p2 ∈ H 1(D) and φ1,φ2 ∈ [H 1(D)]3 such that

θ1 =μ∇p1 +∇×φ1, θ2 = ε∇p2 +∇×φ2 in D, (1.3.37)

and

∇×φ1 ·ν=∇×φ2 ·ν= 0 on ∂D. (1.3.38)

Set (E0, H0) := (−i∇p2, i∇p1) in D . Then (E0, H0) ∈ [H(curl,D)]2 is a solution to⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∇×E0 = iμH0 +μ∇p1 in D,

∇×H0 =−iεE0 +ε∇p2 in D,

∇×E0 ·ν=∇×H0 ·ν= 0 on ∂D.

(1.3.39)

We have∫
D
ε∇p2 · Ēd x −

∫
D
μ∇p1 · H̄d x = 0 for all (E,H) ∈N (D). (1.3.40)

From (1.3.37), (1.3.38), (1.3.39), and (1.3.40), by considering (E −E0, H −H0) instead of (E , H),

one might assume that (θ1,θ2) ∈ H(div,D),

div(θ1) = div(θ2) = 0 in D and θ1 ·ν= θ2 ·ν= 0 on ∂D. (1.3.41)

This is assumed from now on.

Set

V=
{
ϕ ∈ H(curl,D) : div(εϕ) = 0, εϕ ·ν= 0 on ∂D, ∇×ϕ ·ν= 0 on ∂D

}
.

Since ε and μ are real, symmetric and uniformly elliptic, V is a Hilbert space equipped with

the scalar product

< E ,ϕ>V,V=
∫

D
μ−1∇×E ·∇× ϕ̄d x +

∫
D
εE · ϕ̄d x for E ,ϕ ∈V. (1.3.42)
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Let A : V→V be defined by

< AE ,ϕ><V,V>=−2
∫

D
εE · ϕ̄d x for all ϕ ∈V. (1.3.43)

Since ε is symmetric, one can easily check that A is self-adjoint. Since ε and μ are symmetric

and uniformly elliptic, by Lemma 1.2.7, A is compact.

Let g ∈V be such that

< g ,ϕ><V,V>=
∫

D
iθ2 · ϕ̄+

∫
D
μ−1θ1 ·∇× ϕ̄ for all ϕ ∈V. (1.3.44)

We claim that

system (1.3.35) has a solution in [H(curl,D)]2

if and only if the equation u + Au = g in V has a solution in V (1.3.45)

and

(E , H) is a solution of (1.3.35) if and only if

E + AE = g in V and H =−iμ−1(∇×E −θ1). (1.3.46)

Assuming this, we continue the proof. By (1.3.45) and the Fredholm theory, see, e.g., [8,

Chapter 6], system (1.3.35) has a solution if and only if

〈g ,ϕ〉V,V = 0 for all ϕ ∈V such that ϕ+ Aϕ= 0 in V, (1.3.47)

since A is self-adjoint. Applying (1.3.46) with g = θ1 = θ2 = 0 and using (1.3.42), (1.3.43), and

(1.3.44), we derive that condition (1.3.47) is equivalent to the fact that∫
D
θ2 · Ēd x −

∫
D
θ1 · H̄d x = 0 for all (E,H) ∈N (D),

which is (1.3.36).

The rest of the proof is devoted to establishing Claims (1.3.45) and (1.3.46). Let (E , H) ∈
[H(curl,D)]2 be a solution to (1.3.35). From (1.3.41), we derive that E ∈ V. Fix ϕ ∈ V. Then

∇×ϕ ·ν= 0 on ∂D . By Lemma 1.2.2, there exists ϕ0 ∈ [H 1(D)]3 such that

∇×ϕ0 =∇×ϕ in D, divϕ0 = 0 in D, and ϕ0 ×ν= 0 on ∂D. (1.3.48)

Since ∇× (ϕ0 −ϕ) = 0 and D is simply connected, there exists ξ ∈ H 1(D) such that

ϕ0 −ϕ=∇ξ in D . (1.3.49)
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We have, for ϕ ∈V,∫
D
μ−1∇×E ·∇× ϕ̄d x = i

∫
D

H ·∇× ϕ̄+μ−1θ1 ·∇× ϕ̄d x. (1.3.50)

Using (1.3.48) and an integration by parts, we obtain∫
D

H ·∇× ϕ̄d x =
∫

D
H ·∇× ϕ̄0 d x =

∫
D
∇×H · ϕ̄0 d x. (1.3.51)

Using (1.3.49) and the fact ∇×H ·ν= 0 on ∂D , we also get, by an integration by parts,∫
D
∇×H · ϕ̄0 d x =

∫
D
∇×H · ϕ̄d x.

This implies, by (1.3.51),∫
D

H ·∇× ϕ̄d x =
∫

D
∇×H · ϕ̄d x. (1.3.52)

A combination of (1.3.50) and (1.3.52) yields∫
D
μ−1∇×E ·∇× ϕ̄d x = i

∫
D
∇×H · ϕ̄+μ−1θ1 ·∇× ϕ̄d x. (1.3.53)

We derive from (1.3.35) and (1.3.53) that∫
D
μ−1∇×E ·∇× ϕ̄d x =

∫
D
εE · ϕ̄d x + i

∫
D
θ2 · ϕ̄d x +

∫
D
μ−1θ1 ·∇× ϕ̄d x. (1.3.54)

It follows from (1.3.42), (1.3.43), and (1.3.44) that

E + AE = g in V.

Conversely, assume that there exists u ∈V such that u + Au = g . Set

E = u and H =−iμ−1(∇×E −θ1) in D.

Using (1.3.54), one can check that (E , H) satisfies the first two equations of (1.3.35). It is clear

that ∇×E ·ν= 0 on ∂D by the definition of V. Since ∇×H =−iεE +θ2 in D, εE ·ν= 0 on ∂D

(E ∈V), and θ2 ·ν= 0 on ∂D by (1.3.41), we obtain

∇×H ·ν= 0 on ∂D.

The proof is complete.

Remark 1.3.4. One of the key points in the proof of Lemma 1.3.4 is the identity∫
D

H ·∇× Ē d x =
∫

D
∇×H · Ē d x,
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if E , H ∈ H(curl,D) is such that ∇×E ·ν=∇×H ·ν= 0 on ∂D, see (1.3.52). This ensures the

variational character of system (1.3.35).

The following lemma yields the uniqueness of (E0, H0) in Definition 1.1.4.

Lemma 1.3.5. Let [(E , H), (Ẽ , H̃)] ∈ [Hloc(curl,R3)]2 ×N (D)⊥ be such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇×E =∇×H = 0 in R3 \ D,

divE = div H = 0 in R3 \ D,

∇×E = iμH in D,

∇×H =−iεE in D,

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇× Ẽ = iμH̃ in D,

∇× H̃ =−iεẼ in D,

εẼ ·ν= E ·ν|ext on ∂D,

μH̃ ·ν= H ·ν|ext on ∂D,

(1.3.55)

and ∣∣∣(E(x), H(x)
)∣∣∣=O(|x|−2) for large |x|. (1.3.56)

Then (E , H) = (0,0) in R3 and (Ẽ , H̃) = (0,0) in D.

Proof. Applying Lemma 1.2.1 to Ē , there exists a function θ ∈ H 1
loc(R3 \ D) such that

∇θ = Ē in R3 \ D and |θ(x)| =O(|x|−1) for large |x|. (1.3.57)

For R > 0 large, since divE = 0 in R3 \ D , we have∫
BR \D

|E |2d x =
∫

BR \D
E ·∇θd x =

∫
∂BR

(E ·ν)θd s −
∫
∂D

(E ·ν)|extθd s.

Letting R tend to +∞ and using (1.3.56) and (1.3.57), we obtain∫
R3\D

|E |2 d x =−
∫
∂D

(E ·ν)|extθd s. (1.3.58)

Extend θ in D so that the extension belongs to H 1
loc(R3) and still denote this extension by θ.

We derive from the system of (Ẽ , H̃) in (1.3.55) that

−
∫
∂D

(E ·ν)|extθd s =−
∫
∂D

(εẼ ·ν)θd s =−
∫

D
εẼ ·∇θd x −

∫
D

div(εẼ)θd x

=
∫

D
−i∇× H̃ ·∇θd x =−i

∫
∂D

H̃ · (∇θ×ν)d s =−i
∫
∂D

H̃ · (Ē ×ν)d s.

(1.3.59)

Combining (1.3.58) and (1.3.59) yields∫
R3\D

|E |2 d x =−i
∫
∂D

H̃ · (Ē ×ν)d s. (1.3.60)
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Chapter 1. Cloaking for time-harmonic Maxwell’s equations

Similarly, we have∫
R3\D

|H |2 d x = i
∫
∂D

Ẽ · (H̄ ×ν)d s. (1.3.61)

An integration by parts implies

∫
∂D

H̃ · (Ē ×ν)d s −
∫
∂D

Ẽ · (H̄ ×ν)d s

=
∫

D
∇× H̃ · Ē d x −

∫
D
∇× Ē · H̃ d x −

∫
D
∇× Ẽ · H̄ d x +

∫
D
∇× H̄ · Ẽ d x.

Using the equations of (E , H) and (Ẽ , H̃) in D in (1.3.55), we obtain∫
∂D

H̃ · (Ē ×ν)d s −
∫
∂D

Ẽ · (H̄ ×ν)d s = 0. (1.3.62)

A combination of (1.3.60), (1.3.61), and (1.3.62) yields∫
R3\D

(|E |2 +|H |2)d x = 0.

We derive that E = H = 0 in R3 \ D . This implies, by the unique continuation principle see, e.g.,

[48, Theorem 1],

E = H = 0 in D

and, since (Ẽ , H̃) ∈N (D)⊥,

Ẽ = H̃ = 0 in D.

The proof is complete.

1.3.2 Approximate cloaking in the non-resonant case - Proof of Theorem 1.1.1

The key ingredient in the proof of Theorem 1.1.1 is the following lemma whose proof uses

various results in Section 1.2 and Section 1.3.1

Lemma 1.3.6. Let 0 < ρ < ρ0, θρ = (θ1,ρ ,θ2,ρ) ∈ [L2(D)]6, and hρ = (h1,ρ ,h2,ρ) ∈ [H−1/2(divΓ,∂D)]2.

Let (Eρ , Hρ) ∈ [
⋂

R>1 H(curl,BR \∂D)]2 be the unique radiating solution to the system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇×Eρ = iρHρ in R3 \ D,

∇×Hρ =−iρEρ in R3 \ D,

∇×Eρ = iμHρ+θ1,ρ in D,

∇×Hρ =−iεEρ+θ2,ρ in D,

[Eρ×ν] = h1,ρ , [Hρ×ν] = h2,ρ on ∂D.
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Assume that N (D) = {(0,0)}. We have

‖(Eρ , Hρ)‖L2(B5) ≤C
(
‖θρ‖L2(D) +‖hρ‖H−1/2(divΓ,∂D)

)
, (1.3.63)

for some positive constant C depending only on ρ0, ε, μ. Assume in addition that

lim
ρ→0

‖hρ‖H−1/2(divΓ,∂D) = 0 and lim
ρ→0

θρ = θ in [L2(D)]6,

for some θ = (θ1,θ2) ∈ [L2(D)]6. We have

lim
ρ→0

(Eρ , Hρ) =C l (θ1,θ2) in [H(curl,D)]2. (1.3.64)

Here and in what follows on ∂D, [u] denotes the jump of u across ∂D for an appropriate

(vectorial) function u, i.e., [u] = u|ext −u|int on ∂D . Moreover the following notation is used in

the thesis

⋂
R>1

H(curl,BR \∂D) =
{

u : R3 →R3 such that u ∈ H(curl,D) and u ∈ H(curl,BR \D) for all R > 1
}

Proof. By Lemma 1.2.8, without loss of generality, one might assume that h1,ρ = h2,ρ = 0 on

∂D . This is assumed from now on.

We first prove (1.3.63) by contradiction. Assume that there exist sequences (ρn)n ⊂ (0,ρ0),(
(En , Hn)

)
n ⊂ [Hloc(curl,R3)]2,

(
(θ1,n ,θ2,n)

)
n ⊂ [L2(D)]6 such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇×En = iρn Hn in R3 \ D,

∇×Hn =−iρnEn in R3 \ D,

∇×En = iμHn +θ1,n in D,

∇×Hn =−iεEn +θ2,n in D,

(1.3.65)

‖(En , Hn)‖L2(B5) = 1 for all n ∈N, (1.3.66)

and

lim
n→+∞‖(θ1,n ,θ2,n)‖L2(D) = 0. (1.3.67)

Without loss of generality, one might assume that ρn → ρ∞ ∈ [0,ρ0]. We only consider the case

ρ∞ = 0. The case ρ∞ > 0 can be proved similarly.
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Chapter 1. Cloaking for time-harmonic Maxwell’s equations

We have

∇×En ·ν|int =∇×En ·ν|ext = iρn Hn ·ν|ext → 0 in H−1/2(∂D) as n →∞. (1.3.68)

Similarly, we obtain

∇×Hn ·ν|int → 0 in H−1/2(∂D) as n →∞. (1.3.69)

Applying Lemma 1.3.3 to
(
(En , Hn)

)
n in D , without loss of generality, one might assume that

(
(En , Hn)

)
n converges in [H(curl,D)]2 as n →∞. (1.3.70)

Applying i) of Lemma 1.2.8, we derive that

(
(En ×ν, Hn ×ν)

)
n converges in [H−1/2(divΓ,∂D)]2 as n →∞.

It follows from (1.3.66), Lemma 1.2.6, and i) of Lemma 1.2.7 that

(
(En , Hn)

)
n converges in [L2

loc(R3 \ D)]6 as n →∞. (1.3.71)

Let (E , H) be the limit of (En , Hn) in [L2
loc(R3)]6. Then (E , H) ∈ [Hloc(curl,R3)]2 and 2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇×E =∇×H = 0 in R3 \ D,

divE = div H = 0 in R3 \ D,

∇×E = iμH in D,

∇×H =−iεE in D.

(1.3.72)

We derive from (1.3.68) and (1.3.69) that

∇×E ·ν|int =∇×H ·ν|int = 0 on ∂D. (1.3.73)

Applying Lemma 1.2.6, we have

|(E(x), H(x)
)| ≤ C

|x|2 for |x| > 3, (1.3.74)

for some positive constant C . Combining (1.3.72) and (1.3.73) yields that (E , H)|D ∈ N (D).

Since N (D) = {(0,0)}, it follows that E = H = 0 in D . Hence

E ×ν= H ×ν= 0 on ∂D. (1.3.75)

2In the case ρ∞ > 0, the limit (E , H) satisfies the radiating condition and is a solution to Maxwell equations in
R3 with vanished data. It follows that (E , H) = (0,0), which also gives a contradiction.
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1.3. Proofs of the main results

We have, for each connected component Γ of ∂D ,∫
Γ

E ·ν|ext = lim
n→∞

∫
Γ

En |ext ·ν= lim
n→∞

1

−iρn

∫
Γ

(∇×Hn) ·ν|ext = 0

and similarly ∫
Γ

H ·ν|ext = 0.

Using (1.3.72), (1.3.74), and (1.3.75), and applying Lemma 1.2.5 to (E , H) in R3 \ D , we obtain

E = H = 0 in R3 \ D.

Thus E = H = 0 in R3, which, by using (1.3.70) and (1.3.71), contradicts (1.3.66). Therefore,

(1.3.63) is proved.

We next establish (1.3.64). Fix an arbitrary sequence (ρn)n converging to 0. From (1.3.63), one

obtains that

‖(Eρn , Hρn

)‖L2(B5) ≤C
(
‖θρn‖L2(D) +‖hρn‖H−1/2(divΓ,∂D)

)
≤C .

Using the same argument as above, one obtains that, up to a subsequence, (Eρn , Hρn ) con-

verges in [H(curl,R3)]2 to (E , H), the unique solution of⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇×E =∇×H = 0 in R3 \ D,

divE = div H = 0 in R3 \ D,

∇×E = iμH +θ1 in D,

∇×H =−iεE +θ2 in D.

(1.3.76)

This system implies ∇×E ·ν|int = ∇× H ·ν|int = 0 on ∂D. Since N (D) = {(0,0)}, we have

(E , H)|D =C l (θ1,θ2). Since (ρn) → 0 arbitrarily, assertion (1.3.64) follows. The proof is com-

plete.

We are ready to give the

Proof of Theorem 1.1.1. Let (E1,ρ , H1,ρ) ∈ [Hloc(curl,R3 \Bρ)]2 be the unique radiating solution

to the system⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∇×E1,ρ = iωH1,ρ in R3 \ Bρ ,

∇×H1,ρ =−iωE1,ρ+ Jext in R3 \ Bρ ,

E1,ρ ×ν= 0 on ∂Bρ ,

(1.3.77)
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Chapter 1. Cloaking for time-harmonic Maxwell’s equations

extend (E1,ρ , H1,ρ) by (0,0) in Bρ , and still denote this extension by (E1,ρ , H1,ρ). Define

(E2,ρ , H2,ρ) := (E , H)− (E1,ρ , H1,ρ) and (E3,ρ , H3,ρ) := (E ρ ,H ρ)− (E1,ρ , H1,ρ) in R3.

Then (E2,ρ , H2,ρ) ∈ [Hloc(curl,R3 \ Bρ)]2 is the unique radiating solution to the system

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∇×E2,ρ = iωH2,ρ in R3 \ Bρ ,

∇×H2,ρ =−iωE2,ρ in R3 \ Bρ ,

E2,ρ ×ν= E ×ν on ∂Bρ ,

and (E3,ρ , H3,ρ) ∈ [
⋂

R>1 H(curl,BR \∂Bρ)]2 is the unique radiating solution to the system

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∇×E3,ρ = iωμρH3,ρ in R3 \∂Bρ ,

∇×H3,ρ =−iωερE3,ρ+ JρχBρ
in R3 \∂Bρ ,

[E3,ρ×ν] = 0, [H3,ρ×ν] =−H1,ρ×ν|ext on ∂Bρ ,

(1.3.78)

where χD denotes the characteristic function of a subset D of R3. Recall that Jρ is defined in

(1.1.23). Set

Ẽ2,ρ(x) = Eρ(ρx) and H̃2,ρ(x) = Hρ(ρx) for x ∈R3 \ B1.

Then (Ẽ2,ρ , H̃2,ρ) ∈ [H(curl,R3 \ B1)]2 is the unique radiating solution to the system

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∇× Ẽ2,ρ = iωρH̃2,ρ in R3 \ B1,

∇× H̃2,ρ =−iωρẼ2,ρ in R3 \ B1,

Ẽ2,ρ×ν= E(ρ ·)×ν on ∂B1.

(1.3.79)

By Lemmas 1.3.1 and 1.3.2 (also Remark 1.3.2), we have, for R > 1/2 and for x ∈ B3R \ B2R ,∣∣∣∣(Ẽ2,ρ

( x

ρ

)
, H̃2,ρ

( x

ρ

))∣∣∣∣≤Cρ3‖(Ẽ2,ρ , H̃2,ρ)‖L2(B2\B1)

≤Cρ3(‖E(ρ.)×ν‖H−1/2(∂B1) +ρ−1‖div∂B1 (E(ρ.)×ν)‖H−1/2(∂B1))

≤Cρ3(‖E(ρ.)×ν‖H−1/2(∂B1) +‖H(ρ.) ·ν‖H−1/2(∂B1)).

Here and in what follows in this proof, C denotes a positive constant depending only on ρ0,

R0, and R. It follows from the definition of (Ẽ2,ρ , H̃2,ρ) that

‖(E2,ρ , H2,ρ)‖L2(B3R \B2R ) ≤Cρ3‖Jext‖L2(R3\B2). (1.3.80)
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From now on in this proof, for any vector field v , we denote 3

v̂(·) := ρv(ρ ·). (1.3.81)

We claim that

‖Ĥ1,ρ×ν|ext‖H−1/2(∂B1) +‖Ê1,ρ ·ν|ext‖H−1/2(∂B1) ≤Cρ‖Jext‖L2(R3\B2) (1.3.82)

and, for R > 1/2,

‖(E3,ρ , H3,ρ)‖L2(B3R \B2R ) ≤C
(
ρ3‖Jext‖L2(R3\B2) +ρ2‖Jint‖L2(B1)

)
. (1.3.83)

It is clear that (1.1.9) follows from (1.3.80) and (1.3.83). Moreover, by Lemma 1.3.6, assertion

(1.1.14) now follows from (1.3.82) and the fact that (Ec , Hc ) = (Ê3,ρ , Ĥ3,ρ) in B1.

It remains to establish (1.3.82) and (1.3.83). It is clear that (Ê3,ρ , Ĥ3,ρ) ∈ [
⋂

R>0 H (curl,BR \∂B1)]2

is the unique radiating solution to the system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇× Ê3,ρ = iωρĤ3,ρ in R3 \ B1,

∇× Ĥ3,ρ =−iωρÊ3,ρ in R3 \ B1,

∇× Ê3,ρ = iωμĤ3,ρ in B1,

∇× Ĥ3,ρ =−iωεÊ3,ρ+ Jint in B1,

[Ê3,ρ×ν] = 0,[Ĥ3,ρ ×ν] =−Ĥ1,ρ ×ν|ext on ∂B1.

(1.3.84)

By Lemma 1.3.6, we have

‖(Ê3,ρ , Ĥ3,ρ)‖H(curl,B5) ≤C
(
‖Jint‖L2(B1) +‖Ĥ1,ρ×ν|ext‖H−1/2(divΓ,∂B1)

)
. (1.3.85)

Applying Lemma 1.3.1 to (Ê2,ρ , Ĥ2,ρ), by (1.3.81), we obtain

‖Ĥ2,ρ×ν|ext‖H−1/2(∂B1) +‖Ê2,ρ ·ν|ext‖H−1/2(∂B1) ≤Cρ‖Jext‖L2(R3\B2).

Since

(E2,ρ , H2,ρ) = (E , H)− (E1,ρ , H1,ρ) in R3 \ B1,

it follows that

‖Ĥ1,ρ×ν|ext‖H−1/2(∂B1) +‖Ê1,ρ ·ν|ext‖H−1/2(∂B1) ≤Cρ‖Jext‖L2(R3\B2),

which is (1.3.82).

3With this notation, one has (Ec , Hc )(x) = (Êρ , Ĥρ) in B1. It is worth noting that v̂(·) �= v(ρ ·).
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Combining (1.3.82) and (1.3.85) yields

‖(Ê3,ρ , Ĥ3,ρ
)‖H(curl,B5) ≤C

(‖Jint‖L2(B1) +ρ‖Jext‖L2(R3\B2)
)

. (1.3.86)

Applying Lemma 1.3.2, and using (1.3.86), we obtain∣∣∣∣
(
Ê3,ρ

(
x

ρ

)
, Ĥ3,ρ

(
x

ρ

))∣∣∣∣≤Cρ3 (‖Jint‖L2(B1) +ρ‖Jext‖L2(R3\B2)
)

for x ∈ B3R \ B2R .

This implies (1.3.83). The proof is complete.

1.3.3 Approximate cloaking in the resonant case - Proofs of Theorems 1.1.2 and
1.1.3

The key ingredient in the proof of Theorems 1.1.2 and 1.1.3 is the following variant of Lemma 1.3.6.

Lemma 1.3.7. Let 0 < ρ < ρ0, θρ = (θ1,ρ ,θ2,ρ) ∈ [L2(D)]6, and hρ = (h1,ρ ,h2,ρ) ∈ [H−1/2(divΓ,∂D)]2,

and let (Eρ , Hρ) ∈ [
⋂

R>1 H(curl,BR \∂D)]2 be the unique radiating solution to the system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇×Eρ = iρHρ in R3 \ D,

∇×Hρ =−iρEρ in R3 \ D,

∇×Eρ = iμHρ+θ1,ρ in D,

∇×Hρ =−iεEρ+θ2,ρ in D,

[Eρ×ν] = h1,ρ , [Hρ×ν] = h2,ρ on ∂D.

Assume that N (D) �= {(0,0)}. We have

‖(Eρ , Hρ)‖L2(B5) ≤C
(
ρ−1‖θρ‖L2(D) +‖hρ‖H−1/2(∂D) +ρ−1‖divΓ hρ‖H−1/2(∂D)

)
. (1.3.87)

Assume in addition that, for all ρ ∈ (0,ρ0),∫
D

(
θ2,ρ · Ē−θ1,ρ · H̄

)
d x = 0 for all (E,H) ∈N (D). (1.3.88)

Then

‖(Eρ , Hρ)‖L2(B5) ≤C
(
‖θρ‖L2(D) +‖hρ‖H−1/2(∂D) +ρ−1‖divΓ hρ‖H−1/2(∂D)

)
. (1.3.89)

Here C denotes a positive constant depending only on ρ0, ε, and μ. Moreover, if

lim
ρ→0

(
‖hρ‖H−1/2(∂D) +ρ−1‖divΓ hρ‖H−1/2(∂D)

)
= 0 and lim

ρ→0
θρ = θ in [L2(D)]6,
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for some θ = (θ1,θ2) ∈ [L2(D)]6, then

lim
ρ→0

(Eρ , Hρ) =C l (θ1,θ2) in [H(curl,D)]2. (1.3.90)

Remark 1.3.5. In comparison with (1.3.63) in Lemma 1.3.6, in the resonant case N (D) �=
{(0,0)}, estimate (1.3.87) is weaker. Under the compatibility condition (1.3.88), estimate

(1.3.89) is stronger than (1.3.87). Note that the term ‖divΓ hρ‖H−1/2(∂D) in (1.3.63) of Lemma 1.3.6

is replaced by ρ−1‖divΓ hρ‖H−1/2(∂D) in (1.3.89). However, this does not affect the estimate

for the degree of visibility in the compatible resonant case (in comparison with the non-

resonant case) since in the proof of Theorem 1.2, we apply Lemma 1.3.7 to the situation

where ‖hρ‖H−1/2(∂D) and ρ−1‖divΓ hρ‖H−1/2(∂D) are of the same order. It is worth noting that the

estimates in Lemma 1.3.7 are somehow sharp because of the optimality of the estimates in

Theorems 1.1.2 and 1.1.3; this is discussed in Section 1.4.

Proof. We will give the proof of (1.3.89) and (1.3.90) and explain how to modify the proof of

(1.3.89) to obtain (1.3.87).

We prove (1.3.89) by contradiction. Assume that there exist sequences (ρn)n ⊂ (0,ρ0),
(
(En , Hn)

)
n ⊂

[
⋂

R>0 H (curl,BR \∂D)]2, (θn)n = (
(θ1,n ,θ2,n)

)
n ⊂ [L2(D)]6 such that (1.3.88) holds for (θ1,n ,θ2,n),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇×En = iρn Hn in R3 \ D,

∇×Hn =−iρnEn in R3 \ D,

∇×En = iμHn +θ1,n in D,

∇×Hn =−iεEn +θ2,n in D,

[En ×ν] = h1,n , [Hn ×ν] = h2,n on ∂D,

(1.3.91)

‖(En , Hn)‖L2(B5) = 1 for all n ∈N, (1.3.92)

and

lim
n→+∞

(
‖θn‖L2(D) +‖hn‖H−1/2(∂D) +ρ−1

n ‖divΓ hn‖H−1/2(∂D)

)
= 0. (1.3.93)

Without loss of generality, we assume that ρn → ρ∞ ∈ [0,ρ0]. We will only consider the case

ρ∞ = 0. The proof in the case ρ∞ > 0 follows similarly and is omitted.

Similar to (1.3.68) and (1.3.69), we have, by (1.3.93),

lim
n→+∞∇×En |int ·ν= 0 and lim

n→+∞∇×Hn ·ν|int = 0 in H−1/2(∂D). (1.3.94)
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Applying Lemma 1.3.3 and using (1.3.92), without loss of generality, one might assume

that
(
(En , Hn)

)
n converges in [L2(D)]6 and hence also in [L2

loc(R3 \ D)]6 by applying (1.3.3)

of Lemma 1.3.1 and i) of Lemma 1.2.7 to BR \ D. Moreover, the limit (E , H) ∈ [Hloc(curl,R3)]2

satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇×E =∇×H = 0 in R3 \ D,

divE = div H = 0 in R3 \ D,

∇×E = iμH in D,

∇×H =−iεE in D,

(1.3.95)

and, by applying Lemma 1.2.6 and letting ρn → 0,

|(E(x), H(x)
)| =O(|x|−2) for large |x|. (1.3.96)

Since ∫
D

(
θ2,n · Ē−θ1,n · H̄

)
d x = 0 for all (E,H) ∈N (D),

by Lemma 1.3.4, there exists a unique (E1,n , H1,n) ∈N (D)⊥ solving

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∇×E1,n = iμH1,n +θ1,n in D,

∇×H1,n =−iεE1,n +θ2,n in D,

∇×E1,n ·ν=∇×H1,n ·ν= 0 on ∂D.

Denote by (E2,n , H2,n) the projection of (En , Hn)− (E1,n , H1,n) onto N (D) and define

Ẽn = ρ−1
n (En −E1,n −E2,n) and H̃n = ρ−1

n (Hn −H1,n −H2,n) in D.

Then

(Ẽn , H̃n) ∈N (D)⊥ (1.3.97)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇× Ẽn = iμH̃n in D,

∇× H̃n =−iεẼn in D,

∇× Ẽn ·ν= ρ−1
n ∇×En ·ν|int on ∂D,

∇× H̃n ·ν= ρ−1
n ∇×Hn ·ν|int on ∂D.

(1.3.98)
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We have

ρ−1
n ∇×En ·ν|int = ρ−1

n ∇×En ·ν|ext +ρ−1
n divΓ h1,n = i Hn ·ν|ext +ρ−1

n divΓ h1,n on ∂D.

This implies, by (1.3.98),

μH̃n ·ν= Hn ·ν|ext − iρ−1
n divΓ h1,n on ∂D. (1.3.99)

Similarly, we have

εẼn ·ν= En ·ν|ext − iρ−1
n divΓ h2,n on ∂D. (1.3.100)

Using (1.3.93), we derive from (1.3.94), (1.3.99), and (1.3.100) that

(εẼn ·ν,μH̃n ·ν) → (E ·ν|ext, H ·ν|ext) in H−1/2(∂D) as n →∞. (1.3.101)

It follows from Lemma 1.3.8 below that
(
(Ẽn , H̃n)

)
n

is bounded in [L2(D)]6. Applying Lemma

1.3.3 to (Ẽn , H̃n), one can assume that

(Ẽn , H̃n) converges to some (Ẽ , H̃) ∈N (D)⊥ in [H(curl,D)]2. (1.3.102)

Moreover, from (1.3.98) and (1.3.101), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇× Ẽ = iμH̃ in D,

∇× H̃ =−iεẼ in D,

εẼ ·ν= E ·ν|ext on ∂D,

μH̃ ·ν= H ·ν|ext on ∂D.

(1.3.103)

Applying Lemma 1.3.5 to (E , H) defined in R3 and (Ẽ , H̃) defined in D and using (1.3.95),

(1.3.96), and (1.3.103), we deduce that E = H = 0 in R3, which contradicts (1.3.92). The proof

of (1.3.89) is complete.

We next establish (1.3.90). Fix a sequence (ρn) converging to 0. From (1.3.89), one obtains that

‖(Eρn , Hρn

)‖L2(B5) ≤C
(
‖θρn‖L2(D) +‖hρ‖H−1/2(∂D) +ρ−1

n ‖divΓ hρn‖H−1/2(∂D)

)
≤C .

Define (Ẽρn , H̃ρn ) in D from (Eρn , Hρn ) as in the definition of (Ẽn , H̃n) from (En , Hn). Using the

same arguments to obtain (1.3.102), we have

(Ẽρn , H̃ρn ) converges to (Ẽ , H̃) ∈N (D)⊥ in [H(curl,D)]2. (1.3.104)
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Up to a subsequence, (Eρn , Hρn ) converges to (E , H) in
[
Hloc(curl,R3)

]2 and

|(E(x), H(x)
)| =O(|x|−2) for large |x|. (1.3.105)

Moreover, as in (1.3.103), one can show that (1.1.16) holds. Since the limit is unique, asser-

tion (1.3.90) follows.

We finally show how to modify the proof of (1.3.89) to obtain (1.3.87). The proof is also based

on a contradiction argument and is similar to the one of (1.3.89). However, we denote by

(E2,n , H2,n) the projection of (En , Hn) onto N (note that E1,n and H1,n might not exist in this

case)) and define

Ẽn = ρ−1
n (En −E2,n) in D and H̃n = ρ−1

n (Hn −H2,n) in D.

Then ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇× Ẽn = iμH̃n +ρ−1
n θ1,n in D,

∇× H̃n =−iεẼn +ρ−1
n θ2,n in D,

∇× Ẽn ·ν= ρ−1
n ∇×En ·ν|int on ∂D,

∇× H̃n ·ν= ρ−1
n ∇×Hn ·ν|int on ∂D.

(1.3.106)

Since (ρ−1
n θn)n → (0,0) in [L2(D)]6, the sequence

(
(Ẽn , H̃n)

)
n converges to (Ẽ , H̃) in [L2(D)]6.

Similar to the proof of (1.3.89), one also derives that (E , H) = (0,0) in R3. This yields a contra-

diction. The proof is complete.

In the proof of Lemma 1.3.7, we used the following lemma:

Lemma 1.3.8. Assume that D is simply connected and (E , H) ∈N (D)⊥ satisfies

∇×E = iμH in D and ∇×H =−iεE in D. (1.3.107)

We have

‖(E , H)‖H(curl,D) ≤C‖(εE ·ν, μH ·ν)‖H−1/2(∂D),

for some positive constant C depending only on D, ε,μ.

Proof. It suffices to prove that

‖(E , H)‖L2(D) ≤C‖(εE ·ν,μH ·ν)‖H−1/2(∂D). (1.3.108)

The proof is via a standard contradiction argument. Assume that there exists a sequence
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(
(En , Hn)

)
n ⊂N (D)⊥ such that

∇×En = iμHn in D and ∇×Hn =−iεEn in D, (1.3.109)

‖(En , Hn)‖L2(D) = 1 for all n, (1.3.110)

and

(
εEn ·ν, μHn ·ν)→ 0 in [H−1/2(∂D)]2. (1.3.111)

Applying Lemma 1.3.3, one might assume that (En , Hn) converges to some (E0, H0) in [H (curl,D)]2.

Then (E0, H0) ∈N (D)⊥ and⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∇×E0 = iμH0 in D,

∇×H0 =−iεE0 in D,

∇×E0 ·ν=∇×H0 ·ν= 0 on ∂D.

(1.3.112)

It follows that (E0, H0) ∈ N (D)⊥ ∩N (D). Hence (E0, H0) = (0,0) in D, which contradicts

(1.3.110).

We are ready to give the

Proof of Theorem 1.1.2. In this proof, we use the same notations as in the one of Theo-

rem 1.1.1. Similar to the proof of Theorem 1.1.1, using Lemmas 1.3.1 and 1.3.2, we have, for

R > 1/2,

‖(E2,ρ , H2,ρ)‖L2(B3R \B2R ) ≤Cρ3‖Jext‖L2(R3\B2). (1.3.113)

Involving the same method used to prove (1.3.82) and (1.3.83), however, applying (1.3.89) in

Lemma 1.3.7 instead of Lemma 1.3.6, we have

‖Ĥ1,ρ×ν|ext‖H−1/2(∂B1) +‖Ê1,ρ ·ν|ext‖H−1/2(∂B1) ≤Cρ‖Jext‖L2(R3\B2) (1.3.114)

and

‖(E3,ρ , H3,ρ)‖L2(B3R \B2R ) ≤C
(
ρ3‖Jext‖L2(R3\B2) +ρ2‖Jint‖L2(B1)

)
. (1.3.115)

It is clear that (1.1.13) follows from (1.3.113) and (1.3.115). Moreover, by Lemma 1.3.6, assertion

(1.1.14) now follows from (1.3.114) and the fact that (Ec , Hc ) = (Ê3,ρ , Ĥ3,ρ) in B1.

Proof of Theorem 1.1.3. In this proof, we use the same notations as in the one of Theo-
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rem 1.1.1. Similar to the proof of Theorem 1.1.1, using Lemmas 1.3.1 and 1.3.2, we have, for

R > 1/2,

‖(E2,ρ , H2,ρ)‖L2(B3R \B2R ) ≤Cρ3‖Jext‖L2(R3\B2). (1.3.116)

Using the same method used to prove (1.3.83), however, applying (1.3.87) in Lemma 1.3.7

instead of Lemma 1.3.6, we have

‖Ĥ1,ρ×ν|ext‖H−1/2(∂B1) +‖Ê1,ρ ·ν|ext‖H−1/2(∂B1) ≤Cρ‖Jext‖L2(R3\B2) (1.3.117)

and

‖(E3,ρ , H3,ρ)‖L2(B3R \B2R ) ≤C
(
ρ3‖Jext‖L2(R3\B2) +ρ‖Jint‖L2(B1)

)
. (1.3.118)

It is clear that (1.1.18) follows from (1.3.116) and (1.3.118).

It remains to prove (1.1.19). Using the linearity of the system and applying Theorem 1.1.2, one

can assume that Jext = 0, and Jint = E0 for some (E0,H0) ∈N \ {(0,0)}. From the definition of

N , we have

E0 �≡ 0 and H0 �≡ 0 in B1.

Note that (Êc , Ĥc ) ∈ [Hloc(curl,R3)]2 is the unique radiating solution to the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇× Êc = iωρĤc in R3 \ B1,

∇× Ĥc =−iωρÊc in R3 \ B1,

∇× Êc = iωμĤc in B1,

∇× Ĥc =−iωεÊc +E0 in B1.

(1.3.119)

We prove (1.1.19) by contradiction. Assume that there exists a sequence
(
ρn

)
n ⊂ (0,1/2)

converging to 0 such that

lim
n→∞ρn‖(En , Hn)‖L2(B1) = 0, (1.3.120)

where (En , Hn) ∈ [Hloc(curl,R3)]2 is the unique radiating solution to the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇×En = iωρn Hn in R3 \ B1,

∇×Hn =−iωρnEn in R3 \ B1,

∇×En = iωμHn in B1,

∇×Hn =−iωεEn +E0 in B1.

(1.3.121)
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Applying Lemma 1.2.8 to (En , Hn) in B1 and using (1.3.120) and (1.3.121), we obtain

lim
n→∞ρn‖

(
En ×ν, Hn ×ν

)‖H−1/2(∂B1) = 0. (1.3.122)

By Lemma 1.3.1, we have

lim
n→∞ρn‖

(
En , Hn

)‖L2(B2\B1) = 0. (1.3.123)

Since divEn = div Hn = 0 in R3 \ B1, we have, by Lemma 1.2.8 and (1.3.123),

lim
n→∞ρn‖

(
En ·ν, Hn ·ν)‖H−1/2(∂B1) = 0.

It follows that

lim
n→∞‖(divΓ(En ×ν),divΓ(Hn ×ν)

)‖H−1/2(∂B1) = lim
n→∞‖(∇×En ·ν,∇×Hn ·ν)

)‖H−1/2(∂B1) = 0.

(1.3.124)

Using the fact that (E0,H0) ∈N , we derive from (1.3.121) that∫
B1

μ−1∇× Ē0 ·∇×En d x −ω2
∫

B1

εĒ0 ·En d x =−iω
∫
∂B1

(ν×En) · H̄0d s,

and ∫
B1

μ−1∇×En ·∇× Ē0 d x −ω2
∫

B1

εEn · Ē0 d x =−iω
∫
∂B1

(ν×Hn) · Ē0 d s + iω
∫

B1

E0 ·Ē0.

Considering the imaginary part of the two identities yields

ℜ
{∫

∂B1

(ν×Hn) · Ē0d s +
∫
∂B1

(ν×En) · H̄0d s

}
=
∫

B1

|E0 |2 > 0. (1.3.125)

However, since ∇×H0 ·ν= 0 on ∂B1, by Lemma 1.2.2, there exists H ∈ H(curl,B1) such that

∇×H0 =∇×H in B1 and H×ν= 0 on ∂B1.

Since ∇× (H0−H) = 0 in B1, by Lemma 1.2.1, there exists ξ ∈ H 1(B1) such that

H0−H =∇ξ in B1,

and hence

H0×ν=∇ξ×ν on ∂B1.

We have thus∫
∂B1

(ν×En) ·H̄0 d s =
∫
∂B1

(ν×En) ·∇ξ̄d s =
∫
∂B1

divΓ(ν×En) ξ̄d s → 0 as n →+∞, (1.3.126)
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thanks to (1.3.124). Similarly, we obtain∫
∂B1

(ν×Hn) · Ē0 d s → 0 as n →+∞. (1.3.127)

Combining (1.3.125), (1.3.126), and (1.3.127), we obtain a contradiction. Hence (1.1.19) holds.

The proof is complete.

1.4 Optimality of the degree of visibility

In this section, we present various settings that justify the optimality of the degree of visibility

in Theorems 1.1.1, 1.1.2, and 1.1.3. In what follows in this section, we assume that

ε=μ= I (the identity matrix) in B1. (1.4.1)

Let h(1)
n (n ∈N) be the spherical Hankel function of first kind of order n and let jn , yn denote

respectively its real and imaginary parts. For −n ≤ m ≤ n,n ∈ N, denote Y m
n the spherical

harmonic function of order n and degree m and set

U m
n (x̂) :=∇∂B1 Y m

n (x̂) and V m
n (x̂) := x̂ ×U m

n (x̂) for x̂ ∈ ∂B1.

We recall that Y m
n (x̂)x̂, U m

n (x̂), and V m
n (x̂) for −n ≤ m ≤ n,n ∈N form an orthonormal basis of

[L2(∂B1)]3.

We have

Lemma 1.4.1. System (1.1.3) is non-resonant if and only if jn(ω) �= 0 for all n ≥ 1.

Proof. Assume that jn(ω) = 0 for some n ≥ 1. Fix such an n and define, in B1,

E0(x) = jn(ωr )V 0
n (x̂) and H0(x) = n(n +1)

iωr
jn(ωr )Y 0

n (x̂)x̂+ 1

iωr
[ jn(ωr )+ωr j ′n(ωr )]U 0

n(x̂),

where r = |x| and x̂ = x/|x|. Then (E0,H0) ∈N . System (1.1.3) is hence resonant. Conversely,

assume that jn(ω) �= 0 for all n ∈N. Using separation of variables (see, e.g., [22, Theorem 2.48]),

one can check that if (E0,H0) ∈N then (E0,H0) = (0,0) in B1.

The following result implies the optimality of (1.1.9) with respect to Jext. For computational

ease, instead of considering fields generated by Jext, we deal with fields generated by a plane

wave. In what follows, we assume that 0 < ρ < 1/2. We have

Proposition 1.4.1. Set v(x) := (0,1,0)eiωx3 for x ∈R3. For ω> 0 such that j1(ω) �= 0, we have

‖Ec‖L2(B4\B2) ≥Cρ3,
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for some positive constant C independent of ρ. Here (Ec , Hc ) ∈ [Hloc(curl,R3)]2 is uniquely

determined by⎧⎪⎨
⎪⎩
∇×E = iωμc H in R3,

∇×H =−iωεc E in R3,

where E = Ec + v and H = Hc + 1
iω∇× v and by the radiation condition. Here (εc ,μc ) is defined

by (1.1.3) where (ε,μ) is given in (1.4.1).

Proof. Let ω> 0 be such that j1(ω) �= 0. Set

(E ρ ,H ρ) = (F−1
ρ ∗E ,F−1

ρ ∗H) in R3,

and define

(Eρ ,Hρ) =
⎧⎨
⎩

(E ρ−v,H ρ− 1
iω∇× v) in R3 \ Bρ ,

(E ρ ,H ρ) in Bρ .

Set

(Ẽρ ,H̃ρ) = (Eρ ,Hρ)(ρ ·) and ṽ = v(ρ ·) in R3.

We have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇× Ẽρ = iρωH̃ρ in R3 \ B1,

∇× H̃ρ =−iρωẼρ in R3 \ B1,

∇× Ẽρ = iωH̃ρ in B1,

∇× H̃ρ =−iωẼρ in B1,

[Ẽρ×ν] =−ṽ ×ν, [H̃ρ×ν] =− 1
iρω (∇× ṽ)×ν on ∂B1.

(1.4.2)

Denote

Aext =
∫
∂B1

Ẽρ|ext · V̄ 1
1 d s and Aint =

∫
∂B1

Ẽρ|int · V̄ 1
1 d s.

Using the transmission condition for Ẽρ×ν on ∂B1 and considering only the component with

respect to V 1
1 for Ẽρ (see, e.g., [22, Theorem 2.48]), we have

Aext − Aint =α, (1.4.3)

where

α=−
∫
∂B1

ṽ · V̄ 1
1 d s.
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Using the transmission condition for H̃ρ ×ν on ∂B1 and considering the component with

respect to U 1
1 for H̃ρ (see, e.g., [22, Theorem 2.48]), we have

aext(ωρ)Aext −aint(ω)Aint =β, (1.4.4)

where

aext(r ) =
(
h(1)

1 (r )+ r h′(1)
1 (r )

)
−i r h(1)

1 (r )
, aint(r ) =

(
j1(r )+ r j ′1(r )

)
−i r j1(r )

, and β=αaint(ωρ).

Combining (1.4.3) and (1.4.4) yields

Aext = β−αaint(ω)

aext(ωρ)−aint(ω)
. (1.4.5)

Since

h(1)
1 (x) = i

d

d x

ei x

x
= sin x −x cos x

x2 + i
x sin x −cos x

x2 , for x ∈R, (1.4.6)

we derive that

liminf
ρ→0

ρ−1
∣∣aext(ωρ)−aint(ω)

∣∣−1 > 0. (1.4.7)

Since, by separation of variables, (see, e.g., [22, Theorem 2.48]),∣∣∣∣
∫
∂B1

ṽ · V̄ 1
1 d s

∣∣∣∣=
∣∣∣∣ j1(ωρ)

j1(ω)

∫
∂B1

v · V̄ 1
1 d s

∣∣∣∣ ,

we have

C−1ρ ≤ |α| ≤Cρ (1.4.8)

for some positive constant C independent of ρ. From (1.4.8) and the fact that

|aint(ωρ)| ≥Cρ−1,

we have

liminf
ρ→0

∣∣β−αaint(ω)
∣∣> 0. (1.4.9)

Combining (1.4.7) and (1.4.9) yields

liminf
ρ→0

ρ−1|Aext| > 0. (1.4.10)
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1.4. Optimality of the degree of visibility

Since, again by separation of variables,

∫
∂B1

Ẽρ(r x̂) · V̄ 1
1 (x̂)d x̂ = h(1)

1 (ωρr )

h(1)
1 (ωρ)

Aext,

and, by Lemma 1.2.9,

Ẽρ(x/ρ) = Eρ(x) = Eρ(x)− v(x) = Ec (x) for x ∈ B4 \ B2,

we obtain the conclusion from (1.4.6) and (1.4.10).

We next show the optimality of (1.1.9) with respect to Jint.

Proposition 1.4.2. Assume that the system is non-resonant and Jext = 0 in R3 \ B2. There exists

Jint ∈ [L2(B1)]3 such that

liminf
ρ→0

ρ−2 ‖Hc‖L2(B4\B2) > 0.

Proof. Consider

Jint(x) = j1(ωr )V 1
1 (x̂) in B1, (1.4.11)

where r = |x| and x̂ = x/|x|. Set

E0 = Jint and H0 = 1

iω
∇×E0 in B1.

Then ⎧⎪⎨
⎪⎩
∇×E0 = iωH0 in B1,

∇×H0 =−iωE0 in B1.
(1.4.12)

Define

(Êρ ,Ĥρ) = ρ(Eρ ,Hρ)(ρ·) in R3,

where (Eρ ,Hρ) is given in (1.1.20). Then

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇× Êρ = iρωĤρ in R3 \ B1,

∇× Ĥρ =−iρωÊρ in R3 \ B1,

∇× Êρ = iωĤρ in B1,

∇× Ĥρ =−iωÊρ+E0 in B1.
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Chapter 1. Cloaking for time-harmonic Maxwell’s equations

We have∫
∂B1

(ν× Ĥρ) · Ē0d s −
∫
∂B1

(ν× Êρ) · H̄0d s =
∫

B1

|E0 |2 > 0. (1.4.13)

We claim that

liminf
ρ→0

∣∣∣∣
∫
∂B1

(ν× Êρ) · H̄0d s

∣∣∣∣= 0. (1.4.14)

Assuming this, we have, from (1.4.13),

liminf
ρ→0

∣∣∣∣
∫
∂B1

(ν× Ĥρ) · Ē0d s

∣∣∣∣> 0.

This implies, since j1(ω) �= 0 by Lemma 1.4.1, that

liminf
ρ→0

∣∣∣∣
∫
∂B1

ĤρŪ 1
1 d s

∣∣∣∣> 0.

On the other hand, by the separation of variables (see, e.g., [22, Theorem 2.48]),

∫
∂B1

Ĥρ(r x̂) ·Ū 1
1 (x̂)d x̂ = h(1)

1 (ωρr )+ωρr h′1
1 (ωρr )

r
(
h(1)

1 (ωρ)+ωρh′1
1 (ωρ)

) ∫
∂B1

Ĥρ(x̂) ·Ū 1
1 (x̂)d x̂. (1.4.15)

Using the fact

liminf
ρ→0

ρ−2 1

|h(1)
1 (ωρ)+ωρh′1

1 (ωρ)|
> 0,

and taking r = R/ρ with R ∈ (2,4) in (1.4.15), we obtain

liminf
ρ→0

ρ−3
∫4

2

∣∣∣∣
∫
∂B1

Ĥρ(Rx̂/ρ) ·Ū 1
1 (x̂)d x̂

∣∣∣∣ dR > 0.

This implies, since Hc (Rx̂) =Hρ(Rx̂) = ρ−1 Hρ(Rx̂/ρ) for R ∈ (2,4) and x̂ ∈ ∂B1,

liminf
ρ→0

ρ−2 ‖Hc‖L2(B4\B2) > 0,

which is the conclusion.

It remains to prove (1.4.14). Since

H0(x) = 1

iω
∇×E0(x) = 2

iωr
j1(ωr )Y 1

1 (x̂)x̂+ 1

iωr
[ j1(ωr )+ωr j ′1(ωr )]U 1

1 (x̂) in B1, (1.4.16)

where r = |x| and x̂ = x/|x|, using the separation of variables (see, e.g., [22, Theorem 2.48]), we
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1.4. Optimality of the degree of visibility

have

liminf
ρ→0

∣∣∣∣
∫
∂B1

(ν× Êρ) · H̄0 d x̂

∣∣∣∣≤C liminf
ρ→0

∣∣∣∣
∫
∂B1

Êρ(x̂) · V̄ 1
1 (x̂)d x̂

∣∣∣∣ (1.4.17)

=C liminf
ρ→0

∣∣∣∣−iωρ�
2

∫
∂B1

Ĥρ(x̂)|ext · (Ȳ 1
1 (x̂)x̂)d x̂

∣∣∣∣ .

Since, by Lemma 1.3.6,

‖Ĥρ‖H(curl,B5) ≤C ,

we have

liminf
ρ→0

∣∣∣∣−iωρ�
2

∫
∂B1

Ĥρ|ext(Ȳ 1
1 (x̂)x̂)d x̂

∣∣∣∣= 0. (1.4.18)

Thus, (1.4.14) follows from (1.4.17) and (1.4.18).

We finally show the optimality of (1.1.18) in the case where Jext ≡ 0 and Jint does not satisfy the

compatibility condition.

Proposition 1.4.3. Assume that Jext = 0 in R3 \ B2 and j1(ω) = 0. There exists Jint ∈ [L2(B1)]3

such that

‖Ec‖L2(B4\B2) ≥Cρ,

for some positive constant C independent of ρ.

Proof. Define Jint by (1.4.11). We use the notations in the proof of Proposition 1.4.2. We have∫
∂B1

(ν× Ĥρ) · Ē0d s −
∫
∂B1

(ν× Êρ) · H̄0d s =
∫

B1

|E0 |2 > 0. (1.4.19)

Since j1(ω) = 0, it follows that ∫
∂B1

(ν× Ĥρ) · Ē0d s = 0.

We derive from (1.4.19) that 4

liminf
ρ→0

∣∣∣∣
∫
∂B1

(ν× Êρ) · H̄0d s

∣∣∣∣> 0.

This implies, by (1.4.16),

liminf
ρ→0

∣∣∣∣
∫
∂B1

Êρ(x̂) · V̄ 1
1 (x̂)d x̂

∣∣∣∣> 0. (1.4.20)

4This is the difference between the resonant and the non-resonant cases.
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Chapter 1. Cloaking for time-harmonic Maxwell’s equations

By the separation of variables (see, e.g., [22, Theorem 2.48]), for r > 2, we obtain

∫
∂B1

Êρ(r x̂) · V̄ 1
1 (x̂)d x̂ = h(1)

1 (ωρr )

h(1)
1 (ωρ)

∫
∂B1

Êρ(x̂) · V̄ 1
1 (x̂)d x̂. (1.4.21)

Taking r = R/ρ with R ∈ (2,4) in (1.4.21), since lim
ρ→0

ρ−2

∣∣∣∣∣h(1)
1 (ωR)

h(1)
1 (ωρ)

∣∣∣∣∣> 0, we obtain from (1.4.20)

that

liminf
ρ→0

ρ−2
∫4

2

∣∣∣∣
∫
∂B1

Êρ(Rx̂/ρ) · V̄ 1
1 (x̂)d x̂

∣∣∣∣ dR > 0.

This implies

liminf
ρ→0

ρ−1 ‖Ec‖L2(B4\B2) > 0,

which is the conclusion.
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2 Cloaking for time-dependent
Maxwell’s equations

In this chapter, we study the time-dependent Maxwell equations. It can be considered as the

continuation of the previous work in Chapter 1 in that the cloaking in time-harmonic regime

is the main ingredient for our method in the time-dependent setting. The chapter uses the

material of [42] by H. M. Nguyen and L. Tran.

2.1 Mathematical setting and statement of the main results

Let us now describe the problem in more details. For simplicity, we suppose that the cloaking

device occupies the annular region B2 \ B1/2 and the cloaked region is the ball B1/2 in R3 in

which the permittivity and the permeability are given by two 3×3 matrices εO ,μO respec-

tively. In this chapter, for r > 0, we denote Br the ball centered at the origin and of radius r .

Throughout this chapter, we assume that, in B1/2,

εO , μO are real, symmetric, (2.1.1)

and uniformly elliptic, i.e.,

1

Λ
|ξ|2 ≤ 〈εO(x)ξ,ξ〉,〈μO(x)ξ,ξ〉 ≤Λ|ξ|2 ∀ξ ∈R3, (2.1.2)

for a.e. x ∈ B1/2 and for some Λ ≥ 1. We also assume εO ,μO are piecewise C 1 to ensure the

uniqueness of solutions via the unique continuation principle (see [48, 9] and also [51]).

Let ρ ∈ (0,1) and let Fρ : R3 →R3 be defined by

Fρ(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x in R3\B2,(
2−2ρ

2−ρ
+ |x|

2−ρ

)
x

|x| in B2\Bρ ,

x

ρ
in Bρ .
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Chapter 2. Cloaking for time-dependent Maxwell’s equations

The cloaking device in B2 \ B1/2 constructed via transformation optics technique is character-

ized by the triple of permittivity, permeability, and conductivity and contains two layers. The

first one in B2 \ B1 coming from the transformation technique using the map Fρ is

(Fρ∗I ,Fρ∗I ,0)

and the second one in B1 \ B1/2 which is a fixed lossy layer is

(I , I ,1).

Here and in what follows, for a diffeomorphism F and a matrix-valued function A, one denotes

F∗A := DF ADF T

|detDF | ◦F−1. (2.1.3)

Remark 2.1.1. Different fixed lossy-layer can be used but for the simplicity of notations and

to avoid several unnecessary technical points, the triple (I , I ,1) is considered.

Assume that the medium is homogeneous outside the cloaking device and the cloaked region.

In the presence of the cloaked object and the cloaking device, the medium in the whole space

R3 is described by the triple (εc ,μc ,σc ) given by

(εc ,μc ,σc ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(I , I ,0) in R3 \ B2,

(Fρ∗I ,Fρ∗I ,0) in B2 \ B1,

(I , I ,1) in B1 \ B1/2,

(εO ,μO ,0) in B1/2.

(2.1.4)

Let J represent a charge density. We assume that

J ∈ L1([0,∞); [L2(R3)]3) with suppJ ⊂ [0,T ]× (BR0 \ B2), for some T > 0,R0 > 2 (2.1.5)

and

divJ = 0 in R+×R3. (2.1.6)

With the cloaking device and the cloaked object, the electromagnetic wave generated by J

with zero data at the time 0 is the unique weak solution (Ec ,Hc ) ∈ L∞
loc([0,∞), [L2(R3)]6) to the
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2.1. Mathematical setting and statement of the main results

system

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

εc
∂Ec

∂t
=∇×Hc −J −σcEc in (0,+∞)×R3,

μc
∂Hc

∂t
=−∇×Ec in (0,+∞)×R3,

Ec (0, ) =Hc (0, ) = 0 in R3.

(2.1.7)

In the homogeneous space, the field generated by J with zero data at the time 0 is the unique

weak solution (E ,H ) ∈ L∞
loc([0,∞), [L2(R3)]6) to the system

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂E

∂t
=∇×H −J in (0,+∞)×R3,

∂H

∂t
=−∇×E in (0,+∞)×R3,

E (0, ) =H (0, ) = 0 in R3.

(2.1.8)

The meaning of weak solutions, in a slightly more general context, is as follows

Definition 2.1.1. Let ε, μ, ∈ [L∞(R3)]3×3, σm , σe ∈ L∞(R3) be such that ε and μ are real, sym-

metric, and uniformly elliptic in R3, and σm and σe are real and nonnegative in R3, and let

fe , fm ∈ L1
loc([0,∞); [L2(R3)]3). A pair (E ,H ) ∈ L∞

loc([0,∞), [L2(R3)]6) is called a weak solution of

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ε
∂E

∂t
=∇×H −σeE + fm in (0,+∞)×R3,

μ
∂H

∂t
=−∇×E −σmH + fe in (0,+∞)×R3,

E (0, ) = 0;H (0, ) = 0 in R3,

(2.1.9)

if

⎧⎪⎪⎨
⎪⎪⎩

d

d t
〈εE (t , .),E〉+〈σeE (t , .),E〉−〈H (t , .),∇×E〉 = 〈 fm(t , .),E〉,

d

d t
〈μH (t , .), H〉+〈σmH (t , .), H〉+〈E (t , .),∇×H〉 = 〈 fe (t , .), H〉,

for t > 0, (2.1.10)

for all (E , H) ∈ [H(curl,R3)]2, and

E (0, .) =H (0, .) = 0 in R3. (2.1.11)

Some comments on Definition 2.1.1 are in order. System (2.1.10) is understood in the distribu-

tional sense. Initial condition (2.1.11) is understood as

〈εE (0, .),E〉 = 〈μH (0, .), H〉 = 0 for all (E , H) ∈ [H(curl,R3)]2. (2.1.12)
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Chapter 2. Cloaking for time-dependent Maxwell’s equations

From (2.1.10), one can check that

〈εE (t , .),E〉,〈μH (t , .), H〉 ∈W 1,1
loc ([0,+∞)). (2.1.13)

This in turn ensures the trace sense in (2.1.12).

Concerning the well-posedness of (2.1.9), we have, see, e.g., [46, Theorem 3.1],

Proposition 2.1.1. Let fe , fm ∈ L1
loc([0,∞); [L2(R3)]3). There exists a unique weak solution

(E ,H ) ∈ L∞
loc([0,∞), [L2(R3)]6) of (2.1.9). Moreover, for each T > 0, the following estimates hold

∫
R3
|E (t , x)|2 +|H (t , x)|2d x ≤C

⎛
⎝ t∫

0

∥∥∥( fe (s, .), fm(s, .)
)∥∥∥

L2(R3)
d s

⎞
⎠

2

for t ∈ [0,T ], (2.1.14)

for some positive constant C depending only on the ellipticity of ε and μ.

Remark 2.1.2. We emphasize here that the constant C in Proposition 2.1.1 is independent

of T . This fact is later used in the proof of the radiating condition. In [46], the authors

considered dispersive materials and also dealt with Maxwell equations which are non-local in

time. However, this version suffices for our analysis.

We are ready to state the main result of the chapter which is proved in Section 2.3.

Theorem 2.1.1. Let ρ ∈ (0,1) and let (Ec ,Hc ), (E ,H ) ∈ L∞
loc([0,∞), [L2(R3)]6) be the unique

solutions to systems (2.1.7) and (2.1.8) respectively. Assume that J ∈C∞(
(0,+∞);R3)

)
satisfying

(2.1.5) and (2.1.6). Then, for K ⊂⊂R3\B̄1,

‖(Ec ,Hc )− (E ,H )‖L∞((0,T );L2(K )) ≤Cρ3‖J ‖H 11((0,∞);[L2(R3)]3), (2.1.15)

for some positive constant C depending only on K , R0, and T .

Remark 2.1.3. Assertion (2.1.15) is optimal since it gives the same degree of visibility as in the

frequency domain in [41] where the optimality is established.

Remark 2.1.4. Estimate (2.1.15) requires J is regular. The condition on the regularity of J is

not optimal and the optimality would be studied elsewhere.

Our approach is inspired by the work of Nguyen and Vogelius in [45] (see also [47, 40]) where

they study approximate cloaking for the acoustic setting in the time domain. The main idea can

be briefly described as follows. We first transform the Maxwell equations in the time domain

into a family of the Maxwell equations in the harmonic regime by taking the Fourier transform

of solutions with respect to time. After obtaining the appropriate degree of near-invisibility

for the Maxwell equations in the time harmonic regime, where the dependence on frequency

is explicit, we simply invert the Fourier transform. The analysis in the frequency domain ω

(in Section 2.2) can be divided into three steps which deal with low and moderate (0 <ω< 1),
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2.2. Frequency analysis

moderate and high (1 <ω< 1/ρ), high and very high frequency (ω> 1/ρ) regimes. The analysis

in the low and moderate frequency regime (in Section 2.2.1) is based on a variational approach.

In comparison with [41], one needs, in addition, to derive estimate for small frequency in

which the dependence on the frequency is explicit. In the moderate and high frequency

regime, to obtain appropriate estimates, on one hand, we use the multiplier technique for a

lossy region. The test functions are inspired from the scalar case due to Morawetz (see [31]).

Nevertheless, there is a significant difference between the scalar case and the Maxwell vectorial

case. It is known in the scalar case that one can control the normal derivative of a solution to

the exterior Helmholtz equation in homogeneous medium by its value on the boundary of a

convex bounded subset of R3. However, in contrast with the scalar case, one cannot either

use tangential components of the electromagnetic fields to control the normal component

in the same Sobolev norms and conversely. This fact can be seen from the explicit solutions

outside a unit ball of Maxwell equations (see, e.g., [22, Theorem 2.50]). This is the reason for

which we use the multiplier technique for a lossy region. This point again reveals the distinct

structure of Maxwell equations in the time harmonic regime in comparison with the one of

the Helmholtz equations. The analysis in the moderate and high frequency regime is given

in Section 2.2.2. The analysis in the high and very high frequency regime in Section 2.2.3 is

based on the duality method inspired from [28]. The proof of Theorem 2.1.1 based on the

frequency analysis is given in Section 2.3. A key technical point to make use of the analysis in

the frequency domain is the establishment of the radiating condition for the Fourier transform

with respect to time of the solutions of Maxwell equations. The rigorous proof on the radiating

condition in a general setting is new to our knowledge and is interesting in itself.

The chapter is organized as follows. Section 2.2 is devoted to the estimates for Maxwell’s

equations in frequency domain. Section 2.3 gives the proof of Theorem 2.1.1. The assertion

on the radiating condition is also stated and proved there.

2.2 Frequency analysis

In this section, we provide estimates to assess the degree of visibility in the frequency domain.

We first recall some notations. Let U be a smooth open subset of R3. We denote

H(curl,U ) :=
{
φ ∈ [L2(U )]3 : ∇×φ ∈ [L2(U )]3

}
,

H(div,U ) :=
{
φ ∈ [L2(U )]3 : divφ ∈ L2(U )

}
.

We also use the notations Hloc(curl,U ) and Hloc(div,U ) with the usual convention.

GivenJ ∈ [L2(R3)]3 with compact support, let (E,H) ∈ [Hloc(curl,R3)]2 and (Eρ ,Hρ) ∈ [Hloc(curl,R3)]2

57



Chapter 2. Cloaking for time-dependent Maxwell’s equations

be the corresponding unique radiating solutions of the following systems⎧⎪⎨
⎪⎩
∇×E= iωH in R3,

∇×H=−iωE+J in R3,
(2.2.1)

and ⎧⎪⎨
⎪⎩
∇×Eρ = iωμρHρ in R3,

∇×Hρ =−iωερEρ+σρEρ+J in R3.
(2.2.2)

Here

(ερ ,μρ ,σρ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(I , I ,0) in R3 \ Bρ ,

(ρ−1I ,ρ−1I ,ρ−1I ) in Bρ \ Bρ/2,

(F−1
ρ ∗εO ,F−1

ρ ∗μO ,0) in Bρ/2

(2.2.3)

Recall that, for ω> 0, a solution (E , H) ∈ [Hloc(curl,R3 \ BR )]2, for some R > 0, of the Maxwell

equations⎧⎪⎨
⎪⎩
∇×E = iωH in R3 \ BR ,

∇×H =−iωE in R3 \ BR

is called radiating if it satisfies one of the (Silver-Muller) radiation conditions

H ×x −|x|E =O(1/|x|) and E ×x +|x|H =O(1/|x|) as |x|→+∞. (2.2.4)

Here and in what follows, for α ∈ R, O(|x|α) denotes a quantity whose norm is bounded by

C |x|α for some constant C > 0.

Throughout this section, we assume

divJ= 0 and suppJ⊂ BR0 \ B2, (2.2.5)

for some R0 > 2. One sees later (in Section 2.3) that if (Êc ,Ĥc ) and (Ê ,Ĥ ) are the corre-

sponding Fourier transform with respect to t of (Ec ,Hc ) and (E ,H ) and if one defines

(Êρ ,Ĥρ) = (DF T
ρ Êc ,DF T

ρ Ĥc ) ◦Fρ in R3 then (Ê ,Ĥ ) and (Êρ ,Ĥρ) satisfy (2.2.1) and (2.2.2)

respectively (for some J). This is the motivation for the introduction of (E,H) and (Eρ ,Hρ).

The goal of this section is to derive estimates for (Eρ ,Hρ)− (E,H) in which the dependence on

the frequency ω and ρ is explicit. More precisely, we establish the following three results
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Proposition 2.2.1. Let 0 < ρ < ρ0 and 0 <ω<ω0. We have

‖(Eρ ,Hρ)− (E,H)‖L2(BR \B2) ≤CRρ
3ω−1‖J‖L2(R3), (2.2.6)

for some positive constant CR depending only on R0, R, ω0, and ρ0.

Proposition 2.2.2. Let 0 < ρ < ρ0 and 0 <ω0 ≤ω≤ω1ρ
−1 and assume that ρ0 is small enough

and ω0 is large enough. We have, for R > 2,

‖(Eρ ,Hρ)− (E,H)‖L2(BR \B2) ≤CRω
3ρ3‖J‖L2(R3), (2.2.7)

for some positive constant CR depending only on R,R0, ω0, and ω1.

Proposition 2.2.3. Let 0 < ρ < 1, ω1 > 0, and ω>ω1ρ
−1. We have, for R > 2,

‖(Eρ ,Hρ)− (E,H)‖L2(BR \B2) ≤CRω
17/2ρ3‖J‖L2(R3), (2.2.8)

for some positive constant CR depending only on R0,R, and ω1.

To motivate the analysis in this section, we define

(Eρ ,Hρ) =

⎧⎪⎨
⎪⎩

(Eρ ,Hρ)− (E,H) in R3 \ Bρ ,

(Eρ ,Hρ) in Bρ ,
(2.2.9)

and set

(Ẽρ ,H̃ρ) = (Eρ ,Hρ)(ρ · ) in R3. (2.2.10)

As in the previous chapter, the following notation is used in the thesis

⋂
R>1

H(curl,BR \∂D) =
{

u : R3 →R3 such that u ∈ H(curl,D) and u ∈ H(curl,BR \D) for all R > 1
}

Then (Ẽρ ,H̃ρ) ∈ [L2
loc(R3)]6 with (Ẽρ ,H̃ρ) ∈∩R>1H(curl,BR \∂B1) is the unique radiating solu-

tion of⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇× Ẽρ = iωμ̃ρH̃ρ in R3 \∂B1,

∇× H̃ρ =−iωε̃ρẼρ+ σ̃ρẼρ in R3 \∂B1,

[Ẽρ×ν] =−E(ρ · )×ν on ∂B1,

[H̃ρ×ν] =−H(ρ · )×ν on ∂B1,

(2.2.11)
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where

(ε̃ρ , μ̃ρ , σ̃ρ) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ρI ,ρI ,0) in R3 \ B1,

(I , I ,1) in B1 \ B1/2,

(εO ,μO ,0) in B1/2.

(2.2.12)

Here and in what follows for a bounded smooth subset D of R3, we denote [u] := u|ext −u|int

on ∂D for an appropriate (vectorial) function u. We will study (2.2.11) and using this to derive

estimates for (Eρ ,Hρ)− (E,H) in the following three subsections.

2.2.1 Low and moderate frequency analysis - Proof of Proposition 2.2.1

This section is devoted to the proof of Proposition 2.2.1 and contains two subsections. In the

first subsection, we present several useful lemmas and the proof of Proposition 2.2.1 is given

in the second subsection.

Some useful lemmas

In this subsection, Lemma 2.2.1, 2.2.2 and 2.2.3 are basic results that will be used several

times later on. Lemma 2.2.5 is the main result of this subsection. The setting of this lemma

resembles that of Proposition 2.2.1. Lemma 2.2.4 is an intermediate result, which will be used

in the proof of Lemma 2.2.5.

We first recall the following known result which is the basic ingredient for the variational

approach.

Lemma 2.2.1. Let ε be a measurable, symmetric, uniformly elliptic, matrix-valued function

defined in D. Assume that one of the following two conditions holds

i) (un)n∈N ⊂ H(curl,D) is a bounded sequence in H(curl,D) such that

(
div(εun)

)
n∈N converges in H−1(D) and

(
un ×ν

)
n∈N converges in H−1/2(∂D).

ii) (un)n∈N ⊂ H(curl,D) is a bounded sequence in H(curl,D) such that

(
div(εun)

)
n∈N converges in L2(D) and

(
(εun) ·ν)n∈N converges in H−1/2(∂D).

There exists a subsequence of (un)n∈N which converges in [L2(D)]3.

The conclusion of Lemma 2.2.1 under condition i ) is [36, Lemma 1] and has its roots in

[20, 13, 54]. The conclusion of Lemma 2.2.1 under condition i i ) can be obtained in the same

way.
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We have

Lemma 2.2.2. Let 0 <ω<ω0 and D be a simply connected, bounded, open subset of R3 of class

C 1 and denote Γ= ∂D. Let h ∈ H−1/2(divΓ,Γ) and E ∈ H(curl,D). We have

∣∣∣∫
Γ

Ē ·h d s
∣∣∣≤C

(
ω‖E‖L2(D) +‖∇×E‖L2(D)

)(‖h‖H−1/2(Γ) +ω−1‖divΓ h‖H−1/2(Γ)

)
, (2.2.13)

for some positive constant C depending only on D and ω0.

Here and in what follows, ū denotes the complex conjugate of u.

Proof. Let (E 0, H 0) ∈ [H(curl,D)]2 be the unique solution to⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∇×E 0 = iω(1+ i )H 0 in D,

∇×H 0 =−iω(1+ i )E 0 in D,

E 0 ×ν= h on Γ.

We prove by contradiction that

‖(E 0, H 0)‖L2(D) ≤C
(‖h‖H−1/2(Γ) +ω−1‖divΓ h‖H−1/2(Γ)

)
(2.2.14)

for some positive constant C depending only on ω0. Assume that there exist sequences

((En , Hn)) ⊂ [H(curl,D)]2, (ωn) ⊂ (0,ω0) and (hn) ⊂ H−1/2(divΓ,Γ) such that

‖(En , Hn)‖ = 1 for all n, (2.2.15)

‖hn‖H−1/2(Γ) +ω−1
n ‖divΓ hn‖H−1/2(Γ) converges to 0, (2.2.16)

and ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∇×En = iωn(1+ i )Hn in D,

∇×Hn =−iωn(1+ i )En in D,

En ×ν= hn in Γ.

(2.2.17)

Without loss of generality, one can assume that ωn →ω∗. Applying Lemma 2.2.1, one might

assume that (En , Hn) converges to some (E , H) ∈ [L2(D)]6. We only consider the case ω∗ = 0,

61



Chapter 2. Cloaking for time-dependent Maxwell’s equations

the case where ω∗ > 0 is standard. Then⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∇×E = 0 in D,

divE = 0 in D,

E ×ν= 0 on Γ,

and

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∇×H = 0 in D,

div H = 0 in D,

H ·ν= 0 on Γ.

We also have, for each connected component Γ j of Γ,

∫
Γ j

E ·νd s = lim
n→∞

∫
Γ j

En ·νd s = lim
n→∞

[ 1

−iωn(1+ i )

∫
Γ j

(∇×Hn) ·νd s
]
= 0.

Since D is simply connected, it follows (see, e.g., [15, Theorems 2.9 and 3.1]) that E =∇×ξE

and H =∇ξH for some ξE , ξH ∈ H 1(D). We derive from the systems of E and H that∫
D
|∇×ξE |2 d x = 0 and

∫
D
|∇ξH |2 d x = 0.

This yields that E = H = 0 in D . We have a contradiction. Therefore, (2.2.14) is proved.

We have∫
Γ

Ē ·h d s =
∫
Γ

Ē · (E 0 ×ν)d s =
∫

D
(∇× Ē) ·E 0 d x −

∫
D

Ē · (∇×E 0)d x (integration by parts)

=
∫

D
(∇× Ē) ·E 0 d x − iω(1+ i )

∫
D

Ē ·H 0 d x.

It follows from Hölder’s inequality and (2.2.14) that∣∣∣∣
∫
Γ

Ē ·h d s

∣∣∣∣≤ (
ω‖E‖L2(D) +‖∇×E‖L2(D)

)
‖(E 0, H 0)‖L2(D)

≤C
(
ω‖E‖L2(D) +‖∇×E‖L2(D)

)(‖h‖H−1/2(Γ) +ω−1‖divΓ h‖H−1/2(Γ)

)
,

which is (2.2.13).

The following simple result is used in our analysis.

Lemma 2.2.3. Let D be a C 1 bounded open subset ofR3 and denoteΓ= ∂D. Let h ∈ H−1/2(divΓ,Γ)

and u ∈ H(curl,D). We have

∣∣∣∫
Γ

ū ·h
∣∣∣≤C‖u‖H(curl,D)‖h‖H−1/2(divΓ,Γ). (2.2.18)

for some positive constant C independent of h, and u.

Proof. The result is standard. For the convenience of the reader, we present the proof. By the
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trace theory, see, e.g., [1], there exists φ ∈ H(curl,D) such that

φ×ν= h on Γ and ‖φ‖H(curl,D) ≤C‖h‖H−1/2(divΓ,Γ)

for some positive constant C depending only on D . Then, by integration by parts, we have∫
Γ

ū ·h =
∫
Γ

ū · (φ×ν) =
∫

D
∇× ū ·φ−

∫
D

ū ·∇×φ.

The conclusion follows by Hölder’s inequality.

We next present an estimate for the exterior domain in the small and moderate frequency

regime.

Lemma 2.2.4. Let R0 > 2, 0 < k < k0 and D ⊂ B1 be a smooth open subset of R3 such that

R3 \ D is connected. Let ( f1, f2) ∈ [H(div,R3 \ D)]2 with support in BR0 \ D and assume that

(E , H) ∈ [∩R>1H(curl,BR \ D)]2 is a radiating solution of⎧⎪⎨
⎪⎩
∇×E = i kH + f1 in R3 \ D̄ ,

∇×H =−i kE + f2 in R3 \ D̄ .
(2.2.19)

We have, for R > 2,

‖(E , H)‖L2(BR \D) ≤CR

(
‖(E×ν, H×ν)‖H−1/2(∂B1)+‖( f1, f2)‖L2+k−1‖(div f1,div f2)‖L2

)
, (2.2.20)

for some positive constant CR depending only on D, k0, R0, and R.

Proof. By the Stratton-Chu formula, we have, for x ∈R3 \ B̄1,

E(x) =
∫
∂BR0+1/2

∇xGk (x, y)× (
ν(y)×E(y)

)
d y

+ i k
∫
∂BR0+1/2

ν(y)×H(y)Gk (x, y)d y −
∫
∂BR0+1/2

ν(y) ·E(y)∇xGk (x, y)d y,

and

H(x) =
∫
∂BR0+1/2

∇xGk (x, y)× (
ν(y)×E(y)

)
d y

+ i k
∫
∂BR0+1/2

ν(y)×H(y)Gk (x, y)d y −
∫
∂BR0+1/2

ν(y) ·E(y)∇xGk (x, y)d y,

where

Gk (x, y) = ei k|x−y |

4π|x − y | for x �= y. (2.2.21)
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Chapter 2. Cloaking for time-dependent Maxwell’s equations

It follows that, for R > R0 +1,

‖(E , H)‖L2(BR \D) ≤CR‖(E , H)‖L2(BR0+1\D). (2.2.22)

It hence suffices to prove (2.2.20) for R = R0 +1 by contradiction. Assume that there exist

sequences (kn) ⊂ (0,k0),
(
( f1,n , f2,n)

) ⊂ L2(R3 \ D) with support in BR0 \ D, and
(
(En , Hn)

) ⊂
[∩R>1H(curl,BR \ D)]2 such that ‖(En , Hn)‖L2(BR0+1\D) = 1,

lim
n→+∞

(
‖(En ×ν, Hn ×ν)‖H−1/2(∂D) +‖( f1,n , f2,n)‖L2 +k−1

n ‖(div f1,n ,div f2,n)‖L2

)
= 0,

and ⎧⎪⎨
⎪⎩
∇×En = i kn Hn + f1,n in R3 \ D̄ ,

∇×Hn =−i knEn + f2,n in R3 \ D̄ .
(2.2.23)

Without loss of generality, one might assume that kn → k∗ as n →+∞. Using Lemma 2.2.1

and (2.2.22), one can assume that (En , Hn) converges to (E , H) in L2(BR \ D). We first consider

the case k∗ = 0. We have⎧⎪⎨
⎪⎩
∇×E = 0 in R3 \ D̄ ,

E ×ν= 0 on ∂D,

⎧⎪⎨
⎪⎩
∇×H = 0 in R3 \ D̄ ,

H ×ν= 0 on ∂D,
(2.2.24)

divE = 0 in R3 \ D̄ div H = 0 in R3 \ D̄ , (2.2.25)

and

|E(x)| =O(|x|−2) and |H(x)| =O(|x|−2) for large x. (2.2.26)

Assertion (2.2.26) can be derived again from the Stratton-Chu formula using the fact limn→+∞ kn =
0. It follows from (2.2.24) and (2.2.26) that, see, e.g., [41, Lemma 3.1] (see also [15, Chapter I]),

there exist ϕE ,ϕH ∈ H 1
loc(R3 \ D) such that

E(x) =∇ϕE (x) and H(x) =∇ϕH (x),

and

|ϕE (x)| =O(|x|−1) and |ϕH (x)| =O(|x|−1) for large x.

From (2.2.25) and the fact E ×ν= H ×ν= 0 on ∂D , we derive that∫
R3\D

〈∇ϕE ,∇ϕE 〉 =
∫
R3\D

〈∇ϕH ,∇ϕH 〉 = 0.
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This yields

E =∇ϕE = 0 and H =∇ϕH = 0 in R3 \ D.

We have a contradiction with the fact ‖(En , Hn)‖L2(BR0+1\D) = 1.

We next consider the case k∗ > 0. In this case, we have (E , H) satisfies the radiating condition

and ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∇×E = i k∗H in R3 \ D̄ ,

∇×H =−i k∗E in R3 \ D̄ ,

E ×ν= H ×ν= 0 on ∂D.

(2.2.27)

One also reaches that (E , H) = (0,0) in R3 \ D and obtains a contradiction.

In the same spirit, we have

Lemma 2.2.5. Let 0 < ρ < ρ0, 0 <ω<ω0, 1/2 < r < 1, and R0 > 2. Let h = (h1,h2) ∈ [H−1/2(div∂B1 ,∂B1)]2.

Assume that (E , H) ∈ [L2
loc(R3 \ Br )]6 with (E , H) ∈ [∩R>1H(curl, (BR \ Br ) \∂B1)]2 is a radiating

solution of⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∇×E = iωμ̃ρH in (R3 \ B̄r ) \∂B1,

∇×H =−iωε̃ρE + σ̃ρE in (R3 \ B̄r ) \∂B1,

[E ×ν] = h1, [H ×ν] = h2 on ∂B1.

(2.2.28)

We have, for R > 2,

‖(E , H)‖L2(BR \Br ) ≤CR

(
‖(E ×ν, H ×ν)‖H−1/2(∂Br ) +‖(h1,h2)‖H−1/2(∂Br )

+ω−1‖(div∂B1 h1,div∂B1 h2)‖H−1/2(∂B1)

)
, (2.2.29)

for some positive constant CR independent of (h1,h2), ( f1, f2), ρ, and ω.

Proof. As argued in the proof of Lemma 2.2.4, using Stratton-Chu’s formulas, it suffices to

prove

‖(E , H)‖L2(B2\Br ) ≤CR

(
‖(E ×ν, H ×ν)‖H−1/2(∂Br ) +‖(h1,h2)‖H−1/2(∂Br )

+ω−1‖(div∂B1 h1,div∂B1 h2)‖H−1/2(∂B1)

)
, (2.2.30)

by contradiction. Assume that there exist sequences (ωn) ⊂ (0,ω0),
(
( f1,n , f2,n)

)⊂ L2(R3 \ Br )
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with support in B1 \ Br , and
(
(En , Hn)

)⊂ [∩R>1H(curl,BR \ D)]2 such that

‖(En , Hn)‖L2(B2\Br ) = 1, (2.2.31)

lim
n→+∞

(
‖(En ×ν, Hn ×ν)‖H−1/2(∂Br ) +‖(h1,n ,h2,n)‖H−1/2(∂Br )

+ω−1
n ‖(div∂B1 h1,n ,div∂B1 h2,n)‖H−1/2(∂B1)

)
= 0, (2.2.32)

and ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∇×En = iωnμ̃ρn Hn in R3 \ B̄r ,

∇×Hn =−iωn ε̃ρn En + σ̃ρn En in R3 \ B̄r ,

[En ×ν] = h1,n , [Hn ×ν] = h2,n on ∂B1.

(2.2.33)

Without loss of generality, one might assume that ωn →ω∗ and ρn → ρ∗ as n →+∞. We first

consider the case ρ∗ = 0. Since, as n →+∞,

(−iωn +1)En ·ν|i nt =−iωnρnEn ·ν|ext −div∂B1 h2,n → 0 in H−1/2(∂B1)

and

Hn ·ν|i nt = ρn Hn ·ν|ext − (iωn)−1 div∂B1 h1,n → 0 in H−1/2(∂B1),

using (2.2.32) and applying Lemma 2.2.1, one can assume that (En , Hn) converges to (E , H) in

L2(B1 \ Br ). Moreover,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇×E = iω∗H in B1 \ B̄r ,

∇×H =−iω∗E +E in B1 \ B̄r ,

divE = div H = 0 in B1 \ B̄r ,

E ×ν= H ×ν= 0 on ∂Br ,

E ·ν= H ·ν= 0 on ∂B1.

(2.2.34)

As in (2.2.45) below, it is clear that En → 0 in [L2(B2 \ B1)]3. It follows that (E , H) = (0,0) in

B1 \ Br . We derive that

lim
n→+∞‖(En , Hn)‖L2(B1\Br ) = 0 (2.2.35)

and, by [20, Lemma A1],

lim
n→+∞‖(En ×ν, Hn ×ν)|i nt‖H−1/2(∂B1) = 0.
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This yields

lim
n→+∞‖(En ×ν, Hn ×ν)|ext‖H−1/2(B2\B1) = 0. (2.2.36)

This in turn implies, by Lemma 2.2.4, that

lim
n→+∞‖(En , Hn)‖L2(B2\B1) = 0. (2.2.37)

Combining (2.2.31), (2.2.35), and (2.2.37), we obtain a contradiction.

We next consider the case ρ∗ > 0. The proof in this case is similar to the one in Lemma 2.2.4

and omitted (see also [36, Lemma 4] for the case ω∗ > 0).

Remark 2.2.1. The proof gives the following slightly sharper estimate

‖(E , H)‖L2(BR \Br ) ≤CR

(
‖(E ×ν, H ×ν)‖H−1/2(∂Br ) +‖(h1,h2)‖H−1/2(∂Br )

+‖ω−1(div∂B1 h1,div∂B1 h2)‖H−1/2(∂B1)

)
. (2.2.38)

We are ready to give the main result of this section

Lemma 2.2.6. Let 0 < ρ < ρ0 and 0 <ω<ω0, and let h1,h2 ∈ H−1/2(div∂B1 ,∂B1). Let (Eρ , Hρ) ∈
[∩R>1H(curl,BR \∂B1)]2 be the unique radiating solution of⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∇×E = iωμ̃ρH in R3 \∂B1,

∇×H =−iωε̃ρE + σ̃ρE in R3 \ B1,

[E ×ν] = h1, [H ×ν] = h2 on ∂B1.

(2.2.39)

We have

‖(E , H)‖L2(B2\B2/3) ≤Cω−1
(
‖(h1,h2)‖H−1/2(∂B1) +ω−1‖(div∂B1 h1,div∂B1 h2)‖H−1/2(∂B1)

)
,

for some positive constant C depending only on ρ0 and ω0.

Proof. Multiplying the first equation of (2.2.39) by μ̃−1
ρ ∇× Ē and integrating over BR \∂B1, we

have, for R > 1,

∫
BR \∂B1

μ̃−1
ρ ∇×E ·∇× Ē d x = iω

∫
BR \∂B1

H ·∇× Ē d x

= iω
∫

BR \∂B1

(−iωε̃ρE + σ̃ρE) · Ē d x + iω
∫
∂BR

(H ×ν) · Ē d x

− iω
∫
∂B1

(H ×ν)|ext · Ē |ext − (H ×ν)|int · Ē |int.
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Using the definition of σ̃ρ and considering the imaginary part, we have

∫
B1\B1/2

|E |2 d x =ℜ
(∫

∂B1

h2 · Ē |ext d x − h̄1 ·H |int d x

)
−ℜ

∫
∂BR

(H ×ν) · Ē d x. (2.2.40)

Letting R →∞ and using the radiation condition, we derive from (2.2.40) that

∫
B1\B1/2

|E |2 d x ≤
∣∣∣∣
∫
∂B1

h2 · Ē |ext − h̄1H |int d s

∣∣∣∣ (2.2.41)

≤
∣∣∣∣
∫
∂B1

h2 · Ē |ext

∣∣∣∣+
∣∣∣∣
∫
∂B1

h̄1 ·H |ext d s

∣∣∣∣+
∣∣∣∣
∫
∂B1

(h̄1 ×ν) ·h2 d s

∣∣∣∣ .

Applying Lemma 2.2.2 with D = B2 \ B1, we have∣∣∣∣
∫
∂B1

h2 · Ē |ext d s

∣∣∣∣≤Cω‖(E , H)‖L2(B2\B1)

(
‖h2‖H−1/2(∂B1) +ω−1‖divΓ h2‖H−1/2(∂B1)

)
(2.2.42)

and ∣∣∣∣
∫
∂B1

h1 · H̄ |ext d s

∣∣∣∣≤Cω‖(E , H)‖L2(B2\B1)

(
‖h1‖H−1/2(∂B1) +ω−1‖divΓ h1‖H−1/2(∂B1)

)
. (2.2.43)

Applying Lemma 2.2.3, we obtain∣∣∣∣
∫
∂B1

(h̄1 ×ν) ·h2 d s

∣∣∣∣≤C‖(h1,h2)‖2
H−1/2(div∂B1 ,∂B1). (2.2.44)

Denote

M = ‖(h1,h2)‖H−1/2(∂B1) +ω−1‖(divΓ h1,divΓ h2)‖H−1/2(∂B1).

Combining (2.2.41), (2.2.42), (2.2.43) and (2.2.44) yields∫
B1\B1/2

|E |2 d x ≤C
(
ωM‖(E , H)‖L2(B2\B1) +M 2

)
. (2.2.45)

From the equations of (E , H) in B1 \ B1/2, we have

ΔE +ω2E − iωE = 0 in B1 \ B1/2.

It follows from (2.2.45) that

‖E‖2
L2(∂B2/3) +‖∇E‖2

L2(∂B2/3) ≤C
(
ωM‖(E , H)‖L2(B2\B1) +M 2

)
, (2.2.46)

which yields

‖(E , H)‖2
L2(∂B2/3) ≤C

(
ω−1M‖(E , H)‖L2(B2\B1) +ω−2M 2

)
. (2.2.47)
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Using (2.2.47) and applying Lemma 2.2.5 with r = 2/3, we derive that

‖(E , H)‖2
L2(BR \B2/3) ≤C

(
ω−1M‖(E , H)‖L2(B2\B1) +ω−2M 2

)
,

and the conclusion follows.

We end this subsection with

Lemma 2.2.7. Let 0 < ρ < 1 and ρω< k0, and let D ⊂ B1 be a smooth, open subset of R3. Assume

that (E , H) ∈ [∩R>2H(curl,BR \ D)]2 is a radiating solution to the system⎧⎪⎨
⎪⎩
∇×E = iωρH in R3 \ D,

∇×H =−iωρE in R3 \ D.

We have, for R ≥ 1 and x ∈ B3R/ρ \ B2R/ρ ,

|E(x)| ≤CRρ
3
(
(ω2 +1)‖E‖L2(B2\D) + (ω+1)ω‖H‖L2(B2\D)

)
,

for some positive constant C depending only on k0 and R.

Proof. By Stratton-Chu’s formula, we have, for x ∈R3 \ B̄1,

E(x) =
∫
∂B1

∇xGk (x, y)× (
ν(y)×E(y)

)
d y

+ iωρ
∫
∂B1

ν(y)×H(y)Gk (x, y)d y −
∫
∂B1

ν(y) ·E(y)∇xGk (x, y)d y, (2.2.48)

where k =ωρ and Gk is given in (2.2.21).

Let (Ẽ , H̃) ∈ [H(curl,B1)]2 be the unique solution to the system⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∇× Ẽ = iωρ(1+ i )H̃ in B1,

∇× H̃ =−iωρ(1+ i )Ẽ in B1,

Ẽ ×ν= E ×ν on ∂B1.

(2.2.49)

By a contradiction argument, see, e.g., [41] (see also the proof of Lemma 2.2.6), we obtain

‖(Ẽ , H̃)‖L2(B1) ≤C‖E ×νext, H ·ν|ext‖H−1/2(∂B1). (2.2.50)

Since ∣∣∣∣
∫
∂B1

E ×νd s

∣∣∣∣=
∣∣∣∣
∫
∂B1

Ẽ ×νd s

∣∣∣∣=
∣∣∣∣
∫

B1

∇× Ẽ d x

∣∣∣∣=
∣∣∣∣
∫

B1

ωρ(1+ i )H̃d x

∣∣∣∣ ,
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Chapter 2. Cloaking for time-dependent Maxwell’s equations

we obtain∣∣∣∣
∫
∂B1

E ×νd s

∣∣∣∣≤Cωρ‖(E , H)‖L2(B2\D). (2.2.51)

Similarly, we have∣∣∣∣
∫
∂B1

H ×νd s

∣∣∣∣≤Cωρ‖(E , H)‖L2(B2\D). (2.2.52)

One has∫
∂B1

ν ·E d s = 1

iωρ

∫
∂B1

ν ·∇×H d s = 0. (2.2.53)

Rewrite (2.2.48) under the form

E(x) =∫
∂B1

∇xGk (x,0)× (
ν(y)×E(y)

)
d y +

∫
∂B1

(∇xGk (x, y)−∇xGk (x,0)
)× (

ν(y)×E(y)
)
d y

+ i k
∫
∂B1

ν(y)×H(y)Gk (x,0)d y + i k
∫
∂B1

ν(y)×H(y)
(
Gk (x, y)−Gk (x,0)

)
d y

−
∫
∂B1

ν(y) ·E(y)∇xGk (x,0)d y −
∫
∂B1

ν(y) ·E(y)
(∇xGk (x, y)−∇xG(x,0)

)
d y.

Using the facts, for |x| ∈ (2R/ρ,3R/ρ) and y ∈ ∂B1,

|Gk (x, y)−Gk (x,0)| ≤C (1+ω)ρ2, |∇Gk (x, y)−∇Gk (x,0)| ≤C (1+ω2)ρ3,

‖E‖L2(∂B1) ≤C‖E‖L2(B2\D) and ‖H‖L2(∂B1) ≤C‖H‖L2(B2\D),

we derive the conclusion from (2.2.51), (2.2.52), and (2.2.53).

Proof of Proposition 2.2.1

Applying Lemma 2.2.6 to (Ẽρ ,H̃ρ), we have

‖(Ẽρ ,H̃ρ)‖L2(B2\B1) ≤Cω−1‖(E(ρ .),H(ρ .)
)‖L2(∂B1). (2.2.54)

Since divJ= 0, we have

ΔE+ω2E=−iωJ in R3.

It follows that, for x ∈ B2,

E(x) =−iω
∫
R3
J(y)Gω(x, y)d y and H(x) =−∇x ×

∫
R3
J(y)Gω(x, y)d y. (2.2.55)
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This yields

‖E(ρ.),H(ρ.)‖C (∂B1) ≤C‖J‖L2(R3). (2.2.56)

From (2.2.54) and (2.2.56), we obtain

‖(Ẽρ ,H̃ρ)‖L2(B2\B1) ≤Cω−1‖J‖L2(R3). (2.2.57)

Applying Lemma 2.2.7 to (Ẽρ ,H̃ρ), we have, for x ∈ B3r /ρ \ B2r /ρ ,

∣∣∣(Ẽρ(x),H̃ρ(x)
)∣∣∣≤Crω

−1ρ3‖J‖L2(R3) for r > 1/2,

Since (Eρ ,Hρ)− (E,H) = (Ẽρ ,H̃ρ)(ρ−1 · ) in R3 \ B2, the conclusion follows.

2.2.2 Moderate and high frequency analysis - Proof of Proposition 2.2.2

This section contains two subsections. In the first subsection, we present several lemmas

used in the proof of Proposition 2.2.2. The proof of Proposition 2.2.2 is given in the second

subsection. The main objective of the first subsection is Lemma 2.2.9 which is analogous to

Lemma 2.2.6 in the low frequency regime. To this end, we use a priori estimate in a bounded

domain (in high frequency) in Corollary 2.2.1, which is obtained from Lemma 2.2.8.

Some useful lemmas

We begin with the following lemma that provide a priori estimate for the Maxwell equations in

high frequency. The method of multiplication is used.

Lemma 2.2.8. Let ω > ω0, and let Ω be a convex bounded subset of R3 of class C 1. Let j ∈
H(div,Ω) and let u ∈ H(curl,Ω)∩H(div,Ω) be such that

∇×∇×u −ω2u = j in Ω, (2.2.58)

and u ·ν, (∇×u) ·ν ∈ L2(∂Ω). Then

‖(ωu ×ν, (∇×u)×ν)‖L2(∂Ω)

≤C
(
‖(ωu,∇×u)‖L2(Ω) +‖(ωu ·ν, (∇×u) ·ν)‖L2(∂Ω) +‖ j‖L2(Ω) +ω−1‖div j‖L2(Ω)

)
,

(2.2.59)

for some positive constant C depending only on Ω and ω0.

Proof. The analysis is based on the multiplier technique. We first consider div j = 0. Multiply-
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Chapter 2. Cloaking for time-dependent Maxwell’s equations

ing (2.2.58) by (∇× ū)×x and integrating over Ω, we obtain

∫
Ω

j · (∇× ū)× x d x =
∫
Ω
∇× (∇×u) · (∇× ū)× x d x −ω2

∫
Ω

u · (∇× ū)× x d x. (2.2.60)

Set

I1 :=−ω2
∫
Ω

u · (∇× ū)×x d x, and I2 :=
∫
Ω
∇× (∇×u) · (∇× ū)×x d x.

We have

I1 =−ω2
∫
Ω

u · (∇× ū)×x d x =ω2
∫
Ω

(∇× ū) · (u ×x)d x

=ω2
∫
Ω

ū ·∇× (u ×x)d x −ω2
∫
∂Ω

(ū ×ν) · (u ×x)d s (by integration by parts).

Recall that, for all v ∈ [H 1(Ω)]3,

∇× (v ×x) =−x × (∇× v)+ v +∇(v · x)−x div v in Ω. (2.2.61)

Using (2.2.61), and the fact divu = div j = 0 in Ω, we derive that

I1 =−ω2
∫
Ω

ū · [x × (∇×u)
]

d x +ω2
∫
Ω
|u|2 d x

+ω2
∫
Ω

ū ·∇(u · x)d x −ω2
∫
∂Ω

(ū ×ν) · (u ×x)d s

=−I1 +ω2
[∫

Ω
|u|2 d x +

∫
∂Ω

(ū ·ν)(u · x)−
∫
∂Ω

(ū ×ν) · (u ×x)d s

]
.

This implies

ℜI1 = ω2

2

(∫
Ω
|u|2 d x +

∫
∂Ω

(ū ·ν)(u · x)−
∫
∂Ω

(ū ×ν) · (u ×x)d s

)
. (2.2.62)

Similarly, we have

ℜI2 = 1

2

(∫
Ω
|∇×u|2 d x +

∫
∂Ω

((∇× ū) ·ν)((∇×u) · x)−
∫
∂Ω

((∇× ū)×ν) · ((∇×u)×x)d s

)
.

(2.2.63)

Combining (2.2.60), (2.2.62), and (2.2.63) yields

∫
Ω
ω2|u|2 +|∇×u|2 d x −

∫
∂Ω

ω2(ū ×ν) · (u ×x)+ ((∇× ū)×ν) · ((∇×u)×x)d s

+
∫
∂Ω

ω2(ū ·ν)(u · x)+ ((∇× ū) ·ν)((∇×u) · x)d s =ℜ
{∫

Ω
j · (∇× ū)×x d x

}
. (2.2.64)
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Using Schwarz’s inequality for the RHS, this implies (2.2.59) in the case div j = 0 in Ω.

We next consider arbitrary div j . Let φ ∈ H 1
0 (Ω) be the unique solution of

Δφ= div j in Ω,

It is clear that

‖φ‖H 1(Ω) ≤C‖ j‖L2(Ω) (2.2.65)

and

‖∇φ×ν‖L2(∂Ω) ≤C‖φ‖H 2(Ω) ≤C‖div j‖L2(Ω), (2.2.66)

for some positive constant C depending only on Ω. Set

ũ = u −ω−2∇φ in Ω. (2.2.67)

We have

∇×∇× ũ −ω2ũ = j −∇φ in Ω.

Since div( j −∇φ) = 0 in Ω, applying the previous case to ũ, we obtain the conclusions from

(2.2.65), (2.2.66) and (2.2.67).

As a consequence of Lemma 2.2.8, we can prove

Corollary 2.2.1. Let ω > ω0. Let j ∈ H(div,B1 \ B3/4) and let (E , H) ∈ [H(curl,B1 \ B3/4)]2 be

such that E ·ν, H ·ν ∈ [L2(∂B1)]3. Assume that⎧⎪⎨
⎪⎩
∇×E = iωH in B1 \ B3/4,

∇×H =−iωE + j in B1 \ B3/4.
and div j = 0 in B1 \ B3/4.

We have

‖(E ×ν, H ×ν)‖L2(∂B1) ≤C
(
‖(E , H)‖L2(B1\B3/4) +‖(E ·ν, H ·ν)‖L2(∂B1) +‖ j‖L2(B1\B3/4)

)
,

for some positive constant C depending only on ω0.

Proof. Let 0 ≤φ≤ 1 be a smooth function in B1 such that φ(x) = 0 in B4/5, and φ(x) = 1 in B1 \

B5/6. Extend u and j by 0 in B3/4 and set u =φE in B1. Then

∇×∇×u −ω2u = iωφ j +∇× (∇φ×E)+∇φ× (∇×E) in B1. (2.2.68)
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Chapter 2. Cloaking for time-dependent Maxwell’s equations

Since ΔE +ω2E = iω j in B1 \ B3/4, we have

‖∇E‖L2(B5/6\B4/5) ≤Cω
(
‖E‖L2(B1\B3/4) +‖ j‖L2(B1\B3/4)

)
. (2.2.69)

Applying Lemma 2.2.8 and using (2.2.68) and (2.2.69) one obtains the conclusion.

The main result of this section is the following lemma which is a variant of Lemma 2.2.6 in the

case ω0 <ω<ω1ρ
−1.

Lemma 2.2.9. Let 0 < ρ < ρ0 and 0 <ω0 <ω<ω1/ρ. Suppose that h1,h2 ∈ L2(divΓ,∂B1) and

let (E , H) ∈ [∩R>1H(curl,BR \∂B1)]2 be the unique radiating solution to the system⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∇×E = iωμ̃ρH in R3,

∇×H =−iωε̃ρE + σ̃ρE in R3,

[E ×ν] = h1, [H ×ν] = h2 on ∂B1.

(2.2.70)

If ρ0 is small enough and ω0 is large enough, we have that

‖(E ×ν, H ×ν)int‖L2(∂B1) ≤C
(
‖(h1,h2)‖L2(∂B1)+ω−1‖(div∂B1 h1,div∂B1 h2)‖L2(∂B1)

)
, (2.2.71)

for some positive constant C depending only on ω0, ω1, and ρ0.

Proof. Applying Corollary 2.2.1, we have

‖(E ×ν|int, H ×ν|int)‖2
L2(∂B1) ≤C

(
‖(E , H)‖2

L2(B1\B3/4) +‖(E ·ν, H ·ν)|int‖2
L2(∂B1)

)
. (2.2.72)

One has, see, e.g., [13],

‖(E ·ν, H ·ν)|ext‖2
L2(∂B1) ≤C

(
‖(E ×ν, H ×ν)|ext‖2

L2(∂B1)+‖(E , H)‖L2(B2\B1)+‖(E , H)‖L2(∂B2)

)
.

for some C =Cω1 > 0. By Lemma 2.2.4, we obtain

‖(E ·ν, H ·ν)|ext‖2
L2(∂B1) ≤C‖(E ×ν, H ×ν)|ext‖2

L2(∂B1) (2.2.73)

Since

(
1− (iω)−1)E ·ν|i nt = ρE ·ν|ext + 1

iω
div∂B1 h2 and H ·ν|i nt = ρH ·ν|ext + 1

iω
div∂B1 h1

we derive from (2.2.73) that

‖(E ·ν, H ·ν)|int‖2
L2(∂B1) ≤C

(
ρ2‖(E ×ν, H ×ν)|ext‖2

L2(∂B1) +ω−2‖div∂B1 (h1,h2)‖2
L2(∂B1)

)
.
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From the transmission conditions on ∂B1, we deduce that

‖(E ·ν, H ·ν)|int‖2
L2(∂B1)

≤C
(
ρ2‖(E ×ν, H ×ν)|int‖2

L2(∂B1) +ρ2‖(h1,h2)‖2
L2(∂B1) +ω−2‖div∂B1 (h1,h2)‖2

L2(∂B1)

)
.

(2.2.74)

On the other hand, as in (2.2.41), we have∫
B1\B1/2

|E |2 d x ≤
∣∣∣∣
∫
∂B1

h2 · Ē |ext − h̄1H |i nt d s

∣∣∣∣ (2.2.75)

≤C
(
ω0‖(h1,h2)‖2

L2(∂B1) +ω−1
0 ‖(E ×ν, H ×ν)|ext‖2

L2(∂B1)

)
.

Since ΔE +ω2E − iωE = 0 in B1 \ B1/2, it follows that∫
B3/4\B2/3

|E |2+ω−2|∇E |2 d x ≤C
(
ω0‖(h1,h2)‖2

L2(∂B1)+ω−1
0 ‖(E×ν, H×ν)|ext‖2

L2(∂B1)

)
. (2.2.76)

An Integration by parts yields, for 2/3 < r < 3/4, that

ω2
∫

B1\Br

|H |2 d x −ω2
∫

B1\Br

|E |2 d x

=ℜ
{

iω
∫
∂B1

Ē |int(H ×ν|int)d s − iω
∫
∂Br

Ē |int(H ×ν|int)d s
}

. (2.2.77)

Combining (2.2.75), (2.2.76) and (2.2.77) yields∫
B1\B3/4

|E |2 +|H |2 d x ≤C
(
ω0‖(h1,h2)‖2

L2(∂B1) +ω−1
0 ‖(E ×ν, H ×ν)|i nt‖2

L2(∂B1)

)
. (2.2.78)

From (2.2.72), (2.2.74) and (2.2.78), one obtains that, for ρ small enough,

‖(E ×ν|int, H ×ν|int)‖2
L2(∂B1)

≤C
(
ω0‖(h1,h2)‖2

L2(∂B1) +ω−1
0 ‖(E ×ν, H ×ν)|int‖2

L2(∂B1) +ω−2‖div∂B1 (h1,h2)‖2
L2(B1)

)
.

(2.2.79)

This implies

‖(E ×ν|int, H ×ν|int)‖2
L2(∂B1) ≤C

(
‖(h1,h2)‖2

L2(∂B1) +ω−2‖div∂B1 (h1,h2)‖2
L2(B1)

)
, (2.2.80)

for ω0 large enough and ρ small enough.
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Proof of Proposition 2.2.2.

Apply Lemma 2.2.9, we have

‖(Ẽρ ,H̃ρ)‖L2(B2\B1) ≤C‖(E(ρ ·),H(ρ ·))‖L2(∂B1). (2.2.81)

Since ω>ω0 large, by (2.2.55), one has

‖E(ρ.),H(ρ.)‖L2(∂B1)+ω−1‖div∂B1 (E(ρ.)×ν,div∂B1 H(ρ.)×ν)‖L2(∂B1) ≤Cω‖J‖L2(R3). (2.2.82)

Applying Lemmas 2.2.9 and 2.2.4, we obtain

‖(Ẽρ ,H̃ρ)‖L2(B2\B1) ≤Cω‖J‖L2(R3).

The conclusion now follows from Lemma 2.2.7 in the case ωρ < 1 and from Lemma 2.2.12 in

the case ωρ > 1.

2.2.3 High and very high frequency analysis - Proof of Proposition 2.2.3

This section contains two subsections. In the first subsection, we present several lemmas

used in the proof of Proposition 2.2.3. The proof of Proposition 2.2.3 is given in the second

subsection.

Some useful lemmas

We begin this section with a trace-type result for Maxwell’s equations in a bounded domain.

The analysis is based on the Aubin–Nitsche duality argument, see e.g., [11, Lemma 4.8] (or

dual method, see, e.g., [28]). In this subsection, D denotes an open smooth bounded subset of

R3.

Lemma 2.2.10. Let ω>ω0 > 0 and f ∈ H(div,D). Assume that (E , H) ∈ [H(curl,D)]2 satisfies

the equations⎧⎪⎨
⎪⎩
∇×E = iωH in D,

∇×H =−iωE + f in D.
(2.2.83)

Then

‖E‖H−1/2(∂D) +ω‖H ×ν‖H−3/2(∂D) ≤C
(
ω2‖E‖L2(D) +ω‖ f ‖L2(D) +ω−1‖div f ‖L2(D)

)
,

for some positive constant C depending only on D and ω0.

Remark 2.2.2. It is crucial to our analysis that the constant C is independent of ω.
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Proof. We have, from (2.2.83),

ΔE +ω2E =∇(divE)−∇× (∇×E)+ω2E = 1

iω
∇(div f )− iω f in D. (2.2.84)

Fix φ ∈ [H 1/2(∂D)]3 (arbitrary). By [15, Theorem 1.6], there exists ξ ∈ [H 2(D)]3 such that

ξ= 0 on ∂D,
∂ξ

∂ν
=φ on ∂D, (2.2.85)

and

‖ξ‖H 2(D) ≤C‖φ‖H 1/2(∂D). (2.2.86)

Here and in what follows, C denotes a positive constant depending only on D and ω0. Multi-

plying (2.2.84) by ξ and integrating by parts, we obtain∫
D

(Δξ+ω2ξ)E −
∫
∂D

Eφ=
∫

D
(ΔE +ω2E)ξ=

∫
D
− 1

iω
div f divξ− iω f ξ (2.2.87)

We derive from (2.2.86) that∣∣∣∣
∫
∂D

Eφd s

∣∣∣∣≤C
(
ω2‖E‖L2(D) +ω‖ f ‖L2(D) +ω−1‖div f ‖L2(D)

)
‖φ‖H 1/2(∂D),

which implies, since φ is arbitrary,

‖E‖H−1/2(∂D) ≤C
(
ω2‖E‖L2(D) +ω‖ f ‖L2(D) +ω−1‖div f ‖L2(D)

)
. (2.2.88)

It remains to prove

‖H ×ν‖H−3/2(∂D) ≤C
(
ω‖E‖L2(D) +‖ f ‖L2(D) +ω−2‖div f ‖L2(D)

)
. (2.2.89)

Fix ϕ ∈ H 3/2(∂D) (arbitrary), consider an extension of ϕ in D such that its H 2(D)-norm is

bounded by C‖ϕ‖H 3/2(∂D), and still denote this extension by ϕ. Such an extension exists by the

trace theory, see, e.g., [15, Theorem 1.6]. We have∫
∂D

H ×ν ·ϕd s =
∫

D

(
∇×ϕ ·H −∇×H ·ϕ

)
d x. (2.2.90)

Since ∣∣∣∣
∫

D
∇×ϕ ·H d x

∣∣∣∣=ω−1
∣∣∣∣
∫

D
∇×ϕ ·∇×E d x

∣∣∣∣
=ω−1

∣∣∣∣
∫

D
∇×∇×ϕ ·E d x +

∫
∂D

E · ((∇×ϕ)×ν)d s

∣∣∣∣ ,
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Chapter 2. Cloaking for time-dependent Maxwell’s equations

and ∇×H = iωE + f , it follows from (2.2.88) that

∣∣∣∫
D
∇×ϕ ·H d x

∣∣∣≤C
(
ω‖E‖L2(D) +‖ f ‖L2(D) +ω−2‖div f ‖L2(D)

)
‖ϕ‖H 3/2(∂D) (2.2.91)

and ∣∣∣∫
D
∇×H ·ϕd x

∣∣∣≤C
(
ω‖E‖L2(D) +‖ f ‖L2(D)

)
‖ϕ‖H 3/2(∂D). (2.2.92)

Combining (2.2.90), (2.2.91), and (2.2.92) yields∣∣∣∣
∫
∂D

H ×ν ·ϕd s

∣∣∣∣≤C
(
ω‖E‖L2(D) +‖ f ‖L2(D) +ω−2‖div f ‖L2(D)

)
‖ϕ‖H 3/2(∂D).

Since ϕ is arbitrary, assertion (2.2.89) follows. The proof is complete.

Using Lemma 2.2.10, we establish

Lemma 2.2.11. Let ω1 > 0, 0 < ρ < 1, and assume that ωρ >ω1. Given h1,h2 ∈ H 3/2(divΓ,∂B1),

let (E , H) ∈ [∩R>1H(curl,BR \∂B1)]2 be the unique radiating solution of

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇×E = iωμ̃ρH in R3,

∇×H =−iωε̃ρE + σ̃ρE in R3,

[E ×ν] = h1; [H ×ν] = h2 on ∂B1,

(2.2.93)

where (ε̃ρ , μ̃ρ , σ̃ρ) is defined in (2.2.12). We have

‖E ×ν|int‖H−1/2(∂B1) +ω‖H ×ν|int‖H−3/2(∂B1) ≤C
(
ω4‖h2‖H 1/2(∂B1) +ω3‖h1‖H 3/2(∂B1)

)
,

for some positive constant C depending only on ω1.

Proof. As in (2.2.41), we have

∫
B1\B1/2

|E |2 d x ≤
∣∣∣∣
∫
∂B1

h2 · Ē |ext − h̄1H |int d s

∣∣∣∣ .

This implies

∫
B1\B1/2

|E |2 d x ≤ ‖h2‖H 1/2(∂B1)‖E |int‖H−1/2(∂B1)

+‖h1‖H 3/2(∂B1)‖H ×ν|int‖H−3/2(∂B1) +‖h2‖2
L2(∂B1) (2.2.94)

Applying Lemma 2.2.10 to (E , H) with f = E in B1 \ B1/2, we have

‖E |int‖H−1/2(∂B1) +ω‖H ×ν‖H−3/2(∂B1) ≤Cω2‖E‖L2(B1\B1/2).
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2.2. Frequency analysis

It follows from (2.2.94) that

‖E‖L2(B1\B1/2) ≤C
(
ω2‖h2‖H 1/2(∂B1) +ω‖h1‖H 3/2(∂B1)

)
. (2.2.95)

Applying Lemma 2.2.10 to (E , H) with f = E in B1 \ B1/2 again, one has

‖E ×ν|int‖H−1/2(∂B1) +ω‖H ×ν|int‖H−3/2(∂B1) ≤C
(
ω4‖h2‖H 1/2(∂B1) +ω3‖h1‖H 3/2(∂B1)

)
Using the transmission condition at ∂B1, one reaches the conclusion.

We end this subsection by a simple consequence of Stratton-Chu’s formula.

Lemma 2.2.12. Let 0 < ρ < 1, ω > 0 with ωρ > ω1, and D ⊂ B1. Assume that (E , H) ∈[
Hloc(curl,R3 \ D)

]2 is a radiating solution to the Maxwell equations

⎧⎨
⎩

∇×E = iωρH in R3 \ D̄ ,

∇×H =−iωρE in R3 \ D̄ .

We have

|E(x)| ≤ C |ωρ|3/2

|x| ‖E ×ν‖H−1/2(∂D) +
C |ωρ|5/2

|x| ‖H ×ν‖H−3/2(∂D) for x ∈ B3/ρ \ B1/ρ , (2.2.96)

for some positive constant C independent of x, ω, and ρ.

Proof of Proposition 2.2.3.

Apply Lemma 2.2.9, we have

‖Ẽρ×ν‖H−1/2(B2\B1) +ω‖H̃ρ×ν‖H−3/2(B2\B1)

≤Cω3‖E(ρ ·)×ν‖H 3/2(∂B1) +Cω4‖H(ρ ·)×ν‖H 1/2(∂B1). (2.2.97)

Since ω>ω0 large, by (2.2.55), one has

ω3‖E(ρ ·)×ν‖H 3/2(∂B1) +ω4‖H(ρ ·)×ν‖H 1/2(∂B1) ≤Cω6ρ1/2‖J‖L2(R3). (2.2.98)

Applying Lemma 2.2.12, we derive from (2.2.97) and (2.2.98) that

‖Ẽρ‖L2(B3\B1/2) ≤Cω15/2ρ3‖J‖L2(R3),

which yields

‖H̃ρ‖L2(B2\B1) ≤Cω17/2ρ3‖J‖L2(R3).

The proof is complete.
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Chapter 2. Cloaking for time-dependent Maxwell’s equations

2.3 Proof of Theorem 2.1.1

To implement the analysis in the frequency domain, let us introduce the notation of Fourier

transform with respect to t :

û(ω, x) = 1�
2π

∫
R

u(t , x)eiωt d t , (2.3.1)

for an appropriate function u ∈ L∞
loc([0,+∞),L2(R3)); here we extend u by 0 for t < 0.

The starting point of the frequency analysis is based on the following result:

Proposition 2.3.1. Let fe , fm ∈ L2([0,∞); [L2(R3)]3)∩L1([0,∞); [L2(R3)]3). Assume that (E ,H )

∈ L∞
loc([0,+∞), [L2(R3)]6) be the unique weak solution of (2.1.9). Assume that there exists R0 > 0

such that supp fe (t , ·), supp fm(t , ·), suppσe , suppσm ⊂ BR0 . Then, for almost every ω > 0,

(Ê ,Ĥ )(ω, .) ∈ [Hloc(curl,R3)]2 is the unique radiating solution to the system⎧⎪⎨
⎪⎩
∇× Ê (ω, .) = iωμĤ (ω, .)−σmĤ (ω, ·)+ f̂e (ω, ·) in R3,

∇×Ĥ (ω, .) =−iωεÊ (ω, .)+σe Ê (ω, .)− f̂m(ω, .) in R3.
(2.3.2)

Proof. Let (Eδ,Hδ) ∈ L∞
loc([0,∞), [L2(R3)]6) be the unique weak solution to

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ε
∂Eδ

∂t
=∇×Hδ−σeEδ−δEδ+ fm in (0,+∞)×R3,

μ
∂Hδ

∂t
=−∇×Eδ−σmHδ−δHδ+ fe in (0,+∞)×R3,

Eδ(0, ) = 0;Hδ(0, ) = 0 in R3.

(2.3.3)

By the standard Galerkin approach, one can prove that

δ

∫+∞

0

∫
R3
|Eδ(s, x)|2 +|Hδ(s, x)|2 d x d s ≤C‖( fe , fm)‖2

L2(R+,R3). (2.3.4)

for some positive constant independent of δ and ( fe , fm). Hence Eδ,Hδ ∈ L2((0,∞); [L2(R3)]3),

and thus Êδ,Ĥδ ∈ L2((0,∞); [L2(R3)]3) by Parserval’s theorem. It follows, for a.e. ω> 0, that

(Êδ,Ĥδ) ∈ H(curl,R3) is the unique solution to⎧⎪⎨
⎪⎩
∇× Êδ(ω, .) = iωμĤδ(ω, .)− (σm +δ)Ĥδ(ω, .)+ f̂e (ω, ·) in R3,

∇×Ĥδ(ω, .) =−iωεÊδ(ω, .)+ (σe +δ)Êδ(ω, .)− f̂m(ω, .) in R3.
(2.3.5)

For 0 <ω1 <ω<ω2 <∞, one can check that the solution of (2.3.5) satisfies

‖(Êδ,Ĥδ)(ω, .)‖H(curl,BR ) ≤C‖( f̂e , f̂m)(ω, .)‖L2(R3) ≤C‖( fe , fm)‖L1((0,∞),L2(R3)). (2.3.6)

80



2.3. Proof of Theorem 2.1.1

for some positive constant C depending only on ε,μ, R, ω1, and ω2. Letting δ→ 0 and using

the limiting absorption principle, see e.g., [36, (2.28) and the following paragraph], one derives

that

(Êδ,Ĥδ)(ω, ) � (E0,H0)(ω, .) weakly in [Hloc(curl,R3)]2 as δ→ 0, (2.3.7)

where (E0,H0)(ω, .) ∈ [Hloc(curl,R3)]2 is the unique radiating solution to the system⎧⎪⎨
⎪⎩
∇×E0(ω, .) = iωμH0(ω, .)−σmH0 + f̂e (ω, ·) in R3,

∇×H0(ω, .) =−iωεE0(ω, .)+σeE0(ω, .)− f̂m(ω, .) in R3.
(2.3.8)

From (2.3.6) and (2.3.7), we have

(Êδ,Ĥδ) → (E0,H0) in distributional sense in R+×R3 as δ→ 0. (2.3.9)

We claim that

(Êδ,Ĥδ) → (Ê ,Ĥ ) in distributional sense in R+×R3. (2.3.10)

and the conclusion follows from (2.3.9) and (2.3.10).

It remains to prove (2.3.10). Let φ ∈ [C∞
c

(
(0,∞)×R3)

]3. We have

∫
R

∫
R3

(Êδ(ω, x)− Ê (ω, x))φ̄(ω, x)d xdω=
∫
R

∫
R3

(Eδ(t , x)−E (t , x)) ¯̌φ(t , x)d xd t . (2.3.11)

We have, by applying Proposition 2.1.1 to (Eδ−E ,Hδ−H ),

‖Eδ(t , .)−E (t , .)‖L2(R3) ≤Cδ

∫t

0
‖(E (s, .),H (s, .))‖L2(R3) d s for t > 0,

and, by applying Proposition 2.1.1 for (E ,H ),

‖(E (s, .),H (s, .))‖L2(R3) ≤C‖( fe , fm)‖L1((0,∞),[L2(R3)]6) for t > 0.

It follows that

‖Eδ(t , .)−E (t , .)‖L2(R3) ≤Cδt . (2.3.12)

From (2.3.12), we have∫
R

∫
R3

(Eδ(t , x)−E (t , x)) ¯̌φ(t , x)d xd t ≤Cδ

∫
R

t‖φ̌(t , .)‖L2(R3) d t . (2.3.13)

From (2.3.13) and the fast decay property of φ̌, we derive that

Êδ → Ê in distributional sense in R+×R3.
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Chapter 2. Cloaking for time-dependent Maxwell’s equations

Similarly, one can prove that

Ĥδ → Ĥ in distributional sense in R+×R3.

The proof is complete.

We are ready to give

Proof of Theorem 2.1.1. Fix K ⊂⊂ R3 \ B̄1 and T > 0. Using the fact that Êc (−k, x) = Êc (k, x)

and Ê (−k, x) = Ê (k, x) for k > 0, one has, for 0 < t < T ,

‖Ec (t , ·)−E (t , ·)‖L2(K ) ≤
∫T

0
‖∂t Ec (t , ·)−∂t E (t , ·)‖L2(K ) ≤ T

∫∞

0
ω‖Êc (ω, ·)− Ê (ω, ·)‖L2(K )dω.

(2.3.14)

We have, by Proposition 2.2.1,

1∫
0

ω‖Êc (ω, .)− Ê (ω, .)‖L2(K )dω≤C

1∫
0

ρ3‖Ĵ (ω, .)‖L2(R3)dω≤Cρ3‖J ‖2
L2(R;L2(R3)), (2.3.15)

by Proposition 2.2.2 (here for simplicity of notations we assume that ω0 = 1),

1/ρ∫
1

ω‖Êc (ω, .)− Ê (ω, .)‖L2(K )dω≤Cρ3

1/ρ∫
1

ω4‖Ĵ (ω, .)‖L2(R3)dω, (2.3.16)

and, by Proposition 2.2.3,

+∞∫
1/ρ

ω‖Êc (ω, .)− Ê (ω, .)‖L2(K )dω≤Cρ3

+∞∫
1
ρ

ω19/2‖Ĵ (ω, .)‖L2(R3)dω, (2.3.17)

A combination of (2.3.16), and (2.3.17) yields

∞∫
1

ω‖Êc (ω, .)− Ê (ω, .)‖L2(K )dω≤Cρ3
∫+∞

1

1

ω
‖"∂(11)

t J (ω, ·)‖L2(R3)) dω (2.3.18)

≤Cρ3‖J ‖H 11(R,L2(R3))

We derive from (2.3.14), (2.3.15) and (2.3.18) that, for 0 < t < T ,

‖Ec (t , ·)−E (t , ·)‖L2(K ) ≤C Tρ3‖J ‖H 11(R,L2(R3)).

The proof is complete.
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Conclusion

The approximate cloaking for electromagnetic waves is achieved through the transformation

optics method in both the time-harmonic and time-dependent regime. In the time-harmonic

regime, using only a layer constructed by the mapping technique, the energy may blow up

inside the cloaked region in the resonant case and/whereas cloaking is always achieved.

Moreover, the degree of visibility varies among ρ, ρ2 and ρ3 depending on the resonance or

non-resonance of the system and the compatibility of the source inside the cloaked region.

These facts are new and distinct from known mathematical results in the literature.

With a fixed lossy layer, estimates on the degree of visibility in the frequency domain for all

frequency are established. We implement the variational technique in low frequency and the

multiplier and duality techniques in high frequency domain. The frequency dependence is

explicitly provided for different frequency ranges. In turn, using these estimates, we show that

cloaking is achieved with the degree of visibility ρ3 in the time-dependent regime.

Using only the layer constructed by the mapping technique, it is natural to expect that cloaking

is also achieved for the time-dependent Maxwell equations. However, in this case, one may

not have good control of the frequency dependence. In turn, the use of Fourier’s transform

to imply cloaking effect in time domain is not obvious. This problem is closely related to the

cloaking without lossy layer for the scalar wave equation, which has not been studied. These

questions are interesting and can be the subject of researches in the future.
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