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Abstract

Identifying the drivers of the observed interindividual variability of the human
immune system is crucial to our understanding of infectious and immune-mediated diseases.
The contribution of genetic and non-genetic factors to immunological differences between
humans remains largely undefined. The Milieu Intérieur Consortium has established a 1000-
person healthy population-based cohort (evenly stratified by sex and age), which represents
an unparalleled opportunity for assessing the determinants of human immunologic variance.

In this thesis, three population-based studies are presented, all benefiting from the samples
and data collected by investigators of the Milieu Intérieur Consortium. Human genome-wide
genotyping data, more than 100 environmental, lifestyle and physiological variables, and their
combination have been tested for their impact on multiple immune phenotypes. Firstly, we
identified the respective contributions of age, sex, and genetics to humoral responses to
vaccination and persistent viral infection. We observed that specific variants in the human
leukocyte antigen (HLA) region are the strongest genetic determinant of antibody response
to common antigens. In the second study, investigation of 166 immuno-phenotypes revealed
15 genetic loci associated with variation of immune cell parameters, mainly of innate immune
cells. We attributed an important role to genetic variation in the major histocompatibility
complex (MHC) region for these phenotypes and narrowed the signals to probable causal
associations in HLA genes. In the third work, forces shaping the gut microbiome composition
were investigated. We found a strong influence of several non-genetic factors on overall
microbiome diversity and on the abundance of specific bacterial species. We showed as well
that genetic factors only play a minor role in gut microbiome composition.

Together, these studies quantified the effects of demographic, environment and genetics on
the interindividual variability of phenotypes central to the human immune system.
Furthermore, they constitute a valuable resource for further explorations of the impact of
immune diversity on the individual risk of infections or of immune diseases.
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Résumé

L'identification des facteurs responsables de la diversité du systéme immunitaire
humain représente une étape cruciale dans notre compréhension des maladies infectieuses
et immunitaires. La contribution de multiples facteurs génétiques et non génétiques aux
différences immunologiques reste encore largement indéterminée. Le Consortium Milieu
Intérieur a mis en place une cohorte de 1000 individus en bonne santé (stratifiée de fagon
égale selon le sexe et I'age), créant ainsi une opportunité unique d’évaluer les déterminants
de la variance immunologique humaine.

Dans cette these sont présentées trois études basées sur les données et échantillons
de la cohorte populationnelle recrutée par le Consortium Milieu Intérieur. Les données
génotypiques de de tous les participants a I’étude ainsi que plus de 100 variables
environnementales et physiologiques ont été analysées individuellement et de maniere
combinée afin de déterminer leur impact sur de nombreux phénotypes immunitaires.
Premierement, nous avons identifié les contributions respectives de I'dge, du sexe et de la
génétique sur la réponse humorale aux vaccins et aux infections virales persistantes. Nous
avons observé que des variants dans la région de I'antigene d’histocompatibilité humain sont
le principal déterminant génétique de la réponse anticorps aux antigénes les plus courants.
Deuxiemement, en analysant 166 immuno-phénotypes, nous avons identifié 15 loci
génétiques associés a des variations de propriétés des cellules immunitaires, principalement
du systéme immunitaire inné. De nombreux signaux significatifs ont été détectés sur le
segment du chromosome 6 ou se trouve le complexe majeur d’histocompatibilité ; c’est
pourquoi nous avons procédé a une analyse détaillée de la variation génétique de cette
région. Nous avons aussi observé que le tabac, I'age, le sexe et l'infection latente par le
cytomégalovirus sont les principaux facteurs non-génétiques affectant les cellules
immunitaires. Troisiemement, nous avons examiné les forces influencant la composition du
microbiome intestinal. Nous avons observé une forte influence de différents facteurs non-
génétiques sur la diversité globale du microbiome, ainsi que sur I'abondance de certaines
especes bactériennes. Nous avons montré également que les facteurs génétiques ne jouent
qgu’un réle mineur dans la composition du microbiome intestinal humain.

Cet ensemble d’études a permis de quantifier les effets démographiques,
environnementaux et génétiques sur la variabilité interindividuelle de phénotypes immuns.
De plus, elles représentent une ressource précieuse pour explorer de maniere plus détaillée
I'impact de la diversité immunitaire sur les risques d’infections ou de maladies immunitaires.

Mots-clés

Immunité, Infection, vaccination, GWAS, Sérologie, Génomique humaine,
Immunoglobulines, Microbiome, Démographie, Environnement.
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Chapter 1: Introduction

1.1 The human immune system

The human immune system consists in a complex network of organs, tissues, cells and
molecules with a variety of functions that are essential to the maintenance of a healthy state.
It ensures beneficial cohabitation with the microbiome and prevents infection. Additionally,
it influences much more than host defense against external threats: it notably affects host
metabolism and aging, has crucial roles in the early detection and elimination of neoplasms
and is able to inflict damage in the context of autoimmune and autoinflammatory diseases
[1]. As a result, immune disorders are often associated with increased susceptibility to
infection, inflammation, autoimmunity, or even development of cancer [2].

The main components of the immune system are the various types of immune cells. Some are
tissue specific, while many circulate in the blood or in the lymphatic system, ready to access
injured tissues when recruited. Host immune responses are classically divided into two type
of responses: innate and adaptive. Innate responses are particularly important early in the
course of an infection as they react rapidly and non-specifically upon encountering a
pathogen. Adaptive immune responses are slower to develop but are specific and build up
immunological memory [3].

A large number of germline-encoded pattern recognition receptors, expressed on the surface
and in intracellular compartments of many cell types, is dedicated to recognizing abnormal
signals produced by invading pathogens or damaged cells. One of the best-characterized
group of pattern recognition receptors is the Toll-like receptor family (TLRs), which identifies
the broad category of infection (e.g. extracellular bacterium versus intracellular DNA virus) by
recognizing a few distinctive, highly conserved biochemical structures present in many
microorganisms, such as bacterial lipopolysaccharide (LPS) or viral double-stranded RNA
(dsRNA) [4].

An early step of the immune response is the activation of the responder cells - macrophages
and other cells producing cytokines and chemokines. These, in turn, recruit and activate other
immune cells. This cascade of events triggers the adaptive arm of the immune response,
composed of multiple subsets of T cells and B cells. Adaptive immunity is characterized by a
high degree of specificity against antigens, which is determined by the T and B cell receptor
repertoires and by the ability of these cells to generate memory. The cytokine production,
triggered by pattern recognition receptors in responder cells, also contribute to a more
efficient adaptive immune response, notably by inducing the differentiation of the
appropriate type of T cells. This indicates the existence of a tight link between the two arms
of the immune system [4, 5].
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Constantly confronted with a wide range of stimuli, the immune system works in a highly
dynamic fashion. Still, its main features are supposed to remain functionally stable for long
periods of time in healthy adults. It has been shown that immune cell frequencies and serum
protein levels remain very stable in blood samples taken weeks, months or even years apart
[6]. This suggests that each individual has a baseline state of immune system composition, in
which cells and proteins are well regulated, and the balances between these are optimal for
the healthy condition [7].

The relative stability of immune parameters over time enables investigations of the
underlying factors shaping an individual’s immune system.

1.2 Variation of the human immune system

Humans react differently to identical immune challenges [8], strongly suggesting a
high degree of variation in the composition and regulation of the immune system.

The considerable clinical variability in infectious disease outcomes observed between
individuals and between populations was initially attributed to pathogen characteristics,
including variable degree of exposure and of pathogenicity. As exposure to a microbial agent
is obviously required for infection and disease to occur, infectious diseases were often
regarded as examples of purely environmental diseases. That view changed when Charles
Nicolle demonstrated that the same pathogen could cause both asymptomatic and
symptomatic infections [9].

Immune variation manifests both at the cellular and intracellular levels. Differences can be
observed in the relative frequency of different leukocyte populations, variation in the
transcriptional and protein profiles within them, as well as in the functional capacity and
polarization of effector cells in response to immunological challenges. This variability results
markedly different susceptibility to different diseases [10].

The interindividual diversity of the immune system is an important mechanism for limiting
the impact specific pathogens can have on morbidity and mortality of a given population. To
counterbalance the clear advantage of microorganisms in evolutionary speed, multicellular
hosts have developed specialized cells and pathways (our immune system) that ensure
pathogen control. The maintenance of immune variability at the population level is therefore
a crucial aspect of its function [8].

The fact that healthy individuals display a large degree of variation in specificimmune system
components offers multiple avenues for studies into the mechanisms that provide robustness
and redundancy to the immune system [11].

1.3 Understanding immune variation
The plasticity and resilience of the immune system allows for a large spectrum of
functions that are helpful in our dealing with the environment. In parallel, it also increases

the probability that, in some circumstances, a subset of individuals will experience a
pathologic cascade of immunological events [12].
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Individual heterogeneity in immune responses can thus have important medical
consequences, such as immunodeficiencies, or meaningful differences in response to anti-
infectious therapy or to vaccine administration. It can also influence individual susceptibility
to autoimmunity, allergy, cancer, and complex diseases with an inflammatory component like
cardiovascular diseases and neurodegenerative disorders [13].

Given the breadth of the effects of immune responses on human pathologies, there is an
urgent need to understand immune variability in humans. To develop patient-based
individualized treatments, it is necessary to understand these processes at an individual level
within a population [14].

Personalized medicine can be defined as the management of a patient’s disease or disease
predisposition supported by large-scale molecular analyses to achieve optimal medical
outcome for the individual [15]. The potential advantages of this approach, both for patients
and doctors, include more accurate diagnosis and treatments, safer drug prescription, better
disease prevention and even reduction in healthcare costs [16].

A better comprehension of human immune variation in health and disease could pave the
way toward concrete applications of personalized medicine. Understanding at which point
the extent of immunologic variation becomes pathogenic will be critical in developing primary
prevention strategies for the diseases mentioned above. It will help to identify appropriate
targets for drug development and identify subsets of individuals that require more active
monitoring or need intervention [17].

1.4 Factors influencing immune variance

It is widely accepted that a broad range of factors contributes to human immune
system variation. Understanding when and how such influences shape the human immune
system is key for defining metrics of immunological health and understanding the risk of
immune-mediated and infectious disease [18].

Variability in immune responses can be due to (i) biological parameters (e.g. age, sex), (ii)
genetic variants (e.g. single nucleotide polymorphisms, gene methylation marks), (iii)
environmental factors (e.g. microbiome, latent or chronic infections, diet, smoking) (Figure
1.1) [19].
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Figure 1.1. The complex interplay between, and the effects of different factors on immune cells
and immune system of individuals. Adapted from [18].

It is well known that some immune responses are directly dependent on germline DNA
variants (e.g., HLA alleles). On the other hand, the mature T and B cell repertoires are shaped
by environmental exposures, which determine which subsets of naive cells undergo
maturation and expansion (e.g., pathogens and commensals, allergens, etc.) [4]. Thus, teasing
apart the contributions of environment and genetics to the immune system is a particularly
complex task. Yet, a combined understanding of both the heritable and the non-heritable
influences on immunity is necessary to fully understand inter-individual variation and its
consequences on immunological health and disease [20].

While many studies have examined the impact of individual components on specificimmune
responses, fewer integrative analyses have been performed. As a consequence, the
respective contributions of heritable and non-heritable factors to the composition and
function of specific immune responses are often unclear. Our understanding of the genetic,
evolutionary, and environmental factors that impact this inter-individual and inter-population
immune response heterogeneity is still in its early days [21].

1.5 Non-genetic factors influencing immune variation

Non-heritable influences are typically interpreted as environmental influences, such
as infections and vaccinations [22].

The presence of the microorganism is required, but not sufficient, for the development of an
infectious disease and Louis Pasteur himself — the father of the microbial theory —
emphasized the importance of non-microbial factors in susceptibility to infection [23].

Humans live in a complex environment, and although the influences of pathogens in shaping

our immune systems are the most well-described factors, many other non-microbial
environmental factors and intrinsic host factors exert a strong influence on human immunity.
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It was estimated that intrinsic factors explain 5% of the immunological variation, while up to
60-80% can be explained by environmental factors [24].

Unlike genetic and other intrinsic factors, which are in principle identifiable and measurable
in a given individual, dissecting out the meaningful environmental factors represents a more
daunting task. This is due to the fact that a limitless list of putative environmental factors
could be considered. Collecting data for any of these factors can be especially difficult, and
the timeframe over which environmental factors may be acting is mostly unknown, making it
hard to dissect their individual contribution to the immune variation.

1.6 Microbiome

Humans are host to trillions of microbes found across multiple body sites such as gut,
skin, vagina, oral and nasal cavities. The number of bacterial cells is estimated to be similar to
the number of human cells, but together they contain a much vaster genetic repertoire. Until
recently, research of the human microbiome used culture-based approaches. It is only
through the development of culture-independent techniques over the past decade that it has
become possible to examine the full diversity and functionality of the microbiome [25].

The gut microbiome is an essential factor in the education of the immune system. The types
of bacteria that colonize the infant gut play a central role in immune education and in the
establishment of immune tolerance toward gut commensal microorganisms [26].

The healthy immune system recognizes and interacts with the microbiome with exquisite
specificity. Studies have suggested that gut microbes promote the development of intestinal
Thl7 cells, which play an important role in infectious disease but are also implicated in the
pathogenesis of autoimmune and inflammatory diseases. In fact, aberrant host-microbial
interactions at the gut-immune interface are associated with a range of diseases, such as
inflammatory bowel disease, rheumatoid arthritis and cancer [27].

The gut microbiome can influence a range of diseases via numerous potential mechanisms.
However, the host also influences the gut microbiome: its composition depends on a range
of host, environmental and lifestyle factors [28].

The interplay of microbiome, non-heritable and genetic factors, is a major avenue of research
and it must be considered when investigating immune variation.

1.7 Genetic factors influencing immune variation

Human genetic variation has been implicated as a central factor in defining individual
susceptibility to many diseases though genetic epidemiological studies, complex segregation
studies and studies using concordance rates between monozygotic and dizygotic twins. In the
field of infectious diseases, severe infections occurring during childhood often represent a
monogenic immunodeficiency, while severe symptoms occurring later in life, mostly during
secondary infections, might result from more complex genetic predispositions. In fact,
increasing layers of evidence show that the human genetic control of common infectious
diseases lies in a continuous spectrum from Mendelian susceptibility (rare mutations with
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strong effect) to complex polygenic predisposition (polymorphisms with modest effect), with
several intermediate situations (for example, a major gene) [29].

Linkage studies of infections and vaccine responses have revealed important roles for several
immune-related genes. In particular, human leukocyte antigen (HLA) genes were shown to
have a pervasive influence on the activities of the immune system [30]. The HLA class | and Il
loci are the most polymorphic human genes. They are located in the major histocompatibility
complex (MHC), which is an extremely gene-dense region with long-range linkage
disequilibrium and hundreds of immunologically active genes. As HLA molecules present
microbial antigenic peptides to T cells, the polymorphism of HLA genes is required to mount
an efficient immune response against an extremely diverse world of pathogens [31].

HLA polymorphisms have been correlated with low antibody response to measles vaccination
in individuals homozygous at one or more HLA loci or carrying specific alleles such as HLA-
DRB1*03 and DQA1*0201. Other HLA alleles (HLA-B*44, DRB1*01, DRB1*08, and
DQA1*0104) have been observed to associate with very high seropositivity rates following
measles-mumps-rubella (MMR) vaccination. It is now clear that HLA genes are indispensable
for host defense at the individual and population levels, and that multiple infectious agents
are responsible for the selection of their extremely high degree of polymorphism [17].

Major studies into the genetic basis of the variation in the cellular and molecular composition
of the human immune system showed that genetic factors (e.g., common and rare variants,
variations in copy number) account for 20-40% of total immunological variance [10]. Yet, it's
only recently that we have started being able to query human genetic variation at large scale.

The completion of the Human Genome Project at the turn of the new century marked an
inflexion point in the history of biology: the post-genomic era began [32, 33]. With the
sequence in hand, the next step was to identify the extent of human genetic variation. The
HapMap project [34, 35, 36] and 1000 Genomes Project [37] were large-scale studies that
followed and successfully managed to identify and catalogue a vast number of nucleotides
that vary among individuals. All these efforts, accompanied by the advent of high-throughput
genotyping and sequencing technologies, established a new paradigm in the way of
approaching biological questions [38].

For the first time, researchers are able to scan the entire genome in a hypothesis-free,
agnostic approach. Multiple genome-wide association studies (GWAS) have now identified
genetic loci associated with multiple immune system phenotypes, such as immune cell
frequencies or the concentration of specific cytokines. The identified alleles revealed many
new associated loci, thereby providing leads for more in-depth genetic, etiological and
mechanistical studies, as GWAS primarily make use of markers that often represent causal
variation indirectly [39].

1.8 Population studies of immunity

The large-scale study of variation among healthy subjects is essential to understand the
immune changes that are truly disease-related (and not due, for example, to population
stratification or batch effects). With the collection of large research cohorts and the advent
of systems analyses in the field of human immunity, it becomes possible to reliably assess
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human immune system variation at the population level, to consider interdependencies
between immune system components, and to analyze their interindividual variability in
health and disease. Combining those advances with the recent progress in DNA analysis
allows researchers to correlate complex measures of immune parameters to genetic variation

[7].

Several cohort studies have been established to address these questions in recent years.
These include the Milieu intérieur consortium [40], the Human Functional Genomics Project
[41], the Human Immunology Project Consortium (HIPC) [42] and the 10K Immunomes [43].

In summary, several population-based initiatives that focus on healthy individuals and
integrate genetic and immunological phenotyping have begun to define the factors behind
variable immune responses. Together, these efforts should provide a better definition of
immune response variability and a clearer understanding of the key factors that drive it [17].

1.9 Overview of the Thesis

Throughout the thesis, | benefited from the extraordinary resources produced by
collaborators of the Milieu intérieur Consortium. My particular focus was on the discovery of
the genetic underpinnings of immune variance and microbiome diversity in healthy
individuals.

Chapter 2 describes GWAS that aimed at identifying the genetic factors responsible for
differences in seroprevalence and antibody levels against a range of persistent or recurrent
pathogens. We used serological data obtained from the 1’000 healthy individuals about 12
different pathogens and linked them with genetic variation.

In Chapter 3, many GWAS of human genetic determinants of immune parameters and cell
counts are presented. A total of 166 immune-related phenotypes were tested in the 1,000
healthy people, which identified previously unknown association signals with multiple human
genetic variants. Many of these were located in the MHC region and were relevant for innate
immune cells. We focused on these signals and fine-mapped the observed associations.

In Chapter 4, the main focus is on the observed diversity of the gut microbiome in the Ml
cohort. After thoroughly investigating the influence of the environment on the gut
microbiome diversity, we assessed its association with genetics, while controlling for the

identified cofounding effects.

Finally, Chapter 5 provides a summary with future directions and outlooks.
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2.1 Abstract

Background. Humoral immune responses to infectious agents or vaccination vary
substantially among individuals, and many of the factors responsible for this variability remain
to be defined. Current evidence suggests that human genetic variation influences
(i) serum immunoglobulin levels, (ii) seroconversion rates, and (iii) intensity of antigen-
specific immune responses. Here, we evaluate the impact of intrinsic (age and sex),
environmental and genetic factors on the variability of humoral response to common
pathogens and vaccines.

Methods. We characterized the serological response to 15 antigens from common human
pathogens or vaccines, in an age- and sex-stratified cohort of 1,000 healthy individuals (Milieu
Intérieur cohort). Using clinical-grade serological assays, we measured total IgA, IgE, IgG and
IgM levels, as well as qualitative (serostatus) and quantitative IgG responses to
cytomegalovirus, Epstein-Barr virus, herpes simplex virus 1 & 2, varicella zoster virus,
Helicobacter pylori, Toxoplasma gondii, influenza A virus, measles, mumps, rubella, and
hepatitis B virus. Following genome-wide genotyping of single nucleotide polymorphisms and
imputation, we examined associations between ~5 million genetic variants and antibody
responses using single marker and gene burden tests.

Results. We identified age and sex as important determinants of humoral immunity, with
older individuals and women having higher rates of seropositivity for most antigens. Genome-
wide association studies revealed significant associations between variants in the human
leucocyte antigen (HLA) class Il region on chromosome 6 and anti-EBV and anti-rubella IgG
levels. We used HLA imputation to fine map these associations to amino acid variants in the
peptide-binding groove of HLA-DRB1 and HLA-DPB1, respectively. We also observed
significant associations for total IgA levels with two loci on chromosome 2 and with specific
KIR-HLA combinations.

Conclusions. Using extensive serological testing and genome-wide association analyses in a
well-characterized cohort of healthy individuals, we demonstrate that age, sex and specific
human genetic variants contribute to inter-individual variability in humoral immunity. By
highlighting genes and pathways implicated in the normal antibody response to frequently
encountered antigens, these findings provide a basis to better understand disease
pathogenesis.

2.2  Background

Humans are regularly exposed to infectious agents, including common viruses such
as cytomegalovirus (CMV), Epstein-Barr virus (EBV) or herpes simplex virus-1 (HSV-1), that
have the ability to persist as latent infections throughout life — with possible reactivation
events depending on extrinsic and intrinsic factors [1]. Humans also receive multiple
vaccinations, which in many cases are expected to achieve lifelong immunity in the form of
neutralizing antibodies. In response to each of these stimulations, the immune system
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mounts a humoral response, triggering the production of specific antibodies that play an
essential role in limiting infection and providing long-term protection. Although the intensity
of the humoral response to a given stimulation has been shown to be highly variable [2, 3, 4],
the genetic and non-genetic determinants of this variability are still largely unknown. The
identification of such factors may lead to improved vaccination strategies by optimizing
vaccine-induced immunoglobulin G (IgG) protection, or to new understanding of autoimmune
diseases, where immunoglobulin levels can correlate with disease severity [5].

Several genetic variants have been identified that account for inter-individual differences in
susceptibility to pathogens [6, 7, 8, 9], and in infectious [10] or therapeutic [11] phenotypes.
By contrast, relatively few studies have investigated the variability of humoral responses in
healthy humans [12, 13, 14]. In particular, Hammer C., et al. examined the contribution of
genetics to variability in human antibody responses to common viral antigens, and fine-
mapped variants at the HLA class Il locus that associated with IgG responses. To replicate and
extend these findings, we measured IgG responses to 15 antigens from common infectious
agents or vaccines as well as total 1gG, IgM, IgE and IgA levels in 1,000 well-characterized
healthy donors. We used an integrative approach to study the impact of age, sex, non-genetic
and genetic factors on humoral immunity in healthy humans.

2.3 Methods

2.3.1  Study participants

The Milieu Intérieur cohort consists of 1,000 healthy individuals that were recruited
by BioTrial (Rennes, France). The cohort is stratified by sex (500 men, 500 women) and age
(200 individuals from each decade of life, between 20 and 70 years of age). Donors were
selected based on stringent inclusion and exclusion criteria, previously described [15]. Briefly,
recruited individuals had no evidence of any severe/chronic/recurrent medical conditions.
The main exclusion criteria were: seropositivity for human immunodeficiency virus (HIV) or
hepatitis C virus (HCV); ongoing infection with the hepatitis B virus (HBV) — as evidenced by
detectable HBs antigen levels; travel to (sub-)tropical countries within the previous 6 months;
recent vaccine administration; and alcohol abuse. To avoid the influence of hormonal
fluctuations in women during the peri-menopausal phase, only pre- or post-menopausal
women were included. To minimize the importance of population substructure on genomic
analyses, the study was restricted to self-reported Metropolitan French origin for three
generations (i.e., with parents and grandparents born in continental France). Whole blood
samples were collected from the 1,000 fasting healthy donors on lithium heparin tubes, from
September 2012 to August 2013. The clinical study was approved by the Comité de Protection
des Personnes - Quest 6 on June 13th, 2012, and by the French Agence Nationale de Sécurité
du Médicament on June 22nd, 2012. The study is sponsored by Institut Pasteur (Pasteur ID-
RCB Number: 2012-A00238-35), and was conducted as a single center study without any
investigational product. The protocol is registered under ClinicalTrials.gov (study#
NCT01699893).
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2.3.2  Serologies

Total IgG, IgM, IgE, and IgA levels were measured using clinical grade turbidimetric
test on AU 400 Olympus at the BioTrial (Rennes, France). Antigen-specific serological tests
were performed using clinical-grade assays measuring 1gG levels, according to the
manufacturer's instructions. A list and description of the assays is provided in Additional File
1: Table S1. Briefly, anti-HBs and anti-HBc IgGs were measured on the Architect automate
(CMIA assay, Abbott). Anti-CMV IgGs were measured by CMIA using the CMV IgG kit from
Beckman Coulter on the Unicel Dxl 800 Access automate (Beckman Coulter). Anti-Measles,
anti-Mumps and anti-Rubella IgGs were measured using the BioPlex 2200 MMRYV IgG kit on
the BioPlex 2200 analyzer (Bio-Rad). Anti-Toxoplasma gondi, and anti-CMV IgGs were
measured using the BioPlex 2200 ToRC IgG kit on the BioPlex 2200 analyzer (Bio-Rad). Anti-
HSV1 and anti-HSV2 IgGs were measured using the BioPlex 2200 HSV-1 & HSV-2 IgG kit on the
BioPlex 2200 analyzer (Bio-Rad). IgGs against Helicobacter Pylori were measured by EIA using
the PLATELIA H. Pylori 1gG kit (BioRad) on the VIDAS automate (Biomérieux). Anti-influenza A
IgGs were measured by ELISA using the Novalisa IgG kit from NovaTec (Biomérieux) that
explores responses to grade 2 H3N2 Texas 1/77 strain. In all cases, the criteria for serostatus
definition (positive, negative or indeterminate) were established by the manufacturer, and
are indicated in Additional File 1: Table S2. Donors with an unclear result were retested, and
assigned a negative result if borderline levels were confirmed with repeat testing.

2.3.3  Non-genetic variables

A large number of demographical and clinical variables are available in the Milieu
Intérieur cohort as a description of the environment of the healthy donors [15]. These include
infection and vaccination history, childhood diseases, health-related habits, and socio-
demographical variables. Of these, 53 where chosen for subsequent analysis of their impact
on serostatus. This selection is based on the one done in [16], with a few variables added,
such as measures of lipids and C-reactive protein (CRP).

2.3.4  Testing of non-genetic variables

Using serostatus variables as the response, and non-genetic variables as treatment
variables, we fitted a logistic regression model for each response and treatment variable pair.
Atotal of 14 * 52 =742 models where therefore fitted. Age and sex where included as controls
for all models, except if that variable was the treatment variable. We tested the impact of the
clinical and demographical variables using a likelihood ratio test. All 742 tests where
considered a multiple testing family with the false discovery rate (FDR) as error rate.

2.3.5  Age and sex testing

To examine the impact of age and sex we performed logistic and linear regression
analyses for serostatus and IgG levels, respectively. For logistic regression, we included both
scaled linear and quadratic terms for the age variable (model = glm(y~Age+I(Age”2)+Sex,
family=binomial)). Scaling was achieved by centering age variable at the mean age. When
indicated, we used a second model that includes age, sex as well as an interaction term for
age and sex (model = glm(y~Age+Sex+Age*Sex, family=binomial)). All continuous traits (i.e.
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guantitative measurements of antibody levels) were log10-transformed in donors assigned as
positive using the clinical cutoff suggested by the manufacturer. We used false discovery rate
(FDR) correction for the number of serologies tested (associations with P < 0.05 were
considered significant).

2.3.6  DNA genotyping

Blood was collected in 5mL sodium EDTA tubes and was kept at room temperature
(18-25°) until processing. DNA was extracted from human whole blood and genotyped at
719,665 single nucleotide polymorphisms (SNPs) using the HumanOmniExpress-24 BeadChip
(Hlumina). The SNP call rate was higher than 97% in all donors. To increase coverage of rare
and potentially functional variation, 966 of the 1,000 donors were also genotyped at 245,766
exonic variants using the HumanExome-12 BeadChip. The HumanExome variant call rate was
lower than 97% in 11 donors, which were thus removed from this dataset. We filtered out
from both datasets genetic variants that: (i) were unmapped on dbSNP138, (ii) were
duplicated, (iii) had a low genotype clustering quality (GenTrain score < 0.35), (iv) had a call
rate < 99%, (v) were monomorphic, (vi) were on sex chromosomes, or (vii) diverged
significantly from Hardy-Weinberg equilibrium (HWE P < 107). These quality-control filters
yielded a total of 661,332 and 87,960 variants for the HumanOmniExpress and HumanExome
BeadChips, respectively. Average concordance rate for the 16,753 SNPs shared between the
two genotyping platforms was 99.9925%, and individual concordance rates ranged from
99.8% to 100%.

2.3.7  Genetic relatedness and structure

As detailed elsewhere [16], relatedness was detected using KING [17]. Six pairs of
related participants (parent-child, first and second-degree siblings) were detected and one
individual from each pair, randomly selected, was removed from the genetic analyses. The
genetic structure of the study population was estimated using principal component analysis
(PCA), implemented in EIGENSTRAT (v6.1.3) [18]. The PCA plot of the study population is
shown in Additional File 2: Figure S1.

2.3.8  Genotype imputation

We used Positional Burrows-Wheeler Transform for genotype imputation, starting
with the 661,332 quality-controlled SNPs genotyped on the HumanOmniExpress array.
Phasing was performed using EAGLE2 (v2.0.5) [19]. As reference panel, we used the
haplotypes from the Haplotype Reference Consortium (release 1.1) [20]. After removing SNPs
that had an imputation info score < 0.8 we obtained 22,235,661 variants. We then merged
the imputed dataset with 87,960 variants directly genotyped on the HumanExome BeadChips
array and removed variants that were monomorphic or diverged significantly from Hardy-
Weinberg equilibrium (P < 10”7). We obtained a total of 12,058,650 genetic variants to be used
in association analyses.

We used SNP2HLA (v1.03) [21] to impute 104 4-digit HLA alleles and 738 amino acid residues

(at 315 variable amino acid positions of the HLA class | and Il proteins) with a minor allele
frequency (MAF) of >1%.
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We used KIR*IMP [22] to impute KIR alleles, after haplotype inference on chromosome 19
with SHAPEIT2 (v2.r790) [23]. A total of 19 KIR types were imputed: 17 loci plus two extended
haplotype classifications (A vs. B and KIR haplotype). A MAF threshold of 1% was applied,
leaving 16 KIR alleles for association analysis.

2.3.9  Genetic association analyses

For single variant association analyses, we only considered SNPs with a MAF of >5%
(N=5,699,237). We used PLINK (v1.9) [24] to perform logistic regression for binary phenotypes
(serostatus: antibody positive versus negative) and linear regression for continuous traits
(logl0-transformed quantitative measurements of antibody levels in seropositive donors).
The first two principal components of a PCA based on genetic data, age and sex were used as
covariates in all tests. In order to correct for baseline difference in IgG production in
individuals, total 1gG levels were included as covariates when examining associations with
antigen-specific antibody levels, total IgM, IgE and IgA levels. From a total of 53 additional
variables additional co-variates, selected by using elastic net [25] and stability selection [26]
as detailed elsewhere [16], were included in some analyses (Additional File 1: Table S3). For
all genome-wide association studies, we used a genome-wide significant threshold (Pthreshold
< 2.6 x 10°) corrected for the number of antigens and immunoglobulin classes tested (N=19).
For specific HLA analyses, we used PLINK (v1.07) [27] to perform conditional haplotype-based
association tests and multivariate omnibus tests at multi-allelic amino acid positions.

2.3.10 Variant annotation and gene burden testing

We used SnpEff (v4.3g) [28] to annotate all 12,058,650 variants. A total of 84,748
variants were annotated as having (potentially) moderate (e.g. missense variant, inframe
deletion, etc.) or high impact (e.g. stop gained, frameshift variant, etc.) and were included in
the analysis. We used bedtools v2.26.0 [29] to intersect variant genomic location with gene
boundaries, thus obtaining sets of variants per gene. By performing kernel-regression-based
association tests with SKAT_CommonRare (testing the combined effect of common and rare
variants) and SKATBinary implemented in the SKAT v1.2.1 [30], we tested 16,628 gene sets
for association with continuous and binary phenotypes, respectively. By SKAT default

. . 1 . . . 1
parameters, variants with MAF £ — are considered rare, whereas variants with MAF > —
Van Van

were considered common, where N is the sample size. We used genome-wide Bonferroni
correction for multiple testing, accounting for the number of phenotypes tested (Pthreshold <
2.6x1079).

2.4 Results

2.4.1  Characterization of humoral immune responses in the 1,000 study participants

To characterize the variability in humoral immune responses between healthy
individuals, we measured total 1gG, IgM, IgA and IgE levels in the plasma of the 1,000 donors
of the Milieu Interieur (MIl) cohort. After log10 transformation, total IgG, IgM, IgA and IgE
levels showed normal distributions, with a median + sd of 1.02 +0.08 g/I, 0.01 +0.2 g/I, 0.31
$0.18 g/l and 1.51 +0.62 Ul/ml, respectively (Additional File 2: Figure S2A).
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We then evaluated specific IgG responses to multiple antigens from the following infections
and vaccines: (i) 7 common persistent pathogens, including five viruses: CMV, EBV (EA, EBNA,
and VCA antigens), herpes simplex virus 1 & 2 (HSV-1 & 2), varicella zoster virus (VZV), one
bacterium: Helicobacter pylori (H. Pylori), and one parasite: Toxoplasma gondii (T. Gondii); (ii)
one recurrent virus: influenza A virus (IAV); and (iii) four viruses for which most donors
received vaccination: measles, mumps, rubella, and HBV (HBs and HBc antigens). The
distributions of logio-transformed antigen-specific IgG levels in the 1,000 donors for the 15
serologies are shown in Additional File 2: Figure S2B. Donors were classified as seropositive
or seronegative using the thresholds recommended by the manufacturer (Additional File 1:
Table S2).

The vast majority of the 1,000 healthy donors were chronically infected with EBV
(seropositivity rates of 96% for EBV VCA, 91% for EBV EBNA and 9% for EBV EA) and VZV (93%).
Many also showed high-titer antibodies specific for 1AV (77%), HSV-1 (65%), and T. Gondii
(56%). By contrast, fewer individuals were seropositive for CMV (35%), HSV-2 (21%), and H.
Pylori (18%) (Additional File 2: Figure S3A). The majority of healthy donors carried antibodies
against 5 or more persistent/recurrent infections of the 8 infectious agents tested (Additional
File 2: Figure S3B). 51% of MI donors were positive for anti-HBs IgG - a large majority of them
as a result of vaccination, as only 15 study participants (3% of the anti-HBs positive group)
were positive for anti-HBc IgG, indicative of previous HBV infection (spontaneously cured, as
all donors were negative for HBs antigen, criteria for inclusion in the study). For rubella,
measles, and mumps, seropositivity rates were 94%, 91%, and 89% respectively. For the
majority of the donors, this likely reflects vaccination with a trivalent vaccine, which was
integrated in 1984 as part of national recommendations in France, but for some —in particular
the >40 year-old individuals of the cohort, it may reflect acquired immunity due to natural
infection.

2.4.2  Associations of age, sex, and non-genetic variables with serostatus

Subjects included in the Milieu Intérieur cohort were surveyed for a large number of
variables related to infection and vaccination history, childhood diseases, health-related
habits, and socio-demographical variables (http://www.milieuinterieur.fr/en/research-
activities/cohort/crf-data). Of these, 53 where chosen for subsequent analysis of their impact
on serostatus. This selection is based on the one done in [16], with a few variables added,
such as measures of lipids and CRP. Applying a mixed model analysis that controls for
potential confounders and batch effects, we found expected associations of HBs
seropositivity with previous administration of HBV vaccine, as well as of Influenza
seropositivity with previous administration of Flu vaccine. We also found associations of HBs
seropositivity with previous administration of Typhoid and Hepatitis A vaccines - which likely
reflects co-immunization, as well as with Income, Employment, and Owning a house — which
likely reflects confounding epidemiological factors (Additional File 2: Figure S4). Full results of
the association of non-genetic variables with serostatus are available in Additional File 1:
Table S4.

We observed a significant impact of age on the probability of being seropositive for antigens
from persistent or recurrent infectious agents and/or vaccines. For 14 out of the 15 examined
serologies, older people (> 45 years old) were more likely to have detectable specific IgG, with
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a mean beta estimate of 0.04 for linear associations (Figure 2.1A). Additionally, we found a
significant quadratic term for five out of the 15 serologies, highlighting that the rate of change
in probability of seropositivity with respect to age is higher for rubella and lower for HSV-1,
HP, HBs and EBV EBNA in older people as compared to younger donors (Additional File 2:
Figure S5A). We identified four different profiles of age-dependent evolution of seropositivity
rates (Figure 2.1B). Profile 1 is typical of childhood-acquired infection, i.e. microbes that most
donors had encountered by age 20 (EBV, VZV, and influenza). We observed in this case either
(i) a limited increase in seropositivity rate after age 20 for EBV; (ii) stability for VZV; or (iii) a
small decrease in seropositivity rate with age for IAV (Additional File 2: Figure S5B-F). Profile
2 concerns prevalent infectious agents that are acquired throughout life, with steadily
increasing prevalence (observed for CMV, HSV-1, and T. gondii). We observed in this case
either (i) a linear increase in seropositivity rates over the 5 decades of age for CMV
(seropositivity rate: 24% in 20-29 years-old; 44% in 60-69 years-old; slope=0.02) and T. Gondii
(seropositivity rate: 21% in 20-29 years-old; 88% in 60-69; slope=0.08); or (ii) a non-linear
increase in seropositivity rates for HSV-1, with a steeper slope before age 40 (seropositivity
rate: 36% in 20-29 years-old; 85% in 60-69; slope=0.05) (Additional File 2: Figure S5G-I). Profile
3 showed microbial agents with limited seroprevalence - in our cohort, HSV-2, HBV (anti-HBs
and anti-HBc positive individuals, indicating prior infection rather than vaccination), and H.
Pylori. We observed a modest increase of seropositivity rates throughout life, likely reflecting
continuous low-grade exposure (Additional File 2: Figure S5J-L). Profile 4 is negatively
correlated with increasing age and is unique to HBV anti-HBs serology (Additional File 2:
Figure S5M). This reflects the introduction of the HBV vaccine in 1982 and the higher
vaccination coverage of younger populations. Profiles for Measles, Mumps and Rubella are
provided in Additional File 2: Figure S5N-P.

We also observed a significant association between sex and serostatus for 8 of the 15
antigens, with a mean beta estimate of 0.07 (Figure 2.1C). For six serological phenotypes,
women had a higher rate of positivity, IAV being the notable exception. These associations
were confirmed when considering “Sharing house with partner”, and “Sharing house with
children” as covariates. Full results of associations of age and sex with serostatus are present
in Additional File 1: Table S5. Finally, we found a significant interaction of age and sex for odds
of being seropositive for EBV EBNA, reflecting a decrease in seropositivity rate in older women
(beta -0.0414814; P=0.02, Additional File 2: Figure S5Q).
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Figure 2.1. Age and sex impact on serostatus. (A) Effect sizes of significant linear associations
(adjusted P-values (adj. P<0.05)) between age and serostatus as determined based on clinical-
grade serologies in the 1,000 healthy individuals from the Milieu Intérieur cohort. Effect sizes
were estimated in a generalized linear mixed model, with serostatus as response variable, and
age and sex as treatment variables. This model includes both scaled linear and quadratic terms
for the age variable. Scaling was achieved by centering age variable at the mean age. All
results from this analysis are provided in Additional File 1: Table S5. Dots represent the mean
of the beta. Lines represent the 95% confidence intervals. (B) Odds of being seropositive
towards EBV EBNA (Profile 1; upper left), Toxoplasma gondii (Profile 2; upper right),
Helicobacter Pylori (Profile 3; bottom left), and HBs antigen of HBV (Profile 4, bottom right),
as a function of age in men (blue) and women (red) in the 1,000 healthy donors. Indicated P-
values were obtained using a logistic regression with Wald test, with serostatus binary
variables (seropositive versus seronegative) as the response, and age and sex as treatments.
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Similar plots from all examined serologies are provided in Additional File 2: Figure S5. (C) Effect
sizes of significant associations (adjusted P-values (adj. P<0.05) between sex (Men=reference,
vs. Women) and serostatus. Effect sizes were estimated in a generalized linear mixed model,
with serostatus as response variable, and age and sex as treatment variables. All results from
this analysis are provided in Additional File 1: Table S5. Dots represent the mean of the beta.
Lines represent the 95% confidence intervals.

2.4.3 Impact of age and sex on total and antigen-specific antibody levels

We further examined the impact of age and sex on the levels of total IgG, IgM, IgA and
IgE detected in the serum of the patients, as well as on the levels of antigen-specific IgGs in
seropositive individuals. We observed a low impact of age and sex with total immunoglobulin
levels (Figure 2.2A). Age also had a strong impact on specific IgG levels in seropositive
individuals, affecting 9 out of the 15 examined serologies (Figure 2.2B). Correlations between
age and pathogen-specific IgG levels were mostly positive, i.e. older donors had more specific
IgG than younger donors, as for example in the case of Rubella (Additional File 2: Figure S6A).
The notable exception was T. gondii, where we observed lower amounts of specific IgG in
older individuals (b=-0.013(-0.019, -0.007), P=3.7x10°®, Additional File 2: Figure S6B). On the
other hand, sex was significantly correlated with IgG levels specific to Mumps and VZV (Figure
2.2C). Full results of associations of age and sex with total immunoglobulin and antigen-
specific antibody levels are presented in Additional File 1: Table S5.
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Figure 2.2. Age and sex impact on total and antigen-specific antibody levels. (A) Relationships
between Logl0-transformed IgG (upper left), IgA (upper right), IgM (bottom left) and IgE
(bottom right) levels and age. Regression lines were fitted using linear regression, with Log10-
transformed total antibody levels as response variable, and age and sex as treatment
variables. Indicated adj. P were obtained using the mixed model, and corrected for multiple
testing using the FDR method. (B-C) Effect sizes of significant associations (adjusted P-values
(adj. P<0.05) between age (B) and sex (C) on Log10-transformed antigen-specific IgG levels in
the 1,000 healthy individuals from the Milieu Intérieur cohort. Because of low number of
seropositive donors (n=15), HBc serology was removed from this analysis. Effect sizes were
estimated in a linear mixed model, with Log10-transformed antigen-specific I1gG levels as
response variables, and age and sex as treatment variables. All results from this analysis are
provided in Additional File 1: Table S5. Dots represent the mean of the beta. Lines represent
the 95% confidence intervals.

2.4.4 Genome-wide association study of serostatus

To test if human genetic factors influence the rate of seroconversion upon exposure,
we performed genome-wide association studies. Specifically, we searched for associations
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between 5.7 million common polymorphisms (MAF > 5%) and the 15 serostatus in the 1,000
healthy donors. Based on our results regarding age and sex, we included both as covariates
in all models. After correcting for the number of antibodies considered, the threshold for
genome-wide significance was Pnreshold = 2.6 x 10, for which we did not observe any
significant association. In particular, we did not replicate the previously reported associations
with H. Pylori serostatus on chromosome 1 (rs368433, P =0.56, OR = 1.08) and 4 (rs10004195,
P = 0.83, OD = 0.97) [31]. We verified this result by performing an additional analysis that
matched the design of the previous study, i.e. a case-control association study comparing
individuals in the upper quartile of the anti-H. Pylori antibody distribution to the rest of the
study population: no association was found (P=0.42 and P=0.48 for rs368433 and rs10004195,
respectively). The quantile-quantile (QQ) plots and lambda values of all genome-wide logistic
regressions are available in Additional File 2: Figure S7.

We then focused on the HLA region and confirmed the previously published association of
influenza A serostatus with specific amino acid variants of HLA class Il molecules [12]. The
strongest association in the M/ cohort was found with residues at position 31 of the HLA-DRB1
subunit (omnibus P = 0.009, Additional File 1: Table S6). Residues found at that position,
isoleucine (P = 0.2, OD (95% Cl) = 0.8 (0.56, 1.13)) and phenylalanine (P = 0.2, OR (95% Cl) =
0.81(0.56, 1.13)), are consistent in direction and in almost perfect linkage disequilibrium (LD)
with the glutamic acid residue at position 96 in HLA-DRB1 that was identified in the previous
study (Additional File 1: Table S7). As such, our result independently validates the previous
observation.

2.4.5 Genome-wide association study of total and antigen-specific antibody levels

To test whether human genetic factors also influence the intensity of antigen-specific
immune response, we performed genome-wide association studies of total IgG, IgM, IgA and
IgE levels, as well as antigen-specific IgG levels.

We found no SNPs associated with total IgG, IgM, IgE and IgA levels. Additional File 2: Figure
S8 shows QQ plots and lambda values of these studies. However, we observed nominal
significance and the same direction of the effect for 3 out of 11 loci previously published for
total IgA [13, 32, 33, 34, 35], 1 out of 6 loci for total IgG [13, 32, 36] and 4 out of 11 loci for
total IgM [13, 37] (Additional File 1: Table S8). Finally, we also report a suggestive association
(genome-wide significant, P < 5.0 x 108, but not significant when correcting for the number
of antibody levels tested in the study) of a SNP rs11186609 on chromosome 10 with total IgA
levels (P = 2.0 x 108, beta = -0.07 for the C allele). The closest gene for this signal is SH2D48B.

We next explored associations between human genetic variants and antigen-specific 1gG
levels in seropositive donors. Information on possible inflation of false positive rates of these
linear regressions are available in Additional File 2: Figure S9. We detected significant
associations for anti-EBV (EBNA antigen) and anti-rubella IgGs. Associated variants were in
both cases located in the HLA region on chromosome 6. For EBV, the top SNP was rs74951723
(P = 3 x 104, beta = 0.29 for the A allele) (Figure 2.3A). For rubella, the top SNP was
rs115118356 (P = 7.7 x 1019, beta = -0.11 for the G allele) (Figure 2.3B). rs115118356 is in LD
with rs2064479, which has been previously reported as associated with titers of anti-rubella
IgGs (r?=0.53 and D' = 0.76) [38].
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Figure 2.3. Association between host genetic variants and serological phenotypes. Manhattan
plots of association results for (A) EBV anti-EBNA IgG, (B) Rubella IgG levels. The dashed
horizontal line denotes genome-wide significance (P = 2.6 x 10°).

To fine map the associations observed in the HLA region, we tested 4-digit HLA alleles and
variable amino positions in HLA proteins. At the level of HLA alleles, HLA-DQB1*03:01 showed
the lowest P-value for association with EBV EBNA (P = 1.3 x 107), and HLA-DPB1*03:01 was
the top signal for rubella (P = 3.8 x 10°®). At the level of amino acid positions, position 58 of
the HLA-DRB1 protein associated with anti-EBV (EBNA antigen) IgG levels (P = 2.5 x 10'1%). This
is consistent with results of previous studies linking genetic variations in HLA-DRB1 with levels
of anti-EBV EBNA-specific IgGs [12, 39, 40] (Additional File 1: Table S9). In addition, position 8
of the HLA-DPB1 protein associated with anti-rubella IgG levels (P = 1.1 x 10°, Table 2.1).
Conditional analyses on these amino-acid positions did not reveal any additional independent
signals.
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Table 2.1. Associations of EBV EBNA and Rubella antigens with HLA (SNP, allele and amino

acid position)
Phenotype
EBV EBNA IgG levels Rubella 1gG levels
ID (Allele) rs74951723 (A) rs115118356 (G)
SNP P-value 3x 101 7.68 x 1010
Beta (95% Cl) 0.29 (0.21, 0.36) -0.11 (-0.15, -0.08)
Classical HLA Allele HLA-DQB1*03:01 HLA-DPB1*03:01
allele P-value 1.26 x 107 3.8x10°
Beta (95% Cl) 0.17 (0.11, 0.23) -0.12 (-0.18, -0.07)
. , Protein (position) HLA-DRP1 (56) HLA-DPpB1 (8)
Amino acid Omnibus P-value 2.53x 10" 1.12x 10°

2.4.6  KIR associations

To test whether specific KIR genotypes, and their interaction with HLA molecules, are
associated with humoral immune responses, we imputed KIR alleles from SNP genotypes
using KIR*IMP [22]. First, we searched for potential associations with serostatus or IgG levels
for 16 KIR alleles that had a MAF > 1%. We did not find any significant association after
Bonferroni correction for multiple testing. Second, we tested specific KIR-HLA combinations.
We filtered out rare combinations by removing pairs that were observed less then 4 times in
the cohort. After correction for the number of tests performed and phenotypes considered
(Pthreshold < 5.4 x 1077), we observed significant associations between total IgA levels and the
two following HLA-KIR combinations: HLA-B*14:02 / KIR3DL1 and HLA-C*08:02 / KIR2DS4 (P
=3.9x107° and P = 4.9 x 10 respectively, Table 2.2).

Table 2.2. Association testing between KIR-HLA interactions and serology phenotypes

Phenotype KIR HLA Estimate Std. Error | P-value
IgA levels KIR3DL1 HLA-B*14:02 0.456 0.077 3.9x10%
IgA levels KIR2DS4 HLA-B*14:02 0.454 0.077 4.5x10%°
IgA levels KIR3DL1 HLA-C*08:02 0.449 0.076 4.9x10%°
IgA levels KIR2DS4 HLA-C*08:02 0.448 0.076 5.7x10°%°

2.4.7  Burden testing for rare variants

Finally, to search for potential associations between the burden of low frequency
variants and the serological phenotypes, we conducted a rare variant association study. This
analysis only included variants annotated as missense or putative loss-of-function (nonsense,
essential splice-site and frame-shift, N=84,748), which we collapsed by gene and tested
together using the kernel-regression-based association test SKAT [30]. We restricted our
analysis to genes that contained at least 5 variants. Two genes were identified as significantly
associated with total IgA levels using this approach: ACADL (P = 3.4 x 10!) and TMEM131
(P=7.8 x 10!) (Table 2.3). By contrast, we did not observe any significant associations
between rare variant burden and antigen-specific IgG levels or serostatus. All the QQ plots
and lambda values of analysis of binary, total Ig levels and pathogen-specific quantitative
phenotypes are shown in Additional File 2: Figure S10, S11 and S12.
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Table 2.3. Significant associations of rare variants collapsed per gene set with IgA levels.

N° of Rare | N° of Common
Phenotype | Chromosome Gene P-value Q Markers Markers
2 ACADL 3.42x10* | 18.09 5 2
IgA levels =T
2 TMEM131 | 7.83x10 17.89 13 2

2.5 Discussion

We performed genome-wide association studies for a number of serological
phenotypes in a well-characterized age- and sex-stratified cohort and included a unique
examination of genetic variation at HLA and KIR loci, as well as KIR-HLA associations. As such,
our study provides a broad resource for exploring the variability in humoral immune
responses across different isotypes and different antigens in humans.

Using a fine-mapping approach, we replicated the previously reported associations of
variation in the HLA-DRB1 protein with influenza A serostatus and anti-EBV IgG titers [4, 12],
implicating amino acid residues in strong LD with the ones previously reported by Hammer et
al. In accordance with the same study, we did not observe any significant association with
another measure of EBV serostatus, the presence of anti-EBNA antibodies, suggesting that a
larger sample size will be required to uncover potentially associated variants. We replicated
an association between HLA class Il variation and anti-Rubella IgG titers [38], and further fine-
mapped it to position 8 of the HLA-DPB1 protein. Interestingly, position 8 of HLA-DPB1, as
well as positions 58 and 31 of HLA-DRP1, are all part of the extracellular domain of the
respective proteins. Our findings confirm these proteins as critical elements for the
presentation of processed peptide to CD4* T cells, and as such may reveal important clues in
the fine regulation of class Il antigen presentation. We also identified specific HLA/KIR
combinations, namely HLA-B*14:02/KIR3DL1 and HLA-C*08:02/KIR2DS4, which associate
with higher levels of circulating IgA. Combinations of HLA and killer cell immunoglobulin-like
receptor (KIR) genes have been associated with diseases as diverse as autoimmunity, viral
infections, reproductive failure, and cancer [41]. To date, the molecular basis for these
associations are mostly unknown. One could speculate that the association identified
between IgA levels and specific KIR-HLA combinations may reflect different levels of tolerance
to commensal microbes. However, formal testing of this hypothesis will require additional
studies. Also, given the novelty of KIR imputation method and the lack of possibility of
benchmarking its reliability in the M/ cohort, further replication of these results will be
needed. Yet these findings support the concept that variations in the sequence of HLA Class
Il molecules, or specific KIRs/HLA class | interactions play a critical role in shaping humoral
immune responses in humans. In particular, our findings confirm that small differences in the
capacity of HLA class Il molecules to bind specific viral peptides can have a measurable impact
on downstream antibody production. As such, our study emphasizes the importance of
considering HLA diversity in disease association studies where associations between IgG levels
and autoimmune diseases are being explored.

We identified nominal significance for some but not all of the previously reported associations
with levels of total IgG, IgM and IgA, as well as a suggestive association of total IgA levels with
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an intergenic region on chromosome 10 - closest gene being SH2D4B. By collapsing the rare
variants present in our dataset into gene sets and testing them for association with the
immunoglobulin phenotypes, we identified two additional loci that participate to natural
variation in IgA levels. These associations mapped to the genes ACADL and TMEM131. ACADL
encodes an enzyme with long-chain acyl-CoA dehydrogenase activity, and polymorphisms
have been associated with pulmonary surfactant dysfunction [42]. As the same gene is
associated with levels of circulating IgA in our cohort, we speculate that ACADL could play a
role in regulating the balance between mucosal and circulating IgA. Further studies will be
needed to test this hypothesis, as well as the potential impact of our findings in other IgA-
related diseases.

We were not able to replicate previous associations of TLR1 and FCGR2A locus with serostatus
for H. Pylori [31]. We believe this may be a result of (i) different analytical methods; or (ii)
notable differences in previous exposure among the different cohorts as illustrated by the
different levels of seropositivity - 17% in the Milieu Interieur cohort, versus 56% in the
previous ones, reducing the likelihood of replication due to decreased statistical power.

In addition to genetics findings, our study re-examined the impact of age and sex, as well as
non-genetic variables, on humoral immune responses. Although this question has been
previously addressed, our well-stratified cohort brings interesting additional insights. One
interesting finding is the high rate of seroconversion for CMV, HSV-1, and T. Gondii during
adulthood. In our cohort, the likelihood of being seropositive for one of these infections is
comparable at age 20 and 40. This observation raises interesting questions about the factors
that could prevent some individuals from becoming seropositive upon late life exposure,
considering the high likelihood of being in contact with the pathogens because of their high
prevalence in humans (CMV and HSV-1) or because of frequent interactions with an animal
reservoir (toxoplasmosis). Second, both age and sex have a strong correlation with serostatus,
i.e. older and female donors were more likely to be seropositive. Although increased
seropositivity with age probably reflects continuous exposure, the sex effect is intriguing.
Indeed, our study considered humoral immunity to microbial agents that differ significantly
in terms of physiopathology and that do not necessarily have a childhood reservoir. Also, our
analysis shows that associations persist after removal of potential confounding factors such
as marital status, and/or number of kids. As such, we believe that our results may highlight a
general impact of sex on humoral immune response variability, i.e. a tendency for women to
be more likely to seroconvert after exposure, as compared to men of same age. Gender-
specific differences in humoral responses have been previously observed for a large number
of viral and bacterial vaccines including influenza, hepatitis A and B, rubella, measles, rabies,
yellow fever, meningococcus, pneumococcus, diphtheria, tetanus and Brucella [43, 44]. Along
the same line, women often respond to lower vaccine doses then men [43, 45], and higher
levels of antibodies have been found in female schoolchildren after rubella and mumps
vaccination [46] as well as in adult women after smallpox vaccination [47]. This could be
explained, at least partially, by a shift towards Th2 immunity in women as compared to men
[48]. Finally, we observed an age-related increase in antigen-specific IgG levels in seropositive
individuals for most serologies, with the notable exception of toxoplasmosis. This may
indicate that aging plays a general role in IgG production. An alternative explanation that
requires further study is that this could be the consequence of reactivation or recurrent
exposure.
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2.6 Conclusions

In sum, our study provides evidence that age, sex and host genetics contribute to
natural variation in humoral immunity in humans. The identified associations have the
potential to help improve vaccination strategies, and/or dissect pathogenic mechanisms
implicated in human diseases related to immunoglobulin production such as autoimmunity.
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Chapter 3: HLA variants play a major
role in determining the natural variation
in innate immune cell parameters

This work was part of a study published in Nature Immunology (2018; 19:302—-314). The full
study is provided at the end of the chapter.

3.1 Introduction

The immune system has an essential role in maintaining homeostasis and several
studies have suggested that extensive differences exist among healthy people in the
composition of the immune cell repertoire [1,2,3].

Technological advances in flow cytometry, based on improved instrument design and the
increased availability of a reagents targeting specific molecules, now permit low-cost and
deep phenotyping of immune cell populations in a large cohort of individuals [4]. Combined
with genome-wide DNA genotyping and assessment of environmental factors, the genetic
and non-genetic basis of inter-person variation in the parameters of immune cells can thus
be more easily interrogated [5].

Using a systems immunology approach, the Milieu Intérieur (Ml) consortium comprehensively
measured the composition of white blood cells from 1,000 healthy, unrelated people of
Western European ancestry. A total of 166 distinct immunophenotypes were obtained,
including 75 in innate immune cells (46%) and 91 in adaptive immune cells (54%). The
immunophenotypes of both innate and adaptive immune cells included 76 absolute counts
of circulating cells, 87 expression levels of cell surface markers (quantified as mean
fluorescence intensity (MFI)), and 3 ratios of cell counts or MFI values [6].

This broad resource confirmed that age, sex, CMV seropositivity and smoking had major,
independent effects on many parameters of innate and adaptive immune cells. Genome-wide
association studies were also conducted, revealing 15 loci associated with parameters of
circulating leukocyte subpopulations. The most prominent result was that genetic
associations were primarily detected with innate cell parameters. Within these, associations
with variation in the human leukocyte antigen (HLA) region were observed for 6 innate
immunophenotypes [6].
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The HLA region presents extreme sequence diversity, substantial linkage disequilibrium (LD)
and high gene density. Sequence and structural variations differ between populations and
further complicate haplotype inference. Identifying causal and independent loci from
association signals in HLA is thus challenging, as often they cannot be fine-mapped to a single
variant at a single locus but often comprise independent effects from multiple loci. [7]

In order to help the interpretation of the GWAS signals, i.e. to provide an additional biological
context, the variation at classical HLA alleles and in HLA proteins can be considered. The
complex relationship between these levels of variation and SNP variation can be inferred by
HLA typing [8]. Unfortunately, direct typing of classical HLA alleles is costly and often
prohibitive for many large-scale studies.

Here we leveraged a reference panel with SNP and HLA data available, together with
individual genotypes of Ml participant to impute their HLA alleles and variable amino acid
positions in HLA proteins. This approach allowed us to obtain additional level of information
without further cost involved. We then conducted a fine-mapping study of the signals
observed within the HLA region with the relevant immunophenotypes.

3.2 Methods

3.2.1 The Milieu Intérieur cohort

Detailed information about recruitment of donors and immunoprofiling are available
in the full study provided at the end of the chapter.

3.2.1 Genotyping, genome-wide imputation and genome-wide association analyses

The Milieu Intérieur cohort was genotyped at 945,213 single-nucleotide
polymorphisms (SNPs) enriched for exonic SNPs. After quality control, genotype imputation
was performed, which yielded a total of 5,699,237 highly accurate SNPs. The models of
genome-wide associations were adjusted for genetic relatedness among subjects and any
non-genetic variable identified as being predictive of each specific immunophenotype by
stability selection based on elastic net regression. Each immunophenotype, on which the tests
were performed, was imputed, transformed and batch-effect corrected. Additional
information is available in the method section of the paper at the end of the chapter.

3.2.2 HLA imputation

HLA imputation was performed by using SNP2HLA v 1.03. We used as a reference
panel the data from Type 1 Diabetes Genetics Consortium (T1DGC) study, which contains SNP
genotyping and classic HLA serotyping information for 5225 unrelated individuals [9]. We
obtained 104 four-digit classical alleles HLA alleles and 738 amino acid residues (at 315
positions) in the HLA class | and |l proteins with MAF of > 1%.
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3.2.3 HLA association testing, conditional and omnibus tests

Similarly to genome-wide association analyses, we conducted linear regression with
HLA alleles on 6 immunophenotypes by using PLINK v.1.9 [10]. The first two principal
components, calculated on the genetic matrix, were included in all tests to correct for residual
population stratification. Additional correlated non-genetic variables identified for each
immunophenotype were also included in the association tests. We considered associations to
be significant if they passed a genome-wide significance threshold corrected for the number
of phenotypes tested in the entire study (i.e. 166).

Conditional linear regression tests were run by including the identified significant associations
in the model as additional covariates.

Multivariate omnibus tests were used to test for association at multi-allelic amino acid
positions. If there are R amino acid residues at a tested HLA protein position, then the
omnibus test performs an R-1 degrees of freedom test, comparing the alternate (each amino
acid residue having a unique effect) versus the null hypothesis (no amino acid residue having
any different effect). The tests were performed by using PLINK v. 1.07 [11].

3.2.4 Proportion of explained variance calculations

We calculated the explained variance of each 6 immunophenotypes with a linear
regression model including the four non-genetic factors with the greatest effect (i.e., age, sex,
CMV seropositivity status and smoking) and genome-wide genetic factors that were
significant (P < 1 x 107%°). The contribution of each of these variables to the variance of each
immunophenotype was calculated by averaging over the sums of squares in all orderings of
the variables in the linear model, using R software.

3.3 Results

3.3.1 Fine-mapping of HLA association results

We conducted association tests of HLA alleles and variable residues at amino acid
positions in HLA proteins with 6 immunophenotypes that had significant SNP associations in
the HLA region. We observed significant associations at all levels, with the strongest
association signals at the level of amino acids (Table 3.1).
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Table 3.1. Summary of genome-wide significant association results in the HLA locus.

SNP Classical HLA allele Amino acid
Immunophenotype Protein Omnibus
ID P-value Allele P-value (position) P-value
HLA-DR
in cDC1 rs2760994 [5.12 x 10°°| HLA-DQA1*05:01 |1.45 x 10°>*| HLA-DRB1 (13) | 5.29 x 10"
HLA-DR
in pDC rs114973966 | 2.82 x 10 | HLA-DQA1*03:01 |1.61 x 10™° | HLA-DRP1 (13)| 7.02 x 10™°
CD86
in pDC rs140872668 |2.11 x 10™° | HLA-DQA1*03:01 [4.06 x 10™® | HLA-DRP1 (13) | 4.24 x 10
HLA-DR in
CD14" monocytes | rs116018922 |4.46 x 10*° | HLA-DQA1*03:01 |2.90 x 10°°| HLA-DRPB1 (13) | 1.97 x 10"/
HLA-DR
in cDC3 rs114176373|2.77 x 10" | HLA-DQB1*04:02 | 5.61 x 10 | HLA-DRP1 (74)| 3.86 x 10>
HLA-DR*
CD56" NK cells | rs28383322 |5.37 x 10™* | HLA-DQB1*02:02 | 1.27 x 107 |HLA-DRB1 (67) | 5.38 x 10"

We then ran conditional tests at the level of HLA alleles and amino acids by including in the
linear regression model as a covariate the genotypes of the most strongly associated HLA
allele or amino acid position, respectively.
We first ran the test at the level of HLA alleles and observed one additional independent

significant signal for HLA-DR in pDC phenotype (Table 3.2).

Table 3.2. Associations of HLA classical alleles and conditional tests with candidate

immunophenotypes.
. e Beta
Immunophenotype | Risk HLA allele | Conditioning on...| P-value (95% Cl)
HLA-DR HLA-DQA1*05:01 - 1.4x102*  0.11(0.09 - 0.13)
in cDC1 HLA-DQB1*05:01 | HLA-DQA1*05:01 | 2.6x10° | -0.08 (-0.11 - -0.06)
HLA-DQA1*03:01 - 1.6x10°%| 336.6 (297.6 - 375.6)
HLA-DR HLA-DQA1*02:01 | HLA-DQA1*03:01 |2.9x10%%|-253.8 (-297.3 - -210.2)
in pDC HLA-DQA1*03:01
HLA-DQA1*01:01 HLA—DQAl*OZ.'Ol' 4.4x10°| -130.9 (-171.7 - -90.2)
cD86 HLA-DQA1*03:01 - 4.1x10™°|  11.0(8.6-13.4)
in pDC HLA-DQA1*02:01 | HLA-DQA1*03:01| 2.2x10° 6.2 (-9.1--3.4)
HLA-DR HLA-DQA1*03:01 - 2.9x107%¢ 2.3(2.0-2.6)
in CD14™ monocytes| HLA-DQA1*02:01 | HLA-DQA1*03:01 |5.8x10°  -1.3(-1.7--0.9)
iHnL?SEc)s HLA-DQB1*02:02 - 5.6x10° | 15.65 (10.04 - 21.25)
HLA-DR* . 7
CDSE™ NK cells HLA-DQB1*04:02 - 2.7x107 | -0.26 (-0.36 - -0.17)
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On the other hand, controlling for the top associated residue at amino acid position 13 in HLA-
DRP1 protein revealed two independent effects in the same phenotype - MFI of HLA-DR in

pDC (Table 3.3).

Table 3.3. Significant associations upon conditioning on top residue in HLA amino-acid
positions with candidate immunophenotypes.

Omnibus test | Amino-acid substitutions Beta
HLA amino acid position P-value (frequency) (95% Cl)
Asn (f=3.35%) -17.4 (-92.9 - 58.2)
. Arg (f=53.5%) 31.5(3.1-59.9)
Htg‘éiii’ii’):::’g”o?' 58X 107 Ser (f=24.3%) -47.6 (-82.1--13.1)
HLA-DRB1 position 13 Thr (f=12.7%) 22.4(-19.2 - 63.9)
Val (f=2.0%) -71.1 (-172.7 - 30.5)
Trp (f=4.1%) -11.7 (-83.0 - 59.5)
HLA-B position 194, lle (f=83.2%) -30.9 (-73.2-11.3)
conditioning on 13x 1018 Val (f=16.9%) 30.9(-11.3-73.2)
HLA-DRP1 position 13 '
and HLA-B position 97 Indel (f=0.1%) -167.4 (-786.5 - 451.7)

In order to test if the top GWAS SNP association can be explained by the significant signals
observed at the HLA allele and amino acid levels, we included them as covariates in the
models and reran regression tests. We observed that no residual signal remained by using
amino acid positions and thus we concluded that they explained the entirety of the SNP
association signals (Table 3.4).

Table 3.4. Association test for top associated GWAS SNPs including significant HLA alleles and
variable amino acids as covariates.

P-value (SNP) P-value (SNP)
Associated conditional on conditional on
classical significant HLA | Associated amino acid significant
Phenotype HLA allele alleles position in HLA protein | amino acids
MFI of CD86 in pDC |HLA-DQA1*03:01| 4.38x 10-5 HLA-DR[1 (13) 3.16 x 10-4
MFI of HLA-DR
in CD14" monocytes |HLA-DQA1*03:01| 1.62x 10" HLA-DRB1 (13) 1
MFI of HLA-DR
in cDC1 HLA-DQA1*05:01| 3.24x10°° HLA-DRP1 (13) 0.05
MFI of HLA-DR HLA-DQA1*03:01, HLA-DRB1 (13),
in pDC HLA-DQA1*02:01 2.48 x 10_5 HLA-B (97), HLA-B (194) 1
HLA-DR" CD56" NK cells HLA-DRB1 (67) 2 x10°
MFI of HLA-DR
in cDC3 HLA-DRB1 (74) 3.18x 10"
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3.3.2 Variance explained by HLA amino acids

We then sought to calculate the additional variance explained by the strongest signals
we observed in the HLA region — the variable amino acid positions in the HLA proteins. We
observed a significant increase of explained variance for each of the phenotype (Table 3.5).

Table 3.5. Variance explained by the associated variable HLA amino acids.

r? Associated amino acid r2
Phenotype (covariates)| position in HLA protein | (covariates, amino acids)| Ar?
MFI of CD86 in pDC 22.50% HLA-DRB1 (13) 28.50% 6.00%
MFI of HLA-DR
in CD14" monocytes 3.10% HLA-DRP1 (13) 20.20% 17.10%
MFI of HLA-DR
in cDC1 3.70% HLA-DRPB1 (13) 17.50% 13.80%
MFI of HLA-DR HLA-DRB1 (13),
in pDC 3.10% |HLA-B (97), HLA-B (194) 31.60% 28.50%
HLA-DR* CD56" NK cells | 3.80% HLA-DRB1 (67) 9.50% 5.70%
MFI of HLA-DR
in cDC3 1.80% HLA-DRPB1 (74) 8.00% 6.20%
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3.4 Discussion

Three different association signals in the HLA-DR gene region were found to be
associated with the MFI of HLA-DR in pDCs and CD14" monocytes, in conventional DCs (cDC1
cells, as defined by the expression of the transmembrane glycoprotein BDCA1) and in cDC3
cells (as defined on the basis of their expression of the integral membrane protein BDCA3).
We here looked to determine if these signals were independent of each other and we
conducted omnibus association tests on imputed HLA alleles. We found that the association
signals in CD14" monocytes, pDCs and cDC1 cells actually resulted from different amino acid—
altering variants at the same codon in position 13 of the HLA-DRB1 protein. A different amino
acid variant, at position 67 of HLA-DRP1, was identified as associated with cDC3 cells.
Conditional analyses also revealed independent associations of the cell-surface expression of
HLA-DR with two residues in the class | HLA-B gene (position 97 and position 194). We
additionally fine-mapped the initial signal at the level of SNP to HLA amino acid variation for
two other innate immunophenotypes — MFI of CD86 in pDC cells and the number of HLA-DR*

CD56" NK cells. Collectively, these results showed that the protein expression of markers of
innate immune cell differentiation and activation were strongly affected by common genetic
variants in the HLA region.

These results could have a broader significance for personalized diagnosis of immune-related
diseases. For example, expression of HLA-DR on monocytes can be measured by flow
cytometry to predict the clinical course of septic shock and identify patients who might
benefit from immunoadjuvant therapies [12]. We identified a strong effect of HLA-DRB1
coding variation on the expression of HLA-DR by CD14" monocytes, which would suggest that
tools used to predict fatal outcome in sepsis should be tailored to the patient’s genetic
makeup. Additionally, the position 13 of the HLA-DRB1 protein that we identified as a
predictor of HLA-DR expression at the surface of pDCs and monocytes, has been shown to
explain a large part of the association signal in the HLA locus for type 1 diabetes [13] and this
would suggest an association of innate immunity with the disease [14].

Together these findings provide a new insight into the mechanisms underlying disease
pathogenesis and further evaluation of the natural variability in cellular mediators of
immunity will improve our understanding of the involvement of the immune system in human
health and disease.
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Abstract: The quantification and characterization of circulating immune cells provide key
indicators of human health and disease. To identify the relative effects of environmental and
genetic factors on variation in the parameters of innate and adaptive immune cells in
homeostatic conditions, we combined standardized flow cytometry of blood leukocytes and
genome-wide DNA genotyping of 1,000 healthy, unrelated people of Western European
ancestry. We found that smoking, together with age, sex and latent infection with
cytomegalovirus, were the main non-genetic factors that affected variation in parameters of
human immune cells. Genome-wide association studies of 166 immunophenotypes identified
15 loci that showed enrichment for disease-associated variants. Finally, we demonstrated
that the parameters of innate cells were more strongly controlled by genetic variation than
were those of adaptive cells, which were driven by mainly environmental exposure. Our data

55



establish a resource that will generate new hypotheses in immunology and highlight the role
of innate immunity in susceptibility to common autoimmune diseases.

Introduction: The immune system has an essential role in maintaining homeostasis in people
challenged by microbial infection, a physiological mechanism conceptualized by the French
physician Claude Bernard in 1865, when he defined the notion of “milieu intérieur”. [1] Host—
pathogen interactions trigger immune responses through the activation of specialized
immune cell populations, which can eventually result in pathogen clearance. The study of
immune cell populations circulating in the blood provides a view into innate cells that are
transiting between the bone marrow and tissues, and into adaptive cells that are recirculating
through the lymphoid organs. Clinical studies of patients with past or chronic latent infection
have reported profound perturbations in subsets of circulating immune cells due to altered
trafficking, selective population expansion or attrition [2,3]. However, several studies have
suggested that extensive differences also exist among healthy people in the composition of
their white blood cells [4,5]. Evaluation of the naturally occurring variation in parameters of
immune cells, together with environmental and genetic determinants of such variation, could
accelerate the generation of hypotheses in basic immunology and ultimately improve the
characterization of pathological states.

Population-immunology approaches, which compare immunological status across a large
number of healthy people, have highlighted the predominant effect of intrinsic factors such
as age and sex on the composition of human blood cells [6]. Several subpopulations of
activated and memory T cells increase with age [7], which might result in part from diminished
thymic activity [8] and might explain reduced vaccination efficacy in the elderly [9]. Seasonal
fluctuations in B cells, regulatory T cells (Treg cells) and monocytes [10] and a strong effect of
cohabitation on human immunological profiles [11] have been observed, which suggests that
environmental exposure also drives variation in the immune system. For example, latent
infection with cytomegalovirus (CMV), which is detected in 40% to > 90% of the general
population [12], has been associated with an increased number of effector memory T cells
[13], which could in turn alter immune responses to heterologous infection [14]. However,
the respective effects of age, sex and CMV infection on both innate cells and adaptive cells,
as well as the precise nature of the environmental factors that affect variation in the immune
system, are largely unknown.

Technological advances in flow cytometry, combined with genome-wide DNA genotyping,
now allow delineation of the genetic basis of inter-person variation in the parameters of
immune cells. A seminal genome-wide association study (GWAS) has identified 13 genetic loci
strongly associated with the proportion of various leukocyte subpopulations in a cohort of
249 Sardinian families [15]. Another study has reported deep immunophenotyping of ~1,800
independent traits in 245 healthy twin pairs, which has identified 11 independent genetic loci
that account for up to 36% of the variation of 19 different traits [16]. A third study has
estimated the genetic heritability in the frequency of 95 different immune cells in 105 healthy
twin pairs and has suggested that variation in immune cells is explained largely by non-
heritable factors [17]. Finally, four novel loci have been associated with B cell and T cell traits
in a cohort of 442 healthy human donors in a study that delineated both non-genetic factors
and genetic factors that affect immune cell traits that mediate adaptive immunity [10].
Together such studies have provided valuable insights into the contribution of genetic factors
to inter-person differences in populations of adaptive immune cells, but they have largely
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neglected several major types of innate cells in the circulation. An integrated evaluation of
the nature and respective effects of intrinsic, environmental and genetic factors that drive
human variation in both innate immunity and adaptive immunity is thus lacking.

Here we report the use of standardized flow cytometry to comprehensively establish the
composition of white blood cells from 1,000 healthy, unrelated people of Western European
ancestry that compose the Milieu Intérieur cohort. We confirmed with this broad resource
that age, sex, CMV seropositivity and smoking had major, independent effects on the
parameters of innate and adaptive immune cells. We identified, through a GWAS, 15 loci
associated with parameters of circulating leukocyte subpopulations, 12 of which were
previously unknown. Finally, we found that cellular mediators of innate and adaptive
immunity were affected differentially by non-genetic factors and genetic factors under
homeostatic conditions.

Results:

The Milieu Intérieur cohort includes 500 men and 500 women stratified across five decades
from 20 years of age to 69 years of age. Subjects were surveyed for various demographic
variables, including past infections, vaccination and surgical histories, and health related
habits (Supplementary Table 1). Detailed inclusion and exclusion criteria used to define
‘healthy’ subjects recruited into the cohort have been previously reported [18].

To describe natural variation of both innate immune cells and adaptive immune cells in the
1,000 subjects, we used ten eight-color immunophenotyping flow-cytometry panels
(Supplementary Figs. 1-10 and Supplementary Table 2), which allowed us to report a total of
166 distinct immunophenotypes (Supplementary Table 3). Our resource included 75
immunophenotypes obtained in innate immune cells (46%) and 91 immunophenotypes
obtained in adaptive immune cells (54%). Innate cells were defined as those lacking somatic
recombination of the genome [19] and included granulocytes (neutrophils, basophils and
eosinophils), monocytes, natural killer (NK) cells, dendritic cells (DCs) and innate lymphoid
cells (ILCs) (Fig. 3.1). Adaptive cells were defined by their dependence on activity of the RAG1—
RAG2 recombinase and included T cells (y6 T cells, mucosa-associated invariant T cells (MAIT
cells), NKT cells, Treg cells and helper T cells) and B cells. The immunophenotypes of both
innate immune cells and adaptive immune cells included 76 absolute counts of circulating
cells, 87 expression levels of cell surface markers (quantified as mean fluorescence intensity
(MFI)), and 3 ratios of cell counts or MFI values (Supplementary Fig. 11 and Supplementary
Table 3).
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Fig. 3.1. Quantification of immune cells and cell-surface markers measured in the Milieu
Intérieur cohort. Strategy: flow cytometry was used to quantify (as MFI) the expression of
phenotypic markers of differentiation or activation in cells of various lineages or
differentiation states (interconnecting lines), as well as to quantify the cells themselves, for
the identification of immunophenotypes significantly associated with non-genetic or genetic
factors (key); numbers in parentheses (bottom left corners) indicate eight-color panels
performed, grouped on the basis of cellular lineage (Supplementary Figs. 1-10 and
Supplementary Tables 2 and 3). ILC1, ILC2 and ILC3, subsets of ILCs; Tcewm cells, central memory
T cells; Tem cells, effector memory T cells; Trn, Tul, Thl7 and Tu2, subsets of helper T cells;
NKp46, activating receptor; ICOS, costimulatory receptor.

To reduce technical variation introduced by sample-temperature fluctuations and pre-
analytical procedures, we strictly followed a standardized protocol for tracking and processing
samples [20]. Through the use of technical replicates, we verified that the
immunophenotypes measured were highly reproducible (Supplementary Figs. 12 and 13 and
Supplementary Table 3), which demonstrated the high precision of the data. We nevertheless
identified two technical batch effects that affected flow-cytometry analyses. One effect
corresponded to the hour at which the blood sample was obtained from fasting subjects
(Supplementary Fig. 14a), which might possibly be explained by the spike in cortisol at the
time of waking [21]. The second effect corresponded to temporal variation of
immunophenotypes over the 1-year sampling period, which did not follow the periodic
distribution observed for cellular traits under seasonal fluctuations [11], and affected mainly
measures of MFI (Supplementary Fig. 14b). We corrected for these batch effects in all
subsequent analyses (Supplementary Fig. 15) and provide the distribution, ranges and
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statistics of all batch-corrected counts of immune cells (Supplementary Table 3), which should
facilitate comparisons with cytometry data collected as part of routine clinical practice. This
resource can be accessed through an online application (http://milieu-interieur.cytogwas.
pasteur.fr/), which can be queried by personal characteristics such as age or sex.

Owing to the hierarchical structure of the differentiation of immune cells (i.e., cellular
lineages emerge from common progenitor cells), a substantial portion of the counts of
immune cells obtained in this study were highly correlated (Supplementary Fig. 16). These
correlations were not directly attributable to the influence of factors such as age or sex, which
were regressed out in this analysis. We observed correlations between the number of
circulating ILC populations and that of NK cell populations, reflective of their common
developmental pathway and dependence on yc cytokines [22]. Likewise, MAIT cells and
CCR6*CD8* T cells were also correlated, owing to the former’s being the major subset of CCR6*
T cells in the circulation [23]. Finally, we identified a strong correlation between the number
of Treg cells and that of conventional CD4* T cells, in confirmation of experimental work that
defined a self-regulatory circuit driven by the cytokine IL-2 that integrates the homeostasis of
these cell populations [24].

Effects of age, sex and CMV infection on parameters of innate and adaptive cells.
Published studies have shown that two intrinsic factors, age and sex, are responsible for inter-
person variation in the composition of white blood cells [6,7,10,14,25-27]. We used linear
mixed models to quantify the respective effect of each of these intrinsic factors on variation
in the composition of innate and adaptive cells. We observed a significant effect of age on
35% of the parameters of immune cells (adjusted P value, < 0.01; Fig. 3.2a and Supplementary
Fig. 17a), among which only 29% were measured for innate cells. We detected a general
decrease in the number of ILCs and plasmacytoid DCs (pDCs) and an increase in the number
of CD16hi monocytes with increasing age (Fig. 3.2a), which might contribute to the altered
immune response to viral infection in elderly people and age-associated inflammation
[14,28,29]. We found a modest increase in the number of memory T cells with age, in support
of the view that the observed expansion of these cell populations in elderly subjects is not
due to aging itself but to CMV seropositivity [13], which we accounted for in the model. Our
analyses also revealed that the number of naive CD8* T cells decreased more than twice as
rapidly with age as the number of naive CD4* T cells did, at a rate of 3.6% per year (99% false-
coverage rate (FCR)-adjusted confidence interval (99% Cl): [3.0%, 4.1%]) and 1.6% per year
(99% Cl: [1.1%, 2.1%]), respectively (Fig. 3.2a—c), in support of the view that CD8" T cells are
more susceptible to concentrations of homeostatic cytokines and/or that the production of
CD4* T cells is ‘preferentially’ enhanced in the human thymus [30].

Although sex differences have been previously reported for various immune responses and
diseases [25], studies examining parameters of circulating cells have reported inconsistent
results, owing to both differences in flow-cytometry procedures and relatively small,
underpowered or poorly stratified study cohorts. We found a significant effect of sex on 16%
of the immunophenotypes measured (adjusted P value, < 0.01; Fig. 3.2d and Supplementary
Fig. 17b), of which 38% were measured in innate cells. We found a larger number of activated
NK cells in men than in women. In contrast, MAIT cells were systematically greater in number
in women, across all age decades (Fig. 3.2e—f), collectively suggestive of a lasting effect of
early hormonal differences on the development and biology of immune cells.
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Environmental exposures are also known to drive variation in the immune system, among
which persistent infection with CMV is one of the strongest candidates [6,13,14,17]. We
observed a significant effect of latent infection with CMV on 13% of the parameters of
immune cells (Fig. 3.2g and Supplementary Fig. 17c), of which more than 75% were measured
in adaptive cells. We confirmed that CMV triggered a major change in the number of memory
T cells, which was independent of age effects13,17. In particular, CMV seropositivity was
associated with a 12.5-fold greater number of CD4* effector memory T cells that re-express
the naive-cell marker CD45RA (Temra cells) (99% Cl: [8.8, 17.6]), and a 4.6-fold greater number
of CD8" Temra cells (99% CI: [3.5, 6.0]) (Fig. 3.2g—i). However, we did not find evidence that
CMV infection affected the number of cells in the naive T cell compartment or central memory
T cell compartment. In support of that observation, the total number of CD8* T cells and CD4*
T cells increased in parallel with the expanded number of memory T cells, suggestive of
independent regulation of the naive T cell pool and the effector memory T cell and/or Temra
cell pool(s). CMV-seropositive donors also had lower numbers of circulating NKT cells and
MAIT cells (Fig. 3.2g). Together our broad resource provided comprehensive quantification of
the respective effects of age, sex and CMV infection on parameters of immune cells.
Moreover, our results suggested a stronger effect of these factors on adaptive cells than on
innate cells.
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Fig. 3.2. Effects of age, sex and CMV infection on the number of innate and adaptive cells in
healthy people. a,d,g, Quantification of the effect of age (a), sex (d) and CMV serostatus (g)
on the abundance of circulating adaptive or innate immune cells (key; left margin) obtained
from healthy donors (n = 1,000), estimated in a linear mixed model with a log-transformed
immunophenotype as the response, controlled for batch effects and genome-wide significant
SNPs, then transformed to the original scale (with 99% Cls adjusted for false coverage). b,
Quantification of naive CD8b* or CD4* T cells (above plot) obtained from healthy donors (as in
a,d,g) of various ages (horizontal axis), presented with regression lines fitted by local
polynomial regression. e, Quantification of MAIT cells obtained from male or female (above
plot) healthy donors (as in a,d,g) of various ages (horizontal axis), presented as in b. h,
Quantification of CD4* Temra cells obtained from CMV* or CMV- (above plot) healthy donors
(as in a,d,g) of various ages (horizontal axis), presented as in b. ¢, Flow cytometry of naive T
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cells obtained from a donor 22 years of age or a donor 64 years of age (left margin). Numbers
adjacent to outlined areas indicate percent CD8b*CD4~ T cells. f, Flow cytometry of naive T
cells obtained from a female donor and a male donor (left margin). Numbers adjacent to
outlined areas indicate percent TCRV7.2*CD161* T cells (Temga cells). i, Flow cytometry of naive
T cells obtained from a CMV* donor and a CMV~ donor (left margin). Numbers adjacent to
outlined areas indicate percent CD45RA*CD27- T cells (MAIT cells). Effects on MFI,
Supplementary Fig. 17.

Tobacco smoking extensively alters the number of innate and adaptive cells.
Capitalizing on the detailed lifestyle and demographic data obtained for the Milieu Intérieur

cohort, we evaluated the influence of additional environmental factors on parameters of
immune cells with linear mixed models, controlling for the defined effects of age, sex, CMV
serological status and batch effects. A total of 39 variables were chosen for analysis and tested
for association with each immunophenotype. These included socio-economic characteristics,
past infections, health-related habits, and surgery and vaccination history (Supplementary
Fig. 18 and Supplementary Table 1). We identified a unique environmental factor that
significantly altered the number of circulating immune cells: active smoking of tobacco
cigarettes. This affected 36% of the immunophenotypes measured (Fig. 3.3a and
Supplementary Fig. 19), of which 36% were measured in innate cells.

We observed a 23% greater number of circulating CD45* cells (99% Cl: [11%, 37%]) and a 26%
greater number of conventional lymphocytes (99% Cl: [10%, 45%]) in smokers than in non-
smokers (Fig. 3.3b). Published studies have suggested that smokers have alterations in
circulating cell populations due to diminished adherence of leukocytes to blood-vessel walls,
possibly as a result of lower antioxidant concentrations [31]. Furthermore, we found in active
smokers a significant increase of 43% in activated Treg cells (99% Cl: [17%, 76%]) and 41% in
memory Treg cells (99% Cl: [15%, 71%]), a pattern that was also observed, to a lesser extent,
in past smokers (Fig. 3.3b—d). Active smokers also showed a decreased number of NK cells,
ILCs, y& T cells and various subsets of MAIT cells (Fig. 3.3b). These findings were consistent
with a study showing that smoking triggers local release of IL-33 by the lung epithelium [32],
which in turn engages the IL-33 receptor ST2 on both innate lymphocytes and non-classical
lymphocytes [33]. Collectively, these findings revealed that active smoking had a profound
effect on parameters of immune cells that was similar in magnitude to that of age, and that it
affected both innate cells and adaptive cells.
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Fig. 3.3. Effects of smoking on the number of innate and adaptive immune cells in healthy
people. a, Association between 39 non-genetic factors (left margin) and the number of
adaptive and innate cells (above plot) in healthy donors (n = 1,000), presented as —logio of
adjusted P values with a false-discovery rate (FDR) of < 1%. We controlled for age, sex, and
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and genome-wide significant SNPs (Table 1). b, Quantification of the effect of past or active
smoking (above plots) on the abundance of circulating adaptive and innate immune cells (key;
left margin), with multiplicative effect sizes estimated in a linear mixed model with a log-
transformed immunophenotype as response, controlled for age, sex, CMV serostatus, batch
effects and genome-wide significant SNPs, then transformed to the original data scale (99%
Cls adjusted for false coverage). c, Quantification of circulating Treq cells in donors of various
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shaded curves, HLA-DR— Treg cells. Numbers above bracketed lines indicate percent HLA-DR*
Treqg cells (red or tan curve; effect of smoking on MFI, Supplementary Fig. 19).

GWAS of 166 parameters of immune cells.
To identify common genetic variants that affect inter-person variation in parameters of

immune cells, we genotyped the Milieu Intérieur cohort at 945,213 single-nucleotide
polymorphisms (SNPs) enriched for exonic SNPs. After quality control (Supplementary Fig.
20), genotype imputation was performed, which yielded a total of 5,699,237 highly accurate
SNPs, which were tested for association with the 166 immunophenotypes by linear mixed
models. The models were adjusted for the genetic relatedness among subjects and any non-
genetic variable identified as being predictive of each specific immunophenotype by stability
selection based on elastic net regression (Supplementary Table 3). We confirmed that we had
the power to identify medium effect genotype—phenotype associations by simulations and by
empirically replicating well-known genetic associations with nonimmunological traits, such as
eye and hair color or levels of uric acid and cholesterol.

In the context of immunological traits, we found 14 independent genetic loci associated with
42 of 166 immunophenotypes (25%), at a conservative genome-wide significant threshold of
P < 1.0 x 107%° (Fig. 3.4a, Table 3.1, Supplementary Fig. 21 and Supplementary Tables 4 and
5). We then conducted conditional GWAS by adjusting those 42 immunophenotypes on the
14 leading associated variants (Table 3.1) and found an additional independent locus that
reached genome-wide significance (Supplementary Fig. 22 and Supplementary Table 6).
Genome-wide significant associations were replicated in an independent cohort of 75 donors
of European descent for all immunological traits measured in this replication cohort (P < 0.05;
Table 3.1). Also, we confirmed that our measurements of immune cells were stable, as all
genome-wide significant associations were confirmed for immunophenotypes measured in a
sample of blood newly obtained from 500 of the 1,000 subjects of the Milieu Intérieur cohort,
at 7-44 d after the initial visit (P < 1073; Table 3.1). We also provide a list of 26 suggestive
association signals (P < 5.0 x 1078), including various candidate genes encoding biologically
relevant molecules (Supplementary Table 6). The associated genetic loci showed enrichment
for SNPs associated by GWAS with diseases (31% observed versus 5% expected; resampling P
value, 0.0032), most of which were autoimmune diseases, including rheumatoid arthritis,
Vogt-Koyanagi- Harada syndrome and atopic dermatitis (Supplementary Table 4). These
findings highlighted the importance of the alteration of immune cell populations by genetic
loci in the context of ultimate organismal traits that affect human health.

Table 3.6. Genome-wide signals of association with immunophenotypes in the Milieu Intérieur
cohort. P values of the linear mixed model used for GWAS. °Other immunophenotypes
correspond to any measured immunophenotype in the Milieu Intérieur cohort that was also
significantly associated with the candidate variant, but to a lesser extent than the main
immunophenotype. °Replication was performed in an independent cohort of 75 European-
descent Americans. Only panels 4 and 7 could be used, due to sample limitations; effects were
in the same direction as in the primary cohort. P-values for biological replicates were
estimated on the basis of immunophenotypes measured from blood newly obtained ~17 d
after the initial visit, in 500 subjects of the Milieu Intérieur cohort. ®Previous identification
noted by reference number; — indicates no previous identification. °EAF is the frequency of the
effect allele, which was defined as the allele with a positive effect on the immunophenotype.
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Fig. 3.4. Genome-wide significant associations with 166 immunophenotypes measured in
healthy people. a, Genome-wide significant associations with variants acting locally (local-
pQTLs (blue)) or not (cell count QTLs or trans-pQTLs (yellow)) on immunophenotypes in healthy
subjects (n = 1,000), presented as Manhattan plots (gray line, genome-wide significance
threshold (P < 1 x 1071°); ‘zoomed’ Manhattan plots for all hits, Supplementary Fig. 21). b,
Flow-cytometry analysis of the expression of FceRla and CD62L by various granulocytes
(colors; key) of donors homozygous for the major rs2223286 allele (T/T) or minor rs2223286
allele (C/C) (color intensity; key). c, CD62L expression by eosinophils, neutrophils and basophils
(above plots) from age-matched donors homozygous for the major rs2223286 allele (solid line,
open curve) or minor rs2223286 allele (dotted line, shaded curve) (key). d, Genetic associations
between SNPs in the SELL genomic region and cell-surface expression of CD62L by eosinophils
(left) or level of SELL mRNA in whole blood (right), presented as zoomed’ Manhattan plots:
each symbol is an SNP; color indicates linkage disequilibrium (r?), with the best hit (rs2223286)
in purple; blue lines indicate local recombination rates.
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Genetic associations identify mainly immune cell-specific protein quantitative trait loci.
Of the 42 immunophenotypes for which a significant genetic association was detected, 36

(86%) were MFI measurements, which quantifies the cell-specific expression of protein
markers conventionally used to determine the differentiation or activation state of
leukocytes. For 28 of these 36 MFI measurements (78%), the genetic association was
observed between the protein MFI and SNPs located in the vicinity of the gene encoding the
corresponding protein (Table 3.1 and Supplementary Fig. 21); i.e., local protein quantitative
trait loci (local-pQTLs). For example, genetic variation near ENPP3 (which encodes the
phosphodiesterase CD203c) was associated with the MFI of CD203c in basophils (rs2270089;
P = 2.1 x 107%8); genetic variation near CD24 (which encodes the B cell-differentiation marker
CD24) was associated with the MFI of CD24 in marginal zone B cells (rs12529793; P = 3.8 x
107%); and genetic variation near CD8A (which encodes the co-receptor CD8a) was associated
with the MFI of CD8a in CD69+CD16hi NK cells (rs71411868; P = 5.9 x 107°8).

We identified two independent local-pQTLs in the FCGR cluster (Table 3.1), which encodes
the most important Fc receptors for inducing the phagocytosis of opsonized microbes.
Genetic variation near FCGR3A was associated here with the MFI of the NK cell receptor CD16
(FcyRII) in CD16hi NK cells (rs3845548; P = 3.0 x 107%7). The same variants were also shown
to affect the number of CD62L— myeloid cDCs in a published study [15]. The second signal-
associated variation in FCGR2B was associated with the MFI of the NK cell receptor CD32
(FcyRIl) in basophils (rs61804205; P = 1.7 x 1073¢) but not in eosinophils or neutrophils.
Consistent with that, it is known that basophils express both CD32a and CD32b, while
eosinophils and neutrophils express mainly CD32a [34]. Conversely, a local pQTL was
identified at SELL (which encodes the adhesion molecule CD62L) that was associated with the
MFI of CD62L in eosinophils and neutrophils (rs2223286; P = 1.6 x 1073°> and P = 8.8 x 10713,
respectively) but not in basophils (Fig. 3.4b,c).

Various other local-pQTLs were found to be cell specific; three different association signals in
the HLA-DR gene region were found to be associated with the MFI of HLA-DR in pDCs and
CD14hi monocytes (rs114973966; P = 2.2 x 107°), in conventional DCs (cDC1 cells, as defined
by the expression of the transmembrane glycoprotein BDCA1) (rs2760994; P = 6.1 x 10738)
and in ¢DC3 cells (rs143655145; P = 2.6 x 107!!). To determine if these signals were
independent of each other, we conducted omnibus association tests on imputed HLA alleles.
We found that the association signals in CD14hi monocytes, pDCs and ¢DC1 cells actually
resulted from different amino acid—altering variants at the same codon in position 13 of the
HLA-DRB 1 protein (omnibus test P=2.0x 1074, P = 7.0 x 10°% and P = 5.3 x 107! in CD14hi
monocytes, pDC and cDC1 cells, respectively; Supplementary Tables 7 and 8) that has been
shown to explain a large part of the association signal in the HLA locus for type 1 diabetes
[35]. A different amino acid variant, at position 67 of HLA-DRB1, was identified in cDC3 cells
(on the basis of their expression of the integral membrane protein BDCA3; P = 3.9 x 10713),
Conditional analyses also revealed independent associations of the cell-surface expression of
HLA-DR with two residues in the class | HLA-B gene (position 97 (P = 3.8 x 1077) and position
194 (P = 1.3 x 107'8); Supplementary Tables 7 and 8). Collectively, these results showed that
the protein expression of markers of immune cell differentiation and activation was affected
by common genetic variants, of which some are known to be linked to human pathogenesis.
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Immune cell local-pQTLs control mRNA levels of nearby genes.

Although four of the nine local-pQTLs identified by our analyses could probably be explained
by amino acid—altering variants in surrounding genes (Supplementary Tables 4 and 7), the
remaining signals did not present obvious candidate causal variants. To delineate the
functional basis of these associations, we investigated whether the corresponding SNPs were
also associated with mRNA levels of nearby genes (i.e., expression quantitative trait loci
(eQTLs)) using gene-expression data obtained from the same donors [36] and results from the
Genotype-Tissue Expression Project [37]. Five of the local-pQTLs were strongly associated
with the transcript levels of a surrounding gene (linear regression model adjusting on major
cell proportions; P < 1.0 x 107%; Fig. 3.4d). The SNPs that controlled the MFI of CD16 in CD16hi
NK cells and that of CD32 in basophils, CD62L in eosinophils, CD8a in CD69+ CD16hi NK cells
and CD203c in basophils were associated with the mRNA levels of their genes (FCGR2B, SELL,
CD8A and ENPP3, respectively) (Supplementary Table 4). These analyses indicated that
genetic variants associated with immunophenotypes were able to directly affect the
expression of genes encoding markers of immune cells in whole blood. This suggested that
eQTL mapping in various immune cell compartments might greatly improve knowledge of the
genetic factors that control inter-person variation in parameters of flow cytometry.

Novel trans-acting genetic associations with parameters of immune cells.
We detected six loci that did not exclusively act as local-pQTLs on immunophenotypes (Table

3.1 and Supplementary Fig. 21). These included variants associated with immune cell counts
or genetically independent of the genes encoding immune cell markers with which they are
associated (i.e., ‘trans-pQTLs’). A variant in the vicinity of S1PR1 (which encodes the
sphingosine 1-phosphate receptor S1P; (CD363)) was associated with the MFI of CD69 in
CD16hi NK cells (rs6693121; P = 4.8 x 107%7). CD69 is known to downregulate cell-surface
expression of S1P1 on lymphocytes, a mechanism that elicits egress from the thymus and
secondary lymphoid organs [38]. Genetic variation in an intron of ACOXL (which encodes an
acyl-coenzyme A oxidase—like protein) near BCL2L11 (which encodes the apoptosis-related
protein BCL2L11) was associated with the absolute number of CD8a*CD56" NK cells
(rs12986962; P = 9.1 x 107%°). BCL2L11 (BIM) is an important regulator of lymphocyte
apoptosis [39] and is associated with chronic lymphocytic leukemia and the total number of
blood cells [40]. A third association involved genetic variants near ACTL9 (which encodes an
actin-like protein) and the ratio of the MFI of CD16 in CD16" NK cells to that in CD56" NK cells
(rs114412914, P = 4.3 x 1073%). The same variants have been also found to be associated with
CD56*CD16™ NK cells in another study [10].

Although they were identified here for their trans effects on markers of the differentiation or
activation of immune cells, three trans-acting genetic associations were also local-eQTLs for
nearby genes encoding proteins related to the immune system [37] (Supplementary Tables 4
and 6). The MFI of the chemokine receptor CCR7 in CD4* or CD8b™* naive T cells was associated
with a variant in TMEMS8A (which encodes a transmembrane protein) (rs11648403; P = 3.0 x
1071°) that also controlled the level of TMEMS8A mRNA (P = 2.5 x 107%7). TMEMS8A is expressed
on the surface of resting T cells and is downregulated after cell activation [41], suggestive of
a possible functional association and/ or co-regulation with CCR7. Variants in the vicinity of
ALOX15 (which encodes arachidonate 15-lipoxygenase) were associated with increased
protein levels of the high-affinity immunoglobulin E (IgE) receptor in eosinophils (rs56170457;
P =9.2 x 107*) and increased levels of ALOX15 mRNA (P = 2.7 x 1073). These results, together
with the high expression of ALOX15 protein and its proinflammatory effect on circulating
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eosinophils [42], suggested an important role for this lipoxygenase in IgE-dependent allergic
reactions. Finally, conditional GWAS identified an additional transacting association between
a variant near CD83 (which encodes the co-stimulatory molecule CD83) and the MFI of HLA-
DR in cDC1 cells (rs72836542; P = 2.8 x 107*?; Supplementary Fig. 22); the same variant was
also identified as a local-eQTL of CD83 expression (P = 5.4 x 107%). These results suggested
that CD83, an early activation marker of human DCs, upregulates HLA-DR expression in
activated DCs.

Natural variation in the parameters of innate immune cells is ‘preferentially’ driven by

genetic factors.
A large proportion of both MFlimmunophenotypes and cell-number immunophenotypes that

presented a genome-wide association were detected in innate immune cells (35 of 44 (80%)),
including granulocytes, monocytes, NK cells and DCs (Table 3.1), while 47% of all
immunophenotypes were measured in innate cells (Supplementary Table 3). Furthermore, of
the adaptive-cell immunophenotypes that showed genetic associations, three of the nine
measurements (33%) were related to naive T cells or B cells, while parameters of naive
adaptive cells represented < 10% of all measurements of adaptive cells. These observations
suggested a stronger effect of genetic variants on innate and naive adaptive cell
subpopulations than on differentiated or experienced adaptive immune cells.

In support of that hypothesis, the presence of HLA-DR molecules, assessed at the surface of
both innate immune cells and adaptive immune cells, was strongly associated with HLA-DR
genetic variation in monocytes, NK cells and DCs (Table 3.1) but not in CD4* or CD8* central
memory T cells, effector memory T cells or Temra cells (P > 1.0 x 107%; Supplementary Table 5).
Because we observed substantial correlations among the number of HLA-DR* memory T cells
(linear model R? = 0.3; P < 0.05; Supplementary Fig. 16), we hypothesized that they were
controlled at least in part by the same genetic factors, which we further assessed by
multivariate GWAS. This refined approach detected a suggestive genetic association near
HLA-DRB1 with a variant (rs35743245; multivariate mixed model P = 1.0 x 1078) in strong
linkage disequilibrium with that detected in pDCs, monocytes and NK cells (r?> = 0.92;
Supplementary Fig. 23). This finding provided proof of the concept that the
immunophenotypes of both innate cells and adaptive cells can be controlled by the same
genetic factors but their effects are stronger in innate cells than in experienced adaptive cells.

We next systematically quantified the effects of genetic and nongenetic factors on innate and
adaptive cells. We established, for each immunophenotype, a linear-regression model that
included the four non-genetic variables with the greatest effect (Figs. 3.2 and 3.3) and all
genome-wide significant and suggestive variants (Table 3.1 and Supplementary Table 6) and
estimated their respective contribution(s) to the total variance. We found that a larger
proportion of the variance of the immunophenotypes of innate cells (Fig. 3.5b,d) than that of
the immunophenotypes of adaptive cells (Fig. 3.5a,c) was explained by genetic factors.
Inversely, the variance in the number of adaptive cells was dominated by non-genetic factors
such as age and CMV serostatus (Fig. 3.5a). To determine if these differences were significant,
we used a mixed model that accounted for correlations among immunophenotypes.
Conclusively, we estimated that the variance explained by genetics was 66% larger for
measurements of innate cells than for those of adaptive cells (95% Cl, 13—-143%; P = 0.012
(bootstrap); P = 0.032 (Mann-Whitney U-test)), while the variance explained by nongenetic
factors was 46% smaller for measurements of innate cells than for those of adaptive cells
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(95% Cl, 22-63%; P = 1.8 x 1073 (bootstrap); P = 8.1 x 1073 (Mann-Whitney U-test)). When we
considered non-genetic factors separately, the ratio of explained variance for measurements
of innate cells to that of adaptive cells was the smallest for smoking (0.46, 95% Cl: 0.17-1.25),
followed by age (0.63; 95% Cl, 0.42-0.95), CMV infection (0.71; 95% Cl, 0.51-0.99) and sex
(0.95; 95% Cl, 0.60-1.51). Together our results indicated that genetic factors accounted for a
substantial fraction of human variation in parameters of immune cells, with their influence
being stronger on innate immune cells than on the phenotypes of adaptive immune cells.
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Fig. 3.5. Proportion of variance of the parameters of innate and adaptive cells explained by
non-genetic and genetic factors. Analysis of the effect of various factors (key) on variance of
cellular abundance (76 absolute cell counts and two count ratios, assessed by flow cytometry;
a,b) and MFI of various cell-surface markers (left margin; 87 MFI values and a ratio of MFI
values, assessed by flow cytometry; c,d), presented as variance of the 91 parameters of
adaptive cells (a,c) and 75 parameters of innate cells (b,d) decomposed into proportions
explained (R?) by intrinsic factors (key: age and sex (Fig. 3.2.) or by environmental exposure
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(CMV infection and smoking; Figs. 3.2 and 3.3) and genetic factors (independent significant
and suggestive GWAS hits, Table 3.1 and Supplementary Table 6).

Discussion: Over the past two decades, research into human immunology has employed
multi-parameter cytometry to count and assess the activation state of immune cells in healthy
and disease conditions. Although the parameters of immune cells do vary in the general
population, the extent to which intrinsic, environmental and genetic factors explain this
variability has remained elusive. To tackle these questions, we generated a broad resource by
combining standardized flow cytometry with genome-wide DNA genotyping in a
demographically well-defined cohort of 1,000 healthy people. We confirmed the strong and
independent effects of age and CMV infection on naive T cell populations and memory T cell
populations, respectively, and provided robust evidence for sex differences in the number of
innate cells and adaptive cells. We showed that homeostasis of the immune system was
altered after chronic exposure to cigarette smoke, which elicited both a decrease in the
abundance of MAIT cells, possibly due to their increased migration to sites of inflammation,
and an increase in the number of activated and memory T cells, suggestive of a role for
these immunosuppressive populations in the increased susceptibility of smokers to infection
[43]. Furthermore, we found that human genetic variation substantially affected parameters
of immune cells, particularly the cell-surface expression of markers conventionally used to
identify leukocyte differentiation or activation. These results highlight the need to consider
non-genetic and genetic features when interpreting parameters such as the circulating white
blood cells of patients, a critical aspect in clinical monitoring. For example, expression of HLA-
DR on monocytes is routinely measured by flow cytometry to predict the clinical course of
septic shock and identify patients who might benefit from immunoadjuvant therapies [44].
We identified a strong effect of HLA-DRB1 coding variation on the expression of HLA-DR by
CD14" monocytes, which would suggest that tools used to predict fatal outcome in sepsis
should be tailored to the patient’s genetic makeup.

The most prominent result of our study was the lower number of genetic associations
detected in memory T cells and B cells, relative to that in innate cells, an observation that
could be explained by their strong dependence on the varying individual history of past
infections. Adaptive immune cells are known to have a much longer half-life than that of
myeloid innate cells, in mice and humans [45,46]. Stimulus-induced differentiation and
population expansion might also result in the possible masking of genetic associations for
adaptive cell types. Consistent with that, genetic associations in adaptive immune cells were
observed mainly for immunophenotypes of naive adaptive cells. Our observations are further
supported by a GWAS of 36 blood traits in 173,480 people, which found that the genetic
heritability of monocyte and eosinophil counts was larger than that of lymphocyte counts
[27]. However, that is at odds with another published study that concluded that adaptive
immune traits are affected more by genetics, whereas innate immune traits are affected more
by environment, on the basis of the estimated genetic heritability of 23,394
immunophenotypes in 497 adult female twins [47]. We suggest that such deep
immunophenotyping in large-scale cohorts, combined with statistical tests for differences in
heritability that account for inherent correlations among phenotypes, might reveal a more
balanced contribution of genetics to the natural variation in the traits of innate and adaptive
immune cells.
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Our findings that genetic factors ‘preferentially’ controlled variation in innate immune cells
have other important consequences. A published study of 105 healthy twin pairs concluded
that variation in cell population frequencies is driven largely by non-heritable influences [17].
We found instead that genetic variation explained a large part of the variance in the
parameters of immune cells, particularly MFI measurements (i.e., cell-surface expression of
protein markers) assessed in innate cells. This discrepancy might stem from the fact that the
previously published study considered only a fraction of innate myeloid and lymphoid
populations [48], and possibly because of its limited power due to a moderate sample size.
Also, our results suggested that the genetic control of cell-surface expression of immune cell
markers was stronger than that of cell counts, and the former were not assessed in most
previously published population-immunology studies [10,15,17].

Finally, the mapping of genetic loci encoding proteins that control parameters of immune cells
identified cell-specific pQTLs that showed enrichment for genetic variants associated with
human diseases and traits. For example, we identified position 13 of the HLA-DRB1 protein as
a predictor of HLA-DR expression at the surface of pDCs and monocytes, which in turn is
strongly associated with type 1 diabetes [35]; this would suggest an association of innate
immunity with the disease [27]. Furthermore, the expression of CD56 and CD16 in NK cells
was controlled by genetic variants near ACTL9 that have been shown to be associated with
atopic dermatitis [49], suggestive of the possible involvement of NK cells in this pathology
[50]. More generally, genetic variants found to modulate parameters of innate immune cells,
in our study here and in published studies [10,15,16], have been directly linked to the etiology
of several autoimmune disorders, such as inflammatory bowel disease, ulcerative colitis and
atopic dermatitis. Together these findings illustrate the value of our approach, which mapped
previously unknown genetic associations to specific cell populations and cellular states,
providing new insights into the mechanisms underlying disease pathogenesis. Further
evaluation of the natural variability in cellular mediators of immunity, together with the
elucidation of their environmental and genetic determinants, will facilitate detailed
delineation of the involvement of the immune system in human health and disease.

Methods:

The Milieu Intérieur cohort.

The 1,000 healthy donors of the Milieu Intérieur cohort were recruited by BioTrial (Rennes,
France), and included 500 women and 500 men, and 200 people from each decade of life,
between 20 and 69 years of age. Donors were selected based on stringent inclusion and
exclusion criteria, detailed elsewhere [18]. The clinical study was approved by the Comité de
Protection des Personnes — Ouest 6 (Committee for the protection of persons) on 13 June
2012 and by the French Agence Nationale de Sécurité du Médicament (ANSM) on 22 June
2012. The study is sponsored by the Institut Pasteur (Pasteur ID-RCB Number: 2012-A00238-
35) and was conducted as a single center study without any investigational product. The
protocol is registered under ClinicalTrials.gov (study# NCT01699893).

Human material and staining protocol.

Whole blood samples were collected from the 1,000 healthy, fasting donors on Li-heparin,
every working day from 8 AM to 11 AM, from September 2012 to August 2013, in Rennes,
France. Tracking procedures were established in order to ensure delivery to Institut Pasteur,
Paris, within 6 h of blood draw, at a temperature between 18 °C and 25 °C. To check the
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stability of our flow cytometry measures through time, a second blood sample was drawn for
half of the cohort during a second visit, ~¥17 d on average after the first visit, ranging from 7 d
to 44 d. After receipt, samples were kept at room temperature before sample staining. Details
on staining protocols can be found elsewhere [20].

Reproducibility testing and assay development.
For optimization studies and panel development, whole blood samples were collected from

healthy volunteers enrolled at the Institut Pasteur Platform for Clinical Investigation and
Access to Research Bioresources (ICAReB) within the Diagmicoll cohort. The biobank activity
of ICAReB platform is NF S96-900 certified. The Diagmicoll protocol was approved by the
French Ethical Committee (CPP) lle-de-France |, and the related biospecimen collection was
declared to the Research Ministry under the code N° DC 2008-68. The reproducibility tests
were performed as detailed elsewhere [20].

Flow cytometry.

Ten eight-color flow-cytometry panels were developed. Details on staining antibodies are in
Supplementary Table 2. A unique lot of each antibody was used for the entire study. Each
antibody was selected and titrated as described earlier [20]. Gating strategies are described
in Supplementary Figs. 1-10. The acquisition of cells was performed using two MACSQuant
analyzers (Serial numbers 2420 & 2416), each fit with identical three lasers and ten detector
optical racks (FSC, SSC and eight fluorochrome channels). Calibration of instruments was
performed using MacsQuant calibration beads (Miltenyi, ref. 130-093-607). Flow cytometry
data were generated using MACSQuantify software version 2.4.1229.1 and were saved
as.mqd files (Miltenyi). The files were converted to FCS compatible format and analyzed by
FlowJo software version 9.5.3. A total of 313 immunophenotypes were exported from FlowJo.
These included 110 cell proportions, 106 cell counts, 89 MFI values and 8 ratios. We excluded
from subsequent analyses all cell proportions, 35 immunophenotypes that were measured
several times on different panels and were exported for quality controls, and two MFI values
that were measured with a problematic clone (Supplementary Table 3). A total of 166 flow-
cytometry measurements were thus analyzed, including 76 cell counts, 87 MFI values and 3
ratios (Supplementary Table 3). Problems in flow cytometry processing, such as abnormal lysis
or staining, were systematically flagged by trained experimenters, which resulted in 8.70%
missing data among the 166,000 measured values.

Qutlier removal.

Despite the exclusion of flagged problematic values, a limited number of outlier values were
observed. As the goal of this study was to identify common non-genetic and genetic factors
that control immune cell levels, we removed these outlier values. Outliers were detected
using a distance-based algorithm instead of a parametric method (for example, removal
based on a number of s.d. from the mean), because of the substantial and highly variable
skewness of the distributions of flow cytometry measurements. A value in the higher tail was
considered an outlier if the distance to the closest point in the direction of the mean of the
distribution was more than 60% of the total range of the sample, while a value in the lower
tail was considered an outlier if that distance was more than 15% of the total range of the
sample. To choose these threshold values, we simulated 10,000 log-normal distributions with
a skewness similar to that of the flow cytometry measurements. We then searched for
threshold values so that simulated values outside of these ranges were observed in less than
5% of the distributions. Outliers were only looked for in the 50 highest and lowest values. This
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threshold was chosen to make sure that we did not miss any effect on immunophenotypes of
common genetic variants (minor allele frequency > 5%) or that of one of 39 continuous or
common categorical non-genetic factors studied here. All values more extreme than the
points labelled as outliers were also labelled outliers. A total of 24 values were removed at
this stage.

Batch effects on flow-cytometry measurements.
Two batch effects on flow cytometry measurements were considered: the hour at which

blood samples were drawn (from 8 AM to 11 AM) and the day at which samples were
processed (8—12 samples per day, from September 2012 to August 2013). The effect of the
hour of blood draw was evaluated with linear regression on all immunophenotypes. We
observed that the hour of blood draw affected a limited number of cell counts, mainly CD16"
NK cells (Supplementary Fig. 14a). The sampling-day effect was evaluated by estimating its
variance component on all immunophenotypes. Visual inspection was used to determine
whether temporal fluctuations (observed for those immunophenotypes with a large variance
explained) were seasonal or not. We observed that sample processing day had a substantial
effect on MFI. Fluctuations in MFI across time were strongly discontinuous, suggestive of
technical issues possibly related to the compensation matrix, rather than seasonal effects
(Supplementary Fig. 14b).

Inclusion and imputation of candidate non-genetic factors.
A large number of demographic variables were available for the Milieu Intérieur cohort [18].

These included infection and vaccination history, childhood diseases, health-related life
habits, and socio-demographic variables. Of these, 39 variables were chosen for subsequent
analyses (Supplementary Table 1) based on the fact that they were intrinsic factors (i.e., age,
sex) or measured the exposure of people to exogenous factors and thus might not be affected
by the immunophenotypes themselves. These variables were filtered based on their
distribution (i.e., categorical variables with only rare levels, such as infrequent vaccines, were
excluded) and on their levels of dependence on other variables (for example, height and BMI).
The dependency matrix among the 39 non-genetic variables, together with batch variables,
was obtained based on the generalized R? measures for pairwise fitted generalized linear
models. If the response was a continuous variable, we used a Gaussian linear model. If the
response was binary, we used logistic regression. Categorical variables were used only as
predictors. Missing values were imputed using the random forest-based R package
missForest.

Effect of candidate non-genetic factors on immunophenotypes.
To analyze the effect of non-genetic factors on immunophenotypes, we fitted a linear mixed

model for each of the 166 immunophenotypes and each of the 39 non-genetic treatment
variables. A total of 6,474 models were therefore fitted using the Ime4 R package51. All
models were fitted to complete cases. Due to lack of a priori knowledge on how the non-
genetic variables affected the immunophenotypes, we did not attempt to make a full causal
structural equation model for all variables. Instead, we chose to keep the amount of controls
in the models small to increase interpretability of the results, and to make the study easier to
reproduce. We included age, sex and CMV seropositivity as fixed-effect controls for all models
(Fig. 3.3 and Supplementary Fig. 19), except when they were the treatment variable to be
tested (Fig. 3.2 and Supplementary Fig. 17). The intrinsic factors (i.e., age and sex) were
included as covariates because they are known to have an effect on immunophenotypes
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[6,7,10,14,25-27], as well as on many of the other environmental exposures, and were
therefore possible confounders. CMV seropositivity was included because it has been shown
to strongly affect some immunophenotypes [6,13,14,17]. We also controlled for genome-
wide significant SNPs for corresponding immunophenotypes (Table 3.1). Genetic variants
were included to reduce the residual variance of the models and to make the inferences more
robust. To correct for the batch effect related to the day of sample processing, we included it
as a random effect for all models; we included a constant for each day and assumed that all
constants were drawn from the same normal distribution. This procedure models correlation
among subjects processed during the same day. We also included the hour of blood draw as
a fixed-effect control for all models. The distributions of the immunophenotypes have
variable skewness. We considered normal, lognormal and negative binomial response
distributions, and chose to model all immunophenotypes as lognormal based on diagnostic
plots, AIC measures and our aim to have comparable results across immunophenotypes and
facilitate the interpretation of effect sizes. A total of 46 immunophenotypes had zero values.
A unit value was added to those before log-transformation. For each model, we tested the
hypothesis that the regression parameter for the treatment variable was zero by an F-test
with the Kenward-Roger approximation. This test has better small- and medium-sample
properties than the traditional chi-square-based likelihood ratio test for mixed models [52]
and can readily be applied using the pbkrtest R package [53]. We assumed that our sample
size was large enough for this test to be appropriate and chose therefore not to do parametric
bootstrapping. We considered all 6,474 tests as one multiple-testing family, and we used the
false-discovery rate (FDR) as error rate. An effect was considered significant if the adjusted P
value was smaller than 0.01. If a test was significant, confidence intervals were constructed
using the profile likelihood method in such a way that the false-coverage rate (FCR) was
controlled at a level of 0.01. The FCR measures the rate of confidence intervals that do not
cover the true parameter and is needed if confidence intervals are selected based on a
criterion that makes these intervals especially interesting, such as significant hypothesis tests
[54]. FCR-adjusted confidence intervals are always wider than regular intervals. All these
analyses were done, and can be reproduced, with the mmi R package
(http://github.com/lacobBergstedt/mmi).

Genome-wide DNA genotyping.

The 1,000 subjects of the Milieu Intérieur cohort were genotyped at 719,665 SNPs by the
HumanOmniExpress-24 BeadChip (lllumina, California). SNP call rate was higher than 97% in
all donors. To increase coverage of rare and potentially functional variation, 966 of the 1,000
donors were also genotyped at 245,766 exonic SNPs by the HumanExome-12 BeadChip
(Ilumina, California). The HumanExome SNP call rate was lower than 97% in 11 donors, which
were thus removed from this data set. We filtered out from both data sets SNPs that: (i) were
unmapped on dbSNP138, (ii) were duplicated, (iii) had a low genotype clustering quality
(GenTrain score < 0.35), (iv) had a call rate of < 99%, (v) were monomorphic, (vi) were on sex
chromosomes and (vii) were in Hardy-Weinberg disequilibrium (HWE) (P < 10-7). These SNP
quality-control filters vyielded a total of 661,332 SNPs and 87,960 SNPs for the
HumanOmniExpress and HumanExome BeadChips, respectively. The two data sets were then
merged, after excluding triallelic SNPs, SNPs with discordant alleles between arrays (even
after allele flipping), SNPs with discordant chromosomal position, and SNPs shared between
arrays that presented a genotype concordance rate of < 99%. Average concordance rate for
the 16,753 SNPs shared between the two genotyping platforms was 99.9925%, and individual
concordance rates ranged from 99.80% to 100%, which confirmed that no problem occurred
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during DNA sample processing. The final data set included 732,341 QC-filtered genotyped
SNPs.

Genetic relatedness and structure.

Possible pairs of genetically related subjects were detected using an estimate of the kinship
coefficient and the proportion of SNPs that were not identical by state between all possible
pairs of subjects, obtained with KING [55]. Genetic structure was visualized with the Principal
Component Analysis (PCA) implemented in EIGENSTRAT [56]. For comparison purposes, the
analysis was performed on 261,827 independent SNPs and 1,723 people, which include the
1,000 Milieu Intérieur subjects together with a selection of 723 people from 36 populations
of North Africa, the Near East, and Western and Northern Europe [57].

Genotype imputation.
Prior to imputation, we phased the final SNP data set with SHAPEIT2 [58] using 500

conditioning haplotypes, 50 MCMC iterations, and 10 burn-in and 10 pruning iterations. SNPs
and allelic states were then aligned to the 1,000 Genomes Project imputation reference panel
(Phasel v3.2010/11/23). We removed SNPs that have the same position in our data and in
the reference panel but incompatible alleles, even after allele flipping, and ambiguous SNPs
with C/G or A/T alleles. Genotype imputation was performed by IMPUTE v.2 [59], considering
1-Mb windows and a buffer region of 1 Mb. Out of the 37,895,612 SNPs obtained after
imputation, 37,164,442 were imputed. We removed 26,005,463 imputed SNPs with
information metric 0.8, 43,737 duplicated SNPs, 955 monomorphic SNPs, and 449,903 SNPs
with missingness of > 5% (individual genotype probabilities < 0.8 were considered as missing
data). After quality-control filters, a total of 11,395,554 high-quality SNPs were further filtered
for minor allele frequencies > 5%, yielding a final set of 5,699,237 SNPs for association
analyses.

Genome-wide association analysis.
Prior to the GWAS, we transformed immunophenotypes using a procedure different from that

used for the analysis of non-genetic factors. This is because we tested for association between
immunophenotypes and millions of genetic variants, among which some have an unbalanced
genotypic distribution (i.e., SNPs with a low minor allele frequency), which makes this analysis
more sensitive to deviations from distributional assumptions. Our primary aim was therefore
to use transformations that make the GWAS as robust as possible against such deviations.
Also, we map loci associated with immunophenotypes based on P-values, so it was less
important to keep effect sizes on the same scale, in contrast with the analysis of non-genetic
factors, for which we favored the interpretability of effect sizes. A unit value was first added
to all phenotypes with zero values. The transformations were then chosen based on an AIC
measure using the Jacobian-adjusted Gaussian likelihood, among three possible choices of
increasing skewness: identity transformation, squareroot-tranformation and log-
transformation. We kept the amount of possible transformations low to minimize the amount
of added unmodelled stochasticity. The added unit value was kept only for
immunophenotypes for which the log-transformation was chosen.

After transformation, a second round of outlier removal was done, to remove extreme values
on the new scale. The thresholds for the lower and higher tail were 20%, obtained as for the
first step of outlier removal (in the description of the distance-based outlier removal
algorithm above), but on the Gaussian scale. The immunophenotypes were then imputed
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using the missForest R package, as missing data was not allowed by the subsequent analyses.
We finally adjusted all immunophenotypes for the batch effect of processing days. We used
the ComBat non-parametric empirical-Bayes framework [60], instead of the mixed model
described above (in the subsection ‘Effect of candidate non-genetic factors on
immunophenotypes’), because the GEMMA mixed model used to conduct GWAS (discussed
below) includes only the random effect capturing genetic relatedness. ComBat adjusts for
batch effects by leveraging multivariate correlations among response variables. We did not
include variables of interest in the ComBat model (none of the non-genetic variables were
significantly different across sample processing days, with the exception of smoking
(regression P value = 0.002)).

To reduce the residual variance of GWAS models and make the inferences more robust [61],
we sought to adjust models for covariates selected among 42 variables. These included the
39 non-genetic variables (Supplementary Table 1), the hour-of-blood-draw variable, and the
two first principal components of a PCA based on genetic data (Supplementary Fig. 20b).
Covariates were selected by stability selection [62,63], with elastic net regression as the
selection algorithm. A selection algorithm uses a cost function that drives regression
parameters of nonpredictive variables to zero, unlike least-square regressions. The elastic net
method was used in particular because it has lower variance than stepwise methods and
overcomes limitations of the LASSO method related to correlated variables [64]. To perform
stability selection, we estimated, for each of the i € {1, ..., 42} variables, the probability pi =
P(Bi = 0) that the elastic net regression parameter B/ of variable i equals zero. Specifically, we
first took 50 subsamples of half of the data, performed variable selection on each subsample,
and estimated pi as the number of subsamples in which Bi >0, divided by the total number of
subsamples. The variables were then chosen to be controls in the GWAS models by
thresholding the probability pi. It has been shown that this procedure, with the right threshold
and under certain assumptions, controls the FDR of selected variables [63]. The procedure is
more stable than selecting variables by, for instance, stepwise regression or elastic net
without stability selection, and thus adds less unmodelled variability to the estimates. Still,
because this approach does select predictive variables for each individual response variable,
it adds more variance to the model selection, relative to that of models in which only age, sex,
CMV infection and smoking would be systematically included. However, controlling for the
selected variables would be expected to generate more parsimonious models (i.e., the
inclusion of unnecessary covariates could reduce power65) and to decrease the risk of type 1
errors (for example, some of the many rare genetic variants that are tested could associate,
by chance, with an immunophenotype when the model does not fulfil inference assumptions
due to a specific, unmodelled covariate).

The univariate GWAS was conducted for each imputed, transformed and batch-effect
corrected immunophenotype using the linear mixed model implemented in GEMMA [66],
adjusting on selected covariates. GEMMA is an efficient mixed model that controls for genetic
relatedness among donors and allows for multivariate analyses. Genetic relatedness matrices
(GRMs) were estimated for each chromosome separately, using the 21 other chromosomes,
to exclude from the GRM estimation potentially associated SNPs (i.e., ‘leave-one-
chromosome’ approach [67]). A conditional GWA analysis was also carried out for each of the
14 immunophenotypes that showed the strongest genome-wide significant signals (‘main
immunophenotypes’ in Table 3.1), by including as a covariate in GEMMA the genotypes of the
most strongly associated variant. A multivariate GWAS was conducted on a set of six
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candidate immunophenotypes (i.e., number of HLA-DR* memory T cells), using GEMMA linear
mixed model adjusted on covariates that were selected for at least one of the six traits. For
all genome-wide association analyses, a conservative genome-wide significant threshold of P
< 1x107'%was used, to account for testing multiple SNPs and immunophenotypes.

Power estimation.

We used simulations to estimate the minimum effect of a variant that we could detect with
95% power by our GWAS. Specifically, we sampled 100,000 times a SNP in our data, and
simulated an immunophenotype by adding to a randomly sampled immunophenotype the
effect k of that SNP, k being drawn from a uniform distribution of bounds 0 and 1 (k is
expressed in unit of phenotype s.d., as in ‘scheme 1’ of ref. [68]). We then ran the GEMMA
mixed model on the simulated data, and estimated the probability that the variant was
detected, assuming our genome-wide significant threshold of P < 1 x 107%°, We found that we
have 95% power to detect a SNP with a medium effect of 0.6 phenotype s.d. We also
confirmed empirically the power to identify medium-effect genotype-phenotype associations
in the Milieu Intérieur cohort by replicating well-known genetic associations with non-
immune traits, including the association of OCA2 and HERC2 with eye and hair color
(rs12913832; P = 6.7 x 107138 and P = 8.5 x 1078, respectively), the association of SLC45A2
with hair color (rs16891982; P = 3.2 x 107°), the association of the UGT1A gene cluster with
bilirubin levels (rs6742078; P = 2.6 x 1077°), the association of SLC2A9 with uric acid levels
(rs6832439; P = 4.3 x 107%%), and the association of CETP with HDL levels (rs711752; P = 4.5 x
1078).

Enrichment for variants associated with diseases.

We explored the implication of our 15 genome-wide significant variants in human diseases
and traits using previously published hits of genome-wide association studies (GWASs),
obtained from the 31/08/2017 version of the EBI-NHGRI GWAS Catalog. A candidate variant
was considered as implicated in a disease/trait if it was previously associated with such a
disease or trait with a P value of < 5 x 1078 or if it was in linkage disequilibrium (LD) with a
variant associated with such a disease or trait (r> > 0.6). We tested if our 15 genome-wide
significant variants showed enrichment for known associations with diseases or traits by
resampling. We sampled 100,000 times 15 random SNPs with minor allele frequencies
matched to those observed, and we calculated for each resampled set the proportion of
variants known to be, or in LD with a variant known to be, associated with a disease. The
enrichment P value was estimated as the proportion of resamples for which this proportion
was larger than that observed in our set. LD was precomputed for all 5,699,237 SNPs with
PLINK 1.9 (options ‘—show-tags all-tag-kb 500-tag-r2 0.6’) [69].

HLA typing and association tests.

Four-digit classical alleles and variable amino acid positions in the HLA class | and Il proteins
were imputed with SNP2HLA v 1.03 [70]. 104 HLA alleles and 738 amino acid residues (at 315
positions) with MAF of > 1% were included in the analysis. Conditional haplotype-based
association tests were performed using PLINK v. 1.07 [71], as well as multivariate omnibus
tests used to test for association at multi-allelic amino acid positions.

Replication cohort.
We recruited 75 donors through the Genentech Genotype and Phenotype (gGAP) Registry.
This sample size provides 95% power to replicate SNPs with an effect of > 0.9 phenotype s.d.

78



Ethical agreement was obtained for all gGAP donors. Samples were received at room
temperature and were processed 1 h after blood draw. Prior to staining, the blood was
washed with PBS 1x. Except for the antibodies to CD32, the antibodies for population
identification were titrated using the same clones and providers as in the primary study
(Supplementary Table 2). Cell labeling were performed manually in deep-well plates. Data
acquisition was performed within one hour using a calibrated FacsCantoll (Becton Dickinson).
We selected panels 4 and 7 for the replication study, because 10 of the 16 GWAS hits were
identified with these panels, and because of sample limitations. Imnmunophenotypes were
transformed based on models chosen in the primary cohort. The GEMMA linear mixed model
was used to test for replication, with age and sex as covariates and a GRM estimated from
1,960,432 autosomal SNPs obtained by the lllumina HumanOmnil-Quad v1.0 array.

Gene-expression assays.
NanoString nCounter, a hybridization-based multiplex assay, was used to measure gene

expression in unstimulated whole blood of the 1,000 Milieu Intérieur subjects, with the
Human Immunology v2 Gene Expression CodeSet. These data are described in detail
elsewhere [36]. Expression probes that bind to cDNAs in which at least three known common
SNPs segregate in humans were removed from the analyses (i.e., HLA-DQB1, HLA-DQA1, HLA-
DRB1, HLA-B and C8G). After quality-control filters, mRNA levels were available for 986 people
at 90 candidate genes; i.e., immunity-related genes in a 1-Mb window around the genome-
wide significant and suggestive associations identified in this study. For each sample, probe
counts were log2 transformed, normalized and adjusted for batch effects. eQTL mapping was
performed in a 1-Mb window around corresponding association signals, using the linear
mixed model implemented in GenABEL [72]. All models were adjusted on the proportion of
eight major cell populations, including neutrophils, CD19* B cells, CD4" T cells, CD8* T cells,
CD4*CD8* T cells, CD4°CD8™ T cells, NK cells and CD14* monocytes, to account for the effect
of heterogeneous blood cell composition on gene expression.

Decomposition of the proportion of variance explained.
We analyzed each of the 166 batch-corrected and transformed immunophenotypes

(described in the subsection ‘Genome-wide association analysis’ above) with a linear
regression model including the four non-genetic factors with the greatest effect (Fig. 3.2) (i.e.,
age, sex, CMV seropositivity status and smoking) and genome-wide genetic factors that were
either significant (P < 1 x 107%9) or suggestive (P < 5 x 1078). The contribution of each of these
variables to the variance of each immunophenotype was calculated by averaging over the
sums of squares in all orderings of the variables in the linear model, using the Img metric in
the relaimpo R package [73]. The averaging over orderings was done to avoid bias due to
correlations among predictors.

The difference in contribution to explained variance between innate and adaptive
immunophenotypes was tested using linear mixed models, where we used the log-
transformed proportions of variance of each immunophenotype explained by age, sex, CMV
serostatus, smoking or genetics as different response variables, and indicator variables for
the immunophenotype being innate or adaptive, and being a count or an MFI value. The sum
of the individual contributions of associated genetic variants was used to estimate the overall
contribution of genetics. Since some of the immunophenotypes were correlated, their
proportion of variance explained were also correlated. To account for this, we included a
random effect term whose covariance matrix was modeled as a variance component
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multiplied by the sample correlation matrix among the immunophenotypes. Due to the small
sample size, hypothesis testing was done by building a null distribution of likelihood ratios
using the parametric bootstrap. The models were fitted using the R package Ime4qtl
(http://github.com/variani/lme4qtl). Because the distribution of variance explained by
genetics was zero-inflated, we also tested for differences in the proportion of variance
explained by non-genetic and genetic factors between innate and adaptive cell
measurements with a non-parametric Mann-Whitney U-test. Because the Mann-Whitney U-
test cannot account for correlations among immune cell measurements, we conducted this
test on a subset of immunophenotypes that were selected to be uncorrelated (h < 0.6 with
the protoclust R package). 50 immunophenotypes were kept, including 19 adaptive and 31
innate cell measures, among which the median Pearson’s r value was 0.039.

Data availability.
The SNP array data that support the findings of this study have been deposited in the

European Genome-Phenome Archive (EGA) with the accession code EGAS00001002460. The
flow cytometric data can be downloaded as an R package
(http://github.com/JacobBergstedt/mmi) and explored with the online Shiny application
(available at http://milieu-interieur.cytogwas.pasteur.fr/). The code developed to identify
non-genetic factors that affect immunophenotypes and quantify their effects has been made
available online (http://github.com/JacobBergstedt/mmi).

Additional information.
Supplementary information is available at the online version of the paper at
https://doi.org/10.1038/ s41590-018-0049-7.

References:

1. Bernard, C. Introduction a I'’étude de la médecine expérimentale. (Libraires de I’Académie
Impériale de Médecine, 1865).

2. Altfeld, M. & Gale, M. Jr. Innate immunity against HIV-1 infection. Nat. Immunol. 16, 554—
562 (2015).

3. Orme, I. M., Robinson, R. T. & Cooper, A. M. The balance between protective and
pathogenic immune responses in the TB-infected lung. Nat. Immunol. 16, 57-63 (2015).

4. Tollerud, D. J. et al. The influence of age, race, and gender on peripheral blood
mononuclear-cell subsets in healthy nonsmokers. J. Clin. Immunol. 9, 214-222 (1989).

5. Reichert, T. et al. Lymphocyte subset reference ranges in adult Caucasians. Clin. Immunol.
Immunopathol. 60, 190-208 (1991).

6. Liston, A., Carr, E. J. & Linterman, M. A. Shaping Variation in the Human Immune System.
Trends Immunol. 37, 637-646 (2016).

7. Goronzy, J. ). & Weyand, C. M. Successful and maladaptive T cell aging. Immunity 46, 364—
378 (2017).

8. Sauce, D. & Appay, V. Altered thymic activity in early life: how does it affect the immune
system in young adults? Curr. Opin. Immunol. 23, 543-548 (2011).

9. Furman, D. et al. Apoptosis and other immune biomarkers predict influenza vaccine
responsiveness. Mol. Syst. Biol. 9, 659 (2013).

10. Aguirre-Gamboa, R. et al. Differential effects of environmental and genetic factors on T
and B cell immune traits. Cell Rep 17, 2474-2487 (2016).

11. Carr, E. J. et al. The cellular composition of the human immune system is shaped by age
and cohabitation. Nat. Immunol. 17, 461-468 (2016).

80



12.

13.

14.

15.

16.

17.

18.

19.

20.

21

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

Boeckh, M. & Geballe, A. P. Cytomegalovirus: pathogen, paradigm, and puzzle. J. Clin.
Invest. 121, 1673-1680 (2011).

Wertheimer, A. M. et al. Aging and cytomegalovirus infection differentially and jointly
affect distinct circulating T cell subsets in humans. J. Immunol. 192, 2143-2155 (2014).
Furman, D. et al. Cytomegalovirus infection enhances the immune response to influenza.
Sci. Transl. Med. 7, 281ra43 (2015).

Orru, V. et al. Genetic variants regulating immune cell levels in health and disease. Cell
155, 242-256 (2013).

Roederer, M. et al. The genetic architecture of the human immune system: a bioresource
for autoimmunity and disease pathogenesis. Cell 161, 387-403 (2015).

Brodin, P. et al. Variation in the human immune system is largely driven by non-heritable
influences. Cell 160, 37-47 (2015).

Thomas, S. et al. The Milieu Intérieur study - an integrative approach for study of human
immunological variance. Clin. Immunol. 157, 277-293 (2015).

Vivier, E. et al. Innate or adaptive immunity? the example of natural killer cells. Science
331, 44-49 (2011).

Hasan, M. et al. Semi-automated and standardized cytometric procedures for multi-panel
and multi-parametric whole blood immunophenotyping. Clin. Immunol. 157, 261-276
(2015).

. Patterson, S. et al. Cortisol patterns are associated with T cell activation in HIV. PLoS ONE

8, 63429 (2013).

Serafini, N., Vosshenrich, C. A. J. & Di Santo, J. P. Transcriptional regulation of innate
lymphoid cell fate. Nat. Rev. Immunol. 15, 415-428 (2015).

Dusseaux, M. et al. Human MAIT cells are xenobiotic-resistant, tissuetargeted, CD161hi
IL-17-secreting T cells. Blood 117, 1250-1259 (2011).

Amado, I. F. et al. IL-2 coordinates IL-2-producing and regulatory T cell interplay. J. Exp.
Med. 210, 2707-2720 (2013).

Pennell, L. M., Galligan, C. L. & Fish, E. N. Sex affects immunity. J. Autoimmun. 38, J282—
1291 (2012).

Furman, D., Hejblum, B. P., Simon, N., Jojic, V., Dekker, C. L., Thiébaut, R., Tibshirani, R. J.
& Davis, M. M. Systems analysis of sex differences reveals an immunosuppressive role for
testosterone in the response to influenza vaccination. Proc Natl Acad Sci USA (2), 869—
874 (2014).

Astle, W. J. et al. The allelic landscape of human blood cell trait variation and links to
common complex disease. Cell 167, 1415-1429.e19 (2016).

Della Bella, S. et al. Peripheral blood dendritic cells and monocytes are differently
regulated in the elderly. Clin. Immunol. 122, 220-228 (2007).

Puchta, A. et al. TNF drives monocyte dysfunction with age and results in impaired anti-
pneumococcal immunity. PLoS. Pathog. 12, e1005368 (2016).

Vrisekoop, N. et al. Sparse production but preferential incorporation of recently produced
naive T cells in the human peripheral pool. Proc. Natl Acad. Sci. USA 105, 6115-6120
(2008).

Tsuchiya, M. et al. Smoking a single cigarette rapidly reduces combined concentrations of
nitrate and nitrite and concentrations of antioxidants in plasma. Circulation 105, 1155—-
1157 (2002).

Kearley, J. et al. Cigarette smoke silences innate lymphoid cell function and facilitates an
exacerbated type | interleukin-33-dependent response to infection. Immunity 42, 566—
579 (2015).

81



33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

47.

48.

49,

50.

51.

52.

53.

Monticelli, L. A. et al. Innate lymphoid cells promote lung-tissue homeostasis after
infection with influenza virus. Nat. Immunol. 12, 1045-1054 (2011).

Cassard, L., Jonsson, F., Arnaud, S. & Daéron, M. Fcy receptors inhibit mouse and human
basophil activation. J. Immunol. 189, 2995-3006 (2012).

Hu, X. et al. Additive and interaction effects at three amino acid positions in HLA-DQ and
HLA-DR molecules drive type 1 diabetes risk. Nat. Genet. 47, 898—905 (2015).

Piasecka, B. et al. Distinctive roles of age, sex and genetics in shaping transcriptional
variation of human immune responses to microbial challenges. Proc. Natl. Acad. Sci. USA
115, EA88-E497 (2017).

GTEx Consortium. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene
regulation in humans. Science 348, 648-660 (2015).

Garris, C. S., Blaho, V. A,, Hla, T. & Han, M. H. Sphingosine-1-phosphate receptor 1
signalling in T cells: trafficking and beyond. Immunology 142, 347-353 (2014).

Pellegrini, M. et al. Loss of Bim increases T cell production and function in interleukin 7
receptor-deficient mice. J. Exp. Med. 200, 1189-1195 (2004).

van der Harst, P. et al. Seventy-five genetic loci influencing the human red blood cell.
Nature 492, 369—-375 (2012).

Motohashi, T. et al. Molecular cloning and chromosomal mapping of a novel protein gene,
M83. Biochem. Biophys. Res. Commun. 250, 244-250 (2000).

Feltenmark, S. et al. Eoxins are proinflammatory arachidonic acid metabolites produced
via the 15-lipoxygenase-1 pathway in human eosinophils and mast cells. Proc. Natl Acad.
Sci. 105, 680-685 (2008).

Stampfli, M. R. & Anderson, G. P. How cigarette smoke skews immune responses to
promote infection, lung disease and cancer. Nat. Rev. Immunol. 9, 377-384 (2009).
Venet, F., Lukaszewicz, A.-C., Payen, D., Hotchkiss, R. & Monneret, G. Monitoring the
immune response in sepsis: a rational approach to administration of immunoadjuvant
therapies. Curr. Opin. Immunol. 25, 477-483 (2013).

Kolaczkowska, E. & Kubes, P. Neutrophil recruitment and function in health and
inflammation. Nat. Rev. Immunol. 13, 159-175 (2013).

Farber, D. L., Yudanin, N. A. & Restifo, N. P. Human memory T cells: generation,
compartmentalization and homeostasis. Nat. Rev. Immunol. 14, 24-35 (2014).

Mangino, M., Roederer, M., Beddall, M. H., Nestle, F. O. & Spector, T. D. Innate and
adaptive immune traits are differentially affected by genetic and environmental factors.
Nat. Commun. 8, 13850 (2017).

Casanova, J. L. & Abel, L. Disentangling inborn and acquired immunity in human twins. Cell
160, 13-15 (2015).

Paternoster, L. et al. Multi-ancestry genome-wide association study of 21,000 cases and
95,000 controls identifies new risk loci for atopic dermatitis. Nat. Genet. 47, 1449-1456
(2015).

von Bubnoff, D. et al. Natural killer cells in atopic and autoimmune diseases of the skin. J.
Allergy Clin. Immunol. 125, 60—68 (2010).

Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using.
J. Stat. Softw. 67, 41-48 (2015).

Kenward, M. G. & Roger, J. H. Small sample inference for fixed effects from restricted
maximum likelihood. Biometrics 53, 983—997 (1997).

Halekoh, U. & Hgjsgaard, S. A Kenward-Roger approximation and parametric bootstrap
methods for tests in linear mixed models - The R package pbkrtest. J. Stat. Softw. 59, 1-
30 (2014).

82



54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

Benjamini, Y. & Yekutieli, D. False discovery rate—adjusted multiple confidence intervals
for selected parameters. J. Am. Stat. Assoc. 1000, 71-93 (2005).

Manichaikul, A. et al. Robust relationship inference in genome-wide association studies.
Bioinformatics 26, 2867-2873 (2010).

Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS. Genet.
2,e190 (2006).

Behar, D. M. et al. The genome-wide structure of the Jewish people. Nature 466, 238-242
(2010).

Delaneau, 0., Zagury, J.-F. & Marchini, J. Improved whole-chromosome phasing for
disease and population genetic studies. Nat. Methods 10, 5-6 (2013).

Howie, B. N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation
method for the next generation of genome-wide association studies. PLoS Genet. 5,
1000529 (2009).

Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data
using empirical Bayes methods. Biostatistics 8, 118-127 (2007).

Mefford, J. & Witte, J. S. The Covariate’s Dilemma. PLoS Genet. 8, e1003096 (2012).
Meinshausen, N. & Bihlmann, P. Stability selection. J. R. Stat. Soc. B 72, 417-473 (2010).
Shah, R. D. & Samworth, R. J. Variable selection with error control: another look at stability
selection. J. R. Stat. Soc. B 75, 55-80 (2013).

Hastie, T., Tibshirani, R. & Friedman, J. Elements of Statistical Learning (Springer, 2009).
Wakefield, J. Bayesian and Frequentist Regression Methods (Springer, 2013).

Zhou, X. & Stephens, M. Efficient multivariate linear mixed model algorithms for genome-
wide association studies. Nat. Methods 11, 407—409 (2014).

Yang, J., Zaitlen, N. A., Goddard, M. E., Visscher, P. M. & Price, A. L. Advantages and pitfalls
in the application of mixed-model association methods. Nat. Genet. 46, 100-106 (2014).
Zhang, Z. et al. Mixed linear model approach adapted for genome-wide association
studies. Nat. Genet. 42, 355-360 (2010).

Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer
datasets. Gigascience 4, 7 (2015).

Jia, X. et al. Imputing amino acid polymorphisms in human leukocyte antigens. PLoS ONE
8, 64683 (2013).

Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based
linkage analyses. Am. J. Hum. Genet. 81, 559-575 (2007).

Aulchenko, Y. S., Ripke, S., Isaacs, A. & van Duijn, C. M. GenABEL: an R library for genome-
wide association analysis. Bioinformatics 23, 1294-1296 (2007).

Gromping, U. Relative importance for linear regression in R: the package relaimpo. J. Stat.
Softw. 17, 1-27 (2006).

83






Chapter 4: A comprehensive assessment
of demographic, environmental and host
genetic associations with gut microbiome
diversity in healthy individuals

Petar Scepanovic?, Flavia Hodel'?, Stanislas Mondot3, Valentin Partula®®, Christian
Hammer®, Etienne Patin”, Mathilde Touvier?, Olivier Lantz>'°, Matthew L. Albert®, Darragh
Duffy?, Lluis Quintana-Murci’8, Jacques Fellay’?'2* and The Milieu Intérieur Consortium.

Author Affiliations: 1 School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland; 2 Swiss Institute of Bioinformatics, Lausanne, Switzerland; 3 MICALIS
Institute (INRA/AgroParisTech), Jouy-en-Josas, France; 4 Sorbonne-Paris-Cité Research Center
for Epidemiology and Statistics CRESS, Nutritional Epidemiology Research Team EREN
(INSERM U1153/INRA U1125/CNAM/Université Paris-XIll Nord), Bobigny, France; 5 University
of Paris-VIlI Denis Diderot, Sorbonne-Paris-Cité University, Paris, France; 6 Department of
Cancer Immunology, Genentech Inc., San Fransisco, CA 94080, USA; 7 Unit of Human
Evolutionary Genetics, Department of Genomes and Genetics, Institut Pasteur, Paris, France;
8 Centre National de la Recherche Scientifique, UMR2000, Paris, France; 9 Institut Curie, PSL
Research University, Inserm U932, 75005, Paris, France; 10 Center of Clinical Investigations,
CICBT1428 IGR/Curie, 75005, Paris, France; 11 Immunobiology of Dendritic Cells laboratory
(INSERM U1223/Institut Pasteur), Paris, France; 12 Precision Medicine Unit, Lausanne
University Hospital, Lausanne, Switzerland; * corresponding author.

Contribution to the study: | design the study and conducted the analyses of genetic influences
on the gut microbiome. Together with Flavia Hodel, | analysed the associations of the
environmental variables. | wrote the original draft of the manuscript.

4.1 Abstract

Introduction. The gut microbiome is an important determinant of human health. It
consists in a complex mix of microbial species with large compositional variation across
individuals. This diversity is influenced by multiple environmental factors but also by human
genetic variation. In the framework of the Milieu Intérieur Consortium, a population-based
study aimed at deciphering immune response variance in healthy individuals, we assessed the
commensal intestinal microbiome of 1000 individuals by 16S rRNA gene sequencing. We
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identified demographic, environmental and clinical variables associated with gut microbiome
diversity and used those as covariates in genome-wide association studies.

Results. A total of 1’000 healthy individuals of Western European ancestry, with a 1:1 sex ratio
and stratified across five-decades of life (age 20— 69), were recruited in France and genotyped
using the Illumina OmniExpress and HumanExome arrays. 16S rRNA profiles were obtained
from stool samples in 858 non-related individuals. We collected detailed demographic and
environmental information through a questionnaire, as well as multiple results from
standardized blood analyses. We used Spearman correlations, permutational analysis of
variance and multivariate association with linear models to identify variables correlated with
a-diversity, B-diversity, or microbial community abundances. We then used linear and logistic
regression to search for associations between >5 million single nucleotide polymorphisms
(SNPs) and the same indicators of gut microbiome diversity, including the significant non-
genetic factors as covariates. No genome-wide significant associations were identified after
correction for multiple testing. A small fraction of previously reported associations between
specific taxa and host genetic variants could be replicated in our cohort, while no replication
was observed for gut microbiome diversity metrics.

Conclusion. In a well-characterized cohort of healthy individuals, age was the only variable
that consistently influenced the gut microbiome composition. Upon careful adjustment for
demographics, environmental and clinical factors, we did not observe any convincing
association between specific human polymorphisms and diversity metrics or taxonomic
content of the gut microbiome.

4.2 Background

A wide diversity of microbial species colonizes the human body. [1] Through a range of
functions these microbes provide considerable benefits to the host. They notably generate
metabolites that can act as energy sources for cell metabolism, promote the development
and the functionality of the immune system and prevent colonization by pathogenic
microorganisms. [2]

The human intestine harbors a particularly rich microbial community. Multiple 16s rRNA gene
sequencing and metagenomic studies established that each individual gut microbiome,
defined as the collection of genomes and their products of resident microorganisms, harbors
a unique combination of microbial life. [3, 4] An estimated 150 to 400 species reside in each
person’s gut. [5]

Typically, the human gut microbiome is dominated by four phyla: Bacteroidetes, Firmicutes,
Actinobacteria and Proteobacteria. [6, 7] They contain almost all of the bacterial species
found in the human gastrointestinal tract, which can also be classified in higher-level
taxonomic groups such as genera, families, orders and classes. [8] The relative proportions of
microbial species vary extensively between individuals [9] and is age-dependent. [10, 11] The
microbiome composition evolves rather quickly during the first three years of life, followed
by a more gradual maturation. [12] After that, it remains relatively constant throughout adult
life. [13]
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A variety of environmental factors such as diet, lifestyle, diseases and medications can induce
substantial shifts in the microbiome composition. [14, 15] Multiple studies have shown that
diet is the main force influencing gut microbial diversity. [16, 17, 18, 19, 20, 21, 22, 23] Yet,
diet only explains a small percentage of the microbiome variation observed in human
populations. Host genetics is also supposed to play a role in determining the relative
abundance of specific gut microbes. [24, 25] Several groups searched for associations
between human genetic variation and gut microbiome diversity [21, 22, 23, 26, 27, 28, 29],
but only few genetic loci replicated among all these studies. Thus, most of the interindividual
variability in gut microbiome composition is still unexplained.

Leveraging on the in-depth phenotypic information available in the Milieu intérieur (MI)
cohort, a population-based cohort of 1000 healthy individuals of Western European ancestry,
we investigate the role of demographic and environmental factors in inter-individual gut
microbiome variation. We also evaluate the potential impact of human genetic variants using
a genome-wide association study (GWAS) framework, including as covariates the
demographic and environmental factors that were found to be correlated with various
measures of gut microbiome diversity.

4.3 Results

4.3.1 Gut microbiome diversity

To characterize the bacterial diversity of the gut flora of the 1’000 healthy donors, we
used 16s rRNA gene sequencing. We obtained profiles for 862 individuals, with a sequencing
depth ranging from 5,064 to 240,472 reads per sample (mean * SD: 21,363 + 19,087 reads).
A total of 8,422 operational taxonomy units (OTUs) were detected, which correspond to 11
phyla, 24 classes, 43 orders, 103 families, 328 genera and 698 species. On average we
detected 193 species per microbiome (standard error 1.9, standard deviation 55.1) with
minimum of 58 and a maximum of 346 species. Inter-individual variability was pronounced
already at the phylum level. Fig. 1A presents the relative abundances of the 8 phyla observed
in more than 10% of study participants. Firmicutes and Proteobacteria were detected in all
individuals, and Bacteroidetes in all but one individual. Firmicutes was the dominant phylum
in the vast majority of individuals (91.8%).

Starting from the OTU counts, we calculated a and B microbiome diversity metrics (see
Methods):

- o-diversity measures diversity within each sample. We calculated observed richness
(number of distinct species present in the given sample), Chaol richness estimate
(estimate of the number of unobserved species), ACE (Abundance-based Coverage
Estimator) and Simpson’s diversity index (corresponding to the probability that two
randomly picked sequences belong to the same species). The histograms of their
distributions are shown in Additional File 1: Figure S1A. Throughout the study we used
Simpson’s diversity index as a representative metric of a-diversity. The results for
other metrics are given in the supplementary material.

- B-diversity measures the difference in taxonomic composition between samples. We
calculated compositional Jaccard (unweighted), Bray-Curtis (weighed) and Unifrac
(weighted) dissimilarity matrices. We used Bray-Curtis dissimilarity matrix as a
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representative metric of B -diversity. The results for other indexes are given in the
supplementary material. Fig. 1B presents multidimensional scaling (MDS) plots of
Bray-Curtis dissimilarity matrices by age (left panel) and sex (right panel), indicating
an absence of stratification. Similar homogeneous distribution of other dissimilarity
metrics on the MDS plot is available in Additional File 1: Figure S2.

H -
. 1 -
- - i
- 8
- ; .
- -
i ¥ I > x
. 8 - - T :
I : 1 : : = I
- H . . =
t | i . 1 =
H s s T
. H - s
H . : ®
. -
2 ' H .
s 1 : s 1
s -
2 2 ] H i
S - ] -
= i - .
@ -
b3 i - 3
2 8
& H H i
i ] .
. -
! : l
i
. L i ;
- .
¥ g
-
-~ .
’ L ]
Firmicutes Bacteroidetes Proteobacteria Actinobacteria Verrucomicrobia Tenericutes Synergistetes Lentisphaerae
B Bray-Curtis Bray-Curtis

Sex
* Male
-+ Female

MDS2

£ 588
MDS2

04 P LY e 4
MDS1 MDS1

Figure 4.1. Gut microbiome diversity. (A) Box-plots of relative abundances of 8 phyla that were
observed in more than 10% of the donors. Dots represent the means and outliers are also
represented. (B) Multidimensional scaling plot of Bray-Curtis dissimilarity matrix with donors
colored according to age (left panel) and sex (right panel). The curves present 95% normal
confidence ellipses.
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4.3.2 Selection of demographic, environmental and clinical variables

Demographic, social, behavioral and nutritional information was collected via a
detailed questionnaire, while multiple biochemical parameters were measured in blood
samples.

Correlations between dietary consumption parameters and gut microbiome have already
been investigated in the MI cohort [30]. We considered an additional 274 variables and
filtered them based on prevalence, missingness and collinearity, resulting in a final number
of 110 variables to be included in association analyses (see Methods). They are described in
Additional File 2: Table S1.

4.3.3 Association of non-genetic variables with gut microbiome

To investigate the potential impact of demographic and environmental factors on the
gut microbiome, we looked for associations of diversity metrics and individual taxa with the
110 non-genetic variables selected above.

We used Spearman rank correlation testing with four different a-diversity metrics (Additional
File 2: Table S2). Five covariates were significant (FDR < 0.05) in univariable tests for all a-
diversity metrics and are presented in Table 1. We then tested them in multivariable models
also including four dietary variables (which were previously found to be significantly
associated with a-diversity [30]) and ran ANOVAs. Only age and levels of alanine
aminotransferase remained significant in the multivariable model for all four a-diversity
metrics (Table 1 and Additional File 2: Table S3).

Table 4.1. Significant association of non-genetic variables with Simpson’s diversity index.

Univariable Model | Multivarible Model
(Spearman p-value) | (ANOVA p-value)
Age 1.5x10° 2x107
Level of ALAT 1.2x103 4.7 x 102
Glomerular filtration rate 8.5x103 1.9x10?
Raw fruits 1x 103 2.6x101
Fish 4x103 3x10?
Fatty sweet products 1x10°3 7.6x101
Sodas / Sugary drinks 1x103 8.4x10?
Having breakfast 1.3x1072 9.5x10?
Eating in fast-food restaurants 6.6 x 103 9.8x10?

We then investigated the impact of non-genetic variables on the B-diversity indexes, running
PERMANOVA tests for 110 variables. The results of the tests are present in Additional File 2:
Table S4. 15 covariates were significant (FDR < 0.05) by univariable testing for all three
indexes. We then tested them in multivariable models, also including raw fruit consumption
(which was previously found to be significantly associated with B -diversity [30]) and reran

89



PERMANOVAs. A total of 10 variables were significant in the final models (Table 2 and

Additional File 2: Table S5).

Table 4.2. Significant association of non-genetic variables with Bray-Curtis diversity metrics.

Univariable Model | Multivarible Model
Age 1.95 x 107 9.99 x 10*
Level of ALAT 4.81x 102 9.99 x 10*
Sex 1.95x 107 9.99 x 104
Chicken pox vaccination 1.95 x 107 2x103
Having breakfast 1.95x 1072 3x103
Eats lunch 492 x 1072 1.6 x 1072
Diastolic blood pressure 2.6x1072 1.7 x 102
Little or too much appetite 2.7x1072 2.1x1072
Raw fruits 5x 103 2.2x1072
Teeth extraction 4,92 x 107 4.4x 107
Level of HDL 2.7x10? 5.79 x 102
Cannabis use 2.7x1072 1.35x 101
Feeling tired 2.92x107? 2.58x 101
House owner 2.92 x 102 2.71x 107
Eating in fast-food restaurants 2.6x1072 2.86x10?
Temperature 2.6x1072 6.23 x 10!

We then calculated the cumulative explained variance of Bray-Curtis dissimilarity by using all
the non-genetic variables available. We observed that 16.4% of the variance can be explained
by non-genetic factors (Additional File 2: Table S6).

Next, we searched for associations between demographic and environmental variables and
individual taxa. We used multivariate association with linear models to test 110 variables and
475 taxa that were observed in more than 10% of donors (see Methods). The full list of tested
taxa is available in Additional File 2: Table S7. Table 3 shows the only three significant
associations with FDR threshold of 0.05.

Table 4.3. Significant associations of non-genetic variables with individual taxa.

Sample
Covariate Taxa Coefficient size P-value | Q-value
Age Comamonadaceae 3.99x10%| 317 |[3.09x107|5.89x10°
Age Schlegelella 3.32x10%| 255 |5.48x10°% 3x107?
Consumption of minerals | Clostridium papyrosolvens | 2.44 x 107 119 (8.32x107|4.72x 103
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4.3.4 Association of host genetics with gut microbiome

We used a GWAS framework to search for potential associations between human
genetic polymorphisms and gut microbiome diversity. We included in the regression models
all the statistically significant covariates for each phenotype. The full list of all the covariates
used, including the first two principal components of the genotyping matrix, is available in
Additional File 2: Table S8.

We ran GWAS with four a-diversity metrics and three B-diversity indexes. We did not observe
any statistically significant signal (Figure 2A, Additional File 1: Figure S3, and Figure 2B and
Additional File 1: Figure S4). The quantile-quantile plots and lambda values for all genome-
wide analyses are shown in Additional File 1: Figure S5 and Figure S6. We then focused on
SNPs that were previously reported to be associated with B-diversity [20, 21, 22]. Upon
correction for the 66 SNPs considered (0.05/66), none was significant (Additional File 2: Table
S9).

We also used a GWAS approach to test individual taxa for association with host genetic
variation. We used both a quantitative phenotype (non-zero log transformed relative
abundance) and a binary phenotype (presence vs. absence) for all taxa (see Methods). After
correction for the number of phenotypes tested, we did not observe any statistically
significant signal. We also imputed HLA and KIR alleles and tested them for association with
the phenotypes, observing no significant associations. Using a less stringent threshold for
multiple testing correction (Pinreshold < 5 X 108), a total of 170 SNPs were associated with the
guantitative phenotype of 53 taxa, and 65 SNPs were associated with the binary phenotype
of 23 taxa. The lists of these SNPs and their association p-values are available in Additional
File 2: Table S10 and Additional File 2: Table S11, respectively.

We then considered all the SNPs previously reported to be associated with individual taxa
(Additional File 2: Table S14) [20, 21, 22, 23, 26, 28]. Only 13 out of 336 SNPs passed the
corrected nominal significance threshold (0.05/336) for association with a quantitative
phenotype. Of these, 9 were concordant at the phylum level with the original report. For
binary phenotypes, 10 SNPs passed the corrected nominal significance threshold, including 2
that were concordant at the phylum level.
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Figure 4.2. Results of genome-wide association study between host genetic variants and
microbiome diversity metrics. (A) Manhattan plot for Simpson’s diversity metric
(representative a-diversity metric). The dashed horizontal line denotes the genome-wide
significance threshold (Pe-threshold < 1.25 x 10°). (B) Manhattan plot for Bray-Curtis dissimilarity
matrix (representative f3-diversity index). The dashed horizontal line denotes the genome-wide
significance threshold (Pg-threshoid < 1.67 x 10°8).

4.4 Discussion

We investigated the potential influence of demographic, environmental, clinical and
genetic factors on the gut microbiome composition in 858 unrelated healthy individuals of
French descent. The Milieu intérieur cohort is particularly well suited for such a
comprehensive assessment. The study participants have a homogeneous genetic background
and are evenly stratified by sex and age, which provides an excellent opportunity to search
for unique determinants of gut microbiome diversity.
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First, we used the rich data collected through questionnaires that collected detailed medical
histories as well as lifestyle and socio-demographic information. We also considered
laboratory results that could indicate underlying physiological differences (e.g. levels of
hemoglobin, glucose, hepatic transaminases, etc.). We searched for potential association of
these variables with several a- and B- diversity metrics of the gut microbiome, as well as with
guantitative and binary phenotypes derived from the detected abundance of individual
microbial taxa.

As the MI cohort was designed to better understand healthy immunity, strict criteria were
used during enrolment to exclude individuals with chronic medical conditions. Therefore, the
use of prescription medication was very limited among study participants. In fact, out of the
final 110 non-genetic variables that were analyzed, only one concerned drug treatment.
Surprisingly, even the use of over-the-counter drugs, such as proton pump inhibitors, was
observed in less than 10% of the individuals and could thus not be evaluated in our study. As
a consequence, we made no attempt at replicating the previously reported associations
between drug intake and gut microbiome composition [17, 18, 19].

Since the influence of dietary variables on the gut microbiome has already been evaluated in
the MI cohort [30], we focused our attention on other environmental influences, lifestyle
variables and biochemical measurements. Age strongly and consistently associated with a-
diversity metrics in all models, whereas sex and BMI did not show any significant association.
A more surprising finding was the correlation between higher levels of alanine
aminotransferase and lower gut microbiome diversity. The directionality of the observed
correlation is unclear. Indeed, much work is still needed to get a better understanding of the
interplay between the microbiome and liver disease [31]. In the analysis of B-diversity
indexes, we identified six additional variables that were significant in the multivariable
PERMANOVA models. An estimation of the explained variance in B-diversity metrics by all
associated variables demonstrated a small individual effect for each variable (Additional File
2: Table S4), which together explained 16.4% of the variance. This is concordant with previous
reports [17, 18, 19, 20, 22].

We then studied the impact of the same set of non-genetic variables on individual taxa. We
observed a strong correlation of age with the Comamonadaceae family and with the genus
Schlegelella, which is part of the same family. We also found an association between
Clostridium papyrosolvens, belonging to the Clostridia class and Firmicutes phylum, and the
oral intake of mineral supplements. Clostridium papyrosolvens is an anaerobic bacterium that
is involved in the degradation of diverse carbohydrates (such as cellulose, arabinose and
glucose) [32] and could thus play a role in modulating the individual glycemic response.

Our in-depth investigation of demographic, environmental and clinical variables allowed us
to identify subsets of factors that are highly associated with various measures of gut
microbiome composition. Including them as covariates in genome-wide association studies
had the potential to increase our power to detect true genetic effects. However, after
necessary correction for multiple testing, we did not observe any statistically significant
association. This was the case for a total of 7 different a- and B- diversity metrics and for 475
individual taxa, tested either as quantitative and, for 375 of them as well as, a binary
phenotype.
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Lastly, we checked for replication in the MI cohort of the SNPs previously reported to be
associated with the gut microbiome composition at the B-diversity or the taxonomic levels
[20, 21, 22, 23, 26, 28]. None of the variants associated with B-diversity metrics replicated.
For individual taxa, replication at the phylum level occurred for 2 SNPs for binary phenotypes
(presence vs. absence of the phylum) and 9 SNPs for quantitative phenotypes (abundance).
Of these, only one SNP (rs7856187) replicated at the family level — Lachnospiraceae [28]. Of
note, the only SNP that was significant in a recent meta-analysis [20], rs4988235, did not show
any association in our study (Additional File 2: Table S12).

4.5 Conclusions

Our study provides a detailed investigation of potential demographic, environmental,
clinical and genetic influences on the diversity of the gut microbiome in healthy individuals.
We identified variables associated with overall microbiome composition and with a small
number of individual taxa. The absence of any significant results in the genome-wide
association analyses, on the other hand, indicates that common human genetic variants are
unlikely to play a major role in shaping the gut microbiome diversity observed in healthy
populations. Future studies should include larger sample sizes and a more comprehensive
evaluation of human genetic variation (also including rare and structural variants not
captured by genotyping arrays). Data should also be pooled across cohorts, as recently
proposed [33], to accelerate discovery in the field of host-microbiome interactions.

4.6 Methods

4.6.1 The Milieu Intérieur cohort

The 1,000 healthy donors of the Milieu Intérieur cohort were recruited by BioTrial
(Rennes, France). The cohort is stratified by sex (500 men, 500 women) and age (200
individuals from each decade of life, between 20 and 70 years of age). Participants were
selected based on stringent inclusion and exclusion criteria, detailed elsewhere [34]. Briefly,
they had no evidence of any severe/chronic/recurrent medical conditions. The main exclusion
criteria were seropositivity for human immunodeficiency virus or hepatitis C virus; travel to
(sub-) tropical countries within the previous 6 months; recent vaccine administration; and
alcohol abuse. Subjects were excluded if they were at the time on, or were treated in the
three months preceding enrolment with, nasal, intestinal or respiratory antibiotics or
antiseptics. Volunteers following a specific diet prescribed by a doctor or dietician for medical
reasons (calorie-controlled diet or diet favouring weight loss in very overweight patients, diets
to decrease cholesterol levels) and volunteers with food intolerance or allergy were also
excluded. To avoid the influence of hormonal fluctuations in women during the peri-
menopausal phase, only pre- or post-menopausal women were included. To minimize the
importance of population substructure on genomic analyses, the study was restricted to
individuals of self-reported Metropolitan French origin for three generations (i.e., with
parents and grandparents born in continental France). Fasting whole blood samples were
collected from the 1000 participants on lithium heparin tubes between September 2012 and
August 2013.
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4.6.2 Fecal DNA extraction and amplicon sequencing

Human stool samples were produced at home no more than 24 hours before the
scheduled medical visit and collected in a double-lined sealable bag maintaining strict
anaerobic conditions. Upon reception at the clinical site, the fresh stool samples were
aliquoted and stored immediately at -80°C. DNA was extracted from stool as previously
published [35, 36]. DNA quantity was measured with Qubit using broad range assay.
Barcoding polymerase chain reaction (PCR) was carried out using indexed primers targeting
the V3-V5 region of the 16S rRNA gene as described in [37]. AccuPrime™ Pfx SuperMix
(Invitrogen - 12344-040) was used to perform the PCR. PCR mix was made up of 18 pL of
AccuPrime™ Pfx SuperMix, 0.5 pL of both V3-340F and V5-926R primers (0.2 uM) and 1 pL of
DNA (10 ng). PCR was carried out as follow: 95°C for 2 min, 30 cycles of 95°C for 20 sec, 55°C
for 15 sec, 72°C for 5 min and a final step at 72°C for 10 min. Amplicon concentration was
then normalized to 25 ng per PCR reaction using SequalPrep™ Normalization Plate Kit, 96-well
(Thermo Fisher Scientific). Equal volumes of normalized PCR reaction were pooled and
thoroughly mixed. The amplicon libraries were sequenced at the Institut Curie NGS platform
on lllumina MiSeq using the 2*300 base pair V3 kit.

4.6.3 16s sequencing data processing and identification of microbial taxa

Raw reads were trimmed using sickle [38], then error corrected using SPAdes [39] and
merged using PEAR [40]. Reads were clustered into operational taxonomy units (OTUs) at 97%
of identity using vsearch pipeline [41]. Chimeric OTUs were identified using UCHIME [42] and
discarded from downstream analysis. Taxonomy of representative OTU sequences was
determined using RDP classifier [43]. OTU sequences were aligned using ssu-align [44]. The
phylogenetic tree was inferred from the OTUs multiple alighments using Fastree2 [45].
For 138 individuals, the gut microbiome composition could not be established because of
technical issues in exploitability of sequencing results. These were excluded from further
analysis.

4.6.4 Gut microbiome diversity estimates

We calculated two types of microbial diversity indicators: a- and B-diversity indices.
As estimates of a-diversity, we used Simpson’s diversity index, observed richness, Chaol
richness estimate and ACE (Abundance-based Coverage Estimator). We applied Yeo-Johnson
transformation with R package VGAM [46] to normalize these phenotypes. The histograms of
raw and transformed distributions are shown in Additional File 1: Figure S2. As estimates of
B-diversity, we used Bray-Curtis (weighed), compositional Jaccard (unweighted) and Unifrac
(weighted) dissimilarity matrices. All diversity indicators were generated on non-rarefied data
using the R package vegan [47].

4.6.5 Demographic, environmental and clinical variables

A large number of demographical, environmental and clinical variables are available
in the Milieu Intérieur cohort [34]. These notably include infection and vaccination history,
childhood diseases, health- and diet- related habits, socio-demographical variables, and
laboratory measurements. After manual curation, we considered 274 variables as potentially
interesting for our analyses. Of those, we removed 130 that: (i) were only variable in less than
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5% of participants; or (ii) were missing in more than 10% of participants. We tested for
collinearity among the remaining 144 variables using Spearman rank correlation. All pairwise
correlations with a Spearman’s p > 0.6 or < -0.6 and a false discovery rate (FDR) < 5% were
considered colinear; one variable from each pair was randomly removed from further
analysis, resulting in a final set of 110 variables (described in Additional File 2: Table S1). Of
these, 39 had some missing values (<1% in 25, 1-5% in 10, 5-10% in 4 individuals), which were
imputed using random forest method in the R package mice [48].

4.6.6 Testing of demographic, environmental and clinical variables

We searched for associations between the 110 demographic, environmental and
clinical variables selected above and the various gut microbiome phenotypes. For a-diversity
indexes (Simpson’s index, observed richness, Chaol richness estimate and ACE), we used non-
parametric Spearman correlations. For B-diversity dissimilarities (Jaccard, Bray-Curtis and
Unifrac matrices), we used permutational analysis of variance (PERMANOVA) with 1000
permutations. PERMANOVAs identify variables that are significantly associated with -
diversity and measure the fraction of variance explained by the factors tested. The variables
that were significantly associated (FDR < 0.05) with the diversity estimates were included in
the respective multivariable models: we used multivariable ANOVAs for a-diversity and
PERMANOVAs for B-diversity. After eliminating the variables that were not significant in the
first multivariable model, we reran the tests iteratively until all included predictors were
significant. Spearman correlations, ANOVA and PERMANOVAs tests were performed in R
v3.5.1. Finally, to search for associations with individual taxa, we implemented multivariate
association with linear models by using MaAsLin [49] with default parameters.

4.6.7 Human DNA genotyping

As previously described [50], blood was collected in 5mL sodium EDTA tubes and kept
at room temperature (18-25°) until processing. After extraction, DNA was genotyped at
719,665 single nucleotide polymorphisms (SNPs) using the HumanOmniExpress-24 BeadChip
(Hlumina). The SNP call rate was > 97% in all donors. To increase coverage of rare and
potentially functional variation, 966 of the 1,000 donors were also genotyped at 245,766
exonic variants using the HumanExome-12 BeadChip. The variant call rate was < 97% in 11
donors, which were thus removed from this dataset. We filtered out from both datasets
genetic variants based on a set of criteria detailed in [51]. These quality-control filters yielded
a total of 661,332 and 87,960 variants for the HumanOmniExpress and HumanExome
BeadChips, respectively. Average concordance rate for the 16,753 SNPs shared between the
two genotyping platforms was 99.99%, and individual concordance rates ranged from 99.8%
to 100%.

4.6.8 Genetic relatedness and structure

Relatedness was detected using KING [52]. Six pairs of related participants (parent-
child, first and second-degree siblings) were identifed. Of those, four pairs had both
genotyping and microbiome datasets and one individual from each pair, randomly selected,
was removed from the genetic analyses, leaving in total 858 individuals with both genotyping
and 16s rRNA gene sequencing data. The genetic structure of the study population was
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estimated using principal component analysis (PCA), implemented in EIGENSTRAT (v6.1.3)
[53]. The PCA plot of the study population is shown in Additional File 1: Figure S7.

4.6.9 Genotype imputation

As described previously [51], we used Positional Burrows-Wheeler Transform for
genotype imputation, starting with the 661,332 quality-controlled SNPs genotyped on the
HumanOmniExpress array. Phasing was performed using EAGLE2 (v2.0.5) [54]. As reference
panel, we used the haplotypes from the Haplotype Reference Consortium (release 1.1) [55].
After removing SNPs that had an imputation info score < 0.8, we obtained 22,235,661
variants. We then merged the imputed dataset with 87,960 variants directly genotyped on
the HumanExome BeadChips array and removed variants that were monomorphic or diverged
significantly from Hardy-Weinberg equilibrium (P < 107). We obtained a total of 12,058,650
genetic variants to be used in association analyses.

We used SNP2HLA (v1.03) [56] to impute 104 4-digit human leukocyte antigen (HLA) alleles
and 738 amino acid residues (at 315 variable amino acid positions of the HLA class | and Il
proteins) with a minor allele frequency (MAF) of >1%.

We used KIR*IMP [57] to impute killer cell immunoglobulin like receptors (KIR) alleles, after
haplotype inference on chromosome 19 with SHAPEIT2 (v2.r790) [58]. A total of 19 KIR types
were imputed: 17 loci plus two extended haplotype classifications (A vs. B and KIR haplotype).
A MAF threshold of 1% was applied, leaving 16 KIR alleles for association analysis.

4.6.10 Genetic association analyses

For single variant association analyses, we only considered SNPs with a MAF of >5%
(N=5,293,637). Unless otherwise stated, we used PLINK (v1.9) [59] for association testing. In
all test, we included the first two first principal components of the genotyping matrix as
covariates to correct for residual population stratification. The demographic, environmental
and clinical variables that were identified as significantly associated were also included as
covariates in the respective analyses. A full list of covariates for each phenotype is available
in Additional File 2: Table S8.

We used linear regression (within PLINK) and microbiomeGWAS [60] to test for SNP
associations with a-diversity indexes and B-diversity dissimilarities, respectively. Linear
regression was also used to search for associations with relative abundance of specific taxa.
Only taxa present in at least 10% of individuals were tested (N=475), i.e. 8/11
(remaining/total) phyla, 16/24 classes, 20/43 orders, 50/103 families, 135/328 genera and
246/698 species. The list of all tested taxa is presented in Additional File 2: Table S7. We used
logistic regression to test binary phenotypes (presence/absence of specific taxa). Here, we
excluded taxa that were present in >90% of individuals, resulting in a total of 374 phenotypes
(4 phyla, 8 classes, 15 orders, 38 families, 104 genera and 205 species). For all GWAS, we used
a significance threshold corrected for the number of tests performed. For a-diversity (N=4):
Pothreshold < 1.25 x 108, for B-diversity (N=3): Pp.threshold < 1.67 x 108, for taxa abundance
(N=475): Ptaxa-linear < 1.05 x 10" and for presence or absence of taxa (N=374): Ptaxa-logistic < 1.33
x 10719,
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4.7 List of Abbreviations

SNP: single nucleotide polymorphism; MAF: minor allele frequency; MI: Milieu
Intérieur; QQ: quantile-quantile; LD: linkage disequilibrium; PCR: polymerase chain reaction;
ANOVA: analysis of variance; PERMANOVA: permutational analysis of variance; FDR: false
discovery rate; OTU: operational taxonomy unit; HIV: human immunodeficiency virus; HCV:
hepatitis C virus; ACE: Abundance-based coverage estimator; GWAS: genome-wide
association study; HLA: human leukocyte antigen; KIR: killer cell immunoglobulin like
receptors; PCA: principal component analysis; MDS: Multidimensional scaling.
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Chapter 5: Conclusions

Today, it is not possible for a patient to walk into a doctor’s clinic and receive a test that
faithfully reflects the health of their immune system. This is not for lack of parameters to
measure, but because of a more fundamental problem: our very poor understanding of the
immense heterogeneity and variability in the immune system. To improve our ability to
provide an answer to this rather simple question, novel insights into the factors governing
this variability are needed.

The works presented in this thesis focused on discovering the drivers of the inter-individual
variance of the healthy immune system in humans. In particular, the potential effects of
human genome variation and environmental factors were investigated using various
phenotypic outcomes.

In the second chapter of the thesis, the study of factors influencing humoral immunity is
described. We examined the humoral responses of 1,000 healthy people to common
infections and vaccines. We measured antibody responses to fifteen antigens from twelve
infectious agents: cytomegalovirus, Epstein-Barr virus, herpes simplex virus 1 and 2, varicella
zoster virus, influenza A virus, measles, mumps, rubella, and hepatitis B virus, Helicobacter
pylori, and Toxoplasma gondii. In order to assess the importance of non-genetic factors,
attention was given to numerous demographic variables. Age and sex were identified as the
most important determinants of humoral response, with older individuals and women
showing stronger antibody responses against most antigens. With regard to genetic factors,
we performed genome-wide association studies. The results showed that differences in
response to Epstein-Barr virus and rubella associate with variation in the human leucocyte
antigen (HLA) gene region. We fine-mapped these signals to amino acids in the extracellular
domains of HLA proteins, confirming their essentiality for the presentation of processed
peptides to CD4* T cells and thus reveling important clues in the fine regulation of class Il
antigen presentation. We also identified novel specific HLA/KIR combinations that support
the idea that these interactions can play a critical role in shaping humoral immune responses
in humans.

In the third chapter, a large-scale genetic and immunological profiling study is presented. The
detailed cellular composition of white blood cells was established through the generation of
166 immune-system phenotypes. The effects of environment on these phenotypes were
assessed, and a particularly strong impact of age, sex and cytomegalovirus (CMV) infection on
many cell subpopulations was observed. Using a genome-wide association study approach,
15 loci were identified that were associated with immunological diversity within the healthy
human population. Innate cells were more strongly controlled by genetic variation than cells
involved in the adaptive arm of the immune response, which were more likely to show
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variability because of environmental influences. We investigated in detail the associations
arising from the HLA gene region and we managed to pinpoint them to coding variations and
amino acids within HLA proteins that were the more probable cause of the signal. Many of
these signals were reported previously to be associated with human diseases and traits and
were directly linked with etiology of several autoimmune disorders. Our findings thus provide
new insight into the mechanisms underlying disease pathogenesis.

In the fourth chapter, the investigation of the factors influencing gut microbiome diversity is
presented. An unprecedented number of demographic, environmental, clinical and lifestyle
factors were evaluated for their potential association with gut microbiome composition. The
total variance explained by these factors was estimated to be ~16%. We also conducted
genome-wide association studies, in which the significant non-genetic factors were included
as covariates to reduce noise. No human genetic polymorphism could be identified that
significantly associated with gut microbiome diversity of individual microbial taxa. This
allowed us to conclude that non-genetic variables are the driving forces determining
microbiome composition in heathy individuals, and that the direct influence of human
genetics on the overall gut composition has a minor role.

The various studies presented in this thesis contribute to the generation of a more detailed
map of the genetic architecture of variation in the immune function. In particular, the pivotal
role of HLA genes is highlighted by several lines of evidence.

Population studies carried out over the last several decades have identified a long list of
human diseases that are significantly more common among individuals that carry particular
HLA alleles. We here confirmed the role of HLA genes in the determination of the healthy
immune variance. Our works further accredited that small differences in the capacity of HLA
class Il molecules to bind specific viral peptides can have a measurable impact on the
downstream antibody production. In a similar fashion, the modulation of parameters of
innate immune cells is strongly governed by HLA variation.

We concentrated on pinpointing specific amino acids within HLA molecules that could be
responsible for these effects. This, in its turn, can help in revealing the causal genes which can
lead to explaining the disease heritability and to a better understanding of the molecular
pathways involved in disease pathogenesis.

An example can be given by our investigation of association we observed between the levels
of antibodies directed towards the EBNA epitope of EBV with a SNP in the HLA region.
Understanding the biology underlying this genetic association is critical, in particular for
increasing our knowledge on susceptibility to multiple sclerosis (MS), an autoimmune
demyelinating disease of the central nervous system. Indeed, in the clinical setting, the serum
titers of IgG against EBV EBNA have been identified as a strong and robust predictive marker
of MS occurrence, with an 8-fold higher relative risk for individuals with high levels of IgG anti-
EBNA, as compared with those with low levels (Almohmeed Y.H., et. al. PLoS One. 2013).

We found that associations between EBV EBNA titers and HLA are due to variations in amino
acid composition of HLA-DRB1. Specifically, the level of 1gG mounted against EBV EBNA
associated with HLA-DRB1*07:01 haplotype, and with amino acid positions 98 and 104 of the
HLA-DRB1 molecule. These amino acid residues are implicated in the peptide binding groove
conformation. Statistically, this association can also be attributed to the presence of HLA-
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DRB1*07:01 haplotype, which was observed as a protective allele for MS by previous genome-
wide association studies that have mapped MS susceptibility to the HLA-DR locus.

We can now conclude based on these findings that the conformation of the peptide binding
groove of the HLA-DRB1 molecule (encoded by HLA-DRB1*0701) plays a crucial role in
determining the repertoire of self and non-self peptides that can be efficiently presented to
immune cells; and that the same amino acid variants can confer both higher capacity to
mount an anti-EBNA IgG response and higher risk of developing MS.

Our works help to pinpoint potential therapeutic targets and can lead to a better
understanding of the structure and the nature of potential antigens for autoimmune or
inflammatory diseases, and these can then be tested through binding assays and molecular
modeling. Therefore, we emphasize the importance of considering HLA diversity in disease
association studies, as the associations we have identified have also the potential to help
improve vaccination strategies, and dissect pathogenic mechanisms implicated in human
diseases.

Yet, this is still just the first step. The results obtained are the founding bricks on which such
further investigation should be conducted to more comprehensively understand the many
factors that play a regulating role in human immunity.

Future explorations in the field will need to consider additional types of genetic variants,
which were for the most part not interrogated in our genotyping-based studies. Indeed, both
rare and common SNPs, as well as structural variants, are very likely to play a role in the
variability of human immune responses. In the second chapter of the thesis, we used burden
testing to interrogate rare variants. The results presented will need to be replicated, yet they
suggest that with a bigger sample size and a more detailed characterization of genetic
polymorphisms (e.g. from whole genome sequencing), many more genetic influences on
immunity could be discovered. This is expected, as genetic diversity in immune-related genes
is well tolerated at the population level, because the downstream effects are context-
dependent (e.g. depending on the exposure to a pathogen). Immune genetic diversity can
even be maintained by evolutionary pressures, in case of balancing selection, which leads to
the persistence, at the population level, of a relatively high level of variation in immune
function that may become useful in future challenges.

A clear limitation of our investigations is their exclusive scope on individual of European
ancestry. Efforts should be intensified to include diverse human populations in biomedical
research, but especially in genetic studies. Because of their longest genetic history, individuals
of African ancestry are more likely to carry variants that are not observed in other
populations. Also, human populations have experienced vastly different evolutionary forces
depending on their geographical and genealogical history, resulting in additional levels of
variability, which could be highly informative about human health.

A fundamental question in biology is how the nature (human genome) and the environment
(nurture) jointly contribute to the observed variability between individuals of the same
species. Obviously, genomic and environmental influences are often hard to disentangle, and
novel conceptual and statistical approaches will be needed to better understand their
respective and combined impact on immune traits. The studies presented in this thesis are

109



only a start, but they are an integral part of a fascinating journey: the patient scientific
unravelling of what makes us humans.
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