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Abstract
Over the last years, brain-computer interfaces (BCIs) have shown their value for assistive

technology and neurorehabilitation. Recently, a BCI-approach for the rehabilitation of he-

mispatial neglect has been proposed on the basis of covert visuospatial attention (CVSA).

CVSA is an internal action which can be described as shifting one’s attention to the visual

periphery without moving the actual point of gaze. Such attention shifts induce a laterali-

zation in parietooccipital blood flow and oscillations in the so-called alpha band (8-14 Hz),

which can be detected via electroencephalography (EEG), magnetoencephalography (MEG)

or functional magnetic resonance imaging (fMRI). Previous studies have proven the technical

feasibility of using CVSA as a control signal for BCIs, but unfortunately, these BCIs could not

provide every subject with sufficient control. The aim of this thesis was to investigate the

possibility of amplifying the weak lateralization patterns in the alpha band — the main reason

behind insufficient CVSA BCI performance.

To this end, I have explored three different approaches that could lead to better performing and

more inclusive CVSA BCI systems. The first approach illuminated the changes in the behavior

and brain patterns by closing the loop between subject and system with continuous real-time

feedback at the instructed locus of attention. I could observe that even short (20 minutes)

stretches of real-time feedback have an effect on behavioral correlates of attention, even when

the changes observed in the EEG remained less conclusive. The second approach attempted

to complement the information extracted from the EEG signal with another sensing modality

that could provide additional information about the state of CVSA. For this reason, I firstly

combined functional functional near-infrared spectroscopy (fNIRS) with EEG measurements.

The results showed that, while the EEG was able to pick up the expected lateralization in

the alpha band, the fNIRS was not able to reliably image changes in blood circulation in the

parietooccipital cortex. Secondly, I successfully combined data from the EEG with measures

of pupil size changes, induced by a high illumination contrast between the covertly attended

target regions, which resulted in an improved BCI decoding performance. The third approach

examined the option of using noninvasive electrical brain stimulation to boost the power of

the alpha band oscillations and therefore render the lateralization pattern in the alpha band

more visible compared to the background activity. However, I could not observe any impact of

the stimulation on the ongoing alpha band power, and thus results of the subsequent effect

on the lateralization remain inconclusive.

Overall, these studies helped to further understand CVSA and lay out a useful basis for further

exploration of the connection between behavior and alpha power oscillations in CVSA tasks,
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as well as for potential directions to improve CVSA-based BCIs.

Keywords: brain-computer interface, covert visuospatial attention, electroencephalography,

functional near-infrared spectroscopy, pupillometry, transcranial alternating current stimula-

tion, alpha oscillations
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Zusammenfassung
In den letzten Jahren haben Gehirn-Computer Schnittstellen (BCI) mehr und mehr ihren

Wert für Unterstützungstechnologie und Neurorehabilitation gezeigt. Erst kürzlich wurde ein

BCI-Ansatz auf der Basis von verdeckter visuell-räumlicher Aufmerksamkeit (CVSA) für die

Rehabilitation von visuellem Neglect vorgeschlagen. CVSA ist ein rein internes Phänomen und

beschreibt die Verschiebung des Aufmerksamkeitszentrums weg vom fixierten Punkt in die

visuelle Peripherie ohne dabei die Augen zu bewegen. Solche Aufmerksamkeitsverschiebungen

veranlassen eine Lateralisation in der Durchblutung des parietooccipitalen Kortex, als auch

in Oszillationen im Frequenzbereich der Alpha-Wellen (8-14 Hz). Dies kann durch Elektro-

enzephalografie (EEG), Magnetoenzephalografie (MEG) oder funktioneller Magnetresonanz-

tomografie (fMRT) gemessen werden. Vorangegangene Studien haben die technische Mach-

barkeit aufgezeigt, CVSA als Steuersignal for BCIs heranzuziehen, aber leider waren diese

Systeme nicht von allen Versuchspersonen beherrschbar. Das Hauptziel dieser Dissertation

war es, zu untersuchen, wie schwache Lateralisationsmuster in der Alpha-Frequenz, welche

der Hauptgrund für unzureichende Kontrolle über ein CVSA BCI sind, zu verstärken.

Zu diesem Zweck habe ich drei verschiedene Ansätze erforscht, zu besseren und genaueren

CVSA BCIs zu gelangen, welche mehr Menschen offen stehen. Der erste Ansatz beleuchtete die

Veränderungen im Verhalten und der Gehirnwellen wenn das BCI system "geschlossen"wird,

d.h. wenn kontinuierlich eine Echtzeitrückmeldung vom Computer an den Benützer erfolgt.

Dabei konnte ich in Erfahrung bringen, dass sogar kurze Perioden (20 Minuten) mit Echtzeit-

rückmeldung einen signifikanten Effekt auf die Verhaltensgestützte Messung haben, auch

wenn im EEG keine Veränderungen erkennbar sind. Im zweiten Ansatz habe ich versucht, das

EEG um eine weitere Aufnahmemodalität zu ergänzen, um mehr, und vor allem komplementäre

Information über den Zustand der CVSA zu erhalten. Aus diesem Grund habe ich zuerst

funktionelle Nahinfrarotspektroskopie (fNIRS) mit dem EEG kombiniert, aber die Resultate

zeigten, dass während das EEG die erwartete Lateralisation in der Alpha-Frequenz aufzeichnen

konnte, das fNIRS keine aussagekräftigen Daten lieferte. Danach habe ich das EEG mit

Pupillometrie kombiniert. Zwei verschieden helle Seiten am Versuchsbildschirm lösten dabei

eine Verengung oder Erweiterung der Pupille aus, je nachdem welcher Seite mehr Aufmerk-

samkeit geschenkt wurde. Die Fusion beider Methoden konnte dabei die einzeln erreichte

Leistung übertreffen. Der dritte Ansatz untersuchte die Option, nichtinvasive elektrische

Gehirnstimulation zur Verstärkung der Körpereigenen Signale einzusetzen. Eine Erhöhung

der Frequenzstärke im Alpha-Bereich könnte nämlich helfen, die Lateralisation, welche die

Verschiebungen in der CVSA begleitet, besser von der restlichen Gehirnaktivität zu abzuheben.
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Allerdings konnte ich keinen Effekt der elektrischen Hirnstimulation erkennen, und dadurch

die Frage, ob eine Verstärkung der Alpha-Frequenz auch eine bessere Erkennbarkeit von CVSA

im EEG mit sich bringt, nicht ausreiched beantworten.

Im Großen und Ganzen haben diese Studien dazu beigetragen CVSA etwas besser zu verstehen.

Weiters haben sie eine brauchbare Basis für die fortschreitende Erforschung der Beziehung

zwischen Verhalten und den Verteilung der Alpha-Wellen im Gehirn während andauernder

CVSA gelegt. Und schlussendlich, haben sie auch mögliche Richtungen aufgezeigt, wie das

ursprünglich angestrebte Ziel — die Erkennungsrate von CVSA Signalen zu verbessern —

erreichbar wäre.

Schlagwörter: Gehirn-Computer Schnittstelle (BCI), verdeckte visuell-räumliche Aufmerk-

samkeit (CVSA), Elektroenzephalogramm (EEG), funktionelle Nahinfrarotspektroskopie (fNIRS),

Pupillometrie, transkranielle Wechselstromstimulation (tACS), Alpha-Wellen

x



Contents
Acknowledgments v

Abstract (English/Français/Deutsch) vii

List of figures xiii

List of tables xvi

1 Introduction 1

1.1 Brain-computer interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Brain imaging technologies for BCI . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Mental commands for EEG-based BCIs . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Evoked signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2 Endogenous signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Covert visuospatial attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Covert visuospatial attention BCIs . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Choice of BCI and limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.7 Thesis aims and outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Real-time feedback 17

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Experimental protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Offline paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Real-time feedback paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.3 Data acquisition and processing . . . . . . . . . . . . . . . . . . . . . . . . 20

Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Alpha lateralization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Closed-loop feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Post-hoc classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.4 Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

xi



Contents

2.3.1 Behavioral correlates of attention . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.2 Neurophysiological correlates of attention . . . . . . . . . . . . . . . . . . 26

2.3.3 Single trial classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.1 Closed-loop feedback for CVSA . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.2 Alpha-band lateralization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.3 Single trial classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Multimodal sensing 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Functional near-infrared spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Experimental protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Data processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Experiment 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 Pupillometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Visual display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Classifier fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 Brain stimulation 69

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.3 Session structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Resting state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

CVSA task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Transcranial alternating current stimulation . . . . . . . . . . . . . . . . . 74

4.2.4 Questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

xii



Contents

4.2.5 Data processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

EEG preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Individual alpha frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Alpha lateralization index . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Discriminative analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.1 Effect of tACS on alpha power . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.2 Effect of tACS on alpha-power lateralization during CVSA . . . . . . . . . 77

4.3.3 Changes in classification accuracy . . . . . . . . . . . . . . . . . . . . . . . 78

4.3.4 Behavioral effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3.5 Comparison with no-stimulation condition . . . . . . . . . . . . . . . . . 79

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4.1 tACS parameter choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.2 Simulation of the electric field . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4.3 Choice of control condition . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4.4 Role of enhanced alpha power in CVSA . . . . . . . . . . . . . . . . . . . . 86

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 Discussion and conclusion 87

5.0.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.0.2 Proposed future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.0.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Bibliography 91

Curriculum Vitae 115

xiii





List of Figures
1.1 Components of a BCI system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Temporal and spatial resolution of different brain imaging modalities . . . . . . 6

1.3 Visual scanning patterns of neglect patients . . . . . . . . . . . . . . . . . . . . . 10

1.4 Retinotopic organization of α-power during CVSA . . . . . . . . . . . . . . . . . 11

1.5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Experimental design and visual feedback . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Behavioral results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Electrophysiological results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Correlation of electrophysiological and behavioral results . . . . . . . . . . . . . 29

2.5 Correlation with the α-LI and classification results . . . . . . . . . . . . . . . . . 31

3.1 Basics of functional near-infrared spectroscopy (fNIRS) . . . . . . . . . . . . . . 39

3.2 Coverage of existing literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Cap setups for EEG and fNIRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Experimental setup and subject placement . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Visual protocol with temporal scheme for CVSA task. . . . . . . . . . . . . . . . . 45

3.6 Visual protocol with temporal scheme for rotating checkerboard pinwheel. . . 46

3.7 Distribution of reaction time in dependence of the trial duration. . . . . . . . . 49

3.8 Topoplot correlation EOG with EEG . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.9 Time series R2-value topoplots, left minus right trials, for EEG . . . . . . . . . . 51

3.10 EEG lateralization topoplots with respect to slow and fast reaction times . . . . 51

3.11 Sensitivity map of the used fNIRS setup . . . . . . . . . . . . . . . . . . . . . . . . 52

3.12 Grand average topoplot of HbO activation in experiment 1 . . . . . . . . . . . . 53

3.13 Time series R2-value topoplots, left minus right trials, for fNIRS . . . . . . . . . 54

3.14 EEG lateralization topoplots for 16-channel montage . . . . . . . . . . . . . . . . 55

3.15 Grand average topoplot of HbO activation difference in experiment 2 . . . . . . 56

3.16 Evoked response in fNIRS signal to passive visual stimulation. . . . . . . . . . . 57

3.17 Experimental setup for multimodal EEG and pupillometry BCI . . . . . . . . . . 61

3.18 Pupil size during CVSA — pilot data . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.19 Grand average pupil size during CVSA . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.20 Unimodal and multimodal classification accuracies . . . . . . . . . . . . . . . . 63

3.21 Multimodal feature space of posterior probabilities . . . . . . . . . . . . . . . . . 64

xv



List of Figures

4.1 Experimental design, visual protocol, stimulation setup . . . . . . . . . . . . . . 73

4.2 Alpha power changes as a result of tACS in the α- or β-band . . . . . . . . . . . . 77

4.3 PSDs pre and post stimulation for single subjects . . . . . . . . . . . . . . . . . . 78

4.4 Mean α-lateralization index span pre and post tACS . . . . . . . . . . . . . . . . 79

4.5 Individual α-power lateralization index over time and topographical lateraliza-

tion patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.6 Classification accuracy pre and post tACS . . . . . . . . . . . . . . . . . . . . . . . 83

4.7 Behavioral changes due to tACS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.8 Comparison of tACS-induced effects for α, β and no stimulation. . . . . . . . . 84

4.9 Simulations of the tACS-generated electric field (literature comparison) . . . . 85

xvi



List of Tables
2.1 Subject pairings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Classification accuracies experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Classification accuracies experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 List of tACS stimulation parameters and setup (literature comparison). . . . . . 82

xvii





Acronyms
α-LI α-power lateralization index.

ADL activities of daily living.

ANOVA analysis of variances.

BCI brain-computer interface.

BOLD blood oxygen level dependent.

CVA canonical variate analysis.

CVSA covert visuospatial attention.

DPF differential pathlength factor.

ECoG electrocorticography.

EEG electroencephalography.

EOG electrooculogram.

ERD event-related desynchronization.

ERP event related potential.

ErrP error-related potential.

ET eye tracker.

fMRI functional magnetic resonance imaging.

fNIRS functional near-infrared spectroscopy.

FPR false positive rate.

HbO oxygenated hemoglobin.

HbR reduced hemoglobin.

HbT total hemoglobin.

xix



Acronyms

HD high definition.

IAB individual alpha band.

IAF individual alpha frequency.

IE interaction effect.

ITR information transfer rate.

LDA linear discriminant analysis.

LED light emitting diode.

LFP local field potential.

MEA micro-electrode array.

MEG magnetoencephalography.

MI motor imagery.

MRCP motor-related cortical potential.

PET positron emission tomography.

PLR pupillary light response.

PSD power spectral density.

RF random forest.

RT reaction time.

SEM standard error of the mean.

SSVEP steady state visually evoked potential.

tACS transcranial alternating current stimulation.

TMS transcranial magnetic stimulation.

VE validity effect.

VEP visually evoked potential.

xx



1 Introduction

“Want to play hangman? asks Theophile, and I ache to tell him that I have enough on my plate

playing quadriplegic. But my communication system disqualifies repartee: the keenest rapier

grows dull and falls flat when it takes several minutes to thrust it home. By the time you strike,

even you no longer understand what had seemed so witty before you started to dictate it, letter

by letter. So the rule is to avoid impulsive sallies. It deprives conversation of its sparkle, all those

gems you bat back and forth like a ball — and I count this forced lack of humor one of the great

drawbacks of my condition.” — Jean-Dominique Bauby, The Diving Bell and the Butterfly

This quote above is from a book that Jean-Dominique Bauby has written while being in a

locked-in state after a massive stroke and it showcases his frustration with the slow means of

communication — depriving it of many of its most pleasant forms. His medical condition left

him only in control of one of his eyelids and communication was bound to a caregiver spelling

the letters of the alphabet and him twitching his eyelid at the letter of choice.

Locked-in patients, whose mind and memories are fully intact but their body completely

paralyzed, are the archetype of people for whom we research and develop brain-computer

interfaces (BCIs). These systems provide a direct link from brain activity to a computer,

that could serve in a variety of actions: communication, controlling light, entertainment

and positioning in the bed or wheelchair. Growing from this use as a replacement for lost

body functions, BCIs have also proved their merits in neurological rehabilitation by coupling

standard rehabilitation with the brain activity.

Even though the current state of the art is remarkably advanced to the technology Jean-

Dominique Bauby had at his disposal, this technology does not work for everybody and

is often — if it works — not accurate enough. For this reason, my thesis revolves around

improving the decoding of one of the mental commands that can be used to build such BCIs:

shifts in visual attention to one or the other side of the visual field, called covert visuospatial

attention (CVSA).

In the following, I start with a brief introduction into the components of a BCI. Next, I move on
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to which brain imaging technologies have been used for BCI and discuss their individual

advantages and disadvantages. Then, I will speak about the different electroencephalo-

graphy (EEG)-based brain signals that have been exploited for BCIs. Further, I introduce

covert visuospatial attention (CVSA) and its use in BCI before explaining my choice of BCI

components. In the end I motivate the work in this thesis and give a brief overview of the

conducted experiments.

1.1 Brain-computer interfaces

A BCI is a system designed to allow interaction between the brain — the seat of our conscious-

ness and intentions — with the outside world, bypassing the motor pathways we usually rely

on when communicating with our environment; be it in speech, writing, or with gestures and

mimics (Wolpaw et al., 2002).

A BCI system needs multiple components to work hand in hand, some of which are user-

dependent and some machine dependent (see Figure 1.1 for a graphical representation). First,

we need the human to produce a mental command, i.e. a clearly defined thought, by engaging

in a mental task, e.g. thinking of a specific movement (Curran and Stokes, 2003). As a next

step, these brain signals must be acquired with a suitable brain imaging technology. In this

thesis I mainly used the EEG, but there exist many more options (Min et al., 2010). Further,

the acquired signal has to be preprocessed, i.e. cleaned from artifacts and noise to ensure the

highest possible quality. Then we have to extract the specific features (or patterns) that are

modulated by the mental command (Nicolas-Alonso and Gomez-Gil, 2012). These could be

for example the amplitude in the EEG signal or the voxels that show increased blood flow in

the functional magnetic resonance imaging (fMRI). Thereafter the extracted features need

to be classified (matched) to one of the mental commands, e.g. imaginary left vs. right hand

movement (Lotte et al., 2007). Once the mental command is decoded, it can be sent to the

application interface, which transforms it into a pre-coded action. In the applications depicted

in Figure 1.1 (b) this would mean that the computer game avatar jumps, or a letter is selected,

or that the hand closes and grasps an object. With the application changing its state based

on the decoded commands, the user gets feedback of how his mental command has been

interpreted by the BCI. Given enough time, this allows the user to learn how to use the BCI,

not unlike learning how to use a new tool (Perdikis et al., 2018).

1.2 Brain imaging technologies for BCI

In theory, every brain imaging modality which is able to pick up signals that can be voluntarily

modulated by a person is a possible candidate for building a BCI. With this in mind, it is not

surprising that many different modalities have been explored for the use of BCI, everyone with

its own set of advantages and disadvantages.

In fact, the different methods can be divided into two distinct groups, based on the physiological
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1.2. Brain imaging technologies for BCI

a b

Figure 1.1 – Components and applications of BCIs. (a) Main components for a closed-loop
BCI. The upper loop depicts the steps taken on the machine side of the BCI whereas the lower
loop shows the implication of the user. (b) Three different applications for a BCI: a computer
game (top), a spelling device (middle) and an exoskeleton for restoring grasp (bottom). Figure
adapted from (Nijholt and Tan, 2008)

mechanism they are exploiting. The first group of brain imaging devices is based on cerebral

hemodynamics: the more active a certain brain region is, the more need for oxygen and

nutrients, and thus the higher the blood volume, as controlled by vasoconstriction and -

dilation down to the capillary level (Jespersen and Østergaard, 2012). A common limitation of

hemodynamics-based brain imaging devices is therefore a poor temporal resolution, resulting

from the long delay (5-10 s) between the neuronal activity and the corresponding peak blood

flow (Lindquist et al., 2009).

Positron emission tomography (PET) images blood flow via the concentration of a radioactive

marker that has to be injected into the bloodstream before the measurement. This already

rules the PET out for the continued use in a BCI, since regular radioactive injections would

pose a serious health risk.

The fMRI, on the other hand, does not suffer from this disadvantage, since it measures blood

oxygenation levels with magnetic fields. fMRI scanners offer noninvasive whole-brain imaging

(cortical and subcortical structures) with an ever increasing spatial resolution (less than

1 mm3) thanks to the development of more and more powerful scanners (e.g. 7 Tesla). On the

downside, they are expensive, large and non-portable, and require the subject to lie still inside

a constrained tube. Additionally, fMRI-scanners also have a high cost of maintenance due

to their requirement of liquid helium cooling. Over the years, fMRI has proven to be a viable
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modality for BCI (Weiskopf et al., 2004a; Yoo et al., 2004; Weiskopf et al., 2007) but it continues

to be used more in the realm of basic neurofeedback studies (Weiskopf et al., 2004b; Shibata

et al., 2011; Sitaram et al., 2017). This makes sense when considering that the therapeutic

effect of neurofeedback should carry on after a session, while being enclosed in an fMRI-tube

is quite bothersome for assistive BCI applications as compared to a cap that has to be worn.

The third wide-spread device for monitoring blood circulation is the functional near-infrared

spectroscopy (fNIRS), which uses the absorption properties of hemoglobin for near-infrared

light to extract relative changes in blood oxygenation (see Chapter 3.2 for details). fNIRS

devices are comparably cheap, mobile (can be integrated into a cap with wireless data link)

and robust to body motion, as long as the light emitters and detectors do not move in place.

On the downside, the fNIRS allows only to image the outer layer of the cortex, and has a more

crude spatial resolution of approximately one cm, even though new multiprobe systems try to

remedy this by combining information from multiple light paths. Another factor is that hair

absorbs a large amount of the near-infrared light, and so, recording brain activity below thick

hair requires a long and very careful setup. fNIRS enjoyed a surge in experimental BCIs from

the 2010’s on (Tai and Chau, 2009; Bauernfeind et al., 2011; Naseer et al., 2014; Weyand et al.,

2015; Shin et al., 2016).

The second group of brain imaging technologies is based on the electric and electromagnetic

fields generated by the activity of single neurons or whole populations of them. Single-cell

spiking (axonal firing) and local field potentials (LFPs) can be recorded with implanted micro-

electrode arrays (MEAs), the best known representative being the Utah-array (Maynard et al.,

1997). These electrode arrays have a very high temporal resolution and signal-to-noise ratio

and allow to map very complex commands to the recorded firing rates, e.g. freely moving a

robot arm (Hochberg et al., 2012), typing on a virtual keyboard (Jarosiewicz et al., 2015) or

restoring reaching and grasping functions with electrical muscle stimulation (Ajiboye et al.,

2017). The downsides of this technology are ethical and medical concerns, since the electrode

array has to be placed via open brain surgery which comes with an infection risk. Further, the

pins are placed directly into the upper cortical layer, and thus are hurting the neuronal tissue

and provoke scar formation (Polikov et al., 2005; McConnell et al., 2009). Finally, they also only

allow a limited brain coverage.

A slightly less invasive recording technique is electrocorticography (ECoG), where arrays of

flat metal electrodes embedded in a polymer layer, are placed either directly on the cortical

surface (subdural ECoG) or on top of the dura mater (epidural ECoG). Historically, ECoG

was developed to exactly localize epileptogenic zones (the starting point of seizures) prior

to surgical removal (Reif et al., 2016). But many studies have shown the merits of ECoG as

a sensing modality for BCI (Leuthardt et al., 2004; Leuthardt et al., 2006; Schalk et al., 2008).

The recorded oscillatory activity of neuron populations is hardly attenuated by the tissue

in between, which allows a high signal-to-noise ratio while the surgical placement of the

electrodes is already done minimally invasive. Intense efforts have been undertaken in the last

years to push for the implantation of ECoG solely for the purpose of BCI and current systems
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are designed to remain inside the skull for life (Mestais et al., 2015; Romanelli et al., 2018).

The noninvasive pendant to the ECoG, and the father of all BCI modalities, has been the EEG

(Farwell and Donchin, 1988; Wolpaw et al., 1991). The technology behind the EEG is rather

simple and the first human EEG recordings of Hans Berger had taken place already more than

90 years ago (Collura, 1993). But the simple amplification of the potential difference between

two metal electrodes has been improved up to today’s standards, where we are able to record

up to 256 channels simultaneously, with less noise due to active preamplification inside the

electrodes themselves and can receive the signals wirelessly, making the subject truly mobile.

Thus the EEG remains one of the most affordable brain imaging technologies, and offers a

very good temporal resolution while at the same time being noninvasive. Being a noninvasive

technique, it also can be used without ethical and medical concerns. The downsides of the

EEG are the limitation to image mainly cortical structures, the low spatial resolution and low

signal-to-noise ratio, as well as the high susceptibility for electrical artifacts generated by eye

movements or muscle activation of e.g. the tongue or neck (Muthukumaraswamy, 2013).

Lastly, also magnetoencephalography (MEG) can be used for BCI applications (Mellinger et al.,

2007; Bahramisharif et al., 2010; Horschig et al., 2015). The MEG measures the magnetic

fields generated by neuronal activity noninvasively. The big advantage over the EEG is the

high spatial resolution (2-3 mm) and the opportunity to image deeper brain regions, both

possible because, differently than the electric fields, the magnetic fields are not attenuated by

the tissue they are passing through. On the downside, traditional MEG devices were expensive,

immobile, required liquid helium cooling and a magnetically shielded room. Very recently

though, Boto et al. (2018) developed a new technology that allows for a head-mounted (and

thus mobile) MEG, albeit some magnetic shielding is still necessary at this point.

Figure 1.2 shows an overview over the temporal and spatial resolution of each of the discussed

brain-imaging modalities. For the research presented in this thesis I decided to use the

EEG as my main recording device. The noninvasiveness allows for the inclusion of healthy

subjects and larger patient populations, it allows a high temporal precision and enough spatial

resolution to pick up the desired signals (see Section 1.4), and all that for a relatively low cost.

1.3 Mental commands for EEG-based BCIs

As mentioned before, a BCI is a system that uses a brain imaging modality — here the EEG

— to decode voluntary changes in brain activity. Over time, multiple different mechanisms

have been found that lead to stable and reproducible modulations, large enough to be picked

up by the EEG. Such modulations can be either a voluntary response to an external stimulus

(evoked signals) or the result of a self-initiated mental task (endogenous signals).
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Figure 1.2 – Temporal and spatial resolution of different brain imaging modalities. Micro-
electrodes (ME) are not described independently from microelectrode arrays (MEA) in the
text, but operate under the same principles. Both can record single-neuron spiking activity
as well as LFPs. While the spatial resolution of the PET is on the same range as the one of the
fNIRS, the temporal resolution on the scale of tens of seconds, would place it to the right of
the graph. Invasive methods are depicted in red, noninvasive methods in blue. Picture taken
from (Van Gerven et al., 2009)

1.3.1 Evoked signals

Sensory, perceptual or cognitive processes produce specific wave forms in the EEG in response

to different external stimuli. Such neuronal correlates to external events are subsumed under

the title of event related potentials (ERPs) and are defined as a well defined amplitude change

in the cortical electrical signal which is generated in response to sensory, cognitive or motor

events (Woodman, 2010). Different external events lead thereby to ERPs in different brain

areas.

Visually evoked potentials (VEPs) are waveforms in the occipital cortex (over the visual areas)

that comes as a response to a visual stimulus, mostly rapid luminosity changes (Curtis, 1940).

Since this response is involuntary and cannot be modulated, an extension of that phenomenon

is used for BCI, the steady state visually evoked potential (SSVEP). For recording SSVEPs, a

flickering light of a stable frequency is attended to by the subject, which induces a rhythmic

train of VEPs at this exact frequency (Müller-Putz et al., 2005; Wang et al., 2006). When placing

multiple flickering lights — each with its own, unique flicker frequency — in the visual field,

the VEP-frequency recorded in the EEG will be the one of the attended target. This means,

that attention (covert or overt) to the target stimulus can be decoded and used for controlling

a BCI (Kelly et al., 2004; Ordikhani-Seyedlar et al., 2014). The SSVEP is a very robust and

large signal, and allows high information transfer rates (ITRs) (Chen et al., 2015). However,

the flickering lights are very arduous for the eyes and are thus usually not suitable for long

continuous applications.

Error-related potentials (ErrPs) are observed after self-generated or observed errors over

6



1.3. Mental commands for EEG-based BCIs

frontocentral brain areas (Falkenstein et al., 2000). BCIs based only on ErrPs have been

presented by Ferrez and del R. Millán (2008), Chavarriaga et al. (2014) and Iturrate et al. (2015).

A more natural inclusion of ErrPs into the BCI framework is to use the generated potential as a

correction mechanism, e.g undoing the last choice taken by the BCI classifier (Schalk et al.,

2000; Schmidt et al., 2012; Spüler et al., 2012)

A third type of ERP is the so-called P300 signal, named after the prominent positive peak

forming around 300 ms after the external stimulus (Donchin and Smith, 1970). This potential

is the largest over centroparietal areas and is elicited by the occurrence of a wanted, but rare

event — the oddball (Fabiani et al., 1987; Farwell and Donchin, 1988; Polich and Kok, 1995).

Such oddball paradigms have been widely used in BCI, for example for spellers (Cuntai et al.,

2004; Krusienski et al., 2008), robotic arms (Palankar et al., 2009) and telepresence robots

(Escolano et al., 2010). P300-based BCI are the one of the most successful ones to date with

a high ITR and very reliable detection of the intended command (Müller-Putz et al., 2005;

Müller-Putz and Pfurtscheller, 2008; Guger et al., 2009).

A common downside of evoked potentials as input signal for a BCI is the dependency on

external stimulation: either flickering lights, oddball stimuli or generated errors. The con-

tinuous sensory input necessary to use such type of BCIs can grow tiring very quickly —

independent of the sensory pathways used — and thus decrease concentration. A further

disadvantage is the high variability in amplitude of the evoked potential, so that current

implementations always average over several occurrences to get a stable classification. And

finally, it is hard to design a self-paced BCI paradigm with evoked signals, since they are

elicited automatically as a response to the stimulus, and as such, the user cannot decide freely

when to start or stop sending a command.

1.3.2 Endogenous signals

Endogenous signals, on the other hand, theoretically allow a completely self-paced use of the

BCI since the patterns are generated by engaging in a mental task. Arguably the best explored

and most widely used mental task is motor imagery (MI), the kinesthetic imagination of a

movement (Decety and Ingvar, 1990). The usual MI tasks are the imagination of opening and

closing the hand, lifting or wiggling the feet and swallowing or moving the tongue (Pfurtscheller

et al., 2006). The imagined movement leads to a decrease in oscillatory α- and β-band power

over the corresponding areas in the motor cortex, called an event-related desynchronization

(ERD) (Pfurtscheller and Lopes Da Silva, 1999). MI has been widely used in a vast collection of

BCI applications like spellers (Perdikis et al., 2014), wheelchairs (Carlson and Millán, 2013),

drones (LaFleur et al., 2013) exoskeletons (Randazzo et al., 2018) and computer games (Perdikis

et al., 2018). Further, MI BCIs enable successes in neurorehabilitation when coupled with

robotic devices or functional electrical stimulation (Ang et al., 2011; Ang et al., 2015; Biasiucci

et al., 2018).

Contrary to the oscillatory activity modulated with MI, motor-related cortical potentials
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(MRCPs) are negative potential changes related to a voluntary movement onset, hence their

other name Bereitschaftspotential (readiness potential in English), as it appears when a

participant is prepared to execute a movement (Kornhuber and Deecke, 1965). This allows the

conscious act of preparing (to execute) a movement to function as a command for BCI control

(Gu et al., 2009; Garipelli et al., 2013; Xu et al., 2014; Jiang et al., 2015).

An interesting research field concerns music (Schaefer et al., 2011a; Schaefer et al., 2011b)

or speech imagery (DaSalla et al., 2009; Brigham and Kumar, 2010; Wang et al., 2013), which

generates signals mostly over the temporal cortices. Specifically speech imagery would be the

perfect match for a BCI speller, if thought words could be directly decoded and communicated

by the computer. Even though promising steps have been taken in the right direction, it is still

a long way until reaching this overarching goal (Leuthardt et al., 2011; Martin et al., 2016).

Finally, also the visual cortices can generate endogenous signals by shifting visuospatial

attention, as described in detail in the next section. A comprehensive review of the different

BCI systems published can be found in Hwang et al. (2013).

1.4 Covert visuospatial attention

As humans, we are mainly visual animals, relying heavily on our eyesight for movements and

spatial orientation. CVSA is defined as the direction of attention to a locus in the visual field

that is different from the point of gaze. In laymen terms, this is often referred to as looking at

something "out of the corner of one’s eyes". We naturally rely on this function — even though

most of the time unconsciously — for deciding on the locus of the next visual fixation (Posner,

1980; Findlay, 1997; Eimer et al., 2006; Van der Stigchel and Theeuwes, 2007), planning arm

movement trajectories (Baldauf and Deubel, 2010; Hesse and Deubel, 2011) and keeping track

of more than one object of interest in the visual field (Mangun and Buck, 1998).

Posner (1980) was the first one to show that shifting the visual attention covertly to a target

area decreases the reaction time to events in this region, while simultaneously increasing the

reaction time for events in other, non-attended areas. This showed that attention is a limited

resource that cannot cover the entire visual field equally. Thereby it is still debated if CVSA is

an independent cognitive mechanism or closely related to the planning of motor actions, like

eye saccades or hand reaching. The latter reasoning is denominated the "premotor theory of

attention" and was publicized by Rizzolatti et al. (1987). It quickly gained a large following

due to its simplicity, the fact that CVSA experiments indeed required a motor response after

the attention shift, and lastly it also provides an explanation to the natural role of CVSA.

Nevertheless, also this theory has been challenged, especially with the rise of neuroimaging

technologies that found — all shared networks aside — differences between the structures

activated in attention shifts and saccades (Crawford and Muller, 1992; Corbetta et al., 1998).

Covert shifts of attention can be either elicited by external stimuli or by a voluntary internal

process. This has been studied with two types of visual cues, preceding the appearance of
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a target stimulus: direct and symbolic cues. Direct cues appear at the same location as the

target stimulus, and involuntarily draw attention to this area (Corbetta and Shulman, 2002).

They have the greatest effect on reaction times if the time difference between the cue and the

target appearance is around 100 ms (Müller and Findlay, 1988; Adam et al., 2000). Shorter time

intervals do not allow for a sufficient shift in CVSA while for longer intervals (above 200 ms)

the directed attention is again withdrawn from the cued location(Müller and Rabbitt, 1989).

Symbolic cues, on the other hand, are usually presented centrally (or even in another sensory

modality, like sound) and hold information about the location of the upcoming target in a

form that needs cognitive decoding, e.g. an arrow, a shape, a color or the spoken words left

or right. The attention shifts after symbolic cues appear significantly later than with direct

cues and they reach their maximum effectiveness from around 300 ms onwards (Müller and

Findlay, 1988; Müller and Rabbitt, 1989). This can be contributed to the fact that symbolic cues

first need to be interpreted before the attention shift can be initiated (Corbetta and Shulman,

2002). Additionally, these voluntary covert shifts of attention can last for a much longer time

(Posner et al., 1987; Thut et al., 2006).

Lesion studies on people who displayed symptoms of inability to covertly direct their attention

after trauma or stroke allowed first insights of the implication of specific brain areas in an

visual attention network (Posner et al., 1987; Mesulam, 1999; Corbetta et al., 2005). A lead

symptom in many of the affected patients is the so-called hemispatial neglect syndrome, a

condition in which awareness of stimuli is reduced on one side of the visual field (Parton

et al., 2004). In extreme cases, this can lead to a complete disregard of anything on that

side, may it be visual information, sound or their own body (Marshall and Halligan, 1988;

Corbetta et al., 2005; Corbetta and Shulman, 2011; Schindler and Bartels, 2013). Even though

the remaining visual field is comparable to patients with hemianopsia, visual neglect is a

more devastating condition as patients are in most cases not aware of their deficit, and thus

do not move their head to bring things into their visual field. Affected individuals therefore

often need continuous care because they are susceptible to falls, wheelchair collisions, and

do not groom or dress their neglected body half (Appelros et al., 2002). Karnath and Rorden

(2012) point out the connection of certain stroke-affected brain areas with different cardinal

symptoms of spatial neglect: the perisylvian network (superior/middle temporal, inferior

parietal, ventrolateral frontal cortices) with egocentric spatial neglect, the posterior (and

potentially inferior) parietal cortex with allocentric spatial neglect and the temporo-parietal

junction with symptoms of extinction (see also De Schotten et al. (2011)). Schindler and

Bartels (2013) showed that the brain regions correlating with covert visual attention are also

the ones active in egocentric spatial representation tasks. This demonstrates the complexity

of the visual attention network (Corbetta and Shulman, 2011), and foreshadows the problems

encountered when rehabilitation is attempted. At the moment, a variety of therapy methods

are in use. Behavioral therapies, like scanning, target mostly building helpful habits for reading,

eating and other activities of daily living (ADL), while prism adaptation and smooth pursuit

eye movement try to shift the center of optical representation in the brain (Kerkhoff et al., 2013;

Kerkhoff et al., 2014; Rossetti et al., 1998). For an extensive review of current therapies for
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hemispatial neglect see Yang et al. (2013) or Klinke et al. (2015). Unfortunately, the results of

current therapies are not consistent and the need to find new methodological interventions is

urgent.

Figure 1.3 – Visual scanning patterns of neglect patient. Exemplary visual scanning path (in
red) of a patient with hemispatial neglect syndrome, when instructed to attentively study the
picture in detail. It is obvious that the left half of the picture was neglected. Figure adapted
from (Karnath, 2015)

Based on these lesion studies, noninvasive brain imaging advanced our understanding of the

components of the visual attention network, be it using PET (Corbetta et al., 1993; Nobre et al.,

1997) or fMRI (Kastner et al., 1999; Beauchamp et al., 2001). But shifts in attention, either

overt or covert, do not only produce hemodynamic correlates. Worden et al. (2000) were the

first to report an increase in the power of α-oscillations in the hemisphere opposite to the

attended side. Further, they already reported an α-power distribution that fits the retinotopic

organization of the visual cortex, with lowest powers observed over the cortical area which

corresponded to the locus of attention (Figure 1.4). This discovery was corroborated and

refined in many studies to come (Sauseng et al., 2005; Kelly et al., 2006; Thut et al., 2006; Rihs

et al., 2007; Bahramisharif et al., 2010). Since α-oscillations are believed to play a crucial

role in the suppression of sensory input to many different cortical areas (Kerlin et al., 2010;

Romei et al., 2010; Banerjee et al., 2011; Ciavarro et al., 2013), the observed shift in occipital

α-power during CVSA is less the product of increased sensitivity of neurons corresponding to

the attended area but rather the active suppression of stimuli from other areas (Jensen and

Mazaheri, 2010; Foxe and Snyder, 2011).

The retinotopic layout of the CVSA-induced α-patterns allows — at least in theory — the

decoding of the exact attended point in the visual field. This, of course, made CVSA an

interesting mental task to explore for the use in BCIs, especially since the internal attention

shifts do not depend on any motor functionality and thus could also be deployed by completely

locked-in patients. In the following section I give a brief overview of CVSA BCIs based on the

EEG.
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Figure 1.4 – Retinotopic organization of α-power during CVSA. The center head shows that
the overall average distribution of α-band power is concentrated over the parietooccipital
areas. The small heads show the α-power distribution during spatial attention to targets at 16
different locations on a 2D screen. The head location with respect to the center reflects the
location of the target with respect to the central fixation point. The inversion of the parieto-
occipital α-pattern between left and right side covert attention is clearly visible (increases in
red, decreases in blue). Figure adapted from (Bahramisharif et al., 2010)

1.5 Covert visuospatial attention BCIs

The first uses of CVSA in the realm of BCI was the discovery that SSVEP BCIs also work if the

flickering stimulus is only attended covertly, which opened up this type of systems for people

with gaze fixation problems (Kelly et al., 2005), albeit the decoding accuracy dropped about

20% compared with overt attention to the flicker stimuli (Kelly et al., 2004). Later, Brunner

et al. (2010) and Treder and Blankertz (2010) have shown that the widely-used P300 spellers

depend heavily on the eye fixation on the target letter. This finding entailed further research

on how to optimize spellers that work when the target letters are attended covertly only. They

showed that covert attention to the tharget creates a sufficiently large P300 potential when

the letters are regrouped the center in a circular or hexagonal fashion (Liu et al., 2011; Treder

et al., 2011b; Aloise et al., 2012; Schaeff et al., 2012). Liparas et al. (2014) have ultimately also
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created a BCI that could decode the side of a covertly attended stimulus from the shape of the

resulting VEP.

Even though BCIs based on evoked potentials display very high classification accuracies, they

are still inherently limited by their dependence on external stimuli. This downside might be

outweighed by the good performance for short tasks like spelling a text message, but it does not

allow for the same effortless and natural integration as do endogenous control signals. For this

reason, decoding the locus of covert attention from the topographical pattern of the occipital

α-power was a logical step forward. The first ones to report decoding of covert attention from

α-power were Van Gerven and Jensen (2009) using MEG. Following, proof-of-principle BCIs

have been developed also with EEG signals (Treder et al., 2011a; Tonin et al., 2012; Roijendijk

et al., 2013). Usually, the time of continuous covert attention to the target was chosen on the

scale of a couple of seconds, but Gunduz et al. (2012) and Belyusar et al. (2013) showed that it

is possible to decode α-power lateralization on a timescale of a few hundred milliseconds in

ECoG and EEG respectively. Shortly thereafter, online BCIs had been developed using fMRI

(Andersson et al., 2012; Andersson et al., 2013a), EEG (Treder et al., 2011b; Tonin et al., 2013)

and MEG (Horschig et al., 2015; Okazaki et al., 2015).

The dominant visual protocol in these studies used a central fixation and two target areas to

the left and the right. A symbolic cue in the center indicates the side that the target will appear

on, and for the most part, the actual target appearance is linked to either a reaction time or

visual discrimination task. Nevertheless, there were protocols operating with four (Van Gerven

and Jensen, 2009; Andersson et al., 2012) and six different target positions (Treder et al., 2011b;

Treder et al., 2011a). A good review covering visual attention based BCIs in further detail can

be found in Astrand et al. (2014).

Aside from the use as an assistive technology (e.g. spellers, exoskeletons, electric stimulation),

there have been first attempts made explore the effect of real-time feedback of an CVSA-based

BCI for rehabilitation in spatial neglect. While for post-stroke motor rehabilitation the role

of BCIs is fairly well defined as the facilitation of motor learning through direct feedback on

cortical activity, the matter is distinctly more difficult for hemineglect. Kinsbourne (1987)

established the model of spatial attention as a balance of constant hemispheric rivalry which

can be disrupted in the event of a stroke. Further evidence for this theory came from observed

correlation between spatial orientation bias and an imbalance in the activation of the dorsal

parietal cortex (Corbetta et al., 2005) as well as in α-power in the anatomically unaffected

occipital cortex (Newman et al., 2013). For that reason, this interhemispheric imbalance

stands in the focus of current rehabilitation research. Transcranial magnetic stimulation

(TMS) of parietal and occipital areas has proven to affect visuospatial attention (Thut, 2014)

and to alleviate symptoms of unilateral neglect (Cazzoli et al., 2012). Further, Robineau et al.

(2014) recently reported successful hemispheric rebalancing through fMRI neurofeedback

on occipital (α-) activity while Tonin et al. (2017) showed similar results after EEG-based

closed-loop BCI training.
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1.6 Choice of BCI and limitations

MI-based BCIs have already demonstrated their value in motor rehabilitation after cerebral

lesions (Ang et al., 2015; Pichiorri et al., 2015; Biasiucci et al., 2018). Since, as mentioned

before, the current state of rehabilitation for patients with hemispatial neglect syndrome is

not satisfactory, there is the hope that BCI-aided rehabilitation can alleviate this condition.

This was my main motivation for the research work in this thesis. Taking into account the

advantages and disadvantages of the different possibilities for the BCI components, I decided

to concentrate my efforts on EEG-based CVSA BCI. In the following I want to explain my

choices by distilling the important points of the previous sections that covered the state of the

art.

Starting with the brain imaging modality, I decided to mainly use the EEG, complemented by

the fNIRS (see Section 3.2). Even though the EEG does not present the same spatial resolution

as implanted electrodes or the newest generations of fMRI scanners, it has the large advantage

of being lightweight, wireless and mobile. Although patients with restraining disabilities would

(and do) agree to the implantation of electrodes, a noninvasive brain imaging modality is

more versatile, practically risk-free and can thus be also perfectly integrating in hospital- or

home-based rehabiliation, where the goal is to reach functional independence (i.e. getting rid

of technologies such as the BCI).

Also my decision to not rely on evoked potentials of any kind, can be justified from both, an

assistive and rehabilitative use case. As already mentioned, protocols for evoked potentials

need to constantly present stimuli in a sensory modality, mostly in the visual domain, and

this gets exhausting very soon. Further, endogenous signals can be trained and thus the use

of the BCI becomes a more natural interaction. When considering rehabilitation, the role

of a BCI is to restore the action-feedback loop that is disrupted in these patients. For motor

rehabilitation this means that motor-related commands are linked to functional electrical

stimulation that contracts the muscles and therefore produced sensory feedback to the motor

areas. In the case of hemispatial neglect, the idea is to present visual stimulation at times when

the covert attention is (relatively) good. Also for this, the endogenous shift in α-oscillations is

the preferred candidate.

A major drawback of using CVSA as a mental command for BCIs is that the decoding accuracy

does not reach the levels that can be obtained with evoked potentials, or even other endogenous

signals like MI (Ahn and Jun, 2015). Especially in rehabilitation, we want to make sure that the

brain patterns get decoded correctly, not to erroneously enforce undesired neuronal activity.

Further, BCI users get discouraged if the system error rate is too high, i.e. when they feel that

the BCI chooses commands randomly and not based on their input. From a purely statistical

viewpoint, a performance above the 95% confidence interval of a random classifier can be

interpreted as information transfer. While this boundary lies at around 60% in a two-class

BCI (dependent on the number of trials), participants usually only report the feeling of being

in control when they achieve accuracies of around 70% in a binary task (Kübler et al., 2004;
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Fard and Grosse-Wentrup, 2014). The fact that the reported mean accuracies in two-class BCIs

using covert attention lie around 70% (Van Gerven and Jensen, 2009; Tonin et al., 2012; Tonin

et al., 2013; Horschig et al., 2015) means that about half of the BCI users did or would not feel

in control. So, before we can dedicate our time and energy to explore the most beneficial BCI

paradigms and setups for the rehabilitation of spatial neglect, we first need to improve on the

current decoding accuracies.

1.7 Thesis aims and outline

The main aim of this thesis was to raise the binary classification performance in CVSA BCIs

to achieve a more reliable command interpretation and to enable people who are not in

control with the current systems to use such a BCI. Since the state of the literature did not

favor a specific direction to achieve this goal, I decided to investigate three complementary

approaches: (i) giving real-time feedback to allow the subjects to adapt and improve the

patterns generated by their mental commands, (ii) combining the EEG with a complementary

sensing modality to get richer information about the brain state and (iii) using noninvasive

brain stimulation to increase the α-lateralization patterns during CVSA (Figure 1.5).

  

  

  

How can we 
improve the 

performance of a 
CVSA BCI?

Multimodal
sensing

Brain stimulation

Real-time
feedback

Figure 1.5 – Thesis chapters outline. The question of how to improve classification perfor-
mance for CVSA BCIs was approached in three different ways, each described in a chapter of
this thesis.

Chapter 2 (Real-time feedback) The goal of this study was to investigate the impact of

continuous real-time feedback on the behavioral and BCI performance. I hypothesized that

closing the loop between user and machine will allow for an adaptation of the user-generated

brain activity to maximize the outcome, as presented with the feedback. To this end I designed

and conducted the first blinded crossover EEG study which compared real-time feedback

on the occipital α-power lateralization with sham feedback. I report on this process and on

the subsequent behavioral, electrophysiological and BCI results, which showed significant
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positive effects of the real-time feedback on the behavior but not on the α-power lateralization.

Chapter 3 (Multimodal sensing) Compared to Chapter 2, where the increase in classification

performance is an effect on the user side, in this chapter we illuminate the addition of other

sensing modalities to the EEG in order to allow for better decoding accuracies. This puts

the weight of enhanced performance on the machine side of the system. In the first part I

assess the combination of EEG with fNIRS, report the challenges in the integration of the two

modalities and the final negative outcomes which led to cease this approach. The second part

discusses the fusion of EEG and pupillometry data into a hybrid BCI, the necessary adaptations

in the visual protocol and the promising results that showed an increase in mean and maximal

classification accuracy as well as in the number of subjects above chance level.

Chapter 4 (Brain stimulation) The idea of this chapter was to use noninvasive brain stimu-

lation to enhance the neural substrate that is modulated by CVSA, and thus allow for better

classification. I developed and conducted a double-blinded crossover study testing the effects

of transcranial alternating current stimulation (tACS) in the individual α- or β-band on the

baseline α-oscillations and the subsequent modulations during CVSA. I describe the design

and implementation of this study and discuss possible reasons why the stimulation did not

lead to substantial differences between the two groups, nor compared with a no stimulation

condition that was added in an additional experiment.

Chapter 5 (Discussion and conclusion) In the end, I summarize the findings of this thesis,

highlight their contribution to the current state-of-the-art and discuss ideas to expand the

presented research in the future.
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Partial results of this chapter have been submitted in Schneider, C., Pereira, M., Tonin, L., Millán, JdR., 2018.

Real-time EEG feedback on alpha power lateralization leads to behavioral improvements in a covert attention

task. NeuroImage

2 Real-time feedback

Visual attention can be spatially oriented, even in the absence of saccadic eye-movements, to

facilitate the processing of incoming visual information. One behavioral proxy for this so-called

covert visuospatial attention (CVSA) mechanism is the validity effect (VE): the reduction in

reaction time (RT) to visual stimuli after valid spatial cues, compared to the increase in RT

to stimuli after invalid cues. At the electrophysiological level, one correlate of CVSA is the

lateralization in the occipital α-band oscillations, resulting from α-power increases ipsilateral

and decreases contralateral to the attended hemifield. While this α-band lateralization has been

considerably studied using electroencephalography (EEG) or magnetoencephalography (MEG),

little is known about whether it can be trained to improve CVSA behaviorally. In this cross-over

sham-controlled study we used continuous real-time feedback of the occipital α-lateralization

to modulate behavioral and electrophysiological markers of covert attention. Fourteen subjects

performed a cued CVSA task, involving fast responses to covertly attended stimuli. During real-

time feedback runs, trials extended in time if subjects reached states of high α-lateralization.

Crucially, the ongoing α-lateralization was fed back to the subject by changing the color of

the attended stimulus. We hypothesized that this ability to self-monitor lapses in CVSA and

thus being able to refocus attention accordingly would lead to improved CVSA performance

during subsequent testing. We probed the effect of the intervention by evaluating the pre-post

changes in the VE and the α-lateralization. Behaviorally, results showed a significant interaction

between feedback (experimental – sham) and time (pre – post) for the validity effect, with an

increase in performance only for the experimental condition. We did not observe significant

pre-post changes in the α-lateralization, but a negative correlation between the feedback-driven

changes in behavior and electrophysiology. Our findings suggest that real-time feedback on the

α-lateralization is a promising tool to enhance the level of covert visuospatial attention. This

opens up the exploration of applications of the proposed training method for the rehabilitation

of hemispatial neglect and other attentional disorders.
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2.1 Introduction

We can enhance our sensitivity to an upcoming visual stimulus by paying attention to its

location in our visual field, even when the location is not foveated (Posner, 1980; Desimone

and Duncan, 1995; Thut et al., 2006). This state, when the focus of visual attention is different

from the point of gaze, is referred to as CVSA (Posner, 1980). Such shifts of attention are

accompanied by modulations in the power of occipital cortical oscillations, primarily in

the α-band between 8 and 14 Hz (Sauseng et al., 2005). The spatial pattern of α-oscillations

produced by the visual attention follows the retinotopic organization of the visual cortex (Engel

et al., 1997; Kelly et al., 2006; Rihs et al., 2007). During CVSA α-oscillations desynchronize

in the hemisphere contralateral to the attended hemifield and synchronize in the opposite

hemisphere (Sauseng et al., 2005; Thut et al., 2006; Foxe and Snyder, 2011). These modulations

have been used to command a brain-computer interface (BCI) by attending to one or the other

hemifield (Treder et al., 2011b; Tonin et al., 2013; Horschig et al., 2015).

At the behavioral level, researchers showed that α-power lateralization is indicative of the

perception of faint visual stimuli (Van Dijk et al., 2008) and that it varies in accordance with

the RT (Thut et al., 2006). However, increased sensitivity at the attended location means in

turn a decreased sensitivity for other areas. This can be studied with invalid cueing, where

a stimulus appears at a location different from what was indicated by a spatial cue (Posner,

1980; Vossel et al., 2006). In such invalid trials, subjects react slower and are less accurate on

discrimination tasks, not only compared with valid cues, but also compared to no cue at all

(Rizzolatti et al., 1987; Gitelman et al., 1999; Sauseng et al., 2005). This so-called VE is also

referred to as the cost of reorienting attention (Rizzolatti et al., 1987; Corbetta et al., 2000),

supporting the theory that α-oscillations are a suppression mechanism, reducing the weight

of stimuli in unattended areas (Jensen and Mazaheri, 2010; Foxe and Snyder, 2011).

There is evidence that neurophysiological processes of visual attention can be experimentally

modulated with noninvasive brain stimulation (Bestmann et al., 2007; Thut and Miniussi, 2009;

Romei et al., 2010). Alternatively, neurofeedback has shown its potential for endogenous mo-

dulation of brain correlates of covert attention: Scharnowski et al. (2012) and De Bettencourt

et al. (2015) have modulated visual discrimination performance and stimulus perception

by training with real-time functional magnetic resonance imaging (fMRI) feedback, while

Okazaki et al. (2015) used feedback based on MEG. However, to the best of our knowledge, no

study has yet attempted to modulate RT using real-time feedback.

Therefore, we set out to study whether continuous closed-loop feedback based on the occipital

α-power lateralization in a CVSA task has the potential to (i) modulate CVSA – as indexed

by the VE based on the RTs – and (ii) amplify the lateralization in the α-band. Additionally,

since an amplified α-power lateralization means that attention shifts to the left and right

hemifield produce more contrasting brain patterns, we also expect to (iii) see improvement in

the single-trial classification accuracy.
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2.2 Materials and Methods

2.2.1 Participants

Fourteen healthy subjects, age 23±1.52 years, with normal or corrected to normal vision

took part in the study. All gave informed written consent and received course credits for

their participation. The study was covered by the ethical protocol No PB_2017-00295 of the

ethical commissions of the cantons of Vaud and Geneva, Switzerland and confirmed with the

standards of the Declaration of Helsinki (World Medical Association, 2013).

2.2.2 Experimental protocol

The study involved recordings on three different days — 51.5±17.7 (minimum 16) and 12.7±6.5

(minimum 7) days apart, to limit carry-over effects to following sessions. One recording session

lasted approximately 90 minutes, including the technical setup. Time on task was less than 40

minutes per session, with breaks after each run (every 9-10 minutes).

On the first recording day subjects practiced for one run to familiarize with the task. Then

they performed four offline runs (no feedback) to calibrate their individual decoder for the

real-time feedback (Figure 2.1A). On day two and three the α-power lateralization index (α-LI)

feedback was administered in a single-blinded crossover design. Subjects were paired based

on their mean α-LI and their mean RT during day one while keeping the resulting groups

balanced (Table 2.1). Then one member of each pair was randomly assigned to either receive

real or sham α-LI feedback on day two and then switched the feedback group on day three.

Therefore, both days had the same run structure: they started and ended with one offline run,

while the real-time feedback was given during two middle runs.

reaction times α-LI span
Group A Group B Group A Group B

Pair 1 463 ms 392 ms 0.090 0.108
Pair 2 440 ms 410 ms 2.590 0.988
Pair 3 468 ms 423 ms 0.359 1.380
Pair 4 403 ms 452 ms 0.176 0.248
Pair 5 378 ms 428 ms 0.076 0.294
Pair 6 342 ms 425 ms 0.009 0.284
Pair 7 398 ms 374 ms -0.054 0.061

Average 413 ms 415 ms 0.464 0.480

Table 2.1 – Table of subject pairs and groups. Subjects were paired with respect to reaction
times and their α-power lateralization index, with each partner receiving the real-time
feedback (RT FB) either on day two or three. Both groups are well balanced in terms of
both variables. The gray entries indicate the subject which was removed from all post-hoc
analysis due to excess artifacts.
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Offline paradigm

Each trial started with the presentation of a gray central fixation point at 0.5° visual angle and

subjects were instructed to neither move nor blink until the trial was over. After one to two

seconds (random duration), a cue – corresponding to the task to perform – was presented for

100 ms: half a circle (line width 0.1°, radius 2°) to the left or to the right indicated the side to

attend to, a full circle around the fixation point indicated a central fixation trial (no covert

attention shift). This was followed by the sustained attention phase – one to five seconds

– where subjects were instructed to covertly attend to the target placeholder indicated by

the cue. Target placeholders were circles with an inscribed cross (line width 0.2°, radius 2°,

centered at 12° extremity from the center point and at a downward angle of 30° from the

horizontal midline; Figure 2.1B). To be consistent with the real-time feedback runs where

color represented the decoded α-LI (see below), the color of both target placeholders varied

randomly between isoluminant red and green (L*a*b color space (CIELAB), L and b constant,

a varied between -80 and 80). A trial ended when the inscribed cross disappeared in the

to-attend target (valid cue) or on the opposite side (invalid cue). Subjects were instructed to

react to the trial end as fast as possible with a button press using the right index finger. The

inter-trial interval was 2-3 seconds long.

Real-time feedback paradigm

The feedback runs differed from the offline runs in the following:

To engage subjects more in the task, the online protocol was presented in the framework

of a game which rewarded longer trials (dependent on their real-time α-LI performance)

and fast reaction times with points. Every second of the achieved trial duration gave one

point; the result was counted full for a RT of 200 ms, decreased linearly, and reached zero

points for a RT of 500 ms and above. The min. and max. duration of the sustained attention

period was between 2 and 20 seconds. For subjects in the experimental condition, the color

of the cued target placeholder reflected their instantaneous α-LI (see Section 2.2.3) with red

indicating incorrect lateralization, gray no lateralization and green correct lateralization. The

trial ending times were determined from a real-time stochastic process which allowed (on

average) longer trials for a correct α-LI and shorter trials for an incorrect α-LI. In the case of

the sham condition, subjects were presented with the replay of the feedback session of their

match regarding the α-LI and RTs from day one. In both feedback conditions, the inter-trial

interval was stretched to 4-5 seconds to allow for more rest due to the longer trial times.

2.2.3 Data acquisition and processing

Subjects sat in a dark, shielded room, with their head in a headrest that was fixed 50 cm in front

of a 24′′ LCD monitor. The EEG was recorded with an active 64 channel HIamp EEG amplifier

(g.tec, Schiedlberg, Austria) at 512 Hz and referenced to the linked ears. The electrodes were
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BCI

eye tracker

EEG cap Feedback
screen

(a) Closed-loop BCI setup for the real-time
feedback.

(b) Topological α-band activation and
frequency-time spectrum.

distractor end target

feedback via
target colordistractor

cue

(c) Screen display for the CVSA task. (d) Run sequence during the three recording
days.

Figure 2.1 – Experimental design and visual feedback. (a) Experimental setup for the real-time
feedback. The instantaneous α-LI was extracted in real-time from the subjects’ EEG activity
and then mapped to the target color on screen. The used color ranged from a saturated red
for a strong but incorrect lateralization, over gray for no lateralization to a saturated green for
correct lateralization. Below the setup is an exemplary mapping of the EEG lateralization for a
right-side trial. (b) Grand average of the α-LI on the first day. The head topology plot of the
average difference between right and left sided trials shows the highest hemispheric activation
at electrode sites PO7 and PO8. The time-frequency plots below confirm the corresponding
α-band lateralization in the selected frequency band (dashed box) after the cue (vertical line,
trial time = 0).
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Figure 2.1 – Figure caption, continued. (c) Visual display at the time of the cue presentation
(foreground) and at the end of the sustained attention phase (background). Subjects were
instructed to fixate the center point throughout the trial and shift their attention towards the
cued side. At the end of each trial, when the inscribed cross disappeared at the cued (valid
trial) or uncued side (invalid trial), subjects responded as fast as possible with a button press.
Distractor and target placeholder were changing colors throughout the sustained attention
phase, but only in the online runs of the experimental condition this feedback was informative
of the subject’s brain activity (see Panel 2.1a for the mapping of the feedback color). Note that
the symbol sizes are not to scale. (d) Graphic representation of the runs in each recording day.
The first day consisted of four offline runs without invalid cues. On the basis of these four
runs, a decoder was built for each subject that was used for giving feedback on the α-LI in the
online runs. Day two and three started and ended both with offline runs containing catch
trials (i.e invalid cues). The subjects in the experimental condition received real-time feedback
on their α-LI while subjects in the sham condition received non-informative feedback.

positioned according to the international 10-20 system with the ground electrode on FCz. Eye

movements and blinks were recorded with an eyeLink 1000 Plus optical eye tracker (ET) (SR

research, Ottawa, Canada) at 500 Hz. All software for recording and real-time processing as

well as for the on-screen display was written inhouse. The recording setup is displayed visually

in Figure 2.1D. Following data processing and analysis was done in MATLAB Release 2017b

(The MathWorks, Inc., Natick, Massachusetts, United States). The topographical plots were

produced with the FieldTrip toolbox (Oostenveld et al., 2011).

Behavior

We chose the validity effect as our behavioral outcome measure, which was defined by Posner

(1980) as the difference in RTs between invalid and valid cue trials. The VE measures the cost

of reorienting visuospatial attention, which is directly linked to the attentional commitment to

the cued target location (Posner, 1980; Corbetta et al., 2000; Vossel et al., 2006). We discarded

all trials with RTs shorter than 200 ms or longer than 1 s, or if the subjects pressed the button

before the end of the trial. To stay comparable to the electrophysiological results, we also

discarded trials that contained EEG or ET artifacts.

Preprocessing

After visual inspection, we replaced EEG channels with abnormal signal-to-noise ratio by an

interpolation of good channels in a 50 mm radius. Then we removed trials with EEG signal

artifacts, eye blinks or a gaze deviation of more than 2° visual angle from the central fixation

(Roijendijk et al., 2013; Horschig et al., 2015). For reasons of consistency, we also discarded

trials that were flagged as RT artifacts. On average, 9.5±3.9% of the trials were excluded due

to artifacts. We needed to remove one subject entirely from the analysis due to an excessive

amount of blinks and saccades (more than 50% of all trials affected).
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Alpha lateralization

We computed the power spectral density (PSD) on sliding windows of one second with an

overlap of 62.5 ms (Tonin et al., 2012; Horschig et al., 2015). This resulted in a time resolution

of the PSD features of 16 Hz. Figure 2.1C shows the grand average α-power modulation for

right-side trials minus left-side trials on day one. We see that the α-band lateralization was

restricted to the parietooccipital areas with PO7-PO8 as the electrode pair with the highest

difference. The spectra for PO7 and PO8 further showcase that subjects indeed modulated

the selected α-band (Figure 2.1C, bottom). This is consistent with the frequency band and

electrode locations used in similar studies (Thut et al., 2006; Rihs et al., 2009; Okazaki et al.,

2015).

Thus, we defined the α-power lateralization index (α-LI) as the difference of electrodes PO8-

PO7 in the α-band (8-14 Hz):

α-LI =α(PO8)−α(PO7) (2.1)

The resulting α-LI is negative when the left visual hemifield is attended and positive when the

right visual hemifield is attended (Thut et al., 2006). Lastly, we subtracted the trial baseline

α-LI ([-1,0] s before the cue) from all α-LI values during the trial.

Since we provided real-time feedback on the α-LI, we also chose it as our electrophysiological

outcome measure. For analysis purposes we therefore constructed an offset-independent

measure of the amplitude of the α-band modulation: the α-LI span. It is defined as the average

difference between the mean α-LI for right and left trials throughout a run and is as such not

influenced by a non-zero α-LI during rest. Thus, the α-LI span can be increased by a growing

difference in α-power between left and right CVSA as well as by being in a high lateralization

state for a longer time on average.

Closed-loop feedback

For the closed-loop feedback we mapped the α-LI to the red-green color range (Figure 2.1D),

using the data gathered on day one. Ensuring a balanced distribution between left and right

cue trials, we pooled all α-LI samples of day one for a given subject and fitted a normal

distribution N (μ,σ2) to the resulting histogram. We assumed the mean μ to represent no

CVSA to any given side, and ±2σ being inside the individual modulable range of the α-LI.

During the closed-loop feedback phase, the transformation of the α-power lateralization index

α-LI for every timepoint t to a color value was the following:

1. Subtract the baseline α-LI (last second before cue)

2. Given the noisiness of the EEG we exponentially smoothed the α-LI to create a less
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volatile feature α-LIs
t :

α-LIs
0 = 0 (2.2)

α-LIs
t = 0.9 ·α-LIs

t−1 +0.1 ·α-LIt (2.3)

3. Taking the mean μ and standard deviation σ of the Normal distribution fitted on day

one, we linearly mapped the interval μ±2σ to the interval [-1, 1], which corresponded

to [red, green]. Therefore, for every time point t , the color value C was defined as

Ct =
φ ·α-LIs

t −μ

2σ
(2.4)

In order to always let green represent the desired modulation direction, we flipped the

α-LI by multiplying with φ, depending on the direction of the cue:

φ(cue) =
⎧⎨
⎩
−1 if cue = left

1 if cue = right
(2.5)

Any value exceeding the interval [-1,1] after the transformation was clipped.

We used a stochastic process to elongate trials when subjects showed strong, correct latera-

lization. We chose to do so to maximize the time people spent in states of correct and high

α-lateralization. We decided on a stochastic over a deterministic process in order to ensure

readiness for the button press at all times during the trial, independent of the color shown.

The color value C ∈ [−1,1] was linearly mapped to a cutoff value κ ∈ [0.006,0]. In every update

cycle, a uniformly distributed random number x ∈ [0,1] was drawn and the trial ended if x <κ

or it reached 20 s. The specific range of κ was chosen so that a random α-LI signal would result

in an average trial duration of 10 seconds.

Post-hoc classification

Besides the effect of the real-time feedback on the electrophysiological and behavioral mea-

sures, we were also interested in whether the intervention could improve the control of a BCI.

To this use, we trained a machine learning algorithm (classifier) on parts of the available data,

so that it learns the specific patterns for each attended side for any given subject. The learned

rule is then applied to new data of the same subject and a binary decision (left or right) is

taken. The percentage of agreement with the ground truth, i.e. the side indicated by the cue,

yields the single trial classification accuracy.

We trained linear discriminant analysis (LDA) classifiers on three different types of features:

the baselined α-LI used in the real-time feedback (Cα-LI), the non-baselined α-LI (CN-α-LI),

and a channels × frequency bands array containing the PSDs of the electrodes located in the

parieto-occipital cortex (P7, P5, P3, P1, Pz, P2, P4, P6, P8, PO7, PO3, POz, PO4, PO8, O1, Oz,
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O2) in seven one-Hertz wide bands from 8 Hz to 14 Hz (CMV). In all three cases we averaged

the features over time to get a more stable estimate of the brain activity throughout the trial,

yielding one data point for each feature and trial. For the multivariate classifier CMV we first

ranked the features using canonical variate analysis (CVA) (Galán et al., 2007) and limited their

number to maximum 10 to prevent overfitting.

We used 10-fold cross validation to train and test the LDA classifiers. The feature selection

step was performed in each training fold and the same features selected for testing. This

process was repeated 100 times with randomly assembled folds to consolidate the accuracy

estimations in face of the low number of data points. The chance level was computed as the

upper bound of the 95% confidence interval of a binomial distribution with an expectation

value 0.5 for 80 trials per run.

2.2.4 Reporting

Any results reported follow the following notations: The term grand average refers to the

average across the individual subject averages across trials. Means and standard deviations

are noted in the format a ±b. Error bars depicted in plots are the standard error of the mean

(SEM) across subjects, unless stated otherwise. The significance threshold for statistical tests

is set at p = .05. For all correlations we report the empirical Pearson correlation coefficient r ,

the coefficient of determination r 2 and we calculated the p-value through a permutation test

with 10,000 repetitions.

2.3 Results

2.3.1 Behavioral correlates of attention

First, we tested whether our real-time feedback intervention produced the hypothesized

increase in the behavioral outcome measure (VE). For this, we performed a two-way repeated

measures analysis of variances (ANOVA) with the within-subject factors time (pre/post) and

feedback (experimental/sham). We found a significant interaction (F (1,12) = 5.54, p = .036)

with an effect size of ηp = .316, 95% CI = [.033, .658]. The VE increased 40±45 ms for the

experimental condition while it increased only 9±52 ms after the sham feedback (Figure 2.2a).

In the sham condition, 7 subjects increased and 6 subjects decreased their VE whereas in the

experimental condition 10 out of 13 subjects increased their VE (Figure 2.2b).

We did not find simple effects, neither of feedback (F (1,12) = 0.20, p = .664) nor of time

(F (1,12) = 4.03, p = .068). Post-hoc paired t-tests (FDR-corrected for multiple comparisons)

revealed a difference in validity effect pre and post intervention for the experimental condition

(t (12) =−3.11, p = .036), but not for the sham condition (t (12) =−0.56, p = .586). The effect

size of the significant pre-post difference in the BCI feedback group was ηp = .446, 95% CI =
[.014, .745]. There was no significant difference (t (12) =−0.85, p= .547) between the feedback
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groups before the intervention and a non-significant trend in the post-intervention compari-

son (t (12) = 2.05, p = .126).

We then decomposed the VE into valid and invalid RTs to find whether one was driving the

observed effect. On average, RTs to peripheral targets after invalid cues were 141±66 ms longer

than for correctly cued peripheral trials. In the experimental condition the RTs in validly cued

trials decreased by 2±19 ms while they increased by 14±30 ms for the sham condition. The

RTs for invalidly cued trials increased by 39±40 ms for the experimental condition and by

22±50 ms for the sham condition (Figure 2.2c). Repeated measures two-way ANOVAs showed

a significant interaction for valid trials (F (1,12) = 4.82, p = .049), but not for invalid trials

(F (1,12) = 1.42, p = .257).

In order to see whether habituation to the task influenced the RTs, we looked at the mean RTs

after valid and invalid cues on day one and in the pre-intervention runs on day two and three

(Figure 2.2d). We observed a significant decrease of mean RTs over days (F (1.21,14.52) = 18.78,

p < .001; Greenhouse-Geisser corrected). Therefore, we verified that the order in which the

subjects were assigned to the BCI or sham feedback did not confound our results. For this we

employed a three-way mixed repeated measures ANOVA to evaluate the effect of the within

subject factors of feedback and time and the between subject factor of order (starting with real

or sham feedback). We found no three-way interaction order × feedback × time (F (1,11) = 0.66,

p = .433) and the between-subject effect of order was not significant (F (1,11) = 0.02, p = .898).

The interaction time × feedback was still significant (F (1,11) = 5.070, p = .046).

2.3.2 Neurophysiological correlates of attention

Firstly, we wanted to confirm that our real-time feedback intervention allowed subjects to

improve their α-LI, as opposed to the sham feedback. Figure 2.3a displays the α-LI during

the intervention for left and right sided trials in the experimental and sham condition. We

observed a near-significant increase in the average α-LI span over the trial duration for

the experimental condition (F (2.25,24.80) = 2.89, p = .069; Greenhouse-Geisser corrected).

For the sham condition on the other hand, we did not find a significant α-LI span growth

(F GG (1.44,17.26) = 0.09, p = .859; Greenhouse-Geisser corrected).

Our electrophysiological outcome measure of the closed-loop training was the change in the

α-LI span between the pre and post intervention offline sessions. We found no interaction

effect of the factors time × feedback in a two-way repeated measures ANOVA (F (1,11) =
1.587, p = .232), nor were the simple effects of feedback (F (1,12) = 0.046, p = .834) or time

(F (1,12) = 0.398, p = .540) significant. The average α-LI span was stable between pre and post

intervention sessions (0.016±0.396 μV 2

Hz ) while it decreased slightly for the sham feedback

condition ((0.141±0.557 μV 2

Hz ) (Figure 2.3b).

We then explored the relationship between the changes observed in the behavioral and

electrophysiological outcome measures. To this end, we computed the interaction effect
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(c) Average pre and post reaction times after
valid and invalid cues.
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(d) Average reaction times by side and validity.

Figure 2.2 – Behavior. (a) Mean validity effect pre and post intervention for the experimental
(white circles) and sham group (black circles). Pre-post difference in the experimental group
was significant (p < .05, FDR corrected). Whiskers represent the SEM across subjects. (b)
Pre-post changes in the VE for the sham (black circles on the left) and experimental condition
(white circles on the right) for every subject. Solid lines connect data points of the same subject.
(c) Average reaction times pre and post intervention for validly cued (squares) and invalidly
cued (diamonds) trials for the experimental (white) and the sham (black) group. Whiskers
represent the SEM across subjects. (d) Mean reaction times for left (gray left triangles) and
right (black right triangles) side trials on recording days 1, 2 and 3. Reaction times to validly
cued trials are connected with solid lines, those for invalidly cued trials (catch trials) are
connected with dashed lines. Whiskers represent the SEM across subjects.
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index during real-time feedback.
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(b) Pre-post changes in the α-power lateraliza-
tion index span.

Figure 2.3 – Electrophysiology. (a) Averaged baselined lateralization index for left (diamonds)
and right (squares) cued trials during the online training phase in the experimental (white) and
sham (black) condition. Data were binned into the baseline period (bsl) and five subsequent
4 s windows centered around 2, 6, 10, 14 and 18 s. Whiskers represent the SEM across subjects.
(b) The average pre-post changes of the average α-LI span for the experimental and the sham
condition. No significant changes. Whiskers represent the SEM across subjects.

(IE) for the VE and the α-LI for each subject individually:

IEVE =
(
VEBCI

post −VEBCI
pre

)
−

(
VEsham

post −VEsham
pre

)
(2.6)

IEα-LI =
(
α-LIBCI

post −α-LIBCI
pre

)
−

(
α-LIsham

post −α-LIsham
pre

)
(2.7)

First, to test whether differences in α-lateralization could explain the behavioral effect, we

correlated the IEα-LI with the IEVE. We found a significant correlation (n = 13,r =− .59,r 2 =
.43, p = .030), but – contrary to our expectations – negative. This means that the more subjects

increased their α-LI after real feedback compared to sham, the more decreased their CVSA,

as indexed by lower VE (Figure 2.4a). Second, we tested whether the amount of changes in

α-power lateralization during the online training – rather than between pre and post offline

sessions – affected the improvement in CVSA. We found no correlation between the IEVE and

the amount of lateralization during the training (n = 13,r = .17,r 2 = .17, p = .569, Figure 2.4b).

Lastly, we examined whether the individual resting-state α-band power (measured on day

one) has an influence on the behavioral changes. We found no correlation between them

(n = 13,r = −.43,r 2 = .29, p = .135, Figure 2.4c). The figure indicates that 3 out of the 13

subjects had a naturally elevated α-power which could be considered an outlier compared to

the rest of the subjects α-power (> 2μV 2

Hz ). Thus, we recomputed the results without those three

subjects to see if any effect was driven by them. The major change was a loss in significance

for the correlation between the IEα-LI and the IEVE (n = 10,r = −.05,r 2 = .14, p = .90). The

behavioral time × feedback interaction became even stronger (F (1,9) = 6.77, p = .029).
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Figure 2.4 – Correlation of electrophysiological and behavioral results. (a) Significant
correlation (n = 13,r =− .59,r 2 = .43, p = .030) between the interaction effect IEα-LI and IEVE.
The thick line indicates the linear fit to the data, the two thin lines display the 95% confidence
interval. (b) Non-significant correlation (n = 13,r = .17,r 2 = .17, p = .576) between differences
(experimental minus sham) inα-LI during the real-time training and the behavioral interaction
effect IEVE. The thick line indicates the linear fit to the data, the two thin lines display the
95% confidence interval. (c) Non-significant correlation (n = 13,r =−.43,r 2 = .29, p = .135)
between the baseline α-power on day one and the behavioral interaction effect IEVE. Three

subjects displayed a visibly elevated level of resting state α-power (> 2μV 2

Hz ) on all recording
days. The thick line indicates the linear fit to the data, the two thin lines display the 95%
confidence interval.
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2.3.3 Single trial classification

We sought to decode the attended side during the CVSA task in real time by utilizing only

brain activity in the α-band. We hypothesized that a larger average modulation of the α-

LI would lead to a better separation of the brain patterns of the two classes (left and right

side CVSA), and thus allow for higher classification performance. To test this, we computed

the post-hoc single trial classification performance on each of the offline runs on day two

and three for each subject separately : pre- and post-runs in the experimental and sham

condition. We found that the α-LI span correlated strongly (n = 13,r = .86,r 2 = .78, p < .001;

Figure 2.5a) with the classification performance based on the Cα-LI (Section 2.2.3). This

correlation was still significant when removing the two outliers with high (> 1) α-LI span. We

also found similar correlations between the α-LI span and the classification accuracies of

CN-α-LI (n = 13,r = .68,r 2 = .54, p = .01) and CMV (n = 13,r = .60,r 2 = .45, p = 0.03).

To test if the real-time feedback intervention had an effect on the classification performance,

we employed repeated measures ANOVAs for the within subject factors of feedback and time

and the between subject factor of order. We did not observe a significant interaction on any

level (F (1,12) < 1.604, p > .231) for neither of the three classifiers Cα-LI, CN-α-LI and CMV.

Thus, we averaged the classification performance over all four runs for each individual subject.

We decoded CVSA above chance level (p < .05) in a single trial setting using the multivariate

classifier CMV (black diamond in Figure 2.5b). We achieved an average classification accuracy

of 61.9%±10.2% where 7 out of 13 subjects performed significantly above chance level (min.

62.2%, max. 75.8%). Similarly, although on average slightly below chance level, CN-α-LI (gray

diamond) yielded an average classification performance of 60.0%±10.9% with six subjects

above chance level (min. 63.8%, max. 76.5%). Classification of the baselined α-LI Cα-LI (white

diamond) performed worst, with an average accuracy of 54.5%±7.0% and only one subject

above chance level (64.8%). In comparison, the accuracy strongly improved from Cα-LI to

CN-α-LI (t(51) = −4.56, p < .001), respectively CMV (t(51) = −6.23, p < .001). The difference

between CN-α-LI and CMV was significant (t (51) =−1.68, p = .049).

2.4 Discussion

This study reports a behavioral improvement in CVSA indexed by higher VE after providing

20 minutes of EEG-based closed-loop feedback on occipital α-band lateralization. No such

improvement was observed when providing the same subjects with feedback that was not

linked to their brain activity but to the recorded brain activity of another subject. We thus

verify that the improvement in CVSA cannot be explained by behavioral learning per se but

was the result of our feedback manipulation. Contrarily to our prediction, however, behavioral

improvement did not correlate with the α-lateralization during the training and was negatively

related with pre-post increases in lateralization. Finally, we were able to successfully decode

the attended side on a single trial level but classification accuracy was unaffected by the

feedback intervention.
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Figure 2.5 – Correlation with the α-LI and average classification results. (a) Significant positive
correlation between the α-LI span and the classification accuracy. As expected, the classifica-
tion performance improves with higher α-power modulation. The thick solid line indicates
the linear fit to the data, the two thin solid lines display the 95% confidence interval. (b)
Single trial classification results for three different feature spaces: the baselined α-LI (Cα-LI),
the non-baselined α-LI (CN-α-LI) and a multivariate feature space (CMV). The difference in
classification performance between Cα-LI and CN-α-LI respectively CMV was highly significant.
CN-α-LI and CMV are significantly different. The latter is the only one achieving a mean classi-
fication performance above the upper bound of the 95% confidence interval (dashed line) of
the chance level (solid line). The error bars indicate standard deviations.

2.4.1 Closed-loop feedback for CVSA

The goal of any online feedback intervention is ultimately to change behavioral markers

through operand conditioning using a biomarker (Sherlin et al., 2011). Two studies with a real-

time feedback approach similar to ours, one using fMRI and the other MEG, have presented

somewhat contradictory behavioral changes in the perception threshold of covert stimuli.

Scharnowski et al. (2012) provided subjects with real-time feedback on occipital blood oxygen

level dependent (BOLD) activity during a neurofeedback session. Subsequently, they showed

improved perception of Gabor patches in the visual field corresponding to the trained area;

but only for those subjects that managed to upregulate the BOLD signal (Scharnowski et al.,

2012). Unlike this study, our feedback strategy aimed at training subjects to maintain high

lateralization throughout the task.

In another study Okazaki et al. (2015) successfully trained α-lateralization by linking it to

the discriminability of faces. This procedure, however, led to a drop in performance post
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intervention in the experimental groups in the untrained hemifield, while no changes were

observed in the sham groups (Okazaki et al., 2015). Our study differed on many aspects: Firstly,

we linked the lateralization to the probability of the trial ending and thus alerted subjects in

case of low lateralization to reorient their attention. Therefore, our design differs from studies

that linked attentional brain signals to task difficulty (De Bettencourt et al., 2015; Okazaki

et al., 2015). Secondly our outcome measure was RT rather than discrimination performance.

Lastly, we used the same task for training and testing, thus maximizing transferability while

Okazaki et al. (2015) trained on faces and tested on Gabor patches.

We point out that our study, using EEG, showed behavioral effects after around 20 minutes

of closed-loop feedback while fMRI studies like Scharnowski et al. (2012) and Robineau et al.

(2014) needed multiple sessions of BOLD feedback to achieve an effect. This suggests that the

temporal contiguity of the feedback, which is certainly higher in EEG, plays an important role

in the speed of learning (Rahmandad et al., 2009; Sherlin et al., 2011; Sulzer et al., 2013).

In the next section, we discuss how our results – taken together with those of previous neu-

rofeedback and neurostimulation studies – show that α-oscillations have a causal effect on

behavior but that this effect could be more complex than previously assumed.

2.4.2 Alpha-band lateralization

The grand average pattern of α-power differences between left- and right-cued trials displayed

the typical lateralization introduced by CVSA tasks (Kastner et al., 1999; Worden et al., 2000;

Sauseng et al., 2005; Rihs et al., 2007). The sustained lateralization (on average) observed

during training suggests that subjects were able to maintain covert attention to the target for

up to 20 seconds, which is longer as in any previously reported study (Andersson et al., 2012;

Scharnowski et al., 2012; Okazaki et al., 2015).

Even though there is evidence that motor preparation can influence occipital α-power levels

(Kajihara et al., 2015), the chosen study design counters possible cross-contamination in

the EEG-signal on two levels. First, trial duration was not fixed but was either randomly

determined (offline runs) or stochastically jittered (online runs), which diminishes a build-up

of expectation with respect to the button press. Secondly, subjects were instructed to only use

their right index finger for the reaction time task. This leads to the same activation for either

attended side and thus was automatically disregarded when contrasting the two conditions in

the averages or the classification.

Interestingly, we could not observe any significant pre-post changes in the α-LI span after

the real-time feedback, although the observed effect goes into the right direction: the α-LI

span decreased more in the sham condition than in the experimental conditions, but the

differences were not significant. This stands in contrast to the study of Okazaki et al. (2015),

who showed a significant increase in lateralization index after the feedback training – although

only for targets in the left hemifield. A possible explanation could be that the changes that
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we observed during the online training were not strong enough to be maintained until post-

testing. Another factor could be the low signal-to-noise ratio of the EEG, which requires to

average more trials to get to a reliable estimate of the α-LI span. Behavioral measures, on the

contrary, are less noisy.

Initially, we assumed a higher lateralization value to be representative of higher CVSA, which

should be reflected in a higher VE. Unexpectedly, we found a negative correlation between the

changes in the α-LI span and the VE. While this correlation connects well with the increased

stimulus perception threshold after neurofeedback training (compared to sham) found by

Okazaki et al. (2015), it was lost when excluding three subjects with unusually high baseline α-

power. This makes a simple linear relationship between changes in the RTs and the α-LI span

unlikely. The stronger interaction effect for the VE when those three subjects were taken out

corroborates Hanslmayr et al. (2007), who reported that a high occipital α-power correlated

negatively with stimulus perception performance. This is in line with the hypothesis that

α-oscillations are a mechanism of inhibition of neuronal firing activity (Jensen and Mazaheri,

2010; Romei et al., 2010). Nevertheless, we also could rule out a correlation between the

baseline α-power and the observed behavioral changes. This demonstrates that the relation of

occipital α-band power lateralization and RT-based correlates of CVSA is less straightforward

as previously thought. Further studies will be needed to throw light on the neural mechanisms

that connect the two.

2.4.3 Single trial classification

Oscillatory brain patterns associated with CVSA have been used as as input modality for BCIs:

(Van Gerven and Jensen, 2009; Treder et al., 2011b; Tonin et al., 2013). In a post-hoc analysis,

we could successfully decode the attended side from modulations in the α-band in 7 out of 13

subjects. Since, although debated, evidence suggests that BCI use is a skill that can be learned,

we would expect performance improvements for a longer series of training sessions (Curran

and Stokes, 2003; Perdikis et al., 2018).

Compared to the studies of Scharnowski et al. (2012) and Okazaki et al. (2015), who have

worked with fMRI- and MEG-based feedback respectively, EEG-based feedback is cost effective

and portable. This would allow for an easier application in and outside the clinical environ-

ment, e.g. in spatial neglect rehabilitation (Tonin et al., 2017). But one of the challenges

in EEG is the tendency for nonstationarities (Lotte et al., 2007; Arvaneh et al., 2013). In

order to separate task related changes from the fluctuating "physiological" noise, a pre-cue

baseline activity often gets subtracted from the in-task EEG signal (Rihs et al., 2007). Since

we were interested in feeding back only the modulation induced by the CVSA task, we opted

for baselining our signals. But as observed in the post-hoc single trial classification, better

classification could have been achieved without baselining. A possible explanation could be,

that the maximally achieved lateralization is independent of the α-LI at the start of the CVSA

task. This connects well with Van Dijk et al. (2008), who found that the perception of a visual
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stimulus could be predicted by the instantaneous (not purposefully modulated) α-power

distribution. This suggests that natural fluctuations of the occipital α-power lateralization are

intrinsically modulating the attentional ressources and are thus not "physiological" noise that

needs to be offset.

Finally, we observed a substantial performance difference between employing a rigid one-

size-fits-all classifier (Cα-LI) and a classifier that was trained on features of individually picked

electrode locations and frequency subbands (CMV). The BCI field has a long tradition of using

machine learning approaches to individualize correlates of mental tasks (Millán et al., 2002;

Lemm et al., 2011). In our case, judging by the increased post-hoc classification performance, it

might be argued that subjects could have learned better given a more individualized feedback.

However, this would only be true for subjects with above-chance classification performance.

In the case of little or no difference in the features between the two classes, such a classifier

might actually be trained on "noise" – non-physiological features that stand out randomly

from the training data. Hence, selecting features based on the physiologically meaningful

group average is a more promising approach for those subjects. Since a pilot study suggested

that only half of all subjects reach above-chance classification performance, we therefore

opted for giving real-time feedback on a fixed band and electrode locations in our experiment,

with the individual mapping of the modulation range as the only free parameter. Future work

could investigate the use of multivariate classification approaches within neurophysiological

constraints on the weights to further improve CVSA discriminability and eventually behavior.

2.5 Conclusion

Our results show that continuous real-time feedback on the α-LI is able to improve behavioral

correlates of CVSA in a healthy population. This is a first important step towards a tool

for rehabilitation of the spatial neglect syndrome where visual perception is impaired in

one visual hemifield. Further work is still needed to establish a strong link between the

behavioral improvements and the observed changes in the electrophysiology, which would

allow to specifically and individually target the occipital α-power imbalances observed in these

patients. Combined with advanced understanding of the mechanisms of spatial neglect, online

feedback could become an efficient add-on training for the rehabilitation of hemineglect

patients.
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Parts of the results of this chapter have been published in Schneider, C., Millán, JdR., 2016. Comparing EEG and

fNIRS for a covert attention BCI. Proceedings of the 6th international BCI meeting, p.96

3 Multimodal sensing

Decoding covert visuospatial attention (CVSA) to the left or right visual field with electro-

encephalography (EEG)-based systems leaves a substantial part of the population without

brain-computer interface (BCI) control, i.e. the classification accuracy is not significantly

different from chance. One approach that proved useful for improving motor-related BCIs was

to combine information of two different brain imaging modalities, all and foremost EEG and

functional near-infrared spectroscopy (fNIRS). But also the combination with non-brain-related

physiological measures has proven its potential. In this chapter we explored the usefulness of

two hybrid BCIs systems — combining EEG with fNIRS or pupillometry — to increase the classi-

fication accuracy in a CVSA task. To this end we developed specialized setups and paradigms

to simultaneously record EEG and fNIRS or EEG and the pupil size while subjects performed

a CVSA task. Then we built and evaluated the unimodal and combined classifiers. Despite

contrary reports in literature, we could not find task-related activation in the fNIRS signal.

Further investigation showed that even strong visual stimulation with a rotating checker-

board was not picked up by the device. The combination of EEG and pupil size on the other

hand, allowed modest increases in the classification accuracy and enabled more subjects to

perform above chance level than any of the unimodal classifiers alone. In the case of the more

promising combination of EEG with pupil size measurements, we expect that an improved

visual protocol would bring further increases in decoding performance. Thus we believe that it

holds great potential for further use. Additionally, following reported use of fNIRS on the visual

system, we still believe that upgrades in hardware technology could render the fNIRS a valuable

modality to complement the EEG in a hybrid CVSA BCI. Our findings suggest that fusion could

be meaningful where single modalities fail to exhibit above-chance performances. Even though

the achieved benefits in our study were rather small, it is up to the intended application of the

hybrid BCI to justify the addition of a more complex setup and data processing stream. Even

small gains could be very important if e.g. this allows more people to benefit from BCI-based

rehabilitation protocol.
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3.1 Introduction

We have demonstrated in the last chapter that closed-loop feedback on the lateralization

pattern of the occipital α-band can enhance behavioral correlates of CVSA, but that the effect

on the BCI decoding accuracy was not significant. Especially subjects that displayed classi-

fication accuracies not significantly different from random have a hard time making use of

the closed-loop feedback (Wolpaw, 2010). Large efforts undertaken in hardware development

and a vast battery of machine learning techniques have not been able to sufficiently increase

the maximum decoding accuracy achieved with EEG-BCIs. On the one hand this means that

EEG-BCIs still suffers from a large inter-session variability, which constrains a prolonged use

of the BCI without updating the computer-based classifier, and on the other hand leaves a

non-negligible group (15-30%) of people without any considerable BCI control (Dickhaus

et al., 2009). For these people, the electrical activity between different intentional commands

looks too similar from the viewpoint of the decoding algorithm. This could even be due to

differences in individual brain anatomy, which are believed to have an influence on the ability

to decode meaningful features from EEG; i.e. if an investigated cortical area is located on a

sulcus (good signal) or in a gyrus (no signal) (Kirschstein and Köhling, 2009; Goldenholz et al.,

2009).

This naturally leads to the exploration of other brain-imaging modalities to test whether the

same or other task-related neural correlates could be observed. Over the years, BCIs have

also been built by observing the magnetic field of the brain with magnetoencephalography

(MEG) (Lal et al., 2005; Mellinger et al., 2007) or hemodynamic changes in brain tissue with

functional magnetic resonance imaging (fMRI) (Weiskopf et al., 2004a) and fNIRS (Coyle et al.,

2004; Matthews et al., 2008). But since every imaging modality comes with its own set of

disadvantages (no portability and cost for MEG and fMRI, slow signal for fMRI and fNIRS, only

cortical imaging possible for fNIRS and EEG), a combination of two imaging modalities allow

a fuller picture of the brain activity. In order to achieve this, it only makes sense to investigate

imaging modalities which provide information that is complementary – or orthogonal when

formulated mathematically – to each other.

Literature reveals that different combinations of brain-imaging modalities have been used

together to enrich the information gained from the examined brain processes. The most

common combination in medical studies, positron emission tomography (PET) + fMRI is not

feasible for the use of BCIs due to the necessity to infuse radioactive isotopes into the body

prior to a PET scan. Other combinations that have been explored are EEG + fMRI (Ritter and

Villringer, 2006; Huster et al., 2012), MEG + fMRI (Dale et al., 2000; Downing et al., 2001) and

EEG + fNIRS (Wallois et al., 2012; Fazli et al., 2012). When narrowing down the options for

the use in a BCI framework, we want the ability to image simulataneously with both sensing

modalities, because otherwise the added information would not be available in a single-trial

decoding setup. Current literature provides some proof of principle BCI studies for BCIs that

combine EEG and fMRI (Zotev et al., 2014; Zich et al., 2015; Liu et al., 2016) and EEG and

fNIRS (Fazli et al., 2012; Blokland et al., 2014; Morioka et al., 2014; Putze et al., 2014; Yin et al.,
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2015; Buccino et al., 2016). The obtained results showed that extracting information from

two complementary brain imaging modalities has the potential to be beneficial for pattern

decoding and classification (Bießmann et al., 2011; Huster et al., 2012; Fazli et al., 2012). This

was even explored in rehabilitation settings (Yu et al., 2013), where multimodal BCIs proved

useful. Thus, combining different sensing modalities in a BCI bears the potential to minimize

the number of people left without control, increase the decoding accuracy, and decrease the

false positive rate (FPR), which is essential for feedback-based learning.

Therefore, I wanted to explore the possibility to expand the data space obtainable with the EEG

by including other sensing modalities into a hybrid BCI. This additional modalities should

in the best case yield orthogonal information on the CVSA process, i.e. information that is

not correlated with the EEG data. Additionally, a simultaneous use of both modalities should

be possible without one modality introducing artifacts in the other one. Finally, the added

modalities should in the best case not take away the advantage of EEG-based BCIs, i.e. modest

costs and portability. Especially when targeting a rehabilitation application, the system should

be noninvasive, ideally portable for bedside or out-of-hospital use, be set up quickly for each

session and be cheap in purchase and maintenance. Given these constraints, I have identified

two interesting candidates: fNIRS and pupillometry. In the following two sections I report on

the inclusion of each of them with EEG into a CVSA BCI.

Another aspect that comes into play in a hybrid BCI setup is the way how to combine the

different information streams. For the proposed BCI setup, there are two principal possibilities

of fusing the information: either at the feature level (feature fusion; concatenating the features

and therefore expanding the feature space available for classification) or at the classifier level

(classifier fusion; classifying the information of each modality separately and then combining

the results based on the confidence based in each modality). The applicability of each of the

two methodologies is mainly influenced by the temporal resolution of the signals. For example,

electric or magnetic fields can change on the millisecond range to reflect the brain’s reaction

to a stimulus, while the hemodynamic trace of the same reaction takes up to several seconds

to reveal itself. In such cases, a simple concatenation of the feature spaces will not allow an

improvement in the classification performance simply because the peak signal of the two

modalities will not be present at the same time. This could be counteracted by time-warping

both signals to a pre-computed template (Wöllmer et al., 2009) or saving the peak activation in

the fast modality to match it with the peak activation in the slower modality (Fazli et al., 2012).

But these actions are very error-prone and thus mostly avoided and replaced by a fusion of

the classifier outputs. In these cases, the output of the fast modality classification can either

serve as a prior to the slower modality, or the two decisions are combined after each modality

has finished its classification. The question of how to optimally combine two independent

input data streams opens up a whole field of machine-learning and optimization algorithms

(Bießmann et al., 2011; Dähne et al., 2015). In this thesis I did not dive deeply into this topic

and, due to the different temporal dynamics of the signals involved, used classifier fusion on

the trial level to achieve combined classification results.
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3.2 Functional near-infrared spectroscopy

3.2.1 Introduction

fNIRS is an optical brain imaging technique that works on the principle of near-infrared light

being absorbed mainly by hemoglobin (present in red blood cells to transport oxygen). This

range in the near-infrared spectrum is called the optical window, since most of the body

tissues e.g. skin, bones, muscles, etc. are basically transparent under near-infrared light; i.e.

these tissues do not absorb light of this wavelength (Jöbsis, 1977). For that reason, the amount

of attenuation measured between light source and light detector is mainly dependent on the

amount of hemoglobin, and thus blood in the light path. As is the case with the blood oxygen

level dependent (BOLD) signal in fMRI, we are interested in how much oxygen is transported

to a certain brain region. To this end, a minimum of two wavelengths λ1,λ2 is chosen, where

the light attenuation of oxygenated and reduced hemoglobin differs substantially between

these two wavelengths (Figure 3.1a). This then allows to compute the relative proportion

of oxygenated hemoglobin (HbO) and reduced hemoglobin (HbR) in the total hemoglobin

concentration (see Section 3.2.2 for details). The change in the total hemoglobin (HbT) is

computed as HbT = HbO +HbT .

If the tissue imaged is thin enough, e.g. a finger, a light source can be put on one side, and

the detector on the other side. In this method, which is called transmission near-infrared

spectroscopy, the light will fully traverse all the tissue between the source and the sensor. This

is for example used for pulse oximetry or the brain oxygenation measurement for neonates

(Jöbsis, 1977). But the penetration depth of the emitted light is nor high enough to do the same

for bigger volumes, as is for example the adult human head. In order to image cortical blood

oxygenation in adults, the fNIRS relies on the backscattering of light: the emitted light will

spread and some part of it will resurface due to multiple scattering in the tissue (Ferrari et al.,

1985). The flight path of resurfacing photons will on average describe a curved shape that is

often referred to as the banana shape (Figure 3.1b). This means that the further away from

the light source an emitted photon resurfaces, the deeper it penetrated the tissue. This yields

a de facto standard distance of approximately 3 cm between source and detector for adult

fNIRS brain imaging to ensure the upper cortical layers lie in the flight path of the majority of

photons (Strangman et al., 2003; Ferrari and Quaresima, 2012). Even though further distances

would theoretically yield even higher penetration depths which could allow to image deeper

brain structures, the overall light attenuation is too strong, and no reliable signal can be picked

up without increasing the source light intensity above safe levels.

As mentioned before, the fNIRS (usually) measures the relative proportions of oxygenated

and reduced hemoglobin in the blood. In this sense, even though the physical principles are

very different, the signal we obtain is comparable to the BOLD signal obtained with fMRI.

When a cortical region is more active (higher number of neurons firing), the body provides

more oxygen to these regions by upregulating the influx of oxygenated blood. This is called

the hemodynamic response to neural activity (see Ferrari and Quaresima (2012) for details).
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Due to the time needed for the adaptation of the blood flow via relaxations of the vessels

and the distribution of the blood in the target tissue, this response has a delay in its build-up

and displays overall slower dynamics (Figure 3.1c). Cortical regions that are supplied with

higher amounts of oxygenated blood during a task as compared to resting are assumed to be

implicated in the neural processes of this task. Therefore complementary neural correlates

are imaged with fNIRS than in the EEG, even though some models have been probed which

couple certain characteristics of these two modalities (Moosmann et al., 2003).

λ1 = 760 nm

λ2 = 850 nm

(a) Absorption characteristics
of HbO, HbR (Deoxy-Hb) and
water under near-infrared light.

(b) Banana shape described
by the photon flight path in
backscattering fNIRS.

(c) Hemodynamic response of
HbO, HbR and HbT to a finger
tapping task.

Figure 3.1 – Basics of functional near-infrared spectroscopy (fNIRS). (a) Absorption
characteristics in the near-infrared range for HbO, HbR and water. Arrows mark the two
different wavelengths of the light emitting diode (LED) lights sources of the device used in
the experiment. Figure adapted from (Bunce et al., 2006). (b) Banana Shape: Flight path
of the photons that are detected from a specific source-detector combination (in red). This
constitutes one recording channel of the fNIRS setup. Figure adapted from (Bunce et al., 2006).
(c) The average HbO (in red) and HbR (in blue) hemodynamic response to a finger tapping
task. The HbT is depicted in green. We see the signal plateauing at around 10 seconds and
falling after the end of the task, indicated by the vertical dashed line. Figure adapted from
(Funane et al., 2014).

The possibility to image task-related changes in brain oxygenation brought attention to the

use of fNIRS as a sensing modality for BCIs. Compared with the fMRI, which has proven its

potential for BCIs but suffers from its cost and the necessity of the user lying motionlessly

inside the constricted scanner tube, the fNIRS is affordable, small and lightweight, and is very

robust even to motion artifacts, as long as the optodes (light sources and detectors) stay well

attached to the scalp (Nicolas-Alonso and Gomez-Gil, 2012). Over the years, fNIRS has proven

to be able to decode a wide range of brain-activity inducing tasks, starting from upper (Cui

et al., 2010; Anwar et al., 2016) and lower limb movement, motor imagery (Coyle et al., 2007;

Leff et al., 2011; Fazli et al., 2012), mental arithmetic (Power et al., 2010; Bauernfeind et al.,

2011; Shin et al., 2016), music imagery (Power et al., 2010), visual stimuli (Plichta et al., 2007)

and emotional responses (Tai and Chau, 2009). See Naseer and Hong (2015) for an extensive

list of studies.

This naturally led to studies exploring the use of fNIRS for the use of brain-computer interaction.
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The mainly investigated mental commands were motor imagery (Coyle et al., 2007; Leff et al.,

2011; Fazli et al., 2012; Koo et al., 2015), mental arithmetic (Power et al., 2010; Bauernfeind et

al., 2011; Shin et al., 2016) and even direct intent of choice (Luu and Chau, 2009). The majority

of the published fNIRS BCI studies do not include any application, but are instead focused

solely on the decoding performance. Few studies have shown applications for communication

(Naito et al., 2007; Naseer et al., 2014), neurorehabilitation of the motor system (Rea et al.,

2014; Chang et al., 2014) and cognitive neurorehabilitation (Arenth et al., 2007; Mihara et al.,

2012; Mihara et al., 2013; Kober et al., 2014). Finally, fNIRS was also viewed as a good candidate

to construct so-called passive BCIs. These are systems that detect the user’s state of e.g. fatigue

or emotion and can allow interaction on this (Zander and Kothe, 2011; Herff et al., 2014; Khan

and Hong, 2015).

Given that fNIRS and EEG, while having both proven their worth for the construction of BCI

systems, have quite complementary advantages and disadvantages, a combination of the two

systems harbors the potential for improved performance. Compared to the EEG, fNIRS has a

slightly higher spatial resolution which is not affected by volume conduction, but due to the

slow hemodynamic response the temporal resolution is worse. This is further helped by the

fact that the electrical potential measured with EEG and the optical imaging with fNIRS do not

intereact with each other. This means, differently from the combination fMRI and EEG, where

the magnetic field artifacts of the fMRI have to be elaborately removed from the EEG signal,

both modalities enjoy uninterrupted and undisturbed readings. Another important point is,

that EEG electrodes and fNIRS optodes can both be integrated into one cap, allowing for a non-

intrusive setup (Fazli et al., 2012). Modern devices with WIFI or Bluetooth communication

even allow freely moving subjects (Piper et al., 2014).

Fazli et al. (2012) and Koo et al. (2015) demonstrated the beneficial fusion of EEG and fNIRS

signals for decoding sensorimotor rhythms and Putze et al. (2014) reported improved decoding

performances in audiovisual tasks. This motivated me to explore the possibility of a multimodal

EEG-fNIRS system for a CVSA BCI. Apart from the aforementioned Putze et al. (2014), a few

further studies used fNIRS to decode CVSA: Harasawa and Shioiri (2011) showed a stronger

increase in the HbO signal coming from the left occipital cortex during a lateralized covert

attention task. Moosmann et al. (2003) found a positive correlation between the strength of

occipital α-oscillations and HbR. Since occipital α-power gets lateralized by CVSA, I assumed

to see this lateralization also in the recorded HbR concentrations. Morioka et al. (2014) were

the first (and until now only) group that published on a combined EEG-fNIRS BCI for CVSA.

Instead of trying to decode the locus of attention directly from the fNIRS signal, they used

the differences in the HbO concentrations between left and right side attention as priors for

the corresponding EEG locations. This allowed them to improve the decoding performance

significantly by 7.7%.

The principal objective of the study reported here was to develop and evaluate a prototype of

a multimodal CVSA-based BCI that could find its use in the long term in the rehabilitation of

unilateral spatial neglect (Figure 3.2). Taking into account all the points discussed above, the
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fNIRS BCI

EEG BCI CVSA

Rehab-
ilitation

(Tonin et al.,2013)

(Treder et al.,2011)
(Liu et al.,2011)

(Kelly et al.,2009)

(Chang et al., 2014)
(Kober et al., 2014)
(Rea et al., 2014)

(Harasawa
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(Fazli et al., 2012)

(Biasiucci

et 

al., 2014)

This experiment Murguialday

Figure 3.2 – Non-exhaustive overview of published literature covering the areas of the
multimodal EEG-fNIRS CVSA BCI.

combination EEG and fNIRS looked like the most promising combination of brain-imaging

modalities available, especially when having the portability of the BCI system in mind.

Therefore, I performed three small studies that aimed at quantifying the potential of combining

fNIRS with EEG. The first study targeted the feasibility of decoding CVSA from the fNIRS and

to compare its BCI performance to the one obtained with EEG. The second study aimed at

simultaneously recording fNIRS and EEG and fusing the two sensing modalities for a real-time

decoding of CVSA. Due to unexpected activation maps and non-satisfactory classification

results from the fNIRS modality, I conducted a third experiment to determine if the used fNIRS

system is able to pick up the hemodynamic response of a strong, passive stimulation of the

visual cortex.

3.2.2 Materials and Methods

Participants

Taken all three experiments together we recorded data from 13 subjects. Five subjects, all

male, aged 33±6 years participated in the first experiment. Five more subjects, one female,

four male, age 27.2±2.56 years participated in the second experiment. Three subjects, all

male, age 30.3±0.95 years participated in the third experiment. All subjects reported normal
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or corrected to normal vision. All subjects gave their informed consent for their participation

in written form. The protocols used were covered by the ethical protocol No PB_2017-00295,

cleared by the ethical commissions of the cantons of Vaud and Geneva, Switzerland, and

conformed with the Declaration of Helsinki (World Medical Association, 2013).

Material

fNIRS The fNIRS device used in all three experiments was a NIRScout (NIRx, Berlin, Germany)

with a maximum of 16 sources and 24 detectors. This device uses LEDs to emit near-infrared

light in the wavelengths of 760 and 850 nm. This specific fNIRS device is able to send out 60

light pulses per second, but since an activation of more than one light source at a time could

lead to skewed light detection results, the 60 Hz base rate has to be divided by the number

of sources used in the setup. Since we used 13 light sources in the setup (Figure 3.3a), our

final sampling rate was around 4.6 Hz. The optode configuration was based on Morioka et al.

(2014) and placed the light sources at the positions CPz, CP3, CP4, P1, P2, PPO5h, PPO6h,

POz, O1, O2, PO9, Iz, PO10 and the detectors at positions CP1, CP2, CPP5h, CPP6h, Pz, P3,

P4, PO3, PO4, PO7, PO8, Oz, I1, I2, according to the international 10-20 system (Figure 3.3a).

This arrangement covered the parietooccipital cortex while ensuring an inter-optode distance

of 2-4 cm between neighboring sources and detectors, which is in agreement with literature

(Ferrari and Quaresima, 2012; Morioka et al., 2014).

To ensure proper coverage and penetration depth of the light paths, we simulated the sensitivity

of this specific source-detector montage. The sensitivity of the fNIRS is defined as the

magnitude of difference between a change in the actual hemoglobin levels in the imaged brain

areas and the recorded signal. To compute the sensitivity index of the fNIRS-setup, Monte

Carlo random walk photon scattering computations were performed and mapped to a Colin

brain atlas standardized brain using the AtlasViewer plugin of the HOMER2 toolbox (Huppert

et al., 2009).

We identified 44 usable channels, which were source-detector pairs with less than 5 cm

distance on the scalp. For the third experiment, a slightly smaller optode setup has been

used with sources at the positions (P1, P2, PPO5h, PPO6h, POz, O1, O2) and detectors at

the positions (Pz, P3, P4, PO3, PO4, PO7, PO8, Oz). We decided on this to allow a more

evenly distributed grid of optodes, keeping the inter-optode distance as close as possible to

the recommended 3 cm while still using standard EEG positions. Additionally, this smaller

montage allowed us to raise the recording frequency to 8.6 Hz, which was important since this

experiment targeted to image the exact hemodynamic response (including on- and -offset

timing) to large visual stimuli.

EEG In experiment one, where fNIRS and EEG were recorded in two different sessions, we

registered electroencephalography (EEG) activity from the scalp using a g.HIamp (g.tec, Graz,

Austria) EEG-amplifier with 60 active AgCl-electrodes at standard 10-10 positions (see figure

3.3b for the placement). The sampling frequency was set at 512 Hz and a hardware bandpass
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filter between 0.01 and 100 Hz was selected to remove slow drifts in the signal and unused

high frequencies. In experiment two, which focused on simultaneous recording of fNIRS

and EEG data, we complemented the fNIRS optode setup as described above with sixteen

parietooccipital EEG channels at the positions CPP3h, CPP1h, CPP2h, CPP4h, P7, P5, P6, P8,

PPO1h, PPO2h, POO1h, POO2h, POO9h, O11h, O12h, POO10h. The amplifier used for this

was an actiCHamp (Brain Products, Gilching, Germany), because the same cap connectors

could be used for the EEG electrodes and the fNIRS optodes. The sampling frequency was set

to 500 Hz.

electrooculogram (EOG) In order to control for eye movements in the covert attention trials

of experiments one and two, we additionally recorded the EOG with three channels at 512 Hz,

also using the g.HIamp EEG amplifier. The EOG electrodes were placed at the left and right

canthi of the eyes, the nasion and the corresponding ground electrode on the right mastoid.

Experimental protocols

Subjects were in all cases seated in a dimly lit, quiet room, 50 cm in front of a 24 inch LCD

monitor which contained all visual information throughout the protocol. See Figure 3.4 for a

picture of the recording setup.

Experiment 1 Each participant was engaged in two recording sessions – one with EEG and

one with fNIRS – with the exact same experimental protocol. Every session consisted of four

runs of 20 trials, 10 left and 10 right. This yielded 40 trials per condition (left/right) and session.

The experimental protocol followed the general structure of CVSA protocols described in

literature (Tonin et al., 2013; Horschig et al., 2015; Morioka et al., 2014). Each trial began with

an acoustic beep and a 2 second fixation period, followed by a 100 ms central cue. The cue

differed for the three classes: angled left arrow for left CVSA, angled right arrow for right CVSA,

and a green dot for center fixation, with the varying cues presented in a pseudorandom order.

The following attention period was randomly chosen between 6 and 10 seconds. The long

duration compared to previous reports for EEG-BCI was chosen due to the hemodynamic

response peaking only at around 6-7 seconds (Moosmann et al., 2003; Bunce et al., 2006;

Morioka et al., 2014). Each attention period ended with the appearance of a yellow dot at

the indicated location (target) and was followed by a button press (reaction time task) of the

participant. Then a 10 second rest period ended the trial which should allow the hemodynamic

response to settle back down (Moosmann et al., 2003; Bunce et al., 2006; Morioka et al., 2014).

The temporal structure and screen display of the protocol is depicted visually in Figure 3.5.

Experiment 2 Since in this experiment fNIRS was recorded simulataneously with EEG, each

subject participated in one recording session only. Apart from this, nothing changed with

respect to the visual protocol and timings from experiment one.
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(a) fNIRS optode positions
used in experiment one.
Source positions are colored
red and detector positions
green.

(b) EEG electrode positions
used in the first eperiment are
marked in blue.

(c) Joint fNIRS and EEG setup
used in experiment two. fNIRS
source and detector positions
are marked red and green
respectively, EEG channels are
marked in blue.

(d) fNIRS optode positions
used in experiment three.
Source positions are marked
red and detector positions
green.

Figure 3.3 – Channel layout for the EEG and fNIRS for the studies one to three. In study one,
fNIRS (3.3a) and EEG (3.3b) were recorded separately. In study two, a combinded fNIRS and
EEG setup was defined (3.3c). In the last study, a refined fNIRS-only setup was used (3.3d).
Images adapted from Oostenveld and Praamstra (2001).

Experiment 3 Due to inconclusive results in experiments 1 and 2, we wanted to test our

recording setup in a situation with strong activation of the visual cortex. Therefore fNIRS data

was recorded while subjects were passively visually stimulated with a rotating checkerboard

pinwheel (Ward et al., 2015; Zaidi et al., 2015). Two subsequent runs with ten trials each were

recorded in one session, one with a pinwheel size of 80% of the screen height, the other one

with 98% of the screen height. Each trial started with one second of fixation on a uniform gray

background. Then a checkerboard pinwheel was displayed for five seconds, rotating at a speed

of one full rotation every two seconds. The direction of rotation was randomly chosen and

changed every 2±0.5 seconds. This was then followed by 16 seconds of rest before the next

trial started. A schematic screen display and temporal arrangement is displayed in Figure 3.6.

44



3.2. Functional near-infrared spectroscopy

Figure 3.4 – Experimental setup and subject placement for the EEG-recording. The subject
was shifting the covert attention to the target on the side indicated by the cue. After the target
changed color, the subject was responding with a button press (blue pad). The fNIRS and joint
fNIRS-EEG recordings were done in the same way.

1500 - 3500 ms

100 ms 6000 - 10000 ms until click

Covert attentionCue

3000 ms

Fixation Feedback

EEG analysis period

Rest

10000 ms

5000 - 12000 msfNIRS analysis period

Figure 3.5 – Visual protocol with temporal scheme for CVSA task for experiments one and two.
Please note that for better visibility, the symbols on the screen are displayed proportionally
larger than in reality and the yellow target is printed in red. The time windows for analysis of
the EEG and fNIRS signals are the ones used in experiment two.

Data processing

All data was analyzed with MATLAB R2017b (The MathWorks, Inc., Natick, Massachusetts,

USA). The topographical plots were produced with the FieldTrip toolbox (Oostenveld et al.,

2011). fNIRS data was extracted and preprocessed in the HOMER2 toolbox (Huppert et al.,

2009).
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5000 ms

Rotating Checkerboard Pinwheel

1000 ms

Fixation Rest

16000 ms

fNIRS analysis period     0 - 20000 ms

Figure 3.6 – Visual protocol with temporal scheme for the rotating checkerboard pinwheel of
experiment three.

EOG From the raw EOG a horizontal signal was computed by taking the difference between

the two channels at the canthi of the eyes. The vertical signal was then obtained by taking the

difference between the channel at the nasion and the mean of the two horizontal electrodes.

The resulting signal was then downsampled to 256 Hz and bandpass filtered between 0.01 and

7 Hz with a 4th order Butterworth filter (Schlögl et al., 2007). A trial-based automated heuristic

blink detection algorithm was implemented to discriminate blinks from saccades and other

EOG artifacts. To ensure covert attention towards the targets at the left and right screen side,

only trials without horizontal eye movements were kept for further analysis. Trials without

blinks, on the other hand, could not be fully avoided due to their long duration.

EEG EEG data was downsampled to 256 Hz, the offset removed (only necessary for the

amplifier used in experiment two), and abnormally noisy channels detected and interpolated

automatically. The EEG was then bandpass filtered between 1 and 45 Hz with a 4th order

Butterworth filter. For every trial the log-power spectral density (PSD) was calculated on a 0.5

second sliding window with a 112 sample overlap, yielding a PSD time resolution of 16 Hz. As

individual features, one-Hertz frequency bands spanning the α-oscillatory activity (8-14 Hz)

were extracted from the PSDs.

In the first experiment, I modeled the classification approach of Tonin et al. (2012) with

separate classifiers for subwindows in the trail. To this end, every epoch was split into 11

consecutive half-second windows from 0.5 to 6 seconds. The time frame 0.5-6 seconds was

bounded by the length of the PSD-window on the lower end and the minimal trial duration

on the upper end. On each half-second subwindow the coefficient of determination (R2)

was calculated for each channel on the mean α-band. The five most discriminant channels

for each window were used to train an linear discriminant analysis (LDA)-classifier on the

activity in each window. The posterior probabilities of all subwindow classifiers were finally

concatenated in time to obtain a full vector of posterior probabilities over the whole 5.5-

second epoch for every trial. Then the posterior probabilities were exponentially smoothed

with equal priors and a smoothing parameter ρ = 0.96, yielding one accumulated posterior

probability per trial which then was classified according to a 0.5 threshold. All reported results

are the outcome of a 10-fold cross validation procedure, which was selected due to the limited
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number of samples per class (max. 40 each).

In the second experiment, we based the selection of the classification time window on the

results of the first experiment, which revealed the highest discriminant activity from 1.5-

3.5 seconds after the trial onset (Figure 3.9). Furthermore, we replaced the classification

subwindows of the previous approach with one longer time window spanning the whole

1.5-3.5 seconds, since comparisons showed not significant difference. Ultimately, the LDA

classifier was replaced by a random forest (RF) classifier, which held promise of improved

classification in BCI systems (Steyrl et al., 2013). The 10-fold cross-validation procedure was

kept due to the same arguments.

fNIRS As a first step, all channels which spanned a difference of more than 40 mm and

channels with insufficient light detection (too large amplification gain) were excluded. Then

we converted the detected light intensity into attenuation values via the modified Beer-

Lambert law (Kocsis et al., 2006):

A = ln
I0

I
=μa ·DPF +G (3.1)

where A is the attenuation, I0 is the emitted light intensity, I is the detected light intensity,

μa is the absorption coefficient of the tissue,DPF is the differential pathlength factor (mean

photon diffuse scattering pathlength from source to detector) and G is the geometry-based

scattering loss factor. Even though equation 3.1 is not fully accurate, the differential form

approximates small attenuation changes well enough:

ΔA = ln
I1

I2
=Δμa ·DPF (3.2)

In this case, G is regarded constant and we look at the attenuation changes between the light

intensities I1 and I2 measured at two close time points t1 and t2. Given that attenuation is

caused mainly by the presence of hemoglobin, we can split the observed attenuation change

Δμa into a weighted sum of the changes in the chromophores of the oxygenized (cHbO) and

deoxygenized (cHbR) — also called reduced — form of hemoglobin:

Δμa = κHbOΔcHbO +κHbRΔcHbR (3.3)

The two kappas denote the specific molar absorption coefficients. Measuring the attenuation

change at two different wavelengths λ1 and λ2 allows for the computational extraction of

the relative concentration changes of the two chromophores, as long as we also measure (or
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estimate) the differential pathlength factor (DPF) for each wavelength:

ΔcHbO =
κ
λ1

HbR
ΔAλ2

DPFλ2
−κ

λ2

HbR
ΔAλ1

DPFλ1

κ
λ1

HbRκ
λ2

HbO −κ
λ2

HbRκ
λ1

HbO

(3.4)

ΔcHbR =
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HbO
ΔAλ2
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−κ

λ2

HbO
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(3.5)

This conversion from light attenuation to concentration changes was done using functions

from the HOMER2 toolbox (Huppert et al., 2009). Further, the resulting signal, which now

reflects the changes in oxygenated and reduced hemoglobin in the transilluminated tissue,

was bandpass filtered between 0.01 and 0.5 Hz which emphasizes the range of the task-

induced hemodynamic response by eliminating physiological influences to the signal, most

importantly the pulse wave at a frequency around 0.8-1.2 Hz (Naseer and Hong, 2015).

In the first experiment, the HbO and HbR activity was extracted from 2 seconds before until

18 seconds after the cue and then the mean baseline activity (time before cue) removed from

the rest of the trial. Analogous to the EEG-classification, also here a windowed approach was

implemented, but due to the different time characteristics of the signal, the epoch and window

sizes are different. Every 18-second epoch was split into 9 consecutive two-second windows.

On each window the coefficient of determination (R2) was calculated for each channel on the

HbO and HbR value means of the two-second window. The five most discriminant features for

each window were used to train an LDA-classifier on each window. The results for each test set

of a 10-fold cross validation procedure (on each window) were concatenated in time to obtain

a full vector of posterior probabilities over the whole 18-second epoch for every trial. Then

the posterior probabilities were exponentially smoothed with equal priors and smoothing

parameter ρ = 0.96, yielding one accumulated posterior probability per trial which then was

classified using the 0.5 threshold.

In the second experiment we limited the window for the fNIRS features from 5-12 seconds

after the cue, as this was the time with the highest activation found in experiment one. This

also corresponds well to the known delay of the hemodynamic response compared to the EEG

(Moosmann et al., 2003). Since the hemodynamic activity peaks in this window if the imaged

cortical tissue is activated, we averaged the HbO and HbR activity across this window for each

trial and channel and used it as input for the classifier. As in the case for the EEG, we employed

the same RF classifier with 10-fold cross validation.

In the third experiment, we extracted HbO and HbR as explained above. After a manual

removal of trials with signal artifacts, we plotted the resulting trials directly or after baselining

to the average pre-cue value.

Classifier fusion Due to the simultaneous recording of EEG and fNIRS in experiment two,

a fusion of the information was explored on the classifier level (see Dähne et al. (2015)).

Fusion on the feature level was dismissed due to the problems arising with different sampling
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frequencies and signal characteristics. For each trial, the two accumulated posterior probabili-

ties were averaged and the resulting value classified with a threshold of 0.5:

P fus
t = P eeg

t +P nirs
t

2
(3.6)

P eeg, P nirs and P fus are the posterior probabilities of the EEG, fNIRS and joint classifier,

respectively, and t denotes the time. In the first experiment, due to the non-simultaneous

recordings of the EEG and fNIRS signals, we performed a pseudo-fusion, by pairing trials of

the same condition from two different sessions.

3.2.3 Results

The addition of fNIRS for the CVSA BCI required to extend the trial durations to capture the

slow hemodynamic response elicited by the attention shift. This raised the question if subjects

could keep full attention to the task throughout the ten second long trials and how blinks,

which would be hard to avoid, influence the EEG signal.

Experiment 1

Influence of trial length We observed that the reaction time to the target stimulus appearance

is independent of the trial duration (Figure 3.7). This suggests that the CVSA can be sustained

over the whole trial, which allows the use of fNIRS as complementary sensory modality.

Figure 3.7 – Distribution of reaction time in dependence of the trial duration; pooled data
from all subjects in experiment one.

Influence of blinks on occipital electrodes Eye movements produce large artifacts in the

EEG recording due to their large dipole nature and additional electrical propagation across

the head surface (Schlögl et al., 2007). The consideration of the dynamics of the fNIRS signal

required a trial duration which is unusually long for EEG BCIs. Consequently an instruction

to not blink during the whole duration of the attention phase (18 seconds) poses a large

problem. The correlation between vertical/horizontal EOG and all EEG channels shows a large

impact on frontal channels but is negligible in parietooccipital regions (Figure 3.8). Since EEG
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correlates of CVSA have been predominantly found in these areas (Posner et al., 1987; Rihs

et al., 2007), we conclude that blinking during the attention period has marginal influence on

the EEG signal when constrained to the parietooccipital channels.

(a) Correlation with vertical EOG. (b) Correlation with horizontal EOG.

Figure 3.8 – Grand average of the correlation coefficient between the vertical and horizontal
EOG with the EEG channels.

EEG: Grand Averages The grand average of the coefficient of determination for the left

minus right trials difference in mean α-power is shown in Figure 3.9 in steps of half seconds.

Note that the first half-second after the cue is omitted due to only partially filled windows

for the PSD calculation. A decrease of α-band oscillations is visible in the contralateral (to

the attention focus) parietooccipital cortex, which is especially pronounced from second

1.0 to 3.5 after the cue presentation. This reverses to a strong positive R2 value in the left

parietoocippital regions due to the subtraction of right-side trials. An interesting observation

is the reappearance of a distinct lateralization at seconds 5.5-6.

EEG: Correlates of reaction time We split the trials of each subject at the individual median

reaction time into a fast and slow group. We then averaged the R2-value of left-right difference

in α-power over the whole trials and built the across-subject grand averages (Figure 3.10).

We see a strong lateralization pattern in the case of the fast reaction times, which is far less

pronounced in the case of the slow reaction times. This indicates that the behavioral measure

correlates with the hemispheric lateralization in the α-band.

Sensitivity of fNIRS setup The sensitivity simulation using the AtlasViewer tool projected

the sensitivity of the modeled light path to the local changes in blood oxygenation onto the

cortical surface (Figure 3.11). The detection sensitivity is mapped on a log scale from 0 to -2,

where red areas denote high and blue areas low sensitivity. We see that the whole occipital

lobes are covered by the fNIRS illumination, where high sensitivity could be achieved on the

top of the gyri. This shows that the chosen setup is, at least theoretically, suitable to image

CVSA-related changes in blood oxygenation.

fNIRS: hemodynamic response patterns Figure 3.12 shows the grand average changes in

HbO levels compared to baseline for the left and right side CVSA trials. We observed the highest
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Figure 3.9 – Grand average of the R2-value of difference in α-band power for left-right classes
across half-second time windows. Time point zero is the cue presentation. A strong lateraliza-
tion pattern can be observed, especially in the seconds 1-3.5 of the trial.

R 2−value − difference between left and right condition for fast and slow reaction time
Subject all

 

 

−0.015 −0.01 −0.005 0 0.005 0.01 0.015

slow reaction

 

 

−0.015 −0.01 −0.005 0 0.005 0.01 0.015

fast reaction

Figure 3.10 – Lateralization topoplots with respect to slow and fast reaction times. The across-
subject grand average of the R2-value of difference in α-band power for left-right classes is
shown for fast reaction time on the left, and the slow reaction time on the right. The color
scales are kept equal for both plots for better comparison.

HbO elevations in the lateral parietal cortices, independent of the attended side. Further, the

dorsal occipital cortex showed deactivation throughout the trials which is in line with the

findings of Sylvester et al. (2007) and Morioka et al. (2014). Sylvester et al. (2007) assumed that

the whole occiptital cortex gets less activated in favor of the area corresponding to the locus of

attention in the retinitopic cortical projection. Interestingly, we observed a side difference in

51



Chapter 3. Multimodal sensing

Sensitivity of the used fNIRS setup to changes in cortical blood flow

log scale

Detector position
Emitter position

Figure 3.11 – Sensitivity map of the used fNIRS setup; occipital view. High values on the
log-scale (red) indicate high sensitivity (no power loss) of the recording setup to cerebral
blood flow changes, blue values denote low sensitivity (high power loss). Areas that cannot be
imaged with the chosen fNIRS montage are painted in skin color. Thin black lines with small
red (source) and green (detector) numbers indicate the projected optode positions.

the dorsooccipital HbO decrease between the left and the right attention condition (located

between positions O9 and PO9, as well as O10 and PO10). This supports the assymetrical

inhibition theory of Battelli et al. (2009) which was hypothesized to play also a role in the

activation of the visual cortex during covert attention (Harasawa and Shioiri, 2011).

When computing the R2-value of left-right difference in the HbO and the HbR signal we did

not see clear lateralization patterns when compared with the EEG analysis (Figure 3.13). The

52



3.2. Functional near-infrared spectroscopy

highest differences were observed for the HbR with a peak of discriminability in the right

parietooccipital areas between 10 and 14 seconds after cue presentation. This discriminant

period, which already falls into the resting period after the trial, could be explained by the

observed delay of 8.7± 2.5 seconds of the HbR signal with respect to temporal peak in α-

oscillations (Moosmann et al., 2003). Nevertheless is hard to explain the lack of a symmetrical

difference.

Activation pattern compared to baseline − Subject all

left trials

 

 

−2 0 2

x 10
−7

right trials

 

 

−2 0 2

x 10
−7

Figure 3.12 – Average changes of HbO throughout the trial compared to baseline. Elevated
levels are observed mainly in the lateral parietal cortices whereas decreased levels are found
in the dorsal parts of the occipital cortex. The activation patterns look very similar in both
conditions, left and right CVSA.

Classification Table 3.1 reports the classification accuracies. For the EEG data alone, we

obtained a mean classification accuracy of 63.3±10.6%, which is basically at the chance level

of 63.2%, computed as the upper bound of the 95% confidence interval of a random binomial

classifier. Individually, the EEG-derived decoder was above chance level for three out of five

subjects.

For the fNIRS data, we built two independent classifiers for the HbO and HbR signals respectively.

We observed that none of the two classifiers achieved general above-chance level accuracies

with 62.8±9.2% and 60.7±5.6%. Three, respectively two, out of five subjects performed better

than chance.

Due to the slightly better classification performance of the classifier built with the HbO signals,

we used it to perform the before-mentioned pseudo-fusion. We saw that the combined

classifier increased the overall classification performance to 68.9±4.6% with four out of five

subjects above chance level. The mean increase of 5.6±11.6 over the EEG-based classifier is

not significant (p = 0.34) as is the 6.1±8.26 increase over the HbO-based classifier (p = 0.17).
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Figure 3.13 – Grand average time series of the R2-value of difference in HbR levels for left-right
classes across two second time windows (timepoint 0 is the cue presentation). No obvious
lateralization pattern is distinguishable. Peak discriminability is focused around two channels
in the right side parietooccipital region between 10 and 14 seconds.

Experiment 2

EEG The 16-channel EEG montage fitted in between the fNIRS optodes was covering the

parietooccipital cortex only in parts. Although the EEG coverage did not allow to image

all the electrodes that usually displaying strong lateralization in a full coverage, we could

observe lateralization towards the lateral electrode positions. Figure 3.14a shows the topoplot

of CVSA-induced lateralization in the best subject. In this subject, we were able to pick up

lateralization towards the correct side, but without the expected α-band depression over the

right parietooccipital areas (compare Figures 3.9 and 3.10). The grand average, as can be seen

in Figure 3.14b, showed some expected lateralization at electrode location PO7 only.

fNIRS Figure 3.15 shows the topological plot of signed differences in the HbO signal between

right and left side covert attention. We observed symmetric patterns of strong differences in

the occipital cortex, where the lower and upper areas of the occipital lobes show an inverse

in the side differences. Individual patterns are not similar between them (not shown) and

the computed grand average is also very different than the one obtained in experiment one

(Figure 3.12).
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Modality ↓ Subject → s1 s2 s3 s4 s5 Average

EEG (α-band) 68.8% 57.5% 47.5% 70.3% 72.5% 63.3±10.6%

fNIRS (HbO) 65.0% 70.0% 71.3% 58.8% 48.8% 62.8±9.2%

fNIRS (HbR) 61.3% 65.0% 55.0% 67.3% 55.0% 60.7±5.6%

EEG (α-band) + fNIRS (HbO) 69.3% 72.6% 66.4% 73.7% 62.6% 68.9±4.6%

Table 3.1 – Classification accuracies of left vs. right trials for the five subjects using a series of
LDA-classifiers on subsequent time windows and integration over the trial period. The last
row is the result of the pseudo-fusion of the two classifiers, matching same-side trials from
two different recordings.

(a) Left-Right lateralization of the best subject;
16-channel combinded montage.

(b) Grand average of the left-right latera-
lization; 16-channel combinded montage.

Figure 3.14 – EEG lateralization topoplots for 16-channel montage. (a) Topoplot of the α-band
lateralization of the best subject. Colors denote the mean difference in α-power between
left and right side attention shifts. Black dots indicate the electrode positions (except the
electrode positions at the front and side of the head, which have been added to correctly place
the montage). (b) Grand average of right minus left side trials of all four subjects. Electrode
position PO7 shows the expected enhanced α-power, but the overall distribution shows no
clear lateralization pattern.
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Figure 3.15 – Grand average difference in the HbO signal between right and left side CVSA trials.
The colors signal the signed t-statistic (limited to ±1) between the right and left class. Higher
differences from zero indicate higher discriminability between the two classes. The black dots
indicate optode positions of the fNIRS montage. The optodes on the coronal midline and
frontally were added in the plot and set to zero to reduce interpolation artifacts.

Classification The classification of the EEG signals led to an average accuracy of 56.9±13.0%

which was on par with the HbO classification at 56.0±7.2%. The classification of the HbR

signal yielded an average performance of 49.6±9.5%. All mean classification accuracies do

not exceed the chance level, which holds also true for the fusion classifier encompassing

the EEG and HbO signals. Classification results were significantly above the 95% chance

level only for one with the EEG modality and one with the fNIRS. The achieved classification

performance after classifier fusion on the trial level was 56.6±6.6%. See Table 3.2 for details of

each participant.

Modality ↓ Subject → s6 s7 s8 s9 Average

EEG (α-band) 76.3% 50.4% 51.8% 49.1% 56.9±13.0%

fNIRS (HbO) 56.5% 54.6% 47.7% 65.3% 56.0±7.2%

fNIRS (HbR) 38.9% 53.2% 45.4% 60.8% 49.6±9.5%

EEG (α-band) + fNIRS (HbO) 64.2% 51.8% 50.4% 59.9% 56.6±6.6%

Table 3.2 – Classification accuracies of left vs. right trials for the four subjects using an LDA-
classifier on the activation means over the whole trial period. The last row is the result of the
classifier fusion on the trial level.
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(a) Filtered HbO response. (b) Filtered and baselined HbO response.

Figure 3.16 – Evoked response in the HbO changes as imaged with the fNIRS device. Data was
pooled from all three subjects (= 30 trials) and the tick black line denotes the grand average
over all trials. (a) shows the HbO response after filtering (removal of pulse artifacts). (b) depicts
HbO response filtered and baselined to a five second pre-cue period.

Experiment 3

We expected a large, time-locked hemodynamic response to the onset of the rotating checker-

board pinwheel, as described for the flickering checkerboard in Ward et al. (2015). The

expected activation would have been a rise in the oxygenated hemoglobin (HbO) every time

the pinwheel came on. Figure 3.16a shows the pooled single-trial responses and the grand

average response to the visual stimulation after filtering out the pulse-wave artifacts. We

cannot distinguish the expected inverted bathtub shape reported for this kind of experiments

(compare Ward et al. (2015)). Further, the grand average response is completely flat. Baselining

the signal to the pre-cue interval had no effect on the grand average flat line either (Figure 3.16b).

Without a doubt, since no activation can be measured with a very strong external stimulus,

small internal variations of blood circulation as expected from shifting the internal locus of

covert attention will not be visible when recording with this device.

3.2.4 Discussion

EEG We saw that even though α-power lateralization patterns manifest in the grand averages

as shown in experiment one (as well as in the previous chapter about closed-loop feedback), a

reduced set of EEG electrodes with sparse cover of the occipital cortex, as used in experiment

two, drastically hampers the ability to classify CVSA from the EEG. The mean classification

accuracy dropped by 6.2% and, more importantly, came to lie inside the 95% confidence

interval for a random classifier. Therefore, we conclude that supplementing the EEG with

another brain imaging modality should not come at the expense of reducing the electrode

coverage.
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fNIRS Our fNIRS results were unconclusive after experiments one and two since the two

extracted grand averages did not look alike and also individual averages did not show compa-

rable patterns. Morioka et al. (2014) showed large deactivation (decrease of HbO and increase

of HbR) in far occipital fNIRS channels for a visual attention task as compared to rest. Further,

Harasawa and Shioiri (2011) reported that increasing the attentional load leads to an assymetry

in the cortical oxygenation, with higher neuronal activity in the left hemisphere. Both reported

clearly visible activation to visual attention and stimulation. Specifically, the results of experi-

ment three were worrying, since no activation could be picked up for visual stimulation, while

Ward et al. (2015) showcased such activation very well.

The fNIRS device used in our studies clearly picked up the pulsewave, and therefore indeed

measured blood oxygenation changes. Nevertheless, the stimulus-evoked response was

completely missing over the parieto-occipital cortex. A possible explanation is that the light

never reached the cortex and thus only skin blood flow is measured. Scalp thickness is known

to be larger in occipital areas while being thinner in frontal and temporal sites (Zhao et al.,

2002; Okamoto et al., 2004). While this is a factor that needs to be taken into account, it still

does not explain why other studies have indeed been able to image occipital oxygenation

changes with a comparable optode montage.

One difference between our device and the devices used in these three studies are the light

sources and the wavelengths used. While our device utilized LEDs emitting light at 760 and

850 nm, the other studies all used full laser setups with two or three different wavelengths.

The longest wavelength was 830 nm for all devices, while the shorter wavelengths were 690,

780 and 805 nm. As Scholkmann et al. (2014) note, all used wavelengths pairs (triplets) are

theoretically able to image light absorption due to concentration changes in HbO and HbR.

The fact that LEDs are known to produce less exact, and even skewed optical spectra was

considered as a possible explanation since this usually leads to a slightly lower signal-to-noise

ratio (Myllylä et al., 2015). Myllylä et al. (2015) experimentally found no large differences in the

results of both systems when measuring the increase in HbR on the forehead while holding

the breath. It must be noted though, that the observed HbR increase is no compelling proof

for the equivalency of the systems on cortical imaging. After all, the skin-level blood flow alone

would also exhibit the same drop in oxygen.

Classifier fusion The unexpected impasse with the fNIRS-side of the multimodal BCI also

made the attempted classifier fusion an effort in vain. Interestingly, the increase in the pseudo-

fusion of the data of experiment one could not be replicated in experiment two, where signals

were simultaneously recorded. Therefore, it is likely that the fusion of two different sessions

added more information than simply recording the two modalities alongside each other.

Unfortunately, this is not viable for a closed-loop BCI system. Further, we have gathered

evidence that classifier fusion on the trial level might have the potential to allow more people

to reach classification performances above chance level, as compared to either modality alone.
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3.3 Pupillometry

3.3.1 Introduction

Pupillometry denotes the measurement of pupil size changes due to external and internal

influences. One of the oldest uses of the pupil responses to light was outcome prediction in

comatose patients in critical medical care (Loewenfeld and Lowenstein, 1993). This evaluation

was based on the natural constrictive response of the pupil to bright light. Muscles in the

iris control the amount of light entering the eye by constricting (miosis) or dilating the

pupil (mydriasis). This is called the pupillary light response (PLR) and is the main human

mechanism for light exposure adjustment and to some extent also to protect the retina from

too high light intensities (Ellis, 1981).

But the PLR is not the only system that can influence the pupil diameter. Especially in

psychological and neuropsychological experiments pupillometry is used to uncover cognitive

and emotional processing (Beatty, 1982; Laeng et al., 2012). Studies have linked unconstrictions

of pupil size to stress, fear and arousal, while relaxation shows the opposite effect (Laeng et al.,

2012). Importantly, changes in pupil size due to cognitive and emotional processing are

not to be mixed with the PLR, since they do not share the same neural substrate (Beatty,

1982; Loewenfeld and Lowenstein, 1993; Aston-Jones and Cohen, 2005). Studies have found

evidence of a strong top-down influence of the Locus Coeruleus — the noradrenergic hub in

the brain — on the pupillary constriction and dilation (Aston-Jones and Cohen, 2005; Laeng

et al., 2012). The PLR on the other hand, shows strong connections to the Superior Colliculus

(Wang et al., 2012).

Binocular rivalry studies, where each eye is presented differently with either a bright or dark

stimulus, showed that the PLR corresponded to the perceived stimulus, showing that the

PLR is not merely related to the physical stimulus but is influenced by perception (Lowe and

Ogle, 1966; Naber et al., 2011). Naber and Nakayama (2013) and Binda et al. (2013b) further

demonstrated that pupil constriction to images containing the sun was higher as compared to

isoluminant images without sun. This was corroborated by Laeng and Sulutvedt (2014) who

showed that even imagining bright or dark scenes, whilst actually looking at an isoluminant

gray background, influences the pupil size accordingly. Taken together, this clearly points out

that the PLR is influenced by cognition.

Binda et al. (2013a) were the first to show that the PLR can be modulated by CVSA. Participants

covertly attended to either sides of the screen which contained a bright or dark disk respectively.

They observed that covertly attending to bright areas lead to a constriction while attending

to dark areas to a dilation of the pupils. This fits well with the premotor theory of attention,

where shifts in visuospatial attention are considered to precede overt saccades and covert

attention is only a cognitive blocking of the actual saccade (Rizzolatti et al., 1987). In this

school of thought it makes sense to adapt the pupil size already to the target region before

making the saccade, so that the time delay of adaptation can be minimized.
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Mathôt et al. (2013) extended the idea presented by Binda et al. (2013a) by integrating a

split (dard-medium-light) background into a Posner cueing task, probing covert attention

(Posner, 1980). They showed that a stronger PLR is linked to a stronger cueing effect, as probed

by the orientation detection of a Gabor patch. The similarity between the presented visual

protocol and standard protocols in EEG-based CVSA BCIs allows for simultaneous testing of

the particular CVSA-related effects. Furthermore, the eye tracker does also not interfere with

the EEG setup, making it a very interesting combination for a hybrid BCI.

The goal of our experiment was to explore single trial classification of the PLR in conjunction

with simultaneous EEG measurements. We report on the average responses to the CVSA for

both modalities, single trial classification results and the performance of a hybrid BCI by using

trial-level classifier fusion.

3.3.2 Materials and Methods

We reanalyzed the data from day one of the study described in Chapter 2, Section 2.2.

Visual display

The main addition to the setup described in Section 2.2 was the background coloring, which

was necessary to achieve the luminance contrast between the left and right side target region.

Inspired from Mathôt et al. (2013) we split the background into three parts: a central gray

vertical band (width 7° visual angle) which contained the central fixation point and the

symbolic spatial cues. The remaining side panels which housed the left and right side

target placeholders were either black or white, to allow for maximum contrast between

the two (Figure 3.17b). The order bright-medium-dark or dark-medium-bright changed

pseudorandomly between trials and ensured that the same amount of left and right side CVSA

trial targets were displayed on dark or bright background. Apart from the differently colored

background, all visual elements are positioned exactly as described in Section 2.2.

Data analysis

The optical eye tracker used (EyeLink 1000 Plus, SR research, Ottawa, Canada) allowed for the

automatic tracking of the pupil size in arbitrary units. This allows for the easy extraction of

changes in the pupil size when subjects shifted their attention towards areas of higher or lower

luminosity. The conversion of the EyeLink 1000 Edf files was done with the Edf2Mat Matlab

Toolbox (https://github.com/uzh/edf-converter). All further processing was done in MATLAB

Release 2017b (The MathWorks, Inc., Natick, Massachusetts, United States). We detrended the

pupil size recordings with a moving median filter (60 s window; analog to a highpass filter)

and reduced the jitter by applying another moving median filter (0.5 s window; analog to a

lowpass filter).
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BCI

eye tracker

EEG cap Feedback
screen

(a) Experimental setup with the EEG cap and
amplifier as well as the eye tracker and the feedback
screen.

distractor end target

distractor

cue

target

(b) Visual paradigm for the CVSA
task throughout the trial on a tricolor
background.

Figure 3.17 – Experimental setup and visual paradigm. (a) Experimental setup for the
multimodal EEG + pupillometry BCI. The eye tracker was used to monitor gaze fixation
in the center of the screen as well as the pupil diameter. (b) Visual display at the time of the
cue presentation (foreground) and at the end of the sustained attention phase (background).
Subjects were instructed to fixate the center point throughout the trial and shift their attention
towards the cued side. At the end of each trial, when the inscribed cross disappeared at the
cued (valid trial) or uncued side (invalid trial), subjects responded as fast as possible with a
button press. The background was flipped randomly between trials. Note that the symbol
sizes are not to scale.

For plotting grand average results encompassing multiple subjects, we baselined every trial by

dividing by the average pupil size during the last 100 ms before the cue appearance (Mathôt

et al., 2013). This allowed to control for different mean pupil sizes between subjects. To decode

the attended side, we first identified the time window that best discriminated bright versus

dark side. We then used an LDA classifier based on the average pupil size (relative to baseline)

during this time window (0.9 - 1.1 seconds after the cue onset). Additionally, this time window

was present in all trials, which lasted 1.1 - 5.1 seconds from the cue onset (1 - 5 s after cue offset).

As for the EEG decoding, we used 10-fold cross validation to estimate classifier performance

and repeated the classification procedure 100 times to get stable estimates. For details in

the classification procedure, please refer to Section 2.2, where the analogous procedure is

described for the EEG. The only difference is, that for the pupillometry, due to having only a

single input feature, the feature selection step was unnecessary.

Classifier fusion

Following our hypothesis, we fused EEG and pupillometry. For this, we implemented a meta-

classifier: we used the posterior probability output from both the EEG and pupillometry

classifiers as two-dimensional input space which was fed to another LDA classifier. This

resulted in an automatic weighting of the two features, thus naturally weighting each modality
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as a function of its performance (Leeb et al., 2011; Dähne et al., 2015).

3.3.3 Results

Figure 3.18 shows the results of a one-person pilot study with a tricolor background in white,

gray and black. We found significant difference between the left (bright) and right (dark) sided

attention trials from 0.9 to 3.8 seconds after the cue. Pure center fixation led to a pupil size

indistinguishable from the attention to the bright side.

Figure 3.18 – Average pupil size for one pilot subject in response to CVSA to targents on white
(left side) or black (right side) background or to center fixation (not baselined). The small
inscribed image shows the screen background with one third white, gray and black. The
gray area in between the right and left side attention means is statistically significant with
p < .05, cluster corrected. The fixation cross and target circles are not to scale and in exact
positions. The size of the gray screen center area was reduced for the full study in accordance
with Mathôt et al. (2013).

For the full study we changed the white fixation cross to a gray fixation point with the same

luminosity as the background, so that the fixation trials would not be influenced by the

luminosity of the fixation cross. Further, we narrowed the gray vertical center band to 7° visual

angle in order to confirm with Mathôt et al. (2013).

Figure 3.19 shows the average pupil size when CVSA was deployed towards the bright (yellow

line) or dark (blue line) side. We observed a 2 - 4% difference in pupil size between conditions

starting around 750 ms after the cue. This timing also corresponded to a hump present for

both conditions and followed by a downwards slope until around 1.2 s. A similar temporal

dynamic was observed for center fixation trials, albeit with a weaker downward slope. From

this dip on, the pupil size continually grew until the trial ended, which is possibly due to

movement preparation for the response task (Richer and Beatty, 1985). Note that the jagged

means towards the end of the 5 s period are due to the fewer long trials. Based on these results
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and the fact that the shorter trials lasted only one second, we defined the time window for

classification as 0.9 – 1.1 s after the cue.

Figure 3.19 – Grand average of the baselined pupil size in response to CVSA to targents on
white (yellow line) or black (blue line) background. The gray line depicts the average pupil
size in central fixation. Shaded areas are the standard deviations of the subject means. The
radical drop in the mean pupil size after five seconds is due to samples already capturing the
appearance of the target (temporal jitter in the signal), at which moment the pupil unconstricts
rapidly.

(a) Mean classification performance. (b) Subject-wise classification performance.

Figure 3.20 – Unimodal and multimodal classification accuracies. (a) Mean classification
performance across all subjects for the EEG alone (white), the eye tracker alone (gray) and
the hybrid BCI (black). Standard deviations are denoted by the whiskers. The star indicates
a p-value lower than .05 in a two-sided t-test. (b) Single-subject classification accuracies for
both single modalities and the hybrid BCI (center). The horizontal dashed line denotes the
two-class chance level in both figures.

EEG-based classification reached 62.05± 9.75% with a maximum of 78.70% (Figure 3.20).

Combining the two modalities with the meta-classifier raised the average classification perfor-

mance slightly to 63.78±10.22% and lifted the highest accuracy to 85.24%. Overall, the modality
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fusion improved the average pupillometry-based classification by 4.82±8.70% (p = .059) and

the EEG-based classification by 1.73±5.80% (p = .28). The hybrid classifier led to an improved

classification performance (>1%) in 7 (EEG), respectively 10 (pupillometry) out of 13 subjects

and allowed 8 subjects to perform above chance level (above the 95% confidence interval of a

random classifier).

When plotting the feature distribution for the two classes (left and right side CVSA) for the

metaclassifier we often encountered a case where one of the modalities did not add substantial

additional information for the combined classification (Figure 3.21b). In one case — subject

af1 — the obtained feature distribution for the meta-classifier was showing a near perfect

diagonal dividing line between the two classes, indicating that both modalities contributed

equally to the resulting classification (Figure 3.21a). Consequentially, this was also the subject

that profited the most from the classifier fusion, increasing its performance by 3.76% compared

to the pupillometry only case and by 17.03% compared to the EEG only case.

(a) Two-dimensional feature space for the
classes left (L) and right (R) covert attention
for the best subject.

(b) Two-dimensional feature space for the
classes left (L) and right (R) covert attention
for an average subject.

Figure 3.21 – Multimodal feature space of posterior probabilities. (a) The x-axis shows the
posterior probabilities from the eye-tracker classifier and the y-axis the posterior probabilities
of the EEG-derived PSDs. We see a very clear divide running diagonally between the two
classes, which shows that each modality brings information to the meta-classifier for this
subject. (b) For most subjects, one modality was performing way better than the other (here
the pupillometry classifier is basically random). This results in little to no information gain by
employing the meta-classifier.

3.3.4 Discussion

In this second section, we hypothesized that decoding pupillometric correlates of CVSA at

the single trial level could improve EEG decoding. Firstly, our experiment corroborated the

results of Mathôt et al. (2013) insofar as the pupil size is modulated by CVSA. Moreover,

we attempted single trial classification of these pupillometric correlates of CVSA and could

achieve significant decoding in 4 out of 14 subjects.
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We used a similar paradigm to our previous EEG-only paradigms, implying that classification

decisions had to be issued rapidly. This contrasts with a previous proof of concept study

in which the authors let the stimuli luminance vary periodically, so that initially dark disks

became bright, then dark again, etc. and vice versa for initially bright disks. This allowed

them to keep the trial going until the decoder was sufficiently sure about the selected stimulus

(initially white or black disk). This shows that implementing dynamical luminance changes can

aid the pupil pattern matching for classification. Therefore it can be assumed that periodical

smooth changes between white and black (offset for the two sides, see Mathôt et al. (2016))

could increase the classification performance. Further, a multimodal closed-loop system

could be envisioned, that keeps trials running to accumulate evidence in both modalities until

the meta-classifier is sure of the attended side.

Compared with the EEG, where the patterns introduced by CVSA are retionotopically dependent

on the locus of attention, the pupillometry data needs to be complemented with the information

of the luminance of the available targets. Not only does this make the hybrid BCI dependent on

the screen presentation, but it also needs to be performed in settings with controlled lighting.

This would prohibit the use of such a system outside or at places with changing light, but it

would offer a viable option for an in-clinic rehabilitation device.

Finally, we have demonstrated that the combined classification of pupillometry and EEG

data allowed one more person to achieve above-chance classification, which is a success in

constructing such BCI systems to work with a large part of the population. We observed that

the problematic cases for a successful classifier fusion were subjects with a modality that had

random classification performance, mostly in the pupillometry case. Therefore we expect

that if the inclusion of dynamic luminance changes into the visual protocol will lead to better

pupillometry classification results, the metaclassification will result in an even higher gain

over the unimodal classifiers.

In conclusion, if the controlled environment is not detrimental to the intended application

of the BCI (e.g. rehabilitation) we recommend the fusion of pupillometry with the EEG to

improve CVSA BCIs and we are positive that the discussed changes in the visual protocol will

further enhance such systems.

3.4 Conclusion

In this chapter we implemented classifier fusion on the classifier level in two different ways: (i)

by simply taking the mean of the posterior probabilities of the individual LDA classifiers and

classifying it with a 0.5 threshold and (ii) by building an LDA meta-classifier on the posterior

probabilities of the individual classifiers. While the first method gives the same weight to both

modalities, the second method should, at least theoretically, weight both modalities according

to their specific classification performance (Leeb et al., 2011).

The main observed outcome after combined classification for both hybrid BCIs (EEG + fNIRS
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and EEG + pupillometry) was that mean classification accuracies did not significantly increase

for simultaneous recordings. This stands in contrast to the paper of Fazli et al. (2012), who

reported a significant 5% increase in classification accuracy for using an equivalent meta-

classifier on EEG, HbO and HbR signals. Similarly, Putze et al. (2014) reported a significant

performance increase through the application of a meta-classifier. Both studies used the

combination EEG and fNIRS, which did not work in our experiments due to the inability of

the fNIRS to pick up meaningful signals from the visual cortex. But also in combination with

the pupillometry we could not observe a significant increase in classification accuracy. Even

though for one third of the subjects the combination of EEG and pupillometry allowed for

higher classification results than any of the unimodal classifiers, the mean increase of 1.8% is

neither statistically nor in real life an important gain. This opens the question if the PLR and

the occipital α-band oscillations represent two orthogonal information spaces, or if they are

rather highly correlated. In the latter case, combining the information might not be as helpful

compared to more orthogonal signals like the hemodynamic response.

Other data combination techniques, especially such of early fusion, i.e. fusion on the feature

level, are described by Dähne et al. (2015) but to our knowledge have never been investigated

in the classification framework of a multimodal BCI. This might be due to the very different

temporal dynamics of the two signals, which do not allow for a straightforward integration

into a joint feature space. Further, we are not aware of any studies exploring the potential

benefits of long-term use of multimodal BCI systems. It is thinkable that the inclusion of

another sensing modality can remedy somewhat the inter-session variability observed with

EEG-based BCIs (Corsi-Cabrera et al., 2007). Future studies should be devoted to answering

these open questions.

Finally, it also needs to be discussed if or when such hybrid BCIs are actually an improvement

of the current situation. Taking the combination EEG + fNIRS as an example, we have two

brain imaging modalities which operate on very different temporal scales. EEG is capable of

depicting fast brain responses like evoked potentials, which happen on the timescale of a few

hundred milliseconds, to comparatively slower endogenous brain commands via changes in

the power in the μ or α band, which usually happens over seconds. When used for spelling on

a screen, such types of BCIs can achieve information transfer rates (ITRs) of up to 105 bits/min

for evoked signals (Chen et al., 2014) and up to 35 bits/min for oscillatory activity(Blankertz

et al., 2007). Even if the overall decoding accuracy could be improved by 5-10% with the

introduction of a second sensing modality like fNIRS, the ITR would suffer strongly from the

sluggish temporal dynamics of the HbO and HbR signals. Since the ITR would be limited to the

slower of the two modalities, the ITR would be comparable to the one from fNIRS-only BCIs,

which lies between 1 and 4 bits/min (Zimmermann et al., 2013; Koo et al., 2015). Fortunately,

when looking at the application of BCI technology in rehabilitation settings, the ITR is less

important than the overall decoding accuracy. Studies showed that delayed feedback from

fMRI or fNIRS does not hinder the learning process in neurofeedback and closed-loop BCI

setups (Andersson et al., 2013b; Robineau et al., 2014; Kober et al., 2014).
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In conclusion, we found that the fusion of two orthogonal sensing modalities has the theoreti-

cal possibility to improve decoding performance of a BCI, but it does not work for everybody

and in every setting. Hybrid BCIs come with their own set of disadvantages like longer setup

time, an ITR limited by the slower modality and the possibility that the joint classifier performs

worse than the better of the two simple classifiers — especially for subjects with a large

difference between these two. It is possible to put the work in to resolve many of these

problems, but it comes at the cost of a very complex classification procedure which might lead

to a blackbox system with hard-to-interpret results.
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4 Brain stimulation

In Chapter 2 of the present thesis, we investigated how lateralization in parieto-

occipital α-band power can be used as a control signal for a brain-computer

interface (BCI) and attempted to improve the decoding using real-time feedback.

However, these lateralization shifts are observed only in part of the population.

Since many of the people with no lateralization also have a naturally low power

to their α-oscillations, it is conceivable that the lateralization is happening

during covert visuospatial attention (CVSA), but is not observable due to the

low signal-to-noise ratio. On the other hand, previous works have shown that

α-band power can be enhanced by applying transcranial alternating current

stimulation (tACS). We thus hypothesized that tACS can boost the individual

α-band power and subsequently enhance the lateralization elicited by CVSA,

which, in turn, would also increase the BCI decoding accuracy. We enrolled

six subjects in a crossover pilot study and asked them to perform a CVSA task

before and after 20 minutes of occipital high definition tACS (HD-tACS) at their

individual peak α-frequency. As a control condition, we repeated the procedure

on a different day but stimulating at a β-frequency. We predicted that the α-

stimulation condition would lead to enhanced baseline levels of α-power and

would result in a clearer lateralization pattern as compared to the β-frequency

stimulation. Contrary to our expectations, we did not observe any consistent

differences between the stimulation conditions, neither in the baseline α-power

nor the lateralization pattern. Also classification and behavioral results did not

diverge significantly. An additional test contrasting α-stimulation with rest (i.e.

no stimulation) likewise did not reveal any consistent differences between the

groups. Although our pilot data revealed a mild overall increase in alpha power,

it did not translate in behavioral changes nor in differences in task-related

electrophysiological activity. Moreover, additional tests revealed inconsistent

stimulation effects on alpha power.
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4.1 Introduction

As shown in previous chapters, CVSA BCI hinges greatly on the achieved decoding accuracy,

which indicates if users feel in control, and if so, how efficient the communication runs.

Decoders that are not better than random not only defy the purpose of the BCI as a tool to

interact or rehabilitate, but also discourage people from any further use (Huggins et al., 2011).

Electroencephalography (EEG)-based decoding of left and right sided CVSA is based on the

lateralization of occipital α-oscillations; α-power decreases contralateral to the attended side

and increases in the ipsilateral hemisphere. Rihs et al. (2007) made the interesting observation

that subjects which achieved substantial α-lateralization during a CVSA task also showed

high α-power levels during baseline, and that the baseline levels are very subject-dependent.

Conversely, participants with low baseline α-activity showed little to no lateralization during

CVSA. This raises the question of whether enhancing the occipital α-power would by itself

also enhance the lateralization observed during CVSA, which, in turn, would allow for higher

classification performances.

We decided to test this hypothesis by utilizing tACS — a noninvasive brain stimulation

technique, shown to be able to enhance occipital α-rhythms (Zaehle et al., 2010; Helfrich et al.,

2014b; Vossen et al., 2015; Kasten et al., 2016). A large part of the literature focuses on the

stimulation at the individual alpha frequency (IAF), which is defined as the frequency with the

highest peak in the α-band from 8-14 Hz. It is believed that the IAF is the intrinsic frequency

of the individual α-rhythm network, and so, stimulation in this frequency should have the

largest effect, since the neural networks are already tuned to it (Thut et al., 2011). A power

increase after tACS in the individual α-band is has been shown with a set of patch electrodes

over locations Cz and Oz in the international 10-10 system (Neuling et al., 2013; Helfrich

et al., 2014b; Kasten et al., 2016; Ruhnau et al., 2016), as well as in a bilateral arrangement

over locations PO9 and PO10 (Zaehle et al., 2010; Thut, 2014; Vossen et al., 2015; Saturnino

et al., 2017). Further, Helfrich et al. (2014a) also showed similar results with a high definition

(HD)-tACS setup with smaller electrodes in a 4-1 configuration over each occipital hemisphere.

The elevations in α-power achieved through tACS in these studies ranged from an averaged

14% (Zaehle et al., 2010) to 80% increase (Kasten et al., 2016) of the power of the IAF compared

with the pre-stimulus levels.

Therefore, we tested our hypothesis on pilot data in a double-blind crossover study, where

participants would engage in an CVSA task before and after tACS, either in the IAF or a control

frequency in the β-band range. We report on the influence of α and β-tACS on the power in

the individual alpha band (IAB), the induced changes in electrophysiology during CVSA and

any difference in behavioral proxies to CVSA.
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4.2 Materials and Methods

4.2.1 Participants

For this crossover pilot study we enrolled six participants with a mean age of 29.2 ± 4.9

years. All subjects reported normal or corrected-to-normal vision. All participants were

right handed and 4 and 2 participants displayed right and left ocular dominance respectively.

The study confirmed with the requirements of the Declaration of Helsinki (World Medical

Association, 2013) and was covered under the ethical protocol No PB_2017-00295 of the ethical

commissions of the cantons of Vaud and Geneva, Switzerland. All participants gave their

written informed consent.

4.2.2 Experimental setup

During the CVSA task subjects sat in a dark, shielded room, with their head in a headrest that

was fixed 50 cm in front of a 24′′ LCD monitor. The EEG was recorded with an active 64 channel

HIamp EEG amplifier (g.tec, Schiedlberg, Austria) at 512 Hz and referenced to the linked ear

potential. The electrodes were positioned according to the international 10-20 system with the

ground electrode on FCz. Eye movements and blinks were monitored with an eyeLink 1000

optical eye tracker (ET) (SR research, Ottawa, Canada) at 500 Hz, calibrated on the dominant

eye (Holmqvist et al., 2011). tACS was administered via five HD electrodes of a neuroConn

DC-stimulator plus (neuroCare Group GmbH, Munich, Germany, see Section 4.2.3 for details).

While tACS was administered, subjects sat in dim light (as compared to darkness) to relieve the

eyes and prevent excessive sleepiness. The recording setup is displayed visually in Figure 4.1.

All software for recording, real-time eye-tracker processing and the on-screen display was

written inhouse.

4.2.3 Session structure

Each participant was recorded on two different days, with both recordings being one week

apart. Half of the participants started with tACS at the IAF and received β-frequency stimu-

lation on the second recording day. The other half of the subjects started with β-frequency

stimulation, followed by tACS at the IAF on the second day (see Section 4.2.3 for more details).

Each recording session included the following steps:

A) Resting state with eyes open / eyes closed (1 minutes each)

B) Covert attention task left / right with response times (15 minutes)

A) Resting state with eyes open / eyes closed (1 minutes each)

C) tACS while doing an attention keeping task (20 minutes)

A) Resting state with eyes open / eyes closed (1 minutes each)

B) Covert attention task left / right with response times (15 minutes)
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A) Resting state with eyes open / eyes closed (1 minutes each)

Figure 4.1b gives a graphical overview of the session structure. Together with the EEG and

tACS setup and intermittent breaks the total experiment duration per day was around 120 -

140 minutes, depending on the amount of aborted and restarted trials due to eye movements

and blinks (see Section 4.2.3).

Resting state

We recorded one minute of eyes open and eyes closed resting state EEG activity at four different

points in one session: before and after the pre-stimulation CVSA task as well as before and after

the post-stimulation CVSA task (Figure 4.1b). This was done on the one hand to determine the

IAF which was needed to set the correct tACS frequency, and on the other hand to monitor

the changes in the power of the IAB (= IAF±2 Hz) throughout the recording session (see

Section 4.2.5).

CVSA task

In the pre- and post-stimulation CVSA tasks, subjects were instructed to always maintain

eye gaze on a central fixation dot while shifting the covert attention to one of two (left and

right) target placeholders as instructed by a central cue. The background color was chosen

a medium gray to relieve strain on the eyes in the dark experimental room. To encourage

the attention shifts via increased target detection difficulty, all onscreen symbols were of low

contrast to the background.

Each trial started with the appearance of the central fixation point (0.5° visual angle) for 1-1.5

s, followed by a 100 ms presentation of a central cue in the form of a half-circle (line width

0.1°, radius 2°) pointing towards the side to attend. Subjects then shifted their covert attention

towards the indicated target placeholder (circles with a diameter of radius 2° and a line width

of 0.2°, centered at 12° extremity from the center point and at a downward angle of 30° from

the horizontal center line, see Figure 4.1c. After 2-4 s in this so-called attention period, a

visual target stimulus appeared in the form of an X-shape (line width 0.1°) inscribed in the

target placeholder circle. As the subjects detected the target stimulus, they were requested to

respond as fast as possible with a button press using their right index finger. Then subjects

could blink and relax during an intertrial time of 2-3 s while the current trial number and last

reaction time were shown on the screen to inform participants of the experimental progress

and their performance. The recorded reaction times were used as a behavioral measure for

CVSA (Posner, 1980).

To ensure that subjects did not overtly attend the target regions, and that the recorded EEG-

signal is free from blink artifacts, we implemented a real-time monitoring of the gaze position

and blinks. Whenever subjects blinked or deviated their gaze from the central fixation for more
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EEG cap Feedback
screen

blink + gaze
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(a) Participant and device setup for the CVSA
task.

individual alpha 
frequency (IAF)

beta (control) 
frequency

(b) Run sequence for the two recording days.

distractor target

target
placeholderdistractor

cue

(c) Visual protocol presentation during CVSA
task.

(d) EEG cap with stimulation positions.

Figure 4.1 – Experimental design, visual protocol, stimulation setup. (a) Experimental setup for
the CVSA task. Blinks and gaze deviation from the screen fixation point were detected in real
time and resulted in the abortion and restart of the affected trial. (b) Graphic representation
of the run order in one session. Each recording session had four eyes open/closed resting
state recordings (1 minute each) at the beginning and the end of the experiment, as well as
directly before and after stimulation. 120 trials of left and right CVSA were done pre and post
stimulation to assess the influence of the stimulation on the CVSA-induced brain patterns.
Subjects were randomly assigned to start either with tACS in the α- or β-frequency. (c) Visual
display at the time of the cue presentation (foreground) and at the end of the sustained
attention phase (background). Subjects were instructed to fixate the center point throughout
the trial and shift their attention towards the cued side. At the end of each trial, when the
inscribed cross disappeared at the cued (valid trial) or uncued side (invalid trial), subjects
responded as fast as possible with a button press. Note that the symbol sizes are not to scale.
(d) Sketch of the EEG-cap with the EEG electrodes in gray and the added stimulation electrodes
in blue and red. The color coding of the stimulation electrodes does not reflect polarity since
alternating current stimulation was applied, but the center electrode (in blue) received the full
stimulation current while current was split in four to feed the surrounding electrodes (in red).
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than 2° the trial was automatically aborted and restarted after the intertrial waiting period

(Roijendijk et al., 2013; Horschig et al., 2015).

Each CVSA run comprised 120 trials, 60 left and 60 right. In 80% of the time, the target

appeared at the indicated side (valid cues) whereas in 20% of the time the target appeared on

the opposite side (invalid cues). The inclusion of catch trials allowed to compute the validity

effect (VE) as a behavioral measure of CVSA (Schneider et al., 2018).

Transcranial alternating current stimulation

We administered 20 minutes of tACS at either their IAF or a control frequency in a double-

blinded crossover design. To preserve as many EEG recording positions possible for the

CVSA decoding, we decided against the widely used 5×7 cm patch electrodes and for an HD

tACS montage which could be fitted between the EEG electrodes. Unfortunately, preliminary

tests showed that subjects could easily distinguish between stimulation and sham (i.e. no

stimulation) throughout the whole session. This forced us to chose a control frequency instead,

which we set at a beta frequency (2.3× IAF, to avoid harmonics of the IAF), since θ, α and

γ-frequencies have been shown modulate attention-related processes (Laczó et al., 2012;

Brignani et al., 2013; Clayton et al., 2015).

For the HD tACS we used five circular HD stimulation electrodes with an electrode surface

of approximately 113 mm2 (disk electrodes with 6 mm radius) in a 4-1 montage. The center

electrode was positioned on Oz in the international 10-10 system, while the four surrounding

electrodes were placed on the positions PPO7h, PPO8h, PO9 and PO10 (Figure 4.1d. Based

on published literature we decided to stimulate at 1000μA peak-to-peak (Zaehle et al., 2010;

Helfrich et al., 2014b; Helfrich et al., 2014a; Fekete et al., 2018). A neuroConn Equalizer Box

(neuroCare Group GmbH, Munich, Germany) supplied the center electrode with the full

current 1000μA while splitting the induced current for the surrounding electrodes by four

(250μA each). The electrode impedance was tried to be kept below 10 kΩ, but for two subjects

we could not achieve values below 20 kΩ. At the beginning and the end of the stimulation we

ramped the current up and down for 3 seconds to dampen the skin sensations induced by the

stimulation on- and offset. As in Helfrich et al. (2014a) and in Fekete et al. (2018), no subject

reported phosphenes with the chosen stimulation intensity. To compare our HD montage

with other setups reported in literature, we modeled the resulting electric fields using the roast

toolbox (Figure 4.9; Huang et al., 2018).

During the stimulation we employed a visual attention task modeled after (Kasten et al., 2016),

which was developed to keep subjects awake and their eyes open. Subjects were required to

keep their head in the chinrest and focus to the center of the screen, which presented a gray

ring of 2° diameter with four white markings at 3, 6, 9 and 12 o’ clock positions. They had

to respond with a button press whenever this circle rotated (rotation duration 250 ms). This

happened randomly 40 times during the 20 minutes stimulation run, leading to one rotation

per 30 s on average.
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4.2.4 Questionnaire

To document stimulation-related subjective effects, we included a questionnaire based on

the one proposed in (Brunoni et al., 2011). Further, we also included fatigue ratings at the

beginning and end of the session, since fatigue is known to increase α-power levels and could

therefore be a contributing factor to α-increases from pre to post stimulation (Boksem et al.,

2005).

4.2.5 Data processing

Data processing and analysis was done in MATLAB Release 2017b (The MathWorks, Inc.,

Natick, Massachusetts, United States). The topographical plots were produced with the

EEGlab toolbox (Delorme and Makeig, 2004). The conversion of the EyeLink 1000 Edf files was

done with the Edf2Mat Matlab Toolbox (https://github.com/uzh/edf-converter).

EEG preprocessing

We inspected the EEG signals visually and replaced channels with abnormal signature (N =
2.48±1.26) by an interpolation of the channels in a 50 mm radius. Trials with visible artifacts

as well as trials with button presses outside of a one second window after the target onset were

excluded from further processing. This resulted in an average exclusion rate of 2.6±5.0%. We

employed a fast Fourier transformation with one second long Hanning windows and 62.5 s

shift (16 Hz resolution) to obtain the power spectral density (PSD) values in single-Hertz

bands.

Individual alpha frequency

The spectral decomposition of an EEG recording of a person at rest reveals a peak (frequency

dominance) in the α-band from 8 - 14 Hz, which is the definition of the individual alpha

frequency (IAF) (Klimesch, 1999; Helfrich et al., 2014b). This α-peak is most prominent over

occipital areas, where α-band oscillations are believed to be the main contributing rhythm

to coordinate visual attention (Sauseng et al., 2005; Rihs et al., 2007; Foxe and Snyder, 2011).

Therefore, the IAF is a logical target for tACS for endogenous oscillation patterns (Rosanova

et al., 2009; Vossen et al., 2015).

We computed the IAF within a 60 second eyes open resting period at the beginning of the

experiment. To this end we averaged the PSDs of the EEG electrodes PO3, PO4, O1, O2 and

identified the highest peak in the frequency range from 8 - 14 Hz (Ruhnau et al., 2016; Fekete

et al., 2018). This was the IAF used to compute the individual stimulation frequency (see

Section 4.2.3). We repeated the extraction of the IAF and the mean power in the surrounding

α-band (IAF ±2 Hz) for all four resting state blocks in each recording to monitor the stability

of the IAF and the change in power due to the CVSA task and tACS.
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Alpha lateralization index

We defined the α-power lateralization index (α-LI) as the difference of the mean activity of the

electrode clusters (P6, P8, PO8) and (P5, P7, PO7) in the IAB (Thut et al., 2006):

α-LI =α

(
P6+P8+PO8

3

)
−α

(
P5+P7+PO7

3

)
(4.1)

The resulting α-LI is negative when the left visual hemifield is attended and positive when the

right visual hemifield is attended. We then defined the α-LI span as the average difference

between the mean α-LI for right and left trials throughout a run. As such, the α-LI span

increases when the area between the two mean α-LI curves (one for left and one for right side

CVSA) gets larger.

Discriminative analysis

Apart from the immediate effects of the tACS on the levels of α-band power in the resting

state, we also wanted to explore the impact of the different stimulation frequencies on EEG

classification performance during the CVSA task. For the topographical plots, we averaged

the power in the IAB over all trials and over the trial duration and then subtracted right from

left-side trials, to emphasize the occipital α-power lateralization.

To decode the attended side on a trial-by-trial basis, we trained and tested linear discriminant

analysis (LDA) classifiers and assessed their performance with 10-fold cross validation. The

initial feature space was chosen as the channels × frequency bands array containing the PSDs

of the electrodes located across the parieto-occipital cortex (P7, P5, P3, P1, Pz, P2, P4, P6,

P8, PO7, PO3, POz, PO4, PO8, O1, Oz, O2) in five one-Hertz wide bands spanning the IAB.

Then we used canonical variate analysis (CVA) (Galán et al., 2007) to limit the number of

features to a maximum of 10 to prevent overfitting, and then trained a regularized (γ= 0.5)

LDA. We classified each sample (16 samples per second) and then took the mean posterior

probabilities across each trial to classify them into left and right side CVSA. To avoid results

introduced by the random split in the cross validation procedure, we repeated the whole

process of performance estimation 100 times and reported the average over these repetitions.

The chance level was computed as the upper bound of the 95% confidence interval of a

binomial distribution with an expectation value 0.5 for 120 trials.

4.3 Results

4.3.1 Effect of tACS on alpha power

Our main hypothesis was that tACS at the IAF would lead to increases in the power of the

IAB over the stimulated areas. Figure 4.2 shows the pre- and post-stimulation levels in the

IAB. The power in the IAB grew by 24.1±63.6%(p > .05) in the α-stimulation condition and by
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6.1±14.3%(p > .05) in the β-stimulation condition. In the α-stimulation condition, as well as

with β-stimulation four out of six subjects showed increases after the stimulation. Figure 4.3

displays the mean power spectra over the electrodes PO3, PO4, O1 and O2 for each subject

before and after each stimulation condition. Subjects S4 and S5 showed a higher α-peak after

the α-stimulation and subject S2 displayed a shifted α-peak (not at the stimulation frequency).

In the β-stimulation condition, S1, S2, S3 and S6 showed elevated spectra over the β-band

region, while S5 showed an increased α-peak. According to the questionnaire, subjects felt

moderate itching (in 80% of the sessions), moderate tingling (in 50% of the sessions) and mild

burning (in 33% of the sessions).

(a) Pre and post stimulation α-power.

S1

S2

S3

S4

S5

S6

(b) Color
legend.

Figure 4.2 – Alpha power changes as a result of tACS in the α- or β-band. (a) Average relative
change in the IAB power for both conditions (leftmost panel). The error bars indicate the
standard error of the mean. Changes in the power (log scale) of the IAB for each subject from
pre to post tACS, at either the IAF (left) or the β control frequency. (b) Every subject (S1 - S6)
has a unique color code as shown here, which can be used to track the results of an individual
subject throughout the different analyses.

4.3.2 Effect of tACS on alpha-power lateralization during CVSA

Our second hypothesis stated that an increased baseline α-power due to tACS should lead

to more lateralization during the CVSA task. Figure 4.4 shows the averages and individual

changes in the α-LI span in the α- and β-stimulation condition. The means did not change

significantly (p > .05). Three out of six subjects increased their α-LI span after tACS in the α-

stimulation condition, while only one out of six did after β-stimulation. Figure 4.5 displays the

individual results for the pre- and post-stimulation α-LI — mean values for left (red) and right

(blue) sided CVSA throughout the trial duration — as well as the topographical lateralization

patterns (means over the IAB and trial duration, right minus left side attention). We observed

lateralization patterns in S2, S3 and S5, although for the latter, the chosen electrodes for the

α-LI computation were not the most discriminant ones. Subjects S1, S4 and S6 showed no
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Chapter 4. Brain stimulation

Figure 4.3 – PSDs pre and post stimulation for single subjects. The upper row presents the pre-
(black) and post-stimulation (magenta) PSDs for tACS in the IAF. The lower row depicts the
pre- (black) and post-stimulation (green) PSDs for tACS in the control frequency. All graphs
have a logarithmic y-axis.

clear signs of a task-induced lateralization.

4.3.3 Changes in classification accuracy

The classifier accuracy in the binary left and right side CVSA paradigm is tightly coupled

with the induced lateralization patterns. The mean classification accuracies increased from

64.6±11.8% to 66.2±11.3% in the case of the α-stimulation and from 60.4±9.9% to 64.9±6.8%

for the β-stimulation (Figure 4.6). On an individual basis, subjects S2, S5 and S6 showed

increased classification performance after the α-stimulation, and subjects S2, S4 and S6 after

the β-stimulation.

4.3.4 Behavioral effect

Our behavioral proxy to CVSA was the validity effect (VE), which is defined as the reaction

time difference between catch trials and validly cued trials. Figure 4.7 presents the average

and individual changes in the VE pre and post stimulation in both conditions. Three and two

subjects out of the six showed increases in the VE after stimulation at the α- and β-frequency,

respectively.
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4.4. Discussion

Figure 4.4 – Mean α-lateralization index span pre and post tACS. The left panel shows the grand
averages of the α-LI span for all subjects and conditions. The error bars indicate the standard
error of the mean. The middle panel shows the individual changes in the α-stimulation
condition and the right panel for the β-stimulation condition. The color codes for individual
subjects can be found in Figure 4.2b.

4.3.5 Comparison with no-stimulation condition

Since the results of our tACS intervention on alpha power were inconsistent across subjects,

four out of six subjects agreed to come back to test stimulation at the IAF versus rest (i.e. no

stimulation) with the same electrode setup. Figure 4.8 displays the pre- and post-stimulation

power in the IAB for the same four subjects across the four recording days (α- vs. β-stimulation

and α- vs. no stimulation). Therefore, we can observe twice as many data points in the

middle panel, which allows us to estimate the replicability of the observed effects. Subjects S1

and S3 showed very similar behavior (one increasing and one decreasing) in both recording

days, whereas S5 and S6 showed an opposite effect. In the no-stimulation condition, three

subjects show no changes, while one subject still presents an elevation in α-power in the post

measurement. No clear patterns are visible that set apart one of the conditions.

4.4 Discussion

In this pilot experiment we used tACS at the IAF to boost the levels of endogenous parieto-

occipital α-power in order to study its effects on the electrophysiological and behavioral

correlates of CVSA. Our preliminary results do not show consistent power increases in the IAB,

neither after α- nor β-stimulation. Further tests also found no difference to absent stimulation

in the same protocol. A CVSA task before and after the stimulation showed no significant

differences (p > .05) in lateralization, classification or the validity effect (VE).
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Chapter 4. Brain stimulation

(a) S1, α-stimulation (b) S1, β-stimulation

(c) S2, α-stimulation (d) S2, β-stimulation

(e) S3, α-stimulation (f) S3, β-stimulation

Figure 4.5 – Individual α-LI over time and topographical lateralization patterns (a-f). Pre- and
post-stimulation plots of the average α-LI time course on the top and the mean topographical
lateralization pattern in the IAB (right minus left side attention trials) on the bottom. The
lateralization index is colored red for left-side trials and blue for right-side trials; the y-axis is
kept the same for all subjects. The color axis for the topographical plots is kept constant for
each individual subject, but changes between subjects due to large individual differences in
the α-power base level. (continued on next page)

4.4.1 tACS parameter choices

The role of occipital α-power in visual and attentional processes has made it an interesting

target to manipulate with noninvasive brain stimulation (Klimesch, 1999; Foxe and Snyder,

2011; Thut, 2014). tACS is still a rather novel tool for influencing ongoing oscillatory activity,

and its mechanism of action is still the focus of ongoing research (Antal and Paulus, 2013;

Fröhlich, 2015). Multiple studies have attempted to modulate ongoing α-band activity via

80



4.4. Discussion

(g) S4, α-stimulation (h) S4, β-stimulation

(i) S5, α-stimulation (j) S5, β-stimulation

(k) S6, α-stimulation (l) S6, β-stimulation

Figure 4.5 – Individual α-LI over time and topographical lateralization patterns (g-l). Pre- and
post-stimulation plots of the average α-LI time course on the top and the mean topographical
lateralization pattern in the IAB (right minus left side attention trials) on the bottom. The
lateralization index is colored red for left-side trials and blue for right-side trials; the y-axis is
kept the same for all subjects. The color axis for the topographical plots is kept constant for
each individual subject, but changes between subjects due to large individual differences in
the α-power base level.

tACS but the large search space of possible setup and parameters makes it hard to summarize

the findings. Table 4.1 gives an overview of the most important parameters used in recent

studies for tACS-driven amplification of parietooccipital α-power.

Five out of the six studies found significant differences between tACS stimulation in the IAB

compared to sham stimulation. The only other study that reported no difference in groups

was also the only study (apart from ours) using HD stimulation electrodes instead of patches
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4.4. Discussion

Figure 4.6 – Classification accuracy pre and post tACS. The left panel shows the grand average
classification accuracies pre and post stimulation in both conditions. The error bars indicate
the standard error of the mean. The two other panels present the pre- and post-stimulation
decoding of the attended side in the CVSA task. The left side shows the changes in the α-
stimulation condition, the right side for β-stimulation. The color codes for individual subjects
can be found in Figure 4.2b.

Figure 4.7 – Behavioral changes due to tACS. The left panel shows the grand averages in the
validity effect in both conditions pre and post stimulation. The error bars indicate the standard
error of the mean. The middle and right panel show the pre- and post-stimulation levels of the
VE for stimulation in the α (left) and β (right) band. The color codes for individual subjects
can be found in Figure 4.2b.

(Fekete et al., 2018). This suggests that HD-tACS is not powerful enough to influence the

natural α-power levels. Although Helfrich et al. (2014a) used HD electrodes in occipital γ-
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Chapter 4. Brain stimulation

Figure 4.8 – Comparison of tACS-induced effects for α, β and no stimulation. The left panel
shows the measured changes in the IAB when no stimulation was applied. The middle
panel contains both IAF-tACS recordings for the four subjects and can serve as a measure
for reproducibility of the stimulation effect in individual subjects. The right panel depicts
the IAB-changes measured after tACS in the control frequency (β-band). The color codes for
individual subjects can be found in Figure 4.2b. Note that the y-axes are logarithmic.

band stimulation and showed a significant decrease in α-band power, no study to our best

knowledge has managed to see an increase in alpha power by stimulating at the IAF with an

HD montage.

4.4.2 Simulation of the electric field

To shed further light on this topic, we simulated the induced electric field during tACS for our

setup and for the setup described in the papers from Table 4.1. The results can be seen in

Figure 4.9. The maximally induced field strengths range from 0.05 V/m. to 0.11 V/m (0.07 V/m).

Our setup was thus towards the lower end of the range in field strength but covered the

occipital cortex much more evenly than all other setups. Further, the setup of Zaehle et al.

(2010) achieved less field strength and still resulted in significant increases in α-power after

the stimulation. Therefore, judging by the simulated values of the stimulation coverage and

the induced electric field, no evident conclusions can be drawn as to why our setup did not

produce comparable results.
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4.4. Discussion

(a) Setup of this study

(b) Setup of Neuling et al. (2013) (c) Setup of Fekete et al. (2018)

(d) Setup of Helfrich et al. (2014b) (e) Setup of Vossen et al. (2015)

(f) Setup of Kasten et al. (2016) (g) Setup of Zaehle et al. (2010)

Figure 4.9 – Simulation of the induced electric field (view from behind). All simulations were
done using the roast toolbox (Huang et al., 2018). The right-side color bar indicates the electric
field strength and corresponds to the colors shown on the brain surface. The left-side color
bar shows the input values for the positive and negative currents at the electrode level. Note
that for multi-electrode setups peak-to-peak current needs to be divided by the number of
electrodes attached.

85



Chapter 4. Brain stimulation

4.4.3 Choice of control condition

One obvious difference between all studies reported in Table 4.1 and our experiment was

the choice of the control condition. The usual choice was to evaluate an active stimulation

condition versus a sham condition. To this end, current levels were tested and the highest

possible current below the sensitivity threshold was chosen for stimulation (Vossen et al.,

2015; Kasten et al., 2016). In pre-tests subjects reported to feel the stimulation at levels as

low as 250μV over an extended period of time. This ruled out a traditional sham setup since

we wanted the subjects to be blinded to the stimulation condition. Therefore we opted to

stimulate in the β-frequency instead (avoiding harmonics of the IAF). Indeed, Kanai et al.

(2008) demonstrated increased sensitivity to phosphenes after β-stimulation, but no study

reports changes in α-power as a consequence of β-band tACS. The similar changes in parieto-

occipital α-power after α- or β-band stimulation could be due to similar influences on the

cortical networks, but is unlikely since the no-stimulation condition was not different either.

4.4.4 Role of enhanced alpha power in CVSA

Overall, we observed a large intersubject variance in the measured levels of α-band power.

Lower baseline α-power has rather been connected to better memory retention (Klimesch et

al., 2007), better visual perception of covert stimuli (Thut et al., 2006) and a lower transcranial

magnetic stimulation (TMS) threshold for evoked phosphenes (Romei et al., 2008). But all

these results were obtained from intra-subject comparisons, i.e. the gating mechanism of

the α-oscillations most probably depends on relative changes in cortical oscillatory activity

and not on the absolute levels. Thus, compared to the experiment in Chapter 2, where

real-time feedback was able to improve behavioral correlates of CVSA, a general increase in

parietooccipital α-power as induced by the tACS would not necessarily enhance CVSA by itself.

Nevertheless, even if an elevated α-power level would show no functional effect, it could still

lead to enhanced BCI classification performance due to a better signal-to-noise ratio of the

α-lateralization patterns.

4.5 Conclusion

The modulation of ongoing natural oscillatory activity with tACS is an interesting approach

to increase the discriminability of brain activity patterns for the use in BCIs. Unfortunately,

our pilot study did not show conclusive evidence for a link between baseline alpha power and

behavioral and electrophysiological correlates of CVSA. Although no statistical analysis could

be conducted at the group level and more participants should thus be recorded, arguably, not

enough is known yet about the neuroscientific mechanism of action of tACS and the choice of

setup and useful parameters is far from being standardized. This study adds a small piece of

evidence to the body of literature and calls especially for a more thorough investigation of the

differences in stimulation effects achieved with setups with patch or HD electrodes.
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5 Discussion and conclusion

Covert visuospatial attention (CVSA) has been proposed as an endogenous and natural control

signal for brain-computer interfaces (BCIs) (Van Gerven and Jensen, 2009). However, im-

plementation studies highlighted the problem that CVSA could not be reliably decoded in

approximately one third to one half of the population (Tonin et al., 2013; Horschig et al., 2015).

The aim of this thesis was to explore and open up new ways to improve CVSA-based BCI

performance. To this end, I studied three complementary facets of CVSA BCIs: (i) the impact

of continuous real-time feedback on CVSA-related behavior and electrophysiology, (ii) the

integration of additional sensing modalities with the electroencephalography (EEG) into a

hybrid BCI and (iii) the effects of transcranial alternating current stimulation (tACS) on the

cortical patterns induced by CVSA.

5.0.1 Contributions

To explore the first approach, I designed the first online EEG-based CVSA-BCI with continuous

feedback and used it to conduct a sham-controlled crossover study to investigate the effect

of real-time feedback as compared to sham feedback. I could show a significant increase in

the validity effect (VE) — a behavioral proxy to CVSA (Posner, 1980) — in the experimental

group. This is interesting evidence that EEG could be used as a cheaper and mobile alternative

to the functional magnetic resonance imaging (fMRI) for the use in patient neurofeedback

training (Scharnowski et al., 2012; Sulzer et al., 2013; Robineau et al., 2017). Interestingly, the

behavioral improvements after real-time feedback could not be connected to changes in the

ongoing brain activity during CVSA. This could be due to the higher measurement noise in the

EEG-signal as compared to the behavioral task, masking any slight changes, or be an indicator

that internal shifts of covert attention and the observable lateralization patterns are not linked

directly.

In the first part of the hybrid BCI approach, I investigated the feasibility of using functional

near-infrared spectroscopy (fNIRS) in conjunction with the EEG in a multimodal BCI. The

obtained results suggest that the fNIRS was not capable of detecting oxygenation-related
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changes in the occipital cortex. Since occipital signals have been measured before with

Laser-based fNIRS devices (Harasawa and Shioiri, 2011; Morioka et al., 2014; Ward et al.,

2015), it opens the question if the used light emitting diode (LED)-based fNIRS system was

underpowered for measurements in occipital areas where the scalp-cortex distance is larger

than, for example, on the forehead.

In the second part of the hybrid BCI approach, I combined CVSA-related information from the

EEG with pupillometry measurements. I could demonstrate that the visual protocol developed

by Mathôt et al. (2013) can be used to decode CVSA-related pupil size on a single-trial basis.

Further, I showed that a fusion of both single-modality classifiers led to a higher average BCI

performance, higher maximal accuracy and a higher number of subjects above the chance

level than any of the single modalities alone.

To explore the neuromodulation approach, I utilized tACS at the individual alpha frequency

(IAF) to raise the baseline level of occipital α-power and compared the effects to stimulation

at an unrelated β-band frequency. Based on the findings in Rihs et al. (2009), I hypothesized

that higher baseline α-power would translate into a larger lateralization pattern during CVSA.

Results showed no significant difference between the two stimulation groups nor a consistent

increase from the starting α-level. Not surprisingly, measures extracted from the pre- and

post-stimulation CVSA tasks did not show any dependable changes either. Comparison of

the employed stimulation setup with respect to the literature and of the simulations of the

induced electric field did not yield a conclusive explanation for the missing effect. Fekete et al.

(2018) and my study are the only ones so far that attempted to amplify α-power by stimulating

at the IAF with an high definition (HD) electrode setup — and both yielded negative results.

If the simulations of the induced electric fields are to be trusted, the comparison of recent

tACS studies for occipital α-power enhancement implies that the intensity and location of the

electric field during the stimulation and the duration of the latter are not the only important

factors necessary for increasing cortical excitability through tACS. Future work is needed to

shed light on the still little understood principles of tACS.

5.0.2 Proposed future work

The work presented in this thesis raised interesting questions and gave indications of where we

should focus next to expand the current body of knowledge. Some of the following proposed

research aims at answering open questions while other parts aim at practical implementations

to achieve better working CVSA BCIs.

[Real-time feedback] Longitudinal training In this thesis, I did not observe significant

changes in the CVSA-related brain patterns in EEG as a consequence of the real-time feedback

intervention. One of the reasons might have been the short exposure to the feedback (around

20 minutes). Recently, Perdikis et al. (2018) have shown that longitudinal training of motor-

related patterns with an online BCI significantly increased the discriminant features in the

EEG. Therefore it would be interesting to explore the effects of long term and frequent real-
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time feedback on the CVSA-induced patterns. The same recording setup and protocols that I

described in Chapter 2 could be used to test the incorporation of multiple (e.g. 2×5) training

sessions.

[fNIRS] Hardware changes and updates FMRI measurements have shown that blood flow

changes during CVSA in the uppermost cortical layer can be used to decode the locus of

covert attention (Andersson et al., 2013b). Thus, it is not unreasonable to assume that the

same information can be obtained with modern laser-based fNIRS systems that employ short

separation channels to filter out the superficial signal (Saager et al., 2011; Gagnon et al., 2012;

Gagnon et al., 2014) and make use of a denser multi-channel optode grid to increase the

spatial resolution (Shin et al., 2017). A BCI based on such an advanced fNIRS recording setup

could be used as standalone or combined with EEG to benefit from multimodal integration.

[Pupillometry] Dynamic luminosity changes The visual protocol described in Chapter 3.3

uses different luminosities at the two screen target areas to get a different modulation of pupil

size depending on the side of the covert attention. Even though I showed that a single-trial

decoder can work with this paradigm, the classification accuracy was largely below what

Mathôt et al. (2016) reported for their speller application. Two major changes to our protocol

are most likely the reason for it. Firstly, they made the luminosity change dynamically over time,

allowing to employ a pattern-matching process on the pupil size dynamics. Secondly, they

continued each trial until a previously set threshold value was reached. The more conservative

the threshold is set, the higher will be the accuracy, but also the longer the trials will last.

(Mathôt et al., 2016) reported around 90% classification accuracy for an average trial duration

of above 20 seconds. Both principles could be easily integrated into our design and the

combination where the combination with the EEG has the potential to drastically reduce the

mean time to selection.

[tACS] Change of stimulation electrodes Due to the lack of a stimulation-related effect in

the occipital α-band, I could not verify the hypothesis that changing α-levels would also

influence the prominence of CVSA-induced lateralization patterns. Since three studies

have reported consistent α-power amplification with the application of 5 × 7 cm patch

electrodes over electrode positions Cz and Oz, I propose to attempt to replicate their findings

independently (of note, all three studies come from the same research group). Once the same

effect is established, this electrode setup can replace the one used in Chapter 4 (the cap setup

will be more complicated) and be used to probe the original hypothesis.

[tACS] Electrode comparison As discussed in Chapter 4, crucial insights on the workings

of tACS are still missing. The field of neurostimulation needs a more in-depth investigation

of the effects of different stimulation setups and parameters. For example, why did our

stimulation setup achieve no effects, although stimulating the same brain regions with the

same intensity had an effect with differently shaped and sized electrodes? The gold standard

for uncovering the effects of noninvasive brain stimulation is simultaneous recording from
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Chapter 5. Discussion and conclusion

implanted electrodes (Vöröslakos et al., 2018). Even though theoretically possible in humans,

a systematic exploration most certainly has to be done in animal experiments initially due

to the size of the free parameter space. Once sound models and simulation tools have been

developed, a move towards testing these models in humans would be the next step.

5.0.3 Conclusion

The inability to observe CVSA patterns in the EEG from a substantial part of the population

hinders the employment of an otherwise very promising control signal for BCI applications.

Even though I could not effectively address this issue with the work that I have put into this

thesis, I gathered valuable information about the rules that govern the investigated approaches.

The real-time feedback CVSA BCI might become a promising tool for neurorehabilitation. The

hybrid BCI was the most encouraging approach to overcome low BCI accuracies and could

enable more people to use BCIs. Finally, while the noninvasive brain stimulation approach

bears large potential, it also holds the most unanswered questions. Future research should

and will improve our current knowledge and technology until, one day, we will be able to offer

a BCI to every person that needs it.

“Does the cosmos contain keys for opening my diving bell? A subway line with no terminus? A

currency strong enough to buy my freedom back? We must keep looking.”

— Jean-Dominique Bauby, The Diving Bell and the Butterfly
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