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Abstract
This thesis presents a search for CP violation in the D0→ K +K −π+π− Cabibbo-suppressed

decay mode using an amplitude analysis. New sources of CP violation have to be discovered in

order to explain the matter-antimatter imbalance observed in the universe today. CP violation

has not been observed in charm decays up to now, where it is predicted by the Standard Model

to be very small. This provides a clean environment to look for physics beyond the Standard

Model, which could enhance CP violation in charm decays with, for example, the contribution

of new particles entering through loop diagrams.

This analysis is performed with a sample of proton-proton collisions recorded by LHCb during

2011 and 2012 at centre-of-mass energies of 7 and 8TeV, corresponding to an integrated

luminosity of 3.0 fb−1. LHCb is one of the four main experiments at CERN’s Large Hadron

Collider in Geneva in Switzerland. It is specialised in the study of CP violation in b- and

c-hadron decays.

The D0 candidates are selected from semileptonic b-hadron decays into D0μ−X final states.

More than 160 000 signal decays are studied, resulting in the most precise amplitude model of

this decay to date. This amplitude model, built assuming CP conservation, is used to perform

a search for CP violation. The result is compatible with no CP violation, with a sensitivity

ranging from 1% to 15% on each amplitude. This result is compatible with the Standard

Model predictions and is ruling out any large contribution from New Physics processes in the

D0→ K +K −π+π− decay mode.

The CP violation measurements presented here are statistically limited and will benefit from

the addition of the Run 2 sample collected between 2015 and 2018 at a centre-of-mass energy

of 13TeV, which is expected to correspond to an integrated luminosity of ∼6 fb−1. Beyond

the additional luminosity, the increase in energy as well as various tracking and trigger im-

provements make this dataset much more powerful than the Run 1 sample. This thesis also

presents one of the improvements made for Run 2, which is a more accurate description of

the magnetic field of the dipole magnet through the development of a new field map.

Keywords: particle physics, LHCb, amplitude analysis, CP violation, charm decays, magnetic

field.
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Résumé
Cette thèse présente une recherche de violation de CP par une analyse en amplitudes du mode

de désintégration D0 → K +K −π+π−. De nouvelles sources de violation de CP doivent être

découvertes afin d’expliquer l’asymétrie entre matière et antimatière observée aujourd’hui

dans l’univers. La violation de CP n’a pas encore été observée dans les désintégrations de

hadrons charmés, où le Modèle Standard prédit de très petits effets. Cet environnement est

propice à la recherche de physique au-delà du Modèle Standard, qui pourrait potentiellement

amplifier la violation de CP dans les désintégrations charmées à l’aide, par exemple, de

nouvelles particules contribuant à des diagrammes en boucle.

Cette analyse est réalisée avec un ensemble de collisions proton-proton enregistrées par LHCb

en 2011 et 2012 à une énergie dans le centre de masse de 7 et 8TeV, correspondant à une

luminosité intégrée de 3.0 fb−1. LHCb est l’une des quatre expériences principales au grand

collisionneur de hadrons du CERN à Genève en Suisse. Elle est spécialisée dans l’étude de la

violation de CP dans les désintégrations des hadrons b et c.

Les candidats D0 sont sélectionnés à partir de désintégrations semi-leptoniques de hadrons b

en états finaux D0μ−X . Plus de 160 000 désintégrations de signal sont étudiées, ce qui permet

l’élaboration du modèle d’amplitudes le plus précis à ce jour pour ce mode de désintégration.

Ce modèle d’amplitudes, construit en faisant l’hypothèse de conservation de CP , est utilisé

pour rechercher la violation de CP . Le résultat est compatible avec la conservation de CP ,

avec une sensibilité allant de 1% à 15% selon les amplitudes. Ce résultat est en accord avec les

prédictions du Modèle Standard et exclut toute grande contribution de Nouvelle Physique

dans le mode de désintégration D0→ K +K −π+π−.

Les mesures de violation de CP présentées ici sont limitées statistiquement et bénéficieront

de l’ajout de l’échantillon du Run 2 enregistré entre 2015 et 2018 à une énergie dans le centre

de masse de 13TeV, qui devrait correspondre à une luminosité intégrée de ∼6 fb−1. Au-delà de

la luminosité supplémentaire, l’augmentation en énergie ainsi que différentes améliorations

dans la reconstruction et le système de déclenchement rendent cet échantillon beaucoup plus

puissant que l’échantillon du Run 1. Cette thèse présente également l’une des améliorations

apportées pour le Run 2, qui est une description plus précise du champ magnétique de

l’aimant dipolaire à l’aide de l’élaboration d’une nouvelle carte de champ.

Mots-clés : physique des particules, LHCb, analyse en amplitudes, violation de CP , désinté-

grations de charme, champ magnétique.
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1 Introduction

Since the dawn of mankind, people have tried to explain and describe the world in which they

were living. They first tried to explain natural phenomena happening around them, such as

lightning or floods, as divine interventions. Over the centuries science moved from mystical

beliefs to philosophical thinking and only recently to modern scientific methods. Well-known

figures have helped to shape science as we know it today, such as Aristotle, Galileo, Newton,

Darwin, Einstein, Schrödinger, etc.

One quest among many has always been to find the smallest constituents of matter. The first

theory appeared in ancient Greece with the belief that everything was made of four elements:

earth, water, fire and air. With the advance in science smaller and smaller scales were achieved,

from small organisms to microbes, to molecules, to atoms until what we call today elementary

particles such as leptons and quarks.

Elementary particle physics is the study of matter and fundamental interactions at the sub-

atomic level. A very successful model developed in the last few decades, called the Standard

Model (SM), has been accurately describing all results of particle physics experiments. It

made many predictions that turned out to be true: the existence of the W and Z bosons, the

gluon, the charm and top quarks and the now famous Higgs boson. The Higgs boson has

been theorised in the 1960s and observed for the first time in 2012 at the LHC in ATLAS and

CMS [1, 2].

The SM has been extensively tested and some hints for physics beyond the SM (BSM), also

called New Physics (NP), have recently emerged [3–6], although still with low significance.

One way to search for BSM phenomena is to increase the energy of the particle colliders

to produce and observe directly new particles. Another approach, followed in this thesis

and more generally in flavour physics, is to look for NP indirectly affecting decays of known

particles.

Flavour physics is the study of interactions that act differently according to the flavour of

particles, which is the property that distinguishes the elementary particles. Flavour physics

1



Chapter 1. Introduction

is very interesting because it relates to several fundamental questions that are still open and

observations that are yet to be understood. For example the “SM flavour puzzle" refers to the

fact that a hierarchy has been observed between the quarks masses and mixing angles, but

not for the leptons. These observations have not been explained by any theory up to now.

Currently the leading experiment in flavour physics is LHCb. It is one of the four main

experiments of the Large Hadron Collider (LHC) at CERN in Geneva. The LHCb collaboration,

of which I am a member, involves around 800 physicists from 70 universities in 17 countries.

Such a worldwide effort is needed in order to push further the boundaries of our knowledge of

the universe.

1.1 The Standard Model

The Standard Model (SM) is currently the best verified theory of particle physics. The SM is a

quantum field theory, which describes three of the four forces of nature: the strong nuclear

force, the weak nuclear force and the electromagnetic force. The local gauge group of the SM

can be written as

SU(3)C ×SU(2)L ×U(1)Y , (1.1)

which describes the various gauge symmetries of the SM. SU(3)C , where C stands for colour,

represents the symmetry of the strong nuclear force. It is described by quantum chromody-

namics (QCD) and it contains eight generators that correspond to its eight mediators, the

gluons. SU(2)L ×U(1)Y represents the electroweak symmetry, where L stands for the coupling

to left-handed particles and Y stands for the hypercharge. Due to the spontaneous symmetry

breaking, the electroweak symmetry transforms into the electromagnetic symmetry U(1)em,

described by quantum electrodynamics (QED). The three generators of SU(2)L are the media-

tors of the weak force, the W ± and the Z 0, and the generator of the U(1)Y is the photon, the

mediator of the electromagnetic force.

There are therefore twelve gauge bosons, out of which nine are massless, the gluons and the

photon and three are massive, the W ± and the Z 0. These bosons are spin-1 particles. The

SM also contains twelve spin-1/2 particles, which are the elementary constituents of matter.

There are six leptons and six quarks, which are accompanied by their antimatter counterparts,

the antileptons and the antiquarks. The last elementary particle of the SM is the Higgs boson,

whose field gives mass to the other particles. All these particles, with their mass, charge and

spin are shown in Fig. 1.1.

2



2.2 MeV/c2 1.28 GeV/c2 173.1 GeV/c2

4.7 MeV/c2 96 MeV/c2

105.66 MeV/c2

Figure 1.1 – Elementary particles of the SM listed with their mass, charge and spin [7].

The SM lagrangian LSM can be written as

LSM =− 1

4
FμνFμν the three fundamental forces and their gauge bosons,

+ iψ /Dψ the interactions of the gauge bosons with the fermions,

+ ψi yi jψ jφ+h.c. how the fermions get their mass from the Higgs field, (1.2)

+ ∣∣Dμφ
∣∣2 how the weak gauge bosons get their mass from the Higgs field,

− V (φ) the Higgs field itself.

As powerful and successful the SM is, it does not describe everything. A lot more work needs

to be done in the field of particle physics. Some of the SM limitations are described below.

The SM does not describe gravity. Gravity is really well described by general relativity [8]. This

theory, however, works well only on large scales. It breaks down at the particle level, where a

quantum description of gravity is needed. Such a theory has not yet been established.

The big bang theory predicts that an equal amount of matter and antimatter has been created

at the beginning. However, the cosmological observations show that the whole observable

universe is made of matter today. One of the three necessary conditions to explain the disap-

pearance of antimatter is CP violation, as described by the famous conditions of Sakharov [9].

However the amount of CP violation allowed in the SM is nowhere near enough to explain

such a big difference today [10].

The SM contains 19 free parameters that need to be set from experiments: three masses for the

electron, the muon and the tau, six quark masses, three mixing angles and one CP violation

3



Chapter 1. Introduction

phase for the CKM matrix, three gauge couplings for the three symmetry groups, the QCD

vacuum angle, the Higgs vacuum expectation value and the Higgs mass. Some of these values

seem to be fine-tuned as they span over many orders of magnitude without apparent reasons.

Also there is no apparent symmetry in the hierarchy between the quark and lepton masses.

All these observations lead to believe that the SM is only part of the story and that a more

fundamental theory would make these parameters more natural.

Matter described by the SM, quarks and leptons, represent only 5% of the universe. Cosmo-

logical observations show that 27% of the universe is made of dark matter, that we have only

observed through indirect gravitational effects, and 68% is dark energy, that we know nothing

of [6, 11]. A lot of work is therefore invested in the search for dark matter. Some theorists think

however that these observations could be explained by a revised theory of gravity (e.g. the

MOND theory [12]).

The now well established phenomenon of neutrino flavour oscillations [5, 13, 14] implies that

neutrinos have non-zero masses. This is however not predicted by the SM and therefore shows

that the theory is not complete.

Finally, the SM assumes that lepton flavour universality is a fundamental symmetry of nature.

It means that the couplings of leptons to the gauge bosons should be independent of their

flavour. However recent measurements suggest that lepton flavour universality is perhaps

broken. For example, while the decay rates of B 0→ K (∗)e+e− and B 0→ K (∗)μ+μ− are predicted

to be almost equal by the SM, they may be different, as measured by LHCb [3, 15]. Similarly,

hints of a non-SM ratio between the decay rates of B 0→ D (∗)τ+ντ and B 0→ D (∗)μ+νμ have

been seen [4, 16]. In addition, small differences have been observed between the angular

distributions of B 0→ K ∗e+e− and B 0→ K ∗μ+μ− in Refs. [17, 18] where they are predicted to

be the same in the SM.

1.1.1 The Cabibbo-Kobayashi-Maskawa matrix

The Cabibbo-Kobayashi-Maskawa (CKM) matrix [19, 20] describes how the quarks of the SM

mix between each other. Since there are three generations of quarks, it is a 3×3 matrix,

VCKM =

⎛
⎜⎝

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vt s Vtb

⎞
⎟⎠ , (1.3)

where Vi j are complex values. Since the CKM matrix is unitary, only four parameters are

needed to describe this matrix: three mixing angles θ12,θ13,θ23 and one phase δ. This phase is

the only source of CP violation in the quark sector of the SM. The matrix can be written as

VCKM =

⎛
⎜⎝

c12c13 s12c13 s13e−iδ

−s12c23 −c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 −c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

⎞
⎟⎠ , (1.4)
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Figure 1.2 – Sketch of the CKM matrix illustrating the size of its various elements.

where ci j (si j ) stands for cosθi j (sinθi j ). Another useful parametrisation of the CKM matrix is

the Wolfenstein parametrisation [21]. It highlights the size of the various elements by providing

the matrix as an expansion in powers of the parameter λ= s12,

VCKM =

⎛
⎜⎝

1−λ2/2 λ Aλ3(ρ− iη)

−λ 1−λ2/2 Aλ2

Aλ3(1−ρ− iη) −Aλ2 1

⎞
⎟⎠+O (λ4) , (1.5)

where

A = s23

λ2 , ρ = cosδ
s13

λs23
, η= sinδ

s13

λs23
. (1.6)

One can see from this parametrisation that the CKM matrix is rather close to the identity with

small off-diagonal elements, as illustrated in Fig. 1.2. The original Wolfenstein parametrisation

can be extended to higher orders of λ [22], which is needed in precision measurements,

VCKM =

⎛
⎜⎜⎜⎜⎜⎜⎝

1− λ2

2
− λ4

8
λ Aλ3(ρ− iη)

−λ+ A2λ5

2

[
1−2

(
ρ+ iη

)]
1− λ2

2
− λ4

8

(
1+4A2

)
Aλ2

Aλ3(1−ρ− iη) −Aλ2 + Aλ4

2

[
1−2

(
ρ+ iη

)]
1− A2λ4

2

⎞
⎟⎟⎟⎟⎟⎟⎠
+O (λ6) , (1.7)

where

ρ = ρ

(
1− λ2

2

)
, η= η

(
1− λ2

2

)
. (1.8)

It is interesting to see that ρ+ iη=−Vud V ∗
ub

Vcd V ∗
cb

does not depend on a phase convention. Therefore,

ρ and η are often used to parametrise the complex plane in which the unitarity of the CKM

matrix is represented as triangles.
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Figure 1.3 – Left: sketch of the unitarity triangle in the complex plane [24]. Right: current best con-
straints on the unitary triangle [25].

Indeed, the unitarity of the CKM matrix means that

V †
CKMVCKM =VCKMV †

CKM = 1, (1.9)

which can be written as

∑
k=u,c,t

V ∗
ki Vk j = δi j , i , j = d , s,b , i ≤ j , (1.10)

∑
k=d ,s,b

V ∗
i kVj k = δi j , i , j = u,c, t , i ≤ j . (1.11)

Six of these conditions state that the sum of three complex numbers are equal to zero. This

can be visualised as a triangle in the complex plane. The six resulting triangles have the same

area, representing the amount of CP violation [23]. One of the triangles is often referred to as

“the unitarity triangle” and is linked to the condition

V ∗
ud Vub +V ∗

cd Vcb +V ∗
td Vtb = 0. (1.12)

This triangle is represented in Fig. 1.3, whose angles, α, β and γ, are well known CP violation

observables.

1.2 CP violation

The CP symmetry, which is the combination of the charge (C ) and the parity (P ) symmetries,

relates matter and antimatter. Together with the time reversal (T ) symmetry, they form the

C PT symmetry that is supposed to be an exact symmetry of nature holding for all physical

phenomena. CP on the other hand is not an exact symmetry and has been observed to be

violated in some processes. In the SM, there are three possible sources of CP violation. The

first source is the weak phase in the CKM matrix, which has been extensively studied in the

past few years. The second source is coming from the lepton counterpart of the CKM matrix,

the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix, since it is established that neutrinos
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1.2. CP violation

have mass and that they can mix. Finally, CP violation should also be allowed in strong decays.

Indeed, there is a term in the QCD Lagrangian that is able to violate CP . Experiments, however,

have put stringent limits on this source as no CP violation has been observed in strong decays

up to now. This is known as the strong CP problem.

Generally speaking, CP violation occurs when the probability of a certain process differs from

that of the CP-conjugated process, i.e.

Γ( |i 〉→ | f 〉) �= Γ( |i 〉→ | f 〉) , (1.13)

where |i 〉 is some initial state, | f 〉 some final state, and |i 〉 and | f 〉 their CP conjugates. CP

violation manifests itself in three different ways.

Direct CP violation

Let A f =
〈

f
∣∣H ∣∣i〉 and A f =

〈
f
∣∣∣H ∣∣∣i〉 be the total amplitudes of a decay and its CP conjugate

proceeding through an interaction described with an hamiltonian H . Direct CP violation, or

CP violation in the decay amplitudes, is defined by

∣∣∣∣∣∣
A f

A f

∣∣∣∣∣∣ �= 1. (1.14)

It can be shown that at least two interfering amplitudes are needed in order to obtain direct

CP violation. The total decay amplitude can be written as

A f =
∑
k
|ak |eiθk eiφk , (1.15)

where several complex amplitudes may contribute, each with a different modulus |ak |, weak

phase φk , and strong phase θk . The weak phase changes sign under CP whereas the strong

phase stays invariant. Therefore, the amplitude of the CP-conjugated decay is written as

A f =
∑
k
|ak |eiθk e−iφk . (1.16)

Equation 1.14 implies that |A f |2 − |A f |2 must be different from zero. If there is only one

amplitude contributing to the decay, this difference is trivially zero. Let’s consider a process

where two amplitudes contribute:

A f = |a1|ei (θ1+φ1) +|a2|ei (θ2+φ2) , A f = |a1|ei (θ1−φ1) +|a2|ei (θ2−φ2) . (1.17)

We obtain that

|A f |2 −|A f |2 =−4|a1||a2|sin(θ1 −θ2)sin
(
φ1 −φ2

)
(1.18)
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Chapter 1. Introduction

is nonzero when both the strong phase and the weak phase are different between the two

contributing amplitudes.

CP violation in mixing

CP violation in mixing is defined as

∣∣∣∣qp
∣∣∣∣ �= 1. (1.19)

Here p and q are two complex parameters defining the light (ML) and heavy (MH ) mass

eigenstates of a flavoured neutral meson,

|ML〉 = p |M 0〉+q |M 0〉 , (1.20)

|MH 〉 = p |M 0〉−q |M 0〉 , (1.21)

with the normalisation |p|2 +|q|2 = 1 and where M 0 and M
0

are the flavour eigenstates of the

neutral meson. CP violation in mixing is a difference of transition rate between the two flavour

eigenstates

Γ( |M 0〉→ |M 0〉) �= Γ( |M 0〉→ |M 0〉) . (1.22)

CP violation in interference between mixing and decay

The third manifestation of CP violation is caused by the interference between the mixing and

the decay amplitudes of a flavoured neutral meson. This happens when the meson can decay

to a certain final state f either directly, |M 0〉 → | f 〉, or first by mixing into its antiparticle,

|M 0〉→ |M 0〉→ | f 〉. The interference between the two paths can introduce CP violation. The

CP-violating observable is

Im

(
q

p

A f

A f

)
�= 0, (1.23)

which is non-zero in case of CP violation.

Experimental observations

CP violation was first observed in 1964 in the kaon system through the mixing between the K 0

and the K 0 [26]. Then direct CP violation has been discovered in the decay K → ππ [27–29].

More recently, CP violation has been observed in the decay of B mesons. It was first observed

in 2001 in the interference of mixing and decay of the B 0 [30, 31]. Then direct CP violation

was observed in the decay B 0→ K +π− [32, 33] and in B+ decays [34–36]. And finally direct CP

violation has been observed in the decay B 0
s → K +π− [37].

8



1.2. CP violation

Figure 1.4 – Sketch of the charm unitarity triangle in the complex plane. For clarity purposes, the
dimensions are not drawn to scale, the side V ∗

ubVcb should be even smaller.

1.2.1 CP violation in charm

CP violation in charm decays has not been observed yet. Its prediction from the SM is very

small, O (10−4 −10−3) [38–40]. This can be explained by the fact that all the initial and final

states particles of charmed hadron decays are made of quarks from the first two generations.

This implies that, at tree level, these interactions are governed by a 2×2 real matrix, where

no weak CP-violating phase exists. Access to the third generation can occur through loop

corrections with virtual b quarks. However, these contributions are very small due to the CKM

matrix elements V ∗
ubVcb . Indeed one can visualise this with the charm unitarity relation

V ∗
ud Vcd +V ∗

usVcs +V ∗
ubVcb = 0, (1.24)

linked to the almost flat charm unitarity triangle shown in Fig. 1.4.

Precise predictions of the SM are however very difficult to compute due to the dominance

of long-distance effects. Indeed short-distance effects (i.e. high-energy effects) can be com-

puted using perturbative theories, while long-distance effects (i.e. low-energy effects) are

non-perturbative QCD effects and therefore hard to compute.

NP processes could enhance CP violation in charm up to the percent level. Indeed, many

theories have been proposed to extend the SM in order to fix some of its issues. Some of them

have direct consequences on the amount of CP violation allowed in the charm sector. For

example, a fourth generation of quarks could enhance the SM predictions by a factor 40 [41].

Another example is the addition of a scalar doublet, which could enhance CP violation to the

percent level [42].

It is very important to study CP violation in charm decays. It is the only way to test this effect

in the up-type quark sector, which is complementary to studies in the B and in the kaon

systems. Furthermore, the fact that the SM contribution is small, means that there is a low

SM background for NP searches. This makes the charm sector one of the cleanest place to

look for NP [39, 43]. Finally, we have the opportunity to study such small effects thanks to

the very large samples of charm decays collected at LHCb. The most precise measurement

to date is the difference of integrated CP asymmetries computed between D0→ K +K − and
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D0→π+π− [44]

ΔACP = ACP (D0→ K +K −)− ACP (D0→π+π−) = (−1.0±0.8±0.3)×10−3 . (1.25)

1.3 The D0→ K +K −π+π− decay

1.3.1 Motivation

The determination of the resonant states contributing to multi-body D0 decays is very im-

portant to make precise predictions of quantities like mixing and CP violation, or to interpret

measurements of CP violation. The characterisation of such decays is also useful to perform

other measurements, such as the contributions of strong phases in the various regions of the

phase space. The D0→ K +K −π+π− decay1 studied in this thesis has some peculiarities that

make it interesting for CP violation searches.

The decay D0→ K +K −π+π− is singly Cabibbo-suppressed (SCS). It can be generated through

various diagrams (see Fig. 1.5), whose interference gives rise to a weak phase allowing CP

violation. New physics can enter through the loop diagrams and enhance CP violation [39].

Since CP violation is predicted by the SM to be very small in charm decays (see Sec. 1.2.1), any

significant CP violation observation would be a sign for new physics [45].

As shown by previous analyses [46, 47], the D0→ K +K −π+π− decay is dominated by ampli-

tudes of the type D0→V V ′ and D0→ AP , V and V ′ indicating vector mesons (J P = 1− where J

is the spin of the particle and P its parity), A an axial meson (J P = 1+) and P a pseudoscalar me-

son (J P = 0−), like D0→φ(1020)ρ(770), D0→ K ∗(892)0K ∗(892)0 or D0→ K1(1270)+K −. This

decay mode contains also P-odd amplitudes, for example D0→V V ′ with angular momentum

L = 1 between the two vector resonances, which could be particularly sensitive to CP violation.

Another point of interest is that both D0 and D0 can decay to K +K −π+π−, therefore allowing

for interference in the decay of mixed mesons, in which CP violation can potentially occur.

This could happen for example in the D0→ K1(1270)+K − amplitude, which is very suppressed

in the CP-conjugate decay of the D0 meson. Therefore the study of the time evolution of D0→
K1(1270)+K − and D0 → D0→ K1(1270)−K + decays could highlight effects of CP violation in

mixing.

Regarding B-meson decays, such final state is once more useful to study the effects of the

interference between D0 decaying directly and through mixing to the same final state. This

feature is used in the so-called GGSZ technique [48] to measure the angle γ of the unitarity

triangle with B±→ DK ± decays. In order to perform the analysis, however, a good amplitude

model is required [49]. The current combination of the γ measurement at LHCb already uses

the input from Cabibbo-favoured four-body D decays [50]. This thesis provides a model to

perform the analysis with the D0→ K +K −π+π− decay.

1Charge-conjugated states are implied throughout the document unless stated otherwise.
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Figure 1.5 – c → s and c → d tree diagrams (top), exchange diagram (bottom left) and loop diagram
(bottom right) of the D0→ K +K −π+π− decay.

Aside all of the above, studying the amplitude distributions of D0→ K +K −π+π− is an inter-

esting topic by itself, since the current LHCb data sample allows the determination of the

composition of such a complex decay with unprecedented precision.

1.3.2 State of the art

Several experiments have already studied D0→ K +K −π+π− decays with the aim of determin-

ing the corresponding amplitude model.

The first attempt was made by the FOCUS collaboration in 2004 with a dataset of ∼ 1300

decays [51]. This analysis showed that the dominant components are D0 → K1(1270)+K −,

D0→ K1(1400)+K − and D0→φ(1020)ρ0(770).

A more precise determination of the model underlying the decay has been made by the CLEO

collaboration in 2012 with a dataset of ∼ 3000 decays [46]. A first attempt at measuring CP

violation has also been performed. In 2017 an analysis of CLEO legacy data [47] with an

improved software for the model construction and fitting has superseded the previous results.

No CP violation has been observed, where a sensitivity of 10% to 50% has been achieved on

the various amplitudes. Their resulting model2 is shown in Table 1.1.

At LHCb, where a significantly larger dataset is available, more than 160 000 signal decays in

the Run 1 data have been used already to search for CP violation using T-odd correlations [52].

This analysis looked for global CP violation effects integrated over the phase space. The result

is compatible with no CP violation.

2The notation used in this document for the decay chains omits to indicate the strong decay of the two-
body resonances. The following decays are therefore implied throughout the document: φ(1020)0 → K+K−,
ρ(770)0→π+π−, ω(782)0→π+π−, K∗(892)0→ K+π− and K∗(1430)0→ K+π−.
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Table 1.1 – CLEO-legacy-data model for D0→ K +K −π+π− [47]. The first quoted uncertainty is statistical,
the second arises from systematic sources and the third arises from alternative models considered.

Contributing amplitude Fit fraction [%]

D0 → K1(1270)+K −,K1(1270)+ → K ∗(892)0π+ 5.5±1.4±2.7±2.0
D0 → K1(1270)+K −,K1(1270)+ → K ∗(1430)0π+ 6.1±1.2±1.3±1.3
D0 → K1(1270)+K −,K1(1270)+ → ρ(770)0K + 9.1±1.5±1.9±0.1
D0 → K1(1270)−K +,K1(1270)− → ρ(770)0K − 5.4±0.7±1.1±0.7
D0 → K1(1270)+K −,K1(1270)+ →ω(782)0K + 0.6±0.3±0.4±0.2
D0 → K1(1400)+K −,K1(1400)+ → K ∗(892)0K − 12.4±2.6±3.9±5.0
D0 → K ∗(1680)+K −,K ∗(1680)+ → K ∗(892)0π+ 3.6±0.8±1.0±0.3
D0 → [K ∗(892)0K ∗(892)0]L=0 4.5±0.8±1.1±1.7
D0 → [K ∗(892)0K ∗(892)0]L=1 3.6±0.7±1.4±0.5
D0 → [K ∗(892)0K ∗(892)0]L=2 4.0±0.6±0.7±0.2
D0 → [φ(1020)0ρ(770)0]L=0 28.1±1.3±1.7±0.3
D0 → [φ(1020)0ρ(770)0]L=1 1.6±0.3±0.6±0.3
D0 → [φ(1020)0ρ(770)0]L=2 1.7±0.4±0.4±0.2
D0→ K ∗(892)0[K −π+]L=0 5.8±1.2±2.1±0.0
D0→φ(1020)0[π+π−]L=0 4.0±0.6±1.3±1.7
D0→ [K +K −]L=0[π+π−]L=0 11.1±1.2±2.1±0.7

Sum 106.9±4.5±6.9±6.1

1.3.3 Analysis strategy

This analysis aims at a precise determination of the already known amplitudes contributing to

the D0→ K +K −π+π− decay, potential observations of previously unaccessible rare structures,

and a search for CP violation in the individual amplitudes. It is based on events collected

with the LHCb detector during Run 1 of the LHC (2011–2012), corresponding to an integrated

luminosity of approximately 3 fb−1.

Flavour-tagged D0 mesons can be obtained from two main sources: semileptonic B → D0�−X

decays using the electric charge of the lepton �− as tag, and strong D∗+→ D0π+ decays of

promptly produced D∗+ mesons using the electric charge of the soft π+ as tag. The sample of

D0 mesons from prompt D∗+ decays is slightly larger than the semileptonic sample; however,

in Run 1, the HLT2 trigger line uses an asymmetric reconstruction between the four tracks of

the D0 resulting in some inefficiencies in certain regions of the phase space. Indeed, the signal

candidates are built in sequence. First two tracks with a good vertex are identified. Then two

additional tracks are added to this vertex, one at a time. The issue is that the additional tracks

have looser selection cuts, therefore introducing an uneven momentum distribution in the

phase space of the decay [53].

Therefore, like in Ref. [52], this analysis aims at exploiting only the sample of D0→ K +K −π+π−

decays from B → D0μ−X decays, for which the trigger selection efficiency is fairly constant

over the full phase space. However, this analysis uses a re-optimized event selection with
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better performance than the one of Ref. [52].

In addition to an improved selection, this analysis aims at looking for CP violation in each

of the amplitudes contributing to the D0→ K +K −π+π− decay. This method gives additional

information compared to the integrated measurement performed in Ref. [52]. CP violation

could be diluted in some parts of phase space and enhanced in others. This would not be

detected with the model independent search, but could be observed in some amplitudes in

this analysis.

As a first step, in order to develop a “CP-averaged” model, the D0 candidates are transformed

through the CP symmetry to resemble the D0 candidates (i.e. to have the same distribution as

the D0 candidates, if there was no CP violation). The CP symmetry is applied as follows on

the three-momenta:

D0 → K +

�p1

K −

�p2

π+

�p3

π−

�p4

C P−−−→ D0 → K +

−�p2

K −

−�p1

π+

−�p4

π−

−�p3

(1.26)

After this transformation, the flavour tag is no longer used and a single model is fitted on

the data sample. This method allows to develop the signal model in a way that is blind to

possible CP-violation effects. This analysis uses a dataset more than 50 times larger than

CLEO, resulting in a more precise and complete model.

Once the model is finalised and that all the systematic uncertainties are computed, the data

sample is split according to the flavour tag. The D0 subsample (on which the CP transforma-

tion is applied) and the D0 subsample are fitted separately and each amplitude of the model is

compared to search for CP violation.

1.4 Outline of the document

In the following the LHCb experiment is presented in Chapter 2, where one section is dedicated

to the study of the magnetic field map that I performed during the first year of my PhD.

Then the selection of the D0→ K +K −π+π− decays is described in Chapter 3, followed by the

description of the amplitude analysis itself in Chapter 4. All the systematic uncertainties and

the cross-checks are described in Chapter 5 and finally, the developed signal model and the

results of the CP violation search are reported in Chapter 6. This amplitude analysis is the

main part of my thesis, on which I have worked for three years.

This thesis is based on two internal LHCb documents that I wrote to describe the study of the

magnetic field map [54] and the D0→ K +K −π+π− amplitude analysis [55].

13





2 The LHCb experiment

The LHC, based at CERN near Geneva in Switzerland, is the biggest and most powerful particle

accelerator ever built. Several acceleration stages are required in order to reach the nominal

energy for the two colliding proton beams. The protons are initially coming from hydrogen

atoms, which are ionised with an electrical field. The protons are first accelerated in a linear

accelerator up to 50MeV. They are then injected in a series of circular accelerators: the proton

synchrotron booster accelerates them up to 1.4GeV, the proton synchrotron up to 25GeV,

and the super proton synchrotron up to 450GeV. Finally, they are injected in the LHC, which

will accelerate them up to the design energy of 14TeV. The accelerator complex is shown in

Fig. 2.1.

Figure 2.1 – CERN accelerator complex [56].
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Figure 2.2 – Illustration of the LHCb detector along with the LHCb coordinate system.

The proton-proton (pp) collisions are happening at four points around the LHC, where CERN’s

four main experiments are located. ATLAS and CMS are two general-purpose detectors and

ALICE is studying quark-gluon plasma.

The LHCb detector [57, 58], shown in Fig. 2.2, is a single-arm forward spectrometer covering

the pseudorapidity range 2 < η< 5, designed for the study of particles containing b or c quarks.

The pseudorapidity is defined as

η≡− ln

[
tan

(
θ

2

)]
, (2.1)

where θ is the angle between the momentum of the particle and the beam axis. This pseudora-

pidity range corresponds to 0.8° < θ < 15.4°. This narrow forward range is motivated by the

fact that bb and cc pairs are mainly produced in the forward or backward regions as shown

on Fig. 2.3. Due to space limitations in the cavern inherited from DELPHI (one of the four

main experiments of LEP, the collider that preceded the LHC at CERN), the LHCb detector is

covering only one of these two regions.

The LHCb coordinate system is a right-handed system where the y axis is vertical, pointing

upwards, and the z axis is aligned with the beam pipe pointing from the interaction region

towards the spectrometer. The origin is placed at the nominal pp interaction point.

16



2.1. Data taking

0
/4π

/2π
/4π3

π

0

/4π

/2π

/4π3

π  [rad]1θ

 [rad]2θ

1θ

2θ

b

b

z

LHCb MC
 = 14 TeVs

Figure 2.3 – Production angle of b and b quarks at the LHC with a pp centre-of-mass energy of 14TeV.
The red region represents the LHCb coverage [59].

2.1 Data taking

2.1.1 Luminosity

The luminosity L is a very important parameter of an accelerator, it measures the ability to

produce interesting collision events. It is defined as the proportionality factor between the

rate of events d N
d t and the cross-section σ of a particular process:

d N

d t
= L σ . (2.2)

The unit of the luminosity is b−1 s−1. A related quantity is the integrated luminosity

Lint =
∫

L(t )d t , (2.3)

where the integral is taken over the data taking period. It directly relates to the number of

interesting events produced

N = Lint σ . (2.4)

The amount of data collected at a particle physics facility is therefore measured with the

integrated luminosity in b−1
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2.1.2 Data samples

The LHCb detector has recorded a data sample corresponding to an integrated luminosity

of 3.0 fb−1 in 2011 and 2012, i.e. during Run 1 of LHC’s operation. This data sample has

been recorded with a pp centre-of-mass energy of 7 and 8TeV in 2011 and 2012 respectively.

Using the total pp cross-section of ∼ 100 mb [60, 61], this corresponds to approximately

3×1014 collisions. The amplitude analysis presented in this document is based on this data

sample.

The Run 2 of LHC’s operation has started in 2015 and is currently ongoing. Between 2015 and

2017, a data sample corresponding to an integrated luminosity of 3.7 fb−1 has been collected.

By the end of 2018, the total dataset (Run 1 and Run 2) is expected to reach 9 to 10 fb−1. In

addition to this increase of integrated luminosity, the LHC has been running for the entire

Run 2 at a centre-of-mass energy of 13TeV. Since the bb and cc cross-sections roughly scale

with the centre-of-mass energy, Run 2 provides an additional increase in the statistics of

interesting events.

LHCb will undergo an important upgrade during the second long-shutdown (LS2) in 2019–

2020, where the vertex locator and the tracker will be replaced by new detectors. The current

plans for the future are to have Run 3 in 2021–2024 and Run 4 in 2026–2029, which are expected

to provide a dataset corresponding to an integrated luminosity of 50 fb−1. Speculative plans for

Run 5 and beyond is to reach an integrated luminosity of 300 fb−1 by the end of LHC operation

in ∼ 2037. This would require a second major upgrade of LHCb [62, 63].

The rest of this chapter describes the status of the experiment before any upgrade, as it was

used in Run 1.

2.1.3 Trigger

The online event selection is implemented in three levels, one hardware and two software

trigger levels [64]. The goal is to reduce the nominal bunch crossing rate of 40 MHz down to

a storable rate of 5 kHz by selecting interesting events containing b or c quarks (see Fig. 2.4).

The subdetectors involved in the trigger are described in Sec. 2.2.

2.1.3.1 Hardware trigger

The hardware trigger, called the level-0 trigger (L0), is based on electronic logical components

that need to compute a decision on whether to keep the event or not in less than 4μs. It uses

the VELO veto stations to reject events with a large number of pp collisions (large pile-up), the

SPD to reject events with a too large multiplicity and the calorimeters and the muon chambers

in order to select events with a particle of high transverse energy and momentum. The L0

trigger reduces the rate from 40 MHz down to 1 MHz.
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LHCb 2012 Trigger Diagram

Figure 2.4 – Trigger scheme used in 2012 [65].

2.1.3.2 Software triggers

The events that pass the hardware trigger are fully read out and forwarded to the software stage.

This stage is split in two, the high level trigger 1 (HLT1) and the high level trigger 2 (HLT2).

HLT1 is run first: it reconstructs partially the tracks and keeps events that contain at least one

track with high transverse momentum, a good separation from any primary vertex (PV) and a

good track quality in the overall tracking system. HLT2 performs a full event reconstruction,

including all charged tracks with pT > 300(500)MeV/c for 2012 (2011) data. HLT2 is composed

of exclusive and inclusive trigger lines, such as topological lines selecting events containing

vertices with two, three or four tracks. It also triggers the RICH reconstruction in specific cases.

The output of the software trigger stage, which has a rate of 5 kHz (3 kHz) in 2012 (2011), is

stored to disk.

2.2 Detectors

2.2.1 Vertex locator

The vertex locator (VELO) [66] is a high-precision silicon-strip detector surrounding the pp

interaction region. It has been designed to precisely disentangle the primary vertices, where

the pp collisions occur, from the secondary vertices, where the b and c hadrons decay. The

ability to locate the positions of the displaced vertices is a key feature of LHCb. The VELO

consists of a series of 21 modules arranged along the beam line (see Fig. 2.5), which provide
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Figure 2.5 – Top: view of the VELO in the xz plane at y = 0, with the position of all modules shown in
closed position. Bottom: front view of a VELO module in closed and open positions. [57].

the polar coordinates r and φ of the hits. The VELO provides a three-dimensional hit spatial

resolution of 5–25 μm. Each module is made of two halves surrounding the beam axis. They

are placed so close to the beam that they need to be retracted when the beams are not stable,

e.g. during injection. In the closed position, the first active silicon strips are 8.2 mm away from

the beam, which is the shortest distance between the LHC beam and any detector.

2.2.2 Tracker turicensis

The tracker turicensis (TT) [67] is a large-area silicon microstrip detector located between the

VELO and the magnet. It is 150 cm wide and 130 cm high and covers the whole acceptance

of the experiment. It consists of four layers arranged in two stations (TTa and TTb) in the

“x −u − v − x” pattern as shown in Fig. 2.6. The “x” layers have vertical strips, whereas the

“u” and “v” layers are tilted by ±5◦. This pattern reduces the number of ambiguous hits and,

together with the knowledge of the z position of the tracking layers, yields a three-dimensional

information on the hit position. The silicon sensors are 500μm thick, 9.64 cm wide and 9.44 cm

long. They carry 512 strips with a pitch (distance between strips) of 183μm. The achieved

spatial resolution is around 50μm.

2.2.3 Tracking stations

Three tracking stations [67] are the final elements of the tracking system of LHCb and are

located downstream of the magnet. They are called T1, T2 and T3 and they all consist of two

subdetectors, the inner tracker and the outer tracker. A front view is shown in Fig. 2.7.
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Figure 2.6 – Layout of the four layers of the TT [57]. Each small square represents a silicon sensor.

2.2.3.1 Inner tracker

The inner tracker (IT) [68] is made of four boxes arranged around the beam pipe as shown on

Fig. 2.8. Each of the four boxes is made of four layers arranged in the “x −u −v −x” pattern.

The IT is also a silicon microstrip detector and is designed to cope with a high density of

tracks. The silicon sensors are 7.6 cm wide and 11 cm long. The top and bottom boxes contain

one-sensor modules that are 320μm thick, whereas the C-side and A-side boxes contain two-

sensor modules that are 410μm thick. These different thicknesses were chosen to obtain a

high enough signal-to-noise ratio while limiting the materiel budget of the detector. The pitch

of the read-out strips is 198μm, providing a spatial resolution of about 50μm. Overall, the IT

contains 129 024 strips and has a hit efficiency above 99%.

2.2.3.2 Outer tracker

The outer tracker (OT) [67] is a detector based on straw drift tubes, covering most of the

area of the stations. The drift tubes are 2.4 m long and are filled with argon (70%), carbon

dioxide (28.5%) and oxygen (1.5%). The drift time achieved is below 50 ns and the resolution is

about 200μm. This technology was chosen because it is cheaper than silicon detectors and its

resolution is good enough for the low occupancy in this region of the acceptance. Each of the

stations is arranged in the “x −u − v −x” pattern as shown in Fig. 2.9.
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595

45
0

Figure 2.7 – Front view of one of the tracking stations, where the OT is shown in blue and the IT is
shown in orange [68]. The dimensions are in cm.

Figure 2.8 – Layout of the four boxes of an IT station around the beam pipe [57].
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Figure 2.9 – Layout of the three OT stations [67].

2.2.4 Ring imaging Cherenkov detectors

Different types of charged particles are distinguished using information from two ring-imaging

Cherenkov detectors (RICH) [69]. Cherenkov light is emitted by particles that travel faster than

light in the medium of the detector. The RICH 1 is located between the VELO and the TT. It

identifies low momentum particles (1–60GeV/c) and uses C4F10 as radiator. During Run 1, it

also used some aerogel to work below the Cherenkov threshold of the C4F10; it was however

found to be ineffective and removed for Run 2. The RICH 2 is located right after the tracking

stations. It identifies high momentum particles (15–100GeV/c) and uses CF4 as radiator.

The emission angle of the Cherenkov light θC depends on the velocity v of the traversing

particle and the refraction index of the medium n:

cos(θC) = c

nv
. (2.5)

As seen on Fig. 2.10, one can determine the particle type when θC and its momentum are

measured.

The design of the two RICH detectors are shown in Fig. 2.11. A set of spherical and plane mirros

are used to reflect and direct the Cherenkov light to the photodetectors, which are placed

outside the acceptance in order to reduce the material that the particles have to traverse.
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Figure 2.11 – Left: side view of RICH 1. Right: top view of RICH 2 [57].

2.2.5 Calorimeters

The calorimeters [70] are used to measure the energy and the position of the final state

particles, as well as to identify electrons, photons and hadrons. They contribute also to the

first level of trigger. The calorimeters are made of alternating layers of dense material (iron or

lead) and scintillating material. They rely on the fact that a particle traversing dense matter

will create showers, which will in turn excite the scintillator’s atoms. While deexciting, these

atoms will emit scintillation light that are transmitted to photomultipliers through wavelength-

shifting fibres. There are four subdetectors forming the calorimeter system: the scintillator pad

detector (SPD), the preshower (PS), the electromagnetic calorimeter (ECAL) and the hadronic

calorimeter (HCAL). The different energy depositions in these four detectors help to identify

the particles as shown in Fig. 2.12. The SPD identifies charged particles, the PS identifies
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Figure 2.12 – Simplified sketch of the energy deposits of an electron, a photon, a charged hadron, and a
neutral hadron in the LHCb calorimeter system [71].
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Figure 2.13 – Left: Segmentation of the SPD, PS and ECAL. Right: Segmentation of the HCAL [57]. One
quarter of the detector front face is shown, with the beam passing in the bottom left corner.

electromagnetic particles, the ECAL measures the energy of electromagnetic particles and the

HCAL measures the energy of hadrons. The SPD and the PS are separated by a 15 mm lead

layer that helps initiate the showers of the incoming electrons and photons.

In order to obtain spatial information, the calorimeters are segmented. The SPD, the PS and

the ECAL are divided in three regions and the HCAL in two regions (see Fig. 2.13). The ECAL is

dedicated to detect photons and electrons, which produce electromagnetic showers in the

detector. In order to fully contain the showers, its thickness corresponds to 25 electromagnetic

interaction lengths. Its energy resolution is σ(E)/E = 10%
�

E/GeV ⊕ 0.9%. The HCAL is

dedicated to measure the energy of hadrons, which have strong interaction in the detector.

Due to limited available space, the HCAL only has a thickness equivalent to 5.6 nuclear

interaction lengths. Its energy resolution is σ(E)/E = 69%
�

E/GeV⊕9%.

2.2.6 Muon chambers

Muons are very important at LHCb. In particular, they play a major role for the trigger and the

flavour tagging [72]. The muon chambers are arranged in five stations, one (M1) upstream

and the remaining four (M2–M5) downstream of the calorimeters. M2 to M5 are separated by

80 cm thick iron plates acting as absorbers. The minimum momentum needed for a muon to

cross the whole detector is 6GeV/c. The chambers are gaseous multi-wire proportional
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Figure 2.14 – Side view of the five muon chamber stations [57].

detectors containing 40% of argon, 55% of carbon dioxide and 5% of CF4. The inner region of

M1 uses a different technology due to the high occupancy of the detector; it uses gas electron

multiplier chambers. The muon chambers have a hit efficiency above 95%.

2.3 Dipole magnet and its magnetic field map

The LHCb magnet [58] is a warm dipole magnet with a bending power of about 4Tm. Its

maximum field intensity is 1.1T along the vertical axis, making the horizontal plane the

main bending plane. The magnetic field can be oriented upwards (MagUp) or downwards

(MagDown) at will. Data is collected with both polarities in equal proportions in order to

minimise the effect of the left-right detection asymmetries. The magnet is made of two coils

of conical saddle shape of 27 tons each mounted on a frame of 1500 tons (see Fig. 2.15).

By bending the charged particle trajectories, it allows a momentum measurement with a

resolution of about 0.5% for particles below 20GeV/c, rising to 1.0% for particles at 200GeV/c.

The resolution of the reconstructed mass of particles decaying to two charged tracks is about

0.5% up to the Υ masses.

In order to ensure a precise track reconstruction, a good momentum resolution, as well as a

good alignment of the detector, the magnetic field produced by the LHCb magnet needs to be

precisely known. This knowledge, expressed through a magnetic field map, is also needed in

the LHCb simulation software.

The magnetic field map was initially based on measurement campaigns held in 2005 and

2009 [73] along with numerical simulations [74]. It has then been corrected in 2011 with a new
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Figure 2.15 – Perspective view of the dipole magnet [57]. The dimensions are in mm.

set of measurements. The 2011 survey was made with the detector closed and with the beam

pipe installed, such that the measurements were limited to a scan in the y z plane at x = 22

cm [75].

This section is dedicated to the analysis of a new measurement campaign conducted in August

2014, during the first Long Shutdown of the LHC (LS1) while the TT, IT and OT were open

and the beam pipe section inside the magnet dismantled. Therefore, a larger coverage in

the x y plane compared to the 2011 measurements was possible (Fig. 2.16), allowing the

determination of possible field map asymmetries.

The measurement campaign was performed to improve the quality of the magnetic field map,

but also to verify the field configuration after the consolidation work on the magnet (exchange

of the protection layers between support clamps and coils) carried out in 2013.

A new map has been created by fitting the 2011 map to the new measurements. Various

validation tests have been performed in order to verify that the new map describes more

accurately the real magnetic field. This work has been documented in an internal note [54],

which forms the basis for this section.

2.3.1 Measurement setup

The setup used for the magnetic field measurements was designed and constructed by the

detector technologies group of the CERN physics departement. Figure 2.17 shows a photo-

graph of the bench as installed in the dipole magnet. A ∼ 2.1 m long horizontal bar carries

39 magnetic field sensor printed circuit boards (PCB) and three support rods for survey tar-
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Figure 2.16 – Illustration of the regions covered by the surveys in 2011 (vertical plane at x = 22 cm) and
2014 (volume covering 2m × 1m × 3.5m) inside the LHCb magnet.

Figure 2.17 – Left: Measurement setup inside the magnet. Right: closeup of the sensor bar.

gets. Each PCB contains three Siemens KSY44 Hall probes which are glued to a glass cube of

4×4×2.4 mm3 (Fig. 2.18, left). The sensors are estimated to have an orientation error of 1 mrad,

and the relative orientation error of Bx , By , Bz is estimated to be approximately 0.2 mrad. The

accuracy of the Hall probes after calibration is estimated to be approximately 2 G.

The sensor bar is attached to two vertical poles which are fixed to a “trolley” sitting on a

rail. The rail has holes in intervals of 50 mm which are used for locking the trolley during a

measurement by means of a pin. To move the trolley along the rail the pin is released by a

pneumatic system.

Measurements were made at 24 positions along the rail, with position 0 being the point closest

to RICH1 (z = 2.5m) and position 23 the one closest to the T stations (z = 6m). The spacing

Δz between neighbouring positions increases with z,
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Figure 2.18 – Left: Hall probes on the sensor PCB. Probe 1 is used for measuring Bx , probe 2 for
measuring By , and probe 3 for measuring Bz . Right: beam pipe support structure.

• positions 0 – 9: Δz ∼ 50 mm,

• positions 9 – 14: Δz ∼ 100 mm,

• positions 14 – 22: Δz ∼ 300 mm,

• positions 22 – 23: Δz ∼ 150 mm.

Scans were made at five vertical levels, with level 0 being the lowest one (y ∼−480 mm) and

level 4 the highest one (y ∼+480 mm). Positions 0 – 6 at vertical level 1 and vertical level 2

were not accessible due to the beam pipe and its support structure (Fig. 2.18, right).

Survey measurements are necessary to determine the coordinates of the magnetic field probes

in the global LHCb coordinate system. Supports for survey targets are mounted at the two

ends and the centre of the sensor bar. The coordinates of these targets were measured without

magnetic field at all 24 positions along the rail and for all five vertical levels, with the theodolite

placed in the IT/OT region. With the magnetic field turned on, the measurements were made

from the side of the LHCb detector. From this position, only a subset of the survey target

positions is visible, as shown in Fig. 2.19.

2.3.2 Fit strategy

It is assumed that the 2011 magnetic field map is correct up to global transformations. Seven

transformations of the magnetic field map are allowed in the fit: translations along the three

axes (Tx , Ty and Tz ), clockwise rotations around the three axes (Rx , Ry and Rz ) and a global

scale factor αSF, applied on each component of the magnetic field. The translations and

rotations put the map in the correct position and orientation whereas the global scale factor

takes into account small differences of the current in the coils. The three rotation matrices are
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Figure 2.19 – All positions of the bar during the measurements. In red are the positions that were
measured from the side with the magnetic field turned on and in blue are the ones measured without
magnetic field.

applied after the translations in the following order:

Rx Ry Rz =

⎛
⎜⎝

1 0 0

0 cosψ sinψ

0 −sinψ cosψ

⎞
⎟⎠
⎛
⎜⎝

cosθ 0 −sinθ

0 1 0

sinθ 0 cosθ

⎞
⎟⎠
⎛
⎜⎝

cosφ sinφ 0

−sinφ cosφ 0

0 0 1

⎞
⎟⎠ (2.6)

The function to be minimised in the fit is defined as

χ2
x,y,z =χ2

x +χ2
y +χ2

z , with χ2
i =
∑

�rk∈V

Bi ,meas(�rk )−Bi ,map(�rk )

σ2
i

, i = x, y, z,

where Bi ,meas are the measured values of the components of the magnetic field at position�rk ,

Bi ,map are the values from the map at the same position after the transformations are applied,

and V represents the volume containing all positions with measurements. The minimisation

is performed using the Minuit package [76] with respect to the three translations (Tx , Ty , Tz ),

the three rotation angles (ψ, θ, φ) and the scale factor (αSF).

2.3.3 Fit results

The fit is performed on the total dataset. Its result, given in Table 2.1, is compared to the

previous measurement campaign, which was performed in 2011, where the 2010 map was
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Table 2.1 – Left: Fit results of the 2011 map to the data of the 2014 measurement campaign along with
the statistical uncertainties returned by the fit and those found from the standard variation between
subsamples of the data (σtot). Right: Fit results of the 2010 map to the data of the 2011 measurement
campaign [75].

Variable 2014 fit result σtot 2011 fit result

Tx [mm] −6.3 ±0.2 10.1 −
Ty [mm] −0.03±0.06 0.55 −7.98±0.57
Tz [mm] −0.18±0.06 0.13 −11.26±0.07
ψ [mrad] −3.32±0.04 0.56 0.72±0.02
θ [mrad] 2.59±0.10 1.18 −3.6 ±1.2
φ [mrad] 1.47±0.04 0.48 −0.40±0.16
αSF 0.99917±0.00004 0.00026 1.00056±0.00195

fitted to the 2011 magnetic field measurements. The 2010 map was built from simulations

using TOSCA simulations and early magnetic-field measurements [74]. One can see that the

large translations applied in 2011 along the y and z axes do not need significant adjustments.

This confirms that the map had been placed in the correct position in y and z. The translation

in x was not a part of the fit in 2011 since the measurements were confined in a plane. This

new parameter can now be fitted. The rotations found in 2011 are rather small compared

to the new ones. Finally the scale factor increased the intensity by 0.056% in 2011 while it is

lowering it by 0.083% in the new measurement.

The measurements are dominated by systematic uncertainties. One could consider the follow-

ing sources :

• The positions of the probes are not perfectly known. As mentioned in Sec. 2.3.1, the

survey could be done only at a few positions inside the magnet.

• The horizontal bar on which the probes are fixed moves when the magnetic field is

turned on. It is however difficult to correct for theses shifts because of the limited

number of survey measurements inside the magnet.

• The simulation, on which the first magnetic field map is based, is not perfect and also

introduces some uncertainties.

However, these effects are difficult to disentangle. In order to estimate the total uncertainties

on the fitted parameters, the full data set is divided in 8 independent subsets each composed

of the measurements of three different probes at two heights and five positions along z. This

small number of data points evenly distributed is enough to have a global description of the

field. The standard deviation of the results of the fit applied on those independent subsamples

is used as an estimate of the total (statistical and systematic) uncertainty, as shown in Table 2.2.
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Table 2.2 – Results of the fit of the eight subsamples and computation of the standard deviation as an
estimation of the total uncertainty σtot.

Probes Tx [mm] Ty [mm] Tz [mm] ψ [mrad] θ [mrad] φ [mrad] αSF

1,17,31 12.5±11.0 −1.36±0.66 −0.69±0.75 −4.16±0.49 5.19±1.77 1.37±0.40 0.99924±0.00048
2,18,32 8.2±11.5 −0.88±0.60 −0.65±0.67 −3.76±0.45 4.06±1.73 1.54±0.36 0.99964±0.00044
3,19,33 6.8±14.0 −1.01±0.66 −0.82±0.74 −3.66±0.50 4.02±2.03 0.81±0.40 0.99908±0.00049
4,20,34 9.8±12.3 −0.90±0.56 −0.74±0.63 −3.62±0.42 4.35±1.77 1.54±0.34 0.99956±0.00041
6,21,35 −0.7±12.5 −0.33±0.56 −0.75±0.63 −3.06±0.42 3.44±1.79 0.87±0.34 0.99923±0.00041
7,22,36 5.5±10.3 −0.24±0.54 −1.03±0.60 −2.84±0.40 3.45±1.55 0.66±0.32 0.99895±0.00039
8,23,37 −4.8±9.4 −0.68±0.56 −0.94±0.64 −2.98±0.42 2.47±1.52 1.61±0.34 0.99962±0.00041
9,24,38 −18.5±7.8 0.40±0.57 −0.75±0.66 −2.52±0.42 1.37±1.39 0.35±0.34 0.99924±0.00041

σtot 10.1 0.55 0.13 0.56 1.18 0.48 0.00026

Table 2.3 – Fit results of the fit with the up polarity measurements compared to those with the down
polarity.

Variable Up result Down result

Tx [mm] −6.3 ±10.1 −6.4 ±10.8
Ty [mm] −0.03±0.55 −0.14±0.56
Tz [mm] −0.18±0.13 −0.24±0.11
ψ [mrad] −3.32±0.56 −3.36±0.55
θ [mrad] 2.59±1.18 2.51±1.29
φ [mrad] 1.47±0.48 1.50±0.46
αSF 0.99917±0.00026 0.99929±0.00024

2.3.4 Cross checks

Magnet polarity

The 2014 results shown in Table 2.1 were obtained only with the up polarity of the magnet.

The fit has also been applied on the data that were taken with the down polarity and the

total uncertainties have been recomputed with the subsample method explained in Sec. 2.3.3.

The results are compared in Table 2.3 with those of Table 2.1. This test shows no evidence

for differences between the two polarities since the results are absolutely compatible within

the total uncertainties. The maximum difference between the two polarities is 46% of the

total uncertainty (for Tz and the scale factor). The fact that the difference between the two

polarities is so small also indicates that the uncertainties contain identical systematic effects

for both polarities. Following this check, only the up polarity is used.

Up-down asymmetry

Another cross-check is to fit the map to the data taken only in the upper part of the detector

(i.e. at y > 0) and compare the results with the fit applied on the lower part of the detector

(i.e. at y < 0). This test shows some differences, which may give rise to an up-down asymmetry
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Table 2.4 – Results of the fit for y > 0, y < 0, x > 0 and x < 0 along with the uncertainties computed with
the method explained in Sec. 2.3.3 applied on each subsample separately.

Variable y > 0 result y < 0 result x > 0 result x < 0 result

Tx [mm] 1.1 ±10.9 −12.0 ±8.5 12.9 ±7.0 −19.9 ±8.0
Ty [mm] −0.03±0.58 −1.33±0.77 0.93±0.90 −0.53±0.76
Tz [mm] −3.51±0.43 2.00±0.54 −0.55±0.85 −0.36±0.57
ψ [mrad] −5.09±0.62 −3.67±0.70 −3.22±0.79 −3.51±0.83
θ [mrad] 3.95±0.92 1.51±0.55 5.32±1.30 0.88±1.15
φ [mrad] 1.41±0.41 1.52±0.57 2.12±0.60 1.16±0.54
αSF 0.99884±0.00027 0.99960±0.00030 0.99919±0.00042 0.99894±0.00035

(Table 2.4). It is particularly significant for the translation in z where the two results are ∼ 40σ

apart, where σ is the total uncertainty from the full sample fit (0.13 mm). It is however, difficult

to correct this effect with the current method, which applies only global transformations.

One would need to add some degrees of freedom to the fit, for example to allow different z

translations at different heights. This however introduces other issues linked to distortions

and discontinuities of the map. This is outside the scope of this analysis.

Left-right asymmetry

A similar test is performed by looking at the data for the left side of the detector (i.e. at x > 0)

and the right side of the detector (i.e. at x < 0). Small differences are also observed (Table 2.4),

which may give rise to a small left-right asymmetry. If the full sample fit uncertainties are taken

here as well, the main differences arise on θ with ∼ 4σ and Tx with ∼ 3σ. Again, correcting for

such asymmetries would require local transformations and is outside the scope of this study.

2.3.5 Validation

The 2014 corrections from Table 2.1 are applied to the 2011 field map in order to create a new

field map, which will be referred to as the 2014 map in the following. The next step is to assess

if this new map actually describes better the magnetic field inside the magnet. In order to test

this, the two maps are compared to the 2014 magnetic field measurements, low level tracking

parameters are analysed, and finally particles are reconstructed using the two maps. With the

latter study, the direct impact of the new field map on the mass distributions is quantified.

2.3.5.1 Difference between map and data

This test takes the difference between the two maps (2011 and 2014) and the measurements

taken during August 2014. The difference is computed at every measurement point and, in

order to obtain a smoother result, the differences are averaged over 4 neighbours at the same
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Figure 2.20 – Difference between the 2014 map and the 2014 data (left) and between the 2011 map and
the 2014 data (right) for the Bx (top), By (middle) and Bz (bottom) components of the magnetic field.
The values on the z axis are given in gauss.

height (i.e. same y coordinate). The result is shown in Fig. 2.20. One can see that the range

of differences is smaller for the 2014 map. This is an indication that the 2014 map describes

better the data than the 2011 map.

2.3.5.2 Particle reconstruction

Low level reconstruction parameters, such as number of reconstructed tracks and track effi-

ciencies, have been compared between the two maps using 2012 data. No differences have
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been found: the two maps have similar reconstruction performances.

Higher level parameters are also studied. The tracker is first aligned for the new magnetic

field map and then a particular decay is reconstructed.This reconstruction is compared to the

usual online reconstruction of Run 1 (i.e. with the 2011 map and its alignment). The decays

of five different particles with a wide range of kinematic properties are reconstructed int the

D0 → K −π+, J/ψ→ μ+μ−, Υ(1S)→ μ+μ−, K 0
S → π+π− and B+→ J/ψ(μ+μ−)K + decay modes.

Their selection, based on 2012 data, is described in Ref. [54].

Mass distributions

Figure 2.21 shows the mass distributions of all five reconstructed particles, each of them

obtained with the two field maps. The first observation is that the mean value of the mass

peaks is always closer to the PDG value with the new map. This is summarised in Fig. 2.22

where one can directly see the improvement achieved by the 2014 map. The improvement

for the B+ meson is slightly smaller than for the other particles but this is due to the mass

constraint applied on the J/ψ meson.

The mass resolution is similar between the two maps for all five particles, which implies that

the method used (applying only global transformation to the map) does not influence the

width of the mass distributions. If one wants to make some improvement on the resolution,

one might need to consider local transformations.

Mass dependencies

We also check the dependence of the central value of the mass distributions on the following

variables:

• p : the momentum of the mother particle

• pT: the transverse momentum of the mother particle

• t x = px

pz
: the horizontal slope of the mother particle

• t y = py

pz
: the vertical slope of the mother particle

• Δp = p A −pB : the difference of the momenta of the two daughter particles

• Ap = p A−pB

p A+pB
: the momentum asymmetry between the two daughter particles

• φ= tan−1
(

(�p A∧�pB )y

(�p A∧�pB )x

)
: the decay plane azimuthal angle

• φ′ = cos−1
((

�p A∧�pB

‖�p A∧�pB‖
)

y

)
: decay plane angle w.r.t the vertical axis

• η : the pseudorapidity of the mother particle
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Figure 2.21 – Invariant mass distributions of five different mesons reconstructed with the two maps.

• θ12 : the opening angle between the momenta of the two daughter particles

The profile of the mass with respect to these variables should be flat. Therefore, the fit of a

constant is performed and the χ2 is taken as a measure of this dependence. All the related

plots are shown in Appendix A and the results are summarised in Table 2.5, which shows how

the mass dependence on these variables is affected by the new map. As examples of extreme

cases, the χ2 of the mass dependence on the momentum asymmetry is improved in average

by 40% whereas for the dependence on the vertical slope, the χ2 is degraded in average by

40%. In most cases, either an improvement or an absence of degradation is observed. It is

therefore concluded that the reconstruction is globally better with the 2014 map.
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Figure 2.22 – Relative bias with respect to the PDG value [24] of the mean of the mass distribution for
the reconstruction of five different particles with the 2014 and the 2011 maps.

2.3.6 Discussion

A new magnetic field map has been created and tested. It has been created by applying

global transformations (three translations, three rotations and a field intensity scaling) on the

2011 map. Those corrections have been determined by fitting the map to new magnetic field

measurements. The corrections are taken to be the same for the two polarities of the magnet

and for the different parts of the detector (up/down, left/right) even if there are residual

Table 2.5 – Summary table that shows which dependency has been improved, which stayed constant
and which has been degraded for the reconstruction with the 2014 map compared to the 2011 map.
The categorisation is based on the comparison of the χ2 values of a fit to a constant for the two maps.

Variable Improved Similar Degraded

Mass vs p D0, B+ J/ψ , Υ(1S) K 0
S

Mass vs pT D0, J/ψ , B+ Υ(1S), K 0
S

Mass vs tx J/ψ , Υ(1S), B+ K 0
S D0

Mass vs ty Υ(1S) D0, J/ψ , K 0
S , B+

Mass vs Δp D0, J/ψ , B+ Υ(1S), K 0
S

Mass vs Ap D0, J/ψ , K 0
S Υ(1S), B+

Mass vs φ J/ψ Υ(1S), B+ D0, K 0
S

Mass vs φ′ J/ψ , Υ(1S), K 0
S , B+ D0

Mass vs η D0, J/ψ , B+ Υ(1S), K 0
S

Mass vs θ12 D0, K 0
S Υ(1S), B+ J/ψ

Total number 21 19 10
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asymmetries. The 2014 map has been shown to bring the mean of the mass distributions

closer to the known values and to improve on average the dependencies of the mass over

several variables. It has been approved by the LHCb collaboration to be used for the entire

Run 2 data taking period. It has therefore had a beneficial impact on all the analyses based on

the Run 2 dataset.

The best possible map has been achieved within the scope of the current fitting method. As

shown by the remaining asymmetries and dependencies, there is still room for improvement.

This would however need a new approach. One possibility would be to go from global to

local transformations. This might be done by adding some new degrees of freedom to the

fit. For example, one could modify the translation in z to make it dependent on the height :

T ′
z = Tz +β · y , where β would be a new parameter of the fit. This might improve the resulting

map, but there are constraints that must be enforced. For example the map needs to be

continuous at the boundaries and should respect Maxwell’s equations as best as possible.

Finally, if further measurement campaigns are commissioned, one should aim at measuring

the positions of all the probes when the magnetic field is on. This is expected to reduce

significantly the systematic uncertainty on the measurements.
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3 D0→ K +K −π+π− candidate selection

This section describes the selection of D0→ K +K −π+π− candidate decays. Candidates, pre-

selected from a central stripping process, are required to have passed specific trigger require-

ments. A multivariate analysis (MVA) is then optimized to reject combinatorial background

while maintaining high signal efficiency. Finally, specific backgrounds are identified and

removed with targeted requirements.

3.1 Variables describing the decay

The four-body D0→ K +K −π+π− decay mode has a five-dimensional phase space. Indeed, the

four-momenta of the 4 daughter particles in the D0 rest frame form a set of 16 kinematic vari-

ables subject to 8 constraints: 4 constraints from the known masses of the daughter particles

and 4 constraints from energy-momentum conservation in the D0 decay. Furthermore, the

orientation of the decay in space, which is described by three parameters (for example the

Euler angles), is arbitrary because the D0 meson has no spin. Hence the decay is completely

characterized by 16−8−3 = 5 independent kinematic variables. In principle, any choice of

five independent variables should be equivalent to describe the decay.

Ideally, there should be no need to make a choice of five variables and indeed, this analysis

is largely independent of any choice. However, for visualisation purposes (as well as other

practical applications where the 5D phase space needs to be binned, such as the computation

of a χ2 between the data and fit model), one set of variables needs to be chosen. The Cabibbo-

Maksymowicz (CM) variables [77] form an appealing set:

• m(K +K −), the invariant mass of the two-kaon system;

• m(π+π−), the invariant mass of the two-pion system;

• cos
(
θK +K −

K +

)
, the cosine of the helicity angle for the two-kaon system, where θK +K −

K + is

defined as the angle between the direction of the D0 and that of one of the kaons in the

rest frame of the two kaons (see Fig. 3.1);
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Figure 3.1 – Definition of the helicity angle θK = θK +K −
K + (θπ = θπ

+π−
π+ ) in the K +K − (π+π−) rest frame,

and the angle φ=φK K ,ππ in the D0 rest frame.

• cos
(
θπ

+π−
π+

)
, the cosine of the helicity angle for the two-pion system, where θπ

+π−
π+ is

defined similarly to θK +K −
K + ;

• φK +K −,π+π− , the angle in the D0 rest frame between the plane defined by the directions

of the two kaons and the plane defined by the directions of the two pions.

Table 3.1 – List of the 31 variables used to visualise the five-dimensional phase space, grouped in 7
different sets. Set 1 corresponds to the CM variables shown in Fig. 3.1.

two-body systems three-body systems

helicity decay plane
masses angles angles masses helicity angles

Set 1: Set 4:

m(K +K −) cos
(
θK +K −

K +

)
φK +K −,π+π− m(K +K −π+) cos

(
θK +K −π+

K +

)
m(π+π−) cos

(
θπ

+π−
π+

)
cos
(
θK +K −π+

K −

)
cos
(
θK +K −π+
π+

)
Set 2: Set 5:

m(K +π−) cos
(
θK +π−

K +

)
φK +π+,K −π− m(K +K −π−) cos

(
θK +K −π−

K +

)
m(K −π+) cos

(
θK −π+

K −

)
cos
(
θK +K −π−

K −

)
cos
(
θK +K −π−
π−

)
Set 3: Set 6:

m(K +π+) cos
(
θK +π+

K +

)
φK +π−,K −π+ m(K +π+π−) cos

(
θK +π+π−

K +

)
m(K −π−) cos

(
θK −π−

K −
)

cos
(
θK +π+π−
π+

)
cos
(
θK +π+π−
π−

)
Set 7:

m(K −π+π−) cos
(
θK −π+π−

K −

)
cos
(
θK −π+π−
π+

)
cos
(
θK −π+π−
π−

)
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Table 3.2 – Trigger lines used in this analysis. At least one line per level is required to be fired. The
definition of each trigger line is given in Ref. [53] at the table number specified in the right column.

Trigger level Trigger line Reference table in Ref. [53] for (2011) 2012

L0
Muon TOS on μ

Hadron TOS on D0 (4.1.1) 5.1.1

HLT1
TrackALLMuon TOS on μ

TrackALLL0 TOS on B
(4.1.7) 5.1.7

HLT2
SingleMuon TOS on μ

TopoMu(2,3,4) TOS on B
(4.1.80 & 4.1.81) 4.1.80, 4.1.81 & 5.2.2
(4.1.11 to 4.1.17) 5.1.10 to 5.1.16

The CM variables describe the K +K − and π+π− systems. In analogy to this parametrisation,

two other sets of variables are defined to describe the K +π− and K −π+ systems, as well as

the K +π+ and K −π− systems. Furthermore, the three-body systems can also be described in

analogy to this parametrisation. Four sets of variables are selected to describe the K +π+π−,

K −π+π−, K +K −π+ and K +K −π− systems. These seven sets of variables are listed in Table 3.1.

In total 31 variables are defined and used to visualise the complicated five-dimensional phase

space.

3.2 Pre-selection: stripping and choice of trigger lines

The candidates are initially required to have fired a set of trigger lines. The choice of trigger

lines is listed in Table 3.2. All these lines are listed as triggered on signal (TOS), which means

that our signal decay chain (B → D0(→ K +K −π+π−)μ−X ) has to be the reason why the trigger

line has fired.

The candidates are then filtered with a set of pre-selection criteria, called a stripping line. All

requirements applied in this stripping line are listed in Table 3.3 and are in common between

the two years of data taking.

As the Monte Carlo (MC) sample without the stripping and trigger selection applied was

not available, an ad-hoc phase-space sample has been generated without any acceptance or

selection cuts. The efficiency of the stripping and trigger selection together with the efficiency

of the generator level cuts is studied in the five-dimensional phase space and found to be

rather constant (within 10–25%) across the entire phase space. It is shown in Fig. 3.2 as a

function of each of the five CM variables. The average efficiency is arbitrarily set to the average

efficiency of the stripping and trigger selections, which is ∼ 3.5%. A different behaviour is

observed for the two kaon invariant mass and the two pion invariant mass. This is in part due

to the different particle identification cuts applied on kaons and pions.
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Table 3.3 – List of the requirements applied at the stripping level. Some of the variables used are the
momentum (p) and the transverse momentum (pT). The vertex χ2 (χ2

vtx) is the χ2 of the fit of the vertex.
The impact parameter (IP) χ2 (χ2

IP) is the difference of χ2
vtx between a vertex fit with and without the

particle. The best primary vertex is defined as the vertex with the minimum χ2
IP. The cosine of the angle

between the momentum of the particle and the direction of flight from the best primary vertex to the
decay vertex is referred to as DIRA. The χ2 of the distance of closest approach (DOCA) between any
combination of two of the daughter tracks (χ2

DOCA) is defined as the square of the distance divided by
the square of its uncertainty. The χ2 of the distance between the best primary vertex and the end vertex
(χ2

BPVVD) is similarly defined as the χ2
DOCA. The DLLX variables are particle identification variables

further explained in Sec. 3.4.2. Prob(ghost) is the probability calculated by the tracking algorithms for
the track being an artefact.

Candidate Requirement

K

track fit χ2/ndf < 4
p > 2 GeV/c

pT > 300 MeV/c
χ2

IP > 9
DLLK > 4

Prob(ghost) < 0.5

π

track fit χ2/ndf < 4
p > 2 GeV/c

pT > 300 MeV/c
χ2

IP > 9
DLLK < 10

Prob(ghost) < 0.5

μ

track fit χ2/ndf < 4
p > 3 GeV/c

pT > 1.2 GeV/c
χ2

IP > 9
DLLμ > 0

Prob(ghost) < 0.5

D0

m ∈ [1.805,1.925] GeV/c2

4∑
i=1

pT,i > 1.8 GeV/c

χ2
vtx/ndf < 6

DIRA > 0.99
χ2

DOCA < 9
χ2

BPVVD > 100

B

m ∈ [2.5,6.0] GeV/c2

M(pD0 +pμ) < 6.2 GeV/c2

χ2
vtx/ndf < 6

DIRA > 0.999
zD0vtx − zBvtx > 0
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Figure 3.2 – Efficiency of the pre-selection (which contains the generator level cuts, the stripping and
trigger selections) as a function of the CM variables.

3.3 Tuning and calibration

Previous analyses [78–80] have shown that the absolute momentum scale as well as improve-

ments on the mass resolution can be achieved with a momentum calibration procedure. This

procedure [81] is therefore also applied in this analysis after the pre-selection. In order to fur-

ther improve the resolution of the reconstruction, we impose that the D0 mass, reconstructed

from its four daughter particles, matches exactly its known mass given in Ref. [24]. The “decay

tree fitter” (DTF) algorithm [82] refits the whole decay chain under this constraint.
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Figure 3.3 – Signal and background distributions of the momentum asymmetry inside a cone around
the D0 for four different values of the cone size (0.8, 1.1, 1.4 and 1.7 rad, from top left to bottom right).

3.4 Multivariate analysis

3.4.1 Isolation variables

Along with the usual kinematic variables describing the decay, some more sophisticated

variables, called isolation variables, have a significant discriminating power between signal

and background. The first set of variables is analysing the tracks that do not belong to the

signal decay channel inside a cone around either the D0, the B or the μ candidate [83]. The

following variables are studied:

• cmult: number of tracks in the cone;

• pcone, pT,cone: vectorial sum of all the (transverse) momenta inside the cone;

• Ap , ApT : the (transverse) momentum asymmetry defined as

Ap(T) =
p(T,)D0 −p(T,)cone

p(T,)D0 +p(T,)cone
; (3.1)

• Δη,Δφ: difference in pseudorapidity η and azimuthal angle φ between the total vector

momentum of the tracks inside the cone and the D0 momentum;

The discriminating power of these variables depends on the size of the cone. This cone size is

defined as the distance between the D0 candidate and the edge of the cone in the η−φ plane.
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A distance in this plane is defined as

ΔR =
√(

Δη
)2 + (Δφ)2 . (3.2)

The signal and background distributions in data (extracted with the sPlot technique) are

compared for four different values of the cone size, between 0.8 and 1.7rad. The difference

between the two distributions is assessed by the χ2 test. An example of the resulting behaviour

is shown in Fig. 3.3 for the momentum asymmetry of the D0 after the pre-selection. The most

discriminating power is achieved with the smallest value of the cone size, 0.8rad, which is

used for the rest of this analysis. The peaking bin at 1 is expected from the definition of the

asymmetry in Eq. 3.1. If there is no track in the cone, the asymmetry is 1. The number of events

falling in this bin decreases when the cone size increases. The same behaviour is observed for

the other cone isolation variables and for the other particles (the B and the μ).

The second set of isolation variables are analysing the vertex of the particle X (here the D0 or

the B) [84]:

• min Δχ2(X + 1 (2) trk): the smallest change in vertex χ2 when one (two) track(s) are

added to the vertex;

• m(X + 1 (2) trk)min Δχ2 : the invariant mass of all the tracks assigned to the vertex when

one (two) track(s), assumed to be pion(s), are added to the vertex to produce the smallest

change in vertex χ2.

An additional variable, the “corrected mass” of the B meson, is found to help isolating the

signal. There is some uncertainty in the reconstruction of the B meson due to the missing

momentum of the neutrino that is not reconstructed. By using the missing momentum

perpendicular to the B-meson direction of flight (p⊥), we can reduce part of that uncertainty.

This missing momentum is equal to the momentum of the D0μ system perpendicular to the

B-meson direction of flight. The corrected mass is defined as

mcorr =
√

m2 +p2
⊥+|p⊥| , (3.3)

where m is the reconstructed mass of the D0μ system. Its distribution is shown in Fig. 3.4. The

χ2 test on the signal and background distributions shows that, indeed, the corrected mass has

a better discriminating power than the D0μ mass and is therefore used in the MVA.

3.4.2 Multivariate selection

The MVA analyses a set of selected variables in control samples of signal and backgroud events

to create a new variable that is used to discriminate between the two categories. In addition to

all previously mentioned isolation variables, the following variables are studied in order to

find the ones with the most discriminating power:
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Figure 3.4 – Signal and background distributions of the D0μ invariant mass and of the D0μ corrected
invariant mass.

• B : momentum (p), transverse momentum (pT), χ2
IP, DTF χ2

vtx/ndf and mass (m);

• D0: p, pT, χ2
IP, DTFχ2

vtx/ndf, decay length significance (DLS, i.e. the decay length divided

by its uncertainty) and proper time (τ);

• μ: longitudinal momentum (pz ), pT, χ2
IP;

• D0 daughter tracks: maximum ghost probability (max Prob(ghost)), χ2
IP, particle identi-

fication (PID) variables.

The PID variables are divided in two classes:

• Delta log likelihood variables: these variables combine the informations coming from

several subdetectors. They are called DLLX and represent the logarithm of the ratio

between the likelihood of being a particle X and the likelihood of being a pion.

• The neural network variables: these variables are the output of a neural network discrim-

ination and are called Prob_NNX , which represent the probability of being a particle X .

The MVA is performed with the TMVA [85] package included in ROOT [86]. All previously

mentioned variables are used in the first test for the MVA. The set of variables is then reduced

until the performance of the MVA decreases significantly. The following 11 most powerful

variables are kept in the final MVA:

• mcorr

• m(D0 + 1 trk)min Δχ2

• ln(min Δχ2(D0 + 2 trk))

• D0 ApT

• D0 ln(DLS)

• D0 χ2
vtx/ndf

• K + Prob_NNK

• K − Prob_NNK

• π+ Prob_NNπ

• π− Prob_NNπ

• max Prob(ghost)

The correlations between these 11 variables is quite low for both the signal and the background

samples, as shown in Fig. 3.5.

46



3.4. Multivariate analysis

100−

80−

60−

40−

20−

0

20

40

60

80

100

Pip_nnPi
max_GhostProb

D0_SmallestDeltaChi2MassOneTrack

Pim_nnPi
mBcorr

log_D0_SmallestDeltaChi2TwoTracks

Kp_nnK
D0_ptasy_0_80

Km_nnK
log_D0_DLS

D0_endvtx_chi2

Pip_nnPi

max_GhostProb

D0_SmallestDeltaChi2MassOneTrack

Pim_nnPi

mBcorr

log_D0_SmallestDeltaChi2TwoTracks

Kp_nnK

D0_ptasy_0_80

Km_nnK

log_D0_DLS

D0_endvtx_chi2

Correlation Matrix (signal)

100 -28   1   4   7   3  -1

-28 100 -28  -1 -14  -6 -14   3

100  15  23  15  -9

-28 100   1   2   7   4  -1

 15 100   4   3   3

  1  -1  23   1   4 100   6  20   6  32   2

  4 -14   2   6 100  19  19   6

  7  -6  15   7   3  20  19 100  19   7  -1

  3 -14   4   6  19  19 100   6

 -9   3  32   6   7   6 100   3

 -1   3  -1   2  -1   3 100

Linear correlation coefficients in %

100−

80−

60−

40−

20−

0

20

40

60

80

100

Pip_nnPi
max_GhostProb

D0_SmallestDeltaChi2MassOneTrack

Pim_nnPi
mBcorr

log_D0_SmallestDeltaChi2TwoTracks

Kp_nnK
D0_ptasy_0_80

Km_nnK
log_D0_DLS

D0_endvtx_chi2

Pip_nnPi

max_GhostProb

D0_SmallestDeltaChi2MassOneTrack

Pim_nnPi

mBcorr

log_D0_SmallestDeltaChi2TwoTracks

Kp_nnK

D0_ptasy_0_80

Km_nnK

log_D0_DLS

D0_endvtx_chi2

Correlation Matrix (background)

100 -26   1   8   3   5  12   9   2  -2

-26 100  -5 -27   4  -9 -25 -25 -26  -4   2

  1  -5 100   2   6  31   4  13   4  -5  -2

  8 -27   2 100   3   9  13   5   2  -2

  4   6 100   4  -1  -2  -1  27  -1

  3  -9  31   3   4 100   8  23   9  32  -1

  5 -25   4   9  -1   8 100  23   4   6

 12 -25  13  13  -2  23  23 100  23   9  -5

  9 -26   4   5  -1   9   4  23 100   7

  2  -4  -5   2  27  32   6   9   7 100

 -2   2  -2  -2  -1  -1  -5 100

Linear correlation coefficients in %

Figure 3.5 – Correlation matrices for the signal and background sample of the 11 variables used in the
MVA.

The Run 1 dataset can be separated in four subsamples, according to the year of data taking

(2011 or 2012) and the polarity of the magnet (up or down). These four subsamples are studied

separately in order to spot any difference that might motivate the use of a different treatment

for each subset. No significant differences are observed, the four subsamples are therefore

used without any distinction for the BDT training and optimisation as well as for the rest of

the analysis.

The background is taken from the D0 sidebands in the full Run 1 data. They are defined

as where the invariant mass of the K +K −π+π− system belongs to [1.81,1.835] GeV/c2 or

[1.895,1.92] GeV/c2. There are ∼ 1 M events in the sidebands, which are split for the two stages

of the MVA. 75% are used for the training and the remaining 25% for the testing of the classifier.

The description of the signal is taken from the MC samples. In order to save some CPU-time,

the entire MC sample is not used. ∼ 3 M MC events are sufficient to have a reliable description

of the signal. This sample is also split, the same number of events as for the background is

used for the training (750 k) and the rest is used for the testing.

Five different classifiers have been tested in order to find the most appropriate one for this

analysis:

• Likelihood

• kth nearest neighbour (KNN)

• Fisher

• Multilayer perceptron (MLP)

• Boosted decision tree (BDT)

The resulting Receiver Operating Characteristic (ROC) curves are shown in Fig. 3.6. The

performance of the classifiers is measured by the integral under the ROC curve, where 0.5

corresponds to random guessing. Since the BDT shows the best result with an integral of

0.828, it is chosen as the default classifier for the selection. The BDT consists of a sequence
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Figure 3.6 – Left: ROC curves of the five classifiers tested. Right: Signal and background distributions of
the BDT output for the training and testing samples.

of different possible cuts on each variable which builds up a decision tree. This decision

tree is boosted using AdaBoost [87], where a weight is added to each event in the training

set in order to focus more on the poorly predicted events on the next iteration. This has the

power to combine weak predictions into a strong model. The BDT output for the signal and

background components are shown in Fig. 3.6 for the training and test samples. No evidence

for over-training is observed.

3.4.3 BDT optimisation

The BDT output of the MVA is studied to find the best cut to separate the signal from the

background. The optimisation is done on the data since D0→ K +K −π+π− is a well established

decay mode and its signal yield is very large. The figure of merit chosen for the optimisation is

the significance

S= Ns�
Ns +Nb

(3.4)

where Ns is the number of signal and Nb the number of background events in the D0 mass

signal region defined as ±2σ around the central value of the D0 mass. These yields are

extracted from a fit to the D0 mass spectrum in data. Details about the fit are described

in Sec. 3.6. Fits are performed for 23 different values of the BDT cut between −1 and 0.1.

The significance is plotted against the cut value applied on the BDT output in Fig. 3.7. The

condition that maximises the significance is to retain all the candidates with BDT > −0.1,

resulting in a purity of (80.7±0.3)% at this stage.

The efficiency of this BDT cut with respect to pre-selection is studied over the phase space and

found to be flat within 0.5–3%. It is shown in Fig. 3.8 as a function of the five CM variables.
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Figure 3.7 – Significance of the D0 signal as a function of the requirement on the BDT output. The red
line indicates the value of the optimal cut.
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Figure 3.8 – Efficiency of the BDT cut with respect to the pre-selection as a function of the CM variables.
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3.5 Further requirements

3.5.1 Removal of specific backgrounds

This section describes three background components observed after the MVA selection: a

small contribution from Λ+
c → pK −π+ decays, a peak in the K Kπ invariant mass, and three-

body D0→ K 0
S K +K − decays. Their impact on the analysis is evaluated carefully and a decision

is made whether an action needs to be taken or not.

Λ+
c background

In the background distribution, some kaon candidates are misidentified protons, and a struc-

ture is observed in the pK −π+ invariant mass (Fig. 3.9 left). This structure is attributed to the

Λ+
c baryon. In order to assess its impact, the signal and sideband regions are defined in the Λ+

c

mass peak and then the K +K −π+π− invariant mass is examined in the Λ+
c signal region after

subtracting the Λ+
c sidebands (Fig. 3.9 right); no peak is seen in the D0 signal region, meaning

that Λ+
c background can be treated together with the combinatorial background.

Misreconstructed background

A strange peak is observed in the K +K −π± invariant mass, in the upper end of the spectrum

(Fig. 3.10 left). It is not due to any resonance, but is explained by taking the difference between

the K +K −π+π− and K +K −π± invariant masses. We define

Δm =
{

m(K +K −π+π−)−m(K +K −π−) for D0

m(K +K −π+π−)−m(K +K −π+) for D0 (3.5)

Δm′ =
{

m(K +K −π+π−)−m(K +K −π+) for D0

m(K +K −π+π−)−m(K +K −π−) for D0 (3.6)
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The distributions of these two variables are shown in Fig. 3.10 (right). The peak appears only

in the Δm variable, not in Δm′. This observation actually clarifies the source of the peak. We

conclude that the peak appears only when the D0 comes from a D∗+ coming from the B . The

D0 is in fact decaying to K +K −π+π− but is reconstructed using the slow π+ coming from the

D∗+ decay instead of the correct π+ from the D0 decay (missed pion). In this way, the peaks

appear only when the charge of the missed pion matches the charge of the slow pion from the

D∗:

• B 0(→ D∗+(→ D0(→ K +K −π+π−)π+)μ−),

• B 0(→ D∗−(→ D0(→ K +K −π+π−)π−)μ+).

This background is easily removed with the requirement Δm > 0.18 GeV/c2. The efficiency of

this cut with respect to the BDT cut is studied in five dimensions, and shown as a function of

the five CM variables in Fig. 3.11; it drops drastically at large K +K − masses approaching the

kinematic boundary.

K 0
S background

The π+π− invariant mass distribution shows a structure around 500 MeV/c2 in the signal

region (see Fig. 3.12). This peak is due to the presence of real K 0
S mesons in the sample, coming

from D0→ K 0
S K +K − decays. These decays have a different topology than D0→ K +K −π+π−

decays. They are either Cabibbo-favoured or doubly Cabbibo-suppressed, whereas D0 →
K +K −π+π− is singly Cabibbo-suppressed. Furthermore, K 0

S →π+π− is a weak decay whereas

all the resonances taken into account in this analysis decay strongly. All these reasons lead

to the decision of applying a K 0
S veto: all candidates that have a π+π− invariant mass in the

region [480.2,507.2] MeV/c2 are removed. This cut is applied on the data after the DTF has

been applied with the D0 mass constraint. This is necessary in order to align the cut for

the sidebands of the D0 which will be used in the background description in Sec. 4.5. The
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Figure 3.11 – Efficiency of the cut on Δm with respect of the BDT cut as a function of the CM variables.
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in the D0 signal region.

52



3.5. Further requirements

]2) [GeV/c-K+m(K
1 1.2 1.4 1.6

Ef
fic

ie
nc

y

0.85

0.9

0.95

1

1.05

1.1

]2) [GeV/c-π+πm(
0.4 0.6 0.8

Ef
fic

ie
nc

y

0.85

0.9

0.95

1

1.05

1.1

)
-K+K

+Kθcos(
1− 0.5− 0 0.5 1

Ef
fic

ie
nc

y

0.85

0.9

0.95

1

1.05

1.1

)
-π+π

+πθcos(
1− 0.5− 0 0.5 1

Ef
fic

ie
nc

y

0.85

0.9

0.95

1

1.05

1.1

)-π+π,-K+(Kφ
2− 0 2

Ef
fic

ie
nc

y

0.85

0.9

0.95

1

1.05

1.1

Figure 3.13 – Efficiency of the K 0
S veto with respect to the Δm cut as a function of the CM variables.

efficiency of this selection is studied in five dimensions, and shown as a function of the five

CM variables in Fig. 3.13.

3.5.2 Removal of multiple candidates

A fraction of 1.5% of the events contain more than one D0 candidate. Only one candidate per

event is kept while the others are discarded. The choice is made randomly. In order to keep

the reproducibility of the selection, the seed of the random number generator is chosen to be

the sum of the run number and the event number.
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Table 3.4 – Offline selection applied to the candidates passing the stripping requirements of Table 3.3.

Variable Requirement

BDT >−0.1
Δm > 0.18 GeV/c2

m(π+π−) ∉ [480.2,507.2] MeV/c2

multiple candidates randomly rejected
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Figure 3.14 – Mass distribution of the D0 → K +K −π+π− candidates after the final selection, with fit
result superimposed. The top plot shows the normalised residuals (differences between the data points
and the fit results, divided by the statistical uncertainty of the data).

3.6 Final selection and efficiency

The final selection requirements are summarized in Table 3.4. There are 365 634 data events

selected in the full D0 mass region (FR) (i.e. 1.81GeV/c2 < m(K +K −π+π−) < 1.92GeV/c2),

42 245 in the lower sideband, 196 648 in the signal region (SR) and 41 669 in the upper sideband.

The SR is defined as ±2 standard deviations around the central value of the D0 mass (i.e.

1.855GeV/c2 < m(K +K −π+π−) < 1.875GeV/c2). The resulting D0 mass distribution is shown

in Fig. 3.14 for the full Run 1 dataset. A fit is performed using as signal model the sum of two

Gaussian functions sharing the same mean value and as background model an exponential

function. The resulting signal and background distributions are integrated over the SR in order

to obtain the yields. The resulting fit parameters are listed in Table 3.5.

This selection provides a significant improvement compared to the cut-based selection of

the previous LHCb analysis of D0→ K +K −π+π− decays [52]: 5% more signal candidates and

30% less background candidates are retained. The total yields in the previous analysis were

Nsig = 171298±765 and Nbkg = 240412±808 in the full D0 mass window.

The total efficiency is shown in Fig. 3.15 as a function of each of the five CM variables. Since this

efficiency compares the final MC sample to the generated sample before the stripping has been

applied, the same procedure as for the pre-selection efficiency is applied. The distributions

of the final MC sample are compared to the one of an ad-hoc phase-space sample generated

without any generator level cuts.
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3.6. Final selection and efficiency

Table 3.5 – Results of the fit to the D0 mass distribution after the final selection.

Parameter Fitted value

Double Gaussian

μ 1864.91±0.02 MeV/c2

σ1 4.48±0.06 MeV/c2

σ2 7.94±0.18 MeV/c2

f1 0.604±0.003

Exponential c −0.14±0.07

Yields

Nsig in FR 180551±572
Nbkg in FR 185084±576
Nsig in SR 162909±516
Purity in SR 0.828±0.003
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Figure 3.15 – Total efficiency as a function of the CM variables.
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Chapter 3. D0→ K +K −π+π− candidate selection

Table 3.6 – Cuts applied at the generator level for the two MC samples generated for this analysis.

Name Particle Cut

DaughtersInLHCb all charged tracks 10 mrad < θ < 400 mrad

DinSLBdecays

D0 daughters pT > 300 MeV/c
D0 daughters p > 2 GeV/c
μ pT > 1.2 GeV/c
μ p > 3 GeV/c
D0 pT > 1.8 GeV/c

3.7 Simulation

Fully simulated MC samples of events containing a D0→ K +K −π+π− decay have been pro-

duced. These samples are used at different stages of the analysis; they are used to estimate the

efficiencies of the selection, to train the MVA classifier, and to integrate the signal probability

density in the amplitude fit. Two different D0→ K +K −π+π− decay models have been used to

produce these samples: a phase-space model in order to cover suitably the whole phase space,

and a more realistic model in order to populate the phase space sufficiently in regions where

narrow resonances exist. The latter model is taken from the first analysis of the CLEO data [46]

and generated with AmpGen.

It is known that the PID variables show some discrepancies in the MC with respect to the data.

Therefore, these variables have been corrected using a calibration channel as described in

Refs. [88, 89].

The generator level cuts, applied on the generated MC events, are listed in Table 3.6. The MC

events are further filtered with all the stripping and trigger cuts described in Sec. 3.2, except

for the PID cuts that are known to be poorly simulated. These cuts are applied only once the

PID variables have been corrected.

The MC has been shown to not fully reproduce the momentum resolution of the data. In

order to minimise these discrepancies a momentum smearing is applied. The details of the

procedure are described in Refs. [90, 91].

After the reconstruction of the MC samples, some particles might have been mis-identified. In

order to ensure the MC samples to contain only signal candidates, a truth matching procedure

is applied. This procedure verifies that the hypotheses made after the reconstruction match

the true ID of the generated particles.

The MC can be used in the MVA provided it describes well the data. Since no 2011 MC sample

is available, the data from 2011 and 2012 are compared to the 2012 MC sample. The MC sample

matches relatively well the data for most variables. However some small differences exist. They

are accounted for by reweighting the MC sample for all the variables that are used in the MVA
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3.7. Simulation

(cf. list in Sec. 3.4.2) except the PID variables, which have already been corrected separately, as

well as the total number of tracks in the event and the momenta and transverse momenta of

the D0 and its daughters. This is done with a tool developed by Yandex, hep_ml [92], which

reweights a multidimensional space using decision trees with gradient boosting. The signal

distributions from the data are extracted with the sPlot technique [93]. The MC is reweighted

to the full Run 1 s-weighted data.

The MC sample has been selected with the same set of cuts as for the data and the final

samples contain 9.8 M which is ∼ 50 times more than the ∼ 200 k data events that have been

selected in the signal region.
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4 D0 → K +K −π+π− amplitude analysis
description

An amplitude analysis consists of describing a decay chain with a coherent sum of amplitudes,

each corresponding to a specific decay path from the mother particle to the final state (called

“component” from here on). These complex amplitudes may interfere. The main goal of the

analysis is to find the correct components that contribute to the decay and compute their

respective fraction. Each of these amplitudes is multiplied by a complex number ck , whose

magnitude |ck | and phase arg(ck ) will be extracted.

4.1 Likelihood

The likelihood to be used in the fit should have the form

L f (c) =
Ndata∏
j=1

f (x j ;c) , (4.1)

where Ndata is the total number of selected candidates in the data sample, f (x ;c) is the joint

probability density function (PDF) in five dimensions of the D0 → K +K −π+π− four-body

phase space (for example x can be viewed as the five CM variables), and c represents the fit

parameters. The PDF is written as

f (x ;c) = fs a(x ;c)+ (1− fs)b(x) , (4.2)

where fs is the signal fraction, a(x ;c) is the signal PDF (which depends on the fit parameters

c) and b(x) is the background PDF. All PDFs are normalized for all values of c , i.e.

∫
f (x ;c)d 5x =

∫
a(x ;c)d 5x =

∫
b(x)d 5x = 1. (4.3)

The signal PDF is expressed as

a(x ;c) = εs(x)S(x ;c)R4(x)

I (c)
with I (c) =

∫
εs(x)S(x ;c)R4(x)d 5x , (4.4)
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Chapter 4. D0→ K +K −π+π− amplitude analysis description

where R4(x) is the function representing the four-body phase space density, S(x ;c) is the

signal model described in Sec. 4.2, and εs(x) is the signal efficiency. Note that the function

S(x ;c) is not normalised: it is defined up to an arbitrary constant multiplicative factor and only

its shape conveys information. A signal model characterised by a constant function S(x ;c)

would correspond to a pure phase-space decay, without any resonant structures.

Since the functions R4(x) and εs(x) are difficult to deal with analytically, we compute the

normalisation integral I (c) using a MC sample of fully-simulated signal events generated

according to a known and arbitrary signal model Sgen(x). After reconstruction and selection,

this MC sample “encodes” both the four-body phase space and the signal efficiency. Assuming

the simulation correctly reproduces the efficiency, the MC events are distributed according to

the PDF

agen(x) = εs(x)Sgen(x)R4(x)

I gen with I gen =
∫

εs(x)Sgen(x)R4(x)d 5x . (4.5)

The MC estimate of the normalisation integral I (c) is then given by

I (c) = 1

NMC

NMC∑
i=1

εs(x i )S(x i ;c)R4(x i )

agen(x i )
= 1

NMC

NMC∑
i=1

S(x i ;c)

Sgen(x i )
I gen , (4.6)

where NMC is the number of events in the MC sample.

On the other hand, we describe the background component using the same signal MC sample.

For each MC event at position x i in phase space, a weight w(x i ) is assigned so that the

weighted MC distribution matches the distribution of the background in five dimensions. By

definition, this weight must be the ratio between the background PDF and the MC PDF, i.e.

w(x) = b(x)

agen(x)
. (4.7)

Note that, because
∫

b(x)d 5x = ∫agen(x)d 5x = 1, we must have 1
NMC

∑NMC

i=1 w(x i ) = 1. The

assumptions on the background distribution b(x) as well as the relevant technical details on

the computation of w(x) are given in Sec. 4.5.2.

Using Eqs. 4.4–4.7, the total PDF of Eq. 4.2 can now be rewritten as

f (x ;c) = fs
εs(x)S(x ;c)R4(x)

I (c)
+ (1− fs) w(x)agen(x) (4.8)

= εs(x)R4(x)

I gen

(
fs

S(x ;c)

I (c)/I gen + (1− fs) w(x)Sgen(x)

)
(4.9)

= εs(x)R4(x)

I gen

⎛
⎝ fs

S(x ;c)
1

NMC

∑NMC

i=1
S(x i ;c)
Sgen(x i )

+ (1− fs) w(x)Sgen(x)

⎞
⎠ . (4.10)

60



4.2. Signal description

We then define

B(x) = b(x)I gen

εs(x)R4(x)
= w(x)Sgen(x) , (4.11)

F (x ;c) = f (x ;c)I gen

εs(x)R4(x)
= fs

S(x ;c)
1

NMC

∑NMC

i=1
S(x i ;c)
Sgen(x i )

+ (1− fs)B(x) , (4.12)

and, instead of maximising L f (c), we maximise

LF (c) =
Ndata∏

j
F (x j ;c) =

Ndata∏
j

⎛
⎝ fs

S(x j ;c)
1

NMC

∑NMC

i=1
S(x i ;c)
Sgen(x i )

+ (1− fs)B(x j )

⎞
⎠ . (4.13)

This is equivalent because LF (c) =L f (c)/C , where the constant

C =
Ndata∏

j

εs(x j )R4(x j )

I gen (4.14)

does not depend on the parameters c of the amplitude model of the signal.

For an efficient and accurate MC integration, it is important that the signal model used in the

MC generation, Sgen(x), be close to the final fitted model S(x ;c). Indeed if narrow features

(such as the φ peak in the K +K − mass or the K ∗(892)0 peak in the K +π− mass) are already

present in the MC, the modelling of the data, which also has these features, will be eased.

On the other hand it is important that the full phase space be covered with a reasonable

density of MC events, especially for the description of the background. We have therefore

decided to use a MC sample that is a mixture of events generated according to phase space,

i.e. Sgen(x) = constant, and events generated according to the CLEO model of Ref. [46], i.e.

Sgen(x) = SCLEO(x). The above formalism can easily be extended to this case where different

parts of the MC sample have been generated with different signal models (basically replacing

Sgen(x i ) with Sgen
i (x i )).

4.2 Signal description

The formalism chosen for this amplitude analysis is the so-called “isobar” model [94, 95],

which assumes that each component can be built as a series of two-body decays. The two

allowed patterns for D0→ abcd are shown in Fig. 4.1, both involving two resonances, r1 and

r2. The first is the quasi two-body decay D0→ r1r2 followed by r1→ ab and r2→ cd , and the

second is the cascade decay D0 → r1a followed by r1 → r2b and r2 → cd . In both cases the

amplitude is computed as

A(x) = B ′
LD0

(qD0 (x),0) Tr1 (mr1 (x),Lr1 ) Tr2 (mr2 (x),Lr2 ) W (x) , (4.15)

where B ′
LD0

is the normalised Blatt–Weisskopf barrier factor [96] of the D0 candidate, given in

Table 4.1. The function Tr is the lineshape of resonance r and W is the spin factor, described
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Figure 4.1 – Decay topologies allowed by the isobar model.

with the covariant formalism [97]. The variable x represents the five dimensions of the

D0→ K +K −π+π− four-body phase space, and qr is the magnitude of the momentum of one

of the two daughter particles of resonance r in its rest frame. The variable mr is the invariant

mass of the daughter particles of resonance r , and Lr is the angular momentum between

them.

The total signal function is then described by a coherent sum of all the amplitudes included in

the model,

S(x ;c) =
∣∣∣∣∣

N∑
k

ck Ak (x)

∣∣∣∣∣
2

, (4.16)

where Ak is computed as in Eq. 4.15, c1 = 1 and the other complex coefficients ck are defined

relative to c1. The moduli |ck | and phases arg(ck ) are left floating in the fit.

In order to express the relative importance of each component, the fit fraction can be com-

puted. The fit fraction of an amplitude is defined as

Fk =
∫ |ck Ak (x)|2R4(x)d 5x∫ |∑

j
c j A j (x)|2R4(x)d 5x

. (4.17)

Note that the above expression takes into account the four-body phase space R4(x), but not

Table 4.1 – Normalised Blatt-Weisskopf coefficients for the first three values of the angular momentum
L between the decay products [24]. They prevent the amplitude to diverge at infinity. The parameter R
is the radius of the resonance, q the norm of the momentum of one of the two daughter particles in the
reference frame of the resonance and q0 is the same momentum when the resonance has its nominal
mass. The normalisation q0 = 0, used in Eqs. 4.15, 4.18, 4.24 and 4.27, is arbitrarily chosen to normalise
the Blatt-Weisskopf barrier factor to unity at q = 0.

L B ′
L(q, q0)

0 1

1

√
1+q2

0 R2

1+q2R2

2

√
(q2

0 R2−3)2+9q2
0 R2

(q2R2−3)2+9q2R2
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4.2. Signal description

Table 4.2 – List of all the resonances considered in the analysis, classified according to their spin-parity
and decay products.

K K ππ Kπ K Kπ Kππ

J P = 0+
a0(980)
f0(980)
f0(1370)

f0(980)
f0(1370)

K ∗
0 (1430)

J P = 1+ a1(1260)
K1(1270)
K1(1400)

J P = 1− φ(1020)
ρ(770)
ω(782)
ρ(1450)

K ∗(892)
K ∗(1680)

K ∗(1680)

J P = 2+ f2(1270)
a2(1320)

f2(1270) K ∗
2 (1430) K ∗

2 (1430)

the efficiency function εs(x), as we want the fit fractions to be free of detector effects. The

integrals of Eq. 4.17 are computed with an independent MC sample generated according to

phase space where no selection has been applied (i.e. the MC sample is different from the one

used in the likelihood fit).

The tool chosen to perform the amplitude fit is a software developed at LHCb, called

AmpGen [98]. It has been fully tested and verified against other well known fitters in the

D0→ K ∓π±π±π∓ analysis [99].

Many resonances are hypothesised to contribute to the decay, as listed in Table 4.2. All

the combinations matching the K +K −π+π− final state are considered; they are listed in

Appendix B. In order to avoid strong CP violation, the two charges of the three-body resonances

are constrained to have the same decay pattern.

It seems that a K ∗ meson with high mass contributes to the decay. Two resonances can take

this role, the K ∗(1410) and the K ∗(1680). However, they both have similar contributions and

the fit does not manage to distinguish them. One of the two needs therefore to be removed. The

K ∗(1680) has been chosen as the fit shows a slightly better χ2 but the K ∗(1410) is considered

in an alternative model in the systematic uncertainties studies.

The K (1460) meson (with J P = 0−) could be considered as a possible contributing resonance.

However, each time this resonance is added to the model, a huge interference with the other

components appears. Furthermore, this meson can have a cascade decay and the various

decay chains have huge interferences among each other (up to O (1000%)). This suggests

that this component just accounts for some fluctuations by adding some strong cancellations

between some amplitudes. Finally, this resonance does not seem to be well established

according to the PDG. All these observations lead to the choice of removing this resonance

from the pool of potential amplitudes.
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Chapter 4. D0→ K +K −π+π− amplitude analysis description

4.3 Lineshapes

4.3.1 Relativistic Breit-Wigner function

The default lineshape used for most resonances is the relativistic Breit–Wigner (RBW) func-

tion [100],

T (m,L) =
�

kB ′
L(q,0)

m2
0 −m2 − i m0Γ(m,L)

, (4.18)

where

Γ(m,L) = Γ0

(
q

q0

)2L+1 (m0

m

)
B ′2

L (q, q0) , (4.19)

is the running width of the resonance, m0 and Γ0 are the nominal values of the mass and width

of the resonance, respectively, and q0 is the value of q when m = m0. Indeed, q is a function of

m

q =
√

m2

4
− m2

1 +m2
2

2
+ (m2

1 −m2
2)2

4m2 , (4.20)

where m1 and m2 are the masses of the daughter particles. If one of the daughter particles is

itself also a resonance, its mass (m1 or m2) is not fixed but depends on x ; this adds an extra

dependence on x in the expression of the lineshape (not indicated in Eqs. 4.15 and 4.18).

The factor k normalises the lineshape if the Blatt–Weisskopf form-factor and the energy

dependence of the width are neglected, and reduces the correlations between the coupling to

the channel and the mass and width of the resonance. It is given by

k = 2
�

2m0γΓ0

π
√

m2
0 +γ

with γ= m0

√
m2

0 +Γ2
0 . (4.21)

The expression of the width given in Eq. 4.19 is not valid for the a1(1260)± and the K1(1270)±

resonances, which both couple to various channels and resonances. Indeed, the finite widths

of the intermediate resonances have an impact on the width of the mother. In this case a

correction has to be implemented. Following the formalism presented in Ref. [101], the width

is computed as an integral over the phase space of the three-body decay r → abc

Γ(mr ,Lr ) ∝ 1

m2
r

∫
|Mr→abc |2 dm2

abdm2
bc , (4.22)

where the integral is performed over the Dalitz plot, expressed in terms of the two-body

invariant masses mab and mbc , and the matrix element Mr→abc contains all contributing

subdecays. For the K1(1270)± resonance, the integral is performed using the analysed dataset.

However, since the a1(1260)± resonance is mainly decaying to three pions, the K Kπ channel
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Figure 4.2 – Cubic splines parametrising the integral of Eq. 4.22 for the K1(1270)± meson (left) and the
a1(1260)± meson (right).

is very small and not suitable to compute correctly this correction to the width. Its integral

is therefore taken from a D0→ K ∓π±π±π∓ analysis [99], where the same formalism is used.

The integrals are parametrised by interpolating cubic splines, which can then be exported and

reused. The resulting splines describing the integrals over the analysed dataset are shown in

Fig. 4.2.

Furthermore, the Blatt–Weisskopf form factors do not suppress the a1(1260)± and K1(1270)±

width sufficiently as the mass of the decaying resonance grows, with the width eventually

diverging. An exponential form factor derived from Ref. [101, 102],

F (q) = e−R2q2/2 , (4.23)

is therefore used instead of B ′
L(q, q0) in Eq. 4.18.

The masses and widths of the resonances are taken from the PDG [24] for all the well known

resonances. For the a1(1260) and the K1(1270) resonances, which are poorly known, a spe-

cial treatment is applied. The K1(1270) has a relatively important contribution to D0 →
K +K −π+π−, therefore its mass and width are left floating in the final fit. The resulting mass

and width, 1297± 1MeV/c2 and 148± 4MeV/c2, can be compared to the PDG values [24],

1272±7MeV/c2 and 90±20MeV/c2, respectively. One has to keep in mind however that these

values are model-dependent, the lineshape of three-body resonances is not as well agreed

upon as for the two-body resonances. Concerning the a1(1260), its contribution is too small

in this analysis to set sensible values. Its mass and the width are therefore taken from the

D0→ K ∓π±π±π∓ analysis [99]: 1195±1MeV/c2 for the mass and 422±2MeV/c2 for the width.

The radius1 R of the various resonances is poorly known and needs to be set. In order to find

the best value, a likelihood profile is performed for each resonance. The fit is sensitive to

three radii, for the D0, the K ∗(892)0 and the K ∗(1680)0, as shown in Fig. 4.3. For the D0, this

results in a minimum at 1.21±0.09GeV−1, for the K ∗(892)0 at 1.13±0.34GeV−1 and for the

1The radii are given in GeV−1 assuming �c = 1.
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Figure 4.3 – Likelihood profile as a function of the radius of the D0, K ∗(892)0 and K ∗(1680)0.

K ∗(1680)0 at 1.93±0.17GeV−1, where the uncertainty is taken as a raise of 1 unit of −2ln(L ).

For all the other resonance the default value of 1.5GeV−1 is used. As mentioned previously, the

parametrisation of the a1(1260)+ lineshape is taken from the D0→ K ∓π±π±π∓ analysis [99].

The radius used has to be consistent with this description and is therefore set to the same

value of 1.7GeV−1. A systematic uncertainty will be assigned for these choices.

4.3.2 Flatté distribution

The Flatté distribution [103] is used for the a0(980)0 resonance near the K K threshold. In

order to handle correctly the behaviour of the lineshape, it uses an analytical extension below

the threshold. The a0(980)0 meson couples to K K and πη, its width is thus affected by these

two channels. This distribution is defined as

T (m,L) =
�

kB ′
L(q,0)

m2
0 −m2 − i m0(ΓK K (m)+Γπη(m))

(4.24)

with

ΓK K (m) = g 2
K K

√
1−
(

2mK

m

)2
, (4.25)

Γπη(m) = g 2
πη

√[
1−
(

mπ+mη

m

)2][
1−
(mπ−mη

m

)2]
, (4.26)
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where the couplings g 2
K K = 0.210±0.032GeV/c2 and g 2

πη = 0.175±0.015GeV/c2 are taken from

Ref. [104] and where mπ and mη are taken from Ref. [24]. An analytical extension returns an

imaginary width when the argument of the square root is negative. The normalisation factor k

is the same as described in Eq. 4.21.

4.3.3 Gounaris-Sakurai distribution

The Gounaris–Sakurai parametrisation [105] is used for the ρ0(770)0 meson decaying to two

pions. This resonance is quite broad and is therefore not perfectly described by the RBW

parametrisation. The lineshape is defined as

T (m,L) =
�

kB ′
L(q,0)(1+DΓ0/m0)

m2
0 −m2 + f (m)− i m0Γ(m,L)

, (4.27)

where the width Γ(m,L) is the same as in Eq. 4.19, the normalisation factor k is the same as in

Eq. 4.21 and the constant D is given by

D = 3m2
π

πq2
0

ln

(
m0 +2q0

2mπ

)
+ m0

2πq0
− m2

πm0

πq3
0

. (4.28)

The function f (m) is given by

f (m) = Γ0
m2

0

q3
0

(
q2 (h(m)−h(m0))+ q2

0

m2 −m2
0

2m

dh

dm

∣∣∣∣∣
m0

)
, (4.29)

h(m) = 2

π

q

m
ln

(
m +2q

2mπ

)
, (4.30)

and where dh
dm is the total derivative of h with respect to m, taking into account that q =√

m2

4 −m2
π.

4.3.4 ρ-ω interference

The ρ(770)0 and the ω(782)0 mesons are very close in mass and interfere therefore heavily. The

two separate resonances can be considered as a single state described by the superposition of

the two individual states. During the model building, whenever a ρ(770)0 meson is added to

the model, an ω(782)0 meson is added as well. The ρ−ω state is therefore described as

∣∣ρ−ω
〉= ∣∣ρ〉+ c̃ |ω〉 , (4.31)

where c̃ is a complex coefficient that is left floating in the fit. It is not clear whether the

ρ−ω relative proportions should be the same in all the production modes (i.e. for example

D0→ φ(ρ−ω)0 vs D0→ K1(1270)+K − followed by K1(1270)+→ (ρ−ω)0K +). A test has been

performed where the same proportions have been used for all the components and the fit did

67



Chapter 4. D0→ K +K −π+π− amplitude analysis description

not converge. No theoretical argument have been found in the literature to support any of

the two hypotheses. Therefore a different complex coefficient is used in the fit for each of the

decay chains.

4.3.5 K-matrix formalism

The RBW lineshape describes accurately well separated narrow resonances. In the case of

broad overlapping resonances the K-matrix formalism [106] is used instead. Advantages of this

formalism are a correct description of the interferences and compliance with unitarity. The

K-matrix formalism describes the resonances by taking into consideration all the channels to

which they couple. This is an important feature, since all the channels contribute to the width

of the resonance. This formalism was traditionally used for scattering processes and is slightly

modified in this analysis to be used for production processes. The lineshapes are defined as

T̂ = (I − i K̂ρ
)−1

P̂ , (4.32)

where I is the identity matrix and ρ is a diagonal phase-space matrix, which describes the

behaviour of the various channels. For the two-body channels, the diagonal elements of ρ

have the form [106]

ρ(m) =
√(

m2 − (m1 +m2)2

m2

)(
m2 − (m1 −m2)2

m2

)
, (4.33)

where m1 and m2 are the daughter masses taken from Ref. [24]. The matrix K̂ is a n×n matrix,

with n being the number of channels to which the resonance couples. It describes both the

resonant structure and the non-resonant scattering part of the amplitude. Finally, P̂ is the

production vector. It has the same pole structure as the K-matrix, such that the amplitude does

not vanish at the K-matrix poles. This formalism is used for the two components described in

the next subsections.

4.3.5.1 ππ/K K S-waves

The ππ and the K K S-waves are both described by the same K-matrix that couples to five

different channels and five different poles. The parametrisation is taken from Ref. [107], where

the K-matrix is defined as

K̂i j (m) = f (m)

(∑
α

gαi gα j

m2
α−m2

+ f scatt
i j

1 GeV2/c4 − sscatt
0

m2 − sscatt
0

)
, (4.34)

where i , j = 1,2,3,4,5 indicate the channels ππ, K K , ππππ, ηη and ηη′ and α = 1,2,3,4,5

indicates the poles f0(980), f0(1300), f0(1500), f0(1200−1600) and f0(1750). The masses of the
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poles mα are [108]

mα =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.651

1.2036

1.55817

1.21

1.82206

⎞
⎟⎟⎟⎟⎟⎟⎠

GeV/c2. (4.35)

The factors gαi are the coupling constants between the channel i and the pole α. They have

been measured from scattering data and their values are [108]

gαi =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.22889 −0.55377 0.00000 −0.39899 −0.34639

0.94128 0.55095 0.00000 0.39065 0.31503

0.36856 0.23888 0.55639 0.18340 0.18681

0.33650 0.40907 0.85679 0.19906 −0.00984

0.18171 −0.17558 −0.79658 −0.00355 0.22358

⎞
⎟⎟⎟⎟⎟⎟⎠

GeV/c2. (4.36)

The second term of Eq. 4.34 describes the non-resonant scattering contribution of the ampli-

tude. The parameters needed are also taken from Ref. [108], where sscatt
0 =−3.93 GeV2/c4 and

f scatt
i j =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.23399 0.15044 −0.20545 0.32825 0.35412

0.15044 0.00000 0.00000 0.00000 0.00000

−0.20545 0.00000 0.00000 0.00000 0.00000

0.32825 0.00000 0.00000 0.00000 0.00000

0.35412 0.00000 0.00000 0.00000 0.00000

⎞
⎟⎟⎟⎟⎟⎟⎠

. (4.37)

The elements f scatt
i j terms have only been measured for the scattering between the ππ channel

and the others, not among the other channels. There is a non-physical singularity below the

ππ threshold, sometimes called the “Adler zero”, that is suppressed by the term f (m). It is

defined in Ref. [109] as

f (m) = 1 GeV2/c4 − sA0

m2 − sA0

(
m2 − sA

m2
π

2

)
, (4.38)

where sA0 = −0.15 GeV2/c4 and sA = 1. The phase-space term of the two-body channels

(i = 1,2,4,5) is described in Eq. 4.33. The phase-space term for the four-pion channel (i = 3) is

ρ3(m) =

⎧⎪⎨
⎪⎩
√

1− (4mπ)2

m2 if m ≥ 1GeV/c2 ,

ρ′
3(m) if m < 1GeV/c2 ,

(4.39)
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Table 4.3 – Parameters of the ππ and K K K-matrices for all the relevant amplitudes. The moduli of the
parameters βα are expressed in GeV/c2.

Amplitude Parameter Modulus Phase [rad]

D0→ [K+K−]L=0[π+π−]L=0

f
prod
K K 1 (fixed) 0 (fixed)

K+K− β1 0.30 ± 0.03 0.43 ± 0.09
K+K− β2 1.08 ± 0.04 1.38 ± 0.03

f
prod
ππ 1 (fixed) 0 (fixed)

π+π− β1 0.60 ± 0.08 −2.53 ± 0.12

D0→ (ρ−ω)0[K+K−]L=0
f

prod
K K 1 (fixed) 0 (fixed)
β1 0.12 ± 0.08 2.59 ± 0.82

D0→φ(1020)[π+π−]L=0
f

prod
ππ 1 (fixed) 0 (fixed)
β1 2.54 ± 0.51 1.12 ± 0.18

where

ρ′
3(m) = ρ0

∫ dm2
1

π

∫ dm2
2

π

M 2
0Γ(m1)Γ(m2)

√
(m2 +m2

1 −m2
2)2 −4m2m2

1

m2[(M 2
0 −m2

1)2 +M 2
0Γ

2(m1)][(M 2
0 −m2

2)2 +M 2
0Γ

2(m2)]
(4.40)

and ρ0 ensures that ρ3(m) is continuous at m = 1GeV/c2. The integration variables m2
1 and

m2
2 are the squares of the invariant masses of the two di-pion states, M0 is the pole mass of the

ρ(770)0 resonance [24] and Γ(m) = Γ0(1− (4m2
π/m2))3/2 is the energy-dependent width, where

Γ0 is set to 0.3GeV/c2. As shown in Ref. [110], the function ρ′
3(m) can be approximated by a

6th order polynomial in m2 (with m expressed in GeV/c2)

ρ′
3(m) = 0.0005−0.0193m2+0.1385m4−0.2084m6−0.2974m8+0.1366m10+1.0789m12 . (4.41)

The production vector is given by

P̂i (m) =∑
α

βαgαi

m2
α−m2

+ f prod
i

1 GeV2/c4 − sprod
0

m2 − sprod
0

, (4.42)

where the complex parameter βα describes the production strength of pole α, the complex

parameter f prod
i describes the direct coupling to channel i and sprod

0 is a single real parameter.

The production vector therefore contains 21 free parameters that should be left floating in

the fit. Despite the large data sample in the analysis, some of these parameters are not well

constrained. In order to improve the fit stability during the model building, only the main

component is kept, i.e. the direct coupling to the relevant channel ( f prod
1 for the ππ channel

and f prod
2 for the K K channel). The direct couplings to the other channels ( f prod

3,4,5 ) and to

the poles (β1,2,3,4,5) are set to 0. All the poles and channels still contribute in the K-matrix

computation of Eq. 4.34; their direct couplings are only removed from the production vector.

Once the model is built, all the pole couplings βα are tested. The fit does not converge if all the
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fit parameters are left floating in addition to these couplings. Therefore all the fit parameters

are fixed to their nominal values and only the parameters of the K-matrix are fitted. The

fit is not sensitive to all of them because the available phase space is relatively small. The

direct coupling to f0(980) is added to all the amplitudes containing a K K or ππ S-wave and

the coupling to f0(1300) is only added to the K K K-matrix in the D0→ [K +K −]L=0[π+π−]L=0

amplitude, because it is the only one where there is enough phase space. The contribution

of the poles with higher masses ( f0(1500), f0(1750) and f0(1200−1600)) is negligible. The

decision of keeping the direct coupling to a pole or not is only based on the convergence

or non-convergence of the fit. The values obtained, shown in Table 4.3, are then fixed in

the main fit. The fit is only mildly sensitive to sprod
0 , with a preferred value in the range

[−0.20,−0.07]GeV2/c4. It is decided to fix sprod
0 to −0.17GeV2/c4 for all the components.

4.3.5.2 Kπ S-wave

The Kπ S-wave couples to two channels, Kπ and Kη′, and contains only one pole, the K ∗
0 (1430)

resonance. Two isospin states contribute to the Kπ S-wave, I = 1
2 , which couples to both

channels, and I = 3
2 , which couples to Kπ only. The parametrisation is taken from Ref. [111]

and the K-matrix for I = 1
2 is given by

K̂
1
2

i j (m) =
m2 − s0 1

2

m2
K +m2

π

(
g1i g1 j

m2
1 −m2

+Ci j 0 +Ci j 1 s̃ +Ci j 2 s̃2

)
, (4.43)

where the mass of the K ∗
0 (1430) pole is m1 = 1.3386GeV/c2, the Adler zero is located at s0 1

2
=

0.23 GeV2/c4, the couplings g1i between the pole and the channels are

g1i =
(

0.31072

−0.02323

)
GeV/c2 , (4.44)

and the coefficients of the second-order polynomial in s̃ = m2

m2
K +m2

π
−1 describing the non-

resonant scattering contribution are

Ci j 0 =
(

0.79299 0.15040

0.15040 0.17054

)
,

Ci j 1 =
(
−0.15099 −0.038266

−0.038266 −0.0219

)
, (4.45)

Ci j 2 =
(

0.00811 0.0022596

0.0022596 0.00085655

)
.

The K-matrix for I = 3
2 does not couple to any resonance, it contains therefore only the non-
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Table 4.4 – Parameters of the Kπ K-matrices for all the relevant amplitudes.

Amplitude Parameter Modulus Phase [rad]

D0→ [K+π−]L=0[K−π+]L=0

K+π− α1/2 1 (fixed) 0 (fixed)
K+π− α3/2 0.31 ± 0.02 2.51 ± 0.08
K−π+ α1/2 1 (fixed) 0 (fixed)
K−π+ α3/2 0.36 ± 0.02 −2.95 ± 0.05

D0→ K∗(1680)0[K−π+]L=0
α1/2 1 (fixed) 0 (fixed)
α3/2 0.29 ± 0.02 −2.96 ± 0.08

D0→ K∗(1680)0[K+π−]L=0
α1/2 1 (fixed) 0 (fixed)
α3/2 0.27 ± 0.04 −2.09 ± 0.14

K1(1270)+→ [K+π−]L=0,π+ α1/2 1 (fixed) 0 (fixed)
α3/2 0.44 ± 0.04 −2.79 ± 0.08

resonant part

K̂
3
2 (m) =

m2 − s0 3
2

m2
K +m2

π

(
D110 +D111 s̃ +D112 s̃2) , (4.46)

where the Adler zero is located at s0 3
2
= 0.27 GeV2/c4 and

D110 =−0.22147, D111 = 0.026637, D112 =−0.00092057. (4.47)

An approximation is made in order to describe the production vector of the Kπ S-wave. It has

been shown in Ref. [112] that, in a limited phase space, one can consider

K̂ −1P̂ ≈ α̂ , (4.48)

where α̂ is a diagonal matrix containing a complex parameter for each channel, which is left

floating in the fit. Therefore, the pole structure of the production vector cancels the pole

structure of the K-matrix. This simplifies Eq. 4.32 to

T̂ = T̂ K̂ −1P̂ = T̂ α̂ , (4.49)

which describes the lineshape only in terms of the scattering process

T̂ = (I − i K̂ρ
)−1

K̂ . (4.50)

The phase-space term of the Kπ K-matrix is described by Eq. 4.33.

Again, some assumptions are made while the model is being built. Only the dominant term

is kept, which is the direct coupling to the Kπ channel in the isospin state I = 1
2 . Once the

model is built, the direct coupling to the Kπ channel in the isospin state I = 3
2 as well as to the

Kη′ channel are tested in all the amplitudes containing a Kπ S-wave. It turns out that the fit

is not sensitive to the contribution of the Kη′ channel, so only the two isospin states of the
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Kπ channel are considered. Again, the fit does not converge if all the fit parameters are left

floating in addition to the K-matrix parameters. Therefore all the fit parameters are fixed to

the nominal values of the final model and the values of the K-matrix parameters are fitted.

These parameters, shown in Table 4.4, are then fixed in the main fit.

4.4 Spin factors

The covariant formalism, chosen to compute the spin factors, uses the contraction of orbital

angular momentum tensors and spin tensors [97]. For completeness, a detailed description

is given here, starting from the individual polarisation vector as well as the orbital angular

momentum tensor followed by the general rules to construct all needed spin factors.

4.4.1 Polarisation factors

A spin-0 particle is not affected by spatial rotation, its polarisation factor is thus trivially set

to 1. A spin-1 particle with momentum p, mass m and spin projection sz , is represented in

momentum space by the polarisation vector εμ(p, sz ). The four components of this vector are

not independent. They must satisfy the first Rarita-Schwinger condition [113],

1st Rarita-Schwinger condition: εμ(p, sz )pμ = 0, (4.51)

which implies that the polarisation vector is orthogonal to the momentum vector and thus,

that the time component vanishes in the particle’s rest frame. The three independent solution

to this Rarita-Schwinger condition are interpreted as the three spin projections of a spin 1

along the z axis:

longitudinal component: εμ(p = 0, sz = 0) =

⎛
⎜⎜⎜⎜⎝

0

0

0

1

⎞
⎟⎟⎟⎟⎠ , (4.52)

transverse component: εμ(p = 0, sz =±1) = 1�
2

⎛
⎜⎜⎜⎜⎝

0

∓1

−i

0

⎞
⎟⎟⎟⎟⎠ . (4.53)

This is only valid in the particle’s rest frame, however for a general purpose, the polarisation

vectors are needed in an arbitrary rest frame. A Lorentz transformation is thus applied on
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Eqs. 4.52 and 4.53:

εμ(p, sz = 0) = 1

m

⎛
⎜⎜⎜⎜⎝

pz

pz px /(E +m)

pz py /(E +m)

m +p2
z /(E +m)

⎞
⎟⎟⎟⎟⎠ , (4.54)

εμ(p, sz =±1) = ∓1�
2m

⎛
⎜⎜⎜⎜⎝

px ± i py

m +px (px ± i py )/(E +m)

±i m +py (px ± i py )/(E +m)

pz (px ± i py )/(E +m)

⎞
⎟⎟⎟⎟⎠ . (4.55)

Spin-2 particles are described by the polarisation tensors εμν(p, sz ). These tensors are con-

structed by combining spin-1 vectors,

εμν(p, sz ) = ∑
sz1,sz2

〈1sz1,1sz2|2sz〉εμ(p, sz1)εν(p, sz2) , (4.56)

where 〈1sz1,1sz2|2sz〉 are the relevant Clebsch-Gordon coefficients. These tensors satisfy the

condition of Eq. 4.51 as well as two further Rarita-Schwinger conditions. They are symmetric:

2nd Rarita-Schwinger condition: εμν(p, sz ) = ενμ(p, sz ) , (4.57)

and they are traceless:

3rd Rarita-Schwinger condition: gμνε
μν(p, sz ) = 0, (4.58)

where gμν is the Minkowski metric:

gμν = gμν =

⎛
⎜⎜⎜⎜⎝
+1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

⎞
⎟⎟⎟⎟⎠ . (4.59)

These conditions reduce the 16 elements of the 4×4 tensor to only 5 independent elements.
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4.4.2 Spin projection operators

Now that the spin-0,-1 and -2 polarisation factors have been determined, their related projec-

tion operators need to be described:

spin 0: P0 = 1,

spin 1: Pμν
1 (p) =∑

sz

εμ(p, sz )ε∗ν(p, sz ) =−gμν+ pμpν

m2 ,

spin 2: Pμναβ
2 (p) =∑

sz

εμν(p, sz )ε∗αβ(p, sz )

= 1

2

(
Pμα

1 (p)Pνβ
1 (p)+Pμβ

1 (p)Pνα
1 (p)

)
− 1

3

(
Pμν

1 (p)Pαβ
1 (p)

)
.

(4.60)

The spin-1 projection operator, for example, projects any four-vector into the spin-1 subspace

spanned by the three polarisation vectors εμ(p, sz ).

4.4.3 Orbital angular momentum

The states of orbital angular momentum L of a system r → ab are constructed from the

momenta of the daughters, pa and pb . One can define the total momentum pr = pa +pb and

the relative momentum qr = pa −pb . The orbital angular momentum tensors are obtained by

projecting the relative momentum qr onto the spin L subspace. This is done using the same

projection operators as for the spins in the previous section,

Lμ1...μL

L (pr , qr ) = (−1)LPμ1...μLν1...νL

L (pr )qr,ν1 ...qr,νL , (4.61)

which yields

L = 0 : L0 = 1,

L = 1 : Lμ
1 (pr , qr ) =−Pμν

1 (pr )qr,ν , (4.62)

L = 2 : Lμν
2 (pr , qr ) = Pμναβ

2 (pr )qr,αqr,β .

4.4.4 Spin factor construction rules

The final spin factor is constructed following a well defined recipe:

1. Assign a polarisation term to the decaying particle.

2. Construct the spin projection operator of the decaying particle.

3. Construct the orbital angular momentum tensor between the decay products.

4. Assign conjugated polarisation terms to the decay products.
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5. Add the Levi-Civita tensor if amplitude is P-odd.

6. Contract all the terms together to obtain a Lorentz scalar.

This results in the following general expression for a system r → ab:

〈
ab, sz,a , sz,b ,Lr

∣∣M ∣∣r, sz,r
〉=

ε(pr , sz,r )Psr (pr , qr )LLr (pr , qr )ε∗(pa , sz,a)ε∗(pb , sz,b)ζ(sr ,Lr , sa , sb) , (4.63)

where the two daughters of the resonance r have an orbital angular momentum Lr . The

function ζ adds either the metric tensor gμν or the Levi-Civita tensor εμνρσ contracted with

the momentum of the resonance r , in order to contract all the components together and to

ensure the correct behaviour under the parity transformation:

ζ(S,L,S1,S2) =
{

gμν if S +L+S1 +S2 is even,

εμνρσpσ
r if S +L+S1 +S2 is odd.

(4.64)

All needed spin factors can be constructed following this recipe and they are all listed in

Ref. [99]. The final value of the spin factor for a decay D0 → r1r2 with r1 → ab and r2 → cd ,

where a, b, c and d are pseudoscalars, is given by

W = 〈abcd
∣∣M ∣∣D0〉 (4.65)

= ∑
sz,r1 ,sz,r2

〈
r1r2, sz,r1 , sz,r2 ,LD0

∣∣M ∣∣D0〉 〈ab,Lr1

∣∣M ∣∣r1, sz,r1

〉 〈
cd ,Lr2

∣∣M ∣∣r2, sz,r2

〉
,

where the sum is taken over all the allowed combinations of sz,r1 and sz,r2 .

As an example, the construction of the spin factor of D0→φρ in S-wave is shown:

1. The D0 is a spin 0 particle and has therefore a polarisation term equal to 1.

2. Trivially, the spin projection operator of the D0 is 1 as well.

3. Being in S-wave, the orbital angular momentum tensor between the φ and the ρ is 1.

4. The φ and the ρ are spin-1 particles and thus have the polarisation vectors ε∗μ(pφ, sz,φ)

and ε∗ν(pρ , sz,ρ).

5. The sum sD0 +LD0 + sφ+ sρ = 0+0+1+1 = 2 is even, so no Levi-Civita tensor is needed.

6. Finally
〈
φρ,L = 0

∣∣M ∣∣D0
〉= ε∗μ(pφ, sz,φ)ε∗ν(pρ , sz,ρ)gμν.
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4.5 Background description

The sidebands of the D0 mass distribution are used to describe the background, assuming

that the sum of the lower and upper sidebands (even if different) gives a good description of

the background in the signal region. The distributions of the five CM variables for events in

the D0 mass sidebands are shown in Fig. 4.4.
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Figure 4.4 – Normalised distributions of the five CM variables for D0→ K +K −π+π− candidates falling
in the lower and upper sidebands of the Dz mass. The K +K − mass distribution shows a clear and
narrow peak due to the φ(1020)0 resonance. The π+π− mass distribution shows an unpronounced and
broad shoulder due to the ρ(770)0 resonance, as well as an empty region due to the K 0

S veto.
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Figure 4.5 – Lower sideband (left), upper sideband (middle) and the sum of the two (right) projected on
the K +K − (top), K −π+ (middle) and K +π− (bottom) masses. The data is presented along with its fits
and its corrections.

4.5.1 Correction

In order to have the same phase-space boundaries for the signal and the background samples,

the K +K −π+π− invariant mass has been constrained to the D0 mass. As a side effect, the

peaks of the resonances present in the background are slightly shifted. These shifts are of

opposite direction for the upper and the lower sidebands. By summing the two sidebands,

the peaks are roughly at the correct place, however, the width of the resonances is broadened.

This effect is clearly visible for the φ(1020)0→ K +K − and K ∗(892)0→ K −π+ resonances.

The data sidebands are therefore reweighted in m(K +K −), m(K −π+) and m(K +π−) to let

the resonances have the correct width, which is obtained by performing fits in each of the

two sidebands separately. The fit is parametrised as a polynomial for the combinatorial

background and a Gaussian for the resonance signal (red curves in Fig. 4.5 left and middle

columns). The mean of the resulting distributions is then shifted to the PDG mass in both

sidebands separately (blue curves in Fig. 4.5 left and middle columns). The weighting function

is then obtained by dividing the corrected distribution by the original fitted distribution. The

two sidebands are reweighted separately such that their sum shows resonance peaks at the

correct position with the correct width (red histograms in Fig. 4.5 right column).
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The correction is applied on the φ(1020)0 in the K +K − invariant mass for 990MeV/c2 <
mK +K − < 1080MeV/c2 with a second order polynomial for the combinatorial background.

It is also applied on the K ∗(892)0 in the K −π+ invariant mass with a second order polynomial

for the combinatorial background and on the K ∗(892)0 in the K +π− invariant mass with a third

order polynomial for the combinatorial background, for 700MeV/c2 < mK ±π∓ < 1000MeV/c2

in both cases. The K ∗(892)0 peak is much less pronounced than its CP conjugate. Therefore a

simultaneous fit is performed on the K +π− and K −π+ invariant masses with the same width

and the same mean. Outside of these bounds, no correction is applied. The continuity at the

boundaries is ensured by normalising the weights by the number of events in those regions.

There might be some ρ(770)0 present in the sidebands as well, but no suitable correction could

be implemented. It is a small and wide component, close to the phase-space threshold, with a

non trivial mass distribution. All this justifies the absence of correction. All the other two-body

and three-body invariant masses have been inspected and do not show any peaking structure.

If the K ∗ and K ∗ were coming from combinatorial background, we would expect them to have

similar rates. Therefore, we conclude that they have to come from partially reconstructed

backgrounds. As mentioned earlier, all the D0 candidates have been transformed into D0

candidates by applying CP to the momenta and charges of the tracks. The events in the

sidebands do not come from a D0, however, the same procedure is performed on the tracks,

according to the charge of the muon. The fact that one of the flavour of the K ∗ almost

disappears when CP is applied means that it is strongly correlated with the charge of the

muon. A favoured transition, which explains this correlation, is b → c → s, which creates

a K ∗ (decaying to K −π+) rather than a K ∗. These two tracks could then be associated to a

random kaon and a random pion present in the event to form the K +K −π+π− candidate in

the sidebands of the D0 mass.

4.5.2 Background modelling

The method chosen to create a 5D background function is to reweight the MC integration

sample to make it match the 5D distribution observed in the data sidebands. It has been

observed that reweighting only five variables (for example the five CM variables) does not

reproduce resonant structures in other projections (for example in the K −π+ invariant mass).

This can be explained by the fact that the mechanisms used to reweight the distributions do not

take all the correlations into account. Ideally one would use one 5D histogram, which would

obviously contain all the correlations. However, the limited statistics in the D0 sidebands

(∼ 90k events) makes this impossible: if we require at least ten events per cell in 5D space, this

would allow only 6 or 7 bins in each of the five dimensions. This coarse binning is not suitable

to describe fine structures such as the narrow φ peak.

The solution found to overcome this correlation problem, is to reweight significantly more

than five different projections of the same five-dimensional phase space in order to describe

correctly all the features. The 31 different variables, listed in Table 3.1, have been chosen
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Figure 4.6 – Background distributions of the five variables of Set 1 (i.e. the CM variables). The black
points represent the data sideband events, and the red points the MC events after the reweighting
procedure.

for this purpose. The reweighting is performed simultaneously on these 31 variables using

hep_ml [92].

After this procedure, the distributions of the weighted MC sample match well those of the data

sidebands, for all 31 variables, as shown in Fig. 4.6 for the five CM variables and in Appendix C

for the remaining 26 variables.

After the weights are normalised to satisfy
∑NMC

i=1 w(x i ) = NMC, they can be used to evaluate the

background component of the fitting function of Eq. 4.12. However, a slight technical difficulty

arises because the computation of the likelihood function LF (c) requires B(x) = w(x)Sgen(x)
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to be evaluated at the phase-space points x j of the data events, not at the phase-space points

x i of the MC events. As there is no one-to-one correspondence between the data events and

the MC events, a pseudo five-dimensional interpolation is used. The MC sample is binned in

the five dimensions defined by the CM variables using the HyperPlot [114] tool. The binning

process loops over the five dimensions and on each dimension, it splits each bin into two

smaller bins with approximately the same number of events. This adaptive binning results in

bins with similar number of events, but with smaller volumes in high density regions. One can

choose the minimum number of events required and a limit of 5 has been set (i.e. between 5

and 9 MC events can be present in each bin). Since the MC sample contains ∼ 10M events, the

binning process results in ∼ 1.5M bins. The evaluation of B(x j ) for a data event at point x j is

taken as the average of the weights B(x i ) of the MC events inside the bin containing x j .

4.6 Fit validation

pseudoexperiments are run to demonstrate that the background description works and is

usable in the amplitude fit. As a first step the pseudoexperiments use only a signal model. For

each pseudoexperiment, 200k signal events are generated according to an arbitrary model.

This model was inspired by the CLEO model of Ref. [46]. A fit is performed with a MC integra-

tion sample of 10M events and the result of the fit is then compared to the input values. 1000

pseudoexperiments have been run and their results are summarised in Table 4.5. The biases,

although rather small, will be addressed with a systematic uncertainty.

The same pseudoexperiments have been run again but in addition to the signal contribution

of 200k events, a background contribution is generated according to the empirical background

PDF described in Sec. 4.5 with 50k events. The fit is also performed with an integration of

10M MC events. The results are summarised in Tables 4.6 and the pulls of the fit fractions are

shown in Fig. 4.7.

The two sets of pseudoexperiments show similar accuracies. We conclude that the description

of the background works as expected and does not introduce any significant bias. The small

remaining discrepancies will be accounted for in a systematic uncertainty.
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Table 4.5 – Fit validation with 1000 pseudoexperiments, each with 200k signal events and an integration
sample of 10M events. The statistical uncertainties on the mean and width of the pulls are specified in
the header line.

Mean Mean Pulls
Real and imaginary parts of ck coefficients Input value result uncertainty μ±0.03 σ±0.02 χ2/ndf

D0 → K∗(892)0K∗(892)0 Re −0.061 −0.061 0.001 0.040 1.021 0.608
Im −0.153 −0.153 0.001 −0.176 1.052 0.630

D0 →φ(1020)0ρ(770)0 Re 0.202 0.202 0.005 0.077 1.050 0.834
Im −0.577 −0.578 0.004 −0.038 1.017 0.702

D0 → [φ(1020)0ρ(770)0]L=2
Re 0.531 0.535 0.023 0.150 1.060 0.876
Im −1.663 −1.663 0.018 0.013 1.041 0.625

D0 →φ(1020)0[π+π−]L=0
Re 0.342 0.343 0.006 0.198 0.977 0.749
Im 0.361 0.361 0.005 −0.052 0.990 1.134

D0 → K1(1270)+K−,K1(1270)+ → K∗(892)0π+ Re −0.173 −0.173 0.002 0.090 1.034 1.076
Im 0.282 0.283 0.002 0.235 1.014 0.838

D0 → K1(1270)−K+,K1(1270)− → K∗(892)0π− Re 0.164 0.164 0.002 0.099 1.011 0.446
Im −0.121 −0.121 0.002 −0.110 0.958 0.709

D0 → K1(1270)+K−,K1(1270)+ → ρ(770)0K+ Re 0.239 0.241 0.003 0.424 0.980 0.905
Im 0.114 0.114 0.003 −0.006 1.011 0.799

D0 → K1(1270)−K+,K1(1270)− → ρ(770)0K− Re −0.296 −0.296 0.003 −0.113 1.023 1.004
Im −0.439 −0.438 0.003 0.073 1.056 0.622

D0 → K∗(1410)+K−,K∗(1410)+ → K∗(892)0π+ Re −0.268 −0.268 0.006 −0.119 0.956 0.659
Im −0.736 −0.737 0.005 −0.281 0.988 1.066

D0 → K∗(1410)−K+,K∗(1410)− → K∗(892)0π− Re −0.112 −0.112 0.005 0.000 0.983 0.496
Im 0.389 0.390 0.005 0.185 1.057 0.738

D0 → [K+K−]L=0[π+π−]L=0
Re 1 (fixed) 1 (fixed)
Im 0 (fixed) 0 (fixed)

Fit fractions Fk

D0 → K∗(892)0K∗(892)0 0.082 0.082 0.001 0.094 1.048 0.828
D0 →φ(1020)0ρ(770)0 0.212 0.211 0.001 −0.464 0.998 0.635
D0 → [φ(1020)0ρ(770)0]L=2 0.026 0.026 0.000 −0.090 1.032 0.663
D0 →φ(1020)0[π+π−]L=0 0.036 0.036 0.001 0.103 0.991 0.468
D0 → K1(1270)+K−,K1(1270)+ → K∗(892)0π+ 0.130 0.130 0.001 0.056 1.010 0.544
D0 → K1(1270)−K+,K1(1270)− → K∗(892)0π− 0.049 0.050 0.001 0.252 0.968 0.934
D0 → K1(1270)+K−,K1(1270)+ → ρ(770)0K+ 0.033 0.033 0.001 0.410 0.985 0.641
D0 → K1(1270)−K+,K1(1270)− → ρ(770)0K− 0.131 0.131 0.001 −0.100 1.027 1.263
D0 → K∗(1410)+K−,K∗(1410)+ → K∗(892)0π+ 0.077 0.078 0.001 0.514 0.943 0.368
D0 → K∗(1410)−K+,K∗(1410)− → K∗(892)0π− 0.021 0.021 0.000 0.054 1.043 0.424
D0 → [K+K−]L=0[π+π−]L=0 0.182 0.182 0.001 0.015 1.016 0.571
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4.6. Fit validation

Table 4.6 – Fit validation with 1000 pseudoexperiments, each with 200k signal events, 50k background
events and 10M MC events for the integration sample. The statistical uncertainties on the mean and
width of the pulls are specified in the header line.

Mean Mean Pulls
Real and imaginary parts of ck coefficients Input result uncertainty μ±0.03 σ±0.02 χ2/ndf

D0 → K∗(892)0K∗(892)0 Re −0.061 −0.061 0.002 0.193 1.048 0.687
Im −0.153 −0.153 0.001 0.140 0.980 0.905

D0 →φ(1020)0ρ(770)0 Re 0.202 0.203 0.005 0.171 0.996 0.754
Im −0.577 −0.576 0.004 0.371 0.952 0.842

D0 → [φ(1020)0ρ(770)0]L=2
Re 0.531 0.542 0.027 0.379 0.998 0.702
Im −1.663 −1.654 0.021 0.450 0.995 0.377

D0 →φ(1020)0[π+π−]L=0
Re 0.342 0.342 0.006 −0.059 0.949 0.635
Im 0.361 0.360 0.006 −0.176 0.970 0.735

D0 → K1(1270)+K−,K1(1270)+ → K∗(892)0π+ Re −0.173 −0.173 0.003 −0.009 0.986 0.843
Im 0.282 0.282 0.002 −0.006 1.004 0.510

D0 → K1(1270)−K+,K1(1270)− → K∗(892)0π− Re 0.164 0.165 0.002 0.153 1.000 0.973
Im −0.121 −0.121 0.002 0.128 0.987 0.606

D0 → K1(1270)+K−,K1(1270)+ → ρ(770)0K+ Re 0.239 0.240 0.003 0.083 1.017 0.555
Im 0.114 0.114 0.003 0.082 0.986 0.826

D0 → K1(1270)−K+,K1(1270)− → ρ(770)0K− Re −0.296 −0.296 0.004 −0.029 0.981 0.525
Im −0.439 −0.437 0.004 0.490 0.990 0.668

D0 → K∗(1410)+K−,K∗(1410)+ → K∗(892)0π+ Re −0.268 −0.266 0.008 0.256 0.978 0.582
Im −0.736 −0.737 0.006 −0.142 0.988 0.727

D0 → K∗(1410)−K+,K∗(1410)− → K∗(892)0π− Re −0.112 −0.112 0.006 −0.086 0.948 0.586
Im 0.389 0.389 0.006 0.014 0.962 0.572

D0 → [K+K−]L=0[π+π−]L=0
Re 1 (fixed) 1 (fixed)
Im 0 (fixed) 0 (fixed)

Fit fractions Fk

D0 → K∗(892)0K∗(892)0 0.082 0.082 0.001 −0.097 1.013 0.630
D0 →φ(1020)0ρ(770)0 0.212 0.211 0.001 −0.624 0.970 0.671
D0 → [φ(1020)0ρ(770)0]L=2 0.026 0.026 0.001 −0.290 1.009 0.936
D0 →φ(1020)0[π+π−]L=0 0.036 0.036 0.001 −0.072 0.947 0.469
D0 → K1(1270)+K−,K1(1270)+ → K∗(892)0π+ 0.130 0.131 0.001 0.203 0.984 0.598
D0 → K1(1270)−K+,K1(1270)− → K∗(892)0π− 0.049 0.050 0.001 0.317 0.968 0.720
D0 → K1(1270)+K−,K1(1270)+ → ρ(770)0K+ 0.033 0.033 0.001 0.245 0.993 0.534
D0 → K1(1270)−K+,K1(1270)− → ρ(770)0K− 0.131 0.131 0.001 −0.338 0.965 0.694
D0 → K∗(1410)+K−,K∗(1410)+ → K∗(892)0π+ 0.077 0.078 0.001 0.398 0.943 0.639
D0 → K∗(1410)−K+,K∗(1410)− → K∗(892)0π− 0.021 0.021 0.001 0.054 0.947 0.439
D0 → [K+K−]L=0[π+π−]L=0 0.182 0.183 0.001 0.436 0.966 1.046
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Figure 4.7 – Pulls of the fit fractions obtained with 1000 pseudoexperiments fitting each 200k signal and
50k background events with an integration sample of 10M events.

84



4.7. Model building

4.7 Model building

The signal model is built with an iterative method. A list of all possible amplitudes is defined

(see Appendix B) along with a base model. The base model contains six amplitudes, that are

expected to contribute to the decay D0→ K +K −π+π−:

• D0→φ(1020)0(ρ−ω)0 (S,P ,D waves),

• D0→ K ∗(892)0K ∗(892)0 (S,P ,D waves).

All the amplitudes of the list are added one by one to the base model and fitted to the data. As

no CP violation is expected to arise in strong decays, the two charges of the same three-body

resonance are constrained to have the same substructure. This means that the two charges of

the same three-body component are always added together in the model building method.

The amplitude that produces the largest decrease in −2lnL is kept and added permanently

to the base model. The remaining amplitudes are tested again in the subsequent loop and so

on. The sum of the fit fractions is not equal to 1 because of interference, which is expected.

However, if the sum becomes too high, it is a sign that non physical amplitudes are cancelling

each-other and are not really contributing to the decay D0→ K +K −π+π−. It is observed that

the sum is quite stable while adding amplitudes but at some point it diverges. The procedure

is therefore stopped and the amplitude that is responsible for this divergence is removed.

4.8 Resulting nominal model

In order to assess the quality of the fit, a χ2 test is performed using an adaptive binning. The

same method as described in Sec. 4.5.2 is used for the adaptive binning on the CM variables.

In order to have a sufficient statistics in each bin to compute a sensible χ2 value, the minimum

number of events required per bin is 10. This results in 8192 bins covering the whole phase

space, with smaller bins in higher density regions.

The χ2 is computed as

χ2 =
Nbins∑

i

(Ni −N ′
i )2

σ2
i +σ

′2
i

, (4.66)

where Ni is the number of data events in the bin i and N ′
i is the expected number of events in

the same bin i , determined from the fitted PDF,

N ′
i =

M∑
j
ω j , (4.67)

with M being the number of events in bin i and ω j is the weight of the MC integration event j .
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Figure 4.8 – Evolution of the χ2/ndf and the sum of the fit fractions during the model building procedure.
The horizontal axis shows the number of added amplitudes.

The uncertainty on the number of data events is the Poisson statistical uncertainty:

σi =
√

Ni . (4.68)

The uncertainty on the expected number of events is given by

σ
′2
i =

M∑
j
ω2

j . (4.69)

Throughout the note, the χ2/ndf will be quoted to assess the quality of the various fits. The

number of degrees of freedom (ndf) is computed as the number of bins minus the number of

parameters in the fit minus one, because the total number of events is known.

Figure 4.8 shows the evolution of the χ2/ndf of the fit and the sum of the fit fractions during

the model building procedure. The base model corresponds to 8176 degrees of freedom and

at each iteration the number of degrees of freedom is decreased, since one or more complex

fit parameter is added for each amplitude. The procedure is stopped at the iteration preceding

the divergence in the sum of fit fractions.

The resulting model, referred to as the nominal model in the following, contains more than 25

components yielding a χ2 value of 9242 for 8121 degrees of freedom. Such χ2 value is good in

comparison to other high-statistics amplitude analyses. The resulting fit parameters and fit

fractions of all the components as well as projections on the five CM variables of the fit and

the data are shown in in Tables 6.1–6.3 and Fig. 6.1 in Chapter 6.

The statistical significance of each selected amplitude is computed using Wilks’ theorem [115].

The final fit is the null hypothesis H0 and contains N0 degrees of freedom. As many fits as there

are amplitudes in the model are performed, each time by removing one amplitude from the

model. These fits are the alternative hypotheses Hi with Ni degrees of freedom. The likelihood

ratio of these fits with respect to the final fit is performed to assess the difference between the
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various fits:

D =−2ln

(
L (H0)

L (H1)

)
(4.70)

= 2(ln(L (H1))− ln(L (H0))) . (4.71)

This difference D is distributed as a χ2 of (Ni −N0) degrees of freedom. The related p-value can

be extracted from the χ2, which in turn can be converted to a significance. Every amplitude in

the nominal model has a very high statistical significance, as shown in Tables 6.1 and 6.2.

4.9 CP violating observables

Once the CP averaged D0 model has been determined, one can use it to perform a search for

CP violation. The data is split according to the flavour of the muon such that there is a D0

sample and a D0 sample, where CP has been applied on all D0 candidates. The D0 sample

is kept like this in order to use the same model for both samples, and to be able to compare

the observables that are CP sensitive. The integration MC sample does not contain any CP

violation and is therefore not split (i.e. the entire sample of 10M events is used for fitting both

the D0 and D0 samples). No CP violation is expected in the background data events present

in the D0 sidebands. Therefore the sidebands are also not separated and the background PDF

is the same for the D0 and the D0 samples.

In the following this measurement will be referred to as the CP violation fit in contrast to the

nominal fit, which is the CP averaged fit. We decide to parametrise the CP violation with the

average modulus |ck |, modulus asymmetry A|ck |, average phase arg(ck ) and phase difference

Δarg(ck ), as already done in Ref. [116]:

|ck | =
|ck |D0 +|ck |D0

2
A|ck | =

|ck |D0 −|ck |D0

|ck |D0 +|ck |D0

(4.72)

arg(ck ) = arg(ck )D0 +arg(ck )D0

2
Δarg(ck ) = arg(ck )D0 −arg(ck )D0

2
, (4.73)

where |ck | and arg(ck ) are the polar coordinates (modulus and phase) of the complex fit

parameter multiplying amplitude k. These coordinates can be expressed in terms of the CP

violation parameters:

|ck |D0 = |ck |(1+ A|ck |) arg(ck )D0 = arg(ck )+Δarg(ck ) (4.74)

|ck |D0 = |ck |(1− A|ck |) arg(ck )D0 = arg(ck )−Δarg(ck ) . (4.75)

The fit is performed directly on the CP violation parameters. Therefore it takes both samples,

D0 and D0, and minimises the sum of the two negative log-likelihoods. No CP violation is

expected in the strong decays of the three-body resonances; their modulus and phases are

therefore simultaneously fitted to common values for the two samples.
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An additional information of the CP violation in each amplitude can be obtained from the fit

fractions. The following asymmetry is considered:

AFk =
F D0

k −F D0

k

F D0

k +F D0

k

, (4.76)

where F D0

k and F D0

k are the fit fractions for the D0 and the D0 samples respectively.
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5 Systematic uncertainties and cross-
checks

Various sources are considered as systematic uncertainties in the nominal fit. They are all

described in the following sections and all the values are summarised in Tables 5.4 and 5.5.

Several types of systematic uncertainties are considered. The first type is evaluated by compar-

ing two different hypotheses (a and b) while fitting the same sample. This type of systematic

uncertainties is computed as:

σ
syst
k =

⎧⎪⎨
⎪⎩

||ca
k |− |cb

k ||
|arg(ca

k )−arg(cb
k )|

|F a
k −F b

k |
(5.1)

where |ck |, arg(ck ) and Fk are the modulus, phase and fit fraction of the amplitude k.

The second type of systematic uncertainties are evaluated with pseudoexperiments, where a

signal sample is generated according to a certain model and fitted back to verify that the input

parameters can be retrieved. In this case, a pull is computed as:

pullk =
|cfit

k |− |c input
k |

σfit
k

, (5.2)

where σfit
k is the statistical uncertainty of the amplitude k in each pseudoexperiment. The pulls

are similarly computed for the phase and fit fraction of each amplitude. The pseudoexperiment

is repeated 1000 times and for each modulus, phase and fit fraction, a histogram is filled as

shown in Fig. 5.1.

The systematic uncertainty is then assigned as:

σ
syst
k =σstat

k

√
μ2

k +σ2
μk

, (5.3)

where μk and σμk are the mean of the pull and its uncertainty and σstat
k is the statistical uncer-

tainty for the amplitude k of the final fit to the data. This assigns as systematic uncertainty the
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Figure 5.1 – Pull of one fit parameter as example. This particular pull has been obtained on a pseudoex-
periment using signal only, for the modulus of the parameter of the amplitude D0→ K ∗(892)0K ∗(892)0

in S-wave.

mean of the distribution if there is a bias or the resolution of the test if the bias is negligible.

The third type of systematic uncertainties is also linked to pseudoexperiments, but where

an additional effect is tested. For example, if a pseudoexperiment is performed with signal

and background, it will contain both effects, while the effect of the signal is already taken into

account in another systematic uncertainty. We assume that both effects are independent and

therefore assign the systematic uncertainties in analogy to Eq. 5.3:

σ
syst
k =σstat

k

√
Δμ2

k +σ2
Δμk

, (5.4)

where Δμk is the difference of the means of the pulls between the signal-only pseudoexperi-

ment and the pseudoexperiment with the additional effect. And σΔμk is the uncertainty on

this difference, taken as the quadratic sum of the uncertainties on the two means of the pulls.

Finally, the fourth type of systematic uncertainties is evaluated by comparing many slightly

different models to test statistical fluctuations (e.g. comparing different background models

elaborated by resampling the data sidebands). For this type of systematic uncertainties, 1000

fits are performed to the data and the resulting spread of each parameter σk is taken as the

systematic uncertainty:

σ
syst
k =σk . (5.5)

5.1 Selection efficiencies

Reconstruction and selection efficiencies are accounted for by using a MC sample that has

gone through the same reconstruction steps as the data. This MC sample is directly used as

the integration sample in the fit, as described in Sec. 4.1. However, the simulation is not a
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perfect description of the data and this choice might introduce some bias and a systematic

uncertainty needs to be assigned.

Since the integration MC sample used in the fit has been reweighted to match the data, the

idea is to compare various reweightings. The default reweighting is performed before the

offline selection. Another possibility is to perform the reweighting after the offline selection.

This second reweighting is performed and the resulting MC sample is used in a fit. The fit

results are compared and systematic uncertainties are assigned according to Eq. 5.1.

5.2 Background description

Two sources of systematic uncertainties are identified for the background description:

• First, the finite size of the D0 sidebands has an implication on the description of the back-

ground PDF. In order to assign a systematic uncertainty to take this effect into account,

the D0 sidebands have been resampled 1000 times using the bootstrap method [117].

This generates various background descriptions with simulated statistical fluctuations.

These various background PDFs are used to fit the data in order to check how much the

statistical uncertainty of the background description affects the signal fit. The systematic

uncertainty is computed according to Eq. 5.5.

• Second, the reweighting method used to generate the background PDF, as described in

Sec. 4.5.2, might introduce a bias. We used hep_ml for the multi-dimensional reweight-

ing procedure in the nominal fit and we compare it to another method that we developed

to assign a systematic uncertainty. The description of this alternative method is given

in Appendix D. The fit is performed again with this alternative background PDF. The

χ2/ndf is similar and the systematic uncertainties are computed according to Eq. 5.1.

5.3 Signal fraction

In the nominal fit to the data, the signal fraction fs is fixed to the value obtained in the one-

dimensional mass fit described in Sec. 3.6. However this fraction has a statistical uncertainty

that needs to be propagated to the final result. In order to test the impact of the signal fraction

on the final results, the fit is performed 1000 times on data with the value of the signal fraction

taken from a Gaussian random number generation with a mean value of 0.828 and a width of

0.003. The background fraction is always taken as fbkg = 1− fsig. The pulls of the fit parameters

are found to be negligible and therefore no systematic uncertainty is assigned for this effect.
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5.4 Resonance description

Some choices have been made for the description of the resonances. Some other parametrisa-

tions are used to assign a systematic uncertainty for these choices.

• The Gounaris-Sakurai description for the ρ(770)0 is tested against the RBW. The system-

atic uncertainty is computed according to Eq. 5.1.

• The K-matrix description of the ππ and K K S-waves is varied among the various so-

lutions published in Ref. [107]. Eq. 5.1 is used for both alternative solutions and the

maximum value between the two is kept as the systematic uncertainty.

• A systematic uncertainty is also assigned for the choice of values used for the fixed

masses and widths of the resonances. 1000 fits are performed on the data, where these

values are fluctuated according to a Gaussian with a mean and width taken as the value

and its uncertainty quoted by the PDG [24]. The systematic uncertainty is assigned

according to Eq. 5.5. This systematic uncertainty is dominated by the less well-known

resonances which have large uncertainties, such as the K ∗(1680)0.

• The radius of the various resonances is poorly known. A value has been determined for

the D0, the K ∗(892)0 and the K ∗(1680)0, as described in Sec. 4.3.1. The radii of these

three resonances are therefore fluctuated as a Gaussian with mean and width taken

as their determined mean value and uncertainty. For the other resonances, since no

preferred value has been found, a uniform distribution is taken around the default

value of 1.5GeV−1 with a similar range (1.3GeV−1 < R < 1.7GeV−1). The radius of the

a1(1260)+ is simililarly fluctuated around its set value (1.5GeV−1 < R < 1.9GeV−1). 1000

fits are performed to the data and the systematic uncertainty is assigned according to

Eq. 5.5.

5.5 Fit bias

pseudoexperiments are performed, where a signal sample is generated according to the final

model and is fitted back in order to retrieve the input values. This tests whether that the fit

is unbiased. For each pseudoexperiment a different MC sample is generated such that they

are completely independent. As the nominal MC integration sample, these MC samples are a

combination of phase space and CLEO model. In order to use reasonable CPU and storage

resources as well as performing the pseudoexperiments in a reasonable time, the statistics of

the pseudoexperiments has been chosen to be smaller than the nominal statistics present in

the data. In the nominal fit, the data contains ∼ 200k events with a purity of 82.8% and the MC

integration sample contains ∼ 10M events. A similar ratio is used for the pseudoexperiments,

where the generated sample has 50k events and the MC sample has 2.5M events. We use the

assumption that these systematic effects do not scale with statistics.
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Five different effects, described in the following subsections, are tested with pseudoexperi-

ments. Summary plots showing the mean and the width of all the distributions are shown in

Appendix E.

5.5.1 Signal

The signal sample is fitted alone in order to test the stability of the fitter. Here 50k events of

signal are generated for each pseudoexperiment. The pulls are computed according to Eq. 5.2

and the systematic uncertainties according to Eq. 5.3.

5.5.2 Background

The signal sample is combined to a background sample. Here 41 440 signal events and 8 560

background events are generated for each pseudoexperiments. The signal sample is generated

according to the final signal model and the background sample is generated according to the

background model used in the nominal fit. The pulls are computed according to Eq. 5.2 and

the systematic uncertainties according to Eq. 5.4.

5.5.3 Mistag

The signal sample is modified in order to add a mistag effect. The probability of mistag due to

the wrong assignment of the charge of the muon has been determined in the previous analysis

of this same data at LHCb [118]. It is relatively low at 0.5%. Therefore in the pseudoexperiments,

we randomly apply CP to the four four-momenta of the daughters particles on 0.5% of the 50k

signal events generated. The pulls are again computed according to Eq. 5.2 and the systematic

uncertainties according to Eq. 5.4.

5.5.4 Detection asymmetry

This analysis is not sensitive to the production asymmetries between D0 and D0 since only

their substructure is studied. It might however be sensitive to detection asymmetries between

the four tracks in non-symmetric final states such as D0→ K1(1270)+K −. In order to assign a

systematic for this effect, we run the same pseudoexperiment with the signal component only,

but we modify the signal sample to introduce the detection asymmetries. The size of the effect

is taken from Ref. [119]. We neglect the detection asymmetries of the pions and focus on the

kaons. According to the paper, the detection asymmetry is defined as shown in Eq. 5.6 and

therefore depends on the momentum of the kaon as shown in Fig. 5.2,

AK (p) = εK −(p)−εK +(p)

εK −(p)+εK +(p)
, (5.6)
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Figure 5.2 – Detection asymmetry as a function of the momentum of the kaon [119].

where εK − is the detection efficiency of a K − and εK + is the detection efficiency of a K +. Since

there is no detection efficiencies in pseudoexperiments, we reweight the generated sample

in order to simulate these efficiencies to match the detection asymmetry of Fig. 5.2. In order

to do this, two variables have to be set (εK − and εK +), we therefore need a second input in

addition to the asymmetry and this is the average efficiency:

ε= εK − +εK +

2
. (5.7)

The efficiencies become

εK ∓ = ε(1± AK ) . (5.8)

We decide to set the average efficiency ε to 1. This is an arbitrary choice as valid as any, since

we are only interested in the asymmetry.

Since there are two kaons in D0 → K +K −π+π−, we need to correct every event for both of

them. Therefore the final weight applied on each event is:

w = (1+ AK (pK −)) · (1− AK (pK +)) . (5.9)

The opposite effects on the two kaons partially cancel each other in CP eigenstates (e.g. D0→
φ(1020)0ρ(770)0), but not necessarily in asymmetric components (e.g. D0→ K1(1270)+K −).

1000 pseudoexperiments are performed, the pulls are computed according to Eq. 5.2 and the

systematic uncertainties according to Eq. 5.4.
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5.6 Alternative models

The model building method described in Sec. 4.7 is completely deterministic and produces the

best model possible with the given list of amplitudes and the given set of criteria used for the

selection of amplitudes. Slightly different criteria could lead to slightly different models with

similar fit qualities. We therefore assign a systematic uncertainty for this choice of the model.

pseudoexperiments are performed by generating a signal model according to an alternative

model and fitting it back with the nominal model. This tests the effect of fitting the data

with the chosen nominal model when the real underlying model is slightly different. The

systematic uncertainties are assigned according to Eq. 5.4 for each alternative model. Several

alternative models are studied and all the models with a similar fit quality as the nominal

fit (χ2/ndf = 9226/8123 = 1.14) are used to assign the systematic uncertainty. The maximum

value between the retained alternative models is taken as the final systematic uncertainty due

to the alternative models.

5.6.1 a0 vs f0

The stopping criterion appears when the amplitude D0→ a0(980)0[π+π−]L=0 is added to the

model which tries to describe the same contribution as D0→ [K +K −]L=0[π+π−]L=0, where the

main component of the K K K-matrix is the f0(980)0. The fit does not manage to disentangle

the contributions of the a0 and the f0; these two amplitudes interfere heavily in an unphysical

way. In the nominal fit, the amplitude with the f0 is kept. For the alternative model, the a0 is

kept instead. The χ2/ndf is worse (9755/8123 = 1.16), which justifies the choice to keep the f0

for the nominal fit and no systematic uncertainty is assigned for this model.

5.6.2 High-mass K ∗

It has been mentioned that the high-mass K ∗ had two possible sources, the K ∗(1680) or the

K ∗(1410). An alternative model is presented in Table 5.1 where the K ∗(1410) is used instead

of the K ∗(1680). The resulting fit quality is very similar, the K ∗(1680) has nevertheless been

chosen because it produces a slightly better χ2/ndf. Since the quality of the two models is so

close, this alternative model is used to assign the systematic uncertainty.
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Table 5.1 – Modulus and phase of the fit parameters along with the fit fractions of the amplitudes
included in the alternative model using K ∗(1410) instead of K ∗(1680).

Amplitude |ck | arg(ck ) [rad] Fit fraction [%]

D0 → [φ(1020)(ρ−ω)0]L=0 1 (fixed) 0 (fixed) 23.78 ± 0.38
D0 → K1(1400)+K− 0.63 ± 0.01 1.03 ± 0.02 18.93 ± 0.46
D0 → [K−π+]L=0[K+π−]L=0 0.28 ± 0.00 −0.60 ± 0.02 18.76 ± 0.36
D0 → K1(1270)+K− 0.46 ± 0.01 2.03 ± 0.02 18.40 ± 0.37
D0 → [K∗(892)0K∗(892)0]L=0 0.28 ± 0.00 −0.28 ± 0.02 9.23 ± 0.21
D0 → [K∗(1410)0[K−π+]L=0]L=1 1.82 ± 0.03 0.44 ± 0.02 6.59 ± 0.15
D0 → [K∗(892)0K∗(892)0]L=1 0.27 ± 0.01 1.21 ± 0.02 5.00 ± 0.16
D0 → K1(1270)−K+ 0.22 ± 0.01 2.12 ± 0.03 4.20 ± 0.17
D0 → [K+K−]L=0[π+π−]L=0 0.12 ± 0.00 −2.53 ± 0.03 3.12 ± 0.17
D0 → [K∗(1410)0K∗(892)0]L=0 0.69 ± 0.02 2.95 ± 0.03 2.97 ± 0.15
D0 → K1(1400)−K+ 0.24 ± 0.01 0.10 ± 0.04 2.73 ± 0.18
D0 → [K∗(1410)0K∗(892)0]L=1 0.82 ± 0.02 −2.78 ± 0.02 2.62 ± 0.10
D0 → [K∗(1410)0[K+π−]L=0]L=1 1.03 ± 0.02 1.07 ± 0.02 2.32 ± 0.09
D0 → [φ(1020)(ρ−ω)0]L=2 1.31 ± 0.03 0.54 ± 0.02 2.28 ± 0.08
D0 → [K∗(892)0K∗(892)0]L=2 0.69 ± 0.02 2.87 ± 0.03 1.80 ± 0.10
D0 →φ(1020)[π+π−]L=0 0.05 ± 0.00 −1.70 ± 0.04 1.47 ± 0.09
D0 → [K∗(1410)0K∗(892)0]L=1 0.61 ± 0.02 0.09 ± 0.03 1.46 ± 0.08
D0 → [φ(1020)ρ(1450)0]L=1 0.76 ± 0.04 1.18 ± 0.04 0.97 ± 0.09
D0 → a0(980)0 f2(1270)0 1.46 ± 0.06 0.33 ± 0.04 0.64 ± 0.05
D0 → a1(1260)−π+ 0.19 ± 0.01 0.18 ± 0.06 0.47 ± 0.06
D0 → a1(1260)+π− 0.19 ± 0.01 −2.80 ± 0.07 0.47 ± 0.06
D0 → [φ(1020)(ρ−ω)0]L=1 0.16 ± 0.01 0.27 ± 0.07 0.43 ± 0.05
D0 → [K∗(1410)0K∗(892)0]L=2 1.03 ± 0.08 −2.52 ± 0.08 0.33 ± 0.05
D0 → [K+K−]L=0(ρ−ω)0 0.21 ± 0.02 3.06 ± 0.08 0.29 ± 0.04
D0 → [φ(1020) f2(1270)0]L=1 1.40 ± 0.10 1.72 ± 0.06 0.19 ± 0.02
D0 → [K∗(892)0K∗

2 (1430)0]L=1 1.51 ± 0.09 1.98 ± 0.07 0.16 ± 0.02

Sum of fit fractions 129.62 ± 0.95
χ2/ndf 9224/8123 = 1.14

a1(1260)+ → [φ(1020)π+]L=0 1 (fixed) 0 (fixed) 100

K1(1270)+ → [K∗(892)0π+]L=0 0.62 ± 0.02 0.59 ± 0.03 51.64 ± 0.89
K1(1270)+ → [(ρ−ω)0K+]L=0 1 (fixed) 0 (fixed) 48.33 ± 1.82
K1(1270)+ → [K+π−]L=0π

+ 0.58 ± 0.03 −1.89 ± 0.04 5.35 ± 0.44
K1(1270)+ → [K∗(892)0π+]L=2 0.92 ± 0.05 −2.56 ± 0.04 2.06 ± 0.17
K1(1270)+ → [ρ(1450)0K+]L=0 0.43 ± 0.07 −2.29 ± 0.11 1.12 ± 0.38

Sum of fit fractions 108.49 ± 2.08

K1(1400)+ → [K∗(892)0π+]L=0 1 (fixed) 0 (fixed) 100
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5.6.3 LASS lineshape

The K-matrix description of the Kπ S-wave is tested against the alternative LASS parametrisa-

tion [120], which is often used to describe the lineshape of the K ∗0(1430) meson. It is defined

as

T (m,L = 0) =
(
sin(δB (m))eiδB (m) + sin(δR (m))eiδR (m)e2iδB (m)

)m

q
, (5.10)

where the resonant phase δR (m) is given by

δR (m) = tan−1

(
m0Γ(m,L)

m2
0 −m2

)
(5.11)

and where the non-resonant phase δB (m) is given by

δB (m) = tan−1
(

2aq

2+ar q2

)
. (5.12)

The parameters

a = 2.07±0.1 GeV−1c (5.13)

r = 3.32±0.34 GeV−1c (5.14)

are taken from Ref. [120]. The χ2 is significantly worse for this parametrisation (9755/8123 =
1.20), no systematic uncertainties are therefore assigned.

5.6.4 Fewer amplitudes

The D0 model built in this analysis contains many amplitudes, it is therefore logical to test

models with less amplitudes. One possibility could be to remove all amplitudes that have a fit

fraction below 1%. One could think that these small amplitudes are useless and therefore a fit

without them would be as valid as the nominal fit. A test has been performed by removing the

nine D0 amplitudes that are below 1% in Table 6.1. This fit is significantly worse, the χ2/ndf is

12769/8133 = 1.57. This is not a viable solution.

Another possibility would be to stop the model building iterations sooner, by, for example,

removing the five amplitudes that were added last. One could think that these amplitudes do

not really contribute to the model. These five amplitudes are :

• D0→ [a0(980)0 f2(1270)0]L=2

• D0→ [K ∗(1680)0K ∗(892)0]L=2

• D0→ [K ∗(892)0K ∗
2 (1430)0]L=1

• D0→ [K +K −]L=0[π+π−]L=0
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• K1(1270)+→ [K +π−]L=0π
+

This fit resulted in a χ2/ndf of 10166/8133 = 1.25. It seems that these amplitudes are also

important to the description of the data. No alternative models with less amplitudes seem to

have a similar fit quality. No systematic are therefore assigned for such models.

5.6.5 More amplitudes

The other way to test the choice of the stopping criterion in the model building method is to

stop adding amplitudes later. For example one could let the model building method add five

more amplitudes to the model, with the exception that we need to make a choice between

the a0 and the f0. Since the χ2/ndf is better with the f0, we will keep this amplitude. The five

additional amplitudes are :

• D0→ [K ∗
2 (1430)0K ∗

2 (1430)0]L=0

• K1(1400)+→ [ρ(1450)0K +]L=2

• D0→ [K ∗(892)0K ∗
2 (1430)0]L=2

• D0→ [φ(1020)0 f2(1270)0]L=2

• D0→ [ f2(1270)0 f2(1270)0]L=0

The model is shown in Table 5.2. The χ2/ndf is slightly better, which is expected since we

introduce more degrees of freedom to fit the data. However the improvement is not very big

for an addition of five amplitudes. Therefore the stopping criterion is not modified and this

model is used to assign the systematic uncertainty.

5.6.6 ρ(1450)0

The resonance ρ(1450)0 was added in the list of possible amplitudes only with a decay to two

pions. A recent paper by BaBar [121] has shown that there is a significant contribution from

ρ(1450)0 → K +K −. In order to test the effect of this contribution on D0 → K +K −π+π−, the

model building method has been rerun with 11 additional allowed amplitudes containing

ρ(1450)0→ K +K −. The same amplitudes have been selected in the exact same order, with the

addition of one amplitude, D0→ ρ(1450)0ρ(770)0 in D-wave. The resulting model is shown in

Table 5.3. Since this amplitude represents a very small contribution and the remaining model

is unchanged, this is treated as a systematic uncertainty.
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Table 5.2 – Modulus and phase of the fit parameters along with the fit fractions of the amplitudes
included in the alternative model using five additional amplitudes.

Amplitude |ck | arg(ck ) [rad] Fit fraction [%]

D0 → [φ(1020)(ρ−ω)0]L=0 1 (fixed) 0 (fixed) 24.12 ± 0.40
D0 → K1(1400)+K− 0.65 ± 0.01 0.99 ± 0.02 19.34 ± 0.47
D0 → K1(1270)+K− 0.45 ± 0.01 2.07 ± 0.02 19.28 ± 0.39
D0 → [K−π+]L=0[K+π−]L=0 0.29 ± 0.00 −0.57 ± 0.02 19.20 ± 0.36
D0 → [K∗(892)0K∗(892)0]L=0 0.28 ± 0.00 −0.29 ± 0.02 9.36 ± 0.21
D0 → K∗(1680)0[K−π+]L=0 2.18 ± 0.03 0.45 ± 0.02 6.22 ± 0.15
D0 → [K∗(892)0K∗(892)0]L=1 0.26 ± 0.00 1.21 ± 0.02 4.81 ± 0.16
D0 → K1(1270)−K+ 0.22 ± 0.01 2.14 ± 0.03 4.45 ± 0.18
D0 → [K+K−]L=0[π+π−]L=0 0.14 ± 0.00 −2.39 ± 0.03 4.18 ± 0.21
D0 → K1(1400)−K+ 0.25 ± 0.01 0.02 ± 0.04 2.94 ± 0.19
D0 → [K∗(1680)0K∗(892)0]L=0 0.82 ± 0.02 3.00 ± 0.03 2.79 ± 0.15
D0 → [K∗(1680)0K∗(892)0]L=1 0.99 ± 0.02 −2.77 ± 0.02 2.64 ± 0.11
D0 → K∗(1680)0[K+π−]L=0 1.32 ± 0.03 1.12 ± 0.02 2.44 ± 0.09
D0 → [φ(1020)(ρ−ω)0]L=2 1.29 ± 0.03 0.56 ± 0.02 2.25 ± 0.08
D0 → [K∗(892)0K∗(892)0]L=2 0.67 ± 0.02 2.83 ± 0.03 1.73 ± 0.09
D0 →φ(1020)[π+π−]L=0 0.05 ± 0.00 −1.70 ± 0.04 1.43 ± 0.09
D0 → [K∗(1680)0K∗(892)0]L=1 0.69 ± 0.02 0.15 ± 0.03 1.30 ± 0.08
D0 → [φ(1020)ρ(1450)0]L=1 0.76 ± 0.03 1.21 ± 0.04 0.98 ± 0.09
D0 → a0(980)0 f2(1270)0 1.52 ± 0.06 0.33 ± 0.04 0.70 ± 0.05
D0 → a1(1260)+π− 0.20 ± 0.01 −2.86 ± 0.07 0.50 ± 0.06
D0 → a1(1260)−π+ 0.19 ± 0.01 0.22 ± 0.06 0.45 ± 0.06
D0 → [K∗(1680)0K∗(892)0]L=2 1.41 ± 0.09 −2.45 ± 0.07 0.45 ± 0.06
D0 → [φ(1020)(ρ−ω)0]L=1 0.16 ± 0.01 0.25 ± 0.07 0.44 ± 0.05
D0 → [K+K−]L=0(ρ−ω)0 0.21 ± 0.02 3.02 ± 0.08 0.30 ± 0.04
D0 → [φ(1020) f2(1270)0]L=1 1.41 ± 0.09 1.70 ± 0.06 0.19 ± 0.03
D0 → [K∗(892)0K∗

2 (1430)0]L=1 1.44 ± 0.09 2.10 ± 0.07 0.15 ± 0.02
D0 → [K∗

2 (1430)0K∗
2 (1430)0]L=0 6.27 ± 0.57 1.66 ± 0.10 0.11 ± 0.02

D0 → [ f2(1270)0 f2(1270)0]L=0 0.78 ± 0.08 −1.55 ± 0.11 0.08 ± 0.02
D0 → [K∗(892)0K∗

2 (1430)0]L=2 0.91 ± 0.11 −0.44 ± 0.10 0.05 ± 0.01
D0 → [φ(1020) f2(1270)0]L=2 0.68 ± 0.08 −1.14 ± 0.10 0.04 ± 0.01

Sum of fit fractions 132.92 ± 0.98
χ2/ndf 9092/8113 = 1.12

a1(1260)+ → [φ(1020)π+]L=0 1 (fixed) 0 (fixed) 100

K1(1270)+ → [K∗(892)0π+]L=0 0.65 ± 0.02 0.56 ± 0.03 53.37 ± 0.89
K1(1270)+ → [(ρ−ω)0K+]L=0 1 (fixed) 0 (fixed) 45.45 ± 1.88
K1(1270)+ → [K+π−]L=0π

+ 0.71 ± 0.03 −1.83 ± 0.04 7.60 ± 0.56
K1(1270)+ → [K∗(892)0π+]L=2 0.97 ± 0.05 −2.65 ± 0.04 2.15 ± 0.17
K1(1270)+ → [ρ(1450)0K+]L=0 0.47 ± 0.07 −1.79 ± 0.13 1.31 ± 0.42

Sum of fit fractions 109.88 ± 2.19

K1(1400)+ → [K∗(892)0π+]L=0 1 (fixed) 0 (fixed) 102.92 ± 0.27
K1(1400)+ → [ρ(1450)0K+]L=2 1.82 ± 0.16 2.76 ± 0.09 0.84 ± 0.15

Sum of fit fractions 103.77 ± 0.40
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Table 5.3 – Modulus and phase of the fit parameters along with the fit fractions of the amplitudes of the
alternative model that includes the amplitude D0→ ρ(1450)0ρ(770)0 in D-wave.

Amplitude |ck | arg(ck ) [rad] Fit fraction [%]

D0 → [φ(1020)(ρ−ω)0]L=0 1 (fixed) 0 (fixed) 23.83 ± 0.16
D0 → K1(1270)+K− 0.46 ± 0.01 2.02 ± 0.02 19.26 ± 0.30
D0 → K1(1400)+K− 0.64 ± 0.00 1.02 ± 0.01 19.23 ± 0.31
D0 → [K−π+]L=0[K+π−]L=0 0.28 ± 0.00 −0.58 ± 0.01 17.68 ± 0.26
D0 → [K∗(892)0K∗(892)0]L=0 0.28 ± 0.00 −0.27 ± 0.01 9.32 ± 0.13
D0 → K∗(1680)0[K−π+]L=0 2.28 ± 0.02 0.44 ± 0.01 6.73 ± 0.13
D0 → [K∗(892)0K∗(892)0]L=1 0.27 ± 0.00 1.22 ± 0.01 4.89 ± 0.08
D0 → K1(1270)−K+ 0.22 ± 0.00 2.13 ± 0.02 4.34 ± 0.15
D0 → [K∗(1680)0K∗(892)0]L=0 0.86 ± 0.01 2.99 ± 0.02 3.05 ± 0.09
D0 → [K+K−]L=0[π+π−]L=0 0.12 ± 0.00 −2.42 ± 0.03 3.01 ± 0.11
D0 → K1(1400)−K+ 0.24 ± 0.01 0.10 ± 0.02 2.76 ± 0.16
D0 → [K∗(1680)0K∗(892)0]L=1 1.00 ± 0.02 −2.75 ± 0.01 2.65 ± 0.08
D0 → K∗(1680)0[K+π−]L=0 1.34 ± 0.02 1.05 ± 0.02 2.50 ± 0.08
D0 → [φ(1020)(ρ−ω)0]L=2 1.25 ± 0.02 0.49 ± 0.02 2.08 ± 0.06
D0 → [K∗(892)0K∗(892)0]L=2 0.67 ± 0.01 2.79 ± 0.02 1.70 ± 0.06
D0 →φ(1020)[π+π−]L=0 0.05 ± 0.00 −1.72 ± 0.03 1.52 ± 0.05
D0 → [K∗(1680)0K∗(892)0]L=1 0.73 ± 0.02 0.15 ± 0.02 1.43 ± 0.06
D0 → [φ(1020)ρ(1450)0]L=1 0.77 ± 0.01 1.18 ± 0.02 1.01 ± 0.04
D0 → a0(980)0 f2(1270)0 1.49 ± 0.05 0.30 ± 0.03 0.67 ± 0.04
D0 → [K∗(1680)0K∗(892)0]L=2 1.49 ± 0.07 −2.40 ± 0.05 0.49 ± 0.04
D0 → a1(1260)+π− 0.19 ± 0.01 −2.79 ± 0.03 0.45 ± 0.03
D0 → a1(1260)−π+ 0.18 ± 0.01 0.17 ± 0.03 0.43 ± 0.03
D0 → [φ(1020)(ρ−ω)0]L=1 0.16 ± 0.00 0.28 ± 0.03 0.42 ± 0.02
D0 → [K+K−]L=0(ρ−ω)0 0.19 ± 0.01 3.03 ± 0.06 0.26 ± 0.03
D0 → [ρ(1450)0(ρ−ω)0]L=2 −0.66 ± 0.07 0.33 ± 0.12 0.22 ± 0.03
D0 → [φ(1020) f2(1270)0]L=1 1.40 ± 0.07 1.71 ± 0.04 0.19 ± 0.02
D0 → [K∗(892)0K∗

2 (1430)0]L=1 1.50 ± 0.08 2.02 ± 0.06 0.16 ± 0.02

Sum of fit fractions 130.25 ± 0.65
χ2/ndf 9099/8119 = 1.12

a1(1260)+ → [φ(1020)π+]L=0 1 (fixed) 0 (fixed) 100

K1(1270)+ → [K∗(892)0π+]L=0 0.63 ± 0.01 0.61 ± 0.02 50.99 ± 0.66
K1(1270)+ → [(ρ−ω)0K+]L=0 1 (fixed) 0 (fixed) 45.77 ± 1.42
K1(1270)+ → [K+π−]L=0π

+ 0.58 ± 0.02 −1.70 ± 0.04 5.08 ± 0.30
K1(1270)+ → [K∗(892)0π+]L=2 0.96 ± 0.04 −2.55 ± 0.03 2.12 ± 0.14
K1(1270)+ → [ρ(1450)0K+]L=0 0.23 ± 0.06 −2.54 ± 0.18 0.31 ± 0.18

Sum of fit fractions 104.27 ± 1.54

K1(1400)+ → [K∗(892)0π+]L=0 1 (fixed) 0 (fixed) 100
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5.6. Alternative models

Table 5.4 – Statistical and systematic uncertainties (in %) on the fit fractions. Values smaller than
0.0005% are displayed as “0.000”. The sources of systematic uncertainty are described in the text in the
same order as shown in this table.

Total Sel. Alt. Alt. RBW Alt. Mass & Res. Sig Bkg Mistag Det. As. Alt.
Amplitude Stat. Syst. Eff. Bkg 1 Bkg 2 ρ(770)0 S-wave width radius bias bias bias bias Models

D0 → [φ(1020)(ρ−ω)0]L=0 0.382 0.495 0.183 0.054 0.046 0.226 0.095 0.110 0.075 0.271 0.122 0.020 0.018 0.200
D0 → K1(1400)+K − 0.600 1.463 0.137 0.053 0.316 0.033 0.161 1.236 0.286 0.048 0.102 0.062 0.031 0.603
D0 → [K −π+]L=0[K +π−]L=0 0.347 0.935 0.034 0.065 0.459 0.040 0.246 0.193 0.051 0.051 0.235 0.061 0.018 0.703
D0 → K1(1270)+K − 0.521 0.982 0.031 0.045 0.085 0.016 0.139 0.734 0.116 0.113 0.151 0.083 0.030 0.582
D0 → [K ∗(892)0K ∗(892)0]L=0 0.207 0.277 0.023 0.027 0.037 0.001 0.127 0.087 0.047 0.064 0.046 0.011 0.013 0.205
D0 → K ∗(1680)0[K −π+]L=0 0.148 0.368 0.010 0.031 0.023 0.014 0.217 0.069 0.050 0.021 0.072 0.007 0.007 0.271
D0 → [K ∗(892)0K ∗(892)0]L=1 0.155 0.181 0.009 0.015 0.063 0.001 0.043 0.064 0.058 0.028 0.076 0.009 0.008 0.112
D0 → K1(1270)−K + 0.180 0.405 0.001 0.021 0.089 0.016 0.112 0.147 0.023 0.018 0.061 0.065 0.011 0.335
D0 → [K +K −]L=0[π+π−]L=0 0.168 0.723 0.002 0.036 0.034 0.031 0.293 0.074 0.038 0.007 0.047 0.021 0.008 0.651
D0 → K1(1400)−K + 0.192 0.394 0.074 0.029 0.029 0.003 0.025 0.158 0.018 0.011 0.031 0.056 0.009 0.343
D0 → [K ∗(1680)0K ∗(892)0]L=0 0.147 0.189 0.096 0.037 0.020 0.004 0.109 0.059 0.025 0.011 0.014 0.008 0.008 0.092
D0 → [K ∗(1680)0K ∗(892)0]L=1 0.105 0.093 0.016 0.012 0.026 0.001 0.032 0.035 0.046 0.013 0.021 0.006 0.009 0.050
D0 → K ∗(1680)0[K +π−]L=0 0.091 0.275 0.004 0.018 0.072 0.000 0.174 0.042 0.014 0.005 0.056 0.015 0.007 0.185
D0 → [φ(1020)(ρ−ω)0]L=2 0.076 0.077 0.023 0.008 0.013 0.062 0.005 0.013 0.019 0.006 0.014 0.005 0.007 0.020
D0 → [K ∗(892)0K ∗(892)0]L=2 0.095 0.099 0.030 0.010 0.017 0.014 0.069 0.053 0.016 0.015 0.013 0.005 0.005 0.013
D0 →φ(1020)[π+π−]L=0 0.090 0.325 0.005 0.009 0.002 0.010 0.313 0.022 0.014 0.012 0.022 0.005 0.005 0.081
D0 → [K ∗(1680)0K ∗(892)0]L=1 0.080 0.096 0.000 0.008 0.043 0.003 0.022 0.013 0.021 0.009 0.029 0.014 0.004 0.071
D0 → [φ(1020)ρ(1450)0]L=1 0.089 0.045 0.007 0.007 0.007 0.020 0.023 0.013 0.017 0.005 0.017 0.006 0.006 0.012
D0 → a0(980)0 f2(1270)0 0.052 0.083 0.005 0.008 0.026 0.002 0.048 0.027 0.010 0.002 0.015 0.013 0.004 0.050
D0 → a1(1260)+π− 0.055 0.220 0.002 0.005 0.003 0.066 0.206 0.016 0.019 0.004 0.007 0.005 0.004 0.028
D0 → a1(1260)−π+ 0.063 0.156 0.002 0.008 0.000 0.051 0.139 0.018 0.013 0.003 0.021 0.007 0.003 0.039
D0 → [φ(1020)(ρ−ω)0]L=1 0.049 0.028 0.001 0.003 0.004 0.014 0.011 0.009 0.014 0.002 0.006 0.009 0.003 0.007
D0 → [K ∗(1680)0K ∗(892)0]L=2 0.048 0.059 0.010 0.006 0.030 0.003 0.009 0.018 0.008 0.002 0.004 0.003 0.003 0.044
D0 → [K +K −]L=0(ρ−ω)0 0.036 0.054 0.003 0.007 0.022 0.000 0.039 0.015 0.004 0.004 0.010 0.003 0.002 0.023
D0 → [φ(1020) f2(1270)0]L=1 0.024 0.075 0.002 0.003 0.008 0.002 0.074 0.003 0.005 0.002 0.001 0.002 0.002 0.006
D0 → [K ∗(892)0K ∗

2 (1430)0]L=1 0.020 0.024 0.003 0.002 0.005 0.001 0.002 0.017 0.009 0.001 0.005 0.001 0.001 0.012

K1(1270)+ → [K ∗(892)0π+]L=0 1.058 3.213 0.050 0.100 0.000 0.022 0.443 1.917 0.559 0.129 0.299 0.054 0.060 2.453
K1(1270)+ → [(ρ−ω)0K +]L=0 1.993 4.352 0.300 0.253 1.152 1.780 2.301 2.110 0.961 0.145 0.758 0.095 0.099 1.733
K1(1270)+ → [K +π−]L=0π

+ 0.484 1.660 0.015 0.073 0.041 0.045 0.188 0.303 0.148 0.078 0.024 0.029 0.070 1.608
K1(1270)+ → [K ∗(892)0π+]L=2 0.169 0.195 0.035 0.015 0.037 0.000 0.041 0.139 0.026 0.006 0.024 0.009 0.008 0.113
K1(1270)+ → [ρ(1450)0K +]L=0 0.472 1.041 0.138 0.072 0.365 0.244 0.446 0.335 0.199 0.042 0.169 0.026 0.025 0.696

D0 → [φ(1020)ρ(770)0]L=0 0.463 0.275 0.024 0.019 0.086 0.160 0.023 0.159 0.059 0.036 0.043 0.024 0.026 0.090
D0 → [φ(1020)ω(782)]L=0 0.106 0.041 0.002 0.005 0.008 0.021 0.001 0.015 0.014 0.020 0.006 0.007 0.006 0.013

D0 → [φ(1020)ρ(770)0]L=1 4.107 1.696 0.333 0.123 0.436 0.728 0.746 0.367 0.728 0.306 0.450 0.326 0.456 0.444
D0 → [φ(1020)ω(782)]L=1 1.577 0.515 0.053 0.049 0.104 0.138 0.166 0.116 0.184 0.112 0.179 0.131 0.240 0.190

D0 → [φ(1020)ρ(770)0]L=2 1.690 0.778 0.038 0.068 0.076 0.424 0.310 0.255 0.162 0.060 0.093 0.124 0.121 0.428
D0 → [φ(1020)ω(782)]L=2 0.270 0.116 0.005 0.010 0.015 0.038 0.019 0.024 0.020 0.042 0.018 0.018 0.025 0.086

D0 → [K +K −]L=0ρ(770)0 5.895 3.492 0.054 0.530 0.665 0.238 1.471 1.561 0.681 0.368 0.892 0.310 0.317 2.285
D0 → [K +K −]L=0ω(782) 3.259 3.642 0.799 0.272 0.713 0.056 1.000 0.736 0.201 0.261 0.416 0.202 0.174 3.184

K1(1270)+ → [ρ(770)0K +]L=0 1.981 3.806 0.189 0.229 0.729 0.630 0.216 1.007 0.586 0.065 0.152 0.574 0.106 3.420
K1(1270)+ → [ω(782)K +]L=0 0.220 0.191 0.015 0.015 0.040 0.082 0.149 0.035 0.035 0.011 0.047 0.011 0.011 0.023
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Table 5.5 – Statistical and systematic uncertainties on the fit parameters shown for all floating com-
ponents. Values smaller than 0.0005 are displayed as “0.000”. The sources of systematic uncertainty
are described in the text in the same order as shown in this table. For each amplitude, the first value
quoted is the modulus and the second is the phase of the complex fit parameter.

Total Sel. Alt. Alt. RBW Alt. Mass & Res. Sig Bkg Mistag Det. As. Alt.
Amplitude Stat. Syst. Eff. Bkg 1 Bkg 2 ρ(770)0 S-wave width radius bias bias bias bias Models

D0 → K1(1400)+K − 0.011 0.031 0.005 0.001 0.006 0.002 0.002 0.018 0.022 0.001 0.002 0.001 0.001 0.007
0.022 0.053 0.007 0.002 0.001 0.014 0.011 0.047 0.007 0.001 0.004 0.001 0.001 0.014

D0 → [K −π+]L=0[K +π−]L=0
0.004 0.008 0.001 0.001 0.003 0.001 0.001 0.002 0.005 0.000 0.002 0.000 0.000 0.004
0.015 0.104 0.003 0.002 0.007 0.014 0.102 0.008 0.006 0.001 0.001 0.002 0.001 0.007

D0 → K1(1270)+K − 0.011 0.017 0.000 0.001 0.006 0.005 0.012 0.006 0.004 0.000 0.002 0.001 0.000 0.006
0.027 0.050 0.006 0.003 0.006 0.004 0.011 0.022 0.007 0.001 0.005 0.004 0.001 0.041

D0 → [K ∗(892)0K ∗(892)0]L=0
0.004 0.018 0.001 0.001 0.001 0.001 0.002 0.002 0.017 0.000 0.001 0.000 0.000 0.004
0.016 0.025 0.000 0.002 0.003 0.014 0.012 0.014 0.008 0.001 0.003 0.001 0.001 0.003

D0 → K ∗(1680)0[K −π+]L=0
0.036 0.624 0.011 0.006 0.007 0.003 0.042 0.618 0.067 0.001 0.015 0.002 0.002 0.033
0.016 0.030 0.000 0.002 0.006 0.013 0.018 0.016 0.007 0.001 0.001 0.003 0.001 0.004

D0 → [K ∗(892)0K ∗(892)0]L=1
0.005 0.017 0.001 0.001 0.001 0.001 0.001 0.002 0.016 0.000 0.002 0.000 0.000 0.002
0.021 0.027 0.000 0.002 0.001 0.014 0.006 0.014 0.012 0.001 0.004 0.002 0.001 0.011

D0 → K1(1270)−K + 0.006 0.011 0.000 0.001 0.000 0.002 0.004 0.004 0.002 0.000 0.000 0.002 0.000 0.009
0.029 0.075 0.008 0.003 0.010 0.004 0.003 0.016 0.007 0.002 0.006 0.002 0.001 0.071

D0 → [K +K −]L=0[π+π−]L=0
0.003 0.018 0.001 0.001 0.000 0.001 0.013 0.001 0.002 0.000 0.001 0.000 0.000 0.012
0.030 0.163 0.005 0.005 0.013 0.014 0.158 0.014 0.008 0.002 0.011 0.003 0.001 0.028

D0 → K1(1400)−K + 0.008 0.018 0.002 0.001 0.002 0.000 0.001 0.005 0.008 0.000 0.001 0.002 0.000 0.015
0.042 0.088 0.019 0.008 0.000 0.016 0.012 0.041 0.013 0.002 0.018 0.005 0.002 0.068

D0 → [K ∗(1680)0K ∗(892)0]L=0
0.023 0.218 0.017 0.006 0.002 0.001 0.018 0.214 0.034 0.001 0.002 0.001 0.001 0.009
0.029 0.047 0.004 0.005 0.000 0.013 0.031 0.020 0.006 0.001 0.005 0.004 0.002 0.024

D0 → [K ∗(1680)0K ∗(892)0]L=1
0.022 0.276 0.007 0.002 0.006 0.003 0.004 0.272 0.043 0.001 0.005 0.001 0.002 0.014
0.022 0.029 0.001 0.002 0.011 0.014 0.009 0.013 0.006 0.001 0.006 0.002 0.001 0.013

D0 → K ∗(1680)0[K +π−]L=0
0.029 0.373 0.004 0.005 0.018 0.003 0.051 0.361 0.041 0.001 0.018 0.004 0.002 0.057
0.024 0.031 0.006 0.004 0.008 0.016 0.009 0.015 0.008 0.001 0.002 0.001 0.001 0.014

D0 → [φ(1020)(ρ−ω)0]L=2
0.031 0.018 0.002 0.003 0.005 0.010 0.002 0.005 0.008 0.001 0.002 0.002 0.002 0.009
0.023 0.019 0.001 0.003 0.002 0.011 0.011 0.005 0.003 0.001 0.005 0.001 0.001 0.006

D0 → [K ∗(892)0K ∗(892)0]L=2
0.018 0.043 0.003 0.002 0.002 0.001 0.012 0.010 0.039 0.001 0.003 0.001 0.001 0.003
0.027 0.040 0.002 0.003 0.010 0.013 0.010 0.018 0.011 0.001 0.003 0.001 0.001 0.028

D0 →φ(1020)[π+π−]L=0
0.001 0.004 0.000 0.000 0.000 0.000 0.004 0.000 0.001 0.000 0.000 0.000 0.000 0.001
0.040 0.368 0.002 0.005 0.008 0.006 0.368 0.011 0.006 0.002 0.005 0.002 0.004 0.019

D0 → [K ∗(1680)0K ∗(892)0]L=1
0.021 0.203 0.003 0.002 0.012 0.001 0.004 0.201 0.027 0.001 0.007 0.004 0.001 0.015
0.031 0.040 0.002 0.003 0.007 0.014 0.001 0.022 0.015 0.001 0.009 0.001 0.002 0.023

D0 → [φ(1020)ρ(1450)0]L=1
0.035 0.068 0.000 0.003 0.004 0.006 0.008 0.062 0.025 0.002 0.005 0.002 0.002 0.007
0.038 0.038 0.004 0.002 0.003 0.027 0.015 0.014 0.013 0.001 0.005 0.002 0.002 0.006

D0 → a0(980)0 f2(1270)0 0.058 0.189 0.001 0.009 0.026 0.005 0.049 0.169 0.035 0.003 0.014 0.014 0.005 0.047
0.038 0.190 0.008 0.006 0.021 0.015 0.063 0.176 0.015 0.004 0.007 0.003 0.003 0.019

D0 → a1(1260)+π− 0.011 0.042 0.000 0.001 0.000 0.014 0.038 0.005 0.008 0.000 0.002 0.001 0.001 0.006
0.067 0.380 0.009 0.008 0.007 0.011 0.375 0.033 0.011 0.003 0.005 0.003 0.003 0.047

D0 → a1(1260)−π+ 0.014 0.031 0.000 0.002 0.000 0.011 0.026 0.006 0.005 0.000 0.004 0.001 0.001 0.008
0.060 0.431 0.018 0.008 0.013 0.045 0.426 0.031 0.015 0.003 0.015 0.006 0.004 0.023

D0 → [φ(1020)(ρ−ω)0]L=1
0.011 0.005 0.000 0.001 0.001 0.002 0.003 0.002 0.002 0.001 0.001 0.002 0.001 0.001
0.071 0.027 0.011 0.003 0.007 0.002 0.006 0.012 0.016 0.004 0.004 0.007 0.007 0.004

D0 → [K ∗(1680)0K ∗(892)0]L=2
0.089 0.354 0.024 0.012 0.059 0.009 0.020 0.335 0.039 0.004 0.008 0.005 0.005 0.080
0.084 0.150 0.022 0.020 0.013 0.013 0.046 0.028 0.007 0.007 0.005 0.006 0.005 0.135

D0 → [K +K −]L=0(ρ−ω)0 0.015 0.035 0.002 0.003 0.008 0.003 0.033 0.006 0.002 0.001 0.002 0.001 0.001 0.007
0.084 0.292 0.029 0.015 0.052 0.010 0.165 0.036 0.016 0.007 0.045 0.014 0.004 0.225

D0 → [φ(1020) f2(1270)0]L=1
0.095 0.257 0.003 0.010 0.026 0.005 0.251 0.017 0.032 0.003 0.005 0.006 0.006 0.029
0.061 0.373 0.007 0.007 0.011 0.012 0.371 0.012 0.014 0.002 0.017 0.004 0.004 0.004

D0 → [K ∗(892)0K ∗
2 (1430)0]L=1

0.086 0.131 0.019 0.011 0.020 0.001 0.005 0.089 0.074 0.006 0.023 0.007 0.004 0.046
0.067 0.087 0.023 0.008 0.012 0.013 0.043 0.054 0.013 0.003 0.010 0.007 0.005 0.039

K1(1270)+ → [K ∗(892)0π+]L=0
0.016 0.040 0.002 0.002 0.008 0.005 0.014 0.024 0.023 0.001 0.007 0.001 0.001 0.011
0.031 0.052 0.001 0.003 0.009 0.020 0.003 0.043 0.013 0.001 0.005 0.004 0.002 0.015

K1(1270)+ → [K +π−]L=0π
+ 0.027 0.094 0.003 0.004 0.009 0.003 0.027 0.014 0.014 0.003 0.006 0.001 0.003 0.087

0.042 0.083 0.015 0.008 0.042 0.019 0.013 0.023 0.011 0.001 0.014 0.003 0.002 0.058

K1(1270)+ → [K ∗(892)0π+]L=2
0.044 0.060 0.011 0.004 0.019 0.007 0.016 0.030 0.037 0.002 0.003 0.002 0.002 0.022
0.041 0.045 0.000 0.004 0.005 0.012 0.017 0.017 0.009 0.002 0.004 0.002 0.003 0.034

K1(1270)+ → [ρ(1450)0K +]L=0
0.068 0.187 0.023 0.012 0.056 0.038 0.080 0.076 0.023 0.005 0.026 0.005 0.004 0.128
0.100 0.445 0.051 0.019 0.007 0.104 0.175 0.154 0.051 0.010 0.027 0.006 0.005 0.356

D0 → [φ(1020)ω(782)]L=0
0.004 0.003 0.000 0.000 0.000 0.002 0.000 0.001 0.002 0.000 0.000 0.000 0.000 0.001
0.042 0.036 0.002 0.002 0.007 0.025 0.003 0.020 0.011 0.003 0.003 0.002 0.002 0.007

D0 → [φ(1020)ω(782)]L=1
0.052 0.018 0.002 0.002 0.004 0.003 0.006 0.004 0.009 0.006 0.005 0.004 0.007 0.006
0.194 0.069 0.017 0.005 0.016 0.030 0.029 0.030 0.026 0.011 0.011 0.011 0.013 0.019

D0 → [φ(1020)ω(782)]L=2
0.032 0.014 0.001 0.001 0.002 0.008 0.002 0.003 0.004 0.005 0.002 0.002 0.002 0.007
0.167 0.059 0.002 0.007 0.001 0.037 0.029 0.021 0.010 0.006 0.009 0.014 0.010 0.019

D0 → [K +K −]L=0ω(782)
0.098 0.098 0.020 0.008 0.016 0.008 0.013 0.021 0.013 0.003 0.005 0.006 0.005 0.089
0.186 0.149 0.033 0.017 0.050 0.011 0.017 0.056 0.021 0.017 0.042 0.013 0.009 0.110

K1(1270)+ → [ω(782)K +]L=0
0.012 0.011 0.001 0.001 0.002 0.003 0.008 0.003 0.005 0.001 0.002 0.001 0.001 0.002
0.074 0.057 0.015 0.004 0.001 0.037 0.022 0.023 0.019 0.003 0.004 0.005 0.004 0.013
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5.7 Systematic on CP violation measurement

It is not obvious to know if any systematic effect cancels out for the CP violation fit. Therefore,

all the systematic uncertainties mentioned previously are also studied for this measurement.

The exact same procedures are used as for the evaluation of the systematic uncertainties for

the nominal fit. The size of the systematic uncertainties on the parameters |ck | and arg(ck ) are

similar to the fit parameters of the nominal fit |ck | and arg(ck ) and are therefore not shown

here. Table 5.6 shows the systematic uncertainties of the CP asymmetry AFk , whereas Table 5.7

shows the systematic uncertainties on the modulus asymmetry A|ck | and phase difference

Δarg(ck ).

Table 5.6 – Statistical and systematic uncertainties (in %) on AFk . Values smaller than 0.0005% are
displayed as “0.000”. The sources of systematic uncertainty are described in the text in the same order
as shown in this table.

Total Sel. Alt. Alt. RBW Alt. Mass & Res. Sig Bkg Mistag Det. As. Alt.
Amplitude Stat. Syst. Eff. Bkg 1 Bkg 2 ρ(770)0 S-wave width radius bias bias bias bias Models

D0 → [φ(1020)(ρ−ω)0]L=0 1.496 0.193 0.008 0.027 0.032 0.034 0.102 0.028 0.029 0.046 0.048 0.071 0.045 0.103
D0 → K1(1400)+K − 2.087 0.280 0.001 0.032 0.111 0.027 0.129 0.140 0.037 0.085 0.056 0.073 0.077 0.071
D0 → [K −π+]L=0[K +π−]L=0 1.816 0.659 0.015 0.043 0.113 0.020 0.628 0.058 0.029 0.065 0.053 0.055 0.083 0.058
D0 → K1(1270)+K − 1.716 0.207 0.036 0.026 0.082 0.015 0.050 0.061 0.021 0.128 0.050 0.061 0.046 0.052
D0 → [K ∗(892)0K ∗(892)0]L=0 2.172 0.480 0.010 0.040 0.374 0.022 0.233 0.034 0.025 0.067 0.077 0.070 0.097 0.084
D0 → K ∗(1680)0[K −π+]L=0 2.167 0.412 0.052 0.046 0.346 0.020 0.056 0.058 0.032 0.076 0.114 0.063 0.064 0.102
D0 → [K ∗(892)0K ∗(892)0]L=1 3.152 0.292 0.016 0.031 0.009 0.015 0.084 0.038 0.031 0.110 0.098 0.146 0.116 0.134
D0 → K1(1270)−K + 3.520 0.540 0.037 0.051 0.255 0.000 0.040 0.113 0.076 0.281 0.100 0.228 0.130 0.212
D0 → [K +K −]L=0[π+π−]L=0 5.058 3.119 0.245 0.140 0.101 0.100 3.066 0.182 0.081 0.162 0.181 0.151 0.184 0.268
D0 → K1(1400)−K + 6.050 0.963 0.055 0.171 0.071 0.014 0.209 0.627 0.131 0.442 0.275 0.224 0.172 0.292
D0 → [K ∗(1680)0K ∗(892)0]L=0 5.247 1.515 0.086 0.170 0.337 0.065 1.304 0.289 0.160 0.244 0.230 0.161 0.267 0.350
D0 → [K ∗(1680)0K ∗(892)0]L=1 3.896 0.444 0.014 0.044 0.165 0.008 0.007 0.033 0.041 0.134 0.214 0.137 0.131 0.255
D0 → K ∗(1680)0[K +π−]L=0 3.748 1.070 0.027 0.078 0.908 0.026 0.234 0.129 0.046 0.266 0.219 0.192 0.156 0.246
D0 → [φ(1020)(ρ−ω)0]L=2 3.277 0.462 0.051 0.061 0.220 0.066 0.158 0.048 0.051 0.219 0.163 0.102 0.128 0.152
D0 → [K ∗(892)0K ∗(892)0]L=2 4.963 0.687 0.220 0.095 0.042 0.034 0.375 0.132 0.049 0.162 0.179 0.188 0.247 0.311
D0 →φ(1020)[π+π−]L=0 6.078 0.802 0.291 0.180 0.230 0.163 0.302 0.109 0.121 0.339 0.183 0.190 0.257 0.281
D0 → [K ∗(1680)0K ∗(892)0]L=1 5.342 0.553 0.008 0.065 0.017 0.019 0.297 0.084 0.095 0.212 0.156 0.155 0.166 0.276
D0 → [φ(1020)ρ(1450)0]L=1 8.527 1.102 0.133 0.129 0.178 0.144 0.178 0.240 0.360 0.344 0.432 0.518 0.347 0.463
D0 → a0(980)0 f2(1270)0 7.190 1.305 0.212 0.196 0.359 0.012 0.689 0.733 0.190 0.265 0.217 0.311 0.302 0.370
D0 → a1(1260)+π− 11.700 7.042 0.437 0.256 0.257 1.031 6.833 0.419 0.367 0.524 0.642 0.344 0.498 0.379
D0 → a1(1260)−π+ 13.672 2.860 0.742 0.349 0.189 0.879 2.052 0.429 0.432 0.982 0.519 0.405 0.646 0.551
D0 → [φ(1020)(ρ−ω)0]L=1 10.999 1.357 0.330 0.149 0.359 0.006 0.125 0.565 0.494 0.344 0.339 0.578 0.554 0.358
D0 → [K ∗(1680)0K ∗(892)0]L=2 14.304 3.535 0.549 0.646 2.042 0.115 2.266 0.347 0.243 0.642 0.469 0.479 0.430 1.110
D0 → [K +K −]L=0(ρ−ω)0 12.534 2.791 0.018 0.316 2.014 0.032 1.182 0.578 0.128 0.943 0.630 0.514 0.380 0.437
D0 → [φ(1020) f2(1270)0]L=1 13.301 2.985 0.124 0.355 0.584 0.284 2.660 0.210 0.298 0.460 0.436 0.392 0.395 0.654
D0 → [K ∗(892)0K ∗

2 (1430)0]L=1 10.805 1.810 0.477 0.171 0.830 0.065 1.066 0.588 0.237 0.332 0.380 0.327 0.325 0.566
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Table 5.7 – Statistical and systematic uncertainties (in %) on the CP-violation parameters shown for all
floating components. Values smaller than 0.0005% are displayed as “0.000”. The sources of systematic
uncertainty are described in the text in the same order as shown in this table. For each amplitude, the
first value quoted is the modulus asymmetry and the second is the phase difference.

Total Sel. Alt. Alt. RBW Alt. Mass & Res. Sig Bkg Mistag Det. As. Alt.
Amplitude Stat. Syst. Eff. Bkg 1 Bkg 2 ρ(770)0 S-wave width radius bias bias bias bias Models

D0 → K1(1400)+K − 1.084 0.200 0.004 0.021 0.072 0.030 0.095 0.074 0.026 0.039 0.071 0.050 0.057 0.076
1.469 0.251 0.008 0.032 0.026 0.022 0.155 0.067 0.022 0.049 0.099 0.069 0.069 0.101

D0 → [K −π+]L=0[K +π−]L=0
1.134 0.304 0.004 0.024 0.040 0.007 0.263 0.025 0.019 0.035 0.065 0.062 0.053 0.089
1.349 0.292 0.004 0.031 0.081 0.004 0.134 0.039 0.020 0.084 0.123 0.107 0.115 0.106

D0 → K1(1270)+K − 0.999 0.190 0.014 0.019 0.025 0.025 0.076 0.035 0.014 0.063 0.045 0.110 0.045 0.085
1.444 0.232 0.033 0.027 0.056 0.004 0.114 0.037 0.021 0.045 0.076 0.067 0.065 0.132

D0 → [K ∗(892)0K ∗(892)0]L=0
1.299 0.265 0.001 0.024 0.171 0.028 0.066 0.022 0.022 0.041 0.114 0.082 0.076 0.084
1.471 0.205 0.000 0.033 0.066 0.001 0.063 0.030 0.019 0.051 0.101 0.070 0.083 0.081

D0 → K ∗(1680)0[K −π+]L=0
1.309 0.262 0.030 0.027 0.189 0.027 0.074 0.030 0.025 0.042 0.063 0.058 0.064 0.101
1.491 0.214 0.052 0.032 0.079 0.012 0.032 0.056 0.018 0.048 0.068 0.067 0.066 0.123

D0 → [K ∗(892)0K ∗(892)0]L=1
1.713 0.220 0.004 0.019 0.021 0.010 0.093 0.024 0.023 0.065 0.082 0.083 0.108 0.091
2.002 0.239 0.037 0.026 0.027 0.005 0.068 0.033 0.015 0.087 0.104 0.093 0.095 0.111

D0 → K1(1270)−K + 1.707 0.436 0.023 0.030 0.144 0.017 0.031 0.056 0.046 0.134 0.135 0.213 0.179 0.217
2.074 0.311 0.023 0.044 0.064 0.019 0.144 0.063 0.019 0.065 0.092 0.101 0.117 0.167

D0 → [K +K −]L=0[π+π−]L=0
2.482 1.521 0.119 0.069 0.066 0.033 1.483 0.087 0.042 0.078 0.110 0.114 0.167 0.148
2.647 1.557 0.002 0.072 0.665 0.026 1.341 0.106 0.084 0.136 0.241 0.133 0.135 0.218

D0 → K1(1400)−K + 2.879 0.687 0.024 0.089 0.052 0.024 0.155 0.317 0.067 0.211 0.207 0.292 0.274 0.288
3.547 1.049 0.161 0.155 0.823 0.032 0.248 0.122 0.113 0.137 0.230 0.172 0.252 0.344

D0 → [K ∗(1680)0K ∗(892)0]L=0
2.673 0.775 0.047 0.084 0.153 0.015 0.603 0.141 0.085 0.114 0.270 0.128 0.160 0.223
2.763 0.821 0.140 0.064 0.650 0.023 0.179 0.119 0.068 0.153 0.203 0.149 0.199 0.225

D0 → [K ∗(1680)0K ∗(892)0]L=1
2.063 0.256 0.003 0.025 0.099 0.013 0.049 0.020 0.029 0.069 0.095 0.106 0.109 0.120
2.087 0.278 0.024 0.030 0.118 0.016 0.060 0.035 0.020 0.067 0.095 0.102 0.149 0.102

D0 → K ∗(1680)0[K +π−]L=0
1.959 0.628 0.010 0.041 0.438 0.004 0.168 0.061 0.027 0.138 0.094 0.202 0.127 0.290
2.249 0.328 0.023 0.045 0.058 0.041 0.125 0.045 0.031 0.073 0.196 0.106 0.102 0.128

D0 → [φ(1020)(ρ−ω)0]L=2
1.883 0.314 0.022 0.034 0.094 0.050 0.130 0.027 0.021 0.121 0.096 0.149 0.093 0.113
1.991 0.469 0.077 0.055 0.206 0.086 0.146 0.037 0.015 0.159 0.147 0.184 0.122 0.206

D0 → [K ∗(892)0K ∗(892)0]L=2
2.510 0.419 0.114 0.051 0.005 0.034 0.239 0.067 0.029 0.083 0.127 0.118 0.114 0.215
2.617 0.449 0.055 0.084 0.015 0.001 0.071 0.046 0.062 0.105 0.159 0.291 0.121 0.210

D0 →φ(1020)[π+π−]L=0
3.078 0.650 0.142 0.088 0.099 0.064 0.100 0.059 0.060 0.181 0.343 0.205 0.332 0.247
3.900 0.677 0.107 0.128 0.235 0.183 0.255 0.082 0.083 0.134 0.282 0.182 0.200 0.304

D0 → [K ∗(1680)0K ∗(892)0]L=1
2.752 0.465 0.000 0.034 0.008 0.027 0.199 0.048 0.049 0.121 0.204 0.238 0.136 0.197
2.988 0.425 0.034 0.039 0.008 0.007 0.024 0.051 0.030 0.120 0.176 0.168 0.236 0.211

D0 → [φ(1020)ρ(1450)0]L=1
4.120 0.561 0.063 0.064 0.073 0.055 0.059 0.127 0.174 0.161 0.258 0.195 0.183 0.291
3.342 0.593 0.005 0.037 0.194 0.062 0.085 0.088 0.145 0.180 0.245 0.201 0.193 0.320

D0 → a0(980)0 f2(1270)0 3.564 0.694 0.110 0.099 0.196 0.011 0.295 0.361 0.095 0.130 0.208 0.186 0.202 0.241
3.341 0.834 0.105 0.105 0.226 0.023 0.614 0.233 0.073 0.116 0.189 0.183 0.223 0.231

D0 → a1(1260)+π− 5.640 3.660 0.223 0.130 0.145 0.536 3.476 0.214 0.194 0.255 0.591 0.312 0.427 0.405
6.148 1.268 0.031 0.125 0.486 0.176 0.595 0.140 0.131 0.205 0.665 0.288 0.293 0.530

D0 → a1(1260)−π+ 7.025 1.921 0.378 0.183 0.079 0.460 1.088 0.222 0.229 0.460 0.723 0.618 0.542 0.776
5.554 4.327 0.102 0.150 0.369 0.205 4.197 0.175 0.082 0.193 0.332 0.280 0.704 0.368

D0 → [φ(1020)(ρ−ω)0]L=1
5.173 0.759 0.169 0.075 0.196 0.020 0.072 0.279 0.243 0.200 0.279 0.312 0.270 0.271
5.468 0.611 0.060 0.072 0.243 0.001 0.117 0.100 0.032 0.170 0.240 0.263 0.252 0.247

D0 → [K ∗(1680)0K ∗(892)0]L=2
7.064 1.872 0.284 0.331 1.063 0.076 1.212 0.175 0.122 0.321 0.362 0.392 0.361 0.380
8.124 1.312 0.110 0.479 0.098 0.145 0.418 0.325 0.180 0.261 0.435 0.709 0.391 0.474

D0 → [K +K −]L=0(ρ−ω)0 6.000 1.866 0.005 0.158 1.024 0.033 0.540 0.293 0.066 0.480 0.501 0.826 0.465 0.805
6.250 1.125 0.185 0.168 0.181 0.025 0.730 0.410 0.253 0.201 0.273 0.281 0.317 0.333

D0 → [φ(1020) f2(1270)0]L=1
6.710 1.686 0.066 0.178 0.276 0.159 1.381 0.109 0.163 0.232 0.405 0.326 0.490 0.443
6.038 1.688 0.161 0.119 0.253 0.034 1.355 0.128 0.081 0.240 0.535 0.294 0.368 0.565

D0 → [K ∗(892)0K ∗
2 (1430)0]L=1

5.194 1.038 0.236 0.086 0.401 0.016 0.586 0.298 0.115 0.171 0.381 0.314 0.229 0.287
6.351 1.364 0.036 0.130 0.307 0.049 0.565 0.473 0.164 0.335 0.434 0.356 0.723 0.475
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5.8 Cross-checks

Some cross-checks are performed to test additional effects. They are linked to choices made

during the selection, to the resolution of the detector and to the selection efficiencies. All the

effects described in this section are small compared to the systematic uncertainties considered

in the analysis and are therefore neglected. In addition, a partial-wave analysis is performed

to see if no resonance has been forgotten.

5.8.1 Δm cut

The Δm cut has been applied to increase the purity of the sample by removing an obvious

background. Since the background description could also take this effect into account, a fit

is performed by removing this cut. The result of this test can be found in Appendix F. This

result is compared to the nominal fit and the average size of the difference between the two is

0.17σ, where σ is the total systematic uncertainty of the nominal fit. We choose to apply this

cut because the fit without it shows a slightly worse χ2/ndf.

5.8.2 K 0
S veto

It is observed that the K 0
S veto shapes the phase space with strongly varying efficiencies. A

fit is performed on a sample without this K 0
S veto and where the D0 → K 0

S K +K − mode is

added incoherently to the D0 → K +K −π+π− mode. The shape of the K 0
S meson has been

parametrised as a single Gaussian, whose components have been fixed from a fit to the data.

The result of this fit is shown in Fig. 5.3, along with the parameters of the Gaussian function.

One issue is that a complete amplitude analysis of the mode D0→ K 0
S K +K − should be done

in order to come up with a decent model for that component only. This model, which would

contain a coherent sum of amplitudes, would then need to be added incoherently to the

rest of the model for D0→ K +K −π+π−. For the current test only two amplitudes are added
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Figure 5.3 – Fit of the dipion mass in the K 0
S region with a linear background and a single Gaussian for

the resonance.
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Figure 5.4 – Nominal dipion mass on the left and dipion mass without K 0
S veto along with the alternative

D0 model on the right. The full model is shown in red, the signal component in blue, the background
component in green and the K 0

S component in magenta.

incoherently, D0 → φK 0
S and D0 → K 0

S [K +K −]L=0. The various fractions are fixed from a fit

to the full π+π− invariant mass ( fs = 82.1%, fb = 17.5% and fK 0
S
= 0.4%). The only visible

difference in the various projections arises in the dipion invariant mass, shown in Fig. 5.4.

The resulting model can be found in Appendix F. The average deviation with respect to the

nominal fit is 0.18σ, where σ is the total systematic uncertainty of the nominal fit.

5.8.3 Multiple candidates

There are 1.7% of the events that contain multiple candidates in data. As mentioned in

Sec. 3.5.2, one of the multiple candidates has been chosen randomly. This choice has been

recommended in Ref. [122]. Nevertheless we want to verify that it is indeed better than to keep

all multiple candidates. A fit is therefore performed by keeping them all and is compared to

the nominal fit. The result of this test can be found in Appendix F. The average deviation with

respect to the nominal fit is 0.07σ, where σ is the total systematic uncertainty of the nominal

fit. The quality of the fit is slightly worse when keeping all multiple candidates, we therefore

choose to keep the selection unchanged.

5.8.4 Resolution

In the amplitude fit, the resolution is neglected. This choice is justified by the fact that the

D0 mass constraint renders the detector resolution negligible. If any resolution issue should

subsist, it would be most visible in the region of the narrow φ(1020)0 resonance. One of the

test performed is to redo the amplitude fit to the data while enlarging the nominal width of

the φ(1020)0 meson by the estimated resolution from MC studies. The MC sample reproduces

well the resolution in data due to the fact that it has been reconstructed as the data by the

LHCb framework and it has been reweighted for the momenta. The result of this test can be

found in Appendix F. The average deviation with respect to the nominal fit is 0.03σ, where σ is

the total systematic uncertainty of the nominal fit. The effect can therefore be safely neglected.
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5.8.5 Selection efficiencies

Since the efficiencies depend on the kinematics of the system, one method to evaluate the

quality of their description in the MC is to perform the amplitude fit in bins of the D0 pT. Only

two bins will be considered (either D0pT < 5.25 GeV/c or D0pT > 5.25 GeV/c), as splitting the

data in more bins introduces large statistical fluctuations that are hard to disentangle from the

systematic uncertainties. The sidebands have also been separated in two bins of D0 pT and

the correction due to the shift of the resonances has been applied separately in both bins. The

MC has also been split in two bins.

The goal is to assess if the results of the fits on the two subsamples are compatible. In order to

do this, a χ2 is computed from the fit results and the covariance matrices. First two vectors (c a

and c b) are created, containing all moduli and phases of each fit. Then the difference of the

two vectors is taken as

Δ= c a −c b . (5.15)

The two covariance matrices (Ma and Mb) are summed:

M =Ma +Mb . (5.16)

And finally the χ2 is computed as

χ2 =ΔT M−1Δ . (5.17)

In order to decide whether this χ2 is significant or not, it is compared to a set of fits where the

data sample has been split in two, randomly. A χ2 is computed in the same way 1000 times for

different random splitting and a distribution of the χ2 is built. This distribution represents the

null hypothesis where the two fits are compatible. The value of the χ2 for the split in bins of pT

is compared to the null distribution in Fig. 5.5. The value falls well within the null distribution
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Figure 5.5 – Value of the χ2 for the split in bins of pT (in magenta) compared to the distribution of the
null hypothesis for 1000 random splitting (in blue).
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and it is therefore considered that the two fits are compatible and no systematic uncertainty is

assigned for this effect.

5.8.6 Partial-wave analysis

In order to verify that no obvious resonance has been forgotten, the data and the resulting

model are projected on the normalised spherical associated Legendre polynomials (i.e. on the

spherical harmonics without azimuthal dependence). This allows to decouple the data and

the fit into the S,P and D waves. These polynomials are defined as

Y m
l (θ,φ= 0) =

√
(2l +1)

4π

(l −m)!

(l +m)!
P m

l (cosθ) , (5.18)

where

P m
l (x) = (−1)m

2l l !
(1−x2)

m
2

d l+m

d xl+m
(x2 −1)l (5.19)

are the associated Legendre polynomials.

All two-body invariant masses distributions are inspected. They are weighted with these

polynomials where l is taken from 1 to 6, m is kept at 0 and θ is taken as the helicity angle of

one of the two particles of the two-body system. No obvious discrepancy is observed, we are

therefore confident that no major component is missing. All the plots are shown in Appendix G.

Some small discrepancies are observed in the K +π+ and K −π− projections around 800 MeV/c2.

They are however hard to interpret, since no resonance is expected to arise in these mass

combinations.
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6 Results and discussions

6.1 CP -averaged model of D0→ K +K −π+π− decays

A visualisation of the nominal fit results is provided in several projections by showing the

histogram of the data sample superimposed with the histogram of the MC sample, where each

MC event at phase-space point x i is given the weight

ws(x i ) = Ndata fs
S(x i ;c)

1
NMC

∑NMC

k=1
S(xk ;c)
Sgen(xk )

for the signal model (in blue), (6.1)

wb(x i ) = Ndata (1− fs)B(x i ) fo the background model (in green), (6.2)

w(x i ) = ws(x i )+wb(x i ) for the total model (in red), (6.3)

where c are the fit parameters that maximize the likelihood. The projections on the five CM

variables are shown in Fig. 6.1. The projections on 26 other variables in this 5D space are

shown in Appendix H. All projections show a good agreement between the fitted model and

the data. The remaining small discrepancies are accounted for by the systematic uncertainties.

The resulting fit parameters are shown in Table 6.1 for all the D0 amplitudes, in Table 6.2 for

the decays of the 3-body amplitudes and in Table 6.3 for the ρ−ω interference parameters.
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Figure 6.1 – Distributions of the five CM variables for the selected D0→ K +K −π+π− candidates (black
points with error bars). The results of the five-dimensional amplitude fit is superimposed with the
signal model (dashed blue), the background model (dotted green) and the total fit function (plain red).
The plot on top of each distribution shows the normalised residuals (differences between the data
points and the fit results, divided by the quadratic sum of the statistical uncertainties of the data and
MC samples).
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6.1. CP -averaged model of D0→ K +K −π+π− decays

Table 6.1 – Modulus and phase of the fit parameters along with fit fractions and significances σ of
the amplitudes included in the model. The substructures of the three-body resonances are listed
in Table 6.2. The first uncertainty is statistical and the second is systematic.

Amplitude |ck | arg(ck ) [rad] Fit fraction [%] σ

D0 → [φ(1020)(ρ−ω)0]L=0 1 (fixed) 0 (fixed) 23.82±0.38±0.50 > 40
D0 → K1(1400)+K − 0.614±0.011±0.031 1.05±0.02±0.05 19.08±0.60±1.46 > 40
D0 → [K −π+]L=0[K +π−]L=0 0.282±0.004±0.008 −0.60±0.02±0.10 18.46±0.35±0.94 > 40
D0 → K1(1270)+K − 0.452±0.011±0.017 2.02±0.03±0.05 18.05±0.52±0.98 > 40
D0 → [K ∗(892)0K ∗(892)0]L=0 0.259±0.004±0.018 −0.27±0.02±0.03 9.18±0.21±0.28 > 40
D0 → K ∗(1680)0[K −π+]L=0 2.359±0.036±0.624 0.44±0.02±0.03 6.61±0.15±0.37 > 40
D0 → [K ∗(892)0K ∗(892)0]L=1 0.249±0.005±0.017 1.22±0.02±0.03 4.90±0.16±0.18 > 40
D0 → K1(1270)−K + 0.220±0.006±0.011 2.09±0.03±0.07 4.29±0.18±0.41 > 40
D0 → [K +K −]L=0[π+π−]L=0 0.120±0.003±0.018 −2.49±0.03±0.16 3.14±0.17±0.72 > 37
D0 → K1(1400)−K + 0.236±0.008±0.018 0.04±0.04±0.09 2.82±0.19±0.39 > 33
D0 → [K ∗(1680)0K ∗(892)0]L=0 0.823±0.023±0.218 2.99±0.03±0.05 2.75±0.15±0.19 > 37
D0 → [K ∗(1680)0K ∗(892)0]L=1 1.009±0.022±0.276 −2.76±0.02±0.03 2.70±0.11±0.09 > 40
D0 → K ∗(1680)0[K +π−]L=0 1.379±0.029±0.373 1.06±0.02±0.03 2.41±0.09±0.27 > 40
D0 → [φ(1020)(ρ−ω)0]L=2 1.311±0.031±0.018 0.54±0.02±0.02 2.29±0.08±0.08 > 40
D0 → [K ∗(892)0K ∗(892)0]L=2 0.652±0.018±0.043 2.85±0.03±0.04 1.85±0.09±0.10 > 40
D0 →φ(1020)[π+π−]L=0 0.049±0.001±0.004 −1.71±0.04±0.37 1.49±0.09±0.33 > 30
D0 → [K ∗(1680)0K ∗(892)0]L=1 0.747±0.021±0.203 0.14±0.03±0.04 1.48±0.08±0.10 > 40
D0 → [φ(1020)ρ(1450)0]L=1 0.762±0.035±0.068 1.17±0.04±0.04 0.98±0.09±0.05 > 24
D0 → a0(980)0 f2(1270)0 1.524±0.058±0.189 0.21±0.04±0.19 0.70±0.05±0.08 > 27
D0 → a1(1260)+π− 0.189±0.011±0.042 −2.84±0.07±0.38 0.46±0.05±0.22 > 17
D0 → a1(1260)−π+ 0.188±0.014±0.031 0.18±0.06±0.43 0.45±0.06±0.16 > 14
D0 → [φ(1020)(ρ−ω)0]L=1 0.160±0.011±0.005 0.28±0.07±0.03 0.43±0.05±0.03 > 18
D0 → [K ∗(1680)0K ∗(892)0]L=2 1.218±0.089±0.354 −2.44±0.08±0.15 0.33±0.05±0.06 > 14
D0 → [K +K −]L=0(ρ−ω)0 0.195±0.015±0.035 2.95±0.08±0.29 0.27±0.04±0.05 > 15
D0 → [φ(1020) f2(1270)0]L=1 1.388±0.095±0.257 1.71±0.06±0.37 0.18±0.02±0.07 > 14
D0 → [K ∗(892)0K ∗

2 (1430)0]L=1 1.530±0.086±0.131 2.01±0.07±0.09 0.18±0.02±0.02 > 20

Sum of fit fractions 129.32±1.09±2.38
χ2/ndf 9242/8121 = 1.14

Table 6.2 – Parameters of the amplitudes contributing to the three-body decays of the a1(1260)+,
K1(1270)+ and K1(1400)+. The first uncertainty is statistical and the second is systematic.

Amplitude |ck | arg(ck ) [rad] Fit fraction [%] σ

a1(1260)+ → [φ(1020)π+]L=0 1 (fixed) 0 (fixed) 100 > 19

K1(1270)+ → [K ∗(892)0π+]L=0 0.584±0.016±0.040 0.63±0.03±0.05 51.22±1.06±3.21 > 40
K1(1270)+ → [(ρ−ω)0K +]L=0 1 (fixed) 0 (fixed) 49.58±1.99±4.35 > 40
K1(1270)+ → [K +π−]L=0π

+ 0.612±0.027±0.094 −1.94±0.04±0.08 6.27±0.48±1.66 > 26
K1(1270)+ → [K ∗(892)0π+]L=2 0.859±0.044±0.060 −2.53±0.04±0.05 2.03±0.17±0.20 > 24
K1(1270)+ → [ρ(1450)0K +]L=0 0.482±0.068±0.187 −2.37±0.10±0.45 1.50±0.47±1.04 > 5

Sum of fit fractions 110.60±2.20±5.76

K1(1400)+ → [K ∗(892)0π+]L=0 1 (fixed) 0 (fixed) 100 > 40
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Table 6.3 – Parameters of the ρ−ω interference for all relevant amplitudes. The first uncertainty is
statistical and the second is systematic.

Amplitude |c̃k | arg(c̃k ) [rad] Fit fraction [%]

D0 → [φ(1020)ρ(770)0]L=0 1 (fixed) 0 (fixed) 92.55± 0.46± 0.28
D0 → [φ(1020)ω(782)]L=0 0.114±0.004± 0.003 1.30± 0.04± 0.04 1.42± 0.11± 0.04

Sum of fit fractions 93.96± 0.40± 0.28

D0 → [φ(1020)ρ(770)0]L=1 1 (fixed) 0 (fixed) 83.11± 4.11± 1.70
D0 → [φ(1020)ω(782)]L=1 0.254±0.052± 0.018 1.32± 0.19± 0.07 4.33± 1.58± 0.52

Sum of fit fractions 87.45± 2.99± 1.78

D0 → [φ(1020)ρ(770)0]L=2 1 (fixed) 0 (fixed) 94.64± 1.69± 0.78
D0 → [φ(1020)ω(782)]L=2 0.162±0.032± 0.014 1.50± 0.17± 0.06 0.71± 0.27± 0.12

Sum of fit fractions 95.35± 1.54± 0.79

D0 → [K +K −]L=0ρ(770)0 1 (fixed) 0 (fixed) 85.41± 5.89± 3.49
D0 → [K +K −]L=0ω(782) 0.494±0.098± 0.098 −0.95± 0.19± 0.15 9.24± 3.26± 3.64

Sum of fit fractions 94.65± 5.03± 5.04

K1(1270)+ → [ρ(770)0K +]L=0 1 (fixed) 0 (fixed) 139.03± 1.98± 3.81
K1(1270)+ → [ω(782)K +]L=0 0.159±0.012± 0.011 1.36± 0.07± 0.06 1.52± 0.22± 0.19

Sum of fit fractions 140.55± 1.90± 3.81

6.2 CP violation results

The data set is split according to the charge of the muon in order to separate the D0 decays

from the D0 decays. The D0 sample contains 98413 events out of which 81513± 373 are

signal candidates with a purity of 0.828±0.004. The D0 sample contains 98235 events out

of which 81397±374 are signal candidates with a purity of 0.829±0.004. The CP violation

fit described in Sec. 4.9 is applied on these two samples. Table 6.4 shows the resulting CP

violation parameters, the average moduli and phases are not shown for a purpose of clarity

in the table. They are virtually identical to the moduli and phases from the CP averaged fit

in Table 6.1. All the asymmetry parameters are compatible with zero. The most significant

deviation, observed for the phase difference for the D0→ [φ(1020)0ρ(1450)0]L=1 amplitude,

corresponds to a 2.8σ statistical fluctuation.
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Table 6.4 – CP violation parameters fitted simultaneously to the D0 and (CP-transformed) D0 samples.
The first uncertainty is statistical and the second is systematic.

Amplitude A|ck | [%] Δarg(ck ) [%] AFk [%]

D0 → [φ(1020)(ρ−ω)0]L=0 0 (fixed) 0 (fixed) −1.8± 1.5±0.2
D0 → K1(1400)+K − −1.4±1.1±0.2 1.3±1.5±0.3 −4.5± 2.1±0.3
D0 → [K −π+]L=0[K +π−]L=0 1.9±1.1±0.3 −1.2±1.3±0.3 2.0± 1.8±0.7
D0 → K1(1270)+K − −0.4±1.0±0.2 −1.1±1.4±0.2 −2.6± 1.7±0.2
D0 → [K ∗(892)0K ∗(892)0]L=0 −1.3±1.3±0.3 −1.7±1.5±0.2 −4.3± 2.2±0.5
D0 → K ∗(1680)0[K −π+]L=0 2.2±1.3±0.3 1.4±1.5±0.2 2.6± 2.2±0.4
D0 → [K ∗(892)0K ∗(892)0]L=1 −0.4±1.7±0.2 3.7±2.0±0.2 −2.6± 3.2±0.3
D0 → K1(1270)−K + 2.6±1.7±0.4 −0.1±2.1±0.3 3.3± 3.5±0.5
D0 → [K +K −]L=0[π+π−]L=0 3.5±2.5±1.5 −5.5±2.6±1.6 5.1± 5.1±3.1
D0 → K1(1400)−K + 0.2±2.9±0.7 2.5±3.5±1.0 −1.3± 6.0±1.0
D0 → [K ∗(1680)0K ∗(892)0]L=0 4.0±2.7±0.8 −5.4±2.8±0.8 6.2± 5.2±1.5
D0 → [K ∗(1680)0K ∗(892)0]L=1 −0.4±2.1±0.3 0.4±2.1±0.3 −2.5± 3.9±0.4
D0 → K ∗(1680)0[K +π−]L=0 2.1±2.0±0.6 −1.8±2.2±0.3 2.4± 3.7±1.1
D0 → [φ(1020)(ρ−ω)0]L=2 0.8±1.9±0.3 −1.2±2.0±0.5 −0.1± 3.3±0.5
D0 → [K ∗(892)0K ∗(892)0]L=2 −0.6±2.5±0.4 0.6±2.6±0.4 −3.0± 5.0±0.7
D0 →φ(1020)[π+π−]L=0 3.8±3.1±0.7 −0.5±3.9±0.7 5.8± 6.1±0.8
D0 → [K ∗(1680)0K ∗(892)0]L=1 1.6±2.8±0.5 0.7±3.0±0.4 1.3± 5.3±0.6
D0 → [φ(1020)ρ(1450)0]L=1 4.6±4.1±0.6 9.3±3.3±0.6 7.5± 8.5±1.1
D0 → a0(980)0 f2(1270)0 1.6±3.6±0.7 −7.3±3.3±0.8 1.5± 7.2±1.3
D0 → a1(1260)+π− −4.4±5.6±3.7 9.3±6.1±1.3 −10.6±11.7±7.0
D0 → a1(1260)−π+ −3.4±7.0±1.9 −5.8±5.6±4.3 −8.7±13.7±2.9
D0 → [φ(1020)(ρ−ω)0]L=1 2.1±5.2±0.8 −12.2±5.5±0.6 2.4±11.0±1.4
D0 → [K ∗(1680)0K ∗(892)0]L=2 5.2±7.1±1.9 −5.6±8.1±1.3 8.5±14.3±3.5
D0 → [K +K −]L=0(ρ−ω)0 11.7±6.0±1.9 4.8±6.2±1.1 21.3±12.5±2.8
D0 → [φ(1020) f2(1270)0]L=1 2.7±6.7±1.7 0.9±6.0±1.7 3.6±13.3±3.0
D0 → [K ∗(892)0K ∗

2 (1430)0]L=1 3.9±5.2±1.0 6.8±6.4±1.4 6.1±10.8±1.8

In order to verify that the CP violation is working as expected, the dataset is randomly split in

two instead of splitting it according to the flavour of the D0. No CP violation is expected to

arise when performing the CP violation fit on these two samples. The resulting asymmetry

parameters are indeed compatible with no CP violation with similar uncertainties as the

nominal result. Then, in order to check the significance of the deviation observed in data in

the absence of CP violation, two tests are performed by splitting the dataset randomly many

times. First, we perform the CP violation fit on these randomly-split samples. The largest

deviation among all the asymmetry parameters exceeds 2.8σ in 35% of the fits, confirming that

the deviation observed in data is not significant. The second test is to perform the nominal

amplitude fit separately on these randomly-split samples and compute the χ2 between the two

fit results as explained in Sec. 5.8.5 in order to build a null distribution. This null distribution
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Figure 6.2 – Value of the χ2 computed between the D0 and D0 samples (in magenta) compared to the
distribution of the null hypothesis for 1000 random splitting (in blue).

represents the “no-CP violation” hypothesis. The amplitude fit is also performed on the D0

and D0 samples separately and the obtained χ2 value is compared to the null distribution in

Fig. 6.2. It is observed that the χ2 computed between the D0 and the D0 samples falls well

within the null distribution and confirms that no CP violation is observed.

6.3 Comparison with previous results

The resulting D0 model of Table. 6.1 is compared to the CLEO-legacy-data model [47]

summarised in Table 1.1. The main components are present in both models. The D0 →
φ(1020)0ρ(770)0 components are compatible between the two models. However, the D0→
K ∗(892)0K ∗(892)0 components do not have the same hierarchy between the three angular

momentum configurations in the two models. The component D0→ K1(1270)+K − is found to

be slightly smaller in this analysis, whereas the component D0→ K1(1400)+K − is found to be

bigger. There is an important difference between the two models however, the strong decays

are not enforced to have the same pattern in the CLEO-legacy-data model. Therefore it con-

tains some strong CP violation, while it has been forbidden in this analysis. The component

D0→ K ∗(1680)+K − is the only one from the CLEO model that has not been selected in this

analysis, even though it was available in the list of possible amplitudes.

A dataset more than 50 times larger than the one analysed by CLEO has been used for this

analysis, which brings a significant improvement on the statistical uncertainties of the various

amplitudes. The statistical uncertainties of the fit fractions in the CLEO analysis ranged from

∼0.3% to ∼2.6% whereas the current statistical uncertainties range from ∼0.02% to ∼0.6%.

Regarding the CP violation measurements, a significant improvement is also provided with

this new analysis. The sensitivity on all the asymmetry parameters ranges from ∼1% to ∼15%,

while it ranged from ∼10% to ∼50% in the CLEO analysis.
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6.4 Discussion, outlook and conclusion

A few features in the model are worth noting. First the components D0→φ(1020)0ρ(1450)0

and D0 → K ∗(1680)0K ∗(892)0 appear only in P-wave without their S and D counterparts,

which are also allowed. The K1(1270)+ is going to ρ(1450)0K + with a significance of only 5σ,

which is relatively small compared to the other components. The a1(1260)+ is decaying only

to φ(1020)0π+, while a contribution of K ∗(892)0K + is reported by the PDG [24]. Finally, the

ρ−ω interference seems to be relatively different between the decay modes.

The determination of this model is dominated by systematic uncertainties, most notably those

due to the values used for the nominal mass and width of less well-known resonances such as

the K ∗(1680)0, the parametrisation of the S-wave components and the alternative models.

This analysis provides the best model for the D0 → K +K −π+π− decay to date. This model

is used for a search for CP violation. At this level of sensitivity, no CP violation is observed.

This is compatible with the Standard Model predictions and rules out any large contribution

from New Physics. This result is expected to be important for other analyses as well, such as

the measurement of the CKM angle γ in B±→ DK ± decays, which requires a precise model

describing the signal [49]. With the model developed in this analysis, such a measurement is

now possible at LHCb using the D0→ K +K −π+π− subdecay.

The CP violation measurements are statistically dominated. In order to reach the level of

10−3−10−4 predicted by the Standard Model, more statistics is therefore needed. The addition

of the full Run 2 data collected at a centre-of-mass energy of 13TeV, which will be available at

the end of this year (2018), represents a large increase in statistics when compared to the 3 fb−1

collected at centre-of-mass energies of 7 and 8TeV used in this analysis. The Run 2 sample

is expected to correspond to an integrated luminosity of ∼ 6 fb−1. The increase in energy as

well as various improvements in the tracking and the trigger allow the naive extrapolation that

1 fb−1 in Run 2 is worth at least 2 fb−1 in Run 1. This means that an increase of the statistics by

a factor 5 in the semileptonic mode alone is possible. Since the trigger issue of the prompt

sample (D∗+→ D0π+) in Run 1 has been fixed, one could use the Run 2 sample to increase

the signal yield even more. This might however complicate the treatment of the phase-space

efficiencies and a special treatment will have to be applied to combine the two samples. The

prompt sample is expected to be 4–5 times larger than the sample from semi-leptonic b

decays [63], mostly due to the fact that the cc production cross-section is much larger than

the bb one. If the Run 2 prompt sample is added, an increase by a factor 20 might therefore

be reachable. In order to achieve the permil level on the statistical uncertainties of all the CP

asymmetries, one might however need to wait for the 50 fb−1 of Runs 3 and 4.

This analysis pushed the boundaries of current knowledge of CP violation in charm decays by

further cornering the allowed level of CP violation in the amplitudes of the D0→ K +K −π+π−

decay mode. It pioneered the search for CP violation using high statistics four-body amplitude

analyses at LHCb, with promising prospects for the future.
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A Mass dependencies

In Sec. 2.3.5.2, particles are reconstructed with the 2011 and 2014 maps and their average

measured mass tested for dependencies. All the related plots are shown in Figs. A.1–A.5. The

variables on the horizontal axis of these plots are defined in the bullet list of Sec. 2.3.5.2.
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Figure A.1 – Dependencies of the D0 reconstructed mass.
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Figure A.2 – Dependencies of the J/ψ reconstructed mass.
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Figure A.3 – Dependencies of the Υ(1S) reconstructed mass.
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Figure A.4 – Dependencies of the K 0
S reconstructed mass.
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Figure A.5 – Dependencies of the B+ reconstructed mass.
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B List of amplitudes

Tables B.1–B.4 list all the amplitudes that have been considered in this analysis. Since there are

some ambiguous cases, the final daughter particles are always specified in parentheses next

to their mother particle. An angular momentum between two systems A and B is indicated

with the notation [AB ]L .

Table B.1 – List of all the amplitudes that match D0→ (K +K −)(π+π−).

D0 → [[K+K−]L=0[π+π−]L=0]L=0
D0 → [[K+K−]L=0ω(782)0(π+π−)]L=1
D0 → [[K+K−]L=0ρ(1450)0(π+π−)]L=1
D0 → [[K+K−]L=0ρ(770)0(π+π−)]L=1

D0 → [a0(980)0(K+K−)[π+π−]L=0]L=0
D0 → [a0(980)0(K+K−)ω(782)0(π+π−)]L=1
D0 → [a0(980)0(K+K−)ρ(1450)0(π+π−)]L=1
D0 → [a0(980)0(K+K−)ρ(770)0(π+π−)]L=1
D0 → [a0(980)0(K+K−) f2(1270)0(π+π−)]L=2

D0 → [φ(1020)0(K+K−)[π+π−]L=0]L=1
D0 → [φ(1020)0(K+K−)ω(782)0(π+π−)]L=0
D0 → [φ(1020)0(K+K−)ω(782)0(π+π−)]L=1
D0 → [φ(1020)0(K+K−)ω(782)0(π+π−)]L=2
D0 → [φ(1020)0(K+K−)ρ(1450)0(π+π−)]L=0
D0 → [φ(1020)0(K+K−)ρ(1450)0(π+π−)]L=1
D0 → [φ(1020)0(K+K−)ρ(1450)0(π+π−)]L=2
D0 → [φ(1020)0(K+K−)ρ(770)0(π+π−)]L=0
D0 → [φ(1020)0(K+K−)ρ(770)0(π+π−)]L=1
D0 → [φ(1020)0(K+K−)ρ(770)0(π+π−)]L=2
D0 → [φ(1020)0(K+K−) f2(1270)0(π+π−)]L=1
D0 → [φ(1020)0(K+K−) f2(1270)0(π+π−)]L=2

D0 → [ f2(1270)0(K+K−)[π+π−]L=0]L=2
D0 → [ f2(1270)0(K+K−)ω(782)0(π+π−)]L=1
D0 → [ f2(1270)0(K+K−)ω(782)0(π+π−)]L=2
D0 → [ f2(1270)0(K+K−)ρ(1450)0(π+π−)]L=1
D0 → [ f2(1270)0(K+K−)ρ(1450)0(π+π−)]L=2
D0 → [ f2(1270)0(K+K−)ρ(770)0(π+π−)]L=1
D0 → [ f2(1270)0(K+K−)ρ(770)0(π+π−)]L=2
D0 → [ f2(1270)0(K+K−) f2(1270)0(π+π−)]L=0

D0 → [a2(1320)0(K+K−)[π+π−]L=0]L=2
D0 → [a2(1320)0(K+K−)ω(782)0(π+π−)]L=1
D0 → [a2(1320)0(K+K−)ω(782)0(π+π−)]L=2
D0 → [a2(1320)0(K+K−)ρ(1450)0(π+π−)]L=1
D0 → [a2(1320)0(K+K−)ρ(1450)0(π+π−)]L=2
D0 → [a2(1320)0(K+K−)ρ(770)0(π+π−)]L=1
D0 → [a2(1320)0(K+K−)ρ(770)0(π+π−)]L=2
D0 → [a2(1320)0(K+K−) f2(1270)0(π+π−)]L=0
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Appendix B. List of amplitudes

Table B.2 – List of all the amplitudes that match D0→ (K +π−)(K −π+).

D0 → [K+π−]L=0[K−π+]L=0

D0 → [K∗(892)0(K+π−)[K−π+]L=0]L=1
D0 → [K∗(892)0(K−π+)[K+π−]L=0]L=1

D0 → [K∗(892)0(K+π−)K∗(892)0(K−π+)]L=0
D0 → [K∗(892)0(K+π−)K∗(892)0(K−π+)]L=1
D0 → [K∗(892)0(K+π−)K∗(892)0(K−π+)]L=2

D0 → [K∗(892)0(K+π−)K∗
2 (1430)0(K−π+)]L=1

D0 → [K∗(892)0(K−π+)K∗
2 (1430)0(K+π−)]L=1

D0 → [K∗(892)0(K+π−)K∗
2 (1430)0(K−π+)]L=2

D0 → [K∗(892)0(K−π+)K∗
2 (1430)0(K+π−)]L=2

D0 → [K∗
2 (1430)0(K+π−)[K−π+]L=0]L=2

D0 → [K∗
2 (1430)0(K−π+)[K+π−]L=0]L=2

D0 → [K∗
2 (1430)0(K+π−)K∗

2 (1430)0(K−π+)]L=0

D0 → [K∗(1680)0(K+π−)[K−π+]L=0]L=1
D0 → [K∗(1680)0(K−π+)[K+π−]L=0]L=1

Table B.3 – List of all the amplitudes that match D0 → (K +K −π+)(π−). A similar set of amplitudes
matching D0→ (K +K −π−)(π+) is considered, but not listed here.

D0 → [a1(1260)+[K∗(892)0(K−π+)K+]L=0π
−]L=1

D0 → [a1(1260)+[K∗(892)0(K−π+)K+]L=2π
−]L=1

D0 → [a1(1260)+[φ(1020)0(K+K−)π+]L=0π
−]L=1

D0 → [a1(1260)+[φ(1020)0(K+K−)π+]L=2π
−]L=1

D0 → [a1(1260)+[ f2(1270)0(K+K−)π+]L=1π
−]L=1
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Table B.4 – List of all the amplitudes that match D0 → (K +π+π−)(K −). A similar set of amplitudes
matching D0→ (K −π+π−)(K +) is considered, but not listed here.

D0 → [K1(1270)+[[K+π−]L=0π
+]L=1K−]L=1

D0 → [K1(1270)+[[π+π−]L=0K+]L=1K−]L=1
D0 → [K1(1270)+[ρ(770)0(π+π−)K+]L=0K−]L=1
D0 → [K1(1270)+[ρ(770)0(π+π−)K+]L=2K−]L=1
D0 → [K1(1270)+[ω(782)0(π+π−)K+]L=0K−]L=1
D0 → [K1(1270)+[ω(782)0(π+π−)K+]L=2K−]L=1
D0 → [K1(1270)+[K∗(892)0(K+π−)π+]L=0K−]L=1
D0 → [K1(1270)+[K∗(892)0(K+π−)π+]L=2K−]L=1
D0 → [K1(1270)+[ρ(1450)0(π+π−)K+]L=0K−]L=1
D0 → [K1(1270)+[ρ(1450)0(π+π−)K+]L=2K−]L=1

D0 → [K1(1400)+[[K+π−]L=0π
+]L=1K−]L=1

D0 → [K1(1400)+[[π+π−]L=0K+]L=1K−]L=1
D0 → [K1(1400)+[ρ(770)0(π+π−)K+]L=0K−]L=1
D0 → [K1(1400)+[ρ(770)0(π+π−)K+]L=2K−]L=1
D0 → [K1(1400)+[ω(782)0(π+π−)K+]L=0K−]L=1
D0 → [K1(1400)+[ω(782)0(π+π−)K+]L=2K−]L=1
D0 → [K1(1400)+[K∗(892)0(K+π−)π+]L=0K−]L=1
D0 → [K1(1400)+[K∗(892)0(K+π−)π+]L=2K−]L=1
D0 → [K1(1400)+[ρ(1450)0(π+π−)K+]L=0K−]L=1
D0 → [K1(1400)+[ρ(1450)0(π+π−)K+]L=2K−]L=1

D0 → [K∗
2 (1430)+[ρ(770)0(π+π−)K+]L=2K−]L=2

D0 → [K∗
2 (1430)+[ω(782)0(π+π−)K+]L=2K−]L=2

D0 → [K∗
2 (1430)+[K∗(892)0(K+π−)π+]L=2K−]L=2

D0 → [K∗
2 (1430)+[ρ(1450)0(π+π−)K+]L=2K−]L=2

D0 → [K (1460)+[[K+π−]L=0π
+]L=0K−]L=0

D0 → [K (1460)+[[π+π−]L=0K+]L=0K−]L=0
D0 → [K (1460)+[ρ(770)0(π+π−)K+]L=1K−]L=0
D0 → [K (1460)+[ω(782)0(π+π−)K+]L=1K−]L=0
D0 → [K (1460)+[K∗(892)0(K+π−)π+]L=1K−]L=0
D0 → [K (1460)+[ρ(1450)0(π+π−)K+]L=1K−]L=0

D0 → [K∗(1680)+[ρ(770)0(π+π−)K+]L=1K−]L=1
D0 → [K∗(1680)+[ω(782)0(π+π−)K+]L=1K−]L=1
D0 → [K∗(1680)+[K∗(892)0(K+π−)π+]L=1K−]L=1
D0 → [K∗(1680)+[ρ(1450)0(π+π−)K+]L=1K−]L=1
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C Background PDF

The background reweighting procedure described in Sec. 4.5.2 takes into account the 31

variables of Table 3.1. The resulting distributions are shown in Fig. 4.6 for the five CM variables

and here in Figs. C.1–C.6 for the remaining 26 variables.
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Figure C.1 – Background distributions of the five variables of the opposite-sign Kπ system. The black
points represent the data sideband events, and the red points the MC events after the reweighting
procedure.
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Figure C.2 – Background distributions of the five variables of the same-sign Kπ system. The black
points represent the data sideband events, and the red points the MC events after the reweighting
procedure.
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Figure C.3 – Background distributions of the four variables of the K +K −π+ system. The black points
represent the data sideband events, and the red points the MC events after the reweighting procedure.
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Figure C.4 – Background distributions of the four variables of the K +K −π− system. The black points
represent the data sideband events, and the red points the MC events after the reweighting procedure.
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Appendix C. Background PDF
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Figure C.5 – Background distributions of the four variables of the K +π+π− system. The black points
represent the data sideband events, and the red points the MC events after the reweighting procedure.
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Figure C.6 – Background distributions of the four variables of the K −π+π− system. The black points
represent the data sideband events, and the red points the MC events after the reweighting procedure.
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D Alternative background PDF

The method chosen to create a 5D background distribution is to reweight the MC integration

sample to make it match the 5D distribution observed in the data sidebands. We developed

an alternative to hep_ml to perform this reweighting. The resulting background PDF is used

in order to assign a systematic uncertainty for the background description.

The reweighting procedure uses histograms. The 5D phase space is projected onto four

histograms, one 2D histogram for the two masses variables (which are strongly correlated)

and three 1D histograms for the angles. Then, one takes each event of the MC sample, checks

in which bin it falls in the four histograms, calculates the ratio between the bin contents for

the data sidebands and the MC sample, and finally multiplies these four ratios to obtain an

overall weight per event. It has been observed that this method does not work properly if only

projections on the five default CM variables are used. After the reweighting, the distributions

of these five variables are correctly reproduced but the other projections are not. This can be

explained considering that the mechanism to reweight the distributions does not take all the

correlations into account.

The solution found to overcome this correlation problem, is to keep the four separate his-

tograms, but to iteratively reweight the MC sample for the 31 different variables listed in

Table 3.1. The variables are grouped in 7 different sets as shown in Table 3.1. The first three

sets correspond to two-body systems, with one 2D projection (two two-body masses) and

three 1D projections (cosines of helicity angles and angle between decay planes), and the last

four sets correspond to three-body systems, with four 1D projections (mass and cosines of

helicity angles).

Once the weights for each MC event have been determined such as to reproduce the data-

sideband histograms of one set of variables, they are updated by repeating the process for the

next set of variables. The procedure is iterated on the seven sets in the following order: 2, 3, 4,

5, 6, 7, 1. The CM variables are reweighted last such that they show the best agreement. These

weights contain the information of all the variables from Table 3.1.

Fig. D.1 to D.7 show the projections of the data sidebands along with the reweighted MC.
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Appendix D. Alternative background PDF
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Figure D.1 – Background distributions of the five variables of Set 1. The black points represent the data
sidebands events, and the red points the MC events after the reweighting procedure.
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Figure D.2 – Background distributions of the five variables of Set 2. The black points represent the data
sidebands events, and the red points the MC events after the reweighting procedure.
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Appendix D. Alternative background PDF
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Figure D.3 – Background distributions of the five variables of Set 3. The black points represent the data
sidebands events, and the red points the MC events after the reweighting procedure.
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Figure D.4 – Background distributions of the four variables of Set 4. The black points represent the data
sidebands events, and the red points the MC events after the reweighting procedure.
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Figure D.5 – Background distributions of the four variables of Set 5. The black points represent the data
sidebands events, and the red points the MC events after the reweighting procedure.
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Appendix D. Alternative background PDF
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Figure D.6 – Background distributions of the four variables of Set 6. The black points represent the data
sidebands events, and the red points the MC events after the reweighting procedure.
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Figure D.7 – Background distributions of the four variables of Set 7. The black points represent the data
sidebands events, and the red points the MC events after the reweighting procedure.
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E Fit bias

The means and the widths of the modulus, phase and fit fraction are shown for all the pseudo-

experiments performed for the systematic uncertainties studies in Figs. E.1 to E.8.
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Figure E.1 – Distributions of the means and widths of the moduli and phases on the left and of the fit
fractions on the right for the pseudoexperiments for signal only.
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Figure E.2 – Distributions of the means and widths of the moduli and phases on the left and of the fit
fractions on the right for the pseudoexperiments for signal and background.
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Figure E.3 – Distributions of the means and widths of the moduli and phases on the left and of the fit
fractions on the right for the pseudoexperiments for signal and mistag.
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Figure E.4 – Distributions of the means and widths of the moduli and phases on the left and of the fit
fractions on the right for the pseudoexperiments for signal and detection asymmetry.
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Appendix E. Fit bias
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Figure E.5 – Distributions of the means and widths of the modulus asymmetries and phase differences
on the left and of the fit fraction asymmetries on the right for the pseudoexperiments for signal only.
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Figure E.6 – Distributions of the means and widths of the modulus asymmetries and phase differences
on the left and of the fit fraction asymmetries on the right for the pseudoexperiments for signal and
background.

1− 0 1 2
0

5

10

15

20

25

30

35
Mean
RMS

1− 0 1 2
0

2

4

6

8

10

12

14

16

Mean
RMS

Figure E.7 – Distributions of the means and widths of the modulus asymmetries and phase differences
on the left and of the fit fraction asymmetries on the right for the pseudoexperiments for signal and
mistag.
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Figure E.8 – Distributions of the means and widths of the modulus asymmetries and phase differences
on the left and of the fit fraction asymmetries on the right for the pseudoexperiments for signal and
detection asymmetry.
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F Result of the cross-checks

In section 5.8, we test different hypotheses. This section lists all the resulting models.

Table F.1 – Result of the fit performed without Δm cut.

Amplitude |ck | arg(ck ) [rad] Fit fraction [%]

D0 → [φ(1020)0(ρ−ω)0]L=0 1 (fixed) 0 (fixed) 23.43 ± 0.37
D0 → [K−π+]L=0[K+π−]L=0 0.29 ± 0.00 −0.59 ± 0.01 18.82 ± 0.34
D0 → K1(1270)+K− 0.46 ± 0.01 2.01 ± 0.02 18.37 ± 0.37
D0 → K1(1400)+K− 0.63 ± 0.01 1.04 ± 0.02 18.20 ± 0.44
D0 → [K∗(892)0K∗(892)0]L=0 0.28 ± 0.00 −0.27 ± 0.02 9.10 ± 0.21
D0 → K∗(1680)0[K−π+]L=0 2.28 ± 0.03 0.47 ± 0.02 6.59 ± 0.15
D0 → [K∗(892)0K∗(892)0]L=1 0.27 ± 0.00 1.23 ± 0.02 4.97 ± 0.16
D0 → K1(1270)−K+ 0.23 ± 0.01 2.10 ± 0.03 4.40 ± 0.17
D0 → [K+K−]L=0[π+π−]L=0 0.12 ± 0.00 −2.45 ± 0.03 3.25 ± 0.16
D0 → K1(1400)−K+ 0.25 ± 0.01 0.04 ± 0.04 2.89 ± 0.19
D0 → [K∗(1680)0K∗(892)0]L=0 0.83 ± 0.02 2.99 ± 0.03 2.80 ± 0.15
D0 → [K∗(1680)0K∗(892)0]L=1 1.01 ± 0.02 −2.75 ± 0.02 2.66 ± 0.10
D0 → K∗(1680)0[K+π−]L=0 1.31 ± 0.03 1.07 ± 0.02 2.35 ± 0.09
D0 → [φ(1020)0(ρ−ω)0]L=2 1.33 ± 0.03 0.55 ± 0.02 2.30 ± 0.08
D0 → [K∗(892)0K∗(892)0]L=2 0.70 ± 0.02 2.88 ± 0.03 1.84 ± 0.10
D0 → [K∗(1680)0K∗(892)0]L=1 0.76 ± 0.02 0.14 ± 0.03 1.50 ± 0.08
D0 →φ(1020)0[π+π−]L=0 0.05 ± 0.00 −1.70 ± 0.04 1.45 ± 0.09
D0 → [φ(1020)0ρ(1450)0]L=1 0.76 ± 0.04 1.19 ± 0.04 0.97 ± 0.09
D0 → a0(980)0 f2(1270)0 1.47 ± 0.06 0.24 ± 0.04 0.64 ± 0.05
D0 → a1(1260)−π+ 0.19 ± 0.01 0.17 ± 0.06 0.48 ± 0.06
D0 → a1(1260)+π− 0.18 ± 0.01 −2.79 ± 0.07 0.43 ± 0.05
D0 → [φ(1020)0(ρ−ω)0]L=1 0.16 ± 0.01 0.27 ± 0.07 0.42 ± 0.05
D0 → [K∗(1680)0K∗(892)0]L=2 1.21 ± 0.09 −2.47 ± 0.09 0.32 ± 0.05
D0 → [K+K−]L=0(ρ−ω)0 0.20 ± 0.01 3.10 ± 0.08 0.28 ± 0.03
D0 →φ(1020)0 f2(1270)0 1.43 ± 0.09 1.74 ± 0.06 0.19 ± 0.02
D0 → K∗(892)0K∗

2 (1430)0 1.49 ± 0.09 2.00 ± 0.07 0.16 ± 0.02

Sum of fit fractions 128.80 ± 0.93
χ2/ndf 9400/8123 = 1.16

a1(1260)+ → [φ(1020)0π+]L=0 1 (fixed) 0 (fixed) 100

K1(1270)+ → [K∗(892)0π+]L=0 0.62 ± 0.02 0.59 ± 0.03 51.21 ± 0.88
K1(1270)+ → [(ρ−ω)0K+]L=0 1 (fixed) 0 (fixed) 47.32 ± 1.77
K1(1270)+ → [K+π−]L=0π

+ 0.63 ± 0.03 −1.88 ± 0.04 6.20 ± 0.46
K1(1270)+ → [K∗(892)0π+]L=2 0.91 ± 0.05 −2.55 ± 0.04 1.97 ± 0.16
K1(1270)+ → [ρ(1450)0K+]L=0 0.39 ± 0.07 −2.22 ± 0.12 0.93 ± 0.34

Sum of fit fractions 107.63 ± 2.03

K1(1400)+ → [K∗(892)0π+]L=0 1 (fixed) 0 (fixed) 100
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Appendix F. Result of the cross-checks

Table F.2 – Result of the fit performed without K 0
S veto.

Amplitude |ck | arg(ck ) [rad] Fit fraction [%]

D0 → [φ(1020)0(ρ−ω)0]L=0 1 (fixed) 0 (fixed) 23.08 ± 0.29
D0 → K1(1400)+K− 0.63 ± 0.01 1.05 ± 0.01 18.44 ± 0.30
D0 → K1(1270)+K− 0.46 ± 0.00 2.02 ± 0.01 18.38 ± 0.23
D0 → [K−π+]L=0[K+π−]L=0 0.28 ± 0.00 −0.59 ± 0.01 18.26 ± 0.28
D0 → [K∗(892)0K∗(892)0]L=0 0.28 ± 0.00 −0.26 ± 0.01 9.31 ± 0.14
D0 → K∗(1680)0[K−π+]L=0 2.27 ± 0.03 0.46 ± 0.01 6.57 ± 0.12
D0 → [K∗(892)0K∗(892)0]L=1 0.27 ± 0.00 1.22 ± 0.01 4.99 ± 0.08
D0 → K1(1270)−K+ 0.23 ± 0.00 2.09 ± 0.02 4.41 ± 0.12
D0 → [K+K−]L=0[π+π−]L=0 0.12 ± 0.00 −2.49 ± 0.02 3.02 ± 0.14
D0 → K1(1400)−K+ 0.25 ± 0.01 0.03 ± 0.03 2.88 ± 0.12
D0 → [K∗(1680)0K∗(892)0]L=0 0.82 ± 0.02 3.01 ± 0.02 2.78 ± 0.11
D0 → [K∗(1680)0K∗(892)0]L=1 1.02 ± 0.02 −2.75 ± 0.02 2.74 ± 0.08
D0 → K∗(1680)0[K+π−]L=0 1.34 ± 0.02 1.05 ± 0.02 2.46 ± 0.08
D0 → [φ(1020)0(ρ−ω)0]L=2 1.33 ± 0.02 0.55 ± 0.02 2.29 ± 0.06
D0 → [K∗(892)0K∗(892)0]L=2 0.70 ± 0.01 2.87 ± 0.02 1.86 ± 0.06
D0 → [K∗(1680)0K∗(892)0]L=1 0.75 ± 0.02 0.14 ± 0.02 1.50 ± 0.06
D0 →φ(1020)0[π+π−]L=0 0.05 ± 0.00 −1.70 ± 0.03 1.44 ± 0.05
D0 → [φ(1020)0ρ(1450)0]L=1 0.76 ± 0.02 1.20 ± 0.03 0.97 ± 0.04
D0 → a0(980)0 f2(1270)0 1.50 ± 0.05 0.23 ± 0.03 0.67 ± 0.04
D0 → a1(1260)−π+ 0.20 ± 0.01 0.17 ± 0.04 0.50 ± 0.05
D0 → a1(1260)+π− 0.19 ± 0.01 −2.78 ± 0.05 0.47 ± 0.03
D0 → [φ(1020)0(ρ−ω)0]L=1 0.16 ± 0.00 0.26 ± 0.05 0.43 ± 0.02
D0 → [K∗(1680)0K∗(892)0]L=2 1.21 ± 0.05 −2.44 ± 0.06 0.32 ± 0.03
D0 → [K+K−]L=0(ρ−ω)0 0.20 ± 0.01 3.00 ± 0.05 0.28 ± 0.02
D0 →φ(1020)0 f2(1270)0 1.45 ± 0.08 1.72 ± 0.05 0.20 ± 0.02
D0 → K∗(892)0K∗

2 (1430)0 1.52 ± 0.08 2.02 ± 0.06 0.16 ± 0.02

Sum of fit fractions 128.43 ± 0.67
χ2/ndf 9347/8121 = 1.15

D0 → K 0
S [K+K−]L=0 1 (fixed) 0 (fixed) 51.10 ± 3.57

D0 → [φ(1020)0K 0
S ]L=0 4.97 ± 0.36 3.13 ± 1.41 48.90 ± 3.57

Sum of fit fractions 100

a1(1260)+ → [φ(1020)0π+]L=0 1 (fixed) 0 (fixed) 100

K1(1270)+ → [K∗(892)0π+]L=0 0.61 ± 0.01 0.60 ± 0.01 50.87 ± 0.60
K1(1270)+ → [(ρ−ω)0K+]L=0 1 (fixed) 0 (fixed) 48.34 ± 0.71
K1(1270)+ → [K+π−]L=0π

+ 0.59 ± 0.02 −1.93 ± 0.02 5.66 ± 0.34
K1(1270)+ → [K∗(892)0π+]L=2 0.92 ± 0.03 −2.55 ± 0.03 2.08 ± 0.13
K1(1270)+ → [ρ(1450)0K+]L=0 0.45 ± 0.02 −2.42 ± 0.08 1.26 ± 0.10

Sum of fit fractions 108.22 ± 0.81

K1(1400)+ → [K∗(892)0π+]L=0 1 (fixed) 0 (fixed) 100
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Table F.3 – Result of the fit performed while keeping all the multiple candidates.

Amplitude |ck | arg(ck ) [rad] Fit fraction [%]

D0 → [φ(1020)0(ρ−ω)0]L=0 1 (fixed) 0 (fixed) 23.69 ± 0.38
D0 → [K−π+]L=0[K+π−]L=0 0.28 ± 0.00 −0.60 ± 0.01 18.57 ± 0.35
D0 → K1(1400)+K− 0.63 ± 0.01 1.04 ± 0.02 18.47 ± 0.45
D0 → K1(1270)+K− 0.46 ± 0.01 2.01 ± 0.02 18.35 ± 0.37
D0 → [K∗(892)0K∗(892)0]L=0 0.28 ± 0.00 −0.27 ± 0.02 9.19 ± 0.21
D0 → K∗(1680)0[K−π+]L=0 2.26 ± 0.03 0.46 ± 0.02 6.57 ± 0.15
D0 → [K∗(892)0K∗(892)0]L=1 0.27 ± 0.00 1.21 ± 0.02 4.98 ± 0.16
D0 → K1(1270)−K+ 0.22 ± 0.01 2.10 ± 0.03 4.34 ± 0.17
D0 → [K+K−]L=0[π+π−]L=0 0.12 ± 0.00 −2.49 ± 0.03 3.11 ± 0.17
D0 → K1(1400)−K+ 0.25 ± 0.01 0.05 ± 0.04 2.83 ± 0.19
D0 → [K∗(1680)0K∗(892)0]L=0 0.82 ± 0.02 2.99 ± 0.03 2.79 ± 0.15
D0 → [K∗(1680)0K∗(892)0]L=1 1.01 ± 0.02 −2.75 ± 0.02 2.70 ± 0.11
D0 → K∗(1680)0[K+π−]L=0 1.31 ± 0.03 1.06 ± 0.02 2.37 ± 0.09
D0 → [φ(1020)0(ρ−ω)0]L=2 1.31 ± 0.03 0.54 ± 0.02 2.29 ± 0.08
D0 → [K∗(892)0K∗(892)0]L=2 0.70 ± 0.02 2.86 ± 0.03 1.86 ± 0.10
D0 → [K∗(1680)0K∗(892)0]L=1 0.75 ± 0.02 0.13 ± 0.03 1.48 ± 0.08
D0 →φ(1020)0[π+π−]L=0 0.05 ± 0.00 −1.71 ± 0.04 1.47 ± 0.09
D0 → [φ(1020)0ρ(1450)0]L=1 0.76 ± 0.04 1.18 ± 0.04 0.98 ± 0.09
D0 → a0(980)0 f2(1270)0 1.54 ± 0.06 0.23 ± 0.04 0.71 ± 0.05
D0 → a1(1260)+π− 0.19 ± 0.01 −2.82 ± 0.07 0.47 ± 0.05
D0 → a1(1260)−π+ 0.19 ± 0.01 0.17 ± 0.06 0.47 ± 0.06
D0 → [φ(1020)0(ρ−ω)0]L=1 0.16 ± 0.01 0.26 ± 0.07 0.43 ± 0.05
D0 → [K∗(1680)0K∗(892)0]L=2 1.21 ± 0.09 −2.45 ± 0.08 0.32 ± 0.05
D0 → [K+K−]L=0(ρ−ω)0 0.20 ± 0.02 3.02 ± 0.08 0.28 ± 0.04
D0 →φ(1020)0 f2(1270)0 1.40 ± 0.09 1.71 ± 0.06 0.19 ± 0.02
D0 → K∗(892)0K∗

2 (1430)0 1.54 ± 0.09 2.01 ± 0.07 0.17 ± 0.02

Sum of fit fractions 129.06 ± 0.94
χ2/ndf 9285/8123 = 1.14

a1(1260)+ → [φ(1020)0π+]L=0 1 (fixed) 0 (fixed) 100

K1(1270)+ → [K∗(892)0π+]L=0 0.61 ± 0.02 0.60 ± 0.03 51.19 ± 0.88
K1(1270)+ → [(ρ−ω)0K+]L=0 1 (fixed) 0 (fixed) 48.13 ± 1.78
K1(1270)+ → [K+π−]L=0π

+ 0.60 ± 0.03 −1.92 ± 0.04 5.80 ± 0.46
K1(1270)+ → [K∗(892)0π+]L=2 0.91 ± 0.04 −2.55 ± 0.04 2.00 ± 0.16
K1(1270)+ → [ρ(1450)0K+]L=0 0.44 ± 0.06 −2.35 ± 0.11 1.18 ± 0.38

Sum of fit fractions 108.31 ± 2.04

K1(1400)+ → [K∗(892)0π+]L=0 1 (fixed) 0 (fixed) 100
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Appendix F. Result of the cross-checks

Table F.4 – Result of the fit performed with an enlarged φ(1020)0 meson.

Amplitude |c| arg(c) [rad] Fit fraction [%]

D0 → [φ(1020)0(ρ−ω)0]L=0 1 (fixed) 0 (fixed) 23.86 ± 0.38
D0 → [K−π+]L=0[K+π−]L=0 0.28 ± 0.00 −0.60 ± 0.01 18.55 ± 0.35
D0 → K1(1400)+K− 0.63 ± 0.01 1.03 ± 0.02 18.48 ± 0.46
D0 → K1(1270)+K− 0.46 ± 0.01 2.02 ± 0.02 18.37 ± 0.37
D0 → [K∗(892)0K∗(892)0]L=0 0.28 ± 0.00 −0.28 ± 0.02 9.24 ± 0.21
D0 → K∗(1680)0[K−π+]L=0 2.24 ± 0.03 0.45 ± 0.02 6.50 ± 0.15
D0 → [K∗(892)0K∗(892)0]L=1 0.27 ± 0.00 1.21 ± 0.02 4.96 ± 0.16
D0 → K1(1270)−K+ 0.22 ± 0.01 2.10 ± 0.03 4.30 ± 0.17
D0 → [K+K−]L=0[π+π−]L=0 0.12 ± 0.00 −2.51 ± 0.03 3.16 ± 0.17
D0 → K1(1400)−K+ 0.24 ± 0.01 0.04 ± 0.04 2.82 ± 0.19
D0 → [K∗(1680)0K∗(892)0]L=0 0.82 ± 0.02 2.99 ± 0.03 2.80 ± 0.15
D0 → [K∗(1680)0K∗(892)0]L=1 1.00 ± 0.02 −2.76 ± 0.02 2.69 ± 0.11
D0 → K∗(1680)0[K+π−]L=0 1.31 ± 0.03 1.07 ± 0.02 2.37 ± 0.09
D0 → [φ(1020)0(ρ−ω)0]L=2 1.31 ± 0.03 0.54 ± 0.02 2.30 ± 0.08
D0 → [K∗(892)0K∗(892)0]L=2 0.69 ± 0.02 2.86 ± 0.03 1.84 ± 0.10
D0 →φ(1020)0[π+π−]L=0 0.05 ± 0.00 −1.71 ± 0.04 1.49 ± 0.09
D0 → [K∗(1680)0K∗(892)0]L=1 0.74 ± 0.02 0.13 ± 0.03 1.46 ± 0.08
D0 → [φ(1020)0ρ(1450)0]L=1 0.76 ± 0.04 1.17 ± 0.04 0.99 ± 0.09
D0 → a0(980)0 f2(1270)0 1.52 ± 0.06 0.24 ± 0.04 0.70 ± 0.05
D0 → a1(1260)−π+ 0.19 ± 0.01 0.18 ± 0.06 0.46 ± 0.06
D0 → a1(1260)+π− 0.19 ± 0.01 −2.82 ± 0.07 0.46 ± 0.05
D0 → [φ(1020)0(ρ−ω)0]L=1 0.16 ± 0.01 0.28 ± 0.07 0.43 ± 0.05
D0 → [K∗(1680)0K∗(892)0]L=2 1.20 ± 0.09 −2.44 ± 0.08 0.32 ± 0.05
D0 → [K+K−]L=0(ρ−ω)0 0.20 ± 0.01 3.00 ± 0.08 0.27 ± 0.04
D0 →φ(1020)0 f2(1270)0 1.40 ± 0.09 1.72 ± 0.06 0.19 ± 0.02
D0 → K∗(892)0K∗

2 (1430)0 1.52 ± 0.09 2.01 ± 0.07 0.17 ± 0.02

Sum of fit fractions 129.17 ± 0.94
χ2/ndf 9217/8123 = 1.13

a1(1260)+ → [φ(1020)0π+]L=0 1 (fixed) 0 (fixed) 100

K1(1270)+ → [K∗(892)0π+]L=0 0.61 ± 0.02 0.59 ± 0.03 51.31 ± 0.88
K1(1270)+ → [(ρ−ω)0K+]L=0 1 (fixed) 0 (fixed) 48.24 ± 1.79
K1(1270)+ → [K+π−]L=0π

+ 0.60 ± 0.03 −1.93 ± 0.04 5.80 ± 0.46
K1(1270)+ → [K∗(892)0π+]L=2 0.91 ± 0.04 −2.56 ± 0.04 2.01 ± 0.16
K1(1270)+ → [ρ(1450)0K+]L=0 0.45 ± 0.06 −2.33 ± 0.10 1.25 ± 0.39

Sum of fit fractions 108.61 ± 2.07

K1(1400)+ → [K∗(892)0π+]L=0 1 (fixed) 0 (fixed) 100
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G Partial-wave analysis

Figures G.1 to G.6 show the two-body invariant masses projected on the spherical normalised

associated Legendre polynomials.
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Figure G.1 – Distributions of the K +K − invariant mass, for the data (black points) and the model (red
line), projected on the first six spherical normalised associated Legendre polynomials.
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Appendix G. Partial-wave analysis
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Figure G.2 – Distributions of the π+π− invariant mass, for the data (black points) and the model (red
line), projected on the first six spherical normalised associated Legendre polynomials.
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Figure G.3 – Distributions of the K +π− invariant mass, for the data (black points) and the model (red
line), projected on the first six spherical normalised associated Legendre polynomials.
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Appendix G. Partial-wave analysis
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Figure G.4 – Distributions of the K −π+ invariant mass, for the data (black points) and the model (red
line), projected on the first six spherical normalised associated Legendre polynomials.
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Figure G.5 – Distributions of the K +π+ invariant mass, for the data (black points) and the model (red
line), projected on the first six spherical normalised associated Legendre polynomials.
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Appendix G. Partial-wave analysis
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Figure G.6 – Distributions of the K −π− invariant mass, for the data (black points) and the model (red
line), projected on the first six spherical normalised associated Legendre polynomials.
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H Fit results

31 variables are used in order to visualise the complicated five-dimensional phase space.

The result of the fit has been shown on the five nominal CM variables in Fig. 6.1 and the 26

remaining variables are shown here in Figs. H.1–H.6.
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Figure H.1 – Distributions of five variables defined using the opposite-sign Kπ system for the selected
D0→ K +K −π+π− candidates (black points with error bars). The results of the five-dimensional ampli-
tude fit is superimposed with the signal model (dashed blue), the background model (dotted green) and
the total fit function (plain red). The plot on top of each distribution shows the normalised residuals
(differences between the data points and the fit results, divided by the quadratic sum of the statistical
uncertainties of the data and MC samples).
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Appendix H. Fit results
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Figure H.2 – Distributions of five variables defined using the same-sign Kπ system for the selected D0→
K +K −π+π− candidates (black points with error bars). The results of the five-dimensional amplitude
fit is superimposed with the signal model (dashed blue), the background model (dotted green) and
the total fit function (plain red). The plot on top of each distribution shows the normalised residuals
(differences between the data points and the fit results, divided by the quadratic sum of the statistical
uncertainties of the data and MC samples).
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Figure H.3 – Distributions of four variables defined using the K +K −π+ system for the selected D0→
K +K −π+π− candidates (black points with error bars). The results of the five-dimensional amplitude
fit is superimposed with the signal model (dashed blue), the background model (dotted green) and
the total fit function (plain red). The plot on top of each distribution shows the normalised residuals
(differences between the data points and the fit results, divided by the quadratic sum of the statistical
uncertainties of the data and MC samples).
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Appendix H. Fit results
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Figure H.4 – Distributions of four variables defined using the K +K −π− system for the selected D0→
K +K −π+π− candidates (black points with error bars). The results of the five-dimensional amplitude
fit is superimposed with the signal model (dashed blue), the background model (dotted green) and
the total fit function (plain red). The plot on top of each distribution shows the normalised residuals
(differences between the data points and the fit results, divided by the quadratic sum of the statistical
uncertainties of the data and MC samples).

152



]2) [MeV/c-π+π+m(K
800 1000 1200 1400

)2
Ev

en
ts

 / 
(1

3.
0 

M
eV

/c

0

2000

4000

6000

8000

10000

12000

14000

Pu
ll

-3
 0
 3

)
-π+π+K

+Kθcos(
1− 0.5− 0 0.5 1

Ev
en

ts
 / 

0.
04

0

1000

2000

3000

4000

5000

6000

7000

Pu
ll

-3
 0
 3

)
-π+π+K

+πθcos(
1− 0.5− 0 0.5 1

Ev
en

ts
 / 

0.
04

0

1000

2000

3000

4000

5000

6000

7000

8000

Pu
ll

-3
 0
 3

)
-π+π+K

-πθcos(
1− 0.5− 0 0.5 1

Ev
en

ts
 / 

0.
04

0

1000

2000

3000

4000

5000

6000

Pu
ll

-3
 0
 3

Data

Total fit

Signal model

Background model

Figure H.5 – Distributions of four variables defined using the K +π+π− system for the selected D0→
K +K −π+π− candidates (black points with error bars). The results of the five-dimensional amplitude
fit is superimposed with the signal model (dashed blue), the background model (dotted green) and
the total fit function (plain red). The plot on top of each distribution shows the normalised residuals
(differences between the data points and the fit results, divided by the quadratic sum of the statistical
uncertainties of the data and MC samples).
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Appendix H. Fit results
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Figure H.6 – Distributions of four variables defined using the K −π+π− system for the selected D0→
K +K −π+π− candidates (black points with error bars). The results of the five-dimensional amplitude
fit is superimposed with the signal model (dashed blue), the background model (dotted green) and
the total fit function (plain red). The plot on top of each distribution shows the normalised residuals
(differences between the data points and the fit results, divided by the quadratic sum of the statistical
uncertainties of the data and MC samples).
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