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Abstract

C O N T I N U A L developments in robotic technology have enabled the use of robots

in everyday applications in domestic, office and public spaces. Although single

robot problems have been the main focus of social robotics research, applications

of robots in social environments will not be limited to a single robot due to the

increasing demand for robotic assistants and multi-robot operations. Multi-robot systems can

achieve performances exceeding the sum of the individual robot contributions by exploiting

the full potential of the team through information sharing, coordination, and joint decision-

making.

Robots operating in human-populated environments either directly interact with people or

have to share the space with the humans. It is of utmost importance that people co-existing

with robots feel safe and comfortable around them. This makes human-awareness essential

for long-term sustainable deployment of robots in such environments. Furthermore, for co-

operative robots, the presence of humans and their actions can directly affect the robot and

team plans, making human-awareness more essential for ensuring high performance as well

as social acceptability. Research in the area of socially-aware navigation has received substan-

tial attention in recent years. However, despite their great potential, human-aware teams of

robots considering social factors at both individual navigation and collective coordination

and planning levels, are currently largely unexplored.

In this thesis, we address the problem of human-aware cooperative navigation and coordina-

tion for multi-robot systems in realistic social environments. We focus on a class of multi-robot

coordination problems known as multi-robot task allocation using a market-based approach.

We explicitly consider the challenges of noisy, dynamic and stochastic human-populated

environments by means of accounting for perception and prediction limitations and uncer-

tainties in social cost modeling, bid estimation, coordination and replanning. We construct an

end-to-end framework comprising three main components of (i) human-aware navigation,

(ii) human-aware coordination and planning for multi-robot systems, and (iii) human-robot

interaction in the presence of multiple cooperative robots.

We opt for an incremental approach to this problem starting from single robot human-aware

navigation with expectation-based social costmaps. Subsequently, we move to multi-robot

cooperative navigation in highly stochastic social environments. We propose human-aware
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Abstract

coordination strategies based on social costs and social risks. The concept of risk introduced

in this thesis incorporates perception and prediction uncertainties as well as social costs for

estimating the stochastic costs of tasks that the robots should bid on in the market. Addition-

ally, we introduce an adaptive risk-based replanning method for dealing with the limitations

of local perception and unpredicted human behavior in the social environment. Finally, we

demonstrate the interactive potential of the team of robots for social multi-robot task alloca-

tion by integrating an interaction that actively requests human collaboration and assistance

in socially costly and blocking situations, into our adaptive replanning strategy. Extensive

experiments with up to four robots and 12 humans in simulation, and up to two robots and

two humans in reality have been carried out for evaluating the performance of the proposed

methods in this thesis.

Keywords: human-aware multi-robot coordination, human-aware cooperative navigation,

risk-based multi-robot coordination, human-robot-interaction for multi-robot systems, ad-

aptive replanning, social robotics, multi-robot systems
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Résumé

L E S développements continus de la technologie robotique favorisent l’utilisation des

robots pour des applications quotidiennes, dans les milieux domestiques, les bu-

reaux et les espaces publics. Bien que la recherche en robotique sociale se concentre

principalement sur des problèmes à un seul robot, les applications des robots dans

des environnements sociaux ne se limiteront pas à un seul robot, en raison de la demande

croissante d’assistants robotiques et d’autres systèmes multi-robots. En comparaison avec

leurs homologues individuels, les systèmes multi-robots peuvent présenter des propriétés

supérieures qui ne peuvent être obtenues qu’en exploitant le potentiel de l’équipe, grâce au

partage d’informations, à la coordination et à la prise de décision commune.

Lorsque des robots opèrent dans un environnement commun avec des humains, soit ils

interagissent directement avec eux, soit ils doivent correctement partager l’espace. C’est de la

plus haute importance que les personnes coexistant avec des robots se sentent en sécurité

et à l’aise avec eux. Ce qui signifie que la prise en compte des humains est essentielle pour

un déploiement durable à long terme dans de tels environnements. De plus, pour les robots

coopératifs, la présence des humains et leurs actions peuvent affecter directement les plans

des robots et ceux de l’équipe, ce qui rend la prise en compte de l’homme plus essentielle

pour garantir des performances élevées, ainsi que l’acceptabilité sociale.

La recherche dans le domaine de la navigation socialement consciente a fait l’objet d’une

attention considérable ces dernières années. Cependant, malgré leur grand potentiel, des

systèmes multi-robot conscients de l’homme, tenant compte des facteurs sociaux, tant pour

la navigation individuelle que pour la coordination et la planification collectives, sont actuel-

lement en grande partie inexplorées.

Dans cette thèse, nous abordons le problème de la navigation et de la coordination coopé-

ratives conscientes à l’homme, pour des systèmes multi-robots dans des environnements

sociaux réels et non contrôlés. Nous nous concentrons sur une classe de problèmes de coor-

dination multi-robots appelée allocation de tâches multi-robots, en utilisant une approche

basée sur le mécanisme du marché. Nous considérons explicitement les défis posés par les

environnements bruités, dynamiques et stochastiques, en prenant en compte les limites et les

incertitudes de la perception et de la prédiction dans la modélisation des coûts sociaux, l’esti-

mation des offres, la coordination et la replanification. Nous construisons un cadre intégral
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Abstract

comprenant trois composantes principales : (i) la navigation consciente de l’homme, (ii) la

coordination et la planification conscientes de l’homme pour des systèmes multi-robots, et

(iii) interaction homme-robot en présence de plusieurs robots coopératifs.

Nous optons pour une approche incrémentale face à ce problème, commençant par la na-

vigation d’un seul robot conscient des humains avec des cartes de coûts sociaux basées sur

les attentes. Par la suite, nous avançons vers la navigation coopérative multi-robot dans des

environnements sociaux hautement stochastiques. Nous proposons des stratégies de coordi-

nation conscientes à l’homme, tenant compte des coûts et des risques sociaux. Le concept

de risque introduit dans cette thèse intègre des incertitudes de perception et de prédiction,

ainsi que des coûts sociaux pour estimer les coûts stochastiques des tâches pour lesquelles

les robots devraient faire des offres sur le marché. De plus, nous introduisons une méthode

de replanification adaptative relative au risque, pour traiter les limitations de la perception

locale et du comportement imprévu des humains dans l’environnement social. Enfin, nous

démontrons le potentiel interactif de l’équipe de robots pour l’allocation sociale des tâches

entre plusieurs robots, en intégrant une interaction qui sollicite activement la collaboration et

l’assistance humaines dans des situations socialement coûteuses et bloquantes, dans notre

stratégie de replanification adaptative. Des expériences approfondies, avec jusqu’à quatre

robots et 12 hommes en simulation, et jusqu’à deux robots et deux hommes en réalité, ont été

réalisées pour évaluer la performance des méthodes proposées dans cette thèse.

Mots clefs : coordination multi-robot consciente de l’homme, navigation coopérative consciente

de l’homme, coordination multi-robot basée sur les risques, interaction homme-robot pour

des systèmes multi-robots, replanification adaptative, robotique sociale, systèmes multi-

robots
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1 Coordinated Multi-Robot Human-Aware
Navigation

T H I S chapter highlights the motivation of this research and describes the import-

ance of this work. Furthermore, it provides a definition of our research problem

and details the main relevant challenges.

1.1 Motivation

The use of robots in workspaces and home environments is increasingly becoming a common

reality. There exist numerous applications for robots as personal assistants at homes, tutors

at schools, and helpers at hospitals and nursing homes. Armar1 Pepper2, and Spencer3 are

examples of such robots designed to be integrated in social environments. One common key

factor in all social environments is the presence of people and all the technical and social

challenges it brings. Robots in such environments either directly interact with people or have

to operate in spaces shared with humans. Thus, for long-term sustainable deployment in

social environments, it is essential that robots gain the acceptance of people by providing

(a) (b) (c)

Figure 1.1 – Examples of robots operating in social environments. a) Armar at the kitchen, b)
Pepper at the office and c) Spencer at Schiphol airport.

1By Karlsruhe University (KIT)
2By SoftBanks Robotics
3By SPENCER project
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satisfactory levels of safety, comfort, and conforming to basic social rules [1] while maintaining

efficiency in performing their tasks.

One of the most fundamental aspects of any robotic application is the ability to properly

navigate in the environment. In environments shared with humans, especially in situations

where contact between robot and human is not sporadic but rather repetitive, it is important

that the robot is perceived as being intelligent and efficient and that it does not become a

detrimental constraint to the motion and actions of the humans. Extensive research has been

done on indoor navigation, a subset of which involves human-aware navigation. Human-

aware navigation, defined as “The intersection between research on Human Robot Interaction

(HRI) and robot motion planning”[1], focuses on finding solutions for socially acceptable

robot navigation [2], [3] by constraining the navigation of the robots (both in terms of motion

planning and of reactive response to dynamic environments) to respect personal spaces and

social norms associated with human presence and motion.

As the number of applications and services that can be undertaken by robots increases, so will

the need for companies and individuals to employ more robots, in an effort to handle a larger

number of tasks, parallelize work and increase efficiency. However, benefits of considering

a team of robots as opposed to an individual can only be obtained through coordination

and cooperation. While this is true in environments occupied solely by robots, it gains new

relevance in environments populated by humans and in tasks that either involve humans or

are requested by humans. If a team of robots is not coordinated and is perceived to work at

cross-purposes, disputing available tasks, with robots disrupting other robots, or even not

sharing relevant information about the tasks and the environment, the perceived intelligence

of the Multi-Robot Systems (MRS) by the humans will decrease and so will the predisposition

of users to rely more on the robots. Therefore, cooperative human-aware navigation and

coordination of multi-robot systems will be a necessity if teams of robots are to operate in real

applications in environments shared with humans.

1.2 Relevance of Our Research

Despite the large body of research on human-aware navigation, some challenges of real

deployment of social robots in the environment, namely, imperfect data about dynamic human

subjects and the impact of uncertainty on social costs are yet to be explored. Moreover, in

spite of the potential of multi-robot systems, the research in human-aware navigation area is

mostly considering single robot applications and the problem of cooperative human-aware

navigation for multi-robot systems -an interesting problem for both multi-robot and human-

aware navigation research- is largely unexplored. When available, researchers tend to treat the

team of robots solely as the sum of its individual components, neglecting to explore the added

benefits of having coordinated actions between teammates.

As a first step towards such human-aware multi-robot system, this thesis will focus on the

navigation and mainly coordination aspects of cooperative human-aware robots in stochastic
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social environments. Different coordination algorithms will be explored and their performance

will be compared with a baseline approach where individual robots execute human-aware

navigation from a non-coordinated perspective. The insight obtained from this work will allow

us to clarify what coordination strategies work best in different situations that multi-robot

systems can be faced with in real-world applications. Moreover, this research will extend the

current state-of-the-art of different coordination algorithms by introducing constraints for

dealing with the social environments that the robots are placed in. For instance, in market-

based coordination mechanisms, social costs will have to be considered as part of the auc-

tioning/bidding schemes. The resulting negotiation must not only produce the most efficient

joint plan but also one that respects the social constraints present in the environment as well

as the presence, motion and actions of the humans therein.

Our final methodological impact is related to the consideration of uncertainty in both human-

aware navigation and multi-robot coordination. Human-aware navigation methods (par-

ticularly those focusing on costmaps) will be extended to be adaptable to different degrees

of uncertainty associated with the robot’s perception of the humans in the environment.

Uncertainty in both perception and human motion prediction will also be considered in

market-based coordination for influencing the auctioning/bidding strategies.

Another interesting aspect that is currently underinvestigated in human-aware multi-robot

systems, is the interactive potential of the robots. Interaction can be an asset to the robots for

Figure 1.2 – An overview of the main research fields at intersection of which this thesis is situated.
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improving their social acceptability as a result of increased legibility and human trust, and

for improving the efficiency of their collective mission through actively collaborating with

humans. We will target this aspect of the cooperative navigation problem in the final part of

our research. Figure 1.2 highlights where this thesis stands with respect to the main underlying

research domains.

1.3 Problem Definition

Imagine a group of service robots operating in a hospital. There could be demands for service

in various locations at any point of time. The goal of such a team is to provide as many

services as possible to the humans while minimizing the waiting times for the requesting users.

Additionally, these robots must consider humans and social costs in their decisions in order

to be accepted by the people present in the environment. There are two main components

to this problem: (i) navigation and (ii) multi-robot coordination and planning, both of which

have to ensure human-awareness. Each of these components are well-established fields of

research. However, when faced with the dilemma of human-awareness, incorporating the

social constraints resulted in from the presence of humans should be added to their classical

definitions. In this thesis we define the problem of human-aware coordinated navigation as

follows:

To accomplish a team-level objective involving navigation in a human-populated en-

vironment for a group of autonomous robots while including human-awareness in

decisions of navigation controllers, coordination strategies and planning schemes.

1.4 Challenges

The main source of challenges in this problem are the humans. As mentioned in a recent

article on balancing theory and practice in HRI by Matarić [4], clean formalization for prob-

lems involving real people is far from reach. The existing models for human behaviors are all

simplifications. As real world encounters of robots and humans are not controlled or carefully

calibrated, uncertainty, noise and unpredictable behaviors are inherent parts of the cooperat-

ive navigation and planning problem that the robots are faced with. Furthermore, long-term

and carefully designed studies are required to fully understand how humans will behave in

different situations while the robotic system is in place. This type of study is very difficult to

organize and necessitates a long time span.

Achieving accurate human perception is another challenge for robots deployed in real un-

controlled environments, as real world applications limit the infrastructure that can be used

by the robotic system. There, the limited on-board resources of the robots should enable

real time human detection and tracking and provide the estimated human poses required
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for human-aware navigation and planning methods. Although, it is common to assume that

one final pose value is given as the tracker output, in reality these pose estimations can be

highly uncertain. Furthermore, lack of accurate ground truth data complicates the evaluation

process.

The simulation to reality gap is very large in this problem mainly due to the limitations

of human behavior modeling. The complexity of the environment is no longer a result of

larger sized or more complex structures, but rather that of the large variety of interactions,

human behaviors and expectations. This causes the problem space to become very large and

systematic tests can no longer be ensured.

For multi-robot coordination and planning, the main challenge is incorporation of highly

stochastic social costs and future actions of the humans into the robots’ decision making

process. As there is no model for the uncertainty caused by human behaviors in uncontrolled

environments, the common approaches for dealing with uncertainty in the literature of multi-

robot coordination cannot be directly adopted here. Ignoring this factor in coordination and

planning can lead to degraded quality of plans as well as social dissatisfaction as robots would

simply be blind to humans and will not consider humans as social beings that expect to feel

safe, comfortable and able to understand what is happening in their surroundings. Moreover,

robots will be ignorant to the changes caused by the humans that can directly affect their plans

such as passages being physically blocked by humans.

Summary

Cooperative human-aware navigation is an important problem with many applications

in social environments that has remained largely uninvestigated. This research will

focus on coordinated human-aware navigation for a team of robots in environments

shared with humans. There exist many challenges in this problem, mainly stemming

from the presence of humans and the stochastic nature of their behavior.
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2 Related Work

T H I S chapter of the manuscript provides a brief overview on the methods and al-

gorithms relevant to cooperative multi-robot navigation in social environments.

This work has a broad scope and shares connections with a number of different

topics in robotics as illustrated in Figure 2.1. In the following sections, we mainly

contextualize this research with respect to the state of the art in human-aware navigation,

multi-robot coordination and planning, and the intersection of the two topics which is multi-

robot human-aware navigation. Nonetheless, there are other areas such as mapping, localiza-

tion, human detection and tracking, human motion prediction, and human-robot interaction,

that we are also interested in, since they need to be exploited as tools in our research.

Figure 2.1 – An overview of system components for the proposed multi-robot human-aware
navigation framework.
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2.1 Human-Aware Navigation

Navigation is one of the main required functionalities for enabling robots to be actively used

in real social environments. Robots have to navigate in environments shared with humans and

the quality of their movement strongly influences how their intelligence is perceived [5]. Hence,

one objective of social robotics research is to develop methods for making robot navigation

socially acceptable and human-aware. Human-aware navigation is the crossing between

research on robot motion planning and Human Robot Interaction (HRI). It focuses on the

interaction dynamics between humans and robots that occur as a result of navigation [1].

Conventionally, safety, comfort, naturalness, and sociability (defined as the adherence to

explicit high-level cultural conventions), have been the main focus of human-aware navigation

techniques [1]. However, other criteria such as visibility and avoiding the hidden zones created

by the surrounding objects [6] have also been proposed for human-aware path planners.

Socially-aware planners that take into account additional social costs while planning for

the optimal path, understanding the impact of different social cost models and navigation

strategies on social acceptance, and controllers that result in natural robot motion, are among

the most investigated topics in this area. In the following sections we will address the most

important components of a socially-aware navigation system and detail the challenges of

human-aware navigation, focusing on the real deployment aspects of the problem.

2.1.1 Human-Awareness

In HRI literature, there have been numerous definitions of awareness. The shared thread

between the definitions is the understanding that participants have of each other in the envir-

onment. A list of definitions used for awareness in HRI can be found in [7] along with different

types of awareness. Social awareness is another term used to describe the characteristics

that human-aware navigation algorithms aim to possess. It is defined as being attentive to

the activities and presence of people in a shared environment [7]. Socially-aware navigation

is “the strategy exhibited by a social robot which understands social conventions, relative

management of space and conforms to them in order to preserve a comfortable interaction

with humans. Resulting behavior is predictable, adaptable and easily understood by humans”

[8], [9]. Based on this definition, social-awareness subsumes human-awareness.

The key factor we address in our human-aware navigation controllers is comfort. In the liter-

ature, we can find several strategies for comfort such as having an appropriate approaching

strategy [10], maintaining an appropriate distance [11], control strategies to avoid being

noisy [12] and use of planning for avoiding interference [13]. Legibility, is another important

characteristic for social robots. Several approaches to generate legibility for robot navigation

have been reported in [14]. Legibility means that a person intuitively understands the inten-

tions of a robot [15]. It is shown in [16] that legibility and intent-expressiveness should be the

main focus of motion planning in the presence of humans as opposed to the predictability of

the motion. Predictability is defined as what is expected and not surprising to a human.
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One important concept which is used in numerous studies [11], [17]–[19] in this area is the

virtual space around a person that is mutually respected by other humans, based on the

principle of proxemics [20]. Based on this, depending on the relationship and the interaction

that exists between humans, people choose different social distances relating to intimate,

personal, social or public contexts. Change in the expected distance may indicate dislike if it

is too large or cause discomfort if it is too small. Respecting personal spaces, O-spaces and

P-spaces [21] are the common social behaviors considered in the literature of human-aware

navigation based on the concept of proxemics. However, this could become crucial especially

in confined spaces, such as corridors where two agents can navigate only in side-by-side

configurations. Some flexibility can be introduced to this proxemics-based approaches to

allow reciprocal and interactive motions [22], as seen also in real navigational patterns of

humans. A recent comprehensive study on adapting models of proxemics for maximizing

social impact can be found in [23].

Social costmaps are a common way to model this principle that have been used in various

studies in the field. Many factors can be considered for shaping a social costmap, such as age

and gender [10], velocity of the motion [24], etc. The costmap can also be constructed based

on learned features. Okal et al. [25], use a learned reward function for navigation comprised of

the relative heading of humans with respect to the robot’s goal, heading deviation from goal

and distance to goal, for defining costs in the costmap. However, the proxemics distance has

been the main factor when accounting for comfort in the literature.

There exist a few survey papers on the topic of human-aware navigation that provide a detailed

overview on the literature in this topic [1], [9], [26]. Among the most essential elements of a

human-aware navigation system, we will address path planning, human motion prediction and

the challenges specific to navigation in an environment shared with people, in the following

sections.

2.1.2 Path planning

Path planning provides a list of way-points on a map to be followed by the robot which optimize

the performance with respect to a global objective function such as the distance traveled. A

map of the environment marking the blocked and available spaces is used by navigation

algorithms for this purpose. For global path planning, a search method is used to find a set of

consecutive states starting from the robot position to the goal position, which, given a specific

cost function, constitute the optimal path. Most of these algorithms focus on minimizing the

path’s length [27], [28]. A general overview of path and trajectory planning can be found in [29].

A human-agnostic navigation method, usually takes the shortest or most energy efficient path

in a graph. This is commonly done using a variant of the A* search algorithm. As an example,

Luber et al. [8] show the effectiveness of theta* algorithm that is an any-angle A*, for path

planning.

Ventura et al. [30] use a different approach based on the Fast Marching Method (FMM) [31]
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for path planning, resulting in optimal paths in the absence of unmapped obstacles. FMM

is a numerically efficient method to solve the Eikonal equation for a domain discretized as

a grid. Its computational complexity is O(N log N ), where N is the total amount of grid cells,

which is comparable to Dijkstra’s algorithm for sparse graphs. However, the shortest or most

energy efficient path is not necessarily the most appropriate and desirable when social factors

are taken into account. Factors such as safety, comfort, naturalness, and legibility, are the

attributes which are desired for the robot path in social environments. These attributes can

be considered in global path planning by means of dedicated cost functions. A list of cost

functions used in the literature can be found in [1].

FMM has been proven to be successful in real domestic spaces with high complexity [30]. There

are a number of research papers addressing social path planning using FMM [32], [33]. In [32]

a theoretical framework for a number of sub-problems of social path planning is presented

and an extended model for engaging groups of people is proposed using a special version

of fast marching square planning method [34]. However, the information about humans are

considered to be deterministically known and noiseless. Moreover, only simulations have been

used to show the effectiveness of the method for static people. The same problem needs to be

investigated in real world scenarios with the challenges that exist therein.

In local path planning, commands for the immediate future of robot actuators are determined.

This is also referred to as “reactive planning” and “collision avoidance” [1]. The key respons-

ibility of the local planner is to ensure safety of the robot and the environment. There exist

a number of local planners in general but the more common approach for planners used

in human-aware navigation research is the sampling approach (e.g., the Dynamic Window

Approach (DWA) [35]). In its conventional applications, local path planning just finds motor

responses for the perceived static or dynamic obstacles regardless of their nature and there is

nothing specific to human-awareness about this type of planning. Further information about

collision-avoidance techniques can be found in this survey [36].

2.1.3 Human Motion Prediction

Human navigation and robot navigation have a mutual influence on each other [1]. In addition,

navigation has a communication effect through non-verbal cues and body language. Therefore,

prediction is essential for human-aware navigation and having a model of the future actions of

a human is extremely helpful. This enables the robot to have plans which are compliant with

what the human will do in the near future. The prediction required for navigation is closely

linked to human walking behavior. A comprehensive overview of the related publications is

given in [8].

There exist two main approaches to prediction, prediction based on geometric reasoning

and prediction based on learning [1]. The assumptions of how agents behave in general

are used for justifying predictions in reasoning-based approach, e.g., prediction takes into

account that obstacles cannot be crossed by other agents in [37]. In learning-based prediction
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this justification is done based on the observations of agents’ behaviors, notably in special

circumstances and environments. In this approach, data of typical trajectories within a given

environment are first gathered over time. New samples of the movement of the humans in

that environment are then predicted using the data collected in the first phase [13], [38]. In

another approach [39], a model of the navigation behavior of cooperatively navigating agents

is learned from demonstrations by inferring a model of the underlying decision process, based

on observations of their continuous trajectories.

In the human-aware navigation literature, prediction methods based on the Hidden Markov

Model (HMM) framework [40], the social force model [41], [42], human motion learning [43],

Kalman Filter (KF) [44], [45], and Support Vector Machine (SVM) [46] have been the main

adopted approaches (for more information refer to [26]). A very recent work by Rudenko et

al. [47], has established a planning-based approach for long-term human motion prediction

that accounts for local interactions and can accurately predict joint motion of multiple agents.

Although this method has not been applied to human-aware navigation, it shows promising

results for this purpose.

2.1.4 Challenges

In this section a number of challenges in human-aware navigation that are most relevant to

our research problem are presented.

� We note that, the human motion prediction methods either rely heavily on data collec-

ted in known environments or are based on models that simplify the human motion

behavior that we would encounter in our target environments. More importantly, the

time span provided by the current methods for prediction is much shorter than what

we need for our team planning estimation of costs. Since our robots will be planning

for tasks in social environments that are usually large such as hospital wards, we need

to predict the future state of the world over the course of reaching the tasks which can

typically be in the order of minutes. Moreover, highly stochastic nature of uncontrolled

social environments in terms of human behavior, make simplified models of the humans

inaccurate in reality.

� Human perception in uncontrolled social environments is a challenging problem. Fur-

thermore, identifying and accounting for the uncertainty in perception is of great im-

portance and the assumption of having perfect deterministic human perception for

human-aware navigation is too simplistic. Nonetheless, to the best of our knowledge,

this has not been the subject of many notable studies. There is a dedicated chapter

in [48] on local planning with uncertainty, however, this is not considered in a social

context. The sources of uncertainty in [48] are the position of the robot and the obstacles

and the partially known motion of moving obstacles that are considered to be people.

However, perception of people, and the uncertainty in person and group detection and

tracking has not been investigated.
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� There are a number of limitations in the original proxemics model. Firstly, it only ad-

dresses the distance that should be chosen for explicit interaction when standing. This

static explicit interaction is certainly not the only situation that needs to be considered.

Additionally pose, orientation, gaze and the trajectories of the agents cannot be de-

scribed using this model. On the other hand, a dynamic proxemic behavior is required

for tasks where extrinsic interferences can occur to the human-robot proxemics models.

As an example the distance between a speaker and a listener varies in a quiet room

compared to a noisy room [49]. It is shown in [38] that intrusion into the personal space

appears to be common for walking subjects and proxemics-based strategies for avoid-

ance can lead to conservative and inefficient motion behavior for the robots in some

problems. The authors of [38] believe that research in human-aware navigation and ma-

nipulation, which currently has mostly taken a model-based approach, is questionable

to be effectively employed for complex, real-world applications. They state that socially

aware behavior should in fact be learned from real data.

2.2 Multi-Robot Systems in Social Environments

Coordination is of paramount importance in the development and deployment of MRS. In

this thesis, we focus on one particular class of MRS coordination mechanisms commonly

known as Multi-Robot Task Allocation (MRTA) [50], [51]. In the following sections, we will

briefly review the relevant literature for MRTA, replanning in teams of coordinating robots and

multi-robot systems in applications involving humans. Lastly, we will present the challenges

of cooperative multi-robot systems in social environments focusing on the MRS aspects of

the problem.

2.2.1 Multi-Robot Task Allocation (MRTA)

MRTA algorithms vary in design and application [52], [53] but their common objective is to

find a mapping between robots in a team and a set of “tasks” that must be accomplished in

order for the team “goal” to be completed. The term “task” can have different interpretations

in robotics research but herein we assume it to represent a subgoal that is necessary for the

overall goal to be achieved, and that can be achieved independently of other subgoals. This

subgoal can be at a high abstraction level (e.g., behavioral) or at a lower level (e.g., motion

planning).

Among multiple approaches proposed for MRTA, we are mainly interested in distributed ap-

proaches that can be executed by a team of robots without the explicit need for an external

centralized entity with perfect knowledge of the environment [54]. Furthermore, since our ob-

jective is the introduction of such teams in real-world human-populated environments where

robots must be aware of the social conventions, we are particularly interested in approaches

where cooperation is intentional or explicit.
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Market-based multi-robot coordination [55]–[58], is an example of such an MRTA approach.

Inspired by market mechanisms and studies in social sciences, researchers have proposed

systems like MURDOCH [59], TraderBots [60] and Hoplites [61] to achieve flexible allocation of

tasks using auctions among robots. In these systems, robots act as agents trying to maximize

their individual profits. Every time a task is auctioned, robots must pay a price to obtain it. Once

the task is completed, a payment is done to the robot which won the auction. The underlying

assumption is that with every robot trying to maximize its individual profit, the overall team

coordination and efficiency will be improved. Market-based systems can be said to have an

intentional model of cooperation [62], where different tasks have to be accomplished and

robots cooperate explicitly, often through communications, to correctly allocate resources to

tasks.

As Gerkey states in [50], “if the robots are deliberately cooperating with each other, then,

intuitively, humans can deliberately cooperate with them, which is a long-term research goal

of multi-robot research”. Moreover, using an intentional model of cooperation, it is more likely

that the resulting behavior of the system is easily understood and predictable by the humans

present in the environment, a key feature for social robots. There exist a variety of different

solutions to MRTA. On the centralized end of the spectrum, most approaches tend to treat

MRTA as a combinatorial optimization problem and use standard algorithms to solve it [63].

The Broadcast of Local Eligibility approach [64] and the L-ALLIANCE architecture [62] are

examples of solutions that consider MRTA as an optimal assignment problem. Robotic soccer

is one of the traditional application of the centralized approach to MRTA [65].

On the other end of the spectrum, the auction algorithm [66], [67] exhibits the distributed

nature required for distributed systems. Further research on the auction algorithm [68] has

shown that it can be implemented in a distributed fashion. Another distributed yet different

approach from market-based coordination is the threshold-based allocation used by [69], [70].

This approach is based on self-organization principles [71], [72], usually taking inspiration

from social insects, where cooperation occurs implicitly, often without direct communication.

Such approaches cannot be said to have an intentional model of cooperation. A comparison

between threshold-based and market-based approaches can be found in [73].

Market-based approaches have been used in search and rescue operations [74], topological

navigation [75] and many more applications involving path planning. While most market-

based approaches deployed on robots for path planning consider tasks as final locations, a task

in the Hoplites framework [61] is composed of a set of locations or way-points. This framework

allows for coordinating “plans” encapsulating multiple tasks, instead of tasks. This is the key

feature differentiating Hoplites with other methods mentioned so far, except for the Consensus-

Based Bundle Algorithm (CBBA) method [68], where planning for sequences of locations is

done in a distributed manner. Single or multiple tasks can be auctioned in the context of

market-based coordination. Consensus-Based Auction Algorithm (CBAA) proposed in [68] is

an example of single task auction algorithm. CBAA assigns the task with the minimum cost to

each available robot in a decentralized manner through auction and consensus mechanisms.
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The Hoplites framework consists of two concurrent coordination mechanisms: passive and

active. A passive coordination quickly produces locally-developed solutions while active

coordination produces complex team solutions via negotiation among teammates. Active

coordination makes the distinction between this approach and the CBBA proposed in [68].

The active coordination scheme allows for more flexibility in Hoplites compared to CBBA,

since robots can modify their plans not just for maximizing their own profit but rather for

contributing to achieving a better team performance by means of cooperation, upon request

of other team members. This request is formed locally by the robots and targets only a subset

of team members that are identified for collaboration.

2.2.2 Stochastic MRTA

As stated in [52], despite the importance of uncertainty in real robotic problems and the

potential of stochastic planning for producing sound and robust allocation policies, most

MRTA approaches assume a deterministic MRTA model and deal with uncertainty only at

execution time by replanning during task execution. In stochastic allocation literature, it is

assumed that a model of uncertainty, for instance a probability distribution of robot travel

time, task arrival, etc., is available. Such MRTA problems are commonly modeled as Markov

Decision Process (MDP) [76], or as pure or mixed stochastic integer programs [77]. In a different

approach, approximation of the parametric uncertainties captured by the underlying system

model has been investigated in [78] by means of active learning. Despite the research is this

area, it is not clear what is the best approach for facing uncertainty and the challenges of MRTA

still remain open. It is yet not known if building complex models that incorporate uncertainty

is a better approach compared to building less well-informed plans and replanning as often as

needed to quickly react to unexpected events [52].

Planning under uncertainty can also be addressed using Partially Observable Markov Decision

Process (POMDP). However, this approach is faced with a scalability problem when consider-

ing teams of robots. Auctioning of independent local POMDP-based controllers is proposed

by [79] to alleviate this problem. Nonetheless, for real uncontrolled environments, the inform-

ation space get too large to be tractable. In POMDP approaches such as [79], the state and

action space of the robots are discretized to be able to computationally solve the problems.

This limits the application and impact of such methods when it come to real, spatiotemporally

continuous, complex problems.

2.2.3 Replanning

Changes in the environment for a realistic MRTA problems are inevitable. These changes are

listed in [80] as having faulty robots, changes in estimated cost due to uncertainties, changes

in task definitions, online arrival of tasks, addition of robots to the team, and other changes

made by external agents. The planning loop executed by most MRTA methods consists of

planning-execution-replanning of tasks [52]. Replanning plays an important role in MRTA as it
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is responsible for handling these changes in the environments and maintaining some level of

efficiency. Moreover, some temporary failures are shown to be handled by replanning in [81].

Typically, replanning occurs continuously or at predetermined points in time. It can also be

triggered based on a set of events such as a robot accomplishing a task or arrival of a new task.

However, not all changes or uncertainties in the environments can be captured efficiently

using these strategies. In [82], the authors propose a live task modification method that adjusts

the composition of teams currently executing tasks, in response to the realities of execution.

This is done by means of proactive replanning in a way that the problems or opportunities

in a construction assembly scenario are predicted using a centralized planner. This is an

interesting approach. However, it is not clear how such proposed method will perform in real

environments and more so in the presence of humans.

CBBA with Partial Replanning (CBBA-PR) is introduced in [83] for allocating new tasks that

appear online during the solving of the task allocation problem. The authors demonstrate

that by resetting the lowest bid tasks from previous rounds of CBBA, the team obtains a fast

convergence while still maintaining coordination. The focus of the problem studied in [83]

is handling new tasks and not the stochastic changes in the cost of particular tasks or taking

into account the new available information for planning. Moreover, there is no human factor

involved.

2.2.4 Multi-Robot Human-Aware Navigation

In HRI, applications with multiple robots have not been explored much compared to applica-

tions involving a single robot. In this section, we will mention research papers that take into

account multiple mobile robots and one or multiple humans in the problem that they address.

However, the cooperation aspect is not existent in all of the mentioned works.

Designing an effective user interface for applications involving multiple robots is addressed in

[84], [85] for performance improvement. In [86] authors describe a taxonomy for real-time

interaction between a human commander and a swarm of robots. In [87] the situation of

having several robots guiding several people is investigated. A Social Force Model (SFM) is

used to guide a group of humans in a natural way. Moving objects such as robots and humans

are modeled as masses under a virtual gravity force in social force model representations.

Hence, in [87] attractive forces are defined for pursuing the leader robot and the goal and

repulsive forces are defined for obstacles, other humans and robots. There is no consideration

of social acceptance by the humans here and humans are only perceived as dynamic obstacles

which need to be guided. A centralized methodology is used which relies on the central

host for deliberation of robot actions. Higher-level social awareness is considered in a recent

paper by Wasik et al. [88] for the formation control problem. In [88], normative aspects are

introduced into robot behaviors using institutions to enable robot participation in mixed

human-robot societies.

17



Chapter 2. Related Work

A group of robots guiding a group of people and adapting trajectories to avoid the humans

from getting lost or leaving the group is presented in [89]. An optimization process tries to

minimize the work of cooperative robots and displacement of humans. Robots change roles

accordingly to perform the mission in a more efficient way. Human-aware navigation is not

considered in this work and there are no experiments with real robots. Guiding people in an

evacuation mission using multiple robots in a closed environment is presented in [90]. The

environment is represented by the means of a Laplacian artificial potential field. By estimating

the gradient of the field and tracing the gradient descend while keeping a formation, the robot

team tries to implement the cooperative exit seeking algorithm. The authors introduce a

model for the panic behavior of the humans in emergency situations. In their method one

robot is assigned to be the leader and the rest of the robots have the shepherd roles. They

pre-calculate the potential function for every point in the environment which makes this

method only work for static environments. The concept of human-robot interaction zones has

been considered and the robots stay in the social zones of humans. Also the panic model tries

to emulate the behavior of humans in such situations but the model seems to be very high

level and independent of many factors such as what elements are creating panic. They also

assume that when a human is at a certain distance it will be found and guided just by robots

moving towards the exit. The experiments have only been conducted in simulation.

A selected work on modeling pedestrian behavior and crowd disaster can be found in [91] that

has been ported into the robotic domain by [92] where the local navigation of the robots is

based on the mutual avoidance adopted by humans. All of the mentioned works apart from

[88], [92] only considered simulated robots. In [92], despite having real robot tests, a simulated

model of the human is used.

Very little work has been done in MRTA for social environments. In [93], a general MRS ar-

chitecture for person search for a team of assistive robots in a retirement home is proposed.

Therein, MRTA is considered as a constraint optimization problem and a centralized planning

approach based on constraint programming [94] is used to solve it. The focus of this work is

on the capabilities of the proposed architecture and social aspects have not been considered.

Cavallo et al. [95] introduce socially believable robots that support older adults in urban areas

by assisting in delivering groceries and collecting garbage. Their system (RobotEra) adopts

a centralized planner for a heterogeneous MRS operating in an elderly care facility. In [96],

a real-world multi-robot coordination problem for human guidance, requiring stochastic

transitions is shown to be successfully implemented in a centralized fashion, at a scale of five

to ten robots. The human behavior is simplified and a discrete state space representing key

locations on a map is used for the MDP. Similarly, no social costs have been considered in

this study.

In [97], [98] authors introduce the concept of socially invisible robot navigation in the social

world using robot entitativity for mobile robots and autonomous vehicle navigation based

on prior psychological research. They establish a mapping between emotional reactions

and multi-robot trajectories and appearances and generalize their finding across various
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Table 2.1 – Comparison of different approaches for human-aware multi-robot systems.

Method
Real robots

and humans
Multiple

robots
Human-awareness

Guiding groups of humans [87] �
Cooperative robot movements in
a guiding mission [89]

�

A simple panic model for humans
in evacuation [90]

� �

Socially-aware navigation with collision
and disturbance risks [8]

�� �

Local navigation based on human
mutual avoidance [92]

� - �

MRTA for person search [93] �� �
MRTA for human guidance [96] �
Socially invisible navigation [97], [98] - � � �
Cooperative human tracking [99] �� �
Our proposed approach �� � �

environmental conditions. Their method evaluation is based on a web-based study in which

simulated videos of the robots are scored by human participants. Entitativity is the extent to

which a group resembles a single entity versus collection of individuals. Low entitative groups

are used to develop a real-time navigation algorithm that should enhance social invisibility for

multi-robot systems. Robots with lower entitativity exhibit more friendliness and comfort and

less creepiness and ability to unnerve as reported by authors in [97], [98]. This is an interesting

study from the point of view of the impact of navigation of multiple robots on humans.

2.2.5 Challenges

In this section a number of challenges that we are faced with regarding multi-robot systems in social

environments are discussed.

� Multi-robot scenarios involving humans have a great capacity to be explored yet, in terms of

human-awareness and cooperation. Despite the great body of work in HRI and MRS research, to

the best of our knowledge, a cooperative human-aware and distributed navigation method that

works efficiently in real social environments is missing in the literature. One possible reason can

be the complexity of such systems in terms of design, coordination, deployment and evaluation.

Analyzing human response to a single robot is sufficiently difficult in most cases and adding

another axis to the problem space can largely increase its difficulty. Table 2.1 shows a comparison

between different approaches regarding human-aware multi-robot systems in the state of the

art of the field. Our proposed approach will tackle this problem by accounting for all the three

aspects indicated, i.e., having a real human-aware multi-robot system.

� MRTA in social environments with human-aware team of robots that account for humans in

planning, coordination and navigation has not been considered in the state of the art. Unlike

most stochastic MRTA approaches, an uncertainty model for uncontrolled social environments
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is not available unless strong assumptions are made or a data-driven approach, targeting a

specific environment, is taken. Additionally, the scale and complexity of the problem is too large

for applying POMDP-based solutions. Moreover, each encounter of the robots with humans

matters and improving the average performance is not the best strategy to gain social acceptance

for the robots.

� The interactive potential of a robot team is another aspect that is overlooked in the literature.

Namely, how robot-robot and robot-human explicit and implicit interactions should change in

the presence of humans and a team of robots. Although exploring this aspect adds even more

complexity to the problem, it is an essential part for having teams of social robots integrated

into environments shared with humans.

Summary

In this chapter we have seen the relevant research in the literature of human-awareness, path

planning and human motion prediction in the context of human-aware navigation. Moreover, a

number of existing challenges in this domain, namely, limitations of human behavior models

and prediction methods, the assumption of deterministic human perception and limitations

of proxemics-based social cost models have been detailed. An overview of the state of the art

of multi-robot systems focused on MRTA is presented in this chapter. Additionally, a number

of relevant research papers for applications involving multiple robots and humans have been

introduced. Moreover, a number of challenges for developing cooperative human-aware robot

teams have been briefly described in this chapter.
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3 Scope of the Thesis

T H E purpose of this chapter is to provide an outline of the thesis and to detail the main

objectives of our research. Finally, we present our research contributions and the related

publications.

3.1 Objectives and Outline

The main objective of this thesis is to develop an end-to-end framework for cooperative human-aware

navigation and coordination of multi-robot systems in social environments. We aim to have a realistic,

distributed and socially-aware approach by means of taking into consideration the key constituting

features (see Figure 3.1) of each of these aspects in our proposed framework. We are interested in

understanding how cooperative multi-robot navigation can be achieved in a human-aware manner

and how multi-robot navigation, carried out by a number of individually human-aware robots, can

benefit from human-awareness at coordination and planning levels.

This thesis is laid out in six parts. A brief description of each part and its corresponding objectives can

be found in the following.

Figure 3.1 – Key characteristics and their corresponding features for the framework proposed in
this thesis.
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Part I - Introduction and Background In this part, we introduced the motivation and relevance of

our research as well as defining our research problem and presenting the main existing challenges

therein. Furthermore, we presented a literature review on the main relevant topics to our research

problem, i.e., human-aware navigation and multi-robot systems. As these topics have a broad scope,

the key aspects of each topic along with the main challenges that are most pertinent to our research

problem have been introduced. Additionally, the layout of our manuscript and the main corresponding

objectives in each part of this dissertation are presented.

Part II - Platforms and Tools In this part, we introduce our robotic platforms and the main software

tools used in this work. Additionally, we describe the basic available functionalities and the interactive

capabilities of our main robotic platform. Furthermore, we introduce the high-fidelity simulation

tool (Webots) adopted in this research. Subsequently, a number of human detection and tracking

methods considered in this work are briefly described and the experimental setups where our real

robot experiments take place are introduced.

Part III - Human-Aware Navigation In this part, we introduce the baseline navigation methods for

our two robotic platforms. We then explain the different human-aware navigation approaches proposed

for each of these robots. Furthermore, we present the expectation-based social costmap model that

incorporates perception uncertainty, and finalize the single robot human-aware navigation approach

that will be adopted in the consecutive chapters.

Part IV - Cooperative Multi-Robot Navigation in Social Environments In this part, our Hoplite-

based multi-robot cooperative navigation method is detailed. We incrementally build our human-aware

cooperative navigation framework starting from a deterministic cost model. Human-aware coordina-

tion methods using deterministic social costs and risk-based social costs are presented subsequently.

Finally, limited local perception and highly stochastic environments are considered by means of our

risk-based adaptive replanning method.

Part V - HRI-Agumented Cooperative Multi-Robot Navigation In this part, we detail the integration

of the interactive features of our main robotic platform with robot navigation. Furthermore, we in-

troduce an interactive multi-robot task allocation approach by means of adopting interaction in our

risk-based replanning method. This is to enable robot collaboration with humans when possible, in

order for the robots to improve their individual and team performance by actively asking for human

assistance.

Part VI - Conclusion In this final part, we summarize this thesis and detail the core contributions of

our work. Moreover, we describe the promising directions for possible continuation of the research

presented in this thesis.

3.2 Research Contributions

This work, to the best of our knowledge, is the first work to tackle MRTA in social environments and

as far as we know, the topic of human-aware coordination and planning has not been explored in
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the literature for multi-robot systems. The work done in the course of this thesis has led to several

contributions and related publications detailed in the following.

Part II - Platforms and Tools Our first contributions concerns the use of mobile robots in order

to automatize the calibration process with the ultimate purpose of improving UWB-based human

localization in a realistic indoor environment. Relevant publications include:

� A. Canepa, Z. Talebpour and A. Martinoli. “Automatic Calibration of Ultra Wide Band Tracking

Systems Using A Mobile Robot: A Person Localization Case-study.” The International Conference

on Indoor Positioning and Indoor Navigation (IPIN), Sapporo, Japan, 2017, pp. 1-8.

Part III - Human-Aware Navigation We introduce a framework for a resource-constrained mobile

robot platform for human-aware navigation. Additionally, the concept of exception-based social cost-

maps are introduced for the first time to capture the perception uncertainty in human-aware planners.

Relevant publications include:

� Z. Talebpour, I. Navarro Oiza and A. Martinoli. “On-Board Human-Aware Navigation for In-

door Resource-Constrained Robots: A Case-Study with the Ranger.” IEEE/SICE International

Symposium on System Integration (SII), Nagoya, Japan, 2015, pp. 63-68.

� Z. Talebpour, D. Viswanathan, R. Ventura, G. Englebienne and A. Martinoli. “Incorporating

Perception Uncertainty in Human-Aware Navigation: A Comparative Study.” International Sym-

posium on Robot and Human Interactive Communication (RO-MAN), New York, USA, 2016, pp.

570 - 577.

Part IV - Cooperative Multi-Robot Navigation in Social Environments We introduce a flexible

multi-robot task allocation framework capable of solving different instances of the MRTA problem.

Following an incremental approach, we develop a human-aware coordination method for a team of

robots assuming a deterministic cost model. Additionally, we introduce risk-based bids that enable

our human-aware coordination to account for the costs in real stochastic social environments. Fi-

nally, adaptive risk-based replanning is proposed for dealing with limitations of local perception and

unpredicted human behavior. Relevant publications include:

� Z. Talebpour, S. Savarè and A. Martinoli. “Market-based Coordination in Dynamic Environments

Based on the Hoplites Framework.” The 2017 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), Vancouver, British Columbia, Canada, 2017, pp. 1105-1112.

� J. M. Palacios-Gasos, Z. Talebpour, E. Montijano, C. Sagues and A. Martinoli. “Optimal Path

Planning and Coverage Control for Multi-Robot Persistent Coverage in Environments with

Obstacles.” International Conference on Robotics and Automation (ICRA), Singapore, 2017, pp.

1321-1327.

� Z. Talebpour and A. Martinoli. “Multi-Robot Coordination in Dynamic Environments Shared

with Humans.” IEEE International Conference on Robotics and Automation (ICRA), Brisbane,

Queensland, Australia, 2018, pp. 4593-4600.

� Z. Talebpour and A. Martinoli. “Risk-Based Human-Aware Multi-Robot Coordination in Dy-

namic Environments Shared with Humans.” IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), Madrid, Spain, 2018, pp. 3368-3372.
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� Z. Talebpour and A. Martinoli. “Adaptive Risk-Based Replanning for Social Robots with Limited

Local Perception.” IEEE Robotics and Automation Letters (RA-L), 2019. (to be submitted)

Part V - HRI-Augmented MRTA We study the impact of interaction with humans on the MRTA per-

formance and social acceptability of the robots. Currently, we are organizing a user study for an in-depth

evaluation of the performance of the proposed approach in this part.

I would like to give credit to my close collaborators who made addressing this diverse set of topics

possible. Although I have been directly involved in all of the work presented in this thesis, some parts

of this work are the result of a collaborative effort where I have been directly contributing in terms of

proposing the idea, supervision and various degrees of development and testing.

Master student Alessio Canepa worked on the Ultra-Wideband (UWB) calibration in Chapter A under

my supervision during his master project. I have been collaborating with colleagues form the European

project of Multi-Robot Cognitive Systems Operating in Hospitals (MOnarCH), Deepak Viswanathan and

Professor Rodrigo Ventura for the work presented in Chapter 11. A first version of the Hoplites-based

algorithm presented in Chapter 15 was developed in the course of the semester project of Stefano

Savarè under my close supervision, and was subsequently improved and adapted to the human-aware

multi-robot coordination and planning framework. A visiting Ph.D. student, José Manuel Palacios-

Gasós worked on extending his multi-robot coverage algorithms to real multi-robot systems under

my supervision, resulting in the work I partially describe in Chapter 15. Nicolas Talabot has worked

on Kinect-based human perception under my supervision during his semester project where he has

developed and additional module for extending the 2D position estimations of body joints to 3D poses.

Paul Prevel has worked on developing interactive behaviors for the Mbot using existing building blocks

during his semester project and has contributed to integration of HRI features with the risk-based

replanning and multi-robot task allocation framework under my close supervision. Finally, the credit

goes to our fellow members of MOnarCH project for their contributions to providing the basis for this

work in terms of single robot navigation and technical support.

Summary

This thesis focuses on developing an end-to-end framework for coordinated human-aware

navigation of a team of robots. Throughout this thesis, we aim to have a realistic, distributed and

socially-aware approach that takes into account the stochastic nature of social environments

and their inherent uncertainty at navigation, coordination and planning levels. Following an

incremental approach, single robot human-aware navigation is initially studied. Subsequently,

multi-robot coordinated navigation with deterministic and risk-based cost estimations, and

adaptive replanning for dealing with limitations of perception and human behavior change are

addressed. Finally, interactive capacities of the robots are explored in the context of MRTA by

means of incorporating interaction into our risk-based replanning method.
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4 Introduction

T H E multi-robot system developed in this thesis is composed of a number of physical and

software components. The experimental setup providing the necessary modules for suc-

cessful deployment of the robots and performance evaluation of our methods is another

key component in our system. Throughout this research we have conducted experiments

with two different robotic platforms. Their perception and localization sensors, actuators, and com-

putational equipment will be detailed in Chapter 5. Implementation and validation of the algorithms

presented in this work, have been made possible through several software frameworks, including the

Robot Operating System (ROS) and the high-fidelity robotic simulator Webots. These frameworks along

with the various human detection and tracking methods evaluated and tested in this research will be

presented in Chapter 6. We have conducted experiments in a number of environments in an indoor

setting using multiple networked robots. Chapter 7 will describe the specifications and choices made

in each environment. As we further advance in the manuscript, more software modules will be added

to our system.The system architecture encapsulating all parts with the corresponding connections can

be found in the following section.

4.1 System Components

Before going to the details of different modules implementing our proposed methods, we would like

to give a preview of the schematics of our framework. Figure 4.1 shows the main system components

and building blocks of our system. An incremental approach is taken in developing and extending our

proposed framework throughout the manuscript. We start from the already existing basic navigation

functionalites and advance to a HRI-augmented social MRTA. Each one of these blocks can be a

research topic in itself and we have not focused on contributing to the state of the art in every one

of these components. Nonetheless, we have designed our framework in such a way that allows for

modifying and improving each block and possibly adding new blocks such as data fusion, on-board

human detection and tracking, detecting more types of social interactions and extending the social cost

model. Moreover, despite having this framework applied to the Mbots (Figure 4.1 shows the schematics

of the system running on the Mbots), none of our methods are platform-dependent and any other

mobile robot that adopts a path planner incorporating social costs into the plans, can make use of

our proposed framework. The human detection and tracking module shown in Figure 4.1 illustrates

the use of an off-board, global human perception system. For an on-board, local human perception,

we can imagine to have the human detection and tracking module internal to each robot with an
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Figure 4.1 – Schematics of the software modules constituting our proposed framework.

additional information sharing block for communicating the perceived human information among

team members.

The same code is running on the robots in both simulation and reality. In general, the difference

between the real and simulated tests lies in human detection and tracking, ground truth acquiring

methods and of course robot perception, actuation, and computational power. We note that the blocks

depicted in Figure 4.1, contain internal sub-blocks and this figure shows an abstract view of the main

components in our system.
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T H E robotic platforms used in our research will be introduced in this chapter. Apart from the

work presented in Chapter 11, the rest of this research has adopted the Mbot as the robotic

platform for method validation. Specifications of each robot can be found in the following

sections.

5.1 Ranger Robot

The Ranger [100] is a simple robotic platform designed to interact with children (see Figure 5.1). It

is a small robot with limited perception, actuation and computation capabilities. It is inspired by a

common object found in many children rooms: a wooden storage box for toys. This box is augmented

with robotic capabilities in order to interact with children and motivate them to tidy up their room [101].

This robot has been designed at the Laboratoire de Systèmes Robotiques (LSRO) of EPFL.

The Ranger robot has a body based on a wooden box and is equipped with wheels, mechanical eyes,

inertial sensors, three infra-red distance sensors, ground sensors, a bumper, an inside balance sensor,

capacitive external touch sensors, LED panels behind the wooden surface, sound, eyeglasses, a detach-

able pacifier and a relative positioning system to detect other robots. The robot has a square footprint

of 30cm wide and it weighs approximately 3.5kg .

Because of its customized morphology, autonomous navigation with this platform is a challenging

problem for two reasons. First, its kinematic configuration consisting of two differential wheels in

the front, two castor wheels in the back, integrated in a squared shape footprint, make the motion

planning complicated. Second, the obstacle detection capabilities are limited to the three infra-red

sensors placed in the front part of the robot. The detection range of the sensor placed in the middle is

0.2−1.50m, while for the other two, it is 0.04−0.30m, all of them having a very small Field Of View

(FOV). For this reason, we have augmented the sensing capabilities with a depth camera Primesense

Carmine 1.09, placed in the front upper part of the robot (see Figure 5.1b). This depth sensor has a

resolution of 640×480 pi xel s, a horizontal FOV of 1r ad (� 57◦) and a nominal range of 0.35−1.4m.

The Ranger has four processors: three micro-controllers, connected using a CAN bus, which manage

the real-time part of the robot, and a full embedded computer running Linux Ubuntu 10.04. The ASEBA

framework [102] is used to control the whole system, making the link with the higher-level controllers.
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(a) (b)

Figure 5.1 – The Ranger robot. a) Complementary gestures added to the robot for increasing nav-
igation legibility. b) A Ranger augmented with an RGB-D camera to detect humans and obstacles.
The picture illustrates the interactive features of the robot. The activated LEDs on the robot’s right
side and the pupils indicate that the robot is going to make a right turn.

These high-level controllers are executed on a separate laptop placed on top of the robot, running

Linux Ubuntu 14.04.

5.2 Mbots

The Mbot [103] is a four-wheeled omni-directional drive robot with an approximately round footprint

of 0.65 m in diameter and a height of 0.98 m (see Figure 5.2). It is endowed with two Laser Range Finders

(LRFs) , on both the front and the back for providing 360◦ coverage. It has been specifically developed

within the FP7 European project MOnarCH1. Two batteries give it an autonomy of approximately

five hours, depending on the usage. The robot has two PCs inside its shell: one manages the sensors

and actuators for navigation, while the second one is available for other purposes such as human-

robot interaction functionalities. The two on-board PCs run Ubuntu desktop 12.04 and the integration

middleware is ROS Hydro. Table 5.1 summarizes the sensors, actuators and other robot design features.

The two LRFs are used for mapping, navigation, and obstacle avoidance. We use both of them simul-

taneously and the resulting laser point cloud consists of the union between the latest scan of each LRF,

with the appropriate coordinate transformation to the common robot body reference frame. There are

four of these robots available in total in our two experimental facilities. We note that these robots are

networked and are able to communicate over WiFi.

1http://monarch-fp7.eu/
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Table 5.1 – Mbot robotic platform specifications. DF: Design Features, NLS: Navigation and Loc-
alization Sensors, PIS: Perception and Interaction Sensors, ES: Environmental Sensors, LLSS:
Low-Level Safety Sensors, LA: Locomotion Actuators, and IA: Interaction Actuators.

Type Specification

D
F

-Robot kinematics: omnidirectional, 4 mecanum wheels
-Robot weight: 24 K g (with batteries)
-Payload capacity: 30 K g
-Maximum translational speed: 2.5 m/s
-Maximum rotational speed: 600 ◦/s
-Maximum acceleration: 1 m/s2 (low-level programmed)
-Emergency stop deceleration: -3.3 m/s2 (low-level programmed)
-Mini-ITX computer board with CPU, RAM, and SSD
-Batteries: supports up to 4 batteries at the same time; Capacity: (12V ) 17-20 Ah
5.5 kg each; autonomy: 4 to 6 hours

N
LS

-Inertial Measurement Unit (IMU): MPU6050 for orientation estimation
-Two 2D laser range-finders: Hokuyo URG-04LX-UG01 for mapping, localization,
and obstacle avoidance
-12 sonar sensors: Maxbotix EZ4 for obstacle detection
-Depth camera: Asus Xtion for obstacle detection, space geometry analysis
-Omnidirectional bumper
-Four ground sensors
-One RFID reader
-One Hagisonic StarGazer localization sensor
-Eliko’s Kio ranging UWB transceivers based on a Decawave chipset

P
IS

-Depth camera with microphone (Kinect type): Asus Xtion for interaction, people,
and gesture recognition
-Microphone array: Asus Xtion for sound feedback for natural user interaction
-10” Touchscreen (or tablet) for user feedback on specific contents
-Capacitive sensors for user feedback on specific parts of the robot

E
S -Temperature sensor

-Humidity sensors

LL
SS

-Sonar sensors
-Internal temperature sensors
-Motor current sensing
-Bumper ring switches

L
A

-Four Mecanum wheels
-Four Maxon RE 35 90W 15V motor with a Maxon GP 32 HP 14:1 gearbox
-Encoder HEDS 5540 with 500 pulses for providing an omnidirectional locomotion
system

IA

-10” monitor with touchscreen (or tablet) for interaction with displayed contents
-Video projector (pico type) for projection of contents
-Arms and head servo motors for human-robot interaction
-Body LED lights for showing robot expressions
-Stereo speakers for content playback and robot communication
-Three servo motors to actuate two robot arms and a head
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Chapter 5. Robotic Platforms

(a) (b) (c)

Figure 5.2 – a) The 4 Mbots available at DISAL. b,c) HRI features of the Mbot.

Summary

In this chapter, we introduced Ranger, a resource constrained mobile robot designed for human-

robot interaction studies. Despite its interesting interactive capabilities, limitations of the robot

in terms of perception, actuation and computational power convinced us to focus on a more

powerful platform for human-aware cooperative navigation. Mbot, the main robotic platform

used in this research, was presented in this chapter. This robot has been designed in the context

of the MOnarCH project for interacting with children and operating in a social environment,

namely, the pediatric ward of the Instituto Portugues de Oncologia de Lisboa (IPOL).
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P E R F O R M A N C E evaluation and method validation are integral parts of any research. Meth-

ods should be examined by means of repeated tests in different settings while varying

different parameters of the problem. For this purpose, we have conducted experiments of

increasing complexity to test our developed methods in both simulation and reality. In this

chapter, we present the corresponding tools used in our research. We start by describing the software

framework and the modules providing a number of basic functionalities for the robots. The simulation

framework is subsequently detailed in Section 6.2. Additionally, different human detectors and trackers

evaluated and used in the context of this research are introduced. The main reason for detailing such

human perception tools is sharing our findings regarding each method in the specific problem of

human-aware multi-robot navigation. Only a subset of these methods have been eventually used in

our experiments. Nonetheless, listing the strengths and shortcomings of these methods can provide

useful information for a reader interested in real human perception solutions for similar problems.

6.1 Software

Several software frameworks have been used in this work in order to facilitate the implementation,

validation, and evaluation of the proposed methods. In particular, ROS and the high-fidelity robotic

simulator Webots have been used. Moreover, a number of functionalities and behaviors that have been

made available through the shared code-base of MOnarCH will be briefly described in the following

sections.

6.1.1 ROS

The backbone of all the code running in our system is ROS. ROS is an open-source, meta-operating

system for robots providing operating system services such as hardware abstraction, low-level device

control, implementation of commonly-used functionalities, message-passing between processes, and

package management. It comprises a set of libraries and tools with the aim of facilitating the devel-

opment of robotic applications and promoting software reuse. The main idea behind ROS is that

functionalities in a robotic application can be broken down into separate processes running in parallel.

Each process, called a “node” is implemented in a separate program. Nodes within ROS can commu-

nicate through the internet protocol suite, commonly UDP/IP. A publisher/subscriber architecture
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Chapter 6. Tools

enables this communication where nodes publish/subscribe to “topics” for sending/receiving data.

6.1.2 MOnarCH Software Stack

As Mbots were the robotic platform designed for MOnarCH, a number of researchers with different

research focuses have been contributing to the functionalities available for these robots. A few of the

relevant functionalities will be mentioned in the following:

� Navigation: autonomous navigation for a single robot relying on FMM, DWA, and Adaptive

Monte Carlo Localization (AMCL) by means of LRFs and odometry.

� Human perception: human position estimates provided by a human detector and tracker based

on a combination of background-based and Histogram of Oriented Gradients (HOG)-based

detectors. The output of multiple detectors are fused to provide a global set of human and robot

positions in the environment. This is achieved using an external omni-directional overhead

camera.

� HRI: the programming interface for low-level interactive features of the robot such as head and

arm motion, LEDs for the mouth, the cheeks and the footprint, robot voice, and touch screen are

made available through designated topics. The desired interactive behaviors can be achieved

when publishing the right data on the corresponding topics. The functionalities implemented

for the main features adopted in this research will be detailed in the following.

1. Lights: the Mbot is equipped with LEDs in the cheeks, eyes and the footprint. We can

control these LEDs for showing either (i) a single color, (ii) a smooth transition between

different colors, or (iii) blinking between different colors.

2. Arms: robot arms can be controlled either by setting (i) a desired final position or (ii) an

oscillation behavior in order to mimic the arm swing in the human walking pattern.

3. Head: for creating a gaze gesture, we control the head motion of the robot. This can be

done by (i) setting a desired rotation angle relative to the reference point of the head joint

or (ii) a rotation relative to the robot’s current position in order to mimic gaze.

4. Mouth: different patterns can be achieved using the mouth LEDs. A number of sentiments

(being sad, happy, scared) have been considered and up to three mouth patterns resem-

bling those sentiments are generated. Upon requesting a desired sentiment, a pattern from

the corresponding group is selected randomly.

5. Speech: the robot can vocalize custom messages that are either generated real-time or

pre-recorded, with different voice options in terms of type (robot voice, child voice, etc.),

gender, and tone, with an adjustable output volume. The volume of the robot voice is

adjusted based on the distance to the human.

6.2 Simulations

The use of high-fidelity simulators such as Webots [104] is fundamental, especially when considering

multi-robot systems. Such a simulator provides a tool to perform repeated experiments under controlled

conditions and also perform long-term experiments that are very expensive to have in reality. Webots

is a realistic, sub-microscopic, physic-based simulator that allows for perfect integration with ROS,
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(a)

(b) (c)

Figure 6.1 – Snapshot of the Webots world for the environment at a) IPOL, b) DISAL robotic
laboratory and c) Jordils experimental arena.

enabling the same algorithms to run both in simulation and on the real robots. As a result, a smooth

migration from simulation to reality is made possible using the exact same code.

We have developed models of the environments that we use for our experiments (see Figure 6.1) and a

model of the Mbot to match as much as possible the shape and the geometry of the real robot, namely

weight, height, center of mass, position of the sensors with respect to the base frame of the robot and the

position of the wheels. Additionally, calibrated models of the LRF, mecanum wheels and motors have

been added. These data were gathered directly from the real robot. Much effort in terms of optimization

of computational costs has been dedicated to dealing with the challenges of faithful and real-time

simulations of this rich set of sensors in complex environments, particularly in the presence of multiple

robots. As a result, our simulations have similar environmental richness to the real world experiments.

This is key, for evaluating the performance of different methods for an MRS targeting social, dynamic

and noisy environments.

Regarding simulation speed, all the scenarios with up to two robots can achieve 4-5×real time speed

and the scenarios with four robots can run in real time. In all of our scenarios the time step has been set

to 64 ms for the simulation step and 100 ms for the LRFs which represents the actual update frequency

of the real device.

We note that one key choice made in this thesis was to not rely on a simplified model of the human
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Figure 6.2 – Snapshot of the Mbot being tracked using the active marker.

behavior as we are targeting uncontrolled social environments that can be highly stochastic with

sudden behavior change on the human side. Additionally, we did not want to be bound to a limited set

of human trajectories collected in a specific environment for our experiments. Instead, we rely on a

pool of human trajectories that can be (i) manually generated based on the knowledge of the designer

about how humans can move in a given environment (these trajectories can be very diverse as any

sequence of way-points can be used to construct them), (ii) automatically reproduced through the

possibility of playing back real ROS bags with recorded human trajectories in a specific environment.

6.3 Human Detection and Tracking

Throughout this research, we have tried a number of methods for acquiring human pose estimates

using off-board and on-board perception, as this information is a key input for all of our methods and,

additionally, for enabling ground truth measurements. A brief description of each method along with

its strengths and shortcomings can be found in the following sections.

6.3.1 Off-Board Solutions

In this section we briefly describe the human detection and tracking solutions that are external to

the robots.

Omni-Directional Camera

This is the main perception module developed in the MOnarCH project; detailed in Section 12.1.

The maximum error across an area of 8×5.5 m2 corresponding to our robotics laboratory arena (see

Section 7.1 for more details) is in the order of 0.2 m for this tracker. However, orientation estimates of

the tracker can have large errors, and we observed delays in the tracker output for dynamic human

targets. Moreover, as this is an external tracker, it has a limited coverage that will not be sufficient for

environments with multiple rooms.
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Overhead Camera

We looked into two marker-based tracking solutions for using overhead cameras, Swistrack and OpenCV-

based blob detection. SwisTrack [105] is a powerful software for tracking mobile targets in 2D. It is

particularly effective for tracking small ground robots. This marker-based approach performs well in

controlled environments with a sufficiently large distance between the camera plane and the marker

plane. However, it has limited operating area for tracking a human target (1.7 m tall on average) in a

standard room, with the marker placed on the human’s head. Despite its accurate positioning, we were

not able to adopt this solution in our experiments for human tracking as we needed to have more than

5 cameras to cover a volume of 5.5×8×2.8 m3 corresponding to our robotics laboratory arena (see

Section 7.1 for more details).

In an attempt to overcome the problems of the original SwisTrack, a simple active marker was developed

at DISAL (by Lorenzo Sarti), consisting of a 15×20 cm2 board with four LEDs (see Figure 6.2). This

tracking method is based on simple color blob detection functionalities provided by OpenCV. This

tracker has been used for acquiring ground truth measurements in Section 17.3. However, this approach

has similar shortcomings to SwisTrack. Changes in the lighting conditions affect the performance of

this method. Moreover, in rooms with shorter ceilings or with taller targets, the coverage of the cameras

for tracking this marker largely decreases making this solution not scalable, as more cameras will be

required for providing the same coverage. We note that this marker should be placed on top of the

target to be tracked to minimize the likelihood of occlusions.

A 3D version of SwisTrack was necessary to resolve the problems of the previous two approaches. As

this step required substantial development and testing effort, we opted for an existing 3D solution, the

Motion Capture System (MCS).

Motion Capture System (MCS)

MCS is a commercial tool for recording the movement of designated targets within an experimental

arena with very high accuracy. The MCS we use in this research (see Section 7.2 for more information)

is a marker-based solution provided by Motion Analysis Inc. that provides us with millimetric scale

accuracy. We rely on this system for ground truth measurements, human tracking and emulated local

perception of the robots in Chapter 16 onward. However, external perception limits the robots in terms

of coverage. Moreover, the very high accuracy of this system comes at a high purchase price, resulting

in a solution that is suitable for research purposes only.

UWB Transceivers

UWB is an emerging technology in the field of indoor localization, mainly due to its high performance

in indoor scenarios and relatively easy deployment. However, in complex indoor environments, its

positioning accuracy may drastically decrease due to the biases introduced when emitters and receivers

operate in Non-Line-of-Sight (NLOS) conditions. This undesired phenomenon can be attenuated by

creating, a priori, a map of the measurement error in the environment, that can be exploited at a later

stage by a localization algorithm. In an attempt to use this technology for human tracking, we proposed

the leveraging of mobile robots in order to automatize the UWB calibration process, based on the

work of Prorok et al. [106]. The purpose of this method, detailed in Appendix A.1, was to improve the

performance of UWB-based people localization in a realistic indoor environment.
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In this approach, the error map was the result of a calibration process, which consisted of collecting

several measurements of the localization system at different locations in the environment. We demon-

strated how the accuracy of an UWB Real Time Location System (RTLS) can be significantly improved

through a fingerprinting-based calibration method in complex indoor environments. Moreover, we

showed that this method can be effectively implemented using a mobile robot able to autonomously

scan the environment. Adopting this method improved the mean localization error of our system by

roughly 50%. In particular, this method was shown to be very effective for the rejection of highly inac-

curate measurements that have an error greater than 0.5 m. More information about our UWB-based

human tracking method can be found in [107].

Despite promising results of this approach, additional experiments performed with multiple human

targets showed that as the number of humans in the social environment increases, some measurements

can largely differ from the collected error map1. Therefore, this method should be further improved for

achieving satisfactory levels of accuracy needed in uncontrolled social environments. As a result, we did

not adopt this technology in our final experimental setup. Nonetheless, we believe this is an interesting

and promising research area with many applications for indoor positioning in human-populated

environments.

6.3.2 On-Board Solutions

In this section we briefly describe the human detection and tracking solutions that are performed

locally on the robots.

Laser Range Finders for Leg Detection

This is a simple leg detector developed by Arras et al. [108], that uses two dimensional range scans.

In their approach, supervised learning is used for creating a classifier that simplifies the detection of

people and Adaptive Boosting (AdaBoost) is applied for training a strong classifier from simple features

of groups of nearby beams corresponding to legs in the range data. Based on our experiments presented

at Section 11.2, this is a fast and effective detector. However, it can report false positive detections

when faced with objects resembling the shape of human legs such as ripples on a curtain. Orientation

estimation using this approach, is based on the velocity vector, assuming a forward walking motion.

For this reason, the output of this detector should be fused with that of another detector for having

reliable human pose estimates.

Kinect with Low-Lying View Point

This tracker is designed for small-footprint ground robots, developed by Pesenti et al. [109]. To explain

their method in short, the point cloud is initially down sampled and after floor detection, potential

leg candidates are formed. Thereafter, a trained SVM classifier based on HOG features, calculates the

probability of each candidate being a leg. Additionally, tracking is done using a KF. This is a robust

tracker with a few false-positive detections that is computationally more expensive than the laser-based

leg detector introduced in Section 6.3.2. Thus, we have fused the detections of these two methods for

human perception in Section 11.2.

1Refer to this link for more information
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Kinect: Nite

This tracker comes from a ROS meta-package called cob_people_perception from the Care-O-Bot

Research 2. It is easy to set up and besides the skeleton tracker, it has a number of other modules for leg

detection and data fusion. In this work, we have only used the Nite detector and tracker. Tracking starts

by segmenting the scene into background and humans, and then detection of the human skeletons

takes place after a calibration phase. We note that any moving object will be detected as a potential

human in this approach. This tracker has not proven to be very robust in our tests. It works well

when people are facing the camera, in a specific range while holding a basic standing position, but for

more complex cases, the speed of tracking can significantly decrease. We believe this is caused by the

calibration phase needed to start skeleton tracking for the humans. We observed that the calibration

time was variable, and depended a lot on the human’s pose (e.g.,standing, walking, etc.). Hence, it might

become problematic for cases where the humans are walking, or quickly crossing the robot’s FOV.

Kinect: OpenPose

OpenPose is an open source software developed by the CMU Perceptual Computing Laboratory3, for

detecting body, hand, and facial keypoints (a total of 130) of multiple humans on an image. It works

on images or videos, and can be used in real-time. It makes use of Deep Neural Networks (DNN) and

requires GPU acceleration for improved performance due to its high computational cost. The details

and performance comparison of this detector with the Nite tracker can be found in a semester project

report following the address in the footnote 4.

OpenPose has shown great performance, accuracy and robustness in our assessments. It works at

multiple scales and in cases with partial visibility since it is also able to detect a subset of keypoints.

Additionally, a confidence score is provided for each keypoint on top of the position estimate, quantifying

the detection uncertainty. Compared to the Nite tracker, OpenPose only needs one image for detecting

a human, and no calibration is required. Therefore, the time taken to start detecting a human is only

dependent on the computation time required to process an image. However, the computation time can

be a problem as the forward pass through the deep network is computationally costly, and requires

high-end GPU to process images rapidly. Another consideration is that it works on RGB images only

(although they have started to include RGB-D support recently) without the depth information given

by the Kinect. Thus, the results are 2D position estimates in the image frame, and further processing is

required to have 3D detections. Finally, OpenPose only performs human detection without tracking.

Despite our effort for using RGB-D images in OpenPose to get 3D pose estimates for the humans, we

did not adopt this method is our experiments in the end, due to the hardware limitations of the Mbot.

Since, there is no GPU included in the robot, upgrading the robot hardware, OS and firmware required

more time than available. Nonetheless, we believe this is a very effective tool for on-board human pose

estimation.

2Fraunhofer IPA, Care-O-Bot Research, by Fraunhofer IPA
3https://github.com/CMU-Perceptual-Computing-Lab/openpose
4https://disal.epfl.ch/teaching/students_projects/AY_2017-2018/DISAL-SP111
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6.4 Discussion

Although the tools we introduced in this chapter provide us with satisfying performance, reliability

and fidelity to carry out our experiments, like any other tool, they are not perfect. Robot functionalities

and more so, on-board human detection and tracking can be further improved to allow for more ef-

ficient human-aware navigation and human motion prediction. Moreover, the simulation-to-reality

gap inherent to any simulated system, can be further reduced by means of more precise calibrations.

Furthermore, larger data sets of human trajectories and human interactions in the real environment

can help to build a more diverse pool of human trajectories to be used in simulations.

Summary

This chapter presents the software tools used to validate the work of this thesis. ROS and Webots

frameworks are leveraged for implementation, validation, and evaluation of our algorithms.

Additionally, the basic available functionalities for the Mbots in the context of the MOnarCH

project, and human detection and tracking tools used in this research are described in this

chapter. MCS is the final perception tool adopted for ground truth measurements and emulating

on-board perception in this thesis due to the millimetric scale accuracy that it provides.
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R E A L - W O R L D experiments are fundamental for validation of algorithms in robotics re-

search. This calls for having a reliable setup that enables executions of repeated exper-

iments and provides ground truth for method evaluation. The indoor environments in

which our experiments have been performed along with the experimental setup are de-

scribed in this chapter. The two main facilities where experiments have been conducted, the DISAL

robotics laboratory and DISAL motion arena at Jordils, will be detailed in the following sections.

7.1 Robotics Laboratory

Real-robot experiments in Chapter 11-15 have been conducted in the environment depicted in Fig-

ure 7.1a. The setup used for our real-world experiments at this facility, composed of an overhead camera

and an Ubuntu computer that receives the image stream and processes these data for computing hu-

man poses and ground truth, is illustrated in Figure 7.1b. The characteristics of the arena and the

camera used for target tracking are given in Table 7.1. We note that the reported size of the arena in

the Robotics Laboratory corresponds to the dimension of the whole room since we were targeting a

realistic human-populated environment. For the Jordils facility however, we are exclusively reporting

the size of the motion arena.

In our setup, we use 1) a GigE color camera (Basler-SCA1000-30GC) which has a standard resolution of

1032×778 pixels and 30 fps, mounted 2.5 m above the robotic arena (used with the OpenCV-based

tracker introduced in Section 6.3.1 for experiments in Chapter 11). 2) A PoE omni-directional camera

(VIVOTECH Supreme FE8174/74V) with 1080p Full HD resolution and 30 fps, mounted above and in

the center of the arena (used with the HOG-based tracker introduced in Section 6.3.1 for experiments

in Chapter 12).

Table 7.1 – Characteristics of the experimental arenas.

Name Length Width Height Number of cameras

Robotics Laboratory 8 5.5 2.8 1
Jordils’ motion arena (map I) 11.5 7 5 28
Jordils’ motion arena (map II) 9.5 7.5 5 28
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(a)

(b)

Figure 7.1 – a) Snapshot of the DISAL robotics laboratory experimental arena. b) Illustration of
the experimental setup at DISAL.

7.2 Jordils’ Motion Arena

Real experiments in Chapter 16 onward, have been performed in the arena depicted in Figure 7.2.

The experimental infrastructure is composed of a control room, a reconfigurable arena consisting of

modular building blocks, and a network of cameras anchored to a structure at the ceiling level of the

arena to track retro-reflective sphere of 25 mm diameter. In the control room, there exists a Windows

computer running the MCS software that performs the pose estimation for the targets, using their

corresponding marker sets. Pose estimates are multi-casted into a network at 100 H z. Another Ubuntu

machine, receives these packets of data through the network and using an SDK for communicating

with the MCS software, publishes the pose information as a topic in the dedicated MOnarCH network.

This time-stamped topic can be recorded in the form of a rosbag or in the log format as the ground

truth. The characteristics of the arena and the cameras used for target tracking can be found in Table 7.1.

42



7.2. Jordils’ Motion Arena

(a)

(b)

Figure 7.2 – a) Snapshot of the motion arena at Jordils. b) Illustration of the experimental setup at
Jordils.

Summary

In this chapter the indoor environments where we have conducted our real-robot experiments

have been detailed and the infrastructure and the setup in each facility are described. Initially,

we have performed real experiments at the DISAL robotics laboratory. We then moved to the

Jordils facility for doing more complex experiments with multiple robots and multiple moving

humans. This choice was motivated by the larger area, flexibility of the static map, and more

importantly, the accurate human positioning and ground truth that was necessary for our

method evaluations.
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8 Conclusion

T H E R E exist a number of key components required for implementation, validation and

evaluation of methods proposed in this thesis. These components consist of the hard-

ware platforms, software frameworks, human detection and tracking methods, and the

experimental setup, all introduced in this part. Although the current system has satisfying

performance, there still exist limitations in terms of hardware and further improvements can be made

to the simulation and human positioning tools. Among the various human detection and tracking

methods and technologies, we contributed to a UWB-based human localization approach using mobile

robots for automatic calibration. Despite promising results in a realistic indoor environment, further

studies with multiple humans showed how human bodies can modify the fingerprints due to signal

attenuation. This resulted in large errors that were not captured by the underlying error maps, and

using a single tag, the current approach could not achieve accurate results. Thus, we refrained from

using this method for ground truth acquisition and opted for an MCS instead.
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9 Introduction

H U M A N - A W A R E mobile robots are expected to exhibit behaviors that differentiate them

from human-agnostic robots who treat people merely as obstacles. In order to generate

human-aware autonomous navigation, we have taken an incremental approach of ini-

tially enabling basic autonomous navigation and augmenting it with human-awareness

consecutively. Navigation demonstrates human-awareness by modifying the human-agnostic plans

given to a robot by means of adopting a socially-aware path planner. Such a planner should take into

consideration individual people and possible social interactions taking place between them when

computing the optimal path. This information is provided through perceptual data and is translated to

social costs using models such as social costmaps.

Since individual human-aware navigation is the first step towards having cooperative human-aware

navigation for multi-robot systems, Part III of this thesis will investigate the challenges and solutions

for building this functionality. In Chapter 10, the underlying navigation components and the social

costmap model are introduced. A case study targeting Ranger, a resource-constrained robotic platform

will be presented in Chapter 11. When robots are deployed in real complex environments, having

perfect information about the position of the humans, which is a key assumption of many human-

aware navigation methods, is too simplistic and not robust to non-negligible perception uncertainty.

In Chapter 12, we attempt to model one essential aspect of human-aware navigation that has been

overlooked in this area, uncertainty in perception. This is achieved by adopting perception methods

with non-deterministic human position estimates and expectation-based social costmaps.
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10 Single Robot Human-Aware Navigation

T H I S chapter describes the details of single robot navigation and human-aware path plan-

ning for our two robotic platforms. There are three main components required for enabling

a robot to autonomously navigate in an environment: mapping, localization, and motion

planning which is composed of path planning and obstacle avoidance. The principles of

each component and their corresponding implementation details will be explained in the next sections.

10.1 Ranger Navigation

In this section basic navigation components of the Ranger will be explained.

10.1.1 Mapping

Map in the context of navigation denotes any one-to-one mapping of the world onto an internal

representation for the robot. For this purpose, a spatial model of the environment surrounding the

robot is obtained using the Kinect sensor and robot odometry. This spatial model will be used for

localization and navigation in later stages of navigation. The map is created by applying a grid-based

Simultaneous Localization and Mapping (SLAM) method using Rao-Blackwellized particle filters [110]

implemented by the gmapping package of ROS.

10.1.2 Localization

Robot localization refers to the robot’s ability to establish its own position and orientation within

the frame of reference. This is achieved by means of AMCL [111] that is a Particle Filter (PF)-based

localization method, implemented by the ROS amcl package. It tracks the pose of the robot and provides

localization using a given map, odometry and a single row of the depth readings typically obtained by

a laser scan. In the Ranger, this laser scan is the result of converting the Kinect’s depth image to laser

scan data format. We have converted the readings of the depth camera to laser-like readings, by taking

the closest depth reading from each column in the 10 central lines of the depth image.
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10.1.3 Motion Planning

The motor commands required to take the robot to its final goal without colliding with static or moving

obstacles are provided by a global and a local planner. We associate a costmap to each of these planners.

A costmap assign a cost to each cell of a given spatial map. The details of the navigation approach used

here, are explained more extensively in [112]. The global planner also referred to as the path planner,

uses an A*-search 1 to find the optimal path to the goal. The local planner responsible for obstacle

avoidance is based on the DWA [35].

10.2 Mbot Navigation

The robot navigation is based on the navigation system used in the MOnarCH project [113], detailed

in [30]. For understanding the underlying components for autonomous navigation of the Mbot, a brief

description of these modules can be found in the following.

10.2.1 Mapping

Similar to Section 10.1.1, we rely on SLAM through the use of ROS gmapping package for constructing

a static map of the environment based on the laser scan and odometry information.

10.2.2 Localization

ROS amcl package is responsible for providing robot localization based on odometry, laser range finder

readings, and a static map.

10.2.3 Motion Planning

Mbot navigation is based on FMM [31] for path planning, together with DWA algorithm for guidance

and obstacle avoidance. DWA is essentially a maximization (over a discrete set of feasible velocity

candidate commands) of an evaluation function translating three guidance goals: (1) progress towards

the goal, (2) clearance from obstacles, and (3) absolute speed. The guidance problem is approached as

a two-step process. First, given a goal location, the robot plans its path from the current pose to the

goal pose. This is the task of our FMM-based global planner. Second, the plan is executed by the robot,

in real time, while avoiding unmapped obstacles. This is done by means of a local path planner based

on DWA.

The potential field output by FMM is minima free and yields an optimal path from a given initial to

a final goal point. It is optimal in the sense that the integral of a costmap over the path is minimal,

given the initial and final points as boundary conditions. The path is the solution of a gradient des-

cend Ordinary Differential Equation (ODE), with the initial point as initial condition. However, we

do not explicitly compute a path. Instead, we compute the progress towards the goal directly from

the gradient of the potential field. This FMM-based navigation method has been used in MOnarCH

for the Mbots considering solely an increased cost near static map obstacles in the robot costmap,

keeping the resulting paths away from the obstacles. In this thesis a social component is added to this

costmap as well.

1http://wiki.ros.org/global_planner
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(a) (b)

Figure 10.1 – Ranger navigation: (a) The path of the robot given by the planner when encountering
a social costmap centered around a static human. (b) The social costmap of a person moving
towards the robot.

FMM and DWA run asynchronously. FMM is activated when either a new goal position is given, or when

the costmap changes. DWA is running in a closed loop with a fixed rate of 20 Hz in our experiments,

using the last updated potential field from the FMM.

10.3 Human-Awareness in Navigation

In basic navigation, only the global and local costmaps used for assigning costs to areas corresponding

to obstacles are taken into account for path planning. However, when augmented with human detection

and tracking modules, the robot is able to have a social consideration for people when performing this

task. Once the robot knows where the people are in the environment it should consider them differently

from other obstacles and plan accordingly. We rely on proxemics to make this differentiation based on

which we assign a social cost to the human personal space that the robot should avoid intruding. This

social cost in encoded in an additional costmap that is combined with global and local costmaps for

taking the final path planning decision. This social costmap is responsible for making the navigation

human-aware. This is based on the concept of layered costmaps proposed by Lu et al. in [114].

We have opted for a proxemics-based cost modeling approach in spite of the shortcomings detailed in

Section 2.1.4. There are several reasons that motivate this choice: (i) our proposed approach does not

rely on any data collected from a specific environment, (ii) dynamic proxemics requiring the analysis of

signals other than the human and robot poses, is not an integral part of our human-aware navigation

approach as we only base our navigation on the pose signal, (iii) similar to numerous studies in the

field, this spatial modeling allows for having a human-aware navigation behavior in the majority of

cases using minimal information, i.e., pose (and velocity). Nonetheless, the proposed framework is not

dependent on this choice of social cost modeling and any other model such as the dynamic proxemics

model or learned social costs translated into the form of a spatial costmap can easily be employed.
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Chapter 10. Single Robot Human-Aware Navigation

(a)

(b)

Figure 10.2 – Mbot navigation: example of a scenario with three moving people and three robots
for: (a) Webots simulator, (b) visualization of the social costmaps in Rviz.

10.3.1 Social Costmap Model

The personal space around a human can be defined as the mixture of two pseudo-Gaussian functions,

one for the front and another one for the rear part of the area surrounding the person. The orientation

and heading of the person will cause a corresponding rotation in these functions in such a way that the

person is always in the center and the absolute orientation of the person matches that of the Gaussian

functions. A Gaussian function N , centered on p with covariance matrix Σ, is defined as follows:

N (q) = exp
{
− 1

2 (q −p)Σ−1(q −p)
}

(10.1)

q indicates the position of a point and Σ is:

Σ=
(
σ2

x 0

0 σ2
y

)
(10.2)

σx and σy are used to modulate the shape of the Gaussian and are traditionally chosen in a way to

respect the personal space of a person as indicated by the proxemics principle. Various factors such

as age and gender [10], and velocity of the motion [24] can influence the size of this area, however, σx

and σy are commonly considered to be constant over time. Getting closer to a person, will cause an

increase in the value of this function, and hence the social cost associated to that position will increase.

If the center of the costmap, which indicates the position of the person is not deterministically known,
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the costmap can not correctly model the social costs and hence the social path planning could fail

in finding an appropriate socially compliant path. This problem becomes much more critical in real

applications where perception uncertainty can be non-negligible and robustness is vital for succeeding

under different conditions. We believe probabilistic social costs can be a remedy to this problem.

An extension of the deterministic social costmap, i.e., what we called an “expectation-based” social

costmap is introduced in Chapter 12.

We note that for the experiments done with the Ranger, the social costmap model was chosen to have

a variance proportional to the relative velocity of the human, similar to the approach in [24] and the

social costs were considered in an additional costmap layer in ROS. Figures 10.1a and 10.1b show how

the social costmap looks like around a person in different situations for the Ranger.

As for the Mbots, the social costmap was used to augment the speedmap of the FMM. The update rate

of the social costmap is chosen while taking into account the time required for the FMM to compute a

plan. Additionally, we chose a constant variance for personal space modeling similar to [33] and relied

on frequent replannig for computing human-aware paths (see Figure 10.2). This was mainly motivated

by the human positioning errors affecting the velocity estimations in reality. Nonetheless, if sufficiently

reliable velocity estimations are available the social cost model can be adapted accordingly. Moreover,

despite focusing mainly on personal spaces in social cost modeling, the proposed methods in this

thesis are by no means restricted to this type of social costs only. The reason is that we rely on a social

costmap that can be realized in the form of a discrete array of measurements or a continuous cost

function encapsulating any desired social cost.

Summary

In this chapter, navigation components of the Ranger and Mbot robots were detailed. Addi-

tionally, modeling of social costs through the use of social costmaps was explained. These

components constitute the basis for our single robot human-aware navigation behavior.
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11 On-Board Human-Aware Navigation for
Resource-Constrained Robots

I N this chapter, we introduce the human-aware navigation solution we devised for the Ranger, a

robot with limited sensing and constrained maneuvering, in a structured environment. The goal

of this chapter is to achieve autonomous human-aware navigation despite the limitations of

the Ranger. Additionally, we aim at utilizing the interactive capabilities of the robot to improve

the legibility and intent-expressiveness of its motion.

Human-robot awareness is defined as the understanding that the humans have of the aspects related

to the robots such as the status, activities, locations, identities and surroundings of the robots and

the certainty associated to this understanding. On the other hand, robot-human awareness is the

knowledge that the robot has about the commands of the humans that are needed for directing its

activities and also any human-delineated constraints which may require a modified course of action

and disobeying the original commands. In this chapter, we focus on the combination of both aspects.

Social costs form the basis of robot-human-awareness for the Ranger and interactive gestures of the

Ranger aim to express the robot’s intent to the human to provide human-robot-awareness. The social

costmap introduced in Section 10.3.1 is used for modeling the human personal space for the Ranger.

Additionally, we also define a set of metrics for human-aware navigation, reflecting comfort, which

allow us to experimentally compare our human-aware controller with a human-agnostic counterpart.

Systematic experiments are carried out with a real robot in the presence of a human in order to compare

our human-aware navigation with a non human-aware approach.

11.1 System Architecture

Our system comprises a number of nodes running within the ROS framework. The role of the main com-

ponents of this system have been detailed in Chapter 10. For understanding the connections between

these components, the system architecture of the robot’s software stack is depicted in Figure 11.1.

“odometry” and “scan” topics are the main sensory information for the robot navigation. We rely only

on the on-board sensors for mapping, localization, human detection and tracking, and navigation.
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Figure 11.1 – Connections between different system components.

11.2 Human Tracking

To add human-awareness to a robot capable of autonomous navigation, the robot needs to detect the

people present in its surroundings. It is common in the literature of human-aware navigation that

detection and tracking of the people is performed or jointly performed by an external tracking system

[2]. On-board person detection and tracking becomes an even harder problem for a small-footprint

mobile robot with sensors that lie close to the ground due to limited perception. The RGB-D camera of

the ranger is positioned such that the robot has a low-lying viewpoint. We perform on-board detection

and tracking using two different algorithms (previously mentioned in Section 6.3) that we fuse by

means of a Kalman Filter (KF).

The first detection and tracking algorithm introduced by Pesenti et al. [109], is developed for small-

footprint ground robots with low-lying view points and has proven to be robust for cluttered indoor

environments. This tracker returns the position of the person relative to the robot and its approximate

orientation. The second tracker, by Arras et al. [108], is a simple leg detector which uses two dimensional

range scans. Figure 11.2a shows a sample visualization of the laser scan for this leg detector and

Figure 11.2b is depicting how the final detection of the person is visualized upon leg matching and

fusion.

Presenti’s tracker detects and tracks people robustly with a few false-positive detections. However, in

our experiments the speed of detection for this tracker was lower than that of Arras’s tracker. Arras’s

tracker has a very high speed of detection with the down side of false-positive detections being reported

in some cases due to the limited information used for detecting legs. We have fused both trackers using

a KF that is initialized with the first detection of Pesenti’s tracker and is updated with data coming from

both trackers which have different information publishing rates.

11.3 Social Metrics

In order to evaluate the performance of our controllers with respect to social constraints, we introduce

three metrics that take the human presence into consideration.
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(a) (b)

Figure 11.2 – (a) Robot’s laser scan when encountering a person. (b) Final detection and tracking
of the person is the result of fusing the two trackers.

11.3.1 Minimum Distance to the Human

This metric (m1) captures the minimum distance between the robot and the human during the experi-

ment.

m1 = min
∀t∈T

D(�xr [t ],�xh[t ]) (11.1)

where D is a function that returns the Euclidean distance between two points. For each measurement
�xr [t ] obtained at time t during an experiment of length T ,�xr denotes the position of the robot and�xh

denotes the position of the human.

11.3.2 Time Spent in Areas Associated with Social Costs

The percentage of the time spent in areas with social costs is reported for this metric (m2). We define

the area around a human that should be avoided by the robot as a circle of radius r defined as follows:

r = (−2σ2 · l og (
C

A
))

1
2 (11.2)

The choice of having a circle is motivated by the fact that the human is always static in our experiments.

A is the amplitude and σ2 is the variance used for the two-dimensional Gaussian cost function and C is

a threshold used for limiting the area of the costmap. This radius is also applied in the implementation

to specify the size of the social costmap.

f [t ] =
{

1 if D(�xr [t ],�xh[t ]) ≤ r

0 if D(�xr [t ],�xh[t ]) > r
(11.3)

m2 =
∑T

t=1 f [t ]

T
(11.4)

59



Chapter 11. On-Board Human-Aware Navigation for Resource-Constrained Robots

11.3.3 Mean Accumulated Social Cost

For this metric (m3) the same social cost used by the social path planner is reported for all points in the

robot’s trajectory over the entire experiment.

{
mx = D(�xr [t ],�xh[t ]).cos(θ)

my = D(�xr [t ],�xh[t ]).sin(θ)
(11.5)

C [t ] = A.exp
{
−(

m2
x

2σ2
x
+ my

2σ2
y

)
}

(11.6)

m3 =
∑T

t=1 C [t ] · f [t ]

T
(11.7)

where θ is the bearing of the robot relative to the human, σ2
x is the variance of the Gaussian costmap in

the x dimension, and σ2
y is the variance in the y dimension.

11.4 Experiments

To test our human-aware navigation in a real scenario, we did a number of experiments in the environ-

ment depicted in Figure 11.3. We used an OpenCV-based tracking system introduced in Section 6.3.1

as the provider of the ground truth to keep record of the robot pose during our experiments. The

positioning error was measured to be 2-3cm in the central area of the arena and 5-7cm further away

from the camera on the borders of the environment.

We investigated the performance of our human-aware navigation method in a simple move-to-goal

scenario in the presence of a static human. Each experiment has been repeated 10 times for each

navigation algorithm. In all experiments, the human is standing in the arena and the trajectory of

the robot is recorded by tracking an active marker placed on top of the robot. The human is placed

directly under the camera to minimize occlusions. The main reason for having a static human was the

difficulties arising from tracking both the robot and the human with the overhead camera, given the

small height of the robot that could lead to marker occlusion. The metrics used in our experiments

were m1 −m3 detailed in Section 11.3.

11.5 Results

Figure 11.4 shows two sample trajectories from our experiments. The human-aware approach (blue)

is clearly avoiding to enter into the areas close to the human whereas the basic navigation approach

(green) favors the shortest path between the starting point to the target position while considering the

human only as an obstacle to ensure safety. Figure 11.5 shows the result of our metric evaluation. As

expected we can see that there is a large difference between the minimum distance of the robot to the

human (m1) in the two approaches and the human-aware approach keeps a much bigger distance. At

the same time the associated costs in terms of the time spent close to the human (m2) and the mean

accumulated social cost (m3) are also considerably higher for the non human-aware approach showing

the effectiveness of our human-aware navigation.
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(a) (b)

Figure 11.3 – The experimental arena. a) Snapshot of the experimental arena captured by the
overhead camera providing the ground truth for our experiments. The starting position of the robot,
position of the human and the goal are marked on the image. b) The map used for navigation.
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Figure 11.4 – Sample Ranger trajectories captured by the ground truth system for both navigation
approaches. Positions are given in the camera coordinate system.

11.6 Discussion

Results show that human-aware navigation that differentiates between humans and obstacles is able

to achieve trajectories that respect the personal space of the human and are thus more acceptable for

the users. However, there were a number of difficulties for achieving the final human-aware navigation

behavior. The limited range and field of view of the depth camera lead to limited perception of the

environment. This affects different system components, particularly localization, resulting in a degrad-

ation of the overall navigation performance. Additionally, it is not generally very clear how the social

costmaps should be preserved over time. Considering the high dynamics of the human movement, a

common assumption is that the social cost assigned to the area surrounding a human is only valid as

long as the human is detected and is within the perception range of the robot. However, this creates

problems for robots with limited perception such as the Ranger, despite the human being static, when

the person is no longer perceived. We encountered this problem during our experiments when the
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Figure 11.5 – Performance metrics for the experiments obtained from 10 runs for non human-
aware and human-aware navigation approaches. a) Minimum distance to the human (m1 in
meters). b) Time spent in areas associated to the social costmap (m2 in seconds). c) Accumulated
social cost (m1).

robot replanned upon detecting a person for moving in a socially acceptable manner. But the modified

robot path caused the robot to lose the human and once the human was outside of its sensing range, it

replanned again trying to minimize the distance needed to reach the goal in a human-agnostic manner.

We have chosen to preserve the social costmap for a predefined period of time, if perception updates

about the human position are no longer received. In the case of moving humans, a tracker must be used

to generate this information for a predefined period of time. This period should be chosen according to

the level of dynamics of the human movements in the environment. In our experiments, we update

the social costmap using the last received human position for a period of 30 s upon receiving no data

from the people trackers. After this period, a timeout clears the social costmap and erases all the past

data. It is arguable which approach is better in the general case, but as mentioned before we believe

this decision of how long to preserve a social costmap is tied to the type of the environment and the

perception capabilities of the robot. If the robot is able to observe the people at all times it makes sense

not to preserve the social costmaps but if this is not the case, erasing the social costs immediately when

the human is out of sensing range, would be questionable. We believe limitations of local perception are

among the challenges in human-aware navigation that are commonly overlooked and require further

investigation.

To increase the awareness that the human has of the robot and for having a more legible navigation

we added complementary gestures to the robot as advised by [14]. This was done for clarifying robot’s

intention, namely, the direction towards which the robot was going to move. The pupils of the robot’s

eyes indicated the direction of the movement and the LEDs on the side to which the robot wanted to

turn were activated to improve the navigation legibility. Figure 5.1b shows the robot before turning

to its right. We note that despite the interactive features running on the robot, we did not truly utilize
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them in our experiments due to the limitation of having a static human. Therefore, we did not evaluate

the robot-awareness gained by adding features that increase legibility through a user study. In the case

of moving humans, this indication of intent can be very useful for the humans for planning their path

in the vicinity of the robot. However, we did not pursue this direction with the Ranger.

Although Ranger is a good robot for studying human-robot interactions targeted to children, the lim-

itations of this simple robotic platform result in difficulties for experimenting with more complex

algorithms and scenarios. Therefore, the experimental work reported in the remaining chapters of this

thesis have been carried out using another robotic platform called the Mbot, already introduced in

Section 5.2.

Summary

In this chapter, we demonstrated the effectiveness of autonomous human-aware navigation for

a simple domestic robotic platform designed for children, relying only on its on-board sensors

and computation capabilities. The system combines human detection and tracking, basic

autonomous navigation and the concept of personal space modeled with a social costmap. The

final human pose is the result of fusing depth-image-based estimations given by (i) a low-lying

view point tracker and (ii) a leg detector. Furthermore, challenges and limitations of this problem

have been explained. Results confirm that human-aware paths result in a better performance

with respect to social metrics compared to paths generated by a human-agnostic approach.
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12 Incorporating Perception Uncertainty in
Human-Aware Navigation

O N E key element of human-aware navigation is human detection and tracking as it

provides the data translated to social costs using models such as social costmaps. How-

ever, state-of-the-art perception methods are not perfect and are affected by various

elements such as the robot movement, humans’ movement, lighting conditions, complex-

ity of the environment in terms of occlusions, etc. Due to the approximate nature of the models and the

less than perfect human detectors available, we often can only provide estimates of the locations of the

humans with an associated uncertainty. Thus, any planning algorithm relying on real perception data,

must be able to cope with this inherent problem. Despite this fact, the assumption of having perfect

information about the position of people at all times is common in the state-of-the-art research in

human-aware navigation and the main research focus is on the planning itself. However, moving to real

applications, poses serious challenges in terms of noisy perception information and high uncertainties,

that need to be addressed and modeled in a human-aware approach.

In this chapter, we present a novel approach to human-aware navigation that explicitly accounts for

perception uncertainty by incorporating the uncertainty of position estimates of humans into the social

costmap, using the Mbot robot. We study the effect of this factor on social costs and demonstrate how

taking this uncertainty into account in the extended social costmap model, can result in trajectories

that are improved in terms of social acceptability. Although we rely on an FMM-based social path

planner, it should be emphasized that our approach is planner-independent as long as the planner

takes costmaps as input, e.g., it could be used in combination with ROS’s navigation stack [114].

12.1 Perception Model

A socially-aware path planner needs to take into consideration individual humans and possible social

interactions taking place. This information can be obtained by an external source such as an overhead

camera or can be attained using on-board sensors of the robot. Different perception sources for human

detection and tracking have different levels of uncertainty and accuracy in their detections, and are

affected differently by the environmental factors. As an example, UWB technology can track targets

in NLOS conditions while this is not possible for vision-based systems. By taking the uncertainty of

perception into account in a human-aware path planner, the same planning method could easily be

reused even when the source of perception and consequently perception uncertainty change.

In the proposed framework, a probabilistic approach has been chosen to account for uncertainty in
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tracking rather than deterministically reporting positions and dealing with the perception uncertainty

inside the tracker module only. We are interested in the underlying state of the environment which

is the position of the humans. The detectors used to estimate these state variables have associated

noise due to various factors such as occlusion, lighting conditions, different postures of the people,

motion of the robot and the humans, etc. Coupled with this, there is also stochasticity in the state

transitions, which makes it hard to compute an exact estimate of the human positions. A principled

approach to solve this problem, is to compute a belief (posterior distribution) over the states using

recursive Bayesian estimation. We first describe the state representation of the system and then explain

the tracking model formally.

12.1.1 Detector

The background-based detector proposed in [115] is a very effective probabilistic method, that allows

automatic evaluation of the number of people in the scene and detection of their locations. This method

has the following advantages. (i) It can incorporate prior knowledge, including which areas in the scene

can contain people and how probable it is for people to be in those locations; a probability distribution

over the number of people in the scene; a probabilistic model of how close together people tend to walk;

etc. (ii) The complexity of the algorithm depends linearly on the number of people in the scene. (iii)

The method is robust to changes in illumination, shadows and occlusions. Moreover, it is adapted to

adjust to a non-static background automatically.

12.1.2 State Representation

An occupancy grid-based approach is used for tracking the people in the environment in this chapter.

The environment is discretized into G cells. Each cell is of size 25 cm × 25 cm. The size of cells has

been chosen in such a way that each cell can be occupied at most with one person at any time. The

occupancy of each cell is denoted by Xi where i ∈G . The occupancy of all the cells at time t is the state

of the world Xt . At every time instance t , the observations from the detector for each cell i is given by

Oi . The set of observations for the whole state is denoted by Ot .

12.1.3 Tracking Model

Let Xt be the state of the environment at time t. We are interested in computing the current belief over

the states Xt given the observations O1:t , that is, P (Xt |O1:t ). Formally, this can be represented by a Bayes

filter [116] as,

P (Xt |O1:t ) ∝ P (Ot |Xt )
∑

Xt−1

P (Xt |Xt−1)P (Xt−1|O1:t−1) (12.1)

where the likelihood P (Ot |Xt ) represents the observation model which expresses the probability that an

observation Ot was made given the state Xt at time t . Computation of this likelihood is best performed

by using a learned model of how the detectors perform in different states.

P (Xt |Xt−1) is the transition model which models the evolution of the state variables. For a real multi-

person environment, an exact analytical model is intractable. In our system, we use a simple uniform

distribution for the transition model. We assume that people move randomly and that there is an equal

probability of motion in any direction. P (Xt−1|O1:t−1) is the belief computed at the previous time step.
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In a multi-person environment, the state space is extremely complex for computing the exact prob-

ability distribution over the states. We use an Markov Chain Monte Carlo (MCMC)-based sampling

algorithm to approximately compute the belief. In the next section the implementation details of our

probabilistic model for human detection and tracking are explained. Although the detector is modeled

probabilistically, it is still needed to learn the distribution P (O|X) for the detector from data. Given the

labeled location of the people in a data set, the uncertainty in the observations is learned for all the

locations and configurations of the state space. Since the state space has high dimensionality, we learn

the likelihood model over a parametrized state space [117].

12.1.4 MCMC Sampling

MCMC is a widely used sampling algorithm for estimation of complex posterior distribution. It has been

gaining popularity in multi-target tracking applications [116]. Compared to traditional particle filters,

MCMC-based sampling leads to far less sample impoverishment and thus a much better estimation of

the state over time. The core idea of MCMC is to generate samples from a Markov chain. The samples

are then evaluated using a proposal distribution and accepted or rejected based on an acceptance ratio.

The proposal distribution should be proportional to the posterior distribution that we are trying to

approximate. The MCMC sampler creates hypotheses of the location of the people in the grids and is

used to compute the belief over the previous steps. Each sample is an estimate of the occupancy of all

the cells taken collectively. In this work, the occupancy of the grids are used as hypotheses. Each cell

can either be occupied or not, with initially starting from a random distribution of occupancy and then

generating samples using the following moves:

1. Birth-death proposals: A cell is randomly selected, and the sample state of the cell is flipped. If the

cell was occupied, a proposal which makes the cell unoccupied is generated and vice-versa.

2. Move proposals: In this case, an occupied cell is selected and the occupancy is randomly moved to

one of the 8 connecting neighbors.

Once the proposal sample is generated, we evaluate the original sample and the proposed sample

with reference to a proposal distribution. In our case, we use a learned observation model of the

detector output as the proposal distribution. We fold in the detector output Ot while evaluating the

proposals using the proposal distribution. Every proposal is a hypothesis of the state Xt . Evaluating

the proposals will give us an acceptance ratio. If the acceptance ratio is greater than 1 the sample is

accepted unconditionally. Otherwise, we randomly sample from a uniform distribution and then accept

or reject the sample if the acceptance ratio is greater than the sampled value of uniform distribution.

Formally, The acceptance ratio is computed as:

Acc(x|x ′
) = min

{( P (Ot |x)
∑

xt−1

P (x|xt−1)

P (Ot |x ′ )
∑

xt−1

P (x ′ |xt−1)

)
,1

}
(12.2)

where x is the proposed sample of state Xt , and x
′

is the initial sample. xt−1 is a sample of the state

Xt−1.

If the sample is accepted, the currently proposed sample will be used as the initial sample for the next

step of the MCMC sampling. If rejected, the sample is still added to the set of hypotheses, but we start

sampling again from the old sample.
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Figure 12.1 – System components diagram.

Sampling is successively repeated until Ns samples are accepted. The threshold for the number of ac-

cepted samples are set to be 100 in our experiments. Once Ns samples are accepted, they are collectively

represented as the approximate representation of the multi-modal posterior distribution.

For the purpose of social navigation, these samples are converted to a set of particles. Even though

the set of samples are fixed, the set of particles can vary, since each sample is a joint sample which

represents the whole occupancy grid. When there are multiple people in the environment, each one of

the samples can be decomposed into a set of particles, proportional to the number of people (Np ) in

the environment.

12.2 Human-Aware Navigation Model

In this section, we will present a number of methods for computing social costs with the particles

obtained from the MCMC-based tracker. Using the concept of layered costmaps, an FMM-based

planner uses this information for performing the replanning. Figure 12.1 shows the system components

and their connections. The social cost model used in this chapter has been previously explained in

Section 10.3.1 where the center of the social costmap that indicates the human position is assumed

to be deterministically known. If this is not the case, the costmap cannot correctly model the social

costs and hence the social path planning could fail in finding an appropriate socially compliant path.

This problem becomes much more critical in real applications where robustness is vital for succeeding

under different conditions. We believe probabilistic social costs can be a remedy to this problem.

12.2.1 Uncertainty-Based Social Costs

The MCMC-based tracker provides samples of the union of the probability distributions for having a

person in a given environment. More specifically, a predefined number of joint samples are reported at

each time step, containing a set of particles for each person that the tracker detects. In the following,

we propose two types of methods for using the particles given by these samples for constructing social

costmaps.
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Convolution

The core idea we propose for incorporating uncertainty in the costmap is to compute an expectation-

based costmap. Consider a person at (xp , yp ), the deterministic costmap at (x, y) is:

C (x, y ; xp , yp ) = N (x −xp , y − yp ) (12.3)

N is the 2D Gaussian, modeling the standard social costmaps, i.e., it is N (refer to Equation 10.1) when

q = [x, y]T and p = [xp , yp ]T . The probabilistic costmap is given by the expected value of the cost C ,

given the probability distribution ph of the human being at [xp , yp ]T :

EC (x, y) = Eph (xp ,yp )[C (x, y ; xp , yp )] =
∫∫

N (x −xp , y − yp )ph(xp , yp )d xp d yp (12.4)

This is a convolution. We approximate this expectation using a grid of probabilities P , obtained from

the tracker particles:

EC (i , j ) �∑
k

∑
l

N (i −k, j − l )P (k, l ) (12.5)

By convolving all the particles from the MCMC tracker with the social costmap, we compute an expected

costmap incorporating all the uncertainty in the environment. This is a principled approach to solve

the problem since we are not abstracting away any information provided by the perception system, and

hence, in theory, this approach should provide us with a costmap model that would be most informative

for uncertainty-based human-aware navigation.

By taking this approach, the conventional 2D Gaussian shape of the social costmap is no longer

mandatory, thus this costmap model is more flexible. Additionally, there is no need to know the number

of people ahead of time as this information is encoded in the particles (refer to Section 12.1.4).

Clustering

Another approach we propose is to abstract the uncertainty information in the samples by clustering

the particles and then computing the uncertainty based on the features of the cluster. Upon receiving

the position particles from the tracker we compute the center of the social costmaps, and the σ values

for all the people present in the environment by clustering the particles and finding the centroids of

the clusters, along with an uncertainty measure based on the spatial cluster scatter. This allows us to

adaptively compute the social costmaps at each time step. We will briefly describe the two clustering

methods selected for our work in the following.

K-means Clustering K-means clustering [118] method can be adopted for computing the costmap

centers and Σ. However, one requirement for using this method is knowing K which is the number of

clusters and in our case the number of people, ahead of time. This is not a realistic assumption for

dynamic environments with multiple people. Nonetheless, we will test this method as a baseline for

comparing the performances of other human-aware navigation methods.

Mean Shift Clustering To overcome the limitation of K-means clustering method for needing to

know the number of clusters ahead of time, we chose another clustering method, mean shift clustering
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[119], that is able to determine the number of clusters given the particle set automatically. We used the

median of all pairwise distances to estimate the bandwidth of the mean shift method.

Deterministic Social Costs

For the purpose of creating a baseline to compare our proposed model, we have also designed a

deterministic model for the social costmap. Here, we use a deterministic output from the tracker,

without considering the particles, by just using the mode of the distribution as deterministic location

of the people, along with the conventional costmap model.

This is the standard approach that is being used for social path planning in human-aware navigation,

where it is assumed that the position and orientation of the human is deterministically known at every

time step with no model of uncertainty. Once this information is known, the Gaussian-shaped costmap

can be used to obtain the social costs. This costmap can be tuned according to the desired parameters.

In this chapter, we have taken an approach similar to [33] with σ2
x =σ2

y = 0.255 m, for deterministic

costmaps.

12.3 Experiments

In this section, we will briefly explain our experimental setup, the experiment scenarios and the metrics

used to evaluate the performance of our methods. An extensive suite of experiments both in simulation

and reality have been conducted for performance evaluation.

The experimental setup used in this work leverages one Mbot and one or two humans, as illustrated

in Figure 7.1b. We used a networked omnidirectional overhead camera with a field of view of 180◦ to

track the positions of the people in the environment. This type of camera was chosen because: (i) it is

less obtrusive, and can be left in the environment with less risk of making people feel uncomfortable

about being watched; (ii) it provides a global view of the area, with lower risk of occlusion than elevated

side-view cameras and with more flexibility as to its positioning; (iii) the number of cameras needed in

the environment can be reduced, which has benefits in terms of equipment cost, installation cost and

computational load of the perception algorithms. The tracker outputs results at the rate of 3 Hz. The

ground truth position of the robot is given by AMCL with 5-10 cm accuracy, and the person stands and

walks on physically marked tracks to get the exact precise ground truth for the purpose of performance

evaluation. The control rate of the navigation is 20 H z while the social costmap generation has a rate of

approximately 3 Hz. This is to account for the low output frequency of the tracker. The real robot tests

were carried out in three different scenarios in the robotics laboratory (see Section 7.1).

12.3.1 Scenarios

We have studied three different scenarios, each having been tested five times. We started with a single

static person (Scenario 1) and incrementally increased the complexity to one moving person (Scenario 2)

and finally, two static people in the arena (Scenario 3). It should be emphasized that perception

uncertainty is affecting the tracking performance and is not evident or quantifiable from just looking

at the environment. This means, the person is not aware of what is happening on the tracker side,

however, the information given by the tracker greatly affects the behavior of the robot, and therefore

its social acceptability. Since we aim to study the effect of perception uncertainty in human-aware

70



12.4. Results

navigation, we chose a task of point to point navigation for the robot in the vicinity of humans, which is

the most general and basic navigation task.

In each experiment, the robot starts from a predefined starting point and is sent to one predefined

goal. The robot then has to behave appropriately when it encounters people in the arena. For the static

case, there is always a person standing between the robot and the straight line to the goal, and for the

dynamic case the person moves along this line in the opposite direction, as the robot starts navigating

towards the goal, causing a direct encounter with the robot. The following section will explain the

metrics used for performance assessment.

12.3.2 Metrics

Five different metrics have been defined for performance evaluation. A subset of these metrics is chosen

for each experiment based on the scenario of interest.

� m1: measures the minimum distance that the robot has kept during the experiment to a human.

� m2: evaluates how long the robot has been moving in areas associated with social costs, i.e., a position

with corresponding non-zero value in the social costmap.

� m3: quantifies the accumulated social cost, this is to differentiate between being in different positions

of the social costmap, which is not reflected in m2. So if the robot is closer to a person, the social

cost will be higher and this metric will increase.

� m4: evaluates the smoothness of the robot trajectory. This is important from the human observer’s

point of view when perceiving the robot motion. Humans are known to prefer motion with minimum

jerk [120], therefore we took the Root Mean Squared Error (RMSE) of the trajectory jerk in m4:

rt =
[

xt

yt

]
, m4 =

√√√√ 1

N

N∑
t=1

∣∣∣∣d3rt

d3t

∣∣∣∣
2

(12.6)

rt indicates the position of the robot at time t , and N indicates the number of time steps in the

experiment. It should be emphasized that we did not actively try to modify the robot control to

get smoother trajectories, we are just interested to see which method results in a more natural and

smooth path.

� m5: is the total number of time steps required to finish the navigation.

12.4 Results

For each of the scenarios described in Section 12.3.1, we have compared the results obtained from the

basic navigation (BN), deterministic (DHA), K-means clustering (KHA), mean shift clustering (SHA),

and social cost convolution (CHA) human-aware (HA) navigation. We will only report the trajectories

and metrics obtained from the results of our real experiments for the sake of conciseness. Larger values

for m1, and smaller values for m2-m5 are preferable.

Figure 12.2 shows sample costmaps of the different methods mentioned earlier. It can be seen that

the clustering methods can end up with saturated costs when the uncertainty is high due to large σ

values. The convolution costmap is shown to be much more flexible and is not limited to a predefined

shape whereas all other costmaps have a predefined cut-off distance. Sample trajectories of the robot

are depicted in Figure 12.3. It is clear from the plots that HA methods result in trajectories that preserve
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Figure 12.2 – Sample costmap shapes. Top left: standard 2D Gaussian, top right: Convolution
method, bottom left: mean shift and bottom right: K-means. The yellow circle indicates the true
human position. Areas with red color have a larger cost compared to the blue. The maximum
social cost is depicted by the cyan color. This color coding is directly derived from rviz.

larger distances to the people. Additionally, they are smoother and therefore more natural from the point

of view of a person, this is supported by Figure 12.4d, 12.5a, and 12.6d. However, this may not be evident

from the trajectory plots. This is due to the abrupt movement of non-HA navigation upon encountering

a person which considerably affects the smoothness. This abruptness cannot be illustrated using a

trajectory plot only.

Clustering methods can cause the robot to modify its plan largely by enforcing a certain cluster shape

upon finding cluster centroids: if the new probabilistic data leads to a new centroid that is not very

close to the previous one, the costmap could change significantly and therefore the planned path. This

is more severe for mean shift clustering due to adaptively modifying the number of clusters as well.

This is to be expected given the probabilistic nature of the perception data, however the plan can be

modified more smoothly using the convolution method. This method which outperforms all other

methods in terms of smoothness in all of our tests, is shown to be a remedy to this problem based on

our experimental results. Hence, for the second and third scenario, we only compare the results of BN,

DHA, and CHA methods.

When comparing the results of DHA with CHA we can see that the former is a more conservative

method in terms of keeping distance to the people when receiving accurate data. If DHA receives a

perfect estimate of the person’s position it can lead to the desired path, however this is seldom the

case. Particularly, in the case of a moving person, the detector could not always keep up with the speed

of the person, i.e., the position estimates were reported with delay or the person was lost in some

cases, and the robot was faced with the human while considering him an obstacle. This led to abrupt

changes and getting too close to the person, see Figure 12.3b. However, by associating larger uncertainty

to the estimates in this case, CHA could lead to better plans in terms of proximity and smoothness.

Unfortunately, due to our inaccurate ground truth of the moving person, we only rely on m4 and m5 for

Scenario 2, but we observed the delayed perception and lost person problem during our experiments.

Figures 12.4, 12.5 and 12.6 show the performance metrics for the three scenarios. We will discuss the
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Figure 12.3 – Sample robot trajectories for different methods. Scenarios: (a) Single static person.
(b) Single dynamic person. The trajectory of the human depicted by the dashed line, starts from
the end point to the starting point of the robot’s trajectory indicated by labels on the plots. (c) Two
static people.

results of each metric in the following. m1 has increased for HA methods which shows the effectiveness

of our FMM planner in social path planning. However, DHA is more conservative in this regard in

the presence of good perception data. m2 has increased for uncertainty-based methods in the simple

scenario as the deterministic tracker is already giving good position estimates, but this is no longer the

case when the complexity is increased as seen in Figure 12.6b. m3 is also reduced for HA methods and

more so for uncertainty-based HA methods as the complexity of the problem increases, see Figure12.6c.

m4 is showing a very interesting result, we can see how uncertainty-based HA methods have managed

to introduce smoothness into the trajectories by reducing jerk without deliberately accounting for it.

CHA is dominating other methods across all scenarios in this case. Lastly, m5 which shows the total

navigation time is always lower for BN due to optimizing the path length only. The largest values belong

to KHA and SHA due to constant modifications of the path, thus taking longer routes. For DHA this

metric is lower than CHA for the static person case and comparable to CHA in the moving person

scenario, but it increases as the complexity of the environment grows further in the case of multiple

people.
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Figure 12.4 – Performance metrics obtained in the single static person scenario. HA stands for
Human-Aware in the plot labels.
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Figure 12.5 – Performance metrics obtained in the dynamic person scenario.

12.5 Discussion

The experimental results show how the extended costmap model can lead to more natural robot tra-

jectories that preserve a social distance from people, as the complexity of the environment grows.

Further improvements can be made to the accuracy of robot self-localization and the ground truth of

people positions, as they have direct influence on performance evaluations. Moreover, quantifying the

uncertainty of perception (investigating the impact of different levels of perception uncertainty on the

behavior and performance of each part of our system) can be very useful in analyzing the behavior of

expectation-based social costmap computation methods for further in-depth studies. We believe that

the expectation-based social costmap will outperform the deterministic approach to a greater extent as

the uncertainty of perception grows larger.

Summary

In this chapter, we introduced a principled approach to solve the social path planning problem

in real environments with multiple people while explicitly dealing with perception uncertainty

by combining the output of a probabilistic MCMC-based tracker with an expectation costmap

computation method based on convolution. The proposed approach is implemented in reality

and tested in a stochastic environment using an extensive set of experiments. Accounting

for uncertainty of perception is shown to result in improved robot trajectories in terms of

social distance and naturalness as the complexity of the environment grows. We observed that

smoother trajectories with lower jerk that are more natural from the point of view of humans are

achieved using expectation-based costmaps.
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Figure 12.6 – Performance metrics obtained in the two static people scenario.
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13 Conclusion

H U M A N - A W A R E N E S S for a mobile robot is accomplished through a human-aware path

planner that incorporates the social costs related to humans into its plans. For this

purpose, information regarding humans must be acquired and social costs must be

modeled and integrated into the planner. In real uncontrolled environments, human

perception will not be perfect. As the complexity of the environment and thus the uncertainty in

perception grows, methods relying on this key information will not be efficient without accounting for

uncertainty. Therefore, deterministic social cost models should revisit their common assumption of

having perfect information about the humans and adopt a probabilistic approach. Moreover, in the

presence of multiple perception sources of varying uncertainty, the probabilistic social cost modeling

and layered costmaps allow for incorporation of all these data directly into the planner’s decision.

Another important aspect of human-aware navigation that mainly targets replanning is local perception

as mobile robots rely on on-board perception in most real applications. Despite the simplicity of the

scenario tested in Chapter 11 with the Ranger, we saw how social costs and thus social paths can

change as the perception of the robot changes. In real environments a robot with local perception, will

frequently be faced with newly perceived or lost targets as it moves. Social replanning strategies are

required to help the robot deal with the highly stochastic environment despite its partial observations.

Providing ground truth data for real experiments is vital for human-aware navigation research as it is

required for performance evaluation. However, conducting experiments in real domestic environments

make it very difficult to acquire very precise ground truth. In cases that external ground truth is available,

we usually have to rely on sensors such as overhead cameras with limited working range and accuracy.

Carefully evaluating the uncertainty and performance of on-board perception devices such as the

Kinect with accurate ground truth positioning systems such as the MCS in a laboratory can be one

remedy to this problem. With this information available, the uncertainty for on-board perception can

be quantified and reported for ground truth measurements and social cost computation when robots

are operating in real domestic environments.
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14 Introduction

D E S P I T E the numerous applications of robotics in social environments, such as personal

assistants at homes, robot tutors at schools, service robots at hospitals and nursing homes,

research in the human-aware navigation area focuses mainly on single robots and the

problem of cooperative human-aware navigation for multi-robot systems -an interesting

problem for both multi-robot and human-aware navigation research- is largely unexplored.

In Part IV, we focus on a particular class of MRS coordination mechanisms commonly known as Multi-

Robot Task Allocation (MRTA) [50], [51] in social environments using a market-based approach [55].

In such environments the number of robots are often limited and the number of tasks are usually

moderate. The main difficulty for MRTA in such highly dynamic and noisy environments is that plans

are likely to change or to be rendered invalid, particularly if the robots are planning for long periods of

time. Additionally, robots are required to perform in a socially acceptable manner in terms of navigation

and interaction with people and other team members. This adds additional constraints to the planning

problem.

Robots can benefit from coordination when faced with social constraints. As an example, when a

human chooses to block a passage that a robot needs to traverse for reaching a desired destination to

perform a task, what is the best strategy for the team? The human might want to start an interaction

with the robot. In this case, the robot will no longer be available to perform the team plan. It could also

be that the human has no intention for interaction but simply needs to use that space, for instance

because he or she is having a conversation in front of a door. By assigning the already taken task

to another robot through coordination, the team-level plan can change on demand to adapt to this

situation. Accounting for social factors in task assignment can lead to better team plans in terms of

social acceptability and even performance metrics such as time, if team-level planning considers the

social costs and handles the unforeseen changes in the environment by means of coordination.

In social environments, when robots take decisions based on the current available information only,

they are assuming that their decision remains valid in its period of execution. However, human actions

such as walking, and starting or ending an interaction, can largely modify the social costs while a robot

is proceeding towards an already allocated task. In such cases, the initial bid estimation for the task

allocation is no longer a true representative of the real cost. As a result, the performance and efficiency

of team plans can degrade in more complex and dynamic environments. Moreover, having to take

decisions based on limited local perception is another challenge that calls for devising strategies for

improved coordination and adaptation of plans when initial assumptions no longer hold.
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MRTA approaches are required to have enough flexibility for performing efficiently under highly

stochastic and uncertain social circumstances. This motivates our decision to base our methods in this

part of the manuscript on the Hoplites coordination Framework [61]. We find this framework suitable

for the goal of deploying teams of robots in social environments because of its flexibility. In Hoplites,

passive coordination can produce local decisions for robots while active coordination can produce

joint plans in terms of task allocation for all the robots in the team.

The contributions of this part are as follows. In Chapter 15, we introduce an adapted version of Hoplites

for MRTA with deterministic costs. In Chapter 16 our proposed method is extended to explicitly consider

humans in its cost formulation and planning. As the next step, costs that have a stochastic nature due

to the changing behavior of people are taken into account in Chapter 17. Finally, adaptive risk-based

replanning is introduced in Chapter 18 to account for the changes perceived in the environment caused

by the limitations of local perception and unpredicted human behavior.
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15 Market-Based Multi-Robot Cooperation

T H I S chapter focuses on multi-robot coordination for solving the MRTA problem. As the first

step towards such a collaboration scheme, a variation of the Hoplites framework is proposed

and three instances of increasing complexity of the MRTA problem have been investigated:

spatial task allocation based on distance, spatial task allocation based on distance and time,

and persistent coverage. The performance of the proposed method is studied in comparison with

other state of the art MRTA methods in simulation. Additionally, the problems of spatial task allocation

and persistent coverage with real robots are investigated. We note that modifications are made to the

original framework in order to both improve and adapt this method for solving MRTA problems. Namely,

replanning has been changed to include turn taking and priority planning for avoiding and resolving

conflicts. Moreover, instead of estimating the plan time, that is very sensitive to the unpredictable

changes in a dynamic environment, we have opted to take the plan length into account. This work is a

first step towards adopting MRTA in dynamic human-populated social environments.

15.1 The Original Hoplites Framework

Hoplites [61] is a market-based framework that couples planning with coordination strategies. It is not

bound to any particular planning method or in general problem-specific feature and only deals with

robot cooperation. Hence, it is a powerful framework to be used in different applications as we aim to

show in this chapter. It allows for coordinating plans instead of tasks. A plan is a sequence of tasks and

computing the cost and the revenue of a plan depends on the problem. This framework consists of two

main concurrent coordination mechanisms: passive coordination and active coordination.

In passive coordination, each robot chooses its most profitable plan and broadcasts it to other team-

mates without any attempt to modify their plans. This information is then used by other robots to

reevaluate the expected profitability of their current plans, update and broadcast the changes.

Since robots can affect the actions of one another and change their plans at any point of time, they

cannot be very confident about their estimate of the profitability of their actions. Sometimes a robot’s

best plan can only be marginally profitable and a team plan could result in a higher profit. This

indicates modifying the plans of the robot’s teammates. This implies that the requesting robot asks

its collaborators for compensation price quotes and persuades them into cooperation. If they accept,

they will be bound by a contract to complete their portion. This process is ruled by a market-based
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approach and constitutes the active coordination.

The decision of switching to the active coordination mode (explained in Section 15.3.1) is based on

the evaluation of a balance function. For robot r j and a given plan Pk the balance function is generally

defined as follows:

B j ,k = R j ,k −C j ,k −Z j ,k (15.1)

where R is a generic revenue function, C a generic cost function and Z the penalty for constraint

violations. Note that this is a local balance function: the costs, revenues and penalties are related to a

single robot. The local balance function is strongly problem-dependent and can contribute to reaching

the globally optimal solution on the team level if chosen correctly. Additionally, a problem-dependent

global balance function is also required for team-level evaluations.

15.2 Proposed Method

Since real social environments are noisy and dynamic, it is required to ensure the validity of plans.

Invalid plans can be the result of changes in the environment or other robots changing or stopping

their current plans. Therefore, a turn taking mechanism is introduced into the Hoplites framework to

avoid computing costly invalid plans. This implies only one robot planning at a given time. To reduce

the drawbacks of this choice, two improvements have been made. Firstly, the robots can choose to

immediately replan for avoiding conflicts or some particular situations whenever the need arises. This

is done by requesting priority from other robots in a distributed manner. Secondly, robots do not wait

for their turn to start replanning but rather compute and store a new plan without following it during

the other robots’ turn. At the start of a robot’s turn, if no conflicts were detected, the stored plan is used.

Otherwise, the robot will replan again. This leads to speeding up the team performance. Assigning and

communicating the turns can be done in a centralized manner using a supervisor or in a distributed

fashion by reaching a consensus among robots.

Another difference between our method and Hoplites is basing the planned coordination on the

maximum number of tasks rather than a predefined time. This abstraction of time allows for a more

robust handling of uncertainties and makes the approach less sensitive to the unpredicted changes

that might affect the estimated time for the plans. Although this aspect directly affects the planner, it is

a design choice that is far more suitable for dynamic social environments where an accurate estimate

of the time to accomplish a plan is not guaranteed. While the work in this chapter has not been tested

in such environments, it constitutes a baseline that is intended to be used in environments shared with

people in the next steps. Therefore, it is essential to opt for a robust feature that is not very sensitive to

uncertainties and noise.

The main drawback of this choice is that robots may decide to take tasks irrespective of their costs in

terms of time and, in the case of spatial task assignment, favor further away tasks. However, distance and

therefore an estimate of time are accounted for while computing the balance of a plan and by tuning

the weights of the balance function appropriately, the desired behavior can be achieved. Moreover,

through active coordination an initially suboptimal assignment of a task or plan can be modified by

selling it to a robot that is closer, if available. It is important to note that this balance can be computed
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Algorithm 1 Passive Coordination for robot r j with a set of unfinished tasks T

1: procedure PassiveCoordination(T, r j )
2: Ta ←
 � Ta is the set of available tasks
3: for ti ∈ T do � T contains all tasks regardless of their availability
4: if IsAvail then(ti ) � Checks if the task is unassigned
5: Ta ← Add(ti )

6: P ← Planner(Ta)
return P

Algorithm 2 Active Coordination for robot r j with a set of unfinished tasks T

1: procedure ActiveCoordination(T )
2: Ta ← T � Ta is the set of available tasks
3: Ω←
 � Ω is the set of robots in conflict with r j

4: P ← Planner(Ta) � Find the plan for the available tasks
5: Ω← RobotInConflict(P ) � Find the conflicting robots
6: TP ← GetTasks(P ) � Find the tasks constituting a given plan
7: Ta ← Ta −TP � Update the available tasks
8: for rω ∈Ω do � Reset the plans of the conflicting robots
9: Pω ←


10:

11: � Take the most profitable plan for r j and start replanning for the conflicting robots
12: for rω ∈Ω do
13: Pc,ω ← PassiveCoordination(Ta ,rω) � Find the plans for the robots in conflict
14: Tc,ω ← GetTasks(Pc,ω)
15: Ta ← Ta −Tc,ω

return P, Ω, Pc

locally by the robots with partial information or in a centralized manner. We have chosen the first

approach in this work.

To describe the method in detail, consider a set of Nr robots and Nt tasks, where each task can be

assigned to only one robot. The cost of completing a task {ti ∈ T, i = 1, . . . , Nt } for robot {r j , j = 1, . . . , Nr }

is denoted by cti ,r j and the corresponding revenue is ρti ,r j .

Using a revenue function R , and a cost function C , the robots, who are self-interested agents in pursuit

of individual profit, can evaluate each available task and decide whether to take it or sell/buy it to/from

another robot. Details of the described method can be found in Algorithms 1, 2, and 3. Note that each

robot finds a plan using the coordination mechanisms in a distributed manner. Similar to Hoplites, it is

assumed that a group of robots will only accept to cooperate if the requesting robot is able to pay all of

them the compensation price.

15.3 Test Cases

To evaluate the effectiveness of the proposed method, we have tested three variations of the MRTA

problem with increasing complexity. Initially, the proposed method was tested against a single task

greedy algorithm (SGA) and the Consensus-Based Auction Algorithm (CBAA) [68] in simulation, to

provide insight about the performance of the methods in a realistic noisy environment. SGA is a single
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Algorithm 3 Market-based Coordination for robot r j with a set of unfinished tasks T

1: � This is the main procedure running on each robot
2: procedure MarketBasedCoordination( )
3: P ←
 � The current plan
4: Ps ←
 � The stored plan
5: F ← False � Flag for accepting cooperation
6: � While there is a task to be assigned
7: while T �= 
 do
8: if myTurn( ) then � Perform task assignment steps only in designated turns
9: if IsValid(Ps ) then � Check if the stored plan is valid

10: P ← Ps

11: else
12: Pn ←
 � The new plan
13: Pn ← PassiveCoordination(T, r j )
14: ρ, c ← GetBalance(Pn) � Compute the current revenue and the cost
15: if ρ ≤ �c then � � stands for the minimum acceptable gain in revenue
16: Pa , Ω, Pc ← ActiveCoordination(T )
17: F ← AskForCooperation(Ω,Pc )
18: if (F ) then
19: Pn ← Pa

20: P ← Pn

21: else
22: � Compute and store a plan for the next task allocation
23: Ps ← PassiveCoordination(T, r j )
24: � Checking and responding to potential active coordination requests
25: if ReceivedCooperationProposal( ) then
26: EvaluateProposal( )
27: BroadcastAnswer( )

task centralized method that assigns the task with the minimum cost to each available robot. CBAA

is another single task method that is shown to provide similar solutions to SGA through auction and

consensus mechanisms, in a decentralized manner.

Additionally, to show the flexibility of the approach, we tested the proposed method for the problems

of spatial task allocation and persistent coverage, in simulation and reality. The two test cases are

inherently similar but in the case of persistent coverage, an additional dimension of time is added,

making the problem continuously recurring. This section describes the planner that is commonly used

in all cases and later on explains the details of each test case.

15.3.1 The Coordination Planner

Since the focus of this work is not optimizing the plans but rather investigating the capabilities of this

approach, a simple and computationally inexpensive planner based on single-step optimization has

been used. When optimizing a plan consisting of multiple tasks, this planner performs the optimization

sequentially. This choice is motivated by the nature of dynamic environments and the fact that a plan

can be rendered invalid or suboptimal at any time. Therefore, optimizing the immediate decision is of

higher importance and step-by-step optimization is justified.

This planner is used for both types of coordination. However, for active coordination it should addi-
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tionally consider team plans. Active coordination occurs when the revenue of the current plan is too

small and there exists a task for which the expected added revenue is higher for the replanning robot

compared to the currently assigned robot. The expected added revenue is the difference between the

balance of the robot with the task and the balance of the robot without the task.

The planning horizon should be chosen to accommodate the dynamics of the environment. In highly

dynamic environments long planning horizons are no longer effective and incur unnecessary compu-

tational costs without contributing much to a better plan compared to shorter planning horizons. As

an example, for a robot that relies on its path planning for computing bids, the changes made to the

environment by the movement of people can largely modify the plans. This is exacerbated for longer

plans which have a higher probability of change. This is the main reason of not including CBBA in our

comparisons. CBBA is most effective in problems with long planning horizons where it can optimize

the plan of each robot and the global plan of the team by finding the best sequence of tasks to be

performed by each robot in a decentralized manner. If a single task or very short sequences of tasks are

to be considered, the superiority of CBBA to single task methods may be overshadowed by its higher

computational cost.

Given that short planning horizons are more suited for our target environment, we have set the planning

horizon of the proposed method to one task in H1. However, to evaluate the result of having a longer

planning horizon we have also included H2 where the planning horizon is set to two. These are the two

variants of the proposed Hoplites-based method that we use throughout this chapter.

15.3.2 Test Case I: Spatial Task Allocation Based on Distance

Given the formulation in Section 15.2, a team of robots decides how to efficiently subdivide a set of

tasks that will induce optimizing a global criterion. This global criterion can be a function of time,

distance traveled, etc. In this case, the tasks involve moving to a specific location in the environment.

These tasks can be identified locally by the robots through on-board perception or can be broadcasted

to all robots by an external source. Many applications such as patrolling, attending service requests,

etc., can benefit from this functionality.

In this test case, four robots and 10 tasks constitute the MRTA problem as shown in Figure 15.1. Three

metrics of individual robot contribution, total time and total distance of the assignment problem have

been considered as the global balance functions to evaluate the performance and the behavior of

the MRS. On the local level, each robot tries to maximize a local balance function that is inversely

proportional to the length of the path planned by the FMM to a given task location.

15.3.3 Test Case II: Spatial Task Allocation Based on Distance and Time

Similar to the previous case, a number of tasks are associated to specific locations in the environment

and the robots should find the most appropriate assignment for optimizing the global balance function.

The main difference between this test case and the previous one, is the incorporation of time as a

factor in the local balance function. The consequence of adding this factor is to encourage robots

to reach tasks as early as possible, leading to increased parallelism in the team. The global balance

function for this problem is defined as the completion time of the team objective. The local balance

function for robot r j , given a plan P consisting of tasks ti , is computed in the following. Note that this

function is also problem-specific. It is an instance of Equation 15.1 without the penalty term. This is
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(a)

Figure 15.1 – Snapshot of the environment of test case I, with four robots and 10 tasks in a Webots
world.

due to constraint violation being prevented on a higher level by replanning and in the lower level by

the collision avoidance modules.

Br j ,P = ∑
ti∈P

(ρti ,r j −D(lti−1 , lti )) (15.2)

ρti ,r j is the revenue of task ti for r j , lti is the position of ti and lt0 is the position of the robot when

starting the plan. This function includes a revenue ρti ,r j that is

ρti ,r j (k) = max(0, �max (1− k −ka,ti

τ
)) (15.3)

where k is the time in which ti is reached, �max is the maximum revenue for the task, ka,ti is the

allocation time of ti and τ is the time after which the positive revenue becomes zero. Note that the

arrival time to the task is required for computing the balance function. As mentioned previously, only

an estimate of the time to reach a task can be computed in real noisy environments. However, since all

robots are faced with the same limitations, this does not affect the team performance considerably in

our tests in this chapter.

15.3.4 Test Case III: Persistent Coverage

This problem consists of continuously covering an area with a group of robots. It has many applications

such as cleaning, heating, etc. This is a more challenging problem compared to the previous test case.

The same approach used in Section 15.3.3 is used here. The robots need to reach designated points in

the environment with the purpose of maintaining a desired coverage level over time. Persistent coverage

entails a continuous assignment of locations to robots. The coverage level of a point is maximized upon

a robot reaching the point.

The global balance function in this case is based on the coverage functions of [121], [122] where a set

of points discretizing the 2D space is considered. Each point is assigned an initial coverage value and

at every time step its coverage level is decayed with a predefined rate of δ< 1. If a point is sufficiently

close to a robot its coverage level is increased as shown in Equation 15.4:

v(pi ,k ) = δv(pi ,k−1)+K
nr∑
j=1

f (r j , pi ,k ) (15.4)
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where v(pi ,k ) is the coverage level associated to the point pi at time k and f is defined as:

f (r j , pi ,k ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if d = 0
R f −d

R f
if 0 < d ≤ R f

0 if d > R f

(15.5)

where d = D(lr j , pi ,k ), and lr j is the position of robot r j , and the radius that the robot can cover

is denoted by R f . The f (.) function modulates the coverage increase at any point. It assumes the

maximum value in the center of the robot and then decreases linearly as depicted in Figure 15.2.

Figure 15.2 – f function for a robot centered on (5,10).

The local balance function is composed of two terms: the revenue and the cost. Considering a plan P

consisting of tasks ti , the balance function for robot r j is defined as:

Br j ,P = ∑
ti∈P

(
ρti ,r j −K cti ,r j

)
K > ρ̇ti

vmax
(15.6)

where ⎧⎨
⎩

cti ,r j = i D(lti−1 , lti )

ρti ,r j (k) = min
(
�max , �mi n + (�max −�mi n)

k−ka,ti
τ

) (15.7)

lt0 is the position of the robot r j at the start of the plan, k is the time when r j reaches the task, τ is the

time after which the revenue is �max and ka,ti is the allocation time of ti to r j . Note that the cost is

dependent on the distance traveled. The revenue is similar to the previous case, but it is increasing

with time rather than decreasing. This is because points that have remained uncovered for longer will

contribute more to reaching the desired coverage level. Hence, they should have a higher priority.

If the revenue increases with time, the robots will favor longer paths to a given point, to paths that

are more optimal in terms of distance and time. This is the reason K is introduced. With a sufficiently

large K the increased traveling cost will be higher than the increased revenue for longer paths. Given

the maximum speed of the robot vmax and the increasing rate per second of the revenue ρ̇ti , each

unit of distance must cost more than
ρ̇ti

vmax
for the robot to move directly to a task rather than taking a

longer trip.
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Figure 15.3 – Performance of different MRTA methods for Test Case I.

Additionally, a multiplier factor i is used in the cost function to penalize the tasks of the later steps. This

is necessary for avoiding some counter-intuitive side effects, i.e., increasing the revenue causes the

robots to give a larger revenue to tasks that are reached later in the plan, since more time has passed.

This leads to situations such as a robot taking a task as its second task while it is better to have that task

assigned to another robot as the first task. This is an undesired situation since we want to minimize the

time for reaching a desired coverage level for the team.

15.4 Results

In this section, we show the results of our tests and quantify the differences in performance between

simulation and real robot experiments. Note that the experiments are subject to noise and the robots

have an average self-localization accuracy in the order of 0.2 m.

15.4.1 Test Case I: Spatial Task Allocation Based on Distance

For this test case we have tested two variations of SG A and C B A A. We have added the constraint of

only allocating available and unallocated tasks, similar to the passive coordination in Hoplites. This is

to see how local decisions with no coordination for modifying plans perform compared to methods

that delegate the tasks to other robots through coordination. This variation of the methods are denoted

by SG A f and C B A A f as they only consider free tasks. In SG A and C B A A a robot always takes the task

that has the lowest cost in a greedy way. This means that when a robot is free, it can request to take an

already allocated task. This request will be granted through coordination if the robot can accomplish

that task at a lower cost compared to all other team members. This delegation is depicted by red blocks

in Figure 15.4a-15.4b.

Looking at Figure 15.3 we can see that SG A f and C B A A f are more costly in terms of the total traveled

distance and time, compared to their unconstrained counterparts. However, they require less time

for communication as there is no coordination done among robots for modifying allocations. The
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comparably larger standard deviation of robot contribution for SG A f and C B A A f shows how selecting

tasks with a local greedy strategy without coordinating with other team members can lead to less evenly

distributed plans. The main reason for variability of the solutions for the robots in SG A f and C B A A f is

the localization error and the time at which a robot finishes a task and becomes available again. Each

task is allocated to the closest available robot and if a Robot 1 takes longer to reach a task due to some

effort lost in improving its localization, another robot could become available before Robot 1 and take

a task that would otherwise be assigned to Robot 1. This is less problematic for the other methods and

particularly for the proposed method since the active coordination mechanism negotiates the plans

with all other active and inactive robots. The inferior performance of SG A f and C B A A f highlights the

importance of having a correction mechanism for already allocated tasks as the environment changes.

Based on Figure 15.3, we can see that SG A, C B A A, H1 and H2 have similar performances. However,

it can be observed that the proposed method manages to find marginally shorter solutions that take

slightly less time compared to both SG A and C B A A. This is because of active coordination. Although

the centralized SG A suffers the least from communication delays, since a shorter solution is found

by H1 and H2, the total time of the assignment is also less for those methods. There is no significant

difference between the traveled distance and the time for H1 and H2 in this problem. But H2 finishes

the assignment in slightly less time since it spends less time in the idle state between tasks as a result of

two step planning.

Figure 15.4 shows four different assignment solutions from a sample run for each of the SG A, C B A A,

H1 and H2 methods. In Figure 15.4.c, Robot 1 is moving toward “room6” at time 28 but it receives

a collaboration request (shown in blue blocks) from Robot 2 upon the completion of “room7” and

stops moving and transfers “room6” to Robot 2. This collaboration can also take place for longer plans,

as depicted in Figure 15.4.d for “spot1”. By delegating “spot1” to Robot 1, Robot 2 can find a better

two-step plan while allowing the next two-step plan of Robot 1 to have a larger local and global balance

contribution. The gaps between robot movements relate to the communication delays and the time

spent for negotiation.

An interesting difference between the Hoplites-based solutions and SG A, C B A A can be seen in Fig-

ure 15.4c. Unlike SG A and C B A A, active coordination guides Robot 4 to delegate “room2” to Robot 3

for the benefit of the team despite “room2” being the result of the greedy action selection for Robot 4.

In the other two methods, Robot 4 would continue going to “room2” even when Robot 3 is done with

“room3”. A similar case can be seen in Figure 15.4d for H2, when Robot 2 delegates “spot1” to Robot 1

after “room4” is visited by Robot 1.

15.4.2 Test Case II: Spatial Task Assignment Based on Distance and Time

To see how our method performs in this test case consider Figure 15.5a-b where sample results of

real experiments show that active coordination can lead to achieving better results and correcting the

decision of passive coordination. Figure 15.5c shows the robot trajectories for a set of 20 tasks with

three robots. Results of this scenario can be found in Table 15.1. We note that the number of tasks in

the plan are chosen to be two and tasks can be added to the task list dynamically. However, we chose

this configuration for the ease of presentation.

Table 15.1 shows that the simulation results follow the real robot test results closely in terms of time.

This similarity highlights the strength of our simulation tools. The tests with three robots were only

conducted in simulation due to limitations of the available robots. The time gain when adding the third
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Figure 15.4 – Task assignment per robot over time for a sample run of the first test case, given
the following methods: a) SG A, b) C B A A, c) H1, and d) H2. Blue blocks indicate collaboration
requests and coordination and red blocks represent stopped attempts.

robot is very little. Nonetheless, the mean of the traveled distance is shown to have slightly improved.

The σ has increased largely for both distance and time. This could be due to the fact that more robots

cause more complex situations and more complicated coordination. We can see an even distribution

of number of tasks between the robots (see Figure 15.5c). This confirms that the time is spent in

coordination rather than moving.

Table 15.1 – Results of the Spatial Task Assignment problem. μ is the mean, σ the standard de-
viation, T the time to completion in seconds and D the total distance traveled by the robots in
meters.

- #Robots μT σT μD σD

Simulator 2 44.36 3.45 9.78 1.44
Real robots 2 43.12 5.31 8.47 2.6
Simulator 3 43.57 9.1 6.9 2.07
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(a) (b) (c)

Figure 15.5 – a) Using passive coordination Robot A would take Tasks (1,3) and Robot B (2,4),
then Robot A would take (5,6). However, active coordination leads to distributing the last pair of
tasks rather than assigning it to one robot. b) Passive coordination would assign (1,2) to Robot
A and (3) to Robot B. However, (3) is more suited for Robot A and is later assigned to it by active
coordination, once Robot A is free. c) Robot trajectories and task distribution for the case of three
robots. Robots are shown in the map coordinates with meter scale. The position of the robots in
the figures indicates their final location in the experiment.

15.4.3 Test Case III: Persistent Coverage

Two sets of tests have been conducted for investigating the performance of the proposed method for

the persistent coverage problem with two robots. For the sake of conciseness only real robot results are

reported. Robots operate in the same environment of the previous experiment and tasks are created by

means of a spatial grid. The list of parameters used in our implementation can be found in Table 15.2.

To understand the effect of R f two values representing the radius of the robot footprint and its double

are tested. Clearly for some applications such as cleaning, R f should be the radius of the robot, but for

some other cases e.g., heating it could be sufficient to assume a larger radius. Figure 15.6a shows the

mean coverage level for different R f values.

Three scenarios have been tested with varying number of tasks. Mean and variance of the coverage

function along with the histogram of coverage levels are reported. The steady state coverage levels are

shown in Figure 15.6a. The numerical results of all the cases are presented in Table 15.3. μ indicates the

mean, σ the standard deviation, and cv is an indicator of variation defined as:

cv = σ

μ
(15.8)

As the number of points are increased so does the resolution of the coverage (see Figure 15.7a-c) and

this gives a better result from the variance and mean point of view. We observe a large increase in

σ when increasing R f , despite seeing a much better coverage in terms of μ. This can be observed in

Figure 15.7d-f. This increased σ is the reason for introducing cv because looking at the variance alone

can be misleading here. cv captures the mutual effect of both factors and is preferred to be smaller.

Table 15.2 – Parameters used in the persistent coverage problem

Parameter δ K Small R f Large R f

Value 0.99 20 0.325 (m) 0.65 (m)
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(a) (b)

Figure 15.6 – a) Mean coverage level over time for small R f and large R f for 20 tasks. b) Histogram
of the coverage values. Blue indicates small R f and orange indicates large R f .

Table 15.3 – Coverage levels in the 6 cases studied in the persistent coverage problem. μ is the
mean, σ the variance and cv the coefficient of variation.

#Tasks R f μ σ cv

12 Small 14.53 25.1 1.72
20 Small 14.93 18.41 1.23
48 Small 16.01 16.01 1.43

12 Large 55.25 48.72 0.88
20 Large 57.13 35.98 0.63
48 Large 63.5 39.39 0.62

The reason for the increased variance can be seen from a different angle by looking at Figure 15.6b. The

histogram of large R f is more distributed and has larger values for the majority of points compared to

the histogram of small R f . The distribution of coverage values for large R f has a higher mean but also

a higher variance since the values are farther apart. For small R f it can be observed that most points

have low coverage levels and the distribution is pushed towards the lower end. Nonetheless, we can see

how increasing R f has led to a better coverage with a comparably larger μ and smaller cv .

We note that the problem of persistent coverage can be tackled by means of other approaches as well.

In [122] we proposed a different approach where optimal paths in terms of coverage quality have

been computed locally using an FMM-based planner that takes into account a safety distance to the

obstacles and an improvement measure for the coverage.
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Figure 15.7 – Steady state coverage values for small R f and a) 12 b) 20 and c) 48 tasks. Steady state
coverage values for large R f and d) 12 e) 20 and f) 48 tasks.

15.5 Discussion

Results confirm that the proposed approach is able to solve the spatial task allocation and persistent

coverage problems in general. The use of this framework for solving the persistent coverage problem

provides interesting insights by taking a high-level approach that is different from the commonly used

95



Chapter 15. Market-Based Multi-Robot Cooperation

solutions for this problem such as computing robot trajectories to keep the desired coverage level.

However, there exist some limitations. Particularly, in the case of persistent coverage, this method is

suitable for applications where moderate spatial resolutions are sufficient such as patrolling. For the

next steps, we will introduce humans into the problem and improve the bid estimations by explicitly

accounting for social factors and the presence of humans in a more dynamic social environment.

Summary

In this chapter, we proposed a method based on the Hoplites framework for solving the MRTA

problem. Adaptations and customizations have been made to Hoplites for our targeted social

MRTA application, by modifying how the replanning is done and basing the planned coordin-

ation on the maximum plan length as opposed to time. We have demonstrated the flexibility

of this market-based framework by applying it to different scenarios of increasing complexity.

Results confirm the effectiveness and flexibility of this method for solving MRTA problems.
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16 Multi-Robot Cooperation in Dynamic
Environments Shared with Humans

I N this chapter a human-aware MRTA method is introduced that considers humans not only

as social entities in individual path planning but also at the task planning level. The main

extensions made to the method proposed in Chapter 15 driving this strategy are: accounting

for social costs in bid evaluations, and requesting cooperation in socially blocking situations.

A team of cooperative robots that rely on coordination and joint planning cannot be agnostic to

the humans when operating in a social environment. Humans can largely change the state of the

environment causing the previously computed plans to be invalid or suboptimal. To understand this

effect, studies involving both MRTA and social performance metrics are required in environments with

different levels of complexity in terms of noise and dynamics of humans. Therefore, in this chapter

we aim at providing insights on human-agnostic MRTA in social environments of varying complexity.

Additionally, we propose a social MRTA method that accounts for humans in both individual and team-

level plans. Furthermore, we conduct a comparative study in simulation and with real robots for MRTA

instances with: (1) no humans present, (2) humans considered only as unmapped obstacles, (3) humans

considered as social entities by individual robots at navigation level only, and (4) humans considered

both at task planning and individual navigation levels. To the best of our knowledge, human-aware

robot coordination for team-level planning in MRTA has not been investigated in the literature.

16.1 Social Multi-Robot Cooperation

We propose a system that builds upon two main components of (i) Hoplites-based multi-robot co-

ordination introduced in Chapter 15 and (ii) human-aware navigation presented in Chapter 12. We

will revisit these components and highlight the extensions and improvements motivated by social

human-populated environments leading to our proposed method. In this chapter, the same MRTA

problem of Chapter 15 is considered with the addition of social costs. For succeeding in a social environ-

ment, robots are required to ensure that social constraints, namely personal and interaction spaces of

humans, are not violated. If the environment is changing in terms of human positions and interactions,

how should a robot estimate the plan cost? What should be the strategy if a plan is rendered invalid due

to the changes in the environment? How often or when should the robots replan and recompute the

costs? These are interesting and challenging questions that need to be considered in MRTA for human-

populated environments. In the following, we detail how the previous market-based coordination

method is extended to answer some of these questions.
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(a) (b)

Figure 16.1 – Two cases where accounting for the presence of humans lead to a modified team
plan. a) Accounting for the added distance caused by human-aware navigation in the local balance
function. b) Social time-out occurring as the result of humans forming a blocking passage. The
cyan circle represents the task.

16.1.1 Socially-Aware Balance Functions

Since a distributed auction process requiring bid computations governs the market, accounting for

social costs entails improving and extending the estimation of the balance function to include a social

term. Hence, social factors should also be aggregated into the estimated value for bidding on the tasks.

Designing the balance functions and aggregating the social terms are problem-specific and may vary

across different environments. Compared to a human-agnostic bidding, the bid estimates containing

social terms can result in modified team plans. As an example, in Figure 16.1a, given a local balance

function that scores tasks inversely proportional to their distance to the robot, Robot 1 will take the

task since its path length (Δ) to the task is inferior to that of the other robot (Δ+ε), with ε> 0. However,

by taking into account the added distance θ that Robot 1 has to travel to avoid intruding the personal

space of the human, Robot 2 will take the task since Δ+θ >Δ+ε, with θ > ε> 0.

16.1.2 Social Time-Outs

If humans start interacting with a robot that has been assigned a task, assuming that attending to

immediate requests of humans has a higher priority, the robot should stop. In a human-agnostic

planning approach other team members assume that the task is taken and carry on with the remaining

tasks. If a time-out is foreseen for unfinished tasks, after waiting for that period of time the task would

be available on the market again and otherwise other robots will assume it will eventually be reached by

the responsible robot. A similar situation can happen if the cost of a task changes due to the movement

of the humans, as illustrated in Figure 16.1b. When robots are scoring the task while considering the

social costs, Robot 1 will be the best candidate given the smaller distance to the task location since

Σ<Σ+α, with α> 0.

However, if Human 1 walks back while maintaining the interaction, the path of Robot 1 can be blocked

by the larger interaction space formed by the two humans (O-space). This way, despite Robot 1 having
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Algorithm 4 Social time-out detection for robot r j with a set of unfinished tasks T and a set of
humans H

1: procedure S O C I A LT I M E O U T(T, H)
2: � The flag indicating social time-out
3: Ft ← False
4: � While the robot is assigned a task and is moving towards it
5: while IsActive( ) do
6: � If at least one human is present close to the robot
7: if InHumanVicinity(H) then
8: � If at least one human has started interaction with the robot
9: if HumanInteractionRequest(H) then

10: Ft ← True

11: � If the robot has not moved enough during a time window
12: if NavigationProgressed(T ) �= True then
13: if HumanInteractionRequest(H) �= True then
14: Ft ← True

return Ft

enough free space to pass, it will have to cross the O-space and thus, incur a larger social cost or it might

have to wait for a long time trying to find a new path as people move. Given the formulation chosen for

the local balance function and the weight of the social term, Robot 2 can be in such situation a better

candidate for taking the task.

We have introduced a priority planning caused by social time-outs in our proposed coordination

algorithm. In this chapter (see Algorithm 4), social time-outs are triggered when immediate human

interactions start with an active robot or in case an active robot is not advancing in its planned path

in the vicinity of humans for a predefined period of time. If a robot detects a social time-out it sends

cooperation requests through active coordination.

Without going into the details of active and passive coordination detailed previously in Chapter 15,

Algorithm 5 describes our proposed market-based coordination method. Accounting for social costs in

bid computation and requesting cooperation upon social time-out detection are the main extensions

and improvements made to our previous work to meet the requirements of a social environment. These

changes are highlighted in blue in Algorithm 5.

16.2 Experiments

In this section we will describe the evaluation metrics and the case studies constituting our experiments.

We note that due to the highly dynamic and noisy nature of social environments, planning for long

horizons will not be effective and could incur unnecessary computational costs without contributing

much to a better plan compared to shorter planning horizons. This motivates our choice of having a

single task planning horizon for the rest of this thesis.

16.2.1 Evaluation Metrics

The local balance function of robot r j , for each task ti belonging to a plan P is defined in the following.

This function is inversely proportional to the length of the path planned by the FMM to the desired
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Algorithm 5 Market-based Coordination for robot r j with a set of unfinished tasks T and a set of
humans H

1: � This is the main procedure running on each robot
2: procedure M A R K E T B A S E D C O O R D I N A T I O N

3: P ←
 � The current plan
4: Ps ←
 � The stored plan
5: F ← False � Flag for accepting cooperation
6: � While there is a task to be assigned
7: while T �= 
 do
8: if myTurn( ) then � Perform task assignment steps only in designated turns
9: if IsValid(Ps ) then � Check if the stored plan is valid

10: P ← Ps

11: else
12: Pn ←
 � The new plan
13: Pn ← PassiveCoordination(T, r j )
14: � Compute the current revenue and the cost considering the humans
15: ρ, c ← GetBalanceSocial(Pn , H)
16: � � stands for the minimum acceptable gain in revenue
17: if ρ ≤ �c ∨ SocialTimeOut(T, H) then
18: Pa , Ω, Pc ← ActiveCoordination(T )
19: F ← AskForCooperation(Ω,Pc )
20: if (F ) then
21: Pn ← Pa

22: P ← Pn

23: else
24: � Compute and store a plan for the next task allocation
25: Ps ← PassiveCoordination(T, r j )
26: � Checking and responding to potential active coordination requests
27: if ReceivedCooperationProposal( ) then
28: EvaluateProposal( )
29: BroadcastAnswer( )

task. We note that for social task planning, the path planned by the FMM already takes into account the

social costmaps representing the human-centric Gaussian cost functions.

Br j ,P = ∑
ti∈P

(ρti ,r j −Ds(lti−1 , lti )) (16.1)

ρti ,r j is the revenue of task ti , lti is the position of ti and lti−1 is the position of the task that appears

before ti in P . This function includes a revenue ρti ,r j that is decreasing with time as shown below.

ρti ,r j (k) = max(0,�max (1− k −ka,i

τ
)) (16.2)

where Ds is the length of the human-aware path computed by the FMM planner, k is the time in which

ti is reached, �max is the maximum revenue for the task, ka,i is the allocation time of ti and τ is the time

after which the positive revenue becomes zero. This utility function is added to reinforce reaching the

tasks as early as possible. In real noisy social environments, only an estimate of the time to reach a task

can be computed. Additionally, due to the presence of people, because of the random interactions they

form among themselves and with robots, estimations of the task times can be far from reality for some

of the robots and acceptable for those that are not faced with humans. Therefore, for the remaining of
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(a)

Figure 16.2 – Snapshot of a sample test for ten moving humans in Webots. There are ten tasks
depicted by blue circles representing the locations that should be visited by the robots.

this thesis, we have decided to only include the distance term in the local balance functions.

As for the global balance function concerning MRTA, the total traveled distance (M1) and the mission

time (M2) are reported for all experiments. For evaluating the performance of the MRS in terms of

social-awareness, the maximum accumulated social cost (M3), the maximum time steps spent in areas

associated with social costs (M4) and the minimum distance to any human throughout the experiment

(M5) are reported among all robots. Three case studies of varying complexity have been addressed in

this chapter. The following sections describe them in detail.

16.2.2 Case Study I: Human-Agnostic MRTA in Social Environments

To get a better understanding of how the existing MRTA methods perform in human-populated en-

vironments without considering any additional social elements, a series of experiments have been

conducted. We have tested five different scenarios in simulation with the following configuration in

terms of presence of people, Scenario 1A: no humans, Scenario 1B: five static humans, Scenario 1C: five

moving humans, Scenario 1D: ten static humans, and Scenario 1E: ten moving humans.

Static humans are randomly placed on positions that the robots would have to traverse. Dynamic

humans are randomly moving in all parts of the environment while avoiding collisions with other

agents. Figure 16.2 shows the faithful simulated model of the oncological ward of the IPOL hospital in

Lisbon used in our simulations as a representative complex indoor environment. Robots are relying on

their self-localization for computing the local balance functions and the evaluation metrics have been

obtained from ground truth values provided by the simulation. Initial positions of robots and humans

for all experiment sets are the same. The reason for this choice is, firstly, to compare the same MRTA

problem instance across all scenarios and, secondly, to ensure that humans are located at positions

that are likely to create social costs for the robots.

In this case study, a total of 10 tasks represented as desired locations in the environment must be visited

by four robots. Each scenario has been tested 10 times in simulation and only MRTA metrics, i.e., M1

and M2 have been considered. The goal of this study is to provide insight into the MRTA performance

and behavior when humans exist in the environment. It is clear that without accounting for the human

presence, social constraints have been frequently violated especially as the number of people increased.

For the following two case studies, social metrics as well as the standard MRTA metrics have been

considered.
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Figure 16.3 – Snapshot of a sample test for one static and two moving humans who are about
to start interaction with Robot 3. There are five tasks depicted by blue circles representing the
locations that should be visited by the robots.

16.2.3 Case Study II: Comparative Evaluation in Simulation

In this case study, a problem consisting of five tasks, four robots and three humans has been considered.

The aim of this assessment is to study the performance of the socially-aware task planner in comparison

to the other approaches. This case study demonstrates how team plans can change if social constraints

are to be considered and how a robot that is stopped due to social interactions with people, can affect

the team performance if a team cooperation strategy is not foreseen for such circumstances. As depicted

in Figure 16.3, there exist a static human and two dynamic humans who start moving towards Robot 3,

when the simulation begins. They initiate an interaction with the robot and therefore, the robot will be

interrupted while moving to its assigned task.

To compare the performance of different MRTA strategies, four series of tests across two scenarios

have been conducted. In Scenario 2A there are no humans present, whereas in Scenario 2B three

humans exist in the environment as explained in the case study description. This latter scenario adopts

three different algorithms: Scenario 2B-AG: human-agnostic robots, in this scenario humans are not

considered in the team plan and are only considered as obstacles in robot navigation. Scenario 2B-AWI:

human-aware robots as individuals, in this scenario humans are not considered in the team plan but

navigation considers their presence as described in Section 10.3.1. Scenario 2B-AWT: human-aware

robots as a team, here humans are considered at both planning and individual navigation levels.

We note that three types of timeouts have been implemented for the following situations, (i) time-out

due to social interactions, (ii) time-out due to no progression in the assigned task, and (iii) time-out

due to large localization errors and lost robot. We have added the time-out for case (ii) for enabling the

robots to finish their mission in case one robot takes too long to accomplish a task due to unforeseen

reasons in scenarios other than Scenario 2B-AWT. The values considered for these time-outs are 10,

30, and 30 seconds, respectively. The larger values are chosen due to the impact of the time-out; for

instance, abandoning a task without coordination with teammates is costly and the algorithm should be

more conservative in triggering such action. Furthermore, the time required to identify an interaction

with a human is significantly less compared to the time required to conclude that a robot is stuck, lost

or down.

The social metrics are obtained excluding the robot stopped due to engaging in interactions with

humans. The concept of layered social costmaps in ROS has been used for implementing the social
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Figure 16.4 – Snapshot of the real robot experiment.

costs for human-aware navigation. The value of social cost for a given position varies between 0 and

255. The radius of the social costmap is 1 m. Similar to [33], σ2
x = 0.255 m and σ2

y = 1.5×σ2
x . Intrusion

of the areas in front of a human is more severely penalized using this formulation. All four sets of tests

have been repeated for ten simulation runs. Robots are relying on their self-localization for computing

the local balance functions and the evaluation metrics (M1 −M5) have been obtained from ground

truth values provided by the simulation.

16.2.4 Case Study III: Comparative Evaluation with Real Robots

A similar comparative study of Section 16.2.3 has been conducted in reality. While methodologically

this study is exactly the same as that of Section 16.2.3, here the problem instance consists of three

tasks, two robots and two humans, as depicted in Figure 16.4. In this test, two static humans are having

a conversation while standing in a rather narrow passage. The goal of this assessment is to examine

how the social costs associated to humans and their interaction area can change the performance and

plans of different MRTA approaches. The placement of tasks and the social costmaps are illustrated in

Figure 16.5. Robots are relying on their self-localization for computing the local balance functions. The

experiments are carried out in the Jordils motion arena (see Section 7.2) and therefore, the position

and orientation of the humans can be captured by the available MCS with millimetric accuracy and

broadcasted to the robots. Again, σ2
x = 0.255 m and σ2

y = 1.5×σ2
x . Experiments have been conducted in

an arena corresponding to map I (see Table 7.1).

16.3 Results

In this section the results of the three case studies explained in the previous section will be discussed.

16.3.1 Case Study I: Human-agnostic MRTA in Social Environments

Figure 16.6 shows the performance of this test across different scenarios. The metrics used in this study

are M1 and M2, similar to Section 15.3.2. It can be seen that both metrics are increased when humans

are present. Since the environments are all exactly the same from the point of view of the task planning
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Figure 16.5 – Placement of the tasks, robots and humans at the beginning of the experiment.
Humans are facing each other. They are positioned in the center of the costmap. The areas closer
to the humans and their interaction space are more costly (red) and the further away we get from
the humans the cost will decrease (blue).

method, allocation of tasks remains similar to that of Scenario 1-A and humans affect the timing (M2) of

the tasks mostly as observed in Figure 16.6. This is due to humans appearing as (dynamic) unmapped

obstacles that could result in longer modified paths, blocked passages or interfere with the localization

of the robots.

Based on Figure 16.6b, the mission time for Scenario 1B and 1D with static people is higher compared to

Scenario 1C and 1E with dynamic humans. This may seem counter-intuitive since human motion adds

more complexity to the scenario. However, static humans cause a larger increase in the localization

error of the robots. Indeed, throughout the runs we observed robots getting stuck in a close proximity

of static humans. This happens since the robot thinks it is too close to an obstacle and stops moving,

due to the localization error having jumps from time to time. Since static humans do not move, long

periods of blockage that can only be broken by means of time-outs occur. M2 is increased in such cases

since the task of the blocked robot is not reassigned to any other team member upon long waits. This is

one reason that necessitates modification of team plans in social environments. In the case of moving

humans, the robot is able to retrieve its correct position once it receives new information from the laser

scans and when it senses a large enough distance to the surrounding obstacles. Thus, the increase in

M1 and more so M2, is less than the static case.

In our tests, increasing the number of humans (e.g., 1B vs. 1D and 1C vs. 1E) led to larger variations in

M1. The particular cases which lead to blockage, narrow passages and long waits, are the main cause of

the larger traveled distances and longer mission times and do not necessarily increase as the number

of people increases. Since we positioned the static humans on challenging spots already with five

humans (Scenario 1B), the overall difficulty of this scenario was similar to the case of ten static humans

(Scenario 1D) in terms of problematic situations. As a result, the mean value of the two metrics are

not very different as the number of humans are increased. This result has been certainly biased by the

choice of human positions. However, this choice was made to ensure problematic situations exist in all
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(a) M1 (b) M2

Figure 16.6 – The total distance and time for the five different scenarios for human-agnostic MRTA
obtained from 10 runs.

scenarios. Nonetheless, in uncontrolled social environments more problematic situations are likely to

happen as the number of humans increases.

16.3.2 Case Study II: Comparative Evaluation in Simulation

To understand the task assignment depicted in Figure 16.7, consider Figure 16.3 again and assume

Robot 1 has reached the Corridor task and Robot 2 is at Room 5. For deciding who is going to accomplish

the next task, i.e., Room 3, without accounting for the human, the distance between Robot 1 at the

Corridor is smaller than that of Robot 2 at Room 5. Therefore, in Scenario 3A and 3B-AG Robot 1 takes

Room 3. In Scenario 3B-AWI, Robot 2 delegates Room 3 to Robot 1 through collaboration, despite

becoming available earlier in time. In Scenario 3B-AWT on the other hand, Robot 2 takes Room 3 as

the result of active coordination between Robot 1 and Robot 2. Note that the team plan changes when

social costs are taken into account.

For the second problematic situation leading to time-outs, in Scenario 2B-AG and 2B-AWI, Room 4 will

be taken by the closest available robot which is Robot 2 but only after the time-out period. In Scenario

2B-AWT, the moment the social time-out for Robot 3 is issued, replanning through active coordination

takes place and Robot 1 which is the closest available robot, will take the task (Robot 2 has been sent to

Room 3). This significantly reduces the mission time (M2) compared to 2B-AWI as seen in Figure 16.8b.

Figure 16.8 demonstrates M1-M5 for Scenario 2A to 2B-AWT. For Scenario 2A, we expect to have the

smallest M1 and M2 due to no humans existing in the environment. This is confirmed by Figure 16.8a-b.

In the human-agnostic method, robots do not modify their paths to respect the social spaces around

humans and will therefore, travel a smaller distance compared to a human-aware robot for the same

plan. Thus, M1 for Scenario 2B-AG will be smaller compared to 2B-AWI and 2B-AWT, as confirmed by

Figure 16.8a. However, the human-agnostic approach leads to large social costs due to not respecting

social constraints. This can be observed in Figure 16.8c-e where larger M3 −M4 are recorded for the

human-agnostic method. On the other hand, this method achieve the smallest values on M5 due to

humans being considered merely as obstacles.
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Figure 16.7 – Task assignment per robot over time for a sample run of the second set of experiments
for scenarios 2A, 2B-AG, 2B-AWI, and 2B-AWT respectively. The blue blocks indicate cooperation
requests and coordination and the red blocks represent long waits leading to time-out. End of
mission (M2) is marked by the vertical line.

We can see that both Scenario 2B-AWI and 2B-AWT have negligible social costs and social zone viola-

tions. In principle, they should have zero M3 and M4, however, small localization errors can lead to

occasionally moving into areas with non-zero social costs or generating the false positive assumption

of being there. M5 for both Scenario 2B-AWI and 2B-AWT is in the recommended range and larger

compared to that of Scenario 2B-AG. We can see that on average, the robots navigate as close as the

edge of the costmap (0.7 m) in Scenario 2B-AWI and 2B-AWT.

16.3.3 Case Study III: Comparative Evaluation with Real Robots

Similar to the previous section, sample team plans for all four scenarios can be found in Figure 16.10.

We can see how the team plan changes across different scenarios. Figure 16.10a displays the team plan

in a human-free environment where tasks are scored inversely proportional to their distance to the

robot. In this experiment, the passage leading from Task 1 to Task 2 is populated by two interacting

humans. Thus, large social costs are associated to that area. This causes Task 2 to be very costly for

Robot 1 from the point of view of a social coordination mechanism. Additionally, this cost is large

enough to stop the robot from moving and hence, causing a time-out. In Scenario 3B-AG and 3B-AWI,

Task 2 is assigned to Robot 1 as it is closer to that location (see Figure 16.5). However, since the passage

can not be traversed, Robot 2 will take the task only after a progress time-out has been broadcasted.
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(a) M1 (b) M2 (c) M3

(d) M4 (e) M5

Figure 16.8 – Performance metrics for the second set of experiments in simulation obtained from
10 runs. Note that for metric M3 to M5, no performance for scenario 2A is plotted since no human
was present.

For Scenario 3B-AWI, we observed Robot 1 constantly moving to find a way to Task 2 or slightly moving

in social zones and stopping there in some runs. This explains the larger M1 and M3 in Figure 16.9.

In Scenario 3B-AWT, Robot 1 will initially take Task 2 since it becomes available before Robot 2. However,

upon computing the value for the task a collaboration request is sent and Task 2 is delegated to Robot 2

due to its large social cost. Scenario 3B-AWT is shown to have superior performance in terms of M1 - M5

compared to Scenario 3B-AWI while ensuring no social constraints are violated and maintaining a large

enough M5 as shown in Figure 16.8c-e. Not modifying robot trajectories to avoid social zones causes

M1 and M2 to be smaller for Scenario 3A and 3B-AG at the cost of having large social costs. A video of
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(a) M1 (b) M2 (c) M3

(d) M4 (e) M5

Figure 16.9 – Performance metrics for the third set of experiments for real robots obtained from
five runs. Note that for metric M3 to M5, no performance for scenario 3A is plotted since no human
was present.

sample runs of this test as well as further material related to this project can be found following the link

indicated in the footnote1.

1http://disal.epfl.ch/research/SocialRoboticsNavigation
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Figure 16.10 – Task assignment per robot over time for a sample run of the real robot experiment,
for scenarios: 3A, 3B-AG, 3B-AWI, and 3B-AWT respectively. The blue block indicates collaboration
requests and coordination and the red block represents long waits leading to time-out. End of
mission (M2) is marked by the vertical line.

16.4 Discussion

Evaluating the performance of a human-agnostic MRTA approach in the presence of multiple static and

moving people showed how the mission time can considerably increase if humans are present in the

environment. Simulation and real robot results confirm that accounting for social costs and time-outs

that are the products of social encounters, at both distributed planning and individual navigation

levels have superior results in social environments. Human-awareness on an individual level alone is

not sufficient for the robots to ensure appropriate social behaviors and in socially blocking situations

non-social metrics such as mission time can also be significantly affected if humans are not taken into

account on the task planning level.

Social environments can be very dynamic and unpredictable. Therefore, assuming that task costs can

be correctly estimated for a given period of time is not always correct. Thus, effective bid estimation for

incorporating future actions of the humans and their uncertainty will be studied in the next chapter.
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Summary

To understand the effect of humans on MRTA, the impact of a realistic environment with varying

number of static and moving humans on the behavior and performance of human-agnostic

MRTA was studied in this chapter, using an extensive suite of experiments in simulation. Results

show that the total traveled distance and time are increased when humans are present in the

environments. Localization noise was also increased particularly in the case of static people.

Subsequently, a human-aware MRTA method was proposed in this chapter by means of account-

ing for social costs in bid evaluations and requesting collaboration in socially blocking situations.

For evaluating this method, a number of problematic cases resulting in longer modified paths,

blocked passages, and long waits were investigated through a comparative study. Both simulated

and real robot experiments confirm the effectiveness of accounting for humans at both team

and individual levels. This leads to respecting social constraints as well as achieving a better

performance based on MRTA metrics for socially blocking situations.
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17 Risk-Based Human-Aware Multi-Robot
Cooperation in Social Environments

I N this chapter, we study MRTA in dynamic social environments with costs that have a stochastic

nature due to the changing behavior of people. We introduce risk-based bids that incorporate

human trajectory prediction uncertainties and furthermore, social costs in their formulation.

In Chapter 15, a study of MRTA in dynamic and noisy environments for spatial task allocation

confirmed the effectiveness of our Hoplites-based method as a first step towards deployment of MRTA

methods in social environments. In Chapter 16, we proposed a human-aware coordination method for

MRTA that accounted for the distance overhead of human-aware paths in the local balance function of

the robots and allowed for instant cooperation in socially blocking situations. However, robots could

only see a snapshot of the environment and costs were assumed to be deterministic.

To illustrate the problem, consider the example in Figure 17.1, where two robots are coordinating to find

the best team plan for taking Task 1. In a social MRTA approach that only considers the current available

information when bidding on a task, and given a local balance function that scores tasks inversely

proportional to their distance to the robot, Robot 1 will take Task 1. This is because the distance that

Robot 1 has to travel (d1) is smaller than that to be traveled by the other robot (d2). Additionally, Robot 2

will have to travel an even larger distance (d3) to avoid the social costs associated to the personal space

of the human. However, in reality the human is moving towards Robot 1. This means there will be

no social costs associated to the path of Robot 2. Additionally, Robot 1 will have to modify its path in

order to respect the personal space of the human and will have to travel a larger distance than planned.

If robots consider the future positions of the human while estimating their bids, they will know that

Robot 2 is a better candidate for taking Task 1 in this situation.

Accurate estimation of future positions of humans in uncontrolled environments is not possible in

reality. Nonetheless, prediction of human motion despite being error prone, can still provide valuable

information about the changes that are likely to occur. Taking a decision based on uncertain information

can be seen as taking a risk. In the context of MRTA, a risk measure that adopts predictions and

captures their errors as uncertainties can be a useful extension to the deterministic estimation of costs.

Furthermore, accounting for the added social costs corresponding to risky situations, can help the

robots to take more informed and socially-aware decisions.

Unlike most stochastic MRTA approaches, an uncertainty model for uncontrolled social environments

is not available unless strong assumptions are made or a data-driven approach, targeting a specific

environment, is taken. Additionally, the scale and complexity of the problem is too large for applying

POMDP-based solutions. Moreover, each encounter of the robots with humans matters and improving
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(a)

Figure 17.1 – Two robots bidding on a task that will have a changing cost over time. The human is
initially static. He then decides to move towards Robot 1. This snapshot shows the initial position
of the robots and the human for Case Study I in Webots.

the average performance is not the best strategy to gain social acceptance for the robots. As a result, we

opt for an approach that uses risk as a heuristic for estimating stochastic costs.

Risk-based navigation (Risk-RRT [8], [21]) has been adopted in human-aware navigation for single

robots. Therein, risk, or the probability of collision with objects or intrusion in socially costly areas,

along any candidate trajectory is taken into account for selecting an appropriate human-aware path.

Inspired by this idea, we propose a number of risk formulations for estimation of stochastic costs for

social MRTA in the next sections. These estimations form the basis of the local balance functions for

the robots.

The contributions of this chapter include proposing a concept of risk-based human-aware bids that

account for changing costs in human-populated environments, evaluating the effect of human tra-

jectory prediction error on risk-based bid estimation and team performance, and proposing different

risk formulations to account for the prediction error, risk estimation accuracy, and social costs. To the

best of our knowledge, MRTA with stochastic human-aware costs in social environments has not been

investigated in the literature.

17.1 Stochastic Risk-Based Bids

Consider a robot bidding on a task in the vicinity of a human. In a case where a static human previously

considered by the robot starts moving and clears the robot's path, the initial bid on the task has been

an over-estimation. On the contrary, if a moving human suddenly occupies parts of a robot's path or

decides to interact with the robot, the initial bid has been an under-estimation. In other words, costs

associated with tasks are uncertain and can vary over time. On the other hand, accurate prediction

of the future for humans is not possible because of the uncertainties inherent to uncontrolled social

environments. Therefore, we propose an abstraction that can extract higher level information from

perceptual data, by introducing risks. “Risk” is defined as the probability of occupation of an area with

social costs by the robot.

Consider a reformulation of local balance function B introduced in Section 15.1 for a robot r j and a

given plan P at time k shown in the following:

Br j ,P (k) = Rr j ,P (k) −C ′
r j ,P (k)

C ′
r j ,P (k) =Cr j ,P (k) +Zr j ,P (k)

(17.1)
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where R is a generic revenue function, C a generic cost function and Z the penalty for constraint

violations. In a human-populated environment, the presence of people can lead to an increase in the

cost for a plan compared to the estimated cost of that plan in an empty deterministic and noise-free

environment. Similar to the way humans assess situations by means of evaluating the risks against the

benefits when taking a decision, the robot will compute a risk-based cost C ′′ that will be aggregated

with a revenue R for a given plan P .

Another term Q is introduced to capture this stochastic cost which is proportional to the risk γ associ-

ated with the plan. fm(.) is a user-defined function used to aggregate the risk with revenue, cost and

penalty terms, based on the risk formulation method m.

Br j ,P (k) = Rr j ,P (k) −C ′′
r j ,P (k)

C ′′
r j ,P (k) =C ′

r j ,P (k) +Qr j ,P (k)

Qr j ,P (k) =
∑

ti∈P (k) fm(γr j ,ti ,k )

(17.2)

When evaluating Br j , for each task ti in P the risk of being subjected to additional costs due to human

actions must be determined throughout the mission. This risk is computed on the basis of the distance

D between the robot and any human present in a predefined vicinity of the robot at any point of time.

Let's assume that at time k, ti will be started in k1 seconds and will be reached in k2 seconds. The risk

associated with this part of the plan is defined as follows:

γ(r j , ti ,k) =
∫k+k2

k+k1

∑
h∈H

gm(D(lr j ,k ′ , lh,k ′ ))dk ′ (17.3)

Here, gm(.) is a function that is inversely proportional to D , i.e., the distance measure between the robot

position lr j and the position of the human lh . Since risk is defined as the probability of occupation of

an area with social costs by the robot, g is chosen to normalize the distance in a predefined vicinity of

the human with radius εR :

gm = max{0,εR −Dm}

εR +Dm
(17.4)

where Dm indicates the distance between the robot and a human h, using method m.

The key information for computing risk is the future positions of people. This calls for a human

trajectory predictor to make the required information available. Throughout this chapter, we assume

that the output of the human trajectory predictor is a Gaussian distribution. Mh,k is the mean and

Σh,k is the covariance matrix of the distribution. For time k and human h, we will have a predictor that

provides us with the following information:

lh,k =N (Mh,k , Σh,k ) (17.5)

The robot position on the other hand, can be given by the path planner. For any given goal (lti ), we

obtain a sequence of way-points w ∈ Wr j ,ti = {w1, w2, ..., wN } that constitute the robot path, with w0

being the initial position of the r j . An estimate of the corresponding reaching time for each w is also

known kw ∈ {kw1 ,kw2 , ...,kwN }. The robot trajectory is then discretized and k is ignored as it is implicitly

accounted for through the use of kw . The new risk formulation can be written as:

γ(r j , ti ) = ∑
w∈Wr j ,ti

∑
h∈H

gm(D(w, lh,kw )) (17.6)
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H represents the set of all humans perceived by the robot. Depending on the risk modeling approach,

different distance and risk formulations can be chosen. We are interested to know how this choice

can affect the performance of the team plan in terms of both MRTA and social metrics. Therefore, we

propose the following risk formulations. Details of our proposed generic bid estimation algorithm can

be found in Algorithm 6.

17.1.1 Euclidean Distance (DE )

By choosing this metric, using a simple formulation that requires only the end points without the

uncertainty associated with them, we compute the straight-line distance between two points, i.e.,

way-point and human positions, in Euclidean space. The expected value of the human prediction

distribution will indicate the position of the human.

γ(r j , ti ) = ∑
w∈Wr j ,ti

∑
h∈H

gm(DE (w,E(lh,kw ))) (17.7)

17.1.2 Mahalanobis Distance (DM )

Since human trajectory predictions provide a Gaussian distribution with a covariance matrix, we do

know about the uncertainty associated with every prediction. Thus, a more accurate distance measure

can be extracted if this uncertainty is taken into account by means of Mahalanobis distance. The

Mahalanobis distance between robot r j and human h can be written as follows. Note that w = lr j ,kw .

DM (lr j , lh,k ) =
√

(lr j −Mh,kw )Σ−1
h,wk

(lr j −Mh,kw ) (17.8)

γ(r j , ti ) = ∑
w∈Wr j ,ti

∑
h∈H

gm(DM (w, lh,kw )) (17.9)

17.1.3 Integrated Distances

In Sections 17.1.1 and 17.1.2, only way-points from the planner have been considered for risk compu-

tation. However, if the granularity of robot path is not fine enough, there are cases where important

events can be missed; for instance, robot and human collision or social zone intrusion can happen in

between two way-points without the two ends of the trajectory segments being affected by it. Therefore,

a piece-wise linear breakdown of the segment between way-points can be considered with a predefined

resolution. An example of this situation can be seen in Figure 17.2. The formulation of gm for DE and

DM for integrated distances is as follows:

gm(DE (w,E(lh,kw ))) = max
wp∈PW L(w−1,w)

gm(DE (wp ,E(lh,kwp
))) (17.10)

PW L(w−1, w) represents the piece-wise linear breakdown of the segment between w and its

previous way-point w−1. Instead of max operator, summation can also be used to account for

the accumulated social costs. Similarly, for DM integrated risk will make use of the following
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Figure 17.2 – An example of collision between r j and a human h1 in between way-points. If r j

relies only on the distances between each way-point wm and its corresponding human position
estimate lm , it will find that both dm and dm+1 are large enough and the trajectory is not risky.
However, when integrating the risk over the entire trajectory segment, a collision is detected.

distance formulation.

gm(DM (w, lh,kw )) = max
wp∈PW L(w−1,w)

gm(DM (wp , lh,kwp
)) (17.11)

17.1.4 Social Cost Incorporation

Human presence can affect the cost for a task in a number of ways. The distance traveled will

increase, risk of interactions and therefore, incomplete missions are introduced and addition-

ally costs concerning human discomfort or inconvenience can be incurred. By assigning costs

on the basis of social costmaps to the risk formulation, social factors are further reinforced.

Expectation-based social costmaps are used to incorporate the uncertainty in the human

positions reported by the human trajectory predictor. Consider a human at (xp , yp ), the de-

terministic costmap at (x, y) is:

S(x, y ; xp , yp ) = N (x −xp , y − yp ) (17.12)

N is the 2D Gaussian modeling the standard social costmaps. The probabilistic costmap

is given by the expected value of the social cost S, given the probability distribution of the

human's position ph(xp , yp ) which in this case belongs to a normal distribution. For any point

w = [x, y] in the vicinity of this human, cost can be written as follows:

S(w) = E(p(xp , yp )[S(x, y ; xp , yp )]) =
∫∫

N (x −xp , y − yp )ph(xp , yp )d xp d yp (17.13)
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This is in fact the convolution of the normal function modeling the human position lh,kw and

a Gaussian social costmap model S centered on the mean of lh,kw which is [xp , yp ]. Using

this approach, we compute an expected costmap incorporating all the uncertainties in the

environment. Based on this social costmap we now can have a risk value that incorporates

social costs directly. The risk formulation for the end point and integrated social costs can be

written as the following respectively:

γ(r j , ti ) = ∑
w∈Wr j ,ti

∑
h∈H

S(w) (17.14)

γ(r j , ti ) = ∑
w∈Wr j ,ti

∑
h∈H

max
wp∈PW L(w−1,w)

S(wp ) (17.15)

We note that our assumption of having a normal distribution for human predictions does not

constrain this social risk formulation. Any other distribution or particle-based output can

be considered as ph(xp , yp ). In case of predictors with discrete output, the same formulation

seen in Equation 12.5 can be used.

The potential additional social costs only occur in the vicinity of humans. This means for

scenarios with many tasks and many robots, only a subset of robots and tasks which are

subjected to social costs are making the difference with non risk-based approaches. The

building block of such scenarios, is bidding on one task affected by one human. If robots could

improve their estimates of the cost for such a task, they will consequently improve their team

level performance since more grounded decisions will be taken. Additionally, by means of an

aggregated formulation of risk that accounts for all the humans perceived by the robot, every

human is considered when computing the bid and areas containing more humans will be

associated a higher risk.

There are two main components to MRTA performing well in dynamic social environments:

1) improved bid estimation, 2) adaptive replanning. In this chapter, we focus on the former

since we believe providing a detailed evaluation of different methods for risk-based bid com-

putation is the first essential step for understanding how to approach stochastic social costs

for acquiring better team plans. Moreover, reliable risk estimation is the basis for devising

adaptive replannig strategies that can accommodate the high dynamics of social environments.

Currently, replanning is done when a task is accomplished or for verifying the validity of a

stored plan when a robot is on its way towards a task (refer to Section 18.1 for more details).

17.2 Experiments

Two case studies of increasing complexity will be described in this section. In Section 17.2.1,

we will investigate the performance of different risk formulations as well as the effect of human

trajectory prediction error on the method performance. In Section 17.2.2, a comparative study
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Algorithm 6 Risk-based bid estimation of robot r j for task ti with a set of humans H

1: procedure BidEstimation(lti , H)
2: � Compute the path to ti assuming an empty map
3: (Wti , Kti , dti ) ← PathPlanning(lti )
4: � Initial bid for the task is the distance traveled in an empty map
5: bti ← dti

6: � Initially, the last way-point in the robot path is set to its current position
7: w−1 ← lr j

8: for w ∈Wti do
9: for h ∈ H do

10: � Find the human position at time kw

11: lh,kw ← PredictHumanPosition(lh,kw−1
,kw )

12: � Estimate the risk of h for r j between w−1 and w
13: γh,w ← EstimateRisk(w−1, w, lh,kw−1

, lh,kw )
14: � User-defined function for aggregating risks with the distance-based bid
15: bti ← AggregateRisk(γh,w ,bti )

16: � Store the current way-point as the last visited way-point for the next segment
17: w−1 ← w

return bti

targeting 1) human-agnostic navigation and planning, 2) human-aware navigation without

considering humans in the planning phase, 3) human-aware navigation and planning based

on deterministic costs, and 4) human-aware planning based on stochastic costs without any

individual human-aware navigation will be explained.

We note that in each case study, human trajectories are the same across all runs with different

methods. This choice has been made to ensure that we are comparing the same MRTA problem

instance. Each scenario has been repeated for ten simulation runs. Robots are relying on their

self-localization for computing the local balance functions and the evaluation metrics (M1 −
M5) have been obtained from ground truth values provided by the simulation. Similar to the

Chapter 16, for the global balance function concerning MRTA, the total traveled distance (M1)

and the mission time (M2) are reported for all experiments. For evaluating the performance

of the MRS in terms of social-awareness, the maximum accumulated social cost (M3), the

maximum time steps spent in areas associated with social costs (M4) and the minimum

distance to any human throughout the experiment (M5) are reported among all robots.

For computing social metrics, we rely on Gaussian social costmaps. Similar to [33], we have

chosen σ2
x = 0.255 m, and σ2

y =σ2
x since we don’t include orientation in our predictions. The

value of social cost for a given position varies between 0 and 100 and the radius of the social

costmap is 1 m.

17.2.1 Case Study I: Risk Formulation and Trajectory Prediction Analysis

This case study consists of two robots, one task and a dynamic human that causes the cost

of the task to change over time (see Figure 17.1). The goal of this case study is to investigate
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the main challenging aspect of changing costs, i.e., impact of the human. This case study

serves as the building block for more generalized cases with more robots and more humans.

In the presence of multiple people, each robot will perform the same operation to compute an

accumulative risk accounting for every perceived human.

For this case study, we have only included the point-based risk methods, since with 0.25 m

granularity of the way-points in robot path planning, there is no need for opting for an integ-

rated risk model in our problem.

To study the effect of prediction error on the performance of our method, different levels of

noise have been tested for each risk formulation. This is done by means of adding noise to the

ground truth trajectory of the human, i.e., sampling a point lh from a Gaussian distribution

N (MGT , ΣNoi se ) with:

MGT = [xGT , yGT ] , ΣNoi se =
[
σ2 0

0 σ2

]
(17.16)

xGT is the x component and yGT is the y component of the true human position. The output

of each prediction is another Gaussian distribution N (lh , ΣNoi se ). When adopting a KF for

human position prediction, a state consisting of [x, y, vx , vy ] is tracked and [x, y] is observed.

x and y are the x and y components of the human position in the world frame, respectively,

and vx , vy are the corresponding velocity vector components.

A constant velocity dynamics model is assumed for the human motion. The observation noise

is assumed to be 0.05 m for both x and y . The process noise is considered to be 0.1 m for x and

y , and 0.5 m/s for vx and vy . As a result, predicting further into the future is subject to larger

errors and the uncertainty grows dynamically when using a KF. For the cases where noise

Table 17.1 – Details of different scenarios in case study I. Noise stands for the human trajectory
prediction noise.

Scenario No. of Humans Risk Method Noise σ (m)
1A 0 - -
1B-AG 1 - -
1B-E0 1 Euclidean 0.0
1B-E0.5 1 Euclidean 0.5
1B-E2 1 Euclidean 2.0
1B-E-KF 1 Euclidean KF
1B-M0.5 1 Mahalanobis 0.5
1B-M2 1 Mahalanobis 2.0
1B-M-KF 1 Mahalanobis KF
1B-S0 1 Social costmap 0.0
1B-S0.5 1 Social costmap 0.5
1B-S2 1 Social costmap 2.0
1B-S-KF 1 Social costmap KF

118



17.2. Experiments

Figure 17.3 – Initial position of the robots and humans in case study II in Webots. Blue circles
depict the location of tasks and smaller circles on human trajectories represent brief pauses.

is added to the ground truth however, the uncertainty is bounded to the noise distribution.

Table 17.1 lists the details of each scenario in terms of noise-level and risk method. We note

that the human performs noise-free and perfectly repeatable actions over different runs, by

means of replaying a recorded rosbag. Therefore, the noise in the human position prediction

is only caused by the prediction error of the estimator.

17.2.2 Case Study II: Comparative Evaluation of Different MRTA Strategies

In this case study, a problem consisting of five tasks, four robots and two dynamic humans

has been considered. Fig 17.3 illustrates the initial position of the robots, task placement and

human trajectories. The aim of this assessment is to study the performance of the risk-based

social task planner in comparison with the other approaches in a more complex setting. This

case study demonstrates how team plans can change if future risks are to be considered and

how social costs can be significantly reduced by means of team plans that avoid social risks.

To compare the performance of different MRTA strategies, four series of tests across two

scenarios have been conducted. In Scenario 2A, there are no humans present, whereas in

Scenario 2B, two moving humans exist in the environment as explained in the case study

description. This latter scenario adopts three different algorithms. Scenario 2B-AG, human-

agnostic robots; in this scenario humans are not considered in the team plan and are only

considered as obstacles in robot navigation. Scenario 2B-SD, social deterministic costs and

individual human-aware navigation; here humans are considered in task planning but through

a social planner that takes decisions based on currently available information only. Scenario

2B-SR-KF, risk-based social planning without individual human-aware navigation; in this

scenario a KF predictor is used for bid estimation. Among different risk formulations, S-KF was

shown to be the most effective (see Section 17.3.1), hence, we selected this method for further

evaluation. We chose to decouple the risk-based social planner from individual human-aware

navigation to highlight the strengths of this planning approach and assess the contribution of

risk-based bids in finding better plans and reducing social costs.
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17.3 Results

In this section the results of the two case studies explained in the previous section will be

discussed.

17.3.1 Case Study I: Risk Formulation and Trajectory Prediction Analysis

Consider Figure 17.1 again. Upon initial biding of both robots, Robot 1 is the closest to “Task 1”

and will therefore be allocated to this task in scenario 1A and 1B-AG. However, when future

risks are taken into account in task planning, in all other scenarios Robot 2 will request a

cooperation and take “Task 1”. Social task planning based on deterministic costs has not been

included in this case study since it is clear that with the added distance overhead of social paths

(see d3 in Figure 17.1), Robot 2 will not be able to overbid Robot 1. For this case study, plans are

not included for brevity and we focus on the extracted metrics instead. Figure 17.4 shows the

performance of this case study across different scenarios. For scenario 2A, we expect to have

the smallest M1 and M2 due to no humans existing in the environment. This is confirmed by

Figure 17.4a-b. Scenario 1B-AG has similar performance to 1A in terms of M1 −M2 on average.

However, without individual human-aware navigation we observed Robot 1 having a mild

or major collision with the human every few runs. This resulted in pauses and localization

errors for the robot and hence the increased variability in M1 and M2 compared to scenario

1A, despite following the same task assignment. Lack of human-awareness has led to large

social costs for scenario 1B-AG as seen in Figure 17.4c-e.

For risk-based bidding methods, we can observe zero socials cost on average, and they main-

tain an appropriate distance to the human across all tests despite noisy predictions. The

only exception here is 1B-M0.5 where Robot 2 was able to persuade Robot 1 later than other

scenarios in five of the runs. As a result, Robot 1 stopped at a position that would be sometimes

too close to the human trajectory and without activating human-aware navigation or social

collision avoidance, Robot 1 ended up being in the human's social zone. Similar behavior was

observed for fewer runs in scenario 1B-E0.5 and scenario 1B-E2.

All scenarios with zero prediction error, KF predictor, and risks that are based on social cost-

maps, have resulted in zero social costs. We believe the reason is that social costs reinforce the

risk in areas closer to the human, i.e., a larger penalty (based on the social costmap model) is

assigned to all areas associated with possible human presence. Despite large prediction errors,

particularly for KF, we observe that the correct decision has been taken by the robots. We

believe that extracting a direction from predictions is the key for improving the bid estimates

here. This is an abstraction compared to accurate position estimation. However, this informa-

tion can be used to improve team plans in many cases. Based on the results of this case study,

we choose the risk formulation that was based on social costmaps with a KF human trajectory

predictor for our risk-based bid estimations in the next case study. We note that other scenarios

with frequent sudden changes in human trajectories or more complex dynamics can be found

where this solution alone will not be sufficient. This is where monitoring risk variations and
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(a) M1 (b) M2

(c) M3 (d) M4

(e) M5

Figure 17.4 – Performance metrics for the first set of experiments obtained from 10 runs. Note
that for metric M3 to M5, no performance for scenario 1A is plotted since no human was present.
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adaptive replanning can help. We will pursue this further in the next chapter.

17.3.2 Case Study II: Comparative Evaluation of Different MRTA Strategies

Looking at Figure 17.3, for a non risk-based task planning strategy, movement of Human 1 and

Human 2 causes change to the initial estimated costs of “Room 1” and “Room 6”, respectively.

Sample team plans for all four scenarios are shown in Figure 17.6. We can see how the team

plan changes for scenario 2B-SR-KF compared to the other scenarios. For a human-free

environment where tasks are scored inversely proportional to their distance to the robot and

given the proximity of robots to tasks, “Room 1” is the best choice for Robot 1 and “Room 6” is

the best option for Robot 4. This is confirmed by the team plans (see Figure 17.6a and 17.6b)

for both scenario 2A and scenario 2B-AG. In scenario 2B-SD humans are taken into account

when computing bids by means of including the distance overhead of the social paths. We

can see that despite this consideration, the team plan does not change (see Figure 17.6c) and

instant human-aware decisions are not able to find the more appropriate task assignment.

Scenario 2B-SR-KF on the other hand, computes risk-based bids and includes future estimates

of human motion in decision making. Thus, a different and less socially intrusive plan is found

for the team as depicted in Figure 17.6d.

Figure 17.5 demonstrates M1-M5 for scenario 2A to 2B-SR-KF. It can be seen that scenario 2A

has the smallest M1-M2 due to lack of human presence. Slightly larger M1-M2 can be seen

for 2B-AG and 2B-SD with large variations in M2. This is again caused by the minor or major

collisions with humans. We observed that despite having human-aware navigation for robots

in 2B-SD, robots could not fully eliminate social costs, although M3−M5 has been improved for

2B-SD compared to 2B-AG on average. We observed two problematic situations for the robots

in term of human-aware navigation. Firstly, when Robot 1 is moving to “Room 1”, Human 1

is about to exit the room. The doorway is a very narrow passage that does not allow for both

of them to progress. This is a hard situation for human-aware navigation, and we observed

that Robot 1 partially intruded the social space of the human with variable severity in different

runs. Secondly, there were a few cases of collision when a human was moving too fast for the

robots to be able to adjust their paths and our individual human-aware navigation was not

able to ensure respecting the social constraints in more difficult and dynamic situations.

Contrarily, in scenario 2B-SR-KF because of avoiding risky areas and despite having no in-

dividual human-aware navigation, robots were able to ensure social-awareness. Risk-based

planning does not promise less traveled distance or less time (see Figure 17.5a and 17.5b).

Depending on the human behavior it might find a plan that is longer or shorter in terms of

distance and time, but it ensures that decisions will be made considering all aspects (including

social costs) together.
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(a) M1 (b) M2

(c) M3 (d) M4

(e) M5

Figure 17.5 – Performance metrics for the second set of experiments obtained from 10 runs. Note
that for metric M3 to M5, no performance for scenario 2A is plotted since no human was present.
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(d) 2B-SR-KF

Figure 17.6 – Task assignment per robot over time for a sample run of the second set of experiments
for scenarios 2A, 2B-AG, 2B-SD, and 2B-SR-KF respectively. End of mission (M2) is marked by the
vertical line.

17.4 Discussion

Results confirm that risk-based plans that account for social costs lead to better team plans in

term of social metrics, prevent difficult social situations, and reduce the need for the lower

level human-aware navigation to be activated. Although risk-based planning alone was able to

achieve socially acceptable results in our case studies, the combination of risk-based human-

aware coordination and planning, and human-aware individual navigation ensures that social

constraints will be respected even if higher level plans incur some social costs due to yet

unpredictable changes in the environment or other sources of uncertainty. In the next chapter,

we will focus on adaptive risk-based replanning that can improve the team performance

by correcting inaccurate or invalid estimates that can occur as a result of sudden changes

in the environment. Additionally, we will look into MRTA with limited local perception and

information sharing among robots.
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Summary

In this chapter, we proposed a risk-based bid estimation method for MRTA with

stochastic costs in dynamic social environments. We investigated the effect of pre-

diction error on the performance of different risk formulations and demonstrated the

effectiveness of including a predictive component in the risk formulation despite the

lack of accurate position estimation for humans by means of testing different levels

of prediction error for known human trajectories and in a separate approach, using

a Kalman filter for human trajectory estimation. Furthermore, we proposed different

risk formulations accounting for prediction error, risk estimation accuracy, and social

costs. Additionally, a comparative study targeting human-awareness on individual and

task planning levels was conducted. Results confirm that risk-based bids lead to more

socially acceptable team plans that account for social costs and prevent difficult social

situations that can lead to less effective human-aware navigation, such as traversing

narrow passages occupied by humans.
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18 Adaptive Risk-Based Replanning for So-
cial Robots with Limited Local Perception

O N E key element of dynamic social environments is change. In such uncontrolled

environments human behavior can change at any time after a robot has taken

a decision. This can lead to degraded or invalid plans. Taking predictions into

account can alleviate this problem but cannot eliminate it fully. Particularly for

robots with limited perception new information can be perceived at any point in time after a

decision has been made and while a robot is executing its plan. In this chapter, MRTA for robots

with limited local perception is addressed. Additionally, we target the problem of dealing with

unpredictable changes in the environment. The questions we are aiming to answer in this

chapter are the following: (i) how should a robot or a team of robots deal with the new or lost

perceptual information that is inherent to limited local perception? (ii) how should a robot

react to unforeseen behavior changes of humans at the task planning level?

We believe both of these problems have a similar solution. As behavior change induces unpre-

dicted motion and limited perception provides new information or lack of previously present

information, what we in fact need to answer is how should MRTA methods employ the new

information about humans in a highly stochastic social environment. In other words, how

should a team of robots perform replanning when faced with highly stochastic human-related

information?

This is among the challenges of MRTA that still remain open and the best approach for facing

uncertainty in this context is not currently known. In [52] such dilemma is summarized as

follows: “Is it more beneficial to build a complex model that incorporates uncertainty, or is

it enough to build less well-informed plans and replan as often as needed to quickly react to

unexpected events?” We believe that a hybrid approach can also be taken for tackling this

problem. Leveraging the concept of risk-based bid estimation for human-aware coordination

introduced in Chapter 17, we propose an Adaptive Risk-Based Replanning (ARBR) strategy

for handling new information and unpredicted human behavior. ARBR enables the robots

to modify their active plans by incorporating the new relevant updated information about

humans in a distributed fashion. We perform an extensive suite of experiments in simulation

and reality to evaluate the performance of the MRS employing this strategy.
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Figure 18.1 – A scenario where multiple active coordination attempts are required to find the
best plan.

18.1 Replanning

The strategy currently adopted by the robots is to replan when (i) a task is accomplished and

the robot is ready to take its next task, and (ii) for verifying the validity of a stored plan when a

robot is on its way towards a designated task. As long as an unfinished task ti exists, robots

perform replanning even if the remaining task is assigned to another robot r j . If at any point

in time replanning results in another robot rg to be the best candidate for accomplishing ti ,

active coordination is executed and ti is delegated to the newly chosen robot rg . This can be

seen in Figure 18.1 where ti is initially assigned to r j at time k as r j plans first. However, as

drg < dr j and cti ,rg < cti ,r j , robot rg will request active coordination in its turn.

Regardless of the frequency at which replanning takes place, there is a constraint imposed

by active coordination that prevents a robot from modifying its plan in some cases. Active

coordination can only be done once for a given task ti between two robots r j and rg . When a

robot accepts to participate in active coordination, it is bound by contract to do as promised.

This is part of the Hoplites framework design to ensure that when the requesting robot rg

pays a compensation price to a robot r j engaged in active coordination, an agreement is

made based on which the desired task ti will be assigned to the requesting robot rg . In an

environment with deterministic costs, this choice does not limit the robots.

However, in a highly stochastic social environment, the state of the environment in terms of

social costs can change at any time. Therefore, the initial estimation of costs based on which

active coordination has taken place can be incorrect.

Corollary 1. Given a task ti and robots r j and rg , with sti ,r j ,k ∈ {0, 1} indicating the assign-

ment of ti to r j at time k, limiting active coordination to one attempt leads to suboptimal

plans if:

sti ,r j ,k = 1, cti ,rg ,kb < cti ,r j ,kb , cti ,r j ,kb′ < cti ,rg ,kb′ , k < kb < kb′

Proof. This is a proof by contradiction using the example depicted in Figure 18.1. We assume

that one attempt of active coordination is enough for finding the best candidate among two
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robots when the above conditions hold. When rg performs task allocation at time kb the

human is static and cti ,rg ,kb < cti ,r j ,kb . Thus, ti is assigned to rg through active coordination as

explained previously. However, after rg starts its plan the human starts moving. Meanwhile, r j

is replanning repeatedly as it has no tasks to accomplish.

Using a risk-based bid estimation, at time kb′ , robot r j realizes that with the moving human

cti ,r j ,kb′ < cti ,rg ,kb′ and therefore, r j should request active coordination and take the task. How-

ever, the currently active robot rg will never delegate ti to r j and will continue moving to

ti since rg has already paid r j a compensation price. This will lead to a suboptimal plan by

imposing the constraint of having only one active coordination attempt.

This is a limitation that must be addressed for stochastic environments. In the context of our

risk-based replanning, adopting this constraint can lead to a deadlock since when rg senses

the human motion, ARBR is triggered and rg will stop and cancel ti . If rg is stopped and knows

r j should take ti but does not allow it, none of the robots will progress and thus a deadlock

occurs for as long as cti ,r j < cti ,rg .

We will address this problem by means of identifying cases in which active coordination must

be permitted through risk monitoring. Our proposed risk-based replanning procedure will be

working alongside the replanning method previously available.

18.2 Adaptive Risk-Based Replanning

Imagine a crowded corridor at a hospital and a team of robots with limited local perception.

As the robots moves, they can observe many people. There may be humans who are newly

perceived. Some of the previously tracked human targets may no longer be observed. For the

perceived humans who are still observed by the robots, there can be a subset of people who

are behaving as expected and a number of them who are behaving in an unexpected way. All

these humans pose some degree of risk to the robots. This risk is highly stochastic and must

be monitored to ensure that the robots are aware of changes in the environment.

As these social environments are very dynamic, the appropriate use of information updates

is key in having a good performance. However, not every new update requires the robots to

modify their plans and only a subset of these updates are relevant to the robot team. Having a

replanning strategy that is activated upon every arrival of new information is very suboptimal.

Replanning with a specified frequency is also prone to low performance: if the frequency is

chosen to be too low with respect to the changing dynamics of the environment, the robots

might not be able to react to the changes in a timely fashion; if the frequency is too high, this

will result in a very resource consuming operation.

We would like to devise an adaptive replanning strategy that avoids replanning when un-

necessary while being able to correctly identify when team plans should be revisited. Our

goal is to determine when replanning is needed based on risk and human motion prediction
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uncertainty. This strategy is realized by means of (i) information sharing, (ii) monitoring the

social risks, (iii) risk-based rebidding when necessary, and (iv) active coordination.

18.2.1 Information Sharing

As most robotic systems only have limited and local perception in reality, they also have only a

partial view of the environment. One advantage of multi-robot systems is the increased cover-

age of the environment in terms of gathering perceptual data. When robots are distributed in

different parts of a large social environment, they can provide important information to other

team members about areas that may be out of their reach in term of perception. This can be a

valuable asset to the robot team that helps to take better decisions for task assignment.

For estimating the stochastic component of costs in social MRTA, the main information to

be communicated to team members is related to humans. For every perceived human h this

information must include the human pose lh . Other relevant information such as human

velocity vh , the interactions that the human is involved in Ih , etc., can all be reconstructed

based on lh with sufficiently fast perception updates. Hence, this information is adequate

for risk monitoring and decision making of the robots. Moreover, when multiple robots can

directly perceive a human, the shared data can be made more accurate through data fusion. In

our experiments, we implemented information sharing for a robot as sending pose information

of directly perceived human targets to all team members and receiving pose information of

human targets only perceived by other team members.

Extending the perceptual domain of the team is not the only reason why information sharing

is vital. If robots are taking decisions based on different assumptions to fulfill a collective

goal, they must make sure there are no discrepancies between the information that form the

basis of their decisions. If such discrepancies exist, suboptimal decisions will be taken and

specifically in our implementation of risk-based replanning, deadlock can occur.

Corollary 2. ARBR for robots with limited local perception is prone to deadlock with no

information sharing.

Proof. This is a proof by contradiction using the example depicted in Figure 18.1. We assume

that for robots r j and rg with limited local perception and no information sharing deadlock

cannot occur. We note that in Corollary 1, robots were assumed to have a global view of the

environment. At time kb , task ti is assigned to rg as cti ,rg ,kb < cti ,r j ,kb . At time kb′ , human h is

detected only by rg causing an increase in cti ,rg ,kb′ . This increase is exclusive to cti ,rg ,kb′ and can

only be observed by rg directly. We assume that the increased cost satisfies cti ,rg ,kb′ > cti ,r j kb′ .

As a result, ARBR will trigger replanning and rg stops as long as cti ,rg ,kb′ > cti ,ri ,kb′ .

While r j is not assigned to any tasks, it replans frequently for the only remaining unfinished

task ti . This robot will only take ti if cti ,rg ,kb′ > cti ,r j ,kb′ . Given that the local social cost induced

by h is only known to rg and this information is not communicated to r j , from the point of view
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of r j task ti is better suited for rg since cti ,rg ,kb′ < cti ,r j ,kb′ . Thus, r j will remain idle. This leads

to a deadlock for as long as cti ,rg > cti ,r j and h is only observed (and not communicated) by rg .

18.2.2 Risk Monitoring

How do we decide if we should stop, step aside or continue walking when moving towards a

destination in a crowded environment? We observe, predict and take an action. If something

unexpected happens we are ready to adapt to the situation either by adjusting our path, waiting

or completely changing our route. What motivates us to modify our action at any point in time

is the cost we estimate in an uncertain situation.

In the context of MRTA, robots can take a similar approach by monitoring the social risk of

every unfinished task in the environment locally. If risk variations are large, robots would be

ready to revisit their decisions and adapt to the new state of the environment. In other words,

a past decision made by a robot is only revisited if the risk has significantly changed since

then. In this case, the robot will evaluate the impact of this risk variation. Should the changes

modify the task assignment for the robot, it will stop executing its current plan since it is no

longer as profitable as estimated. The robot will then replan by means of performing active

coordination with a subset of team members that may be interested.

Without considering the prediction uncertainty of human behavior this strategy can be wrong.

To explain this we revisit the definition of social risk γ for robot r j and task ti introduced in

Section 17.1.4.

γ(r j , ti ) = ∑
w∈Wr j ,ti

∑
h∈H

∫∫
N (xw −x, yw − y)ph(x, y)d xd y (18.1)

Imagine a robot approaching a static human while moving towards its destination (location of

ti ) at time k. As that robot gets closer to the human, the prediction horizon of the social risk

associated to ti will be smaller. As a result, the position of the human will be predicted with

higher certainty at this time k ′. Thus, for any given point (x, y) in the vicinity of the human

we have ph(x, y)k ′ > ph(x, y)k . Consequently, the social risk for (x, y) increases as well and a

larger cost will be associated to the areas around the human compared to when the robot was

further away. This means that the social risk of an already taken task has increased and the

robot will stop. This will cause the task to never be accomplished as long as there is at least

one static human in its close vicinity.

The risk increase in this case is an artifact of increased certainty that correctly assigns larger

social costs to areas that should have a large penalty in case of intrusion. However, since robots

primarily should react to changes in the environment, the correct criterion for ARBR based on

which a robot should consider revisiting its decision must ensure that a degree of uncertainty

exists in the current estimation.

Based on this, the risk monitoring strategy that we adopt, only considers risk variations if they
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have a minimal uncertainty level. Uncertainty of human behavior mainly comes from the hu-

man motion. Therefore, static people are assumed to have significantly smaller uncertainty in

their motion prediction. We note that for including static people in robots risk monitoring, we

only consider their social risk when they are newly perceived. Once they have been accounted

for, their associated risk will not be monitored as long as they remain static. We will describe

the details of our ARBR algorithm in the next section. We note that we perform tracking and

motion prediction for lost human targets who are no longer perceived by the robots in order

to have a smooth transition in the social risk. Since we need a realistic estimation of costs

induced by lost human targets despite not being able to perceive them. There is a limited time

for lost target tracking after which the target is ignored since the uncertainty of prediction

grows too large to be meaningful given the lack of information updates.

18.2.3 Risk-Based Rebidding

As only a subset of information updates require the robots to revisit their plans, for identifying

when a robot should change its current plan, the corresponding conditions must be defined.

These conditions will be checked for triggering a rebidding command. In general, a robot

should reconsider its plan upon arrival of new information if risk estimation has a minimal

level of uncertainty and i) the risk of accomplishing the currently active task is increasing, or

ii) the risk of accomplishing another task has largely decreased making it more profitable than

the currently active task for the robot.

To formulate these conditions, we consider how the risk associated to a task can vary over time

and how this change can affect the robot plan. For a task ti and a robot r j , we denote the last

time that a bid has been placed for ti prior to task allocation by kb,ti , the risk of ti for r j by

γti ,r j , the gradient of risk indicating the rate of risk variation by γ̇ti ,r j , the risk associated to ti

in the last bidding attempt by γb,ti , and the cost of accomplishing ti for r j by cti ,r j .

As the basis of risk monitoring is to react to change, we must ensure that risk variation is large

enough to truly indicate a change. Additionally, with noisy perception and abrupt changes

in the environment we must make sure that the variation in the risk trend is meaningful.

Moreover, to avoid being too reactive to risk variations and repeatedly triggering rebidding,

there must be a sufficiently large time window between rebidding attempts. These constraints

constitute the first set of conditions written as follows:

|γ f ,ti −γb,ti | ≥ max(αγb,ti ,Γmi n) (18.2)

(k −kb,ti ) ≥ K (18.3)

where γ f ,ti is the filtered risk signal and K is a parameter indicating the minimum time interval

between rebids. We implemented a median filter and and average filter to remove outliers

and small local variations. Γmi n is a minimum risk value and α is introduced to adapt the

minimum risk value threshold in proportion to the risk magnitude.
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Figure 18.2 – Flow chart of the adaptive risk-based replanning (ARBR) algorithm.
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Algorithm 7 Adaptive Risk-Based Replanning (ARBR) for robot r j with a set of unfinished tasks T and
a set of perceived humans H

1: procedure ARBR(T, H)

2: for ti ∈ T do
3: � Compute the path to ti assuming an empty map

4: (Wti , Kti , dti ) ← PathPlanning(lr j , lti )

5: � Compute the risk γti and uncertainty UH ,ti of human motion for ti

6: (γti , UH ,ti ) ← RiskEstimation(Wti , Kti , lti , H)

7: Γti ,k ← γti � Γ indicates the vector of risks up to time k

8: cti ,k ← ComputeCost(γti , dti )

9: if Bti �= 
 and ta �= 
 then
10: Γ f ,ti ← FilterRisk(Γti )

11: if RBRT(Γ f ,ti , UH ,ti , cti ,k , ti ) then
12: Stop( )

13: ActiveCoordination(ti )

Algorithm 8 Risk-Based Rebid Triggering (RBRT) for robot r j and task ti given the vector of risks
containing the filtered risk signal Γ f ,ti , perceived human uncertainties UH ,ti , and the task cost cti ,k at
time k

1: procedure RBRT(Γ f ,ti , UH ,ti , cti ,k , ti )

2: fv ← False, fi ← False, fa ← False, fc ← False, fh ← False

3: γ f ,ti ← Γ f ,ti ,k

4: Γ̇ f ,ti ← ComputeRiskTrend(Γ f ,ti )

5: γ̇ f ,ti ← Γ̇ f ,ti ,−1 � Γ̇ f ,ti ,−1 indicates the latest filtered risk variation recorded for ti

6: σti ← max(UH ,ti )

7: � Note any newly perceived static human that results in risk for ti

8: if (∃h ∈ Dk ∧ γh,ti > 0) then
9: fh ← True � Human first encounter flag

10: if |γ f ,ti −γb,ti | ≥ max(αγb,ti ,Γmi n)∧ (k −kb,ti ) ≥ K then
11: fv ← True � Risk variation flag

12: else
return False

13: if ¬sti ∧ (γ̇ f ,ti < 0)∧ (σti >Σ∨ fh) then
14: fi ← True � Inactive task reconsideration flag

15: if st j ∧ (γ̇ f ,ti > 0)∧ (σti >Σ∨ fh) then
16: fa ← True � Active task reconsideration flag

17: if ¬sti then
18: fc ← (cta ,k > cti ,k ) � Decreased cost for the inactive task flag

19: else
20: fc ← True

return fv ∧ ( fi ∨ fa)∧ fc � Final reevaluation decision

Another key factor in risk-based rebidding is uncertainty. If human behavior can be estimated

with sufficient certainty due to lack of motion, then variation of social risk would only be

due to the increased social cost of approaching a static human as explained in Section 18.2.2.
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In this case, γti ,r j is only considered for rebidding if a static human affecting cti ,r j has been

detected for the first time. We define σti ,r j as the social uncertainty associated to ti for r j . It

indicates the maximum velocity among all human targets who impact the social risk γti ,r j .

The minimum uncertainty level for ARBR is denoted as Σ. The second set of constraints are as

follows:

σti ,r j >Σ (18.4)

∃h ∈ Dk ∧ γh,ti ,r j > 0 (18.5)

where Dk is the set of newly perceived static humans for ti at time k and γh,ti ,r j is the γti ,r j

considering only h. The purpose of this condition is to include the risk of a static human only

once in rebidding computations.

The active state of r j and the assignment of ti to r j at time k can be defined as follows

respectively:

sr j ∈ {1,0} (18.6)

sti ,r j ∈ {1,0} (18.7)

If no task is allocated to a robot (sr j = 0) or there is no prior bid estimation (Bti ,r j =
) for ti ,

there is no need for r j to perform ARBR as there is no decision to be reconsidered. For an

active robot (sr j = 1) however, the replanning decision for ti depends on sti ,r j . In general, each

robot tries to find a plan that minimizes cti ,r j . For a given ti this translates to minimizing γti ,r j .

Therefore, an increasing risk trend (γ̇ti ,r j > 0) is problematic if ti is the currently active task

(sti ,r j = 1) and a decreasing risk trend (γ̇ti ,r j < 0) is interesting if ti is not assigned to the robot

(sti ,r j = 0). In this case, ti will replace the currently active task only if cti ,r j < cta ,r j , where ta is

the currently active task. The last set of constraints considered for triggering rebidding can be

written as follows:

sti ,r j ∧ (γ̇ f ,ti > 0) (18.8)

¬sti ,r j ∧ (γ̇ f ,ti < 0)∧ (cti ,r j < cta ,r j ) (18.9)

Figure 18.2 illustrates the flowchart of our risk-based replanning method. The adaptive replan-

ning and rebid triggering algorithms are detailed in Algorithm 7-8. We note that the subscripts

indicating the robot are omitted for brevity as each algorithm is running locally on one robot.
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(a) (b) (c)

Figure 18.3 – The simulated arena for test case S-I. a) Task and initial robot positions, b) the
trajectory of walking for NG-W and AG-W scenarios and c) the trajectory of the human with an
unexpected behavior for NG-C and AG-C scenarios.

We note that if the output of the human prediction is a normal distribution, the final risk-based

social cost resulted in from the convolution of N and ph functions, will be another Gaussian

function with Mc = MN +Mph and Σc =ΣN +Σph [123].

18.3 Experiments

To evaluate the performance of our proposed method we have conducted an extensive suite of

experiments with increasing complexity in simulation and reality. This section details the set

of test cases used for our experiments. The first set of test cases denoted by S are performed in

simulation and test cases denoted by R are conducted with real robots. We note that A indicates

adaptive replanning, N indicates non-adaptive replanning, G indicates global perception, Ci

indicates circular FOV and C indicates conic FOV in the labeling of the scenarios.

Each scenario has been repeated for ten runs. Robots are relying on their self-localization for

computing the local balance functions. The evaluation metrics (M1 −M5) have been obtained

from ground truth values provided by the simulation or MCS in real robot tests. The social

metrics (M3−M5) have been computed for the moving robots to avoid penalizing a static robot

when a human decides to approach it. Throughout runs we have introduced randomness

in human behavior by adding a random starting delay to the motion of each human. The

algorithmic parameters of RBRT are shown in Table 18.1.

Table 18.1 – RBRT algorithmic parameters.

Parameter α Γmi n K Σ

Value 0.1 5 2 0.05

18.3.1 Test Case S-I: Global Perception and Human Behavior Change

This test case is designed to show how despite having global perception human behavior

change can lead to a suboptimal plan for the robots. This test case is conducted in an arena

depicted in Figure 18.3 and consists of one task, two robots and one human. Four scenarios

136



18.3. Experiments

Figure 18.4 – The simulated arena of test case S-II. This snapshot shows the initial position of the
robots and humans along with human trajectories.

have been considered for this test case. Scenario NG-W, non-adaptive replanning with global

perception for a walking human, Scenario AG-W, adaptive risk-based replanning with global

perception for a walking human, Scenario NG-C, non-adaptive replanning with global percep-

tion for a human with unexpected behavior change, and Scenario AG-C, adaptive risk-based

replanning with global perception for a human with unexpected behavior change.

18.3.2 Test Case S-II: Local Perception in a Partially Observable Environment

This test case focuses on the impact of local perception on team plans and consists of one

task, two robots and two humans in an environment depicted in Figure 18.4. Here, a team

of two robots needs to accomplish one task in the presence of two walking humans that

cannot be initially seen. Two scenarios have been considered for this test case. Scenario NCi-

W, non-adaptive replanning with local perception, and Scenario ACi-W, adaptive risk-based

replanning with local perception. In this test case robots have a circular field of view with

a radius of 4 m. Although having a conic filed of view is more common with vision-based

sensors, we can imagine robots relying on information obtained by fish-eye cameras that can

be considered to have a circular field of view. A larger and more complex environment has

been chosen for this test case to better highlight the impact of local perception where the

arena size is significantly larger than the range of local perception.

18.3.3 Test Case S-III: Global vs Local Perception Around a Static Human

This test case consists of one task, two robots and a static human blocking a passage in an

environment depicted in Figure 18.5. The following four scenarios have been considered

in this test case. Scenario NG-S, non-adaptive replanning with global perception, Scenario

AG-S, adaptive risk-based replanning with global perception, Scenario NCi-S, non-adaptive

replanning with local perception, and Scenario ACi-S, adaptive risk-based replanning with

local perception. Similar to test case S-II, robots have a circular field of view with a radius

of 4 m. In this test case, the non-adaptive replanning method has the advantage of replanning

frequently on just one task. This allows the robots to be able to react to changes quite fast as

there is only one task to be considered. Any other number of tasks will put the non-adaptive
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Figure 18.5 – The simulated arena of test case S-III. This snapshot shows the initial position of the
robots and the static human.

Figure 18.6 – The simulated arena of test case S-IV. This snapshot shows the initial position of the
robots and the trajectory of the humans.

replanning method in a less favorable position. The reason is that with multiple tasks the

second robot finds another task to accomplish and only replans again when its currently

allocated task is done.

18.3.4 Test Case S-IV: Global vs Local Perception in a Highly Dynamic and Popu-
lated Environment

In this test case, we evaluate the behavior of robots adopting different replanning strategies

with local and global perception in a crowded social environment. This test case consists of

one task, two robots and 12 humans in an environment depicted in Figure 18.6. The random

delays introduced in deterministic human trajectories led to differences as large as 8 m in

terms of relative positions among runs between the robots and the humans in this test case.

Hence, each run can be considered as a different problem instance for the robots in terms of

social costs. Nevertheless, similar human behaviors are seen across runs on average.

Eight scenarios have been considered in this test case, Scenario NG, non-adaptive replanning

with global perception, Scenario AG, adaptive risk-based replanning with global perception,

Scenario NCi, non-adaptive replanning with circular FOV, Scenario ACi, adaptive risk-based

replanning with circular FOV. In the next four scenarios robots have a more restricted local

perception with a conic FOV and a range of 4 m: Scenario NC-120, non-adaptive replanning

with 120◦ FOV, Scenario AC-120, adaptive risk-based replanning with with 120◦ FOV, Scenario
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Figure 18.7 – The simulated arena of test case S-V. This snapshot shows the initial position of the
robots and the trajectory of the human. The human constantly walks the width of the corridor.

NC-65, non-adaptive replanning with with 65◦ FOV, and Scenario AC-65, adaptive risk-based

replanning with with 65◦ FOV.

18.3.5 Test Case S-V: Limited Field of View and Human Behavior Change

This test case consists of five tasks, three robots and one human in an environment depicted

in Figure 18.7. This is a challenging scenario since the human motion is highly stochastic

and the human behavior is rapidly changing as he constantly walks the width of the corridor.

Thus, the prediction that a robot makes may or may not stay valid by the time it gets to a

close vicinity of the human. The following four scenarios have been considered in this test

case. Scenario NG, non-adaptive replanning with global perception, Scenario AG, adaptive

risk-based replanning with global perception, Scenario NC, non-adaptive replanning with

local perception, and Scenario AC, adaptive risk-based replanning with local perception. Local

perception of the robots consists of a conic 65◦ FOV with 4 m of range. This choice is motivated

by the specifications of the Kinect and characterizes our local perception for the remaining

test cases (S-V to R-II). As a result, we only indicate conic local perception using C from now

on, in the scenario labeling.

18.3.6 Test Case R-I: Human Behavior Change

This test case is similar to test case S-I for a human with changing behavior. Figure 18.8

shows the simulated and real test environments of this test case. We note that for the real test

cases in this chapter, the map II motion arena is used for experiments (see Section 7.2). Four

scenarios are considered in this test case, Scenario NG, non-adaptive replanning with global

perception, Scenario AG, adaptive risk-based replanning with global perception, Scenario

NC, non-adaptive replanning with local perception, and Scenario AC, adaptive risk-based

replanning with local perception. The perception available to the robots is local with a conic

FOV of 65◦ and range of 4 m.
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(a) (b)

Figure 18.8 – Placement of the robots and the task in the arena for test case R-I. a) human walking
trajectory, and b) snapshot of the initial state of the real robot experiment.

(a) (b)

Figure 18.9 – Placement of the robots and the tasks for test case R-II. a) human walking trajectories,
b) snapshot of the initial state of the real robot experiment.

18.3.7 Test Case R-II: Multi-Human Partially Observable Environment

In this test case three tasks must be accomplished by a team of two robots in the presence of

two walking humans that cannot be initially perceived by the robots. As a result, the initial

risk-based bid estimations will not remain valid throughout the experiment. This test case

highlights how information updates can be used to find better team plans. Similar to test case

R-I, limited local perception with a range of 4 m and FOV of 65◦ is used. Figure 18.9 shows the

simulated and real test environments of this test case. Four scenarios are considered in this

test case. Scenario NG, non-adaptive replanning with global perception, Scenario AG, adaptive

risk-based replanning with global perception, Scenario NC, non-adaptive replanning with

local perception, and Scenario AC, adaptive risk-based replanning with local perception.

18.4 Results

In this section the results of the test cases explained previously will be discussed. Before going

to the details of the results, one emergent behavior observed during runs should be explained.

Robots displayed a waiting behavior when confronted with increasing social costs for their

140



18.4. Results

currently active task. What drives this behavior for a robot r j and an active task ta is cta ,r j :

cta ,r j = ĉta ,r j + f (γta ,r j ) (18.10)

We note that f is a monotonically increasing function. As r j progresses towards ta the de-

terministic part of the cost ĉti ,r j , is reduced and any increase in cta ,r j would be due to the

increase in γta ,r j . For γ̇ta ,r j > 0 there can be cases where despite ARBR stopping the robot, r j

would still be the best candidate for ta as r j = ar g mi nr (cta ,r ). Thus, ta will be assigned to r j

again. Nonetheless, ARBR will stop r j once again and the robot will be prevented from moving

towards the assigned task. This results in a waiting behavior for as long as:

sr j ,ta = 1 ∧ γ̇ta ,r j > 0 ∧ r j = ar g mi nr (cta ,r ) (18.11)

The duration of the waiting period depends on how the environment changes. These waiting

periods increase the total mission time by stopping the robot from performing a socially

risky motion. Consequently, this prevents accumulating social costs and leads to a better

performance with respect to social metrics at the price of a longer execution time, as shown in

the rest of the results section.

18.4.1 Test Case S-I: Global Perception and Human Behavior Change

Consider Figure 18.3a again. In an empty arena, Task will be assigned to Robot1 as d1 < d2.

However, when a human is walking towards Robot1, Robot2 will be the best candidate for Task.

This can be seen for scenarios NG-W and AG-W in Figures 18.11a and 18.11b respectively. As

the walking human suddenly changes his behavior and turns around, the previous trajectory

estimation made by the robots is no longer valid. Nonetheless, in Scenario NG-C, Robot2 will

continue moving towards Task despite the human getting closer to the robot, making Task very

costly. We know that in this situation Robot1 should take Task. However, due to the constraint

of single attempt of active coordination, Robot2 will not delegate Task to Robot1 as seen in

Figure 18.11c.

For scenarios with non-adaptive replanning, we note that had there been more tasks in the

environment, Robot1 would probably not have replanned for Task as it would have been

assigned to another task by the time the change had occurred. An adaptive risk-based strategy

on the other hand, can spot the risk change in the environment and will allow active coordina-

tion to be executed for the second time. Consequently, Robot1 will take Task as depicted in

Figure 18.11d. Looking at Figure 18.10, we can observe similar performances across scenarios

with the walking human but for the scenarios with behavior change, there is a clear difference

between the performance of NG-C and AG-C, particularly, regarding social metrics. This is due

to keeping an outdated plan in the strategy taken by NG-C that leads to more traveled distance

and larger social costs.
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Figure 18.10 – Performance metrics for test case S-I obtained from 10 runs.

18.4.2 Test Case S-II: Local Perception with Circular and Conic Field of Views

In the environment depicted in Figure 18.4, without the presence of humans Task will be

assigned to Robot1. However, with the two humans walking towards Robot1, Robot2 is a better

candidate to be assigned to Task. This is not known to the robots unless they have a global view

of the environment. In this test case, we evaluate the performance of ARBR and a non-adaptive

replanning strategy for robots endowed with limited local perception.

In scenario NCi-W, Task will initially be assigned to Robot1. Meanwhile, Robot2 is idle and

frequently replanning. As a result, when the humans are first detected, with the next replanning

of Robot2 active coordination is triggered and Task is assigned to Robot2. We note that if Robot2

was launched before Robot1, a problem similar to scenario S-I:NG-W would happen where

the second active coordination attempt could not be permitted. Despite similar plans of the
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Figure 18.11 – Task assignment per robot over time for a sample run of test case S-I for scenarios
NG-W, AG-W, NG-C, and AG-C respectively. End of mission (M2) is marked by the vertical line.

two scenarios depicted in Figure 18.13, better performance is reported for scenario ACi-W as

shown in Figure 18.12. The reason is that ARBR can react to the new incoming information

faster. This strategy can identify that Robot1's decision for accomplishing Task should be

reevaluated given the increasing social cost caused by the newly perceived humans. Hence,

Robot1 is stopped and does not further advance into the socially costly areas.

18.4.3 Test Case S-III: Global vs Local Perception Around a Static Human

With no humans present in the environment, Task will be assigned to Robot1 in this test case.

However, with one static human positioned as shown in Figure 18.5, Robot1 is no longer able

to reach the task as expected and Task should be assigned to Robot2. Similar to the previous

scenario, Robot1 plans first and Robot2 replans frequently. In scenario NG-S, when Robot2

replans it finds that it is better suited to take the task, thus, active coordination is triggered

and Task is assigned to Robot2. The performance with respect to M1 −M2 and the team plan

of scenario AG-S are similar to those of scenario NG-S as shown in Figures 18.14 and 18.15

respectively. This is because in this setting there are no information updates that can change

the optimal team plan for the robots, therefore, ARBR and non-adaptive replanning behave

similarly in terms of task assignment. However, unlike scenarios adopting ARBR, scenario
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Figure 18.12 – Performance metrics for test case S-II obtained from 10 runs.

NG-S has non-zero M3. This is because before Robot2 takes over, Robot1 continues to move

towards the task despite the increasing social cost.

When robots reply on local perception, they perceive the human only when he or she is within

their perception range. For Robot1 this means it would have to travel a long distance before

considering the human in its bid estimations. Once the human is perceived by Robot1, it will

communicate the pose information of the human to Robot2. In scenario NCi-S the next time

Robot2 plans, it will trigger active coordination and Task will be assigned to Robot2. Similar

to scenario AG-S, Robot1 continues to move towards the task despite the increasing social

cost before delegating the task to Robot2. In scenario ACi-S however, upon detecting the

human, ARBR notifies Robot1 to stop as the social risk is increasing and replannig is triggered.

Consequently, Task will be assigned to Robot2. Therefore, in spite of having similar plans as

shown in Figure 18.15, scenario ACi-S has a significantly better performance in terms of social
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Figure 18.13 – Task assignment per robot over time for a sample run of test case S-II for scenarios
NCi-W, and ACi-W respectively. End of mission (M2) is marked by the vertical line

metrics (M3 −M5) compared to scenario NCi-S.

We can observe that the global perception has helped the non-adaptive strategy in achieving

a better performance compared to local perception. This is true as long as the information

provided by global perception remain valid during the course of task execution, otherwise,

global perception can mislead the robots with outdated information. We will explain this is

more detail in the next test cases.

18.4.4 Test Case S-IV: Adaptive Risk-Based Replanning in a Highly Dynamic and
Populated Environment

Given an empty environment, Task will be assigned to Robot1 in this test case. However,

when humans are added to this setting the cost of accomplishing the task can largely change.

Depending on how the environment changes the best candidate for the task can vary. This

is a test case with highly stochastic social risks caused by the 12 moving humans depicted in

Figure 18.6. The results of this test case are organized in two parts: (i) scenarios with global

and circular perception, and (ii) scenarios with limited conic FOV.

Looking at Figure 18.16 we can see how ARBR has resulted in better performance in terms

of social metrics compared to a non-adaptive replanning strategy. The distance traveled in

scenario AG and ACi are also less compared to their non-adaptive counterparts. However, the

time taken by scenario AG and ACi is longer due to the emergent waiting behavior explained

previously. We can observe how having full knowledge of the human poses has lead to more

efficient plans in terms of all metrics for scenario AG compared to scenario ACi. Relying on

global perception leads to a more conservative task assignment approach as scenarios with

global perception account for all relevant changes in the environment even if those changes

are prone to further variation since they are caused by humans who are far away. For the

non-adaptive strategy however, global perception cannot compensate for the limitations of
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Figure 18.14 – Performance metrics for test case S-III obtained from 10 runs.

the decision making process and the plan will not be reevaluated when the social cost changes

even if the robot can observe the changes.

Similar to scenario SI: NG-C the limitation of active coordination attempts causes the plans

of scenario NG and NCi to be unable to adapt to the new information despite performing

replannig. We can see how ARBR has led to earlier identification of rising risks in Figures 18.17b-

18.17d. The periods in which robots are waiting are depicted by yellow blocks in the task

assignment figures. Notice how more behavior switches can be seen for scenario ACi compared

to scenario AG in Figure 18.17. This is caused by the new information that robots receive

when detecting new human targets nearby at different points in time given the limited local

perception.

As local perception gets more limited, the performance of the robots changes as well. Looking

146



18.4. Results

0 10 20 30 40 50

R
ob

ot
1

Coordination Task

Time (s)
0 10 20 30 40 50

R
ob

ot
2 Task

(a) NG −S

0 10 20 30 40 50

R
ob

ot
1

Coordination Task

Time (s)
0 10 20 30 40 50

R
ob

ot
2 Task

(b) AG −S

0 10 20 30 40 50

R
ob

ot
1

Coordination Task

Time (s)
0 10 20 30 40 50

R
ob

ot
2 Task

(c) NCi −S

0 10 20 30 40 50
R

ob
ot

1

Coordination Task

Time (s)
0 10 20 30 40 50

R
ob

ot
2

Task

(d) Aci −S

Figure 18.15 – Task assignment per robot over time for a sample run of test case S-III for scenarios
NG-S, AG-S, NCi-S, and ACi-S respectively. End of mission (M2) is marked by the vertical line.

at Figure 18.16, we see that despite a moderately degraded performance, local circular per-

ception with ARBR has comparable performance with its global perception counterpart with

respect to M3 −M5. However, when conic FOVs of 120◦ and 65◦ are introduced, a meaningful

difference can be seen in the team performance. Figure 18.18 shows the performance of the

second set of scenarios derived from five runs. We can see that ARBR is superior to the non-

adaptive replanning strategy across all scenarios. However, as the FOV gets more restricted we

can observe that the robots show a degraded performance with respect to the social metrics.

Additionally, we can see an increased number of behavior switches in Figures 18.19b-18.19d

compared to Figures 18.17b-18.17d.

As the perception gets more restricted in a highly stochastic and populated environment, the

plans alone cannot ensure social constraints to be respected at all times. This calls for the help

of the human-aware navigation running locally on each robot to prevent social intrusions

from happening. Nonetheless, a human-aware team plan is necessary as it assists in finding

less difficult situations for accomplishing the tasks in terms of social risks. As a result, the

combination of human-aware plans and single robot human-aware navigation has a higher

chance of succeeding in maintaining a social behavior.
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Figure 18.16 – Performance metrics for test case S-IV with global and circular perception obtained
from 10 runs.

Aside from the fact the robots are faced with limited perception in reality, another reason to

study the effect of local perception on MRTA performance is to understand the drawbacks

and benefits of having a global perception of the world compared to having a local view. Can

knowing less actually be helpful when making a decision?

Having local perception is shown to have its advantages and drawbacks. Comparing the social

performance of non-adaptive replanning strategies across all scenarios, we can observe that

a more restricted perception has better performance if the replanning strategy of the robots

does not adapt to the social changes. In such a strategy, taking decisions based on outdated

data can lead to suboptimal decisions. This is exacerbated with global perception since there

can be even more inaccurate information used for decision making. However, if the robots

can adapt to the new incoming information, having a broader perception can help to take
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Figure 18.17 – Task assignment per robot over time for a sample run of test case S-IV for scenarios
NG, AG, NCi, and ACi respectively. End of mission (M2) is marked by the vertical line.

better decisions although it will be more expensive and more sensitive. The reason is that the

robot will consider all relevant updates in its decision making including the ones that may be

less/not relevant to its decision over time.

As an example, monitoring the risk of people behind the robot can be computationally ex-

pensive while being less probable to have an effect on its decision. Nonetheless, it can ensure

that the robot will mitigate risks as mush as possible given the extent of available information

using a conservative approach. This can also be seen when comparing circular and conic field

of views.

18.4.5 Test Case S-V: Limited Field of View and Human Behavior Change

This test case, combines the two challenges of human behavior change and limited perception

in a more complex MRTA problem with three robots and five tasks. In an empty arena, the task

assignment for the robots is as follows: Robot1 goes to Room1, Robot2 to Room6 and Robot3 to

Room3. Robot1 then moves to Room5 and meanwhile receives an active coordination request

from Robot3. Consequently, it delegates Room5 to Robot3. Room4 is assigned to Robot2.

As the human is constantly changing his walking behavior, the initial human motion prediction

done by a non-adaptive approach can be incorrect. Thus, it will lead to a decision that is likely

to be poor by the time the robot gets to a close vicinity of the human. This explains why ARBR

149



Chapter 18. Adaptive Risk-Based Replanning for Social Robots with Limited Local
Perception

Distance (m)
6 8 10 12 14 16 18 20 22

NC-120        

AC-120        

NC-65        

AC-65        

(a) M1

Time (s)
10 20 30 40 50 60 70

NC-120        

AC-120        

NC-65        

AC-65        

(b) M2

Maximum accumulated social cost ×10 4

0 1 2 3 4

NC-120        

AC-120        

NC-65        

AC-65        

(c) M3

Maximum time steps spent in social zones
-200 0 200 400 600 800 1000 1200 1400

NC-120        

AC-120        

NC-65        

AC-65        

(d) M4

Minimum distance to a human
0.2 0.4 0.6 0.8 1 1.2 1.4

NC-120        

AC-120        

NC-65        

AC-65        

(e) M5

Figure 18.18 – Performance metrics for test case S-IV with conic field of view obtained from 5
runs.

has a better performance in terms of all metrics compared to its non-adaptive counterparts

as seen in Figure 18.20. Once more, scenario AG has a better performance compared to

scenario AC, due to having a more accurate prediction of the human trajectory based on

updated perceptual information. Robots with limited perception can only react to the human

once the human is observed within the FOV of one of the robots. This typically, leads to later

plan modification and occasionally, minor violations of social constraints. Moreover, looking

at Figure 18.20c we can see how a non-adaptive replanning strategy performs better with

limited perception in terms of social metrics. The reason is that the replanning strategy of

scenario NG relies on incorrect predictions in most cases, since the human behavior changes

within the execution period of the plan and is no longer what was expected to be at the decision

making time. Furthermore, due to having global perception, NG is more reactive to change.

Figure 18.21 shows how scenarios adopting ARBR partition tasks into two sets given where the
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Figure 18.19 – Task assignment per robot over time for a sample run of test case S-IV for scenarios
NC-120, AC-120, NC-65, and AC-65 respectively. End of mission (M2) is marked by the vertical line.

human is located. Robot2 takes care of all the tasks on one side and the other two robots cover

the side with Room1 and Room3.

To see how risk monitoring and adaptive rebidding work, consider Figure 18.22, where the risk

value associated to the Room5 is plotted over time up to the last rebidding event for the robots.

The oscillations in human walking behavior can be seen in the risk signal in Figure 18.22a. We

have plotted the risk for Robot1 and Robot3 in scenario AG, and for Robot3 in scenario AC,

since these robots were the only ones affected by the risk-based rebidding process. As Room5

is the one task mainly affected by the human walking behavior and the variation of cost for

other tasks is not significant we have only plotted the risk for Room5.

In scenario AG, Robot1 initially takes Room5 and rebids once in reaction to the risk variation.

When Robot3 reaches Room3 it takes over Room5 by means of active coordination. The risk

trend changes as the human walking behavior changes, consequently, Robot3 stops and rebids,

but as long as Robot2 is not free, Robot3 would still be the best candidate. As a result, multiple

rebidding attempts occur while Robot3 moves toward Room5. Finally, Robot3 rebids and finds

Robot2 responding to its active coordination request. As a result, Robot2 moves to Room5.
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Figure 18.20 – Performance metrics for test case S-V obtained from 10 runs.

18.4.6 Test Case R-I: Human Behavior Change

This test case, has the same configuration as test case S-I. In a human-free environment

Robot1 initially takes the task. In the presence of a walking human with behavior change,

non-adaptive replanning strategies assign the task to Robot2 through active coordination and

cannot reassign it to Robot1 despite the replanning attempts. This happens while Robot1 is

aware that it is the best candidate for the task.

Figure 18.23 shows the performance of the four different scenarios tested in reality. We can

observe similar performances comparing the simulated and real robot experiments for this

test case (see Figure 18.23 and Figure 18.10). ARBR has superior performance compared to its

non-adaptive counterpart across all scenarios. Similar social performance can be seen for the

scenarios adopting the adaptive replanning strategy. However, the distance and time (M1−M2)
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Figure 18.21 – Task assignment per robot over time for a sample run of test case S-V for scenarios
NG, AG, NC, and AC respectively. End of mission (M2) is marked by the vertical line.

for scenario AG are longer compared to scenario AC. This is because global perception is faster

to detect the human and as a result, Robot2 is dispatched to the task at an earlier time and

travels a larger distance before it is notified of the change and stops. As Robot1 has also stopped

earlier, the remaining distance between Robot1 and the task is larger and requires more time

to traverse. With local perception however, Robot1 is stopped later and as a result, has traveled

a larger segment of its path to the task before resuming its motion for the second time.

The task plan executed in each scenario can be seen in Figure 18.24. We can observe that a

different task assignment is done for scenarios with adaptive replanning compared to their

non-adaptive counterparts. The waiting period depicted in the task plots for Robot2 occurs

since despite the increasing risk of the task that is caused by the human behavior change,

Robot2 is still the best candidate to take it. Nonetheless, the increasing risk forces the robot

to stop and thus, this waiting behavior emerges. Finally, the risk gets large enough to notify

Robot2 that Robot1 is the best candidate for taking the task.

The risk variation for scenarios AG and AC is depicted in Figure 18.25. We can see how the

risk for the task initially increases for Robot1 in both plots. Consequently, a rebid for Robot1

happens and the task is delegated to Robot2. Robot2 predicts no risk for the task as long as
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Figure 18.22 – Risk plots over time for Room5. We note that the risk signal is only plotted up to
the last rebidding point. a) Robot1 and Robot3 have been affected by risk in the global perception
mode, b) with local perception only Robot3 acted upon risk variations during its planning.

the human is moving towards Robot1. Once the human changes his walking direction, the

risk rises and rebidding occurs. As mentioned previously, multiple rebids prevent Robot2 from

moving to the task. Finally, the risk is large enough to delegate the task to Robot1 by means of

active coordination.

18.4.7 Test Case R-II: Multi-Human Partially Observable Environment

In this test case, given the problem configuration in an empty arena, robot plans are as follows:

Robot1 first takes Task1 and then Task3, and Robot2 takes Task2. The challenging part of

this test case is that Robot1 cannot observe the two humans that are about to start walking

in the arena. Given the different delays introduced in the starting time of each human’s

walking motion, robots are faced with different social costs. Additionally, different perceptual

information is available for decision making with local perception throughout runs depending

on how the humans are relatively positioned with respect to the robots.

Figure 18.26 shows the performance of the four different scenarios tested. Similar to the

previous test cases, adaptive replanning has lead to better performances with respect to social

metrics (M3 −M5). For (M1 −M2) however, scenario NG and NC are performing better. This

is due to the waiting periods introduced in the plans and also the modified task allocation
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Figure 18.23 – Performance metrics for test case R-I obtained from 10 runs.

resulted in from adapting to social costs. We can also observe that global perception has led

to slightly better performance in scenarios with adaptive replanning and contrarily, slightly

worse performances in scenarios with non-adaptive replanning.

Figure 18.27 shows the robot plans for a sample run of each scenario. We can see how the

plans have changed when adopting ARBR. Moreover, we can see how waiting periods have

been introduced to deal with increasing social costs. In this test case, in scenarios AG and AC,

Robot1 initially moves to Task1 it then stops when sensing the increased risk for all tasks. Later

on it moves to Task3 and then to Task1. In some runs where at least one human started to move

after a larger delay, we observed either Robot2 initially taking Task1 and then delegating it

through active coordination, or completing Task1. This explains the larger variation in M1−M2

for scenario AG and AC compared to scenarios NG and NC.
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Figure 18.24 – Task assignment per robot over time for a sample run of test case R-I for scenarios
NG, AG, NC, and AC respectively. End of mission (M2) is marked by the vertical line.
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Figure 18.26 – Performance metrics for test case R-II obtained from 10 runs.

Risk plots for all tasks in scenario AG and scenario AC are shown in Figure 18.28 and Fig-

ure 18.29 respectively. The plots for global perception show smoother risk signals due to more

frequent updates and knowing the pose of all humans. Risk monitoring for Robot2 does not

trigger rebidding with global perception as humans are not posing any significant risks for

the task assigned to Robot2. With local perception on the other hand, both robots have had

rebidding attempts although Robot1 is the robot that is mainly affected by the social risks.

Figure 18.30 depicts the risk signal for all tasks and both robots for scenario AC. We can see

how Robot1 rebids with every major change in the risk trend (when concavity of the signal

changes). The rebidding attempt of Robot2 happens when it has been assigned Task1 and

finds an increasing risk trend upon detection of the Human2. This risk plot belongs to a run

where Human2 has had a longer delay and therefore, has not been detected by the robots

earlier on. Robot2 rebids and since Human2 is moving away from Task1 at that time, Robot1

takes over the task through active coordination.
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Figure 18.27 – Task assignment per robot over time for a sample run of test case R-II for scenarios
NG, AG, NC, and AC respectively. End of mission (M2) is marked by the vertical line.

18.5 Discussion

Adaptive risk-based replanning has shown to have superior performance in terms of social

metrics in all test cases studied in this chapter. This comes with the price of longer plans in

terms of traveled distance and time in some cases. Global perception has shown to improve the

performance of the robot team that has an adaptive replanning strategy. Without adaptation to

social risks and changes in the environment, global perception can lead to worse performances

compared to local perception. As the local perception gets more restricted in a highly dynamic

and stochastic environment, the performance of ARBR strategy degrades. However, a realistic

conic FOV of 4m range and 65◦ is shown to do very well in experiments with moderately

stochastic human behavior. As the the environment gets more dynamic and stochastic, ARBR

still performs significantly better compared to its non-adaptive counterpart but we can observe

that social constraints are violated from time to time.

As the purpose of this chapter was to propose a replanning strategy to deal with local percep-

tion and unpredicted human behavior, we focused on the role of coordination in improving

the plans. We can think of cases where the individual human-aware navigation of the robots

can modify the robot trajectories to mitigate risk locally. We note that firstly, not all socially

risky cases can be resolved using single robot human-aware navigation since some socially

challenging situations can only be avoided on the higher level. As an example, when a person

wants to exit a room and robot wants to enter the room, finding enough maneuvering space in
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Figure 18.28 – Risk plots over time for Robot1. Note that the decision to rebid depends on the
active task and the uncertainty of human motion prediction and is not only based on the risk
trend. a) Task1 risks, b) Task2 risks, c) Task3 risks

real time given the large relative speed of the human motion can be difficult. If more than one

human is present in this situation things get even harder. The strategy we adopt in this case is

to rely on the higher level task planner to find the most appropriate plan for the robots that

eliminates such difficult social situations, and have the individual human-aware navigation

resolve the local problems that might occur.

Secondly, to evaluate the impact of adaptive risk-based replanning on finding socially-aware

plans we must decouple the contribution of the local human-aware path planner from that of

the human-aware task planner. Thus, we have conducted all of our experiments with solely

human-aware coordination. In the final integrated system comprised of all the components

introduced in this thesis, we will have the adaptive risk-based replanning strategy working

along with the human-aware navigation. This should further improve the social score of the

robots.

For integration of ARBR and human-aware navigation, it is important to decide how the risk

should be considered with respect to the deterministic cost associated with a task. In other
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Figure 18.29 – Risk plots over time for Robot1. Notice the sharp changes in the risk signal caused
by less frequent updates of local perception. a) Task1 risks, b) Task2 risks, c) Task3 risks
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Figure 18.30 – Risk plots over time for all tasks monitored by the robots in scenario AC up to the
last rebidding attempt.

words, how much of the problem should fall on the task planner side and how much of it

should be resolved locally? We can think of robots with different risk taking preferences and

thus, different characters. If a robot is too sensitive to the changes in the environment and

therefore, to the risk, it has a conservative character. On the other hand, a robot might give a
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lower weight to the social risks and have a risk-taking character. We can imagine a robot that

is neither too conservative nor too risk-taking. This robot reacts to significant changes in risk

at the task planning level and resolves local issues by means of its human-aware navigation.

This is a choice that should be made based on the specific environment that the robots are

operating in.

For further improvement of the work presented in this chapter the following points can be

considered. Currently, map-based information is not incorporated in social risk estimation.

We can think of including information such as the probability of finding an area without

social costs in the vicinity of a human in addition to the distance from the human in our risk

formulation. Moreover, risk can also be seen as a utility measure if we aimed at increasing

robot encounter with humans. For example, if the goal of the robot team is to accomplish

tasks in a way that increases the probability of human interaction, risk can be seen as utility.

In conclusion, this concept of risk can be further improved by including spatio-temporal

information. It can also be further explored for other applications that require a stochastic

utility measure related to human motion.

Summary

In this chapter, we proposed an adaptive risk-based replanning strategy for dealing with

limitations of local perception and unpredicted human behavior based on variations of

social risk and human motion prediction uncertainty. Results confirm that this strategy

outperforms the non-adaptive replanning strategy in all cases with respect to social

metrics. The overall performance of the team depends firstly on its replanning strategy

and secondly on the available information about the humans. Although an adaptive

replanning strategy with global perception leads to the best performance, it is compu-

tationally expensive and infeasible in some real applications. Local perception shows

comparable results as long as updates of relevant human poses affecting the risk for a

task are available within the execution time of that task. Conversely, the non-adaptive

replannig strategy is shown to have degraded results with global perception as decisions

in this case can be based on outdated information that lead to invalid plans.
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19 Conclusion

H U M A N - A W A R E MRTA is an essential part of future multi-robot systems that

adopt service robots in human-populated social environments. The main chal-

lenges in these environments include dealing with uncertainty of human be-

havior and limited robot perception. The highly stochastic nature of such envir-

onments causes robot plans to be rendered invalid or suboptimal and socially unacceptable

if humans are not considered at the planning level. Accounting for humans as social beings

at the individual navigation level can help to alleviate this problem in robot encounters with

people but cannot fully resolve the problem at the team-level since robots are human-agnostic

when planning their tasks.

Moreover, uncertainties of human behavior as well as human motion prediction are necessary

components that need to be considered in MRTA for achieving plans that can adapt to the

changing environment. As robots have limited local perception in reality, social MRTA methods

must be able to identify situations in which past decisions should be reconsidered either due

to arrival of new information that has not been available before, or due to unpredicted changes

in human behavior.

For this purpose, we have based our task allocation and coordination framework on Hoplites,

a market-based framework that couples planning with both passive and active coordination

strategies. We modified and adapted this framework for MRTA in dynamic noisy environments

and demonstrated its effectiveness in a number of problems. Subsequently, the former frame-

work was extended to explicitly incorporate humans in its plans. Humans were considered

in the proposed coordination mechanism by means of accounting for social costs in bid

evaluations and requesting collaboration in socially blocking situations. As the costs of tasks

are constantly changing in dynamic social environments, the concept of risk-based bids was

introduced to incorporate human trajectory prediction uncertainties and furthermore, social

costs in bid formulation. Finally, we introduced an adaptive risk-based replanning strategy

for dealing with the limited local perception and sudden behavior changes inherent to real

uncontrolled social environments.
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Results confirm that risk-based bidding and adaptive risk-based replanning have superior

social performance compared to their human-agnostic and risk-agnostic counterparts. This

is achieved at the expense of increased traveled distance and mission time in some cases.

Nonetheless, the adopted strategy ensures that all relevant aspects for socially acceptable and

effective MRTA are considered by the robots while computing and executing their plans.

We note that the contributions of this part are mainly targeted to coordination and local

balance estimation. Although Hoplites has shown to be very effective and particularly flexible

for MRTA in social environments, we can imagine other underlying frameworks making use

of the same proposed notions, mainly risk-based bids and adaptive risk-based replanning.

Moreover, although the KF predictor showed to have good performance in our experiments,

more advanced human trajectory predictors can easily be integrated into our framework.

Similarly, more advanced social constraints can be incorporated in the proposed framework

through modification of the social cost function.

164



Part VHRI-Augmented Cooperative
Multi-Robot Navigation

165





20 Introduction and Preliminaries

T H I S chapter highlights the role of HRI in human-aware MRTA. Several fundamental

questions are to be asked when considering integration of HRI in MRTA, and those

questions form the basis of our studies in this part. Can difficult and risky social

situations be resolved by means of interaction? If so, how should the decision for

starting an interaction be made? Can HRI-augmented human-aware MRTA perform better

than non-interactive human-aware MRTA not only with respect to social metrics but also

traveled distance and time?

We note that this part of the manuscript aims at integrating all the previously presented com-

ponents with the addition of HRI. Many interesting questions can be asked for understanding

Human-Multi-Robot Interaction (HMRI). An interactive team of robots has enormous poten-

tial and despite this fact very few studies have been done on the subject. An in-depth study

of the important questions regarding HMRI is outside the scope of this thesis. However, we

have tried to focus on a few relevant questions for social MRTA. Our experiments and user

studies are limited to a small group of subjects and further tests are required for drawing more

statistically significant conclusions. Nonetheless, we believe our proposed solutions and the

presented studies help to shed some light on this currently unexplored subject.

We start this chapter by presenting a brief introduction. As the Mbot has various interaction

capacities, including speech generation, animated LEDs, and head and arm motion, it is an

ideal platform for exploring the link between HRI and navigation through explicit interaction.

As the first step towards creating a baseline for interactive MRTA, the integration of Mbot

HRI features with robot navigation is detailed in this chapter. In Chapter 21, leveraging the

concepts of social risk and adaptive risk-based replanning, we propose a HRI-augmented

MRTA method that utilizes the interactive capabilities of the robots for improving both team

performance and social acceptance.
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Chapter 20. Introduction and Preliminaries

20.1 Interactive Teams of Robots and Their Potentials

Although multi-robot systems are harder to interpret and understand, they offer robustness

through the redundancy of their individuals. Moreover, they offer performance improvement

through parallelism as individuals act collectively and solve tasks more rapidly. If we add

interactive capabilities to these systems, they have the potential to be more than just mobile

objects providing services, whose actions can be hard to interpret and predict. They can

coordinate not only implicitly with their peers, but also explicitly with the humans. Explicit

coordination of robots with the team members can also be explored as it can improve their

social acceptance due to the increased legibility.

To the best of our knowledge, HRI for MRS has not been explored in the context of MRTA in

the literature and very few studies exist on MRS with direct human interaction. The majority

of MRS research targeting human collaboration focuses on humans commanding a team

of robots. What we are instead interested in, is to know whether multi-robot teams can rely

on human assistance for having a better performance and whether social robots should be

treated as social beings and not solely as service providers.

In the HRI literature, it is common for social robots to make most of the effort in human en-

counters. Balancing the shared effort between a human and a robot for cooperative navigation

has been discussed in the work of Khambhaita et al. [22]. Although robot’s share in terms of

effort to avoid collisions can be adapted in [22], it is considered to be unacceptable for the

robot to expect more effort from the human. This is an example of the robot having a rigid

service provider role in the peer vs service provider debate mentioned earlier. Nonetheless,

we can imagine cases where a robot can request the human for some assistance effort. Is

this necessarily unacceptable behavior for a robot given that this is a natural social behavior

among humans? Requesting the humans for help has been studied in the literature of HRI for

single robots. For more information refer to [124] and [125].

Human-robot cooperation in HRI studies, commonly targets joint goals. However, we are

interested in the kind of human cooperation that would assist a robot in achieving its own

goal by means of interaction. Moreover, we are mainly focusing on direct interaction with

the human, unlike approaches where the cooperation takes place at the planning level and

the robot takes “most of the load” [22]. So far, our proposed approach always gives priority to

humans and avoids socially costly situations. However, given the interactive capabilities of

the robots, this is not the only solution. Robots can influence the humans and make requests

in order to modify their surroundings. This can make the initial socially costly situation

evolve, allowing the robots to improve their performance. An interesting study on the effect of

robot cognitive and behavior skills on the human trust [126] indicates that participants show

willingness to comply with robot instructions even in the case of unusual requests despite

erratic robot behavior, as long as the task requested is revocable or harmless. This supports our

hypothesis of increased robot performance when adopting interactive human-aware MRTA.

We aim for improved naturalness, intent expressiveness and human involvement by means
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of augmenting MRTA with interactive capabilities. Another reason for exploring the HRI

capabilities of the robots in this context is to improve legibility. We observed in our previous

experiments that without any signaling of robot’s intention, the human subject was confused

at times and could not anticipate the next actions of the robot. We believe that the importance

of legibility should be further studied for HMRI as humans are faced with a more complex and

possibly harder to interpret situation compared to single robot encounters.

20.2 Challenges

In this section, a number of challenges that are most relevant to interactive multi-robot systems

are presented. There is an interesting article on balancing the theory and practice in HRI [4]

that further details a number of these points.

� Formalism: real-world problems involving real people are very difficult to formalize as

they are highly stochastic, noisy and messy [4].

� Fieldwork and long term studies: lack of long term studies with multiple robots is an

evident problem for drawing meaningful conclusions in this area of research. Con-

ducting such studies is sufficiently hard with a single robot and performing tests with

multiple robots require even more effort in terms of time, scenario and metric design,

result evaluation, credit assignment, etc. Moreover, multi-robot tests are technically

more challenging due to the complexity of multi-robot systems. Nonetheless, long-term

commitment to perform real studies and interact with users outside of the controlled

laboratory environments is necessary for the advancement of research in this area [4].

� Social cost models: proxemics studies have been formulated for one robot only. Imagine

a team of robots (instead of a single robot) approaching a human. It is very likely for

the human to have a different level of comfort if all the robots got as close as a single

robot would.

� Highly complex and difficult to predict human behavior: a lesson learned from the

MOnarCH project was that introducing a second robot in the hospital ward creates

a feeling of overwhelm for some people when they can see both robots at the same

time. Furthermore, different reactions were observed in kids compared to the doctors

and hospital staff in this situation. We note that the space available for multi-robot

experiments was constrained at the hospital and the team of robots may have been

perceived differently in a larger environment. This is an example showing how field

studies can reveal interesting, yet surprising, findings about social environments and

human preferences towards multi-robot systems that system designers and engineers

may not be able to foresee. Further studies are required to understand the human

assessment of multi-robot teams in real social environments.
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20.3 Mbot Interactive Features

There exist a number of HRI features available on the Mbot that enable verbal and non-verbal

communication (see Section 6.1.2). Mbot’s non-verbal communication mainly focuses on

visual cues through gestures, multimedia contents and lights. Verbal communication for the

Mbot is realized by means of speech.

Gestures can either be used as a fully contained communication means, such as waving to

greet someone, or as visual cues linked to a behavior or a state of mind, e.g., gazing at a point of

interest. Robot gaze is an important gesture that has been the subject of many HRI studies [127].

In human locomotion, gaze is used in a top down hierarchy, preceding the body motion [128].

Mimicking this behavior can be a way to increase the legibility of the robot navigation, as

humans will see similar visual signs to those of the navigation behavior of other humans.

In [129], the authors emphasize on the importance of gaze and show that the robot gaze affects

the participants’ perception of its motion, and the robot’s motion affects the perception of its

gaze. This dependency implies that robots should control their gaze and body motion jointly.

Based on this, we implemented an anticipatory gaze gesture for indicating where the robot is

planning to go by rotating the robot head toward the upcoming navigation way-points.

Multi-media content can be presented to humans by means of the robot projector or the touch-

screen display. However, the proper use of these modalities requires being in an appropriate

distance from the human and having access to a projection surface for the projector. Therefore,

we did not include these modalities in our interactions.

Communication via light is not a natural human interaction method. Thus, it should be

designed in a way that can be easily interpreted by someone that is not aware of the color

scheme that the robots employ. For this purpose, a set of meaningful colors have been tested

in [130]. The temporal dimension of the light signal can also be used in order to improve the

interpretation of colors, as seen in [131]. We used similar schemes to [130] when adopting light

in our interactions.

Speech may be the most powerful communication tool, as the misinterpretation risks are very

low in comparison to the previously mentioned communication means. However, it must be

ensured that verbalized information are understandable by the humans. As shown in [132],

this is done by adding abstraction levels to the information. Inspired by these mentioned

works, we designed a number of interactions that were integrated with individual navigation

of the robots and in a later stage with the social MRTA.

20.4 Single Robot Interactive Navigation

Integration of HRI features with robot navigation in this work aims at introducing appropriate

interactions on top of the existing (human-aware) navigation. Therefore, interaction modalities

are utilized for demonstrating the robot’s internal navigation state (see Figure 20.1). These
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(a) Moving state (b) Stuck state

Figure 20.1 – Displaying the internal state

states include (i) idle: the robot does not have a navigation goal, (ii) moving: the robot is

moving towards a specific goal and (iii) stuck: the robot has moved towards a goal, but is no

longer progressing. The design of these interactions has been based on the work of [130] and

[131]. Table 20.1 summarizes the description of the non-verbal interactions used for expressing

different internal states of the robot.

Furthermore, we designed an interactive behavior for requesting human assistance in blocking

situations by means of speech. This behavior is used when the robot is in the “stuck” state. This

state is caused either by a physical obstacle blocking the robot’s path or a human imposing

social costs. In the former case the robot will ask the human to help with removing the obstacle,

and in the latter case, the robot will ask the human to move and clear its path. Details of the

gaze, greeting, asking the human for help, and asking the human to move behaviors can be

found in Appendix B.

Table 20.1 – Expressing internal state with different non-verbal interaction modalities.

State Cheeks Eyes Footprint Arms Head Mouth

Idle
Blue pulse
(T = 10 s)

- - Rest Rest -

Moving
Pink pulse

(T = 2 s)
Green Green Oscillating Gaze at way-point Happy

Stuck - Red
Red blinking

(T = 1 s)
Rest

Gaze at the closest
human

Scared
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Figure 20.2 – The navigation scenario layout. S indicates the start and G indicates the goal position
for the robot.

20.4.1 Experiments

In this section we will describe the test case used for our experiments. Our tests are conducted

in an arena depicted in Figure 20.2. The test case consists of one robot and one human. The

robot is initially in an idle state and is later dispatched to a goal. Upon receiving the navigation

goal, the robot plans the path to the goal and starts moving. Subsequently, it enters the greeting

zone of the static human subject. The robot is then faced with two changes compared to the

initial map. It can perceive (i) a human with a corresponding social costmap, and (ii) an

unmapped obstacle. This causes the robot to replan. However, it cannot find an obstacle-free

path that respects the social constraints. As a result, it will get stuck. The robot can only reach

its goal when the blocked path is cleared. Thus, it will ask the human for help. When the

human clears enough space for the robot to pass, the scenario can be completed. We note

that a human-agnostic robot will not get stuck in this case since the robot can handle the

unmapped obstacle when ignoring the human.

We have conducted preliminary studies with a limited number of subjects (4 people) for the fol-

lowing four scenarios: (i) no interaction, (ii) non-verbal interaction only, (iii) verbal interaction

only, and (iv) both types of interactions. Similarly to the work of Steinfeld et al. [133], parti-

cipants were asked to give scores for their trust in the robot [0-10], engagement/attachment

towards the robot [0-10], and robot legibility [0-3].

20.4.2 Results

The results of our experiments demonstrated in Tables 20.2-20.3, show the positive impact of

interaction in reducing the time needed for human subjects to respond positively to the help

request elicited by the robot. Moreover, interaction, and particularly verbal interaction, have

shown to improve the social score of the robot. The bold entries in Table 20.2 indicate the first

trial (the first encounter with the robot) for a human subject, since we randomized the order
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Table 20.2 – Time needed for the completion of each scenario.

Subject No interaction Only non-verbal Only verbal Both

1 - 20s 16s 18s
2 20s 30s 20s 20s
3 24s 22s 24s 20s
4 20s 20s 24s 18s

Table 20.3 – Social scores.

Before interactions After interactions

Trust (mean %) 57.5 72.5
Engagement and acceptability (mean %) 50 80
Legibility (mean %) 40 75

of testing the different interaction scenarios for having unbiased testing. However, we note

that our trials have been very limited and our experiments are only a proof of concept for the

required baseline to achieve a better performance with HRI-augmented MRTA.

Summary

In this chapter, we presented a number of interactive behaviors used in single robot

navigation. These behaviors serve as the building blocks for an interactive team of

robots performing human-aware MRTA. Preliminary results show the positive impact of

adding interaction to the robot navigation in terms of engaging humans in assisting the

robot and also increased trust, acceptance and legibility.
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R O B O T teams can benefit from the presence of humans in social environments.

Although the common approach for social robots is to find plans that minimize

social costs while always giving priority to the humans, in this chapter we study

a team of robots that actively ask for human assistance for achieving their goals

by means of interaction. We hope to move towards the goal of having natural collaborative

interactions between robots and humans by using the potential interaction capabilities of the

robots, while considering the robots not only as service providers, but also as social beings.

This would allow the team of robots to improve their performance, while accounting for social

acceptability. We emphasize that the role of the robots will primarily be to serve the people

and give higher priorities to humans. Nonetheless, we believe there is room to explore what

can happen if we allowed a more natural mixing of robots with humans through interactions

that already exist in our society, such as the tendency to help someone if we can. This must of

course come at a reasonable price for the human, which in the case of social MRTA, could be

as low as moving a few steps.

The HRI-augmented MRTA we are aiming for, calls for a number of capabilities similar to the

ones identified in the work of Dias et al. [134]. The authors of [134] focus on adjusting the level

of autonomy for peer-to-peer human-robot teams. Six important capabilities for performance

optimization including requesting help, maintaining coordination, establishing situational

awareness, enabling interactions at different levels of granularity, prioritizing team members,

and learning from interactions, are proposed in [134]. Among the aforementioned capabilities,

the first three are discussed by Sellner et al. [135] as major issues that affect human-awareness

in multi-agent teams.

Although we are not focusing on a mixed human-robot team in this research, similar capab-

ilities can be useful for cooperation between robots and humans in our problem of interest

despite humans and robots not sharing a common goal. This is because the interest of the

human in assisting the robot can be interpreted as teaming up with the robot momentarily

for the robot to achieve its goal. In [134], human intervention is categorized into two primary

forms of (i) physical intervention and (ii) intervention through sending direct low-granularity
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commands to the robot. In both cases, the decision to intervene is made by the human. HRI-

augmented MRTA can be seen in a way as a human intervention directly requested by the

robots. The type of intervention we are looking for in our research is the physical type. Ex-

amples of this type of intervention are humans clearing the space for a robot to go through a

socially blocked passage or removing a piece of furniture blocking the robot’s path.

The interactive behaviors introduced in the previous chapter enable the robots to make

their behaviors and goals understandable and legible. Moreover, direct communication of

information to the humans is made possible by means of speech. This along with the human-

aware MRTA method proposed in Chapter 18 creates a baseline for the interactive risk-based

human-aware MRTA approach introduced in this chapter.

In the following sections, we will detail the proposed interactive MRTA method along with a

number of questions we encountered while working on this problem. Real robot experiments

adopting this method will be presented in Section 21.2 and the results will be discussed in the

following sections.

We have focused on the feasibility and technical aspects of interactive MRTA in this chapter.

Further in-depth user studies and research are required for gaining a better understanding

of this problem. The insights reported in this chapter open up multiple avenues for future

work in the field of HRI with multiple robots. Although long term studies with different human

subjects are needed to draw solid conclusions from tests, we believe studies like this can be

interesting for the researchers working at the intersection of the MRS and HRI research areas.

Currently, to the best of our knowledge, there does not exist any other work with real robot

experiments that studies the MRTA in social environments and particularly, studies the mutual

robot human interaction aspect of the problem.

21.1 Human Assistance for Resolving Socially Costly Situations

While interactions corresponding to single robot navigation are active on each individual

robot, robots can also benefit from interaction for achieving a better performance as a team.

For this purpose, we consider two main aspects of multi-robot cooperative navigation in social

environments. Firstly, we focus on the team efficiency for carrying out the designated tasks, by

means of non-social performance metrics, namely, total traveled distance and mission time.

Secondly, the social awareness aspect of the team performance is considered in our proposed

method. We note that in this chapter, we mainly focus on the non-social metrics for evaluating

the performance of our proposed solution. We plan on conducting a user study for having

subjective assessments of legibility, naturalness and positive perception from the human point

of view, to evaluate the social acceptability of our work.

Our approach for adopting interactions in human-aware MRTA is to tackle the cases where

human assistance can make a large difference in terms of the non-social metrics. We target

situations in which accomplishing a designated task can be very costly for the robot due to
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the presence of the humans. Taking large detours for avoiding a socially blocking situation or

waiting a long time for these situations to be resolved are examples of such cases. Moreover,

we make sure that interactions are designed and initiated in a way that conforms to the social

constraints. As an example, a robot cannot start a request while it is not in the social zone of

the human who is causing the socially costly situation.

The strategy proposed for interactive MRTA is similar to the human-aware MRTA with adaptive

risk-based replanning. The initial bid estimation of robots considers the future risks of each

task without the possibility of interaction. The main reason for this choice is that socially

costly plans should be avoided at the team-level and inevitable and unforeseen changes in

the environment should be resolved locally. Previously, this was done by means of adaptation

using risk-based replanning. In the interactive approach, however, instead of changing the

team plans when identifying an increasing risk for the active task, the robot will resort to

interaction. It will assess the risk of the situation, and if a successful interaction could result in

a significantly lower risk and an acceptable cost, it will take the risk of continuing its current

plan and it will request help when appropriate.

The outcome of this interaction can change the social risk trend as a result of modifying the

state of the environment. In case of a positive human response and thus, low risk, there will be

no need to perform active coordination to change the team plans. However, if the social risk

continues to have an increasing trend because of a non-cooperative human, the requesting

robot will ask for active coordination. In other words, it either delegates the task to another

team member or waits until the situation changes. We note that interaction is only considered

for reducing the social risk trend. Therefore, only when a robot senses increasing social risk for

its active task, will it consider interaction.

Algorithm 9 details the Interactive Risk-Based Rebid Triggering (IRBRT) that implements this

functionality. Lines 15-17 are modified compared to Algorithm 8. Uncertainty in human mo-

tion for increasing risk is no longer required to activate the risk-based interaction/replanning

(removed from line 15), as approaching a static person and requesting for assistance are among

the interactions added to MRTA. In this algorithm, upon perceiving a rising risk trend for the

active task, instead of replanning, we consider an interactive request (line 16) for resolving the

socially costly situation.

When a robot considers to request interaction using Algorithm 10, it initially checks whether

interaction can be useful in the current situation. If so, it will find the human(s) (ht ) it should

interact with. The robot then moves toward the location of the active task, while monitoring

its risk. The robot periodically checks if the conditions of starting an interaction with ht are

met (Algorithm 13) and the social risk of the task is on the rise. If the risk of the active task is

significantly decreased at any time, the robot will decide to not initiate the interaction and

considers the risk to be resolved. However, if the interaction occurs, the robot will wait for the

human response. In case of a granted request, it will move to the task location and unblock

the active task. But if the request is not accepted, the robot will decide to activate replanning
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Algorithm 9 Interactive Risk-Based Rebid Triggering (IRBRT) for robot r j and task ti given the filtered
risk signal Γ f ,ti , perceived human uncertainties UH ,ti , and the task cost cti ,k at time k

1: procedure IRBRT(Γ f ,ti , UH ,ti , cti ,k , ti )
2: fv ← False, fi ← False, fa ← False, fc ← False, fh ← False
3: γ f ,ti ← Γ f ,ti ,k

4: Γ̇ f ,ti ← ComputeRiskTrend(Γ f ,ti )
5: γ̇ f ,ti ← Γ̇ f ,ti ,−1 � Take the latest risk variation
6: σti ← max(UH ,ti )
7: � Note any newly perceived human that results in risk for ti

8: if (∃h ∈ Dk ∧ γh,ti > 0) then
9: fh ← True � Human first encounter flag

10: if |γ f ,ti −γb,ti | ≥ max(αγb,ti ,Γmi n)∧ (k −kb,ti ) ≥ K then
11: fv ← True � Risk variation flag
12: else

return False
13: if ¬sti ∧ (γ̇ f ,ti < 0)∧ (σti >Σ∨ fh) then
14: fi ← True � Inactive task reconsideration flag

15: if st j ∧ (γ̇ f ,ti > 0) then
16: if InteractiveRequest(Γ f ,ti , UH ,ti ) then
17: fa ← False � Interaction resolved the risky situation. No need for replanning
18: else
19: fa ← True � Active task reconsideration flag

20: if ¬sti then
21: fc ← (cta ,k > cti ,k ) � Decreased cost for the inactive task flag
22: else
23: fc ← True

24: return fv ∧ ( fi ∨ fa)∧ fc � Final reevaluation decision

and consider the social risk to be unresolved.

For understanding the details of IRBRT, we list the main questions that need to be answered in

the context of this problem and describe the corresponding solutions adopted in our approach.

We propose a solution (in a corresponding algorithm) to answer each of these questions. We

note that each of these questions can be a separate topic of research in HRI and we do not

claim to have the best answers. Nevertheless, we propose solutions that meet our needs and

make an improvement compared to our previous approach.

1- How does interaction impact the team of robots in terms of planning?

In our proposed method, adopting interaction has the consequence of blocking the task for

other robots. Upon deciding to interactively resolve a situation, the robot will remove the

task from the list of tasks that can be considered by other robots (BlockTask function at

line 5 of Algorithm 11). Without this constraint, while a robot is interacting with a human for

progressing, another robot that is a better candidate for accomplishing the task may be freed. If

that robot takes the task, the interaction started by the first robot will be pointless. Moreover, an

interacting robot should not halt its interaction if a more appropriate task becomes available.

Robots should keep their word otherwise we expect that they will lose the trust of the humans

178



21.1. Human Assistance for Resolving Socially Costly Situations

Algorithm 10 Interactive request for human engagement in HRI-augmented MRTA for robot r j and
task ti given the filtered risk signal Γ f ,ti and perceived humans H

1: procedure InteractiveRequest(Γ f ,ti , UH ,ti , ti )
2: fi ← False � Flag indicating if robot’s request has been granted by the human
3: fr ← False � Flag indicating resolved risk
4: � Check if the interaction should be discarded due to the complexity of the social cost
5: if DiscardInteraction(Γ f ,ti , H) then

return False
6: (ht , pt , vt , γt ) ← FindInteractionTarget(Γ f ,ti , H)
7: while RiskTrend(H , ti ) > 0 ∧ ¬StartInteraction(ht , pt , vt ) do
8: ContinueToGoal(ti )
9: (ht , pt , vt , γt ) ← FindInteractionTarget(Γ f ,ti , H)

10: � 0 ≤ ζ< 1 is used to check the variation in risk magnitude for detecting resolved risks
11: if Risk(H , ti ) < ζ.Γ f ,ti ,−1 then
12: fr ← True � Risk has lowered. No need to rebid
13: else
14: ki ← InteractAndRequest(ht , pt , vt , γt )
15: fi ← ReceiveRequestResponse(ht , ki , Γ f ,ti )
16: if fi then � Request granted by the human. No need to rebid
17: SuccessfulCollaborationInteraction(ht , pt )
18: ContinueToGoal(ti )
19: UnblockTask(ti )
20: fr ← True
21: else � Request not granted by the human. Replanning is required
22: UnsuccessfulCollaborationInteraction(ht , pt )
23: fr ← False

24: return fr

Algorithm 11 Identify whether interaction can resolve the socially risky situation for robot r j given
the filtered risk signal Γ f ,ti and perceived humans H

1: procedure DiscardInteraction(Γ f ,ti , H)
2: cti ← ComputeCostForAllRobots(ti )
3: � Consider interaction only if r j has the lowest overall cost for ti at this time and the situation is

considered to be socially blocking
4: if r j == ar g mi nr∈R (cti ,r ) ∧ SociallyBlockingSituation(ti , H) then
5: BlockTask(ti )

return True
6: else � Cancel interaction. This will lead to replanning through active coordination eventually

and another robot will take ti

7: return False

Algorithm 12 Identify human target for interaction for robot r j given the filtered risk signal Γ f ,ti and
perceived humans H

1: procedure FindInteractionTarget(Γ f ,ti , H)
2: � The interaction target is either the human causing the highest social cost or the center of the

containing group
3: (ht , pt , vt , γt ) ←FindTheHumanWithHighestCost(Γ f ,ti , H)
4: return (ht , pt , vt , γt )
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Algorithm 13 Check whether interaction with the target should be started for robot r j given the
human target ht , his pose pt , and his velocity vt

1: procedure StartInteraction(ht , pt , vt )
2: fs ← False � Flag indicating whether interaction can be started
3: fs ←CheckRelativePose(ht , pt , vt )
4: return fs

Algorithm 14 Interact with the human target ht , given his pose pt , and his velocity vt

1: procedure InteractAndRequest(ht , pt , vt )
2: msg ←ConstructMsg(ht , pt , vt )
3: ki ← 0
4: if vt <V then � Identify static targets, V is the minimum velocity for moving people
5: ApproachStopAsk(msg , ht , pt )
6: ki ← k
7: else � For moving targets
8: � Try making the request while moving but stop if the relative distance leads to social costs
9: ApproachAsk(msg , ht , pt , vt )

10: ki ← k

11: return k

Algorithm 15 Check if the human responds positively to the request for robot r j given the human
target ht , and the filtered risk signal Γ f ,ti

1: procedure ReceiveRequestResponse(ht , ki , Γ f ,ti )
2: mode ←“risk-based” � Other modes include “distance-based” and “interactive-dialogue”
3: fr ← False � Flag indicating resolved risk
4: � Wait for up to Ki seconds for a decreased risk. 0 ≤ ζ< 1 is to detect a positive human response

leading to a reduced risk
5: while Risk(H , ti ) > ζ.Γ f ,ti ,−1 ∧ (k −ki ) < Ki do
6: InteractiveWait(ht , pt )

7: if Risk(H , ti ) ≤ ζ.Γ f ,ti ,−1 then
8: fr ← True
9: else if Risk(H , ti ) > ζ.Γ f ,ti ,−1 ∧ (k −ki ) > Ki then

10: fr ← False
return fr

and seem rude and unthoughtful. This is likely to negatively impact the user engagement in

helping the robots.

2- In which socially risky cases should a robot consider interaction instead of replanning

through active coordination?

This is a among the most important questions in this problem. Although some increasing risks

can be resolved by means of interaction, there will still be cases where delegating the task to

another team member will result in a better plan. For example, Figure 21.1 depicts a case where

ri encounters multiple people and avoiding social costs through interaction will be more costly

despite dri < dr j . If all the humans in this example responded positively to ri and perceived

the robot as socially acceptable, ri will still need more time to accomplish the task compared

to r j . Moreover, there can be cases where the task that requires interaction could be correctly
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Figure 21.1 – An example where multiple interactions will be more costly than changing the plan
and delegating the task to another robot.

delegated to another robot r j through active coordination, since cti ,r j = mi nr∈R (cti ,r ). If

ri blocks this task then r j cannot take it anymore leading to a degraded assignment. This

should be avoided as the decision to allow an interaction can eventually affect the whole team.

DiscardInteraction function (Algorithm 11) is used to identify cases where interaction

cannot be beneficial to the team.

3- Who should the robot interact with?

Based on the social risk associated to each human in the vicinity of the robot for the designated

task, an interaction point is chosen (Algorithm 12). In the case of humans not forming a group,

the human with the largest social cost is chosen as the interaction target. If the human with the

largest cost is in a group, the center of that group is chosen as the interaction point. Addressing

the active member of the group or each group member alternatively is a better approach for

directing gaze [129], however, since detecting the active member of the group was not possible

with the current sensing system, we target the center of the group instead.

4- How should the robot interact with the subject(s) in terms of message content, address-

ing the humans, and requesting for help?

The robot should first inform the human of its presence. For this purpose, the robot will utter

a greeting message when in the vicinity of the human regardless of the heading. It will then

approach the human and wait until the human faces the robot. The robot will then vocalize a

message while directly gazing at the interaction point. The message will communicate a gen-

eral statement for requesting help. If the interaction target is static, the robot will stop before

talking to the human. For dynamic humans however, it will start interaction while it is moving

but it will stop before intruding the personal space of the humans. Refer to Algorithm 14 for

details of this step.

5- How should the robot analyze the human response?

There can be different ways of analyzing the human response. For instance, through the

changes in the distance, by analyzing speech if the human says something back and in our

implementation, by means of evaluating the social risk variation. Based on this risk, the

human response to the robot request is evaluated in Algorithm 15, where the robot waits
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(a) (b)

Figure 21.2 – The initial position of the robots, humans and the placement of tasks for the experi-
ments. a) Schematics of the scenario. Arrows indicate robot orientation at initial time. b) Sample
snapshot of the real scenario.

for a predefined period of time while monitoring the risk. If at any point in time the social

risk of the target and the overall risk decreases significantly, the robot will consider this a

positive response. Otherwise, upon time-out the robot will assume that the request has not

been granted.

6- How should the robot react based on the received response?

Upon receiving a positive response, the robot will thank the human and resume moving to

the designated task. In case of dynamic humans and narrow spaces, the robot will adapt

its social costmap to a less restrictive model upon detecting a positive response based on

risk monitoring. This is because through interaction, the positive human response is an

indicator of robot-awareness on the human side and thus allows for adapting the social cost

model and using the space less rigidly. If a negative response is detected, the robot will say

a polite statement and perform replanning. The robot will remember to not ask this human

for assistance anymore. The robot can only interact with this human in another encounter

after accomplishing at least one other task. This is to avoid showing the annoying behavior of

constantly returning and asking a human for help. Refer to lines 16-23 Algorithm 10 for more

details.

21.2 Experiments

We have conducted a series of experiments to evaluate the performance of the proposed

interactive MRTA. The scenario we tested consisted of two robots, two humans, and three

tasks. The humans are initially engaged in a conversation, forming a socially blocking situation

for the robots. Figure 21.2 shows the initial state of the experiment. Two algorithms have been

adopted for MRTA in this setting, I-MRTA: interactive MRTA, and N-MRTA: non-interactive

MRTA. The non-interactive algorithm implements the social MRTA method with adaptive
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Figure 21.3 – Performance metrics obtained from 10 runs.

risk-based replanning introduced in Chapter 18. Each algorithm has been repeated for ten

runs. Robots have a restricted local perception with a range of 4 m and 65◦ conic FOV. Robots

are relying on their self-localization for computing the local balance functions.

The MRTA evaluation metrics (M1−M2) have been obtained from ground truth values provided

by the MCS. We did do not include (M3 −M5) in our evaluations since more elaborate social

metrics should be used to measure the performance of the robots in terms of social acceptabil-

ity as robots are no longer just implicitly interacting with humans. The social costmap changes

across experiments based on human motion and interaction response. As a result, the map-

ping between space and social costs previously used in our evaluations is not the same with

the I-MRTA method. Social metrics in this case should be subjective human assessment of the

robots in terms of comfort, legibility, trust and ability to engage the human user. Those aspects

are not considered in our current evaluations and are left for a future study. However, using

(M1 −M2) we can still compare how these algorithms perform in terms of traveled distance

and time. For more information about evaluation metrics definitions refer to Section 16.2.1.

In a human-free environment, Robot1 will take Task2 and Robot2 will take Task1. If Robot1

accomplishes its task before Robot2, it will take Task3. Otherwise, Robot2 will take Task3 and

later delegate it to Robot1 through active coordination. We note that robots are positioned

in such a way that they cannot see the humans initially. As a result, their initial plan does not

consider the presence of the humans.
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Figure 21.4 – Task assignment per robot over time for a sample run of the experiments. End of
mission (M2) is marked by the vertical line.

21.3 Results

The two algorithms used in our experiments lead to different team plans as they adopt dif-

ferent strategies. This results in a different performance with respect to M1 and M2 as seen

in Figure 21.3. In the non-interactive algorithm (N-MRTA), when Robot2 perceives the two

humans, an increased social risk is perceived and adaptive replanning is triggered. As a result,

Robot2 will stop moving towards Task1 and take Task3. Then Robot1 will move to Task1 and

eventually stop due to the increased risk, Robot2 will then move towards Task1 and stop when

approaching the humans. Both robots will remain there due to the high social cost of the

blocked passage for as long as the humans do not move. This can be seen in Figure 21.4.

The interactive algorithm (I-MRTA) has a different strategy when encountered with the humans.

Similar to the previous method, Robot1 will take Task2 and Robot will take Task1 initially. Upon

detecting the humans, Robot2 will approach the humans, greet them and stop. It will then

ask the humans to move. It will wait for a predefined period of time during which it monitors

the current risk of Task1. When humans respond positively to the robot by clearing the path,

the magnitude of the risk signal will decrease. When the risk is measured to be sufficiently

low, Robot2 will consider this a successful collaboration with the humans. Subsequently, it

will thank the humans and move to Task1. In the meantime, Robot1 will move to Task3 after

accomplishing Task2. This leads to a more efficient plan in terms of both distance and time

metrics as seen in Figure 21.3.

The task assignment for the robots using the two algorithms can be found in Figure 21.4. In this

figure, the blue blocks indicate an attempt of moving to a task stopped by active coordination,

the red block indicates an attempt stopped due to no progress in human-aware navigation

and the purple block indicates an attempt leading to direct interaction with the humans.

Figure 21.5a shows a snapshot of the two interactive robots moving in the environment. For

understanding the details of the interaction timeline in the I-MRTA algorithm, consider Fig-

ure 21.5b, where the social risk and distance to the humans are plotted for the interaction over
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Figure 21.5 – a) Multiple interactive robots. b) Interaction timeline for Robot2 given the social risk
and human-robot distance.

time. The social risk and distance to humans are normalized for the purpose of visualization.

We can see how an interaction starts with the increasing risk (marked in red). This causes the

robot to move from “active” state to “on hold”. Upon interaction, the robot verbally asks the

humans to move. It then waits for their response by monitoring the social risk signal. During

this period, the robot and the designated task are on hold. When the social risk has sufficiently

decreased (the distance has sufficiently increased between the robot and the humans along

the robot path), a successful collaboration is detected. The robot will thank the humans in this

case and move towards the task, changing its state to “active” (marked in green).
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21.4 Discussion

The results seen in Section 21.3 confirm the effectiveness of interactive MRTA in finding better

solutions by means of actively requesting human collaboration. For N-MRTA, we simply asked

the targets to keep on their conversation and move whenever they wanted. As the targets were

members of our group, there was a tendency to not help the robot if not asked and this lead to

long waiting times for the robot. Eventually, humans cleared the passage for the robot and the

robots accomplished all the tasks. In general, if humans block a passage for a sufficiency long

time (30 seconds or more), a time-out is activated and the robot is considered to be stuck.

For I-MRTA however, the humans always responded positively to the robot’s request. As

a result, the scenario we tested was inclined to support I-MRTA. We note that if humans

had responded negatively to the robot, the traveled distance and mission time for the team

would have increased for I-MRTA as well. Nonetheless, I-MRTA will lead to a modified task

assignment compared to N-MRTA when encountered with social risk. In case of successful

human collaboration, I-MRTA will lead to better team plans since it actively tries to change

the state of the environment in favor of the robot team.

When performing experiments in the interactive mode, we observed that the limited percep-

tion of the robot was a major challenge for legibility. From the point of view of the human

subjects, when the robot was facing a human it was assumed that the human is accounted for

by the robot, however, this was not always the case. This was due to the limited FOV of the

robots and also the human detection error. Although human tracking is performed with milli-

metric accuracy using the MCS, our emulated limited perception was subject to error caused

by the robot’s self localization. We only allowed the robot to perceive human targets that were

within its sensing range and FOV given the robot position reported by its self-localization. This

resulted in missed targets and delayed actions on the robot side in a number of encounters.

We believe making humans aware of the robots perceptual capabilities is important in shaping

their expectation of the robots and thus social acceptability of the robot team.

The social risk measured by the robots forms the basis of our interaction triggering and human

response detection. Initially, we relied on the risk trend to detect whether or not a request

had been granted. In other words, a negative trend in the risk signal (γ̇< 0) was interpreted

as a positive response. However, in most cases, the way that the humans moved led to a

number of changes in the risk trend and γ̇< 0 was not kept consistently for a positive human

response. As this measure was too sensitive to human motion and was not robustly indicating a

granted request, we opted for taking a more conservative measure of ensuring a proportionally

significant decrease in the social risk value. Thus, Risk(H , ti ) < ζ.Γ f ,ti ,−1 was chosen as

the indicator of a positive response in our experiments, with ζ = 0.2. The drawback of this

choice is the longer time that it takes to detect a positive response compared to checking γ̇< 0.

However, this measure was shown to be much more robust for correctly detecting successful

collaboration in our tests.

We note that in general, the decision to allow or discard an interaction should be based
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on higher-level reasoning and not only based on the social risk signal. This requires more

advanced situational awareness. As an example, a robot should not ask an injured person in a

wheelchair to move, whereas this request can be reasonable for a person who is just waiting in a

corridor. Knowing the state of the interaction target requires further information processing. In

our experiments, interaction occurs in socially blocking situations where humans are blocking

a passage or occupying a narrow space that will make social navigation costs inevitable,

without considering further aspects of the problem such as the human state.

Summary

In this chapter, we proposed an interactive social MRTA method that actively requests

human collaboration in socially blocking situations. Experiments with real robots con-

firmed that appropriate use of explicit interactions can lead to a better team perform-

ance in terms of total traveled distance and time. Interactive robots were observed to be

more socially acceptable and legible as well. However, user studies with a sufficiently

large human subject group are necessary for confirming the hypotheses formed in the

course of our experiments. We came across a number of relevant HMRI questions in

our trials that will be detailed in the next chapter.
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I N T E R A C T I O N can be a powerful asset for individual robots and teams of robots in

social environments. Our preliminary tests showed the effectiveness of adding interact-

ive features to the robots as individuals. Furthermore, utilizing interaction to modify

the socially costly situations through requesting human help has shown to improve

the traveled distance and time for the robot team if interactions are adopted appropriately.

Additionally, social acceptability was observed to be improved as robots were more legible and

natural. Nonetheless, interacting with the human instead of delegating the task to another ro-

bot can lead to longer plans and many user interventions if not adopted in the right situations.

We emphasize that these aspect must be verified by means of a user study for concluding such

observations.

The real robot experiments conducted with single and multiple interactive robots around

humans, led us to a number of questions that need to be answered for enabling teams of

robots to properly operate in everyday applications around humans. We list a few of these

questions in the following.

1. What role should be considered for cooperative service robots in social environments

with respect to humans? Should robots be merely service providers, or peers, or some-

thing in between? How does this differ for a single robot compared to a robot that is a

member of a team?

2. Should explicit robot communication be directed to humans or to robot teammates

(when possible)? In other words, should a robot directly address the humans or should it

explicitly interact with its teammates with the goal of influencing a collaborative human

behavior in an indirect manner?

3. How does the importance or urgency of a task, explicitly mentioned in the interaction,

affect the human response to a robot request?

4. Should robots have an identity that distinguishes them as an individual in a team?

Should they exhibit slight differences in terms of appearance, tone of voice, greeting
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manner, etc.? Will people respond differently to such robots compared to robots with

no identity?

5. How would a human respond to the team of robots if one or more robots exhibited

faulty actions, confusing behavior or impolite conduct such as not staying engaged in

an ongoing conversation with a human? Would they associate the undesired behavior

to the whole team and form a judgment? What would be the long term effect of this

behavior in terms of social acceptability for the team?

6. How do humans react to a specific encounter with a robot, if multiple robots repeat the

same behavior at the same time, for example, being approached by multiple robots at

the same time or being called by multiple robots at the same time?
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23 Conclusion

O V E R the course of this thesis, we examined the problem of cooperative human-

aware navigation and coordination of multi-robot systems in social environ-

ments. As the use of mobile robots increases in environments shared with hu-

mans, applications requiring multiple robots also arise. The goal of having teams

of robots in social environments is to benefit from the advantages of multi-robot systems

such as providing better and faster services through increased work force, cooperation, co-

ordination and information sharing. Furthermore, new applications such as escorting and

emergency evacuation, can be enabled when adopting multiple robots. In such cases, robots

are required to navigate and plan as a team while being aware of the humans and acting in a

socially acceptable manner.

Human-awareness is a fundamental topic for the inclusion of multi-robot systems in real

social environments as it impacts both social acceptability and performance of the team

in terms of non-social metrics. This topic falls on the intersection of navigation, MRS and

HRI research fields, and despite its importance, is largely unexplored from the MRS and HRI

aspects. This motivated our endeavor for studying the human-aware cooperative navigation

problem to understand how the presence of humans can affect the performance of a team of

robots and how robots should take humans into consideration at individual and team levels

when operating around people.

Overall, we proposed an end-to-end framework for cooperative navigation of human-aware

multi-robot systems considering the challenges of the problem in real, uncontrolled and

stochastic social environments. This problem has a broad scope and an enormous capacity

for research. We hope that the framework and the methods proposed in this dissertation will

contribute to providing a basis for the researchers in MRS and HRI communities. However,

achieving such an outcome presents many challenges in the following research domains: (i)

human-aware navigation for single robots, (ii) human-aware coordination and planning for

multi-robot systems, and (iii) HRI for a team of cooperative robots. Each of these aspects,

constitute an essential part of our research problem and are studied and addressed in a

dedicated part of this manuscript.
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23.1 Summary of Contributions

The work in this dissertation provides core contributions along the lines of the three main

aforementioned research domains. We revisit these contributions in the following.

Our work on platforms and tools, detailed in Part II of this manuscript, provided the following

contributions:

� Two experimental facilities of increasing complexity were established for our real robot

experiments. We reproduced our experimental environments in the high-fidelity sim-

ulator Webots. This allows for testing different scenarios in terms of complexity with

varying number of robots, humans, tasks and navigation difficulty as well as conduct-

ing repeated experiments under controlled conditions and also performing long-term

experiments that are very expensive to have in reality.

� We investigated the problem of automatizing the calibration process of UWB-based

people localization using a mobile robot in complex real world environments. This ap-

proach showed promising results for tracking a human in a number of complex settings.

However, further studies with multiple humans showed that the adopted method should

be further improved and expanded for crowded social environments as the collected

fingerprints can largely change due to the presence of multiple people.

The contributions regarding single robot human-aware navigation detailed in Part III of the

manuscript, are as follows:

� We investigated the problem of human-aware navigation for a simple and resource-

constrained robotic platform with limited sensing and maneuvering. We verified the

effectiveness of the human-aware navigation method based on social costmaps through

repeated real robot experiments. The social costmaps were generated using the fused

information coming from a leg detector and a tracker for low-lying viewpoints, adopting

Kinect RGB-D information.

� The novel concept of expectation-based social costmap was introduced to capture the

perception uncertainty inherent to real noisy applications. This approach was able

to achieve trajectories capable of keeping a more appropriate social distance to the

people, compared to those of the human-aware navigation approach that rely solely on

perfect perception. Especially, when the complexity of the environment was increased.

Accounting for uncertainty of perception resulted in smoother trajectories with lower

jerk that are more natural from the point of view of humans.

Part IV focuses on the topic of multi-robot cooperative navigation in social environments.

Our multi-robot cooperative navigation used the Hoplites framework as the coordination
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baseline, and we focused on MRTA among different classes of MRS coordination problems.

We summarize the contributions of this part in the following:

� As a first step towards adopting MRTA in dynamic human-populated social environ-

ments, we introduced a flexible Hoplites-based coordination framework that was shown

to effectively solve the MRTA problem for three variations of increasing complexity, spa-

tial task allocation based on distance, spatial task allocation based on time and distance,

and persistent coverage.

� Human-aware deterministic bid estimation and requesting team collaboration in so-

cially blocking situations were proposed. Thanks to these new methods, humans were

considered not only at individual navigation level but also at the team-level planning.

Both simulated and real robot experiments confirmed that accounting for humans at

these two levels can lead to respecting social constraints as well as achieving a better

performance based on MRTA metrics. However, bid estimations in this method only

relied on the currently available information.

� To deal with the highly stochastic nature of social environments, we proposed the

concept of risk-based bids that incorporate human trajectory prediction uncertainties

and social costs in their formulation. We demonstrated the effectiveness of including

a predictive component in the risk formulation despite the lack of accurate position

estimation for humans. This approach was able to find more socially acceptable team

plans that reduce the need for the lower level individual human-aware navigation to

be activated. Risk-based plans that account for social costs, prevent difficult social situ-

ations that can lead to less effective human-aware navigation, such as traversing narrow

passages occupied by humans.

� As real robot applications rely on limited local perception and human behavior can

change at any time, an adaptive risk-based replanning strategy was proposed for dealing

with limitations of local perception and unpredicted human behavior. This replan-

ning method is based on the variations of social risk and human motion prediction

uncertainty. Our simulated and real robot experiments confirmed that this strategy

outperforms the non-adaptive replanning strategy with respect to social metrics and in

some scenarios with respect to MRTA metrics as well. Furthermore, the non-adaptive re-

planning strategy was shown to have degraded results with global perception compared

to local perception as decisions in this case can be based on outdated information that

lead to invalid plans.

Finally, we explored the interactive potential of a team of robots in Part V. Our contributions

are summarized as follows:

� Leveraging the basic interactive features of our robotic platform, we designed interac-

tions with the aim of increasing robot legibility and human trust. These interactions
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were integrated with individual navigation. Moreover, an interaction was designed and

implemented for cases in which the navigation progress of the robot was stopped, either

physically or socially. This interaction was designed to be actively initiated by the robot

to ask the human for assistance. We targeted physical human assistance such as mov-

ing a furniture or stepping away from the robot’s path in order to resolve the blocked

navigation progress.

� Resolving socially blocking situations through explicit interaction with humans and

requesting for help was integrated into our human-aware MRTA. Adaptive risk-based

replanning was extended to resort to HRI, in cases where interaction has the potential

to modify the environment through human actions, for the robot to achieve its goal

with minimized social costs. This approach can deal with socially blocking situations

that cannot be resolved by means of delegating tasks to other team members. As an

example, if the only entrance to a room is blocked, no robot can reach a task located in

that area, so the robot that is responsible for this task should either wait for the entrance

to be cleared or navigate through the socially blocked entrance, ignoring the humans.

With the interactive solution however, the robot can communicate a request for human

assistance and collaboration. This interactive attempt can lead to solving the problem

in many cases.

23.2 Discussion and Outlook

Among the many challenges of the problem studied in this thesis, perception, human motion

and behavior prediction, estimation of highly stochastic costs, and human-robot interaction

in the presence of multiple robots have been the most essential in our experience. As real

social environments are highly stochastic, noisy and uncontrolled, cooperative navigation

and planning methods therein, must be able to deal with the limitations of perception and

its inherent uncertainty. Perception provides the key information that constitutes the basis

of social cost modeling, human motion prediction and path planning. Therefore, it largely

impacts the overall performance of the robot team. Multi-robot systems have a great potential

for overcoming the intrinsic limitations of single robot perception by means of enhanced

coverage, information sharing, cooperation, and coordination. Nonetheless, cooperative per-

ception should consider robust solutions and perception uncertainty in particular, for human

detection and tracking.

Furthermore, the highly stochastic problem of human motion and behavior predication is

one key element in social MRTA that must be considered with the same approach of ensuring

robustness. Similarly, opting for a stochastic approach for cost estimations that form the

basis of coordination and planning for the robots in a team, can significantly improve the

performance of the robots in real social environments.

Although the main social interaction addressed in this work has been the use of the common

space between robots and humans, we believe that single and multi-robot cooperative naviga-
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tion can largely benefit from explicit interaction for increased robot legibility and human trust

as well as improved team plans. We note that we currently have limited evidence due to the

lack of in-depth user studies to reliably claim these hypotheses; nevertheless, we describe a

number of findings based on our observations in the following.

Our observations made it clear that appropriate use of the interactive features could help

to improve the understanding of the robots’ intentions as well as improving their social

acceptability. Furthermore, initiating an interaction to ask for assistance, can help to associate

more intelligence to the robot and additionally improve the MRTA metrics such as the total

traveled distance and time. We observed the social-awareness of the robots should be further

reinforced in multi-robot scenarios given the increased complexity of the encounters that

humans have with the robots, since it is increasingly more likely to create confusion and

discomfort with multiple robots that lack legibility.

Multiple robots enable scenarios that pose new questions to HRI researchers such as, when

and how should a robot consider human assistance for improving team performance? Should

robots be visibly (or vocally) identifiable as individuals given that in multi-robot scenarios,

there exist a number of robots and we no longer have “the” robot as the sole non-human actor?

How does the social conduct of an individual robot impact the subjective assessment of the

humans about the other robots as individuals and as a team?

The framework proposed in this work comprises a number of key components, each of which

can be further extended and improved. Moreover, additional plug-ins can be added to the

current system. We will detail a number of such potential improvements in the following.

Although human-aware navigation is among the main components of our framework, we

mainly focused on incorporation of human perception uncertainty in the social cost models

used in this problem. Despite its importance in real environment, this aspect is overlooked

in the majority of the research in this area. The current individual human-aware naviga-

tion method can be further improved by means of considering reciprocal and cooperative

navigation of humans and robots similar to [22].

The social cost model used in this thesis relied heavily on proxemics and we focused on

the costs corresponding to intrusion of personal and group interaction spaces. Nonetheless,

our framework is not limited to these types of social interactions and the social cost models

can easily be extended to incorporate more types of interactions. Moreover, the concept of

proxemics should be further studied for multiple robots to modify and extend the existing

model used in the literature for cases where more than one robot could be approaching

a human.

In the course of our real robot experiments, we emulated the limited local perception for our

robots, despite developing a 3D human detector based on OpenPose. This was mainly due

to the Mbot hardware limitations. Local perception allows robot deployment in real human

populated environments where global perception may no longer be available. Not depending
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on an external tracker, largely extends the application of the robots as they will no longer be

constrained to a specific area. However, local perception should be accurately characterized

before such deployments as performance evaluations will have to rely on the data gathered by

the local perception as ground truth, in cases where no other means are available.

We believe there are many interesting research aspects in the problem of social MRTA that are

yet to be explored. Although changes happening in a highly stochastic social environment

can make long plans invalid, bundle algorithms incorporating multiple tasks in their planning

can still be useful in some cases. Heterogeneous teams of robots and other types of task

allocation problems such as time-extended tasks, multi-task robots, multi-robot tasks, and

multi-human-robot tasks can also be considered in the context of social MRTA.

Other further improvements that can be considered include using more accurate human mo-

tions prediction methods, adopting other types of human detection and tracking technologies

such as laser-based leg detectors and UWB-based human trackers, performing data fusion, im-

proving the situational awareness of the robots by means of gesture recognition, and learning

the bid estimation parameters based on the data gathered in the target environment. Last but

not least, long term user studies in real environments should be conducted for understanding

the challenges of social MRTA, proper evaluation of the proposed solutions, and formulating

the social acceptability criteria for the robots as individuals and as a team.
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tion

A S human localization is among the main elements of human-aware navigation,

we present an affordable and easy human positioning solution based on Ultra-

Wideband (UWB) technology developed at the initial stages of our research in

this appendix. UWB is an emerging technology in the field of indoor localization,

mainly due to its high performances in indoor scenarios and relatively easy deployment.

However, in complex indoor environments, its positioning accuracy may drastically decrease

due to biases introduced when emitters and receivers operate in Non-Line-of-Sight (NLOS)

conditions. This undesired phenomenon can be attenuated by creating, a priori, a map of the

measurement error in the environment, that can be exploited at a later stage by a localization

algorithm.

In this work, the error map is the result of a calibration process, which consists of collecting

several measurements of the localization system at different locations in the environment.

We leverage mobile robots in order to automatize the calibration process with the ultimate

purpose of improving UWB-based people localization in a realistic indoor environment. The

process exploits existing algorithms in the field of robot localization, conveniently adapted to

the available technology for addressing our test cases.

A.1 UWB Real Time Localization System

The UWB Real Time Location System (RTLS) we used in our work is the Eliko’s Kio Ranging.

This solution which is based on a Decawave chipset, makes use of Unsynchronized Ranging

(UR) and requires four anchors. This choice has come after a thorough comparison with

the Ubisense Series 7000 system which, despite better performance in Line-of-Sight (LOS)

conditions, had a worse performance in multi-room environments [136]. The same result has

been obtained by Jiménez et al. in [137], who compared in a very large industrial environment

the Decawave, Ubisense and BeSpoon technologies, finding out that the first solution is by far

the best, in particular, in NLOS conditions.
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In the Eliko’s solution, the tag “pings” alternatively all the anchors and waits for a response,

then it calculates the round trip time of the signal and, from this, the tag-anchor distance. This

2-way UR mechanism makes the system less accurate than those based on Cable Synchronized

Ranging (CSR) and TDOA [138]. On the other hand, it has a much lower cost, and does not need

any synchronization between the anchors, avoiding the use of synchronization cables, as CSR

systems need. Moreover, the Kio Ranging system does not require any calibration procedure,

apart from measuring the 3D coordinates of the anchors in the environment. The physical

characteristics of these devices make them extremely portable and easy to mount in a variety

of environments. Their dimensions are 85 mm × 55 mm × 18 mm and they weight less than

20 g.

In the system’s version we used, the tag outputs the measured tag-anchors distances via a

serial interface at a rate of 4 Hz. The user needs its own machine and localization algorithm in

order to calculate the tag’s position estimate.

Two different methods have been implemented in this work. The first one performs trilat-

eration, and requires the 3D positions of the anchors and the four tag-anchor distances as

the input. In other words, it finds the least squares solution of the system of the following

equations:

√
(x −xu)2 + (y − yu)2 + (z − zu)2 = ru (A.1)

where u indicates the anchor, x, y and z are the unknown coordinates of the tag, xu , yu and

zu are the coordinates of the u-th anchor and ru is the measured tag-anchor distance.

The second localization algorithm is the Monte Carlo Localization algorithm (MCL)[139]. The

main advantage of this method is that it is capable of exploiting the data of the fingerprinting

phase and, for this reason, its performances will be compared to those of the trilateration

algorithm in order to evaluate the improvements brought by our fingerprinting-based method.

The details of this method will be explained in Section A.2.

A.2 Methods

Our method is an extension of [106] in order to address the problem of people localization in a

realistic environment. It consists of three main steps: (i) robotic fingerprinting, (ii) creation of

the error map, (iii) localization. In this section, we will explain the mentioned steps in more

detail.

A.2.1 Robotic fingerprinting

In this phase, UWB measurements at multiple locations in the scenario of interest need to be

collected. Making use of a UR-based UWB system, each measurement mt is in the form of a

pair (ru , xr ), where ru is the tag-anchor distance and xr is the position where the measurement
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has been taken, i.e., the position of the robot performing the fingerprinting at that time.

As mentioned earlier, in [106] the ground-truth of the robot is measured through overhead

cameras. The use of overhead cameras to get xr has several limitations: first of all, in a real

scenario where multiple rooms have to be scanned, occlusions and limited field of view may

call for several cameras, which are expensive, need precise calibration, and have to be all

connected to a central computer; secondly, the installation of this kind of system in a public

environment may be faced with privacy issues.

Consequently, we use the robot localization data to obtain xr . Although this does not provide

the same accuracy as overhead cameras, the AMCL-based self-localization system of the robot

is a good compromise between accuracy and usability in real-world scenarios.

When performing the fingerprinting the tag was mounted on a structure on the top of the

robot, at an overall height of 170 cm. For better performances, different heights should be

considered. The consequence of taking all the measurements at a fixed height is that the

accuracy of the error map will be maximum for the localization of a person of that height. The

fingerprinting path was previously coded in the robot, so that it could follow it automatically.

The navigation capabilities of the robot allowed it to adapt the fingerprinting path in case of

obstacles. Every 30 cm, the robot stopped and took measurements at different orientations,

rotating around its vertical axis.

A.2.2 Error Map

The output of the first phase is a large quantity of UR (range) measurements for each anchor

and for many different positions and orientations in the environment. The goal of the second

phase is to process this data in order to obtain a map of the error. Our error map is divided

into squared regions (1 m × 1 m) and describes the expected UR measurement error (ranging

error) in each grid cell and for each anchor.

In more details, this error is described in the form of its Probability Density Function (PDF).

The PDF is computed starting from a general error model, in the form of a parametrized error

PDF, whose parameters are chosen in order to best fit our measurements.

The error model has been defined starting from [140] as a multimodal PDF. We can formulate

it as follows:

p(Δr ;θ) = pN (Δr ) ·PL +plnN (Δr −μN ) · (1−PL) (A.2)

where p(Δr ;θ) indicates the probability density function of measuring an error Δr , pN (·) is

a normal distribution of mean μN and variance σN , plnN (·) is a log-normal distribution

of mean μlnN and variance σlnN . The value PL is in [0,1] and sets the balance between the

normal and the log-normal components. Notice that the log-normal distribution is translated
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Figure A.1 – Examples of error PDF obtained by choosing the parameters of our error model as
θ1 = [0.5,0.08,0.1,0.65,0.04] (red) and θ2 = [0.25,0.15,0.1,0.65,0.4] (blue). The red PDF describes
the error in an area much more affected by multipath phenomena than the blue one. The red plot
is also the PDF of the UR error measured in an experiment described in Section A.4.

to the right by μN . Since μN is the mean of the normal distribution, we can say that it acts

as a horizontal bias for the whole PDF. This additional degree of freedom has been added to

allow for fitting our measurements to the model more closely.

In simple words, the explanation of this model is the following: the normal part represents the

smaller errors measured on the direct path UWB signals; the log-normal part represents the

much larger errors that exist due to the multi-path phenomena. Two examples of realizations

of our error model are shown in Figure A.1.

θ is the vector of the parameters of our error model and is defined as:

θ = [μN ,σN ,μlnN ,σlnN ,PL]T (A.3)

Now it should be clear that the error map we want to achieve is in the form of a set of parameters

θu,v , where u = 1. . . Na specifies one of the Na anchors and v = 1. . . Nr indicates the region

index, with Nr the total number of regions.

In order to estimate θu,v , we only consider the fingerprinting measurements taken in the

region Rv relative to the anchor Au . Then, we follow the curve fitting approach presented

in [140], adapted by us to suit the UR case, instead of CSR. This approach is a heuristic that

estimates the parameters of our error model according to the selected measurements. More

details can be found in [106][136].
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A.2.3 Localization

The third step focuses on localization. This is the only online step of our method. A person

walks on a predefined path at constant speed (∼5 km/h) with a tag on his head. The position of

the tag on the top of the head has been chosen after an extensive series of measurements and

tests [136], where it was concluded to be the best choice, since it minimizes the probability

of the tag being covered by parts of the human body. The tag continuously measures the

distance to the four anchors at an update rate of 4 Hz. Its measurements are read through

its serial interface and stored for later processing. According to [106], an estimate of the tag’s

position is obtained using MCL [139]. This algorithm uses a particle filter where each particle

x [i ] represents a position in three dimensions and its weight w [i ] is computed considering the

UWB measurement and the error map. We configured the height of the particles according

to the person’s height, which in our case is 170 cm. The number of particles used by the

particle filter M , is configurable and sets the balance between performance and computational

complexity. In our case, 500 particles have been used.

Algorithm 16 shows how MCL works in our application. First, the Initialization is per-

formed by sampling the position of the particles from a bidimensional Gaussian distribution

centered on the supposed person’s starting point. If the starting point is unknown, MCL can

be initialized by spreading the particles uniformly over the environment. After initialization

each particle has weight w0 = 1/M . Then, the Update function uses the set of UR measures

Mt = {rt ,1 . . .rt ,Na }, taken at time t from all the anchors, to update the weights of the particles

according to the following equations:

Δrt ,u = |Au −x [i ]
t |− rt ,u (A.4)

w [i ]
t =

Na∏
u=1

p(Δrt ,u ;θu,v ) (A.5)

where Au is the known position of the u-th anchor and θu,v is the vector of the parameters

that characterize the error PDF associated to the same u-th anchor in the region Rv , given

x[i ]
t ∈ Rv . At the end of the Update function, the position Up of the person is estimated as the

weighted average of all the particles.

The next step is the Sample function: a resampling algorithm is used to select which particles

to keep and which to discard, according to their weight. In our case, we used the low variance

resampling algorithm explained in [141].

Finally, the Move function corresponds to the prediction step of MCL, which aims at changing

the position of the particles according to the predicted next position of the tracked object. If

available, for instance on a robotic platform, odometry data are used in this step: the particles

are moved according to the measured translation of the robot. The lack of odometry data

makes people localization much more challenging. Although several methods such as the

Kalman Filter (KF) can be used to predict the movement of a person even without external
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Algorithm 16 MCL algorithm adopting fingerprinting in its Update step

Initialization

for t = 1 to ∞ do
X t =

for i = 1 to M do

w [i ]
t ← Update(Mt ,x[i ]

t )

X t ← X t ∪〈x[i ]
t , w [i ]

t 〉
Up =

∑
i w [i ]x[i ]∑

i w [i ]

for i = 1 to M do
x[i ]

t ← Sample(X t )

x[i ]
t+1 ← Move(x[i ]

t )

data, in our case we consider the movement of the person as completely random, but limited

in speed. For this reason the Move function simply applies a zero-mean Gaussian noise to the

2D position of each particle. The variance σ2 of this noise has to be chosen according to the

sample rate of the algorithm and the supposed maximum speed of the person. In our case we

set σ2 = 0.25.

In order to test the improvements brought by the use of the fingerprinting data, the localization

is computed independently using directly the trilateration algorithm explained in Section A.1

(without fingerprinting) and the MCL (calibrated with fingerprinting). The same UWB UR

measurements collected in our tests were used as input for both algorithms.

A.3 Setup and Experiments

We considered two different scenarios of incrementally increasing complexity and scope (see

Figure A.2). For simplicity, we will call them (E1) and (E2). The area of the testing environment

for (E1) is approximately 100 m2 while for (E2) it is three times larger. In some locations of

(E2) we have up to four walls between the tag and an anchor. This is an extremely challenging

condition for a radio-based localization system. Moreover, in (E2) we have on the left-hand

side of the corridor (refer to the scheme in Figure A.2) several metallic cabinets, that challenge

the UWB system even more. However, all the walls are non-bearing.

We also tested the case of bearing walls in the line between a tag and an anchor, and we noticed

that this condition makes the performance of the system drastically decrease, probably due to

the metallic structural elements they have inside. The choice of such realistic scenarios is given

by our goal of considering a real use case with a limited number of anchors in order to keep the

cost and complexity of the overall system low, even though we know it has a negative impact

on the localization accuracy. The anchors, indicated in the figures with letter A, have been

installed at an height of 2.51 m, close to the ceiling. Their position has been measured in our

coordinate system very accurately with the help of a laser meter. For the fingerprinting phase,

the robot has been programmed in order to autonomously scan the environment. Roughly

1200 measurements per square meter have been taken, at 12 uniformly distributed orientations
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(b) E1 - MCL calibrated with fingerprints
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(c) E2 - Trilateration algorithm
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(d) E2 - MCL calibrated with fingerprints

Figure A.2 – Tracking results on first (a-b) and second (c-d) scenarios using the trilateration (a-
c) and MCL calibrated with fingerprints (b-d). The blue line is the path of the walking person,
while the red lines show the error between the location estimates and their corresponding true
positions. Notice how, particularly in the second segment of the path, the accuracy is higher using
the fingerprinting-calibrated method.

around the vertical axis. The robot’s self-localization feature has fundamental importance in

our work. We underline that AMCL has proven to be very robust against unknown obstacles

like people (the laser range finders can detect only the legs), bags on the floor and closed/open

doors. In the environment of our tests we measured an average self-localization accuracy in

the order of 20 cm.

During the localization phase a person was walking with a tag on his head along the path
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indicated by the blue line. In order to record the UR measurements outputted by the tag, the

person was walking carrying a bag with a laptop connected via USB to the tag. The ground

truth of the person has been computed by precisely measuring the time taken by the person to

walk between the various checkpoints at constant speed. Although, it is theoretically possible

to compute the localization estimate online, we did it offline on the basis of the measurements

collected.

To have an idea about the accuracy of camera-based tracking solutions compared to the UWB

localization methods used in this study, we have made assessments using a marker-based

tracking system (SwisTrack) [105] with an overhead camera, and a marker-less solution used

in [142] with an omni-directional ceiling mounted-camera. The covering area of the two

methods were substantially smaller for a single camera compared to the area covered by the

UWB solution. A realistic estimate of the maximum error across the entire arena is in the

order of 0.05 m and 0.2 m for the aforementioned marker-based and marker-less solutions,

respectively (refer to Section A.4 for comparison). An obvious benefit of using UWB systems

is the ability to overcome the field of view limitations of camera-based tracking systems. In

this study, we were only allowed to use cameras in the laboratory area due to privacy issues.

In general, it can happen in many cases that the entire environment cannot be covered by

overhead cameras and hence UWB systems have a significant advantage therein.

A.4 Results

Figure A.2a and A.2b compare the results obtained in the first scenario using the trilateration

algorithm (a) and MCL calibrated through fingerprinting (b). The red lines show the corres-

pondence between the true position of the person and the estimated one. Let us start our

analysis of the results considering the first environment (E1). We can clearly see that, using

trilateration, in the second segment of the path the error is particularly high, reaching the

maximum value of 3.75 m, while in the rest of the path the average error is 0.36 m.

The red curve of Figure A.1 shows, as resulted by the fingerprinting process, the UR error

PDF measured in the second segment of the path in (E1), with respect to anchor D. The

interpretation of this PDF is that in the second segment of the path, the distance between the

tag and the anchor D is measured with a high positive bias. This behavior is probably due to

the presence of multiple walls on the direct path between these two transceivers. This fact also

justifies the right bias of the location estimates, as observed in Figure A.2a.

Using the MCL algorithm that exploits the fingerprinting data, we obtained the results shown

in Figure A.2b. In particular, we can see that we had a great improvement in the second

segment of the path, were the right bias has disappeared and the error has reached the same

level as the rest of the path. Considering the whole path, the mean error decreased from 0.51 m

to 0.25 m, that is roughly 50% of improvement. However, given the non-uniform distribution

of the error, in Figure A.3 we show its Cumulative Distribution Function (CDF), which gives a

better overview of the improvements achieved.
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Figure A.3 – CDF of the error measured in the two scenarios (E1,E2) using the trilateration al-
gorithm and MCL calibrated via robotic fingerprinting. Notice that with the latter method, the
errors above one meter are completely cancelled.

The error CDF shows that our method is less effective against errors lower than 0.30 m, while

it works very well against higher errors. This behavior is due to approximations introduced by

our general UR error model, the usage of the ground-truth provided by AMCL, the assumption

of Gaussian uniform motion model of the human, limited number of measurements in the fin-

gerprinting phase, etc. For many applications, such as people escorting with robots, localizing

a person in a circle of 0.50 m radius is sufficient. Considering this value as our threshold, we

measured that our method increased the number of measurements below this threshold from

70% to 98% using only a single tag.

The results for the second scenario, are shown in Figure A.2c and A.2d. The anchors are still

indicated with the letter “A”. We just considered the central corridor and not the rooms, since

it is sufficiently complex for our needs.

Comparing the results obtained using the trilateration algorithm and fingerprinting-calibrated

MCL, we noticed that, similar to the first scenario, most of the improvements have been

brought in the areas which were affected by higher errors: in our case at the top and bottom

parts of the map. In the central part of the map, we measured better performances given the

lower number of obstacles in the tag-anchor line. The mean error, along the whole path, in the

trilateration and MCL cases are respectively 0.48 m and 0.25 m, confirming an improvement of

roughly 50%. The A.3 of the error for both the algorithms in this second scenario are shown as

the dotted lines, in Figure A.3. Notice that the use of fingerprinting-calibrated MCL made the

percentage of localization errors below 0.50 m increase from 76% to 94%. Table A.1 summarizes

the results discussed so far.

As previously pointed out, MCL is based on a particle filter, which gives the advantages of

setting the balance between performance and computational load simply by adjusting the

number of particles. In this scenario, we tested the localization algorithm with different num-

207



Appendix A. Case Study: UWB-Based Person Localization

Figure A.4 – Analysis of the performance of the MCL localization algorithm as a function of the
number of particles used in the particle filter for the second. Notice that increasing the number of
particles over one hundred does not significantly improve the performances.

Trilateration MCL + Fingerpr.
Average [m] <50cm Average [m] <50cm

E1 0.51 70% 0.25 98%
E2 0.48 76% 0.25 94%

Table A.1 – Statistics on measurement errors using the two algorithms in both environments.

ber of particles. According to the results shown in Figure A.4, the number of particles signi-

ficantly affects the performances for values lower than one hundred, while for higher values

the improvements tend to stabilize. Therefore, we chose 500 particles for our method, for

obtaining a good balance between computational cost and performance.
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This appendix details the gaze, greeting, requesting the human for help, and requesting the

human to move, interactive behaviors. We note that each flow chart is iterated over during the

time that a robot is active.

B.1 Gaze

The robot always gazes at a future way-point while it is moving. This is to help the human

understand what trajectory the robot is going to take. Thus, robot’s head will perform an

anticipatory motion to be aligned with a gaze point. This point is the closest way-point in the

robot’s trajectory that has a distance greater than 1.5 m from the current position of the robot.

If there is no such way-point, the robot will instead gaze towards its goal. We note that this

choice of gaze point has been made to achieve a behavior that looks natural by observation.

However, it can be further improved by performing studies on this particular aspect of the

robot. A limitation has been added to the gaze motion in order to prevent the head from

rotating too much when looking at the human, since it can be considered unnatural from the

human point of view if the robot head deviates too much from the body frame. Thus, the head

rotation angle is limited to ±60◦.

B.2 Greeting

Activation of each interaction can have different parametrization based on its importance. For

example, “ask for help” (when stuck) interaction, is enabled if the robot is less than 3 m away

from the human with any relative angle. On the other hand, the “greeting” interaction is only

triggered when the robot is facing the human (having a relative angle between −90◦ and +90◦),

and closer than 2 m. Figure B.1 depicts the flowchart of this behavior.
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Figure B.1 – Greeting interaction

B.3 Ask for Help

When the robot’s internal navigation state switches to stuck, it activates the ask for help

interaction shown in Figure B.2. There is another condition required for this interaction to

be activated based on the proxemics principle. The robot must be in the social space of the

human. In our implementation, the robot has to be within the 2 m radius of the human and

facing him. Therefore, the robot actively positions itself in this area to initiate the interaction

when possible.

B.4 Ask the Human to Move

If the comparison between the human-aware and human-agnostic paths outputs a maximum

distance between the way-points greater than a fixed threshold of 0.5 m, the robot will look for

the closest human in a predefined radius around the point of maximum path difference to

initiate interaction. If at least one such human is found, the motion vector will be transformed

to simple abstract instructions and the interaction illustrated in Figure B.3 will be triggered.

Similar to the previous interaction, the robot must be in the human’s social zone for initiating

interaction. This interaction aims to find a compromise between having to travel a large

distance and asking for human assistance.
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Figure B.2 – Ask for human help interaction when the navigation state of the robot changes to
“stuck”.

Figure B.3 – Ask to move interaction.

211





Glossary

AdaBoost Adaptive Boosting 38

AMCL Adaptive Monte Carlo Localization 34, 51, 70

ARBR Adaptive Risk-Based Replanning 127, 131

CBAA Consensus-Based Auction Algorithm 15, 85, 86

CBBA Consensus-Based Bundle Algorithm 15–17, 87

CDF Cumulative Distribution Function 206, 207

CSR Cable Synchronized Ranging 200, 202

DNN Deep Neural Networks 39

DWA Dynamic Window Approach 12, 34, 52, 53

FMM Fast Marching Method 11, 12, 34, 52, 53, 55, 65, 68, 87,

99, 100

FOV Field Of View 29, 39, 136, 183, 186

HMM Hidden Markov Model 13

HMRI Human-Multi-Robot Interaction 167, 169, 187

HOG Histogram of Oriented Gradients 34, 38, 41

HRI Human Robot Interaction 4, 10, 17, 19, 34, 167, 168, 170,

173, 175, 176, 178, 193, 196, 197

IPOL Instituto Portugues de Oncologia de Lisboa 32, 101

KF Kalman Filter 13, 38, 58, 118, 203

LOS Line-of-Sight 199

LRF Laser Range Finder 30, 34, 35

MCL Monte Carlo Localization algorithm 200, 203, 204, 207

MCMC Markov Chain Monte Carlo 67–69, 75

MCS Motion Capture System 37, 40, 42, 45, 77, 103, 183, 186

MDP Markov Decision Process 16

MOnarCH Multi-Robot Cognitive Systems Operating in

Hospitals

24, 30, 32–34, 36, 40, 42, 52, 169

213



Glossary

MRS Multi-Robot Systems 4, 14, 18, 19, 87, 168, 176, 193,

195

MRTA Multi-Robot Task Allocation 14–16, 18–20, 22–24, 81, 96, 101,

167, 168, 170, 173, 175, 176, 195–

198

NLOS Non-Line-of-Sight 37, 65, 199

ODE Ordinary Differential Equation 52

PDF Probability Density Function 201–203, 206

PF Particle Filter 51

POMDP Partially Observable Markov Decision Process 16, 20

RMSE Root Mean Squared Error 71

ROS Robot Operating System 27, 30, 33, 34, 36, 40, 51, 52, 55,

57, 65, 102

RTLS Real Time Location System 38, 199

SFM Social Force Model 17

SLAM Simultaneous Localization and Mapping 51, 52

SPENCER Social situation-aware PErceptioN and action

for CognitivE Robots

3

SVM Support Vector Machine 13, 38

UR Unsynchronized Ranging 199–204

UWB Ultra-Wideband 24, 37, 38, 45, 65, 198–200, 202–

204, 206

214



Bibliography

[1] T. Kruse, A. K. Pandey, R. Alami and A. Kirsch, “Human-aware robot navigation: a

survey”, Robotics and Autonomous Systems, vol. 61, no. 12, pp. 1726 –1743, 2013.

[2] D. Vasquez, P. Stein, J. Rios-Martinez, A. Escobedo, A. Spalanzani and C. Laugier, “Hu-

man aware navigation for assistive robotics”, in Experimental Robotics, 2013, pp. 449–

462.

[3] H. Khambhaita and R. Alami, “Assessing the social criteria for human-robot collabor-

ative navigation: a comparison of human-aware navigation planners”, in IEEE Interna-

tional Symposium on Robot and Human Interactive Communication, 2017, pp. 1140

–1145.
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F. Wille and K. Franinović, “Which robot behavior can motivate children to tidy up

their toys?: design and evaluation of ranger”, in Proceedings of the 2014 ACM/IEEE

International Conference on Human-robot Interaction, 2014, pp. 439–446.

[102] S. Magnenat, P. Rétornaz, M. Bonani, V. Longchamp and F. Mondada, “ASEBA: A Modu-

lar Architecture for Event-Based Control of Complex Robots”, IEEE/ASME Transactions

on Mechatronics, vol. 16, no. 2, pp. 321–329, 2011.

[103] J. Messias, R. Ventura, P. Lima, J. Sequeira, P. Alvito, C. Marques and P. Carriço, “A robotic

platform for edutainment activities in a pediatric hospital”, in IEEE International

Conference on Autonomous Robot Systems and Competitions,, 2014, pp. 193–198.

[104] O. Michel, “Webots: symbiosis between virtual and real mobile robots”, in Virtual

Worlds, Springer, 1998, pp. 254–263.

[105] T. Lochmatter, P. Roduit, C. Cianci, N. Correll, J. Jacot and A. Martinoli, “Swistrack-

a flexible open source tracking software for multi-agent systems”, in 2008 IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2008, pp. 4004–4010.

[106] A. Prorok and A. Martinoli, “Accurate indoor localization with Ultra-Wide Band using

spatial models and collaboration”, The International Journal of Robotics Research, vol.

33, no. 4, pp. 547–568, 2014.

[107] A. Canepa, Z. Talebpour and A. Martinoli, “Automatic calibration of ultra wide band

tracking systems using a mobile robot: a person localization case-study”, in The Inter-

national Conference on Indoor Positioning and Indoor Navigation, 2017, pp. 1–8.

[108] K. O. Arras, O. M. Mozos and W. Burgard, “Using boosted features for the detection

of people in 2d range data”, in 2007 IEEE International Conference on Robotics and

Automation,, 2007, pp. 3402–3407.

[109] A. P. Gritti, O. Tarabini, J. Guzzi, G. Di Caro, V. Caglioti, L. M. Gambardella, A. Giusti et

al., “Kinect-based people detection and tracking from small-footprint ground robots”,

in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems,, 2014,

pp. 4096–4103.

[110] G. Grisetti, C. Stachniss and W. Burgard, “Improved techniques for grid mapping with

rao-blackwellized particle filters”, IEEE Transactions on Robotics,, vol. 23, no. 1, pp. 34–

46, 2007.

[111] D. Fox, “Adapting the sample size in particle filters through kld-sampling”, The inter-

national Journal of robotics research, vol. 22, no. 12, pp. 985–1003, 2003.

[112] E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey and K. Konolige, “The office mara-

thon: robust navigation in an indoor office environment”, in International Conference

on Robotics and Automation, 2010.

223



Bibliography

[113] J. Sequeira, P. Lima, A. Saffiotti, V. Gonzalez-Pacheco and M. Salichs, “MOnarCH: multi-

robot cognitive systems operating in hospitals”, in ICRA workshop on many robot

systems, 2013.

[114] D. V. Lu, D. Hershberger and W. D. Smart, “Layered Costmaps for Context-Sensitive

Navigation”, in IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), Chicago, USA, 2014.

[115] G. Englebienne and B. Kröse, “Fast bayesian people detection”, in Proceedings of the

22nd benelux AI conference, 2010.

[116] Z. Khan, T. Balch and F. Dellaert, “An MCMC-based particle filter for tracking multiple

interacting targets”, in Computer Vision-ECCV, Springer, 2004, pp. 279–290.

[117] J. Berclaz, F. Fleuret and P. Fua, “Principled detection-by-classification from multiple

views”, in Proceedings of the International Conference on Computer Vision Theory and

Applications, vol. 2, 2008, pp. 375–382.

[118] J. A. Hartigan and M. A. Wong, “Algorithm as 136: a k-means clustering algorithm”,

Journal of the Royal Statistical Society. Series C (Applied Statistics), vol. 28, no. 1, pp. 100–

108, 1979.

[119] D. Comaniciu and P. Meer, “Mean shift: a robust approach toward feature space ana-

lysis”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 5,

pp. 603–619, 2002.

[120] E. A. Sisbot, L. F. Marin-Urias, X. Broquere, D. Sidobre and R. Alami, “Synthesizing robot

motions adapted to human presence”, International Journal of Social Robotics, vol. 2,

no. 3, pp. 329–343, 2010.

[121] J. M. Palacios-Gasós, E. Montijano, C. Sagüés and S. Llorente, “Distributed coverage

estimation and control for multirobot persistent tasks”, IEEE Transactions on Robotics,

vol. 32, no. 6, pp. 1444–1460, 2016.

[122] J. M. Palacios-Gasós, Z. Talebpour, E. Montijano, C. Sagues and A. Martinoli, “Optimal

path planning and coverage control for multi-robot persistent coverage in environ-

ments with obstacles”, in International Conference on Robotics and Automation, 2017.

[123] S. Vinga, Convolution integrals of normal distribution functions, 2004.

[124] D. Cameron, E. C. Collins, A. Chua, S. Fernando, O. McAree, U. Martinez-Hernandez,

J. M. Aitken, L. Boorman and J. Law, “Help! I can’t reach the buttons: facilitating help-

ing behaviors towards robots”, in Conference on Biomimetic and Biohybrid Systems,

Springer, 2015, pp. 354–358.

[125] S. Rosenthal and M. M. Veloso, “Mobile robot planning to seek help with spatially-

situated tasks.”, in AAAI, vol. 4, 2012, p. 1.

224



Bibliography

[126] M. Salem, G. Lakatos, F. Amirabdollahian and K. Dautenhahn, “Would you trust a

(faulty) robot?: effects of error, task type and personality on human-robot cooperation

and trust”, in Proceedings of the Tenth Annual ACM/IEEE International Conference on

Human-Robot Interaction, ACM, 2015, pp. 141–148.

[127] V. Srinivasan and R. R. Murphy, “A survey of social gaze”, in 6th ACM/IEEE International

Conference on Human-Robot Interaction, IEEE, 2011, pp. 253–254.

[128] D. Bernardin, H. Kadone, D. Bennequin, T. Sugar, M. Zaoui and A. Berthoz, “Gaze

anticipation during human locomotion”, Experimental Brain Research, vol. 223, no. 1,

pp. 65–78, 2012.

[129] M. Vázquez, E. J. Carter, B. McDorman, J. Forlizzi, A. Steinfeld and S. E. Hudson, “To-

wards robot autonomy in group conversations: understanding the effects of body

orientation and gaze”, in Proceedings of the 2017 ACM/IEEE International Conference

on Human-Robot Interaction, ACM, 2017, pp. 42–52.

[130] A. Pörtner, L. Schröder, R. Rasch, D. Sprute, M. Hoffmann and M. König, “The power of

color: A study on the effective use of colored light in human-robot interaction”, CoRR,

vol. abs/1802.07557, 2018. arXiv: 1802.07557.

[131] K. Baraka and M. M. Veloso, “Mobile service robot state revealing through expressive

lights: formalism, design, and evaluation”, International Journal of Social Robotics, vol.

10, no. 1, pp. 65–92, 2018.

[132] S. Rosenthal, S. P. Selvaraj and M. M. Veloso, “Verbalization: narration of autonomous

robot experience.”, in IJCAI, 2016, pp. 862–868.

[133] A. Steinfeld, T. Fong, D. Kaber, M. Lewis, J. Scholtz, A. Schultz and M. Goodrich, “Com-

mon metrics for human-robot interaction”, in Proceedings of the 1st ACM SIGCHI/S-

IGART Conference on Human-robot Interaction, ser. HRI ’06, Salt Lake City, Utah, USA:

ACM, 2006, pp. 33–40.

[134] M. B. Dias, B. Kannan, B. Browning, E. Jones, B. Argall, M. F. Dias, M. B. Zinck, M. Veloso

and A. T. Stentz, “Sliding autonomy for peer-to-peer human-robot teams”, Carnegie

Mellon University, Pittsburgh, PA, Tech. Rep., 2008.

[135] B. Sellner, F. W. Heger, L. M. Hiatt, R. Simmons and S. Singh, “Coordinated multiagent

teams and sliding autonomy for large-scale assembly”, Proceedings of the IEEE Special

Issue on Multi-Robot Systems, vol. 94, no. 7, pp. 1425–1444, 2006.

[136] A. Canepa, “Methods for ultra wide band indoor localization using robotic finger-

printing in complex environments”, Master’s thesis, Politecnico di Torino and École

Polytechnique Fédérale de Lausanne, DISAL-MP26, 2015.

[137] A. R. J. Ruiz and F. S. Granja, “Comparing Ubisense, BeSpoon, and DecaWave UWB

location systems: indoor performance analysis”, IEEE Transactions on Instrumentation

and Measurement, 2017.

225



Bibliography

[138] C. Zhang, M. Kuhn, B. Merkl, A. E. Fathy and M. Mahfouz, “Accurate uwb indoor

localization system utilizing time difference of arrival approach”, in IEEE Radio and

Wireless Symposium, 2006.

[139] S. Thrun, W. Burgard and D. Fox, Probabilistic robotics. MIT press, 2005.

[140] A. Prorok, P. Tomé and A. Martinoli, “Accommodation of NLOS for ultra-wideband

TDOA localization in single and multi-robot systems”, in Proceedings of the Interna-

tional Conference on Indoor Positioning and Indoor Navigation, 2011.

[141] S. Thrun, W. Burgard and D. Fox, Probabilistic Robotics. MIT press, 2005.

[142] Z. Talebpour, D. Viswanathan, R. Ventura, G. Englebienne and A. Martinoli, “Incorpor-

ating perception uncertainty in human-aware navigation: a comparative study”, in

IEEE Int. Symp. on Robot and Human Interactive Communication, 2016.

226



Curriculum Vitae

Zeynab Talebpour

Education

2013-2018 Ph.D. in Robotics, Control and Intelligent Systems

Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

2009-2012 M.Sc in Machine Intelligence and Robotics

University of Tehran, Iran

2005-2009 B.Sc in Computer Software Engineering

University of Tehran, Iran

Experience

2012 Research Intern

DISAL Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

2009-2011 Part-time Web Developer

Tebyan Corporation, Tehran, Iran

2009 Engineering Intern

Tebyan Corporation, Tehran, Iran

227



Honors and Awards

2018 ABB Award for IROS 2018 best student paper finalist

2012 University of Tehran machine intelligence and robotics award for the best

M.Sc. graduation grade

2009 University of Tehran M.Sc. studies scholarship

2009 University of Tehran computer engineering award for B.Sc. graduation grade,

ranked 3rd

2004 PETRONAS B.Sc. studies scholarship, international talent program

Publications

Journal Articles

1. Z. Talebpour and A. Martinoli. “Adaptive Risk-Based Replanning for Social Robots with Limited

Local Perception.” IEEE Robotics and Automation Letters (RA-L 2019), to be submitted.

Refereed Conference Proceedings

1. Z. Talebpour and A. Martinoli. “Risk-Based Human-Aware Multi-Robot Coordination in Dy-

namic Environments Shared with Humans.” IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS 2018), Madrid, Spain, 2018.

2. Z. Talebpour and A. Martinoli. “Multi-Robot Coordination in Dynamic Environments Shared

with Humans.” IEEE International Conference on Robotics and Automation (ICRA 2018), Bris-

bane, Queensland, Australia, 2018.

3. Z. Talebpour, S. Savarè and A. Martinoli. “Market-based Coordination in Dynamic Environments

Based on the Hoplites Framework.” The 2017 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS 2017), Vancouver, British Columbia, Canada, 2017.

4. A. Canepa, Z. Talebpour and A. Martinoli. “Automatic Calibration of Ultra Wide Band Tracking

Systems Using A Mobile Robot: A Person Localization Case-study.” The International Conference

on Indoor Positioning and Indoor Navigation (IPIN 2017), Sapporo, Japan, 2017.

5. J. M. Palacios-Gasos, Z. Talebpour, E. Montijano, C. Sagues and A. Martinoli. “Optimal Path

Planning and Coverage Control for Multi-Robot Persistent Coverage in Environments with

Obstacles.” International Conference on Robotics and Automation (ICRA 2017), Singapore, 2017.

6. Z. Talebpour, D. Viswanathan, R. Ventura, G. Englebienne and A. Martinoli. “Incorporating

Perception Uncertainty in Human-Aware Navigation: A Comparative Study.” International Sym-

posium on Robot and Human Interactive Communication (RO-MAN 2016), New York, USA,

2016.



7. Z. Talebpour, I. Navarro Oiza and A. Martinoli. “On-Board Human-Aware Navigation for In-

door Resource-Constrained Robots: A Case-Study with the Ranger.” IEEE/SICE International

Symposium on System Integration (SII 2015), Nagoya, Japan, 2015.

8. E. Di Mario, Z. Talebpour and A. Martinoli. “A Comparison of PSO and Reinforcement Learning

for Multi-Robot Obstacle Avoidance.” IEEE Congress on Evolutionary Computation (CEC 2013),

Cancun, México, 2013.

9. F. Farshidian, Z. Talebpour and M. Nili Ahmadabadi. “Budgeted Knowledge Transfer for State-

wise Heterogeneous RL Agents.” Neural Information Processing (ICONIP 2012), Springer Berlin

Heidelberg, 2012.

Project Supervision

1. Paul Prevel, Internship project (Summer 2018)

Human Involvement in Risk-Based Cooperative Human-aware Navigation Through HRI

2. Cyrill Baumann, Master Thesis (Spring 2018), Co-supervised with EiraTech, Ireland

Distributed vs Centralized Path-planning and Task Assignment Solutions for A Fleet of Mobile

Warehouse Robots

3. Paul Prevel, Semester project (Spring 2018)

Integrating Human-Robot Interaction (HRI) with Cooperative Human-aware Navigation for

Social Environment

4. Niclos Talabot, Semester project (Fall 2017)

Human-aware Navigation Using Kinect-based Active Perception

5. Paul Alderton, Semester project (Fall 2017)

Market-based Coordination for Social Robots in Highly Dynamic Environments Based on CBBA

6. Florian Maushart, Master Thesis (Spring 2017), Co-supervised with Grasp Laboratory, University

of Pennsylvania, USA

Intrusion Detection for Stochastic Task Allocation in Robot Swarms

7. Wilson Colin, Semester project (Fall 2016)

Human-aware Navigation in Populated Environment with Special Focus on Group Interactions

8. Alaa Bakr Maghrabi, Semester project (Fall 2016)

Ultra-Wide band Localization in for Person Tracking

9. Stefano Savarè, Semester project (Spring 2016)

Market-based Coordination for Social Robots in Human-populated Environments
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