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Abstract

Is it possible to dock CubeSats in Low Earth Orbit? Challenges are associated with
the level of miniaturisation: the docking accuracy is driven by the docking mechanism
dimensions. The achievable docking performance with the Guidance, Navigation and
Control (GNC) subsystem is constrained by the use of small sensors and actuators.

A docking mechanism prototype, tailored for CubeSats was designed, built and tested in
the laboratory using a simple experimental setup. Results showed that a lateral precision
of 1 cm and a relative angular alignment better than 2 degrees are required to guarantee
successful docking. A filtered monocular camera on the chaser satellite and various arrays
of light-emitting diodes on the target vehicle were selected for the metrology, due to their
potential to achieve a high relative navigation accuracy and to ensure the observability
of the system throughout the final approach trajectory. Both docking mechanism and
metrology system are contained within 0.5U volume and can thus be used on a wide span
of satellite types.

The chaser and target have a complete 3-axis attitude pointing capability and are
equipped with off-the-shelf CubeSats attitude sensors and actuators, including star track-
ers and reaction wheels. The chaser is further equipped with a six degrees of freedom
low-thrust cold gas propulsion system. The navigation and control functions rely on
a linearised coupled dynamic, which includes fuel sloshing effects, and describes the 6
degrees of freedom relative motion between the chaser and target docking ports. Using
this dynamic, LQR, LQI, H-Infinity and Mu-Synthesis controllers were investigated and
their stability and performance assessed by mean of Mu-Analysis.

A comprehensive simulation framework was developed to evaluate the performances
of the navigation and control functions and the impact of actuator and sensor errors on
the overall docking performance. The environmental and internal perturbations, such as
atmospheric drag and fuel sloshing were taken into account. All sensors and actuators
required for the docking were modelled, including realistic errors and noise characteristics.
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Abstract

Different docking scenarios were investigated based on the different behaviour of the
coupled dynamics. Worst-case scenarios such as the loss of sensor signals prior to docking
are also tackled. The robustness of the proposed control schemes was assessed by the use
of structured singular values. Complementary non-linear Monte-Carlo simulations were
also performed to determine the complete GNC performances as well as fuel consumption.
Results show that the proposed GNC is robust to the modelled sensor and actuator noises,
fuel sloshing, dynamics uncertainties and that a lateral position accuracy better than 5
mm can always be obtained at docking. Furthermore, docking is not affected by the loss
of star tracker signals nor by harsh illumination conditions, and can thus take place on a
variety of orbits.

Keywords: space, satellite, cubesat, rendezvous, docking, vision-based navigation, robust
control, H-infinity, mu-synthesis, mu-analysis.
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Résumé

Est-il possible d’amarrer deux CubeSats en orbite terrestre basse ? Le défi est princi-
palement lié à la miniaturisation. La précision nécessaire découle des dimensions du
mécanisme d’amarrage. L’utilisation de senseurs et d’actuateurs miniaturisés impacte la
précision atteignable avec le sous système de Guidage, de Navigation et de Contrôle (GNC).

Un prototype de mécanisme d’amarrage, adapté aux CubeSats, a été réalisé et testé en
laboratoire. Les résultats montrent qu’un positionnement latéral d’un centimètre et qu’une
orientation relative de deux degrés sont nécessaires pour garantir l’amarrage. Une caméra
sur le satellite chasseur, ainsi que plusieurs dispositifs de diodes électroluminescentes
sur le satellite cible, ont été sélectionnés comme système de métrologie grâce à leur
potentiel pour atteindre une navigation précise et assurer l’observabilité du système tout
au long de l’approche finale. Le mécanisme d’amarrage ainsi que le système de métrologie
occupent un volume de 0.5U et peuvent donc être utilisés sur une large gamme de satellites.

Le chasseur et la cible sont tous deux équipés d’un système de contrôle d’attitude
trois axes, ainsi que de senseurs et d’actuateurs, produits industriellement, dont des
viseurs d’étoiles et des roues d’inerties. Le chasseur possède en plus un système de pro-
pulsion à gaz froid et à poussée faible avec six degrés de libertés. La navigation et le
contrôle sont basés sur une dynamique linéarisée qui décrit le mouvement relatif en six
dimensions entre les mécanismes d’amarrage du chasseur et de la cible. Basés sur cette
dynamique, des contrôleurs LQR, LQI, Hinfini et Mu ont été testés. Leur stabilité ainsi
que leur performance ont été évaluées grâce à l’analyse Mu.

Un simulateur a été développé afin de tester les performances de la navigation et du
contrôle, ainsi que l’impact des senseurs et des actuateurs sur les performances de l’amar-
rage. Les perturbations environnementales et internes aux satellites, telles que la trainée
due à l’atmosphère résiduelle, ont été prises en compte. Tous les senseurs et actuateurs
nécessaires ont été modélisés en incluant des sources d’erreur et de bruit réalistes.

Différents scénarii ont été évalués en se basant sur les différents comportements de
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Résumé

la dynamique relative. Des cas de figure extrêmes, tels que la perte d’un senseur avant
l’amarrage, ont été abordés. La robustesse des contrôleurs a été évaluée en utilisant les
valeurs singulières structurées. Des simulations Monte-Carlo ont été réalisées afin de tester
les performances de toute la GNC, ainsi que la consommation de carburant. Les résultats
montrent que la GNC est robuste au bruit des senseurs et des actuateurs, ainsi qu’aux
incertitudes présentes dans la dynamique et qu’une position latérale de 5 mm au moins
peut toujours être atteinte. De plus, l’amarrage n’est pas affecté par la perte des viseurs
d’étoiles ou par les différentes conditions d’illumination et peut donc ainsi être réalisé sur
différentes orbites.

Mots-clefs : espace, satellite, cubesat, rendez-vous, amarrage, contrôle robust, navigation
visuelle, Hinfini, contrôle Mu, analyse Mu.
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1 Introduction

Orbital Rendezvous & Docking (RVD) between two spacecraft is the process of meeting
and attaching in orbit around a central body, usually the Earth, by a succession of
open-loop and closed-loop manoeuvres. One of the spacecraft is passive and is called the
target; the other is referred to as the chaser. The first RVD was achieved on 16 March
1966 by Neil Armstrong and David Scott during the Gemini 8 mission. It was performed
manually and became NASA’s modus operandi until today, the most prominent example
being the now-retired Space Shuttle. On 30 October 1967, the Soviets carried out the
first autonomous RVD between the spacecraft Cosmos 186 & 188. RVD techniques were
extensively used as part of the US Apollo and the MIR Soviet programme, and are still
the only way to get astronauts and supplies to the ISS. Whereas the Space Shuttle
was still docking to the ISS with a man in the loop, the European Space Agency (ESA)
developed its own solution with the Automated Transfer Vehicle (ATV) performing the
same task autonomously. Today, the only spacecraft docking to the ISS is the Russian
Soyuz (see Figure 1.1a) and Progress vehicles, using an autonomous procedure. Other

(a) Soyuz vehicle. (b) Dragon capsule.

Figure 1.1 – Soyuz autonomously docking to the ISS and Dragon capsule berthing.
Credit: NASA.
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vehicles resupplying the ISS include the Japanese HTV and the SpaceX Dragon capsule
(see Figure 1.1b). Although autonomous, these spacecraft do not dock to the ISS, they
berth. Berthing consists of steering the spacecraft close enough to the station, typically
∼ 10 m, and capturing it by a man-controlled robotic arm.

Close proximity operations or Formation-Flying (FF) were until recently only reserved
to large agile satellites (Soyuz or ATV spacecraft type) due to a lack of miniaturised
hardware such as reaction wheels, Reaction Control System (RCS), or navigation sensors,
and to the limits of their performances. Only recently, in 2010, PRISMA achieved the
first breakthrough in which two micro-satellites performed close-proximity FF using
Carrier Phase Differential GPS (CDGPS) and Vision-Based Navigation (VBN) [1]. Today
new developments, especially in the field of miniaturised technologies, such as Micro
Electro Mechanical Systems (MEMS), allow audacious missions using nano-satellites to
be planned for the first time.

Nano-satellites are spacecraft weighing from one to tens of kilograms, the most common
being CubeSats. They were developed in 1999 by Prof Jordi Puig-Suari and Prof Bob
Twiggs [2]. Their primary goal was to allow students to have a hands-on approach to
satellites design, testing, and in-orbit operations, as well as to increase the chances of
being launched as a secondary payload without compromising the safety of the main
satellite. This was achieved by standardising the form factor, interfaces and deployment
system, and limiting the use of potentially hazardous technologies. The first CubeSat was
launched in 2003 and referred to as a “1U” (1 Unit). A CubeSat unit is a standardised
volume of 10× 10× 10 centimetres. Today, many 3U (10× 10× 30 cm) have successfully
flown, and first constellations are being operated. ESA is supporting several 3U missions
such as the QARMAN, Picasso, RadCube, Pretty and GomX-3 missions [3]. In 2014,
the CanX-4&5 mission successfully performed an autonomous FF mission using two 8U
(20 × 20 × 20 cm) satellites coming as close as 50 m to each other [4]. Although this
mission demonstrated the maturity of some CubeSat technologies, the relative position
accuracy obtained was far from the requirement of autonomous docking, which should
typically be better than 1 cm.

1.1 Motivation

Nano-satellite RVD still needs to be achieved and requires the development and validation
of corresponding Guidance, Navigation & Control (GNC) algorithms.

CubeSats can be exploited as a low-cost, short development time, In-Orbit Demon-
stration (IOD) test-bed to validate advanced RVD technologies such as miniaturised
sensors/actuators, in a real operational environment [5,6]. The ground-based proof-of-
concept work of this research will be a first step towards this.
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1.1. Motivation

The miniaturisation of electronics, sensors and actuators now allows the required RVD
functions to be integrated and performed within the tight physical constraints of a 10-12
kg CubeSat platform for the first time. Autonomous CubeSats RVD will allow the
existence of novel systems concepts such as on-orbit assembly of large space structures
built up of many building blocks: large antennas, optics, or solar generators may be
formed. The technological limits of conventional mechanisms for such elements imply
that they must be stowed during launch and deployed on orbit.

The RVD problem in circular Low Earth Orbit (LEO) has been known for many years
and is a well-understood and solved issue. Although the same techniques could be directly
ported to nano-satellites such as CubeSats, the mass, volume and power constraints pose
new challenges that need to be coped with. For example, the ATV had an RCS composed
of 28, 220 N thrusters [7]. Assuming that four thrusters are actuated at the same time per
Degrees of Freedom (DoF) and that the ATV wet mass is 20 metric tonnes, the available
control acceleration is ∼ 0.044 m/s2. A typical 6U CubeSat, the size foreseen to achieve
RVD in this project, weighs ∼ 12 kg. Considering the currently available thrust level
for CubeSat is 1 mN per thruster and that four thrusters will be available per axis; the
actuation acceleration is two orders of magnitude lower than for the ATV. This lower
actuation level is typically expected for missions with low-thrust electric propulsion and
is thus potentially limiting the satellite agility.

At the time of writing of this thesis, the autonomous rendezvous and docking of nano-
satellites has not been performed and is considered to be a major challenge, mainly
due to the availability of the miniaturised GNC components and docking mechanisms.
Hardware miniaturisation usually leads to noisier actuators and sensors with degraded
performances. Moreover, the miniaturised docking mechanism implies more demanding
control performances.

Once in orbit, each task and operation is checked numerous times before being performed
at a low pace to mitigate risks. Therefore, the operation time is a large part of a mission
cost. Also, satellite onboard resources are limited and need to be managed carefully. Long
idle periods will directly impact these resources, especially in the frame of FF or RVD
during which each minute spent in Station-Keeping (SK) costs propellant. For vehicles
using vision sensors, an extra constraint comes from the relative position of the Sun, the
chaser and the target, resulting in potentially extended SK periods until illumination
conditions become acceptable.

The ATV (see Figure 1.2) was the first vehicle to perform automated RVD using a vision
sensor, called Videometer [8, 9]. Although this metrology system had the potential to
achieve high navigation accuracy, it was highly sensitive to illumination conditions, and
the RVD timing had to be carefully planned and executed.

The ideal GNC sub-system for achieving RVD with CubeSats will thus need to be able
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Figure 1.2 – ESA ATV George Lemaitre approaching the ISS. Credit: Oleg Arte-
myev/Roscosmos.

to meet the high control accuracy requirements under low-thrust while complying to
environmental conditions so that available operation time and onboard resources can be
optimised.

In 2013-2014, the Swiss Space Center was involved in the ESA GSTP 5.4 activity,
demonstrating the feasibility of non-cooperative rendezvous and active debris removal
technologies using CubeSat IOD [6]. The GNC analyses performed during this project
have led to the present research, which is a joined collaboration between EPFL and ESA,
within the frame of a Networking/Partnering Initiative (NPI).

1.2 Broadening the Scope

The definition of the GNC varies depending on the authors. Herein, the following terms
are used:

• Guidance: Satellite trajectory definition as well as computation of open-loop
manoeuvres (i.e. no feedback) to bring the satellite to the desired position.

• Navigation: Determination of the satellite’s state (3 or 6 DoF ) using sensors and
filters.

• Control: Closed-loop control of the trajectory as well as utilisation of open-loop
guidance schemes in a recursive way.

Even if RVD has been mastered since the space race in the 1960’s, it has not yet really been
exploited for missions beyond the human space flight. However, FF and close proximity
operations are today, more than ever, very appealing and the number of on-going or
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planned missions is steadily increasing. In the 90’s, the potential behind FF missions
was already understood with more than 50 concepts [10] and launches scheduled up to
2015, such as for the Magnetospheric Multiscale (MMS) mission [11]. FF applied to
astronomical observations has been investigated for a long time, as examples the ESA
DARWIN mission (cancelled in 2007 [12]), the ESA LISA Pathfinder [13] which will
detect gravitational waves using a triangular formation, and the ESA Proba-3 mission
which will demonstrate the FF capability of two micro-satellites in a high eccentric orbit
carrying a solar Coronagraph [14,15].

The CanX-4&5 mission, composed of two 8U CubeSats, has been the first mission to
achieve an autonomous FF with nano-satellites [16]. In 2010, PRISMA managed an
autonomous FF mission between two micro-satellites bringing them first to two meters
from each other using CDGPS and even reducing the range to 40 centimetres using
VBN [1,17,18]. The DelFFi mission plans to demonstrate automatic FF and dedicated
new technologies using two 3U CubeSats in the near future [19]. The GomX-4 ESA
supported mission is currently flying two 6U satellites and has been launched in 2018.
This mission demonstrates a cold-gas propulsion system and Inter-Satellite Link (ISL)
capabilities and has been a necessary and crucial step towards achieving CubeSat RVD [20].

Figure 1.3 – AAReST reconfiguration scenario [21].

The AAReST mission plans on demonstrating RVD for the in-orbit reconfiguration
of a space telescope [22]. Composed of four 3U CubeSats and launched in a stowed
configuration, two of them will detach and re-dock in another configuration, using an
electromagnetic docking mechanism (Figure 1.3). The CubeSat Proximity Operations
Demonstration (CPOD) mission, developed by the company Tyvak, is composed of two
3Us both equipped with a docking mechanism [23]. The chaser relies on VBN for the
approach and is equipped with three cameras (Figure 1.4).

Only a little information is available about the current status of this mission. According
to Tyvak, the two satellites are ready for flight and are waiting for a launch opportunity.
Finally, the MIT SPHERES experiment on ISS provides a test-bed for GNC algorithms.
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Figure 1.4 – CPOD chaser front face [23].

Although the environment within the ISS is not exactly representative of an IOD mission,
results still provide useful information about the docking accuracy that can be expected
for nano-satellites. This will be discussed in 1.2.4, together with other nano-satellite
docking mechanisms.

1.2.1 Navigation

The navigation system is composed of three distinct parts:

• Attitude determination.

• Relative position determination.

• Relative attitude and position determination.

Attitude determination

This problem can be solved using deterministic solutions such as TRIAD [24] or QUEST
[25]. These methods are reconstructing the Direction Cosine Matrix (DCM) using vectors
measurements. Their major drawback is the sensitivity to sensor noise and bias. It is
possible to handle this by filtering each sensor separately and then to use TRIAD or
QUEST [26]. A more popular solution is to take advantage of the state-space knowledge
of the system and to include it, together with all the sensors measurements, in one
filter. Many algorithms achieve this, but the most well-known for Attitude Determination
& Control System (ADCS) are the Extended Kalman filter (EKF) and the Unscented
Kalman Filter (UKF). The satellite’s full or partial state vector can then be estimated as
well as other important parameters such as external disturbances, sensors bias or sensors
misalignments. In [27] a sensor fusion procedure is proposed, combining a deterministic
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solution based on Wahba’s problem [28] and an EKF. Although this method relies on
an accelerometer and a magnetometer; the very same procedure could be used in space,
replacing the accelerometer by Sun Sensors. An exhaustive introduction to the filtering
problem for satellite attitude determination, trading-off the various possible attitude
representations, is provided in [29] and [30].

To estimate the attitude, the rotation rate and the gyroscope bias, the inertia of the
satellite has to be known, and external torques need to be fed to the EKF as it will rely
on the body dynamics [31–33]. The drawback of this method is that the EKF has to
be tuned for each new satellite [34]. In some cases, poor knowledge of the inertia and
external torques can degrade the estimation. In [35] a method is introduced in which
the external torques are estimated inside the EKF, and up to 10% uncertainties on the
inertia could be handled. Many authors have been using instead a purely kinematic filter,
often called Mission Modes Kalman filter, in which only the gyroscope bias and attitude
are estimated and not the rotation rate, thus avoiding the need to use the satellite’s mass
and inertia [36–39]. If the rotation rate is necessary for the control, the raw output of
the gyroscope can be corrected using the filter’s estimated bias. The drawback of such a
solution is that the gyroscope noise is unfiltered. The attitude determination of the ATV
was based on the Mission Modes Kalman filter, with the addition of the misalignment
and scale factors of the gyroscope estimations [8]. As an EKF can start diverging, the
gyroscope bias estimation is performed in a different filter such that a filter failure can be
more easily contained [8].

Relative Navigation

To determine the relative state between the chaser and the target, four different options
are available :

• Vision-Based Navigation (VBN): The solution is obtained using optical devices.
The relative position and attitude are determined individually, or both at the same
time.

• Carrier Phase Differential GPS (CDGPS): The same Global Positioning
System (GPS) phase signals measured by the chaser and the target are used to
obtain the relative position.

• Radio Frequency (RF): Several emitters and receivers positioned on the chaser
and the target allow computing relative position and attitude individually or
simultaneously.

• Radar: The Time of Flight (ToF) measurement of the emitted signal can quantify
the range but not the relative position.
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Achieving the necessary control accuracy for a successful docking between cooperative
spacecraft requires a robust and efficient navigation solution. The Russian (Soviet) Kurs
navigation system relies on RF-sensors and provides a navigation solution ranging from
a few hundreds of kilometres (relative position only) down to docking (complete 6 DoF
navigation) and is still used today on the Soyuz and Progress vehicles when docking with
the ISS [9, p.245]. Although this system cannot be scaled to nano-satellite levels, the
PRISMA mission used RF for relative position navigation at ∼ 1 km range [40]. Such
radar-like RF systems only provide information about the range but no data about the
Line of Sight (LoS). Combining it with optical sensors [41] or GPS measurements [42]
allows the state to be observed.

Range information is however not always required; during the space race in the US, the far
range Rendezvous (RV) problem was also solved but using LoS techniques [43]. Angle only
navigation was used first on the Gemini missions and later in the Apollo programme. Today
far range rendezvous metrology systems for relative positioning rely mainly on Global
Navigation Satellite System (GNSS), commonly called GPS, although LoS techniques are
currently being studied as they are the only solution to rendezvous with a non-cooperative
target. Angle-only navigation, however, makes the state poorly observable and a special
manoeuvre planning needs to be performed, increasing the observability [44]. Recently,
this method has been successfully demonstrated in orbit [45, 46]. Although it cannot
be used for the docking itself, this navigation method could replace GNSS. Angle-only
navigation does, however, suffer strongly from the range as opposed to CDGPS.

GPS relative navigation methods do not suffer from the relative distance between the
chaser and the target and are thus extremely useful. In far range (several kilometres),
the main uncertainties come from the ionospheric delay and clock bias. However, LoS
constraints and multipath effect, i.e. the reflection of the signal on a surface that will
change its ToF and thus degrade the navigation accuracy, usually prevent the use of this
sensor for the docking. For ESA’s ATV docking to the ISS, an absolute GNSS solution
has been used for the phasing manoeuvres and then CDGPS down to a range of 250 m
at which point VBN was used [8].

GPS navigation is being used since the early 90’s [10]. Absolute GPS in space can offer
navigation solutions between one and ten meters accuracy depending on the filters. The
Phoenix receiver [47] can typically provide a single point solution precise to 10 m and
a filtered solution with a 1-2 m accuracy. In [48] an EKF is used to estimate the state
accurately and can reach a precision of ∼ 1 m. Finally, in [49] a combined measurement
of the phase and the code to automatically cancel the ionospheric delay without using
Kalman filtering is proposed. This is made possible as the ionospheric delay impacts
these signals in an opposite but equal way. It has been shown that such a solution can
reach � 1.5 m, 3D Root Mean Square (RMS) in absolute navigation [49].

There are two ways of computing the relative position using GPS measurement. Either
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by subtracting two absolute measurements or by estimating the relative position directly
in a filter. The relative position estimation implies that the chaser and the target have
access to the same GPS satellites and at the same time. As mentioned above, GPS
satellites transmit two signals: the code and the phase, the phase measurements being
more accurate by approximately three orders of magnitude. A complete analysis of the
relative navigation problem using GPS is provided in [50]. In [50] & [51] a very similar
CDGPS solution in which the GPS clock offset and the relative position are estimated in
an EKF is proposed. The ionospheric delay is accounted for in the filter but not estimated.
For RVD mission, the typical separation is at most few tens of kilometres, and precise
ionospheric delay estimation is not relevant. For example, at 10 km, the error due to the
relative ionospheric delay is only 5 cm and thus negligible [52,53]. For these two filters, a
performance in the order of centimetres is reached.

The PRISMA and Proba-3 missions both chose the same navigation filter. Note that the
Proba-3 mission is still in development and the navigation solution may be subject to
modifications. The measurements are performed using the Phoenix receiver [54]. This
receiver is a serious candidate for CubeSat applications due to its low power and size.
The EKF for the relative navigation estimates for each satellite the absolute state. The
external disturbances are estimated, using a Markov process, in addition to the clock offset
and bias. The relative position is then computed by subtracting the absolute positions
and can be improved when a differential measurement is available. On PRISMA ∼ 1.5 m
absolute and ∼ 0.04 m relative estimations were obtained [55–59]. In [60], the absolute
positions are also estimated separately and are later combined to obtain the relative state
using a least-squares method. The result is, however, less accurate (∼ 0.5 m). PRISMA
experienced bad tuning of the EKF in the early mission phase [61]. To avoid this, [50,62]
propose adaptive EKFs which will adapt the covariance and noise matrices recursively,
allowing a less accurate initial tuning of the filter. Finally, in [63, 64] a CDGPS solution
is proposed and they claim that a precision of ∼ 1 mm can be reached. Such level of
accuracy has however never been demonstrated in-orbit. In [63] a smoother is used in
the filter to improve the estimate, and in [64] the ionospheric delay is estimated in the
filter. These absolute and relative GPS navigation solutions can be easily scaled down
to CubeSat level. Furthermore, as in the PRISMA navigation solution simultaneous
visibility of the GPS satellites is not required at any time to obtain the relative state, it
provides a lot of flexibility. Thus, based on these flight results, an absolute GPS solution
with 2 m (1σ) and 10 cm (3σ) for the CDGPS can be considered.

During the final phase of an RVD mission, a complete 6 DoF navigation solution is
required, as the rotation of the satellite will influence the motion of the docking port.
A coupled rotation/translation navigation solution is necessary to achieve the docking
accuracy. In [65–67] a Light Detection and Ranging sensor (LiDAR) is used in close range
to determine the complete relative state. This technology, called flash LiDAR is very
promising as it does not require a cooperative target and is being demonstrated on the
RemoveDebris mission [68–71]. However, it has not yet successfully been miniaturised to
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be accommodated on CubeSats.

For the last part of its RVD, the ATV was relying on VBN using retroreflectors positioned
at various places on the ISS that were illuminated using a laser and observed by a
camera [72]. Solving the perspective n-points problem [73], a 6 DoF navigation solution
could be obtained. This same optical system was used for the docking phase during
which the state from the target’s docking port to the chaser port was required. Solving
the perspective problem is today still a challenge that needs to be solved [74,75]. The
MIT SPHERES experiments onboard the ISS are using such techniques for the relative
navigation [76]. A set of four coplanar fiducial markers (see Figure 1.5a) are observed
by a camera [77]. Once detected, the co-linearity equations [78] are used to iteratively
solved the exterior orientation problem [79] to obtain the 6 DoF relative state estimate
which is then further filtered. The image processing algorithms involved in detecting the
markers usually require high computational loads and specific illumination conditions.
The major advantage of this technique is that it does not require a specific positioning of
the markers and can easily be accommodated on various structures (see Figure 1.5b).

(a) SPHERES VBN pattern [80]. (b) Markers on an ISS module. Credit: NASA.

Figure 1.5 – Circular marker for pose estimation.

The most convenient approach is to use active illumination beacons such as Light-
Emitting Diodes (LEDs). A solution solving the illumination issue of the MIT SPHERES
is proposed in [81], replacing the fiducial markers by active LEDs. The 6 DoF solution
is then recovered solving the perspective 3-points problem [74]. Similarly, in [82] a
solution for relative navigation is proposed, using four coplanar visible LEDs and one
Infra-Red (IR) LED. The four visible LEDs, detected by one camera, are first used to
solve the perspective 3-points problem. This solution is then used as a starting point to
solve a non-linear problem in which the IR LED, observed by a photo-diode, improves
the range determination. To further enhance the LEDs detection, [83] and [84] modulate
the current fed to the LEDs at a given frequency (typically few kHz). The LEDs are
detected with a position sensing diode; then by demodulating the signal and solving the
perspective problem, a 6 DoF relative state can be obtained. The PRISMA mission [1] is
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one of the recent achievements regarding autonomous relative state estimation based on
a vision sensor. Using a set of 5 IR LEDs positioned in a non-collinear pattern [85,86],
the 6 DoF estimation was obtained solving the perspective 4-points problem [87].

The solutions mentioned above are appealing as the patterns observed lie in a plane and
can easily be incorporated on CubeSats. However, the computational load required to
solve the perspective problem is important, especially if the obtained solution needs to
be further filtered as vision sensors produce noisy signals. EKFs are usually selected as
they use the dynamics of the system to improve the solution and are easily tunable, thus
a solution requiring less computational load than the perspective n-points problem could
be of advantage.

Another approach for determining the 6 DoF relative state between two spacecraft is
proposed by [88] and has been used by NASA [86]; four markers positioned in a cross
pattern with a fifth one out-of-plane placed at the centre of the cross. The position is
determined by solving non-linear equations, formed by the observation vectors between
the ith marker and the camera CCD, using a Newton-Raphson method. These vectors
are then used in a TRIAD or QUEST algorithm [24] to get the relative attitude. For the
ATV, a circular pattern was viewed by a monocular camera placed on the ISS. With an
internal marker on a different plane, a visual indication of the ATV relative attitude and
position could be obtained [9,89]. Figure 1.6 shows the illuminated circular/cross pattern
for the crew monitoring system.

Figure 1.6 – ESA ATV George Lemaitre moments before docking to the ISS. The
circular pattern and out of plane cross are visible. Credit: Oleg Artemyev/Roscosmos.

An analytical solution for the LoS and attitude angles determination is provided in [89]
and was used by the crew to monitor the ATV during docking. However, this solution
relied on the requirement that for RVD, relative attitude and LoS angles are small and
thus all decoupled from each other. This may not be the case if the pattern and the
camera sensor are not aligned.
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VBN navigation schemes accuracy is influenced by a large number of factors which depend
on the mission and satellite configuration. In [90] and [9], it is stated that the navigation
error should be of the order of 1% of the range, which can flow into the navigation system
design.

1.2.2 Guidance

Most guidance schemes answer the same question: Based on a set of Equations of
Motions (EoMs), which open-loop control will provide a time/fuel optimal trajectory?

For the ATV, the guidance strategy has to provide robustness in case of missed RV and to
ensure that specific mission phases will occur at given times (e.g. above ground stations
or in certain illumination conditions) [91,92]. This guidance will also provide the speed
profile for the forced translation that occurs before the docking [93,94].

The motion of the chaser with respect to the target can be described using the usual
non-linear gravitation equations [95], Gauss’s Variational Equations (GVEs) [96–98]
or linearised equations. The advantage of linear equations is that they provide State
Transition Matrices (STMs), the most well-known and used being the Clohessy-Wiltshire
(CW) STM for circular reference orbit [99], and Carter’s [100], Yamanaka-Ankersen’s [101]
or Tschauner-Hempel’s [102] STMs for elliptical reference orbits. An exhaustive list of
STMs for circular and non-circular orbits is provided in [51]. An alternative solution to
describe motions with elliptic reference orbits introducing virtual satellites is proposed
in [103].

For the specific case of RVD, the relative 6 DoF dynamic between the two spacecraft
docking ports has to be known as a strong coupling exists between translations and
rotations. For example, a target rotation will impact the chaser’s 6 DoF and thus, the
Port to Port (P2P) dynamic is a crucial element to achieve the necessary navigation and
control accuracy. In [51] a kinematic coupled motion model is proposed but uses only
the torques inputs. This model cannot be used a such for RVD as the chaser translation
control input is required. In [101], a dedicated rotation/translation coupled dynamics has
been developed in the frame of the ESA ATV mission. This is the most comprehensive
dynamics model tailored explicitly for RVD. It takes into account the chaser’s complete
dynamics. However, the target, which is the ISS, is approximated by a harmonic oscillator.
This is entirely justified in the frame of the ATV as the ISS is a large structure and has a
very well known oscillatory motion. This is not true for CubeSats which attitude motion
is less stable and predictable.

STMs are widely used for RVD but also to establish desired FF patterns by finding
appropriate Initial Conditions (ICs) [104–111]. STMs analytical solutions are also an
efficient way to compute manoeuvre plans. The simplest solution is called CW targeting;
a two impulses manoeuvre plan is determined analytically to move the satellite between
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two points in a certain ToF [99, 112]. The same technic is used in [113–116] where
optimal times to perform the manoeuvres are identified which leads to a three impulses
reconfiguration strategy. An extension of this concept is the glideslope scheme which was
used onboard the space shuttle [67].

Using CW equations, the control input can be parametrised over time using polynomials
(similar to a collocation method). The polynomial coefficients are then optimised to
produce the desired trajectory minimising the total thrust [117,118]. Linear Programming
(LP) is very well suited to determine optimum reconfiguration manoeuvres because of
the linear equations of motions [119–123]. The same procedure can be used for control
purposes and will be addressed in Section 1.2.3. Orbital elements can also be used
to describe the formation of satellites [124–129]. The dynamic is described using CW
equations but parametrised using orbital elements. The control inputs are then found using
GVEs. Gauss’s Variational Equations allow the definition of FF based on the difference in
semi-major axis, inclination and mean anomaly. Using a Nonlinear Programming (NLP)
solver, optimal impulsive manoeuvres can be obtained [96–98,130].

An important role of the guidance function is to bring the chaser satellite into the vicinity
of the target optimising time and fuel and is called phasing. The theory of optimal control
aims at solving a Two Points Boundary Value Problem (TPBVP) minimising a cost
function representing the fuel consumption and the ToF at the same time. A well-known
solution to the TPBVP for space RV, using two impulses, is Lambert’s problem [131–133].

Direct optimal control methods use an NLP formulation of the FF or rendezvous cases.
Pseudo-spectral or multiple-shooting collocation methods that allow finding optimal time
and fuel manoeuvres without any linearisation are often used but not well suited for
onboard implementation because of the heavy computation load required [130,134–136].
The use of Genetic Algorithm (GA) to solve the problem of optimal reconfiguration is
investigated in [137–139]. Although their convergence radius is quite large and are simple
to implement, they are not suited for onboard applications because of the large initial
population required by the solver.

Indirect methods are another way of solving the optimal control problem making use of
calculus of variation. Using Pontryagin Minimum Principle (PMP), Lawden developed
the Primer vector theory [140]. Primer vector theory is widely used for interplanetary
transfer as it is a precise method. It does not require any discretisation, but due to the
nonlinear behaviour of the EoMs, it is very sensitive to the ICs [141]. Optimal solutions
are found using a gradient-based method and Pareto optimality [142–145]. These methods
give accurate and optimal results but are not suited for onboard implementation. It
is also possible to first solve Lambert’s problem to obtain a two impulses trajectory.
Intermediate impulses are then added manually, and the optimality is verified by checking
that the Primer vector satisfies Lawden’s criteria [140,146–150]. The number of impulses
to be added is always smaller than the number of controllable states [151], i.e. six for the
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RV problem.

Specific low-thrust guidance schemes have been developed and used mainly for interplane-
tary trajectory; however, they could also be used in the frame of rendezvous. Edelbaum’s
well-known analytic solution for ΔV computation [152] has been extended in [153,154],
where an analytic solution to the low-thrust orbital transfer taking into account variable
Specific Impulse (Isp) and thrust is proposed, and then in [155] in which eclipses are
taken into account. In [156–158] GVEs are used as a control law and the transfer is
then optimised using a Lyapunov function. A guidance law for CubeSats applications
of particular interest is the Q-law. This guidance scheme is based on a Lyapunov-like
function which allows defining the thrust direction and coasting arcs. The major interest
of the Q-law lies in the fact that it does not need an optimisation and can thus be used
onboard using little resources, even though this law was primarily developed for mission
design and not as a guidance law. More optimal solutions using this law have also been
investigated using GA to select the weighting factors in the Lyapunov function [159–164].
The nature of this guidance law naturally introduces feedback and could thus help mitigate
the errors coming from dynamics, navigation and actuation uncertainties.

1.2.3 Control

In [165] and [166] a complete survey of control schemes for FF is presented. Three different
control schemes are required to accomplish RVD:

1. Absolute attitude control

2. Relative position control

3. Coupled relative attitude / position control.

Absolute position control, which is typically required for Phasing during the early stage of
an RVD mission, has not been listed. This is often performed with open-loop manoeuvres
and is thus considered as a guidance scheme.

For absolute attitude control, linear controllers are widely used. A simple but very effective
controller has been proposed by Wie [167] which can be applied to tracking as well as
slewing. [168,169] use a Linear Quadratic Regulator (LQR) which has the advantage to be
simple and easily tuned so as to avoide saturation of the actuators. Proportional-Integral-
Derivative (PID) are also commonly selected [170,171] and have the advantage to have an
integrator, useful for active tracking. Some authors have chosen nonlinear controllers such
as Nonlinear Dynamic Inversion (NDI) [172] or Model Predictive Control (MPC) [31,173].
NDI is well suited for slewing manoeuvres because of its integrator chain structure.
More complicated control schemes can be used to handle uncertain parameters such as
flexible appendages and to achieve a certain level of robustness. In [174] an adaptive
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controller to cope with the inertia variations, caused by fuel sloshing and solar arrays, is
proposed. [175,176] use a controller based on an adaptation of sliding mode control. The
former couples the controller with an input/output linearisation and the latter relies on
the sliding mode controller to handle uncertainties. Finally, a well-known control scheme
is H∞ [177], which will be thoroughly described in the following chapters.

Reaction Wheels (RWs) are used throughout the mission to control the satellite’s attitude
and will need to be regularly unloaded, regardless of the controller. In [30,178] a simple
strategy using Magnetotorquers (MTQs) is proposed which has the advantage not to
consume fuel.

Rendezvous in space or more generally Formation-Flying requires a trajectory planning
provided by the guidance function, which usually includes feed-forward terms or open-loop
manoeuvres, but most of all a closed-loop type of control. Several ways exist to control
the chaser satellite. Some authors propose PID controllers [179,180] which are not widely
used due to their lack of robustness or optimality.

The simplest Multiple-Input Multiple-Output (MIMO) controller is most probably the
LQR and has been used for FF or SK. Examples are the Space Shuttle and the CanX-4&5
CubeSat mission [107, 181–185]. LQR control has the significant advantage to be easy
to tune, to allow continuous or discrete control over finite or infinite horizons, and to
provide a way to trade off control accuracy and fuel consumption.

GVEs are often used to closed-loop control the formation. [186–188] use GVEs with a
Lyapunov feedback law. A reliable controller is the one used on PRISMA and TanDEM-
X [108,189–191]. Here, the Hill’s equations [192] are expressed in terms of an inclination/ec-
centricity vector to describe the shape of the formation. GVEs are then used to compute
the necessary ΔV ’s. A control box strategy is applied as feedback control law. The
same procedure can be applied to an LP-type closed-loop control [105,106,181,193–197].
Manoeuvres are computed over a finite horizon. Once the error reaches a certain threshold,
a new set of manoeuvres is computed.

Nonlinear controllers have the advantage to be working in far range and close range as all
non-linearities are taken into account. In [198,199], state-dependent Riccati equations
are employed to derive non-linear controllers. Although these controllers do not rely
on linearised plants - as opposed to the LQR - solving the Riccati equation requires a
heavy computation load and is thus difficult to implement onboard satellites. Non-linear
sliding mode control has also been proposed in [200] and includes an artificial potential
that is used for collision avoidance. Nonlinear Dynamic Inversion (NDI) is particularly
adapted for trajectory tracking because of the integrators’ chain that results from the exact
linearisation [201–209]. MPC became very famous during the last years thanks to powerful
On-Board Computers (OBCs) that started to be available and can handle the heavy
computation load. MPC is known as it allows taking into account non-linear dynamics and
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adding constraints such as boundaries to the rendezvous trajectory, actuators saturation,
LoS requirements, and ensuring at the same time fuel optimality [207,210–215]. However,
as MPC requires the on-line optimisation of a cost function, it causes computational and
robustness issues which have been addressed in [216–218]. These robustness issues related
to un-modelled dynamics and perturbations such as flexible appendages can be dealt with
in several ways such as input shaping [219,220] or Lyapunov adaptive feedback [221–223].

Although these control schemes have not been explicitly developed for docking, they could
be suitable using appropriate dynamics and guidance law.

Today, only a few spacecraft have performed RVD. Three of them are of paramount
importance and represent the state of the art as they are the only ones that performed
autonomous docking: the Russian Soyuz and Progress, as well as the European ATV.
The two first vehicles are based on non-linear control and pulsed linearisation [224–226]
whereas ATV is based on a 6 DoF linear coupled dynamics and relies on H∞ control and
Pulse Width Modulation (PWM)-operated thrusters for the actuation [101,227,228]. The
retired US Space Shuttle is not strictly relevant for this work, although it docked with
the ISS a number of times, as the last phase of the approach up to contact was always
performed manually [9, p. 215].

Early in the development of the ATV, several control algorithms were investigated,
among which Linear Quadratic Gaussian control (LQG), Pole Placement, H∞ and μ-
synthesis [229]. These all suggested promising performances although the robust controllers
were more efficient at dealing with the flexible solar arrays. H∞, LQR and PID controllers
have also been traded off for a docking experiment taking place within the ISS using
the MIT SPHERES [230]. To the author’s knowledge, this experiment is the only one
that demonstrated proximity operations between small objects in space. More optimal
solutions have been investigated using linear quadratic tracking and state-dependent
Riccati equation control algorithms, although the coupling between the rotations and
translations has not been explicitly considered as the attitude controller is independent of
the translation controller [66, 169]. MPC schemes have also been investigated for docking
with a fixed [231] or a rotating [232, 233] target. MPC offers the clear advantage that
specific constraints, such as LoS or fuel depletion, can be accounted for directly in the
cost function.

Fuel consumption will change the mass and inertia of a satellite throughout its mission
and modify the controller effects. To account for this, [234] has demonstrated how a
decoupled adaptive control scheme is able to handle this behaviour by estimating in real
time the mass and inertia variations. It has further been shown to be robust to sensors
noise. Finally, [235] has suggested a decoupled sliding mode control which takes advantage
of the controller’s discontinuities to cope with the thrusters’ discrete behaviour efficiently.

The level of CubeSat-specific challenges such as sensor and actuators noise, low actuation
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capability and dynamics uncertainties, combined with the required level of reliability,
naturally lead to the use of robust control schemes such as H∞ or μ-synthesis. Furthermore,
robust control has shown a successful in-orbit application in the frame of the ATV
programme, on which the present research is built.

The issue of uncertainties in feedback systems was first addressed by [236]. Later on, [237]
introduced H∞ control. Modern state-space solutions to H∞ have then been proposed
by [238,239]. It has since been applied to a variety of subjects among which the control of
space systems with flexible appendages, such as large space structures [240], or satellites
with large solar arrays or antennas [241, 242], as a way to improve attitude pointing
precision by accounting for vibration modes in the controller synthesis. An optimal control
approach has been proposed by [243] for the attitude tracking problem and by [244] for
the rendezvous problem. In both cases, the controllers resulting from a multi-objective
optimisation were shown to be H∞ robust. A controller does not have to be robust
in the H∞ sense to remain stable for problems with uncertainties. Robustness can be
efficiently assessed using structured singular values [245,246]. In this method called μ-
analysis, the uncertainties are integrated into the dynamical system using Linear Fractional
Transformation (LFT) [247]. μ-analysis provides a necessary and sufficient condition
to assess the controller robustness to a set of modelled uncertainties. Furthermore, in
the frame of the VEGA launch vehicle, μ-analysis has recently been proven to be more
efficient than Monte-Carlo at detecting destabilising combinations of parameters within
the considered set of uncertainties [248].

Finally, as a way to further improve robustness, μ-synthesis was proposed, combining
H∞ and μ-analysis [249]. The most common way to solve the problem is the D − K

iteration [250]. This method iteratively solves an H∞ (K-step) problem followed by a
μ-analysis (D-step) which tries to decrease the sensitivity of the controller to the set
of uncertainties by scaling the problem. μ-synthesis was shown a number of times to
perform better than classical control methods [251]. This control method was investigated
for the attitude control of space stations [252], for the position and attitude control of
the ATV [229], and for the control of a satellite with flexible modes [253]. In all cases, it
was more robust than H∞.

1.2.4 Docking Mechanisms

Very few designs of docking mechanism for CubeSats have been reported. The AAReST
mission is planning to use a magnetic docking port [22,254]. The main advantage of such
a design is that the required docking accuracy is in the order of 30 cm. However, it is not
desirable to have a strong magnetic field onboard a CubeSat. Even if the primary attitude
sensor is the star tracker, the magnetometer is often kept in the navigation function as a
backup and could be disturbed by the docking mechanism magnetic field. Furthermore, its
coupling with the Earth’s field will induce disturbances that the GNC must compensate.
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The CPOD mechanism, shown in Figure 1.4, also relies on a magnetic field to decrease
the required docking accuracy. Such a design requires the chaser satellite to be at a
range of 50 cm, where electromagnetic forces will bring the satellites together [23]. The
advantage of this design, as opposed to AAReST, is that once the docking clamps are
locked, the magnetic field can be turned off. A similar approach is proposed in [255,256].
Four strong electromagnets are individually actuated to steer and dock the CubeSats
from a range in the order of 15 cm. A mechanism is then engaged to achieve hard docking,
and the electromagnets can be turned off. The mechanism is shown in Figure 1.7b. As
for the CPOD mechanism, it fits in a 1U volume. In [257], an androgynous mechanism is
proposed that can manage 5 deg and 1.5 cm misalignment. It was however never tested in
space. Finally, the MIT Universal Docking Port (UDP) and is shown in Figure 1.7a [258].
The required control accuracy is ∼ 1 cm and it can tolerate attitude misalignment of
∼ 2 deg. However, the MIT UDP has a volume of 15 × 11 × 13 cm and is only used
inside the ISS.

(a) SPHERES Universal Docking
Port. Credit: MIT.

(b) Electromagnetic docking port [255].

Figure 1.7 – Two different CubeSat docking ports.

1.3 Objectives and Main Contribution

Formation-Flying and rendezvous are topics that have been extensively researched and
reported on, however, only a little information is available about docking. Constraints such
as sensor and actuator noise or environmental perturbations are only lightly considered,
and the focus is mostly on the GNC schemes. Whereas this is justified for large satellites,
for which accurate sensors and actuators are available, for CubeSats, sensors and actuators
accuracy is worse, or simply not available, and should thus be carefully considered and
accounted for in the GNC design. Furthermore, the level of actuation for nano-satellites
is orders of magnitude smaller than for large satellites.
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The objective of this research is to investigate the feasibility of CubeSats RVD, with
circular reference orbit, and to develop the necessary GNC, contributing to filling the
technological gap.

The following steps have to be taken to achieve this goal:

• Define a generic RVD strategy.

• Develop an appropriate P2P linear dynamics.

• Develop a robust navigation solution for the docking.

• Develop, and trade-off control schemes for the approach and the docking.

• Validate the GNC simulating complete RVD missions.

The main contributions of this thesis are:

• Development of a GNC simulator which includes realistic dynamics, actuators, and
sensors models for the simulation of nano-satellites RVD missions.

• Development of a non-linear P2P coupled dynamic which takes into account fuel
sloshing. The linearised version has then been used in the navigation filters and for
the controllers’ synthesis.

• Development of a Vision-Based Navigation (VBN) solution tailored to CubeSats
RVD. This navigation technique is robust to stray light and direct sun illumination
and provides a 6 DoF P2P navigation solution from 10 m range down to docking.

• Requirements definition and functions identification leading to the development of
a docking mechanism prototype. The docking mechanism requirements have been
validated on a test set-up. The docking mechanism and VBN combined volume is
less than 0.5U.

• Synthesis of an LQR and an H∞ controller for low-thrust rendezvous and docking,
and μ-synthesis and Linear Quadratic Integral (LQI) controllers for docking only.
Once tuned, the controllers can be used for any docking scenario, provided that the
dynamic is modified accordingly.

• Uncertainties definition and robust analysis of the controllers using LFT and μ-
analysis.

• A ground-based proof-of-concept using Monte-Carlo simulations of four different
docking scenarios.
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The results of this research have led to the publication of two conference papers and three
peer-reviewed papers:

• The results of the ESA GSTP 5.4 which served as a basis for this research have been
extended and led to a publication at the 66th International Astronautical Congress
in 2015 [259] and has been selected by the session chairman for a publication
in the Acta Astronautica [6]. This paper presents a sensors and actuators suite,
ADCS, and GNC architecture for CubeSats close-proximity operations as well as
the open-loop and closed-loop control.

• The P2P dynamics and VBN results have been published in the Acta Astronautica
[260].

• The complete GNC performances and the docking mechanism have been published
at the 4S Symposium in 2018 [261].

• The robust control results have been submitted to the IEEE Transaction on Control
Systems Technology. Reviewers minor comments have been included and the paper
is in resubmission.

Furthermore, two other papers have been published as co-author [262,263].

All the numerical results of this research have been obtained using MATLAB®. The
software version and operating system are listed in Appendix D.1.

1.4 Structure of the Thesis

This thesis is composed of seven chapters, including introduction and conclusion. The
reference mission scenario, actuators and sensors selection, as well as the mass and volume
budgets are presented in Chapter 2. In Chapter 3, the dynamics describing the relative
position and attitude between the chaser and the target’s docking ports are derived and
linearised. Sloshing dynamics and other external disturbances acting on the satellites
are also presented. The VBN solution, including detection algorithms, and docking
mechanism are described in Chapter 4. In Chapter 5, the control frame is introduced,
and the different controllers are being derived. The uncertainties present in the systems
are identified, modelled and used for the Structured Singular Values analysis. The GNC
simulator is described in Chapter 6, and the closed-loop performances are presented.
Finally, the work is concluded in Chapter 7.
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2 Mission Description

In this Chapter, all relevant definitions for an RVD mission are provided. Reference
frames are defined, and the frame transformations are derived. A brief introduction to
the chaser/target relative motion is provided which is then used to define the different
RVD phases. This leads to the definition of a generic RVD scenario, tailored to CubeSats.
For CubeSats, systems design choices can have critical consequences; the performance of
required sensors and actuators are provided, and a preliminary mass and volume budget
is derived. Finally, GNC requirements are derived.

2.1 Reference Frames

Six different reference frames are necessary to fully describe the dynamics. A graphical
representation is provided in Figure 2.1.

2.1.1 Earth-Centred Inertial Frame

The Earth-Centred Inertial (ECI) frame is used to describe the orbital and attitude
dynamics. It is defined as FI :

{
I, X̂I , ŶI , ẐI

}
and is centred on the Earth. The X̂I -axis

is pointing towards the vernal equinox and uses the J2000 definition [95]. The vernal
equinox is “the intersection of the Earth’s equatorial plane with the plane of the Earth’s
orbit around the Sun” [30, p. 32]. The ẐI -axis is pointing toward the North pole. The
ŶI -axis completes the direct triad, so that ẐI = X̂I × ŶI . X̂I and ŶI lay in the equatorial
plane. Notice that the ECI frame is not inertial as it is rotating around the Sun. The
true inertial frame has its origin at the solar system barycentre, and its axes are defined
using several distant pulsars. However, to describe the attitude and orbital dynamics, the
ECI frame is a perfectly valid approximation.
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ẐI

X̂I

ŶI
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Figure 2.1 – Earth’s and satellite reference frames.

2.1.2 Earth-Centred, Earth-Fixed

The Earth-Centred, Earth-Fixed (ECEF) frame is rotating with the Earth and is mainly
used for operational purposes such as locating ground stations and defining the atmospheric
model and gravitational field. It is defined as FR :

{
I, X̂R, ŶR, ẐR

}
and has the same

origin than FI . X̂R is pointing in the direction of the Earth’s prime meridian, ẐR = ẐI

and ŶR completes the direct frame [30]. The value of the rotation angle φ is defined by
the Greenwich Mean Sidereal Time (GMST).

2.1.3 Orbital Frame

The orbital frame or Local-Vertical/Local-Horizontal (LVLH) frame is used to represent
the relative motion between two satellites or attitude pointing modes such as Zenith or
Nadir pointing. It is defined as FO : {O, x̂o, ŷo, ẑo} and is centred on the satellite Centre
of Mass (CoM). The axes are: ẑo = −rI

rI
, where rI is the satellite inertial position in

FI , and is referred to as R̄. ŷo = − rI×vI
‖rI×vI‖ , where vI is the satellite inertial velocity in

FI , and is called H̄. Finally x̂o completes the direct frame and is referred to as V̄ . Any
satellite has its own orbital frame, typically used to represent the attitude for rendezvous
type missions. However, for the relative position description, the target orbital frame is
used.
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2.1.4 Satellite Geometrical Frame

The geometrical frame, Fg, is physically connected to the satellite’s structure. Its origin
and axes can be arbitrarily defined as long as the frame is direct. This frame is typically
used to determine the precise position and orientation of the satellite’s equipment. For
CubeSats, Fg is usually centred on one of the structure corners and the axes aligned with
the structure edges so that all the coordinates remain positive, as shown in Figure 2.1.

2.1.5 Satellite Body Frame

The body frame, Fb : {O, x̂b, ŷb, ẑb}, has its origin on the satellite CoM. Its axes are
typically aligned with Fg and it is used to describe the attitude dynamics. Note that Fb

is free to rotate in FO.

2.1.6 Satellite Docking/Navigation Frame

The docking frame, Fd, or the navigation frame, Fn, are defined in an identical way and
are used to position the docking port mechanism and navigation sensor. Their axes can
be arbitrarily defined, and they are positioned with respect to Fb. As fuel depletion
throughout the mission will move the satellite CoM, and thus Fb is not fixed in Fg,
the docking frame Fd and navigation frame Fn should be defined with respect to Fg.
However, CoM movements in the geometrical frame cannot be precisely measured in
orbit and have to be estimated [264–267]. Such techniques are typically used for accurate
attitude determination and in the frame of robotic arm control. As a precise attitude
pointing (milliarcsecond level) is not required for RVD, the torques due to the thrusters
misalignment, created by the CoM displacement, will be treated as external disturbances.
Consequently, Fb will be assumed fixed in Fg, and Fd can be unambiguously defined with
respect to Fb.

Note that for FO, Fb, Fd, Fn and Fg, the subscripts c or t are added to differentiate the
chaser from the target’s frames.

By definition, the target docking port is always aligned along −x̂dt in Fdt . Similarly, the
chaser port axis is always aligned with x̂dc in Fdc . The docking problem can thus be
solved by merely aligning the chaser docking frame with the target docking port, coming
from −x̂dt , as shown in Figure 2.2. Note that for the target orbital frame FO, in which
the trajectory is described (see Sections 2.4 and 3.3), the subscript t is dropped. The
chaser’s orbital frame, which can be used to describe its attitude, will always be referred
to as FOc .
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Figure 2.2 – Chaser docking to the target in the LVLH frame.

2.2 Mathematical Notations and Frame Transformations

A vector defining the position of an object a in the frame i is defined as xa
i . Similarly,

the velocity of the object a in the frame i is: ẋa
i .

Using the matrix Aji, which maps vectors of the frame i into the frame j, xa
j can be

obtained:

xa
j = Ajix

a
i (2.1)

The matrix Aji is a Direction Cosine Matrix (DCM). Its columns are the image of frame
i basis vectors, expressed in frame j. As Aji ∈ SO(3), any DCM can be expressed using
the basis matrices:

R1(α) =

⎡⎢⎣1 0 0

0 cos(α) sin(α)

0 − sin(α) cos(α)

⎤⎥⎦ (2.2)

R2(β) =

⎡⎢⎣cos(β) 0 − sin(β)

0 1 0

sin(β) 0 cos(β)

⎤⎥⎦ (2.3)

R3(γ) =

⎡⎢⎣ cos(γ) sin(γ) 0

− sin(γ) cos(γ) 0

0 0 1

⎤⎥⎦ (2.4)

The transpose of Aji is:

AT
ji ≡ Aij (2.5)
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The velocity of the object a in frame j is defined as:

ẋa
j =Ajiẋ

a
i +

dAji

dt
xa
i

=Ajiẋ
a
i −Aji[ω

ji
i ×]xa

i

=Ajiẋ
a
i − [ωji

j ×]Ajix
a
i (2.6)

where ωji
j is the rotation rate of frame j with respect to frame i, expressed in frame j,

and ωji
i is expressed in frame i. Note that ωji

j = −ωij
j .

[x×] is the skew symmetric matrix of x:

[x×] =

⎡⎢⎣ 0 −x3 x2
x3 0 −x1
−x2 x1 0

⎤⎥⎦ (2.7)

and the vector cross product is thus defined in terms of matrix multiplication:

x× y = [x×]y (2.8)

Note that the following notation will be used:

(a+ b)× c ≡ [a+ b×] c ≡ [a×] c+ [b×] c (2.9)

(Ab)× c ≡ [Ab×] c (2.10)

The time derivative of an orthogonal matrix is thus defined as:

dAij

dt
= −[ωij

i ×]Aij , ∀ Aij ∈ SO(3) (2.11)

The acceleration can be obtained from the velocity’s derivative (2.6):

ẍa
j =

dAji

dt
ẋa
i +Ajiẍ

a
i − [ω̇ji

j ×]Ajix
a
i − [ωji

j ×]
dAji

dt
xa
i − [ωji

j ×]Ajiẋ
a
i

= −[ω̇ji
j ×]Ajix

a
i + [ωji

j ×][ωji
j ×]Ajix

a
i − 2[ωji

j ×]Ajiẋ
a
i +Ajiẍ

a
i (2.12)

But, from (2.6):

Ajiẋ
a
i = ẋa

j + [ωji
j ×]Ajix

a
i (2.13)
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which can be used in (2.12) to obtain the acceleration in a rotating frame:

ẍa
j = Ajiẍ

a
i − [ω̇ji

j ×]xa
j − [ωji

j ×][ωji
j ×]xa

j − 2[ωji
j ×]ẋa

j (2.14)

where [ωji
j ×][ωji

j ×]xa
j and 2[ωji

j ×]ẋa
j are the well-known centripetal and Coriolis acceler-

ations.

Finally, the scalar product between two vectors is defined as:

a · b = (axbx + ayby + azbz)
1
2 (2.15)

2.2.1 ECI to ECEF

The mapping of a position vector from FI to FR is given by

rR = ARI(φ)rI (2.16)

where ARI = R3.

The angle φ is given by GMST and varies between 0 and 2π in one sidereal day. GMST
will be defined in Section 6.1.1. The sidereal day is defined as the time the Earth requires
to perform a complete revolution around its axis:

Ts = 23 h 56 min 4.1 s = 86, 164.1 s (2.17)

The velocity transformation is

vR = ARI(φ)vI − [ωRI
R ×]ARI(φ)rI (2.18)

where ωRI
R is the Earth’s rotation rate in FR: ωRI

R = [0 0 ωRI
R ]T, with ωRI

R = 2π
Ts

rad/s.

Note that as ẐI = ẐR ⇒ ωRI
I = ωRI

R

2.2.2 ECI to LVLH

As the DCM columns are the image of the basis vector, expressed in the new frame, AoI

is simply given by:

AoI =
[

HI×rI
‖HI×rI‖

... − HI
‖HI‖

... − rI
‖rI‖

]
(2.19)
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where HI is the orbital angular momentum:

HI = rI × vI (2.20)

Thus for the position:

ro = AoIrI (2.21)

and for the velocity:

vo = AoIvI −AoI [ω
oI
I ×]rI (2.22)

where ωoI
I = rI×vI

‖rI‖ .

This transformation can sometimes be described using Keplerian Orbital Elements
(see [9, pp. 30–32]). However, as positions and velocities in the inertial frame are typically
measured using GNSS, the transformation proposed here has the advantage not to require
Cartesian to Orbital Elements transformation, thus removing a potential source of error.

2.3 CubeSat Configuration

30 cm

20 cm

10 cm

20 cm

30 cm

20 cm

10 cm

20 cm

ŷgc

x̂gc

ẑgc ẑgt

ŷgt

x̂gt

10 cm

Figure 2.3 – Chaser (left) and target (right) dimensions.

Because the choice of equipment will impact the controller and navigation filter design,
but also the RVD strategy, a brief systems design overview of these CubeSats is provided
here.

The analysis performed during the ESA GSTP 5.4 activity [5, 6] gives confidence that
nano-satellites respecting the CubeSat form factor are adapted to perform advanced
in-orbit operations. The conclusions of this study will be used as such, except for the
GNC systems design which significantly differs and will be described hereafter.
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The 6U form factor has been foreseen for CubeSat RVD and the dimensions are shown
in Figure 2.3 At this level of design, solar arrays have been included for both satellites.
They will tend to increase the environmental disturbances due to the residual atmospheric
drag and gravity gradient. Such appendages may be removed once the power budget is
established.

2.3.1 Sensors

Both target and chaser satellites are equipped with the same attitude sensor suite.
Modelling of the sensors and actuators is provided in Chapter 6.

• Sun Sensors: Several companies suply sun sensors with similar performances
[268,269]. The accuracy provided in Table 2.1 assumes that the sensors have been
calibrated accounting for the Earth’s albedo.

Table 2.1 – Sun sensor performance.

Sun Sensor

Mass 6.5 g

Volume 43× 14× 5.9 mm

Performance

120 deg full Field of View (FoV). 0.5 deg
accuracy when the Sun is aligned with bore-
sight and 2 deg at the edge of the FoV. The
precision (quantisation) is 0.1 deg.

• Magnetometer: This research is based on the AMR from Zarm Technik [270]
(see Table 2.2). The State-of-the-Art (SoA) evolving constantly, other models are
available that may have better performances [271,272]. No information about the
non-orthogonality is available for the AMR. The non-orthogonality of [271] is used.

Table 2.2 – Magnetometer performance.

Magnetometer

Mass 60 g

Volume 56× 36× 17 mm

Performance
Noise: 1μT. Sensitivity: 8.5 nT. Misalign-
ment: 1 deg. Scale factor: 100 ppm. Non-
orthogonality: 1 deg.
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• Star Tracker: The mission GomX-4b is currently flying a star tracker developed
by the company ISISpace, but no performance information has been published to
this day. The accuracy provided by the ST-200 from Hyperion Technologies is
acceptable and will be used. However, no information about the baffle geometry
is available [273]. To have a conservative design, the Sinclair Interplanetary star
tracker mass and volume (with baffle) are used as they are available [274]. The
specifications are shown in Table 2.3.

Table 2.3 – Star Tracker performance.

Star Tracker

Mass 60 g

Volume 62× 56× 68 mm (inc. baffle)

Performance
Accuracy: 30 arc-seconds cross-boresight,
200 arc-seconds around boresight. Sun ex-
clusion angle: 34 deg sun-to-boresight.

• GNSS: The best performances achieved in space using GNSS navigation, have
been obtained during the Prisma mission. The chaser satellite was equipped with
the Phoenix receiver [47,54]. Although this receiver is compatible with the CubeSat
form factor and requirements, they are not Commercial Off-The-Shelf (COTS),
and no new production is foreseen. As such, they will not be envisaged for long
CubeSats IOD missions. Note that COTS GNSS receivers start to be available with
attractive performances [275].

Table 2.4 – GNSS performance.

GNSS

Mass 60 g

Volume 70× 47× 15 mm

Performance
Accuracy: 10 m single point, 2 m filtered
(1σ). Relative GNSS accuracy (CDGPS):
0.1 m (3σ).

• Gyroscope: The gyroscope SoA is the STIM-300 from Sensonor [276], and its
performances are provided in Table 2.5.

The dedicated docking sensor is not mentioned here as it will be thoroughly described in
Chapter 4.
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Table 2.5 – Gyroscope performance.

Gyroscope

Mass 55 g

Volume 45× 39× 22 mm

Performance

Angular random walk: 0.15 deg/
√

h. Bias
instability: 0.3 deg/h. Resolution: 0.22
deg/h. Scale factor: 500 ppm. Misalign-
ment: 1 mrad. Non-orthogonality: 0.2
mrad.

2.3.2 Actuators

The target and chaser satellites carry the same actuator suite. A 6 DoF cold gas RCS is
added to the chaser.

• Magnetorquers: Magnetorquers are extensively used in CubeSats, providing
coarse attitude pointing. As more agile satellites appeared, magnetorquers have
also been used to unload the reaction wheels. The number of COTS magnetorquers
is important [277–279]. Average performances and sizing are provided in Table 2.6.

Table 2.6 – Magnetorquers performance.

Magnetorquers

Mass 156 g

Volume 90.5× 96.9× 17.2 mm

Performance Dipole: ∼ 0.4 Am2

• Reaction Wheels: The number of COTS wheels is important, and the perfor-
mances described on datasheets can vary up to one order of magnitude [278,280].
Hardware test would be the only way to obtain reliable data. The reaction wheel
assembly proposed by [277] is very appealing as it contains fours wheels in a pyra-
midal configuration, providing redundancy. This design will be used for the mass
and volume sizing, yet other worst COTS performances will be used, such as to
have a conservative design. Data is provided in Table 2.7.

• Reaction Control System (RCS): Cold gas propulsion systems for CubeSats
only start to be available and the most advanced, currently being tested in orbit, is
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Table 2.7 – Reaction Wheels Assembly performance.

Reaction Wheels Assembly

Mass 940 g

Volume 95× 95× 61.6 mm

Performance

Four wheels in pyramidal configuration.
Maximum torque: 2 mNm. Maximum
speed: 6000 RPM. Momentum storage: 30
mNms. Speed control accuracy: ≤5 RPM

a 1 DoF system from GomSpace (previously NanoSpace) [281]. The 6 DoF version
is under development and will have similar thrust performances. The mass and
volume sizing is based on the output of the ESA GSTP 5.4 activity [5]. The system
is composed of four thrusters per axis. Because the satellite CoM will not be at
the centre of the of the geometrical frame Fg, the RCS output thrust will generate
torque errors. The RCS estimated performances that are used in this work are
provided in Table 2.8.

Table 2.8 – RCS performance.

RCS

Wet mass 3 kg (inc. 2 kg fuel)

Dry mass 1 kg

Volume two modules of 200× 100× 50 mm

Performance Thrust: 4 × 1 mN per axis. Minimum time
ON: 25 ms. Thrust error: 10%. Isp: 60 s.

Note that the propulsion system described in Table 2.8, which includes 2 kg of fuel, would
provide a ΔV > 100 m/s to a 12 kg satellite. The 1 kg dry mass assumption is probably
over-optimistic (fuel mass will be lower), as current RCS capabilities are ≈ 16− 26 m/s.
However, 2 kg of fuel will induce higher perturbations due to the sloshing and is thus
interesting from a GNC robustness point of view.

2.3.3 Mass & Volume Budgets

The Electric Power System (EPS), Communication System (COM), Command and Data
Management System (CDMS), and GNC OBC will not be specifically designed as SoA
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COTSs components have been thoroughly investigated in [5]. The EPS includes the power
distribution unit, the array conditioning unit, batteries (77Wh), and 500 g allocated to
deployable solar arrays. Note that due to the mission complexity, two GNC OBCs have
been included. For all the subsystems which are based on COTS components, a 10%

margin at subsystem level is considered. A total volume of 0.5U and a mass of 600 g have
been allocated for the docking mechanism and navigation system. Because of the number
of uncertainties in the low Technology Readiness Level (TRL) [282] docking mechanism
design, a 50% margin is applied. COTS 6U primary structures are available and weigh
716 g [283]. A mass of 1 kg is allocated for the primary and secondary structures, as well
as the harness. A 6U satellite has a real volume of 7.6U and can weigh up to 12 kg.

The broken down mass and volume budget of the GNC subsystem is provided in Table 2.9.
This budget is valid for the chaser and target satellites.

Table 2.9 – GNC mass and volume budgets.

Equipment Unit Mass/

unit

[kg]

Mass

[kg]

Vol./

unit

[U]

Vol.

[U]

GNC OBC 2 0.10 10% 0.22 0.07 10% 0.14

Reaction Wheels 1 0.94 10% 1.03 0.56 10% 0.61

Magnetorquers 1 0.16 10% 0.17 0.15 10% 0.17

Magnetometer 1 0.06 10% 0.07 0.03 10% 0.04

Gyros 1 0.06 10% 0.06 0.04 10% 0.04

Sun Sensor 6 0.01 10% 0.04 0.00 10% 0.02

Docking + VBN 1 0.60 50% 0.90 0.50 50% 0.75

GNSS 1 0.02 10% 0.02 0.05 10% 0.05

Star Tracker 2 0.19 10% 0.41 0.24 10% 0.52

TOTAL 2.92 2.34

Finally, the chaser satellite mass and volume budgets are provided in Table 2.10. Note
that this budget can be used for the target as well. However, in the latter case without
propulsion, the mass and volume allocated for this item can be used to accommodate a
monitoring system or additional scientific payloads.

These results (including 10% subsystems and 20% systems margins) give confidence that
a 6U CubeSat can accommodate all necessary functions to achieve RVD.

Throughout this work, the following assumption will be taken:
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Table 2.10 – 6U mass and volume budgets.

Equipment Unit Mass/

unit

[kg]

Mass

[kg]

Vol./

unit

[U]

Vol.

[U]

GNC 1 2.92 0% 2.92 2.34 0% 2.34

EPS 1 1.50 10% 1.65 0.46 10% 0.50

CDMS 1 0.40 10% 0.44 0.30 10% 0.33

COM 1 0.40 10% 0.44 0.30 10% 0.33

Structure+harness 1 1.00 10% 1.10 0.00 10% 0.00

Propulsion 1 3.00 10% 3.30 2.00 10% 2.20

Systems Margin 20% 20%

TOTAL 11.82 6.84

• The chaser has a dry mass of 10 kg.

• The chaser has a wet mass of 12 kg.

• The target has a dry mass of 11 kg.

2.4 Target-Chaser Relative Motion

All rendezvous and docking operations are conveniently represented in the target orbital
reference frame, FOt , and STM for the relative dynamic is available. When the target
orbital frame is used to describe the relative dynamics, the t subscript is omitted.
Representing the relative dynamic in this frame also removes potential errors while
computing the position of the chaser with respect to the target. During RVD, the typical
relative distance ranges from few metres to a few kilometres. A satellite semi-major
axis in LEO is typically 6900 km from the centre of the Earth. An important source
of error when computing centimetre accuracy on the relative position comes from these
figures, which are eight orders of magnitude higher. The relative linear dynamics in the
target orbital frame, for a circular reference orbit, are described by the well-known Hill’s
equations [192] and will be derived in Section 3.3. They are provided here for clarity:

ẍ− 2ωż =
1

mc
Fx (2.23a)

ÿ + ω2y =
1

mc
Fy (2.23b)

z̈ + 2ωẋ− 3ω2z =
1

mc
Fz (2.23c)
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In (2.23a)-(2.23c), ω is the target orbital mean motion and is given by ω =
√

μ
a3

, where
a is the target semi-major axis, μ = GM , with G the gravitational constant and M the
mass of the central body, and Fx,y,z are the force inputs. The x and z-axes are coupled
to each other and the y-axis is a simple harmonic oscillator.

As explained in Section 1.2.2, an STM called Clohessy-Wiltshire (CW), exists for this set
of equations:

x(t) =

(
4ẋ0
ω

− 6z0

)
sin (ωt)− 2ż0

ω
cos (ωt) + (6ωz0 − 3ẋ0)t+

(
x0 +

2ż0
ω

)
+

+
2

ω2
γz(ωt− sin (ωt)) + γx

(
4

ω2
(1− cos (ωt))− 3

2
t2
)

(2.24a)

y(t) = y0 cos(ωt) +
ẏ0
ω

sin(ωt) +
γy
ω2

(1− cos(ωt)) (2.24b)

z(t) =

(
2ẋ0
ω

− 3z0

)
cos(ωt) +

ż0
ω

sin (ωt) +

(
4z0 − 2ẋ0

ω

)
+

+
2

ω2
γx(sin(ωt)− ωt) +

γz

ω2
(1− cos (ωt)) (2.24c)

where γx,y,z are the acceleration input.

To illustrate these equations, four typical relative motions are described in Figure 2.4
and Figure 2.5.

The trajectories depicted in Figure 2.4a and Figure 2.4b are obtained by applying impul-
sive ΔV s, and the duration of one loop is one target orbital period. The values for Δx and
Δz can be obtained using (2.24a) and (2.24c) with t = 2π

ω , and taking the appropriate
initial conditions, i.e. ẋ0 ≡ ΔV for the tangential motion, and ż0 ≡ ΔV for the radial
motion. In absence of external perturbations, these two relative motions will continue
until a braking ΔV is applied.

To achieve straight-line translations, or in case of a low-thrust transfer, forced motions
can be used. Figure 2.5a shows a forced translation along V̄ which is typically used for
docking. Because a tangential ΔV along positive V̄ will put the chaser on an elliptical
orbit with a larger semi-major axis, similar to the motion shown in Figure 2.4a, a constant
acceleration along R̄, represented by the vertical arrows, has to be applied.

In Figure 2.5b, an altitude change trajectory is shown. This is similar to a Hohmann
transfer but requires a constant thrust along V̄ and lasts for a full orbit. The value
for Δx and Δz can be obtained as previously, with t = 2π

ω in (2.24a) and (2.24c) and
using appropriate initial conditions for x0, z0, ẋ0, and ż0. Note that if t < 2π

ω is used
to perform the altitude rise, the velocity at the end of the transfer will increase and an
important ΔV will be required to stop the motion completely.
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V̄

R̄

Δx =
6π

ω
ΔV

Δz =
4

ω
ΔV

ac < at

motion direction

ΔV

(a) Tangential ΔV .

V̄

R̄

Δx =
4

ω
ΔV

Δz =
2

ω
ΔV

ac = at

motion direction

ΔV

(b) Radial ΔV .

Figure 2.4 – Chaser relative motion for two typical ΔV s in the target LVLH frame.
The red and black orbits represent the chaser’s and target’s respectively. One loop last
for one orbital period.

V̄

R̄ ΔVmotion direction

(a) Forced translation. The red dashed
line represent the trajectory without con-
stant acceleration applied.

Δz =
4π

ω2
γx

V̄

R̄ Δx =
6π2

ω2
γx

(b) Forced altitude change. The grey arrows are the
direction of the constant acceleration.

Figure 2.5 – Chaser relative motion for two typical ΔV in the target LVLH frame. The
grey arrows represent the constant acceleration required to force the motion.
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Finally, the CW equations can be used to solve Lambert’s problem. This method called
CW-targeting aims at obtaining a two-ΔV s transfer for a given ToF. This is done by
solving (2.24a)-(2.24c) for ẋ0, ẏ0 and ż0, for a given ToF, initial and final positions, and
final velocities. Special care must be given to singularities that occur at certain ToFs. In
particular, transfers in the H̄ direction (ŷ) starting from y0 = 0 can only be performed
efficiently in t = π

2ω and requires infinite ΔV for t = 2π
ω .

2.5 Rendezvous and Docking Phases

A rendezvous and docking mission is composed of several phases, starting from the orbital
insertion up to final docking. These different phases will be qualitatively defined in this
Section. An exhaustive discussion about the different phases of an RVD mission can be
found in [9].

2.5.1 Phasing

Because launch accuracy is limited – precise insertion into the target satellite’s orbit
cannot be achieved – the chaser is delivered on an orbit with a smaller semi-major axis
than the target orbit and with an initial phase angle Δφ, as shown in Figure 2.6.

Δφ

Figure 2.6 – Initial relative position of the chaser (in red) and the target (in green).

In this configuration, the chaser will naturally catch up with the target however its orbital
parameters such as the semi-major axis and inclination have to be adjusted. This leg of
the mission is called Phasing. For circular or near-circular obits, the only parameters that
have to be considered are the Right Ascension of Ascending Node (RAAN) (sometimes
referred to as longitude of ascending node), inclination, eccentricity and semi-major axis
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(orbital elements are shown in Figure 2.7).

Figure 2.7 – Keplerian Orbital elements. Credit: Lasunncty at the English Wikipedia,
CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=8971052.

The argument of periapsis should only be accounted for in the computation of the phase
angle:

Δφ = νt + ωt − (νc + ωc) (2.25)

where the subscripts c and t designate the chaser and target respectively. The inclination
change should be minimal as launchers offer a precision of ∼ 0.05 deg. Thus the target
satellite’s orbit inclination can be directly aimed for. The chaser satellite is inserted on a
circular orbit, and the eccentricity variations can be accounted for during the successive
phasing manoeuvres. The semi-major axis of the insertion orbit needs to take into account
several factors such as launcher uncertainties (∼ 5 km) and manoeuvres uncertainties.

Because the Earth is not perfectly spherical, the RAAN will vary with time (see Section
A.3). Thus, the insertion RAAN should take into account the fact that it will evolve
during Phasing. At the end of Phasing, the chaser and target RAAN must be identical.
The insertion RAAN can be determined accordingly. Only the launcher inaccuracy, which
is about 0.1 deg, will remain.

A Phasing example is provided in Figure 2.8.

During Phasing, all manoeuvres are open-loop, and the strategy depends mainly on the
available thrust and navigation accuracy. Phasing ends when the chaser reaches the “first
aim point” S0, located below and behind the target satellite, at ranges allowing relative
navigation and control. The first aim point location will be discussed in Section 2.6. Its
position should be such that navigation and thrust errors accumulated during the Phasing
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target

apogee raise

orbital injection

perigee raise

Hohmann transfer

V̄

R̄

S0

Figure 2.8 – Phasing example in the LVLH frame, centred on the target satellite. The
motion is from right to left.

can be absorbed. From S0, the chaser will be drifting towards the target until it acquires
the ISL, from then on, relative navigation and control can be performed. At that point,
the Homing phase will start.

2.5.2 Homing

The Homing, sometimes called “far range” rendezvous, aims at steering the chaser from
the first aim point altitude to a first SK point located behind the target and at the
same height (see Figure 2.10). This is usually done with a Hohmann transfer, shown in
Figure 2.9.

Figure 2.9 – Hohmann transfer between two circular orbits. Credit: Leafnode - Own
work based on image by Hubert Bartkowiak, CC BY-SA 2.5, https://commons.wikimedia.
org/w/index.php?curid=1885233
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The ΔV s can be computed as follow:

ΔV =

√
μ

R

(√
2R′

R+R′ − 1

)
(2.26)

ΔV ′ =
√

μ

R′

(
1−

√
2R

R+R′

)
(2.27)

Since the end of Phasing, the chaser is in communication range with the target; the
Hohmann transfer can thus be closed-loop controlled ensuring that the chaser meets
accuracy requirements.

In the specific case of nano-satellites, a two-impulses Hohmann transfer cannot be achieved
because of the low-thrust propulsion. For a first aim point S0 located 2 km below the
target, each Hohmann transfer ΔV has a magnitude of 0.55 m/s. Assuming a thrust of
4 mN and a CubeSat mass of 12 kg, each ΔV requires a burn time of ∼ 25 min. Such
transfer takes place in half an orbit, which is about 45 min for LEO. The cumulated burn
time is thus larger than the transfer time. For this reason, a forced manoeuvre, as shown
in Figure 2.5b, has to be used. Note that in the case of the CW equations which assume
small relative distances between the target and the chaser, the Hohmann transfer and
the continuous thrust transfer require the same ΔV (not the same time).

Indeed, for a Hohmann transfer, t = T/2, where T is the orbital period. Using (2.24c):

z(T/2) = zo +Δz = zo − 4

ω
ΔV (2.28)

then

ΔVtotal = 2ΔV =
ω

2
Δz (2.29)

For the continuous transfer, the thrust required is:

γx =
ω2

4π
Δz (2.30)

Integrating it over one orbital period, the ΔV is

ΔVtotal = γx
2π

ω
=

ω

2
Δz (2.31)

Consequently, besides a longer transfer time, the continuous transfer does not require more
ΔV . The Homing, as well as the subsequent mission phases, are depicted in Figure 2.10.
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2.5.3 Closing

The closing phase aims at decreasing the distance with the target by a succession of
manoeuvres. During this phase, relative navigation and control can be performed.

V̄

R̄

Altitude raise

HomingClosingFinal Approach

docking port axis

Fly-aroundTarget

S0

Figure 2.10 – Generic RVD: Homing, Closing and Final Approach. The red trajectory
is obtained with a V̄ manoeuvre and the green with an R̄ manoeuvre.

Depending on the required accuracy and available thrust, these manoeuvres can be
performed open-loop, with one or several mid-course corrections, or closed-loop controlled.

The Closing can be performed in two different ways. In Figure 2.10, the red trajectory is
obtained with a V̄ ΔV (red arrow). Each loop lasts for one orbital period. The chaser will
continue closing until another ΔV is performed. Although fuel efficient, this trajectory
has the risk that if the braking ΔV cannot be applied in time or only partially, the
chaser will continue closing and could potentially end up colliding with the target. This
is represented by the red dashed line. For this reason, R̄ manoeuvres (represented in
green) are usually preferred. A radial ΔV is required to initiate the motion, which is
repeated half an orbit later to stop the motion. If this second ΔV cannot be performed
or only partially, the chaser follows the dashed green line and is on a passive collision-free
trajectory. The drawback of such an approach is that it requires two ΔV s for each arc,
thus consuming more fuel than the V̄ approach. For these two approaches, the size of the
loops depends on several factors among which the available thrust, safety and operation
features, as well as the number of SK points required along the approach. An exhaustive
discussion about trajectory types and approach strategies can be found in [9]. Note that
although these trajectories are obtained with open-loop manoeuvres, a closed-loop control
or mid-course corrections can be applied to mitigate errors.

2.5.4 Final Approach

The final approach first aligns the chaser with the target docking port axis. The fly-
around manoeuvre is performed with two or more ΔV s, which can be computed with
the CW-targeting method. Then, once aligned with the target docking port, Port to
Port (P2P) 6 DoF control is required to maintain this configuration.
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The forced straight line trajectory imposed to the chaser until docking occurs can only
be achieved using closed-loop control. Contrary to the trajectories used for the Closing
which take advantage of relative dynamics and only need ΔV s to initiate and stop the
motion, straight line trajectories are not natural and require a constant actuation to
maintain the motion.

2.6 Reference Mission

The trajectory profile for a CubeSat RVD mission is provided in Figure 2.11.

S2

V̄

R̄

S21S22S23S24

com.
rangealtitude

raise

-15m -50m -150m -300m -500m

approach
ellipsoid

-35km-16.5km

2.1km

Homing
CDGPS

Closing
CDGPS

Final
Approach
VBN

S1 S0

29km GNSS
nav.

Figure 2.11 – Trajectory profile for a CubeSat RVD mission.

This approach strategy is similar to the ATV’s and is inspired by the methodology
proposed in [9]. The target is surrounded by an Approach Ellipsoid (AE) which shall
not be entered before Closing is initiated. As RVD between CubeSats has never been
achieved, a large ellipsoid has been selected. Its half-major axis is 400 m along V̄ , and
the half-minor axes are 200 m along R̄ and H̄.

2.6.1 First Aim Point Location

The first aim point S0 location should be close enough to the target altitude in order to
minimise the relative drift. Under no circumstances, should it be placed above the target,
as such a configuration would result in the chaser drifting away from the chaser. S0 should
also be close enough to the target to acquire its signal, enabling relative navigation. Errors
and safety constraints along V̄ and R̄ can be approximated to position S0 adequately.
Note that it is assumed that GNSS will be used for Phasing, although it is not part of
this research.
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R̄ contributions are as follow:

• Approach Ellipsoid: ΔR̄AE = 200 m.

• During Phasing, the target position can only be acquired through ground stations.
It is assumed that a single ground station is used and the information can be
obtained twice per day. The solution needs thus to be propagated for seven to ten
orbits. Assuming that one orbit of on-board propagation increases the error by 50
m [9], the target position error is: ΔR̄target = 350− 500 m.

• GNSS navigation can provide a 2 m (1σ) accuracy and 10 m (1σ) single point
solution : ΔR̄GNSS = 2− 10 m.

• A margin is added to account for environment perturbations and other unforeseen
errors: ΔR̄margin = 500 m.

Summing all the errors leads to:

ΔR̄ = ΔR̄AE +ΔR̄target +ΔR̄GNSS +ΔR̄margin = 1100− 1250 m (2.32)

This value is still missing open-loop manoeuvres accuracy that cannot yet be estimated
as Phasing manoeuvres have never been tested between CubeSats. Values similar to the
ATV’s could be used, but as the Phasing profile will most probably be different due to
the very low-thrust available, another approach is followed to settle on S0.

For a 6U, 12 kg CubeSat with 4 mN of thrust, the maximum altitude change that can be
achieved within one orbit, thrusting continuously, is (see Section 2.4):

Δz =
4π

ω
γx (2.33)

Thus, with γx = 1
310

−3, Δz = 3400 m, which corresponds to the maximum altitude
change achievable during Homing, and sets a bound for S0.

The open-loop accuracy due to thrust errors during Phasing shall be better than:

ΔR̄thrust =
1

2
(Δz −ΔR̄) = 1075 m (2.34)

and S0 shall be located between 2275 m and 2325 m below the target. This way the
chaser will never end Phasing at a distance Δz > 3400 m.

As the chaser drifts between S0 and S1, ISL communication becomes available and the
chaser navigation function handovers from absolute GNSS to CDGPS. CDGPS accuracy
is expected to be 10 cm (3σ), as explained in Section 1.2.1.
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A similar reasoning can be followed to estimate V̄ errors:

• Approach Ellipsoid: ΔV̄AE = 400 m.

• Target position error (same computation that for ΔR̄target): ΔV̄target = 350− 500

m.

• GNSS navigation can provide a 2 m (1σ) accuracy and 10 m single point solution:
ΔV̄GNSS = 2− 10 m.

• Because S0 is located below the target, the chaser drifts at a rate Δẋ = 3
2ωΔz m/s.

Thus, Δẋ = 1.98− 5.61 m/s. Assuming that 15 min are required for the navigation
handover, ΔV̄handover = 1790− 5100 m.

• 15 min are further allocated for the manoeuvre planing: ΔV̄prep. = 1790− 5100 m.

• During the continuous thrust altitude raise Δz, the chaser drifts by Δx = 3π
2 Δz:

ΔV̄transfer = 5650− 16000 m.

• A margin is added to account for environmental perturbations and other unforeseen
errors: ΔV̄margin = 1000 m.

Summing all the errors leads to:

ΔV̄ = ΔV̄AE +ΔV̄target +ΔV̄GNSS +ΔV̄conv. +ΔV̄prep.+

+ΔV̄transfer +ΔV̄margin = 11000− 28200 m (2.35)

Because S2 is located 500 m behind the target, the communication range between the
satellites shall exceed 29 km.

To precisely position S0, the along-track open-loop accuracy must be known. However,
as opposed to the R̄ open-loop accuracy, this unknown is less of a problem as it does not
impact the drift speed and thus has only little impacts on the first aim point location. In
order to handle open-loop errors of 5 km along-track, S0 is located 35 km behind the
target. It could be closer or further away depending on the Phasing accuracy.

During Phasing, RAAN and inclination launch errors have to be corrected. As stated in
Section 2.5.1, RAAN uncertainty is ∼ 0.1 deg, and the inclination uncertainty is ∼ 0.05

deg. At the end of Phasing, the RAAN and inclination error shall be smaller than 5 · 10−4

deg. Even then, such uncertainty still translates into ∼ 200 m errors along H̄ which will
then have to be corrected during Homing.

2.6.2 Station Keeping Points Location

The Closing that takes place from 500 m range to 15 m range includes five SK points.
The SK point S2 is located at -500 m along V̄ as this is outside the AE. Only once
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the chaser is ready for the Closing will it enter the AE. As explained in 2.5.3, V̄ or R̄

manoeuvres can be performed. A safe trajectory, minimising collision risks, is selected.
The Closing will thus be performed by a succession of radial manoeuvres.

The SK points locations have been selected so that burn times to execute the ΔV s are not
longer than 3 min. Longer manoeuvres would induce important errors for the closed-loop
control to compensate, thus consuming more fuel [6].

For R̄ manoeuvres (see Section 2.4):

Δx =
4

ω
ΔV (2.36)

which means that (assuming 4 mN of thrust and a 12 kg wet mass):

t � 180 s ⇐⇒ Δx � 200 m (2.37)

Another aspect is that the control accuracy required along the approach increases as
the range shortens. A controller satisfying the requirements at 15 m range could be
used during the whole Closing. However, to save fuel, it is more efficient to use different
controllers with increasing performances, even if this induces software complexity. Thus,
SK points have been placed along the closing trajectory to be able to perform controllers
handover.

Burn times and accuracy constraints lead to the SK locations provided in Table 2.11

Table 2.11 – Closing: V̄ SK points locations.

S2 S21 S22 S23 S24

-500 m -300 m -150 m -50 m -15 m

At SK point S24, the Final Approach is triggered. The corresponding reference trajectory
is shown in Figure 2.12.

The fly-around aligns the chaser with the target docking port axis and is computed
with the CW-targeting technique. S3 location in the target orbital frame is defined
by the target docking port location and orientation and thus varies depending on the
systems’ design. However, S3 is always positioned 10 m away from the target docking
port. Because of LoS constraints and multipath effect, CDGPS cannot be used here for
the docking and thus at S3, a navigation handover takes place, switching to a dedicated
docking-navigation solution. A series of forced translations are then initiated, maintaining
a constant speed of 1 cm/s. The first translation brings the satellite to S31, located at a
range of 5 m from the target docking port where a second handover switches to a more
accurate navigation solution. A second forced translation is then performed at a speed of
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Figure 2.12 – Final Approach.

1 cm/s until S32 is reached. This last point before the docking is introduced for safety
reasons. Finally, a translation at 1 cm/s, allows completing the docking.

2.7 Requirements

Docking requirements are derived from existing mechanisms: The required control accuracy
at docking for the MIT UDP is ±1 cm lateral misalignment, and it can tolerate attitude
errors of ±2 deg.

To gain more insight on the kind of performances that are needed for a CubeSat RVD
mission, a scalability analysis of the ATV performances is performed. The ATV is using
the Russian “drogue-and-cone” docking system [284] (see Figure 1.1a and Figure 1.6). The
cone has a diameter of 800 mm and the mechanism tolerates 10 cm of lateral misalignment
and up to 5 deg relative attitude error [8]. To be interesting for CubeSats, the docking
mechanism shall be compatible with a 10 × 10 cm surface. Scaling down linearly the
Russian docking system to CubeSat level leads to a lateral misalignment of ∼ 1.2 cm
which is consistent with the MIT UDP requirements.

The docking mechanism shall thus be able to cope with 1 cm, and 2 deg misalignment at
docking (along each axis) and the GNC shall provide a control accuracy of 5 mm and 1
deg (along each axis) in order to have a 100% margin.

During Homing, Closing, and Final Approach, a well-known rule of thumb is that the
navigation accuracy should be better than 1% of the range (3D) and the control accuracy,
better than 10% of the range (3D) [9]. To have the same margin policy as for the docking
requirements, the position accuracy shall be better than 5% of the range (3D) during
motion. In order to minimise fuel consumption during SK, the error shall be smaller than
10% of the range (3D).

To mitigate thrust direction errors, the attitude pointing shall be better than 2 deg
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during motion (along each axis). In SK, the attitude error shall be better than 4 deg
(along each axis). A lower attitude pointing accuracy is required in SK because RW
unloading creates disturbances (proportional to the unloading rate) which will degrade
pointing. To determine navigation filters required accuracy, the rule of thumb is that
their performances shall be better than ten times the closed-loop performance. This is
not a strict requirement but gives a useful guideline for the navigation sizing.

The closed-loop GNC 3σ requirements are provided in Table 2.12.

Table 2.12 – Closed-loop 3σ requirements when the chaser is in motion, in SK and for
docking.

GNC Mode Position Attitude

Motion 5% of the range 2 deg
Station Keeping 10% of the range 4 deg
Docking 5 mm 1 deg

As explained above, the docking mechanism shall be compliant to a 10× 10 cm surface.
As a VBN system is used for the last 10 m, providing the necessary navigation accuracy,
it has been decided that the mechanism and VBN shall hold in a 10× 10× 5 cm volume
(0.5 U).

Note that all these requirements have been stated at the beginning of this work and are
To Be Confirmed (TBC). They have been created to provide a design framework and
could be relaxed depending on the results.
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The non-linear 6 DoF dynamics necessary for the docking, called P2P dynamics, will be
developed and linearised. This is a central element of the GNC to control the relative
attitude and position between chaser and target docking ports. It will include the strong
coupling which exists between rotations and translations. The P2P dynamics will also
be at the centre of the navigation solution, used during the last 10 m before docking. A
summary of the P2P dynamics development has been published in [260].

Absolute attitude dynamics and relative position dynamics in the orbital frame will be
derived and linearised as they are used for the early phase of RVD missions.

Finally, perturbations acting on the satellites will be modelled. These are gravity gradient,
residual magnetic dipole, atmospheric drag, solar radiation pressure, and fuel sloshing.

3.1 Absolute Attitude Dynamics

For a solid body b, its angular momentum in an inertial frame FI is defined as

HI = IIω
bI
I (3.1)

where II is the body inertia tensor expressed in FI and ωbI
I is the rotation of Fb in FI

expressed in FI . It is convenient to represent II in the body frame so that it remains
constant. The angular momentum becomes:

Hb = AbIHI = AbIIIω
bI
I = AbIIIAIb︸ ︷︷ ︸

=Ib

AbIω
bI
I = Ibω

bI
b (3.2)

As the moment of inertia in the body frame, Ib, is a symmetric positive matrix, it can be

Camille Pirat, December 14, 2018 47



Chapter 3. Spacecraft Dynamics

diagonalised. The principal moment of inertia Λ can always be written as:

Ib = RΛRT (3.3)

with the principal moment of inertia being

Λ =

⎡⎢⎣I11 0 0

0 I22 0

0 0 I33

⎤⎥⎦ (3.4)

and R ∈ SO(3) is the DCM defining the solid body principal axes (eigenaxes) [285].

Conservation of angular momentum in the inertial frame implies that

ḢI = T I (3.5)

where T I are the input torques. In Fb, this translates to

Ḣb = ȦbIHI +AbI ḢI︸︷︷︸
=T I

= −[ωbI
b ×]Hb + T b (3.6)

As

Ḣb = Ibω̇
bI
b (3.7)

this leads to the well-known Euler’s equations:

ω̇bI
b = I−1

b

[
T b − [ωbI

b ×]Ibω
bI
b

]
(3.8)

If RWs are used for the attitude control, an additional angular momentum must be
considered. The satellite total angular momentum becomes:

Hb = Ibω
bI
b +HRW

b (3.9)

where HRW
b is the RWs angular momentum expressed in the body frame.

The solid body dynamics are:

Ḣb = Ibω̇
bI
b + ḢRW = Ibω̇

bI
b + TRW

b (3.10)
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where TRW
b is the torque produced by the RW in the body frame.

Equating (3.10) and (3.6), leads to

ω̇bI
b = I−1

b

[
T b − TRW − [ωbI

b ×](Ibω
bI
b +HRW)

]
(3.11)

In (3.11), the term [ωbI
b ×]HRW represents the gyroscopic coupling between the satellite

and RWs rotations. Because the dynamics used for the controller synthesis and in the
navigation filter must be independent of systems design choices, it was decided to take
the gyroscopic coupling out of the dynamics and to include it in the RWs model used for
simulations.

For a RVD mission, the spacecraft will be nominally aligned with the local orbital frame.
It is then convenient to parametrise the attitude with the orbital frame attitude and
rotation rate.

The transformation matrix from FO to Fb is

Abo = AbIAIo (3.12)

Differentiating leads to

−[ωbo
b ×]Abo = −[ωbI

b ×]AbIAIo − [ωIo
b ×]AbIAIo

= −[ωbI
b ×]Abo −AboAob[ω

Io
b ×]AboAobAbo

= −[ωbI
b ×]Abo −Abo[ω

Io
o ×]AobAbo (3.13)

which means:

ωbo
b = ωbI

b −Aboω
oI
o (3.14)

where ωoI
o is the orbital frame rotation rate with respect to the inertial frame, expressed

in the orbital frame, ωoI
o = [0 − ωo 0]T, with ωo the orbital mean motion.

Using (3.14) in (3.8) leads to the attitude dynamics:

ω̇bo
b = I−1

b

[
T b −

(
ωbo

b +Abo ωoI
o

)
×
(
Ib

(
ωbo

b +Abo ωoI
o

))]
(3.15)

The kinematics link the rotation rate to the attitude angles. The 1-2-3 Euler sequence
will be used onwards. The 3-2-1 sequence is usually preferred but is not convenient for
the VBN system. This will be further justified in Chapter 4.

Camille Pirat, December 14, 2018 49



Chapter 3. Spacecraft Dynamics

The notation α ≡ [α β γ]T is used such that

R123(α) = R3(γ)R2(β)R1(α) (3.16)

where Ri, i = 1, 2, 3, are the usual rotation matrices (2.2)-(2.4). The attitude kinematics
is [30, p. 363]:

α̇ = B123(β, γ)ω
bo
b (3.17)

with

B123(β, γ) =

⎡⎢⎣ secβ cos γ − secβ sin γ 0

sin γ cos γ 0

− tanβ cos γ tanβ sin γ 1

⎤⎥⎦ (3.18)

The system can be written in one non-linear function

[
α̇

ω̇bo
b

]
= f(α,ωbo

b ,T b) (3.19)

and can be linearised around given points ᾱ, ω̄bo
b , T̄ b:

f(α,ωbo
b ,T b) ≈f(ᾱ, ω̄bo

b , T̄ b) +
∂f

∂α

∣∣∣∣
ᾱ, ω̄bo

b , T̄ b

(α− ᾱ)+

+
∂f

∂ωbo
b

∣∣∣∣
ᾱ, ω̄bo

b , T̄ b

(ωbo
b − ω̄bo

b ) +
∂f

∂T b

∣∣∣∣
ᾱ, ω̄bo

b ,T̄ b

(T b − T̄ b) (3.20)

Defining x = [α ωbo
b ]T, the linear form of (3.19) is:

ẋ =

[
0 A12

A21 A22

]
x+

[
0

B21

]
T b (3.21)

In (3.21) and the following chapters, unless specified otherwise, matrix elements have
dimension 3× 3.
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All the Jacobians have been computed using MATLAB® R2017b, and the Symbolic
Math ToolboxTM (see Appendix D.1 for the toolbox version). The source code for the
absolute attitude dynamics is provided in D.2.1.

The nominal attitude mode is when Fb is aligned with FO, namely Abo = 1. In this case,
ᾱ = ω̄bo

b = T̄ b = 0. The matrix elements of (3.21) are:

A12 =

⎡⎢⎣1 0 0

0 1 0

0 0 1

⎤⎥⎦ ≡ 1 (3.22)

A21 = I−1
b

⎡⎢⎣ −ωo
2 (I22 − I33) 0 −I31 ωo

2

I12 ωo
2 0 I32 ωo

2

−I13 ωo
2 0 ωo

2 (I11 − I22)

⎤⎥⎦ (3.23)

A22 = I−1
b

⎡⎢⎣ I31 ωo 2 I32 ωo −ωo (I22 − I33)

−I32 ωo 0 I12 ωo

−ωo (I11 − I22) −2 I12 ωo −I13 ωo

⎤⎥⎦ (3.24)

B21 = I−1
b (3.25)

The elements Iij , i, j = 1, ..., 3 are the matrix elements of Ib.

Note that for the selected linearisation point ᾱ = ω̄bo
b = T̄ b = 0:

f(ᾱ, ω̄bo
b , T̄ b) =

[
0 0 0 −I32ω

2
o 0 I12ω

2
o

]T
= 0 ⇐⇒ I32 = 0 = I12 (3.26)

But because Ib is a symmetric positive matrix:

I32 = I12 = 0 ⇐⇒ I23 = I21 = 0 (3.27)

This implies that if the y-axis of Ib is not an eigenaxis or principal axis, a torque-free
precession will occur. This results directly from Euler’s equation (3.8), which shows that
torque-free rotations can only occur around principal axes of inertia.

The reason the x and z-axes components of Ib do not affect f(ᾱ, ω̄bo
b , T̄ b) (3.26) comes

from the fact that the satellite is forced to follow the orbital frame, implying:

ωbI
b = ωoI

o = [0 − ωo 0]T ⇐⇒ Abo(ᾱ = 0) = 1 (3.28)
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Consequently, to have a torque-free rotation, the only elements of the moment of inertia
that can be different from zero are I31 and I13.

The attitude angles, allowing torque-free rotations without precession and nutation effects,
can be obtained from the DCM of (3.3), which makes Ib diagonal. The algorithm to
obtain the 1-2-3 Euler angles from a DCM is shown in Appendix B.1.

In the case of a diagonal moment of inertia, the matrix elements have simplified expressions:

A21 =

⎡⎢⎣ω2
o
I33−I22

I11
0 0

0 0 0

0 0 ω2
o
I22−I11

I33

⎤⎥⎦ (3.29)

A22 =

⎡⎢⎣ 0 0 ωo
I33−I22

I11

0 0 0

ωo
I22−I11

I33
0 0

⎤⎥⎦ (3.30)

If ᾱ �= 0 ⇒ Abo �= 1. This happens if the target docking port is not aligned with
the target orbital frame FO in which case the chaser will not be aligned with FO, and
ω̄bo

b = T̄ b = 0, then:

A12 = B123(β, γ), ∀β, γ (3.31)

where B123(β, γ) is given by (3.18). In this case, A21 and A22 become functions of the
moment of inertia expressed in the new frame, having Abo columns as basis vectors. A21

and A22 are not provided here as they are too large to be displayed. They can be obtained
using the code provided in Appendix D.2.1.

3.2 Port to Port Attitude Dynamics

The relative attitude dynamics between the chaser and target docking port is called P2P
attitude dynamics.

Both chaser and target are equipped with docking ports located in rdcbc in Fbc and rdtbt in
Fbt . The ports’ frames Fdc and Fdt can have any orientations in their respective body
frame. The situation is shown in Figure 3.1

The general non-linear absolute attitude dynamics (3.15) have to be expressed in the
docking port frame Fd. As Fd is fixed in Fb, the only modification to (3.15) comes from
the moment of inertia which has to be modified using the parallel axis theorem or Steiner’s
theorem. Thus for a frame Fd in Fb with orientation Adb and position rdb , the moment of
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Target Chaser

rdc

bc

rdt

bt Fbc

Fdc

Fdt

Fbt

Figure 3.1 – Docking port frames location and orientation in the satellite body frame.

inertia Ib transforms as follows:

Id = Adb

(
Ib +m

[
‖rdb‖21 − rdbr

d
b
T
])

AT
db (3.32)

where m is the spacecraft mass.

It must be noted that if Ib had only small off-diagonal terms, expected for nearly
symmetrical and homogeneous solid bodies, it not necessarily the case for Id as the latter
is now expressed in an arbitrary rotated frame Fd.

The attitude dynamics expressed in such an arbitrary frame Fd, using (3.15), is

ω̇do
d = I−1

d

[
T d −

(
ωdo

d +Ado ωoI
o

)
×
(
Id

(
ωdo

d +Ado ωoI
o

))]
(3.33)

with Ado = AdbAbo, and ωdo
d = Adbω

bo
b .

The kinematics equations are the same as (3.17):

α̇ = B123(β, γ)ω
do
d (3.34)

The relative P2P dynamics ω̇dcdt
dc

, i.e. the rotation of the chaser docking frame Fdc with
respect to Fdt expressed in Fdc , can now be derived. Even if the P2P attitude dynamics
can be expressed in different ways, as the chaser has to actively track the target docking
port, the relative dynamics must be described in Fdc so as to obtain torque inputs in this
frame.

Starting from the angular velocities composition and using the relative attitude matrix
Adcdt , which is mapping frame Fdt into frame Fdc , the relative angular velocity is

ωdcdt
dc

= ωdco
dc

−Adcdtω
dto
dt

(3.35)
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where ωdco
dc

and ωdto
dt

are obtained from the absolute docking ports dynamics.

Differentiating (3.35) with respect to time leads to the sought equation:

ω̇dcdt
dc

= ω̇dco
dc

−Adcdtω̇
dto
dt

+ [ωdcdt
dc

×]
(
Adcdtω

dto
dt

)
(3.36)

with ω̇dco
dc

and ω̇dto
dt

given by:

ω̇dco
dc

= I−1
dc

[
T dc −

(
ωdco

dc
+Adco ωoI

o

)
×
(
Idc

(
ωdco

dc
+Adco ωoI

o

))]
(3.37a)

ω̇dto
dt

= I−1
dt

[
T dt −

(
ωdto

dt
+Adto ωoI

o

)
×
(
Idt

(
ωdto

dt
+Adto ωoI

o

))]
(3.37b)

In (3.37a) and (3.37b), one of the attitude variables can be expressed as a function of the
other. Because a target docking port rotation influences the chaser attitude and position
simultaneously (see Section 3.4), and a chaser rotation only influences the target rotation,
it was decided to remove Adco and ωdco

dc
from (3.37a).

As Adco = AdcdtAdto and ωdco
dc

= ωdcdt
dc

+Adcdtω
dto
dt

, (3.37a) becomes:

ω̇dco
dc

=I−1
dc

[
T dc −

(
ωdcdt

dc
+Adcdtω

dto
dt

+AdcdtAdto ωoI
o

)
×

×
(
Idc

(
ωdcdt

dc
+Adcdtω

dto
dt

+AdcdtAdto ωoI
o

))]
(3.38)

which only contains the relative P2P and target attitude variables.

The kinematics for the relative attitude and target absolute attitude are given by (3.34):

α̇dcdt = B123(β
dcdt , γdcdt) ωdcdt

dc
(3.39a)

α̇dto = B123(β
dto, γdto) ωdto

dt
(3.39b)

The set of non-linear equations describing the P2P attitude is thus composed of (3.36),
(3.37b) and (3.38) for the dynamics, and (3.39a)-(3.39b) for the kinematics.

The state vector is defined as x = [αdcdt , ωdcdt
dc

, αdto, ωdto
dt

]T and the control input
u = [T dc , T dt ]

T. αdcdt is a vector containing the three Euler angles for the relative
attitude matrix Adcdt , and T dc and T dt are the chaser and target control input torques.
As before, the 1-2-3 Euler sequence is used, although the equations are valid for any Euler
sequence, changing the matrix B123 by the appropriate one.

The linearisation points are chosen as follow:

• The target docking frame Fdt can have any orientation in the orbital frame but is
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not rotating: ᾱdto = const. and ω̄dto
dt

= 0

• The chaser is aligned with the target and and is not rotating: ᾱdcdt = ω̄dcdt
dc

= 0

Writing the state-space as

ẋ = Ax+Bu (3.40)

y = Cx+Du (3.41)

the matrices A and B are given by:

A =

⎡⎢⎢⎢⎣
0 A12 0 0

A21 A22 A23 A24

0 0 0 A34

0 0 A43 A44

⎤⎥⎥⎥⎦ (3.42)

B =

⎡⎢⎢⎢⎣
0 0

B21 B22

0 0

0 B42

⎤⎥⎥⎥⎦ (3.43)

C =

⎡⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎦ (3.44)

D = 0 (3.45)

The way the non-linear dynamics have been built already captures the coupling between
the target and chaser attitude. The state-space matrix C is thus the identity and the full
state is available for feedback.

A and B will not be explicitly shown here for the general case as the analytical expressions
are complex. To simplify the matrices’ elements, it has been assumed that Idc and Idt
are diagonal. Note that this means that the docking ports are oriented so that Adtbt and
Adcbc are diagonalising the moment of inertia Ibt and Ibc respectively.

The MATLAB® code, used to linearise the dynamics in the general case, is provided
in Appendix D.2.2. Notice that non-diagonal moments of inertia have been taken into
account when using the dynamics for the GNC.
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As in the absolute attitude case, if ᾱdto = 0, the matrices A12 and A34 of (3.42) are given
by:

A12 = A34 = 1 (3.46)

The other elements are, for ᾱdto = 0:

A21 =

⎡⎢⎢⎣
−ωo

2 (Idt,22−Idt,33)
Idc,11

0 0

0 0 0

0 0
ωo

2 (Idt,11−Idt,22)
Idc,33

⎤⎥⎥⎦ (3.47)

A22 =

⎡⎢⎢⎣
0 0 −ωo (Idt,22−Idt,33)

Idc,11

0 0 0

−ωo (Idt,11−Idt,22)
Idc,33

0 0

⎤⎥⎥⎦ (3.48)

A23 =

⎡⎢⎢⎣
ωo

2 (Idc,11−Idt,11) (Idt,22−Idt,33)
Idc,11 Idt,11

0 0

0 0 0

0 0 −ωo
2 (Idc,33−Idt,33) (Idt,11−Idt,22)

Idc,33 Idt,33

⎤⎥⎥⎦ (3.49)

A24 =

⎡⎢⎢⎣
0 0

ωo (Idc,11−Idt,11) (Idt,22−Idt,33)
Idc,11 Idt,11

0 0 0
ωo (Idc,33−Idt,33) (Idt,11−Idt,22)

Idc,33 Idt,33
0 0

⎤⎥⎥⎦ (3.50)

These matrix elements have a very similar structure to those computed in the absolute
case (3.29), (3.30). However, they contain the chaser and target moments of inertia and
reflect the chaser/target coupling.

The elements A43 and A44 are strictly identical to those of the absolute attitude case
(3.23), (3.24), for non-diagonal moments of inertia, as the target is not coupled to the
chaser.

The coupling also appears explicitly in the control input matrix B. B21 and B41 have the
usual form as in (3.25), i.e.:

B21 = I−1
dc

(3.51)

B42 = I−1
dt

(3.52)
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The coupling term in (3.43) is such that

B22 = −B42 (3.53)

This reflects that a positive rotation of the target translates into a negative rotation for
the chaser.

If ᾱdto �= 0 then, as for the absolute case:

A12 = B123(β
dcdt , γdcdt) (3.54a)

A34 = B123(β
dto, γdto) (3.54b)

with B123 provided by (3.18).

It is important to note that in the case where the satellite body frame is not aligned
with the orbital frame, i.e. ᾱdto �= 0, the matrix element A12 diverges if β = ±π/2. This
divergence is a well-known property of the Euler angles and is often referred to as “gimbal
lock” (see Appendix B.1).

Finally, it should be noted that if ᾱdto �= 0 or if the moments of inertia Idt or Idc are
non-diagonal, constant terms will remain after the linearisation reflecting a torque-free
precession. This effect has already been discussed in Section 3.1.

3.3 Relative Position Dynamics

Before developing the whole 6 DoF P2P dynamics, the Hill’s equations are derived, for
the sake of completeness. As explained in Section 2.4, this set of equations conveniently
describes the chaser motion with respect to the target, expressed in the target orbital
frame for circular reference orbits.

I

rtI

rcI

O

ẐI

X̂I

ŶI

x̂o

ŷo

ẑo
sctI

Figure 3.2 – Chaser and target inertial and relative positions.
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The chaser-target CoMs relative position in FI is (see Figure 3.2):

sctI = rcI − rtI (3.55)

Differentiating twice leads to:

s̈ctI = r̈cI − r̈tI (3.56)

Using Newton’s law of gravitation

r̈cI = −μ
rcI

‖rcI‖3
+

F I

mc
(3.57a)

r̈tI = −μ
rtI

‖rtI‖3
(3.57b)

in (3.56) leads to the dynamics equations in FI :

s̈ctI = r̈cI − r̈tI = −μ
rcI

‖rcI‖3
+ μ

rtI
‖rtI‖3

+
F I

mc
(3.58)

where F I is the chaser control thrust and mc the chaser mass.

The aim is to derive dynamics equations in the target orbital frame FO, whose transfor-
mation matrix AoI is given by (2.19). The relative acceleration between the chaser and
the target can thus be expressed in the target’s rotating orbital frame, using (2.14):

s̈cto = AoI s̈
ct
I − [ω̇oI

o ×]scto − [ωoI
o ×][ωoI

o ×]scto − 2[ωoI
o ×]ṡcto (3.59)

The relative acceleration in FI , s̈ctI , is given by (3.58). Because the reference satellite is
the target, AoI s̈

ct
I can be expressed as:

AoI s̈
ct
I = −μ

scto + rto
‖scto + rto‖3

+ μ
rto

‖rto‖3
+

F o

mc
(3.60)

FO is rotating at a constant rate in FI and the angular velocity in FO is

ωoI
o = [0 − ωo 0]T (3.61)

with ωo =
√

μ
‖rt

o‖3 the target’s orbital mean motion and is constant. Similarly, in FO the
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target’s position is:

rto = [0 0 − rtI ]
T (3.62)

where rtI = ‖rtI‖ is constant for circular reference orbits. The non-linear relative dynamics
expressed in the target orbital frame is thus:

s̈cto = −[ωoI
o ×][ωoI

o ×]scto − 2[ωoI
o ×]ṡcto + ω2

or
t
o − μ

scto + rto
‖scto + rto‖3

+
F o

mc
(3.63)

Notice that F o is the chaser control force expressed in the target orbital frame. This
force needs to be expressed in the chaser orbital frame FOc as it will be applied at the
chaser CoM. In practice however, in the limit ‖sctI ‖

‖rt
I‖


 1 , it is reasonable to assume that
FOt ≈ FOc .

Defining the state vector as x = [scto ṡcto ]
T and u = F o, the sate-space equation is:

ẋ = Ax+Bu (3.64)

The dynamics (3.63) can be linearised around any point, in particular scto = ṡcto = F o = 0.
The MATLAB® code used to linearised these dynamics is provided in Appendix D.2.3.
The A and B matrices are:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 2ωo

0 −ωo
2 0 0 0 0

0 0 3ωo
2 −2ωo 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3.65)

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0 0
1
mc

0 0

0 1
mc

0

0 0 1
mc

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.66)

which are the well-known Hill’s equations [192] written in state-space form.
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Notice that the Hill’s equations equilibrium points are:

x̄ = [x 0 0]T, ∀ |x| 
 ‖rtI‖ (3.67)

3.4 Port to Port Coupled Dynamics

The complete coupled 6 DoF P2P dynamics will be composed of the relative attitude
(3.36), (3.37b), (3.39a)-(3.39b), and of a modified version of the Hill’s equations (3.63).

The P2P relative position dynamics will describe the two docking ports relative motion
and will be used to control the chaser during Final Approach. As opposed to the Hill’s
equations, the P2P dynamics will reflect that a target rotation induces not only a chaser
rotation – to maintain the attitude alignment – but also a translation. This is shown in
Figure 3.3.

O
Fbt Fdt

Fdc FbcV̄

R̄

x̂dc
x̂dt

Oc

(a) Target aligned with the orbital frame.

O
Fbt

Fdt

Fdc

Fbc

V̄

R̄

x̂dc

x̂dt

Oc

(b) Target rotated in the orbital frame.

Figure 3.3 – In (a), the target and chaser are both aligned with the orbital frame. In
(b) the target rotated and to go from (a) to (b), the chaser had to perform a rotation and
a translation.

As in the case of the relative attitude, the docking ports have fixed positions rdcbc in Fbc

and rdtbt in Fbt . The docking ports frames are fixed in the body frames and thus Adtbt and
Adcbc , mapping Fb into Fd, are constant. The different frames and positions are provided
in Figure 3.4.
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Target Chaser

rdc

bc

rdt

bt Fbc

Fdc

Fdt

Fbt

(a) Body frame and docking frame.

rtI

rcI

sctI

sdcdt

I

rdc

I

I
X̂

Ŷ

Ẑ

rdt

I

(b) P2P position expressed in the inertial
frame.

Figure 3.4 – Chaser and target ports positions.

The P2P position in the inertial frame is (see Figure 3.4a):

sdcdtI =rcI +AIbcr
dc
bc

− rtI −AIbtr
dt
bt

(3.68a)

=sctI +AIbcr
dc
bc

−AIbtr
dt
bt

(3.68b)

where AIbc and AIbt are respectively the chaser and target attitude matrices in the inertial
frame.

As opposed to the relative attitude which has been expressed in Fdc , the P2P position has
to be expressed in Fdt . This is a similar approach to Hill’s equations which are expressed
in the target orbital frame.

The P2P relative distance expressed in the target docking port frame is:

sdcdtdt
= AdtoAoIs

ct
I +Adtdc Adcbcr

dc
bc︸ ︷︷ ︸

=rdc
dc

−Adtbtr
dt
bt︸ ︷︷ ︸

=r
dt
dt

(3.69)

Adtdc is given by the relative attitude kinematics (3.39a) and Adto by the target attitude
kinematics (3.39b). The matrix AoI is completely determined by the target inertial
position and as such is a parameter of the problem and not a variable.

Differentiating (3.69) leads to the velocity:

ṡdcdtdt
= −[ωdto

dt
×]AdtoAoIs

ct
I −Adto[ω

oI
o ×]AoIs

ct
I +

+AdtoAoI ṡ
ct
I − [ωdtdc

dt
×]Adtdcr

dc
dc

(3.70)
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The acceleration can be obtained differentiating (3.70):

s̈dcdtdt
=− [ω̇dto

dt
×]AdtoAoIs

ct
I + [ωdto

dt
×][ωdto

dt
×]AdtoAoIs

ct
I −

− 2[ωdto
dt

×]AdtoAoI ṡ
ct
I + 2[ωdto

dt
×]Adto[ω

oI
o ×]AoIs

ct
I +

+Adto[ω
oI
o ×][ωoI

o ×]AoIs
ct
I − 2Adto[ω

oI
o ×]AoI ṡ

ct
I −

− [ω̇dtdc
dt

×]Adtdcr
dc
dc

+ [ωdtdc
dt

×][ωdtdc
dt

×]Adtdcr
dc
dc

+AdtoAoI s̈
ct
I (3.71)

Using (3.70), AdtoAoI ṡ
ct
I present in (3.71) is given by:

AdtoAoI ṡ
ct
I = [ωdto

dt
×]AdtoAoIs

ct
I +Adto[ω

oI
o ×]AoIs

ct
I +

+ [ωdtdc
dt

×]Adtdcr
dc
dc

+ ṡdcdtdt
(3.72)

(3.71) then becomes:

s̈dcdtdt
=− [ω̇dto

dt
×]sctdt − [ωdto

dt
×][ωdto

dt
×]sctdt − 2[ωdto

dt
×]ṡdcdtdt

−
− [

Adtoω
oI
o ×] [Adtoω

oI
o ×] sctdt − 2

[
Adtoω

oI
o ×] ṡdcdtdt

−
− 2

[
Adtoω

oI
o ×] [ωdto

dt
×]sctdt+

+ 2
[
Adtoω

oI
o + ωdto

dt
×
] [

AT
dcdtω

dcdt
dc

×
]
AT

dcdtr
dc
dc
+

+
[
AT

dcdtω̇
dcdt
dc

×
]
AT

dcdtr
dc
dc
+

+ 2
[
AT

dcdtω
dcdt
dc

×
] [

AT
dcdtω

dcdt
dc

×
]
AT

dcdtr
dc
dc

+AdtoAoI s̈
ct
I (3.73)

where

sctdt = sdcdtdt
−AT

dcdtr
dc
dc

+ rdtdt (3.74)

AdtoAoI s̈
ct
I in (3.73) is the usual inertial gravitational term (3.58):

AdtoAoI s̈
ct
I = AdtoAoI

(
−μ

rcI
‖rcI‖3

+ μ
rtI

‖rtI‖3
+

F I

mc

)
(3.75)

where F I is the chase control force. It can be expressed as a function of rto and sdcdtdt

using (3.68a):

AdtoAoIr
c
I = Adtor

t
o + sdcdtdt

−AT
dcdtr

dc
dc

+ rdtdt (3.76)
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and thus

AdtoAoI s̈
ct
I = μ

Adtor
t
o

‖rto‖3
− μ

Adtor
t
o + sdcdtdt

−AT
dcdt

rdcdc + rdtdt
‖Adtor

t
o + sdcdtdt

−AT
dcdt

rdcdc + rdtdt‖3
+AdtoAoI

F I

mc

(3.77)

with rto is the target position expressed in the orbital frame rto = [0 0 − rto]
T.

In, (3.77) AdtoAoI
F I
mc

is the chaser control acceleration expressed in the target docking
frame Fdt . This is similar to Hill’s equations in which the chaser control acceleration is
expressed in the target orbital frame. For these equations, although the assumption that
the chaser and target’s docking frames are similar is valid (see discussion in Section 3.3),
a more conservative approach has been selected, and the chaser control force is defined
as:

AdtoAoI
F I

mc
=

F dt

mc
= AT

dcdt

F dc

mc
(3.78)

This way, the chaser control force expressed in Fdc explicitly appears in the non-linear
dynamics.

(3.73) are the well-known equations of motion in a non-inertial frame, which have been
derived in Section 2.2. The Coriolis and centripetal inertial accelerations due to the docking
frame Fdt and orbital frame FO rotations can be identified. Extra Coriolis/centripetal-like
terms resulting from the coupling between the frames are also present.

The P2P relative position dynamics (3.73) has been parametrised so that only the target
attitude dynamics in the orbital frame (3.37b) and the P2P relative attitude dynamics
(3.36) appear. This will be of advantage when establishing the state-space as the plant
output y will be exactly equal to the state x. The output equation of a linearised plant is
of the form y = Cx+Du. In the proposed formulation C is equal to the identity and D

is null; the state-space can thus be conveniently used in a full-state feedback formulation.

Defining the state vector as

x = [αdcdt , ωdcdt
dc

, αdto, ωdto
dt

, sdcdtdt
, ṡdcdtdt

]T (3.79)

and the control input

u = [T dc , T dt , F dc ]
T (3.80)

(3.73) together with the relative attitude dynamics (3.36), (3.37b), and kinematics (3.39a)-
(3.39b) can be linearised around the following points:

Camille Pirat, December 14, 2018 63



Chapter 3. Spacecraft Dynamics

• ᾱdto = const. and ω̄dto
dt

= 0

• ᾱdcdt = ω̄dcdt
dc

= 0

• sdcdtdt
= ṡdcdtdt

= 0

• T dc = T dt = F dc = 0

The state-space model for the 6 DoF port to port dynamics is:

ẋ = Ax+Bu

y = Cx+Du (3.81)

The MATLAB® code used to linearised these dynamics is provided in Appendix D.2.4.

The A and B matrices are:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 A12 0 0 0 0

A21 A22 A23 A24 0 0

0 0 0 A34 0 0

0 0 A43 A44 0 0

0 0 0 0 0 A56

A61 A62 A63 A64 A65 A66

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3.82)

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

B21 B22 0

0 0 0

0 B42 0

0 0 0

B61 B62 B63

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3.83)

In (3.82), matrix blocks corresponding to the relative attitude have been described in
Section 3.2. The terms A61 to A66 are long expressions in which the chaser and target
moments of inertia as well as the docking ports positions rdcdc and rdtdt appear.

As an example, A62 is given for the case in which the target is aligned with the orbital
frame and the two moments of inertia Idc and Idt are diagonal:

A62 =

⎡⎢⎢⎢⎢⎣
− rdcdc,y ωo (2 Idc,33−Idt,11+Idt,22)

Idc,33
2 rdcdc,x ωo 0

− rdcdc,x ωo (Idt,11−Idt,22)
Idc,33

0
rdcdc,z ωo (Idt,22−Idt,33)

Idc,11

0 2 rdcdc,z ωo − rdcdc,y ωo (2 Idc,11+Idt,22−Idt,33)
Idc,11

⎤⎥⎥⎥⎥⎦ (3.84)
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This matrix block describes the effect of the relative rotation rate ωdcdt
dc

on the relative
position sdcdtdt

.

A56 is the 3 × 3 identity matrix. In the specific case where the target and chaser are
aligned and fixed with respect to the orbital frame and rdtdt = rdcdc = 0, then A61 to A64 are
null, and A65 and A66 transform into the well-known Hill’s equations [192] (see (3.65)).

In the input matrix B (3.83), B21, B22 and B24 are the same as in the relative attitude
state-space model (3.42). B61, represents the effect of the chaser rotation on the position:

B61 =

⎡⎢⎢⎢⎢⎣
0

rdcdc,z
Idc,22

− rdcdc,y
Idc,33

− rdcdc,z
Idc,11

0
rdcdc,x
Idc,33

rdcdc,y
Idc,11

− rdcdc,x
Idc,22

0

⎤⎥⎥⎥⎥⎦ (3.85)

and B62, representing the effect of the target attitude rotation on the position, is:

B62 =

⎡⎢⎢⎢⎢⎣
0 − r

dt
dt,z

Idt,22

r
dt
dt,y

Idt,33

r
dt
dt,z

Idt,11
0 − r

dt
dt,x

Idt,33

− r
dt
dt,y

Idt,11

r
dt
dt,x

Idt,22
0

⎤⎥⎥⎥⎥⎦ (3.86)

Finally, B63 has the usual form:

B63 = 1
1

mc
(3.87)

Notice that B61 and B62 have the dimension of length over mass which will output an
acceleration when multiplied by a torque, as expected.

As mentioned in Section 1.2.2, a P2P dynamics for the ATV RVD with the ISS, where
its attitude motion was approximated by a harmonic oscillator, has been developed [101].
This choice is justified as the ISS motion is precisely known and can be predicted.
Furthermore, its important mass will dampen any attitude dynamics high-frequency
content. For CubeSats however, attitude control capabilities are not as precise and stable
as for the ISS. CubeSats relative small mass makes their attitude dynamics more subject
to high-frequency content. It has thus been decided to use the complete target satellite
dynamics.

A system is controllable if all its states can be moved from any initial point to any
final point, in a finite time, using the input u. This can be checked computing the
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controllability matrix C, defined as:

C = [B AB A2B ... An−1B] (3.88)

If C is full rank, i.e. rank(C) = n, the system is controllable.

The controllability matrix C is rank deficient when the dynamics proposed in [101] are
used. The controllability matrix is, however, full rank using the dynamics described
above. This difference comes from the coupling between the target attitude and chaser
position. In [101] this coupling is accounted for in the output equation through the C

and D matrices, whereas here it has been directly accounted for in the dynamics, i.e. in
the A and B matrices, resulting in C = 1 and D = 0. This results in the complete state
availability for feedback control.

The state-space model described in (3.82) and (3.83) can be used to define control laws
and to filter navigation sensors measurements. As the chaser and target control torques
appear explicitly, such a state-space model could be used for the design of a feedback law
that would control both the chaser and target at the same time. However, for operational
reasons, it is desirable to keep the target GNC independent from the chaser’s. A control
scheme in which the chaser would command both satellites simultaneously introduces
technological challenges as constant communication via ISL would be required. A reduced
state-space dynamics can be obtained by removing the target relative attitude from (3.82)
and (3.83):

Ar =

⎡⎢⎢⎢⎣
0 A12 0 0

A21 A22 0 0

0 0 0 1
A61 A62 A65 A66

⎤⎥⎥⎥⎦ (3.89)

Br =

⎡⎢⎢⎢⎣
0 0

B21 0

0 0

B61 B63

⎤⎥⎥⎥⎦ (3.90)

The new state vectors is:

x = [αdcdt , ωdcdt
dc

, sdcdtdt
, ṡdcdtdt

]T (3.91)

and the control input is given by:

u = [T dc , F dc ]
T (3.92)
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The main drawback of this model reduction is that the direct influence of the target state
on the relative state is partially lost. However, the divergence at β = ±π/2 previously
mentioned for the 1-2-3 Euler sequence disappears as it was only present in the target
attitude dynamics. This reduced state-space dynamics can thus be used for any relative
position/rotation. Furthermore, it should be noted that even if the target attitude state
was removed from the state-space, some of its information remains available, for example
in the matrix element A62 (3.84).

As in the case of the attitude dynamics, constant terms are present in the linearisation of
the P2P dynamics. These constant terms can either be used in the GNC as feed-forward
or neglected. The importance of these constant terms and the accuracy of the linearisation
can be verified, and the following initial conditions are used:

• αdcdt = 0

• αdto = [50 50 50]T deg

• rdcdc = [0.1 0.1 0.1]T m

• rdtdt = [−0.1 0.1 0.1]T m

• sdcdtdt
= [−10 0 0]T m ⇒ sdcdto = [−4.3 − 8.6 − 2.7]T m

In the target orbital frame, the chaser is not at an equilibrium point and will start drifting.
Using these initial conditions, the chaser trajectory in the target docking frame can be
simulated. The chaser is not controlled and is simply drifting. Figure 3.5 and Figure 3.6
show the relative position with and without the feed-forward term.

With the feed-forward term, the error after 600 s is ∼5 cm. Without it, the error grows
to ∼16 cm. Including the feed-forward term clearly improves the linearisation accuracy.
Its magnitude corresponds to 0.1 μN-m and 1 μm/s2 in this configuration. This value
is of the same order of magnitude as the environmental perturbations acting on the
satellites and smaller than the actuators errors (see Section 2.3.2). Furthermore, the
GNC bandwidth will be faster than 1/600 Hz, preventing linearisation errors to grow.
The constant linearisation terms can thus be safely neglected.

3.5 External and Internal Perturbations

There are several sources of perturbation acting on satellites. Internal perturbations
include fuel sloshing, actuators errors and flexible appendages such as solar arrays.
External perturbations are due to the environment and include gravity gradient, atmo-
spheric drag, residual magnetic dipole, radiation pressure, third body disturbances and
non-homogeneous gravity field.
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Figure 3.5 – P2P position for the linear and non-linear dynamics. The linear dynamics
includes the feed-forward terms.

Figure 3.6 – P2P position for the linear and non-linear dynamics. The linear dynamics
does not include the feed-forward terms.
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3.5.1 External Perturbations

Long-term effects, such as third body perturbation, are neglected as they are only relevant
for long-time propagation and will have no impact on RVD missions short time span.
Only external perturbations influencing the short-term propagation will be considered
and are detailed in Appendix A.

3.5.2 Internal Perturbations

The only internal perturbation which will be considered here is fuel sloshing. The
perturbations coming from flexible appendages have been neglected as for CubeSats, solar
arrays are usually small and have high-frequency vibration modes, which will be filtered
by the controller, as are actuators errors.

Sloshing Model

Sloshing is due to partially filled tanks in which liquid is free to move, exerting forces
on the tank’s walls. The highly non-linear Navier-Stokes equations make fuel dynamics
modelling extremely complicated and simplified models have to be developed.

The sloshing behaviour is based on the spring, mass and damper model proposed in
[101, pp. 40–42]. The non-linear equations of motions will be derived and linearised. In

addition, the solution provided in this thesis includes explicitly, in the linear state-space,
the effects of inertial forces, due to the satellite body rotation, as well as the torque
inputs.

The fuel mass, mL, is divided in two: A liquid part, m1, responsible for the perturbations,
and a solid part, m0, which does not contribute to the dynamics.

m1 =(1− λ(τ))mL (3.93a)

m0 =λ(τ)mL (3.93b)

τ is called the filling ratio and represents the amount of fuel remaining in the tank. The
parameter λ is defined as:

λ = τ(4αs − 1) + τ2(2− 4αs) (3.94)

The equation for λ (3.94) and αs value are taken from [101] and are valid for spherical
tanks with conical anti-slosh baffle. In this case, αs = 0.62. These values have been
empirically obtained using simulations, and the process was not be repeated within this
research. As ATV values are used to model CubeSat sloshing, it is strongly believed that
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it will lead to more conservative results. This will be further discussed at the end of this
Section.

rtankb
Fs

Fb

ẑb

ŷb

x̂b

x̂s

ŷs

ẑs

xs

m1

Figure 3.7 – Fluid particle of mass m1 in the sloshing frame Fs.

The problem is depicted in Figure 3.7. The tank is located at a distance rtankb from the
satellite CoM. The sloshing frame Fs is located at the centre of the tank. Because of the
spherical symmetry of the ATV’s tanks, the orientation of the sloshing frame does not
matter. Aligning Fs with Fb simplifies the equations. For a non-trivial orientation of Fs,
the EoM could be directly recovered as Fs is fixed in Fb.

The force and torque created on the tank by a mass m1 behaving as a damped spring
with stiffness ks and damping cs are, in Fb:

F slosh
b = ksxs + csẋs (3.95a)

T slosh
b = (rtankb + xs)× F b (3.95b)

Note that if Fs would not be aligned with Fb, the force and torque (3.95) would simply
have to be rotated back from Fs to Fb.

In the body frame, the EoM of the fluid mass m1 are:

ẍb = − ks
m1

xb − cs
m1

ẋb + γslosh
b (3.96)

The term γslosh
b is the acceleration of the satellite acting on the tank, expressed in the

body frame. To relate it to the inertial accelerations acting on the satellite, inertial terms
need to be added using (2.14), as the body frame is rotating in the inertial frame:

γslosh.
b = AbIγ

in
I︸ ︷︷ ︸

=γin
b

−[ωbI
b ×][ωbI

b ×]rb − 2[ωbI
b ×]ṙb − [ω̇bI

b ×]rb (3.97)

AbI is the satellite attitude in inertial frame, γin
I the acceleration acting on the satellite,
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and rb = rtankb + xs is the mass m1 position in the body frame.

A state-space has the usual form

ẋ = Ax+Bu (3.98)

y = Cx+Du (3.99)

The state vector is defined as:

x = [xb ẋb]
T (3.100)

The output variable y is defined as:

y = [F slosh
b T slosh

b ]T (3.101)

The state space input u needs to contain the acceleration acting on the satellite γin
b but

also the torques. Assuming that a torque T in
b is acting on the satellite, then:

ω̇bI
b =

T in
b

Ib
(3.102)

where Ib is the satellite moment of inertia and ω̇bI
b appears in (3.97). Thus,

u = [γin
b ω̇bI

b ]T (3.103)

The state space matrices A, B, C and D can then be obtained linearising equations (3.96)
and (3.95). The linearisation points are x̄ = ū = 0. The MATLAB®code is provided in
Appendix D.2.5.

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

ωy
2 − ks

m1
+ ωz

2 −ωx ωy −ωx ωz − cs
m1

2ωz −2ωy

−ωx ωy ωx
2 − ks

m1
+ ωz

2 −ωy ωz −2ωz − cs
m1

2ωx

−ωx ωz −ωy ωz ωx
2 − ks

m1
+ ωy

2 2ωy −2ωx − cs
m1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.104)
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B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 −rtankz rtanky

0 1 0 rtankz 0 −rtankx

0 0 1 −rtanky rtankx 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3.105)

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ks 0 0 cs 0 0

0 ks 0 0 cs 0

0 0 ks 0 0 cs
0 −ks r

tank
z ks r

tank
y 0 −cs r

tank
z cs r

tank
y

ks r
tank
z 0 −ks r

tank
x cs r

tank
z 0 −cs r

tank
x

−ks r
tank
y ks r

tank
x 0 −cs r

tank
y cs r

tank
x 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3.106)

Finally, the matrix D = 0.

In the state-space matrix A, ωbI
b ≡ ω and is the satellite rotation in the inertial frame.

This is left as a free parameter and can be adjusted depending on the mission. For inertial
pointing modes:

ω = 0 (3.107)

but for orbital RVD when the satellite is aligned with the orbital frame:

ω =

⎡⎢⎣ 0

−ωo

0

⎤⎥⎦ (3.108)

where ωo is the usual orbital mean motion.

The values for fs =
1
2π

√
ks
m1

, the natural frequency, and cs are given in [101]:

• fs ∈ [0.01; 0.04] Hz

• cs ∈ [0.16; 0.5] s−1

As mentioned earlier, these values are valid for the ATV fuel tanks which are spherical
with conical anti-slosh baffles.

The ATV had four separate tanks, each containing ∼ 1200 kg of fuel [101]. The tanks
size and important fuel mass explain the low natural frequency. This value is expected
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to be higher for CubeSats. The cold-gas propulsion system is composed of two tanks
each containing 1 kg of liquid butane. The natural frequency of this system due to the
tanks size is expected to be much higher and thus, using the ATV’s values instead is
conservative.

With this sloshing model, the perturbations are two orders of magnitude smaller than
the available actuation forces and torques.

3.5.3 Dynamics Poles and Zeros

Among all the internal and external perturbations, only the fuel sloshing is explicitly
included in the P2P dynamics. The other sources of perturbations will be accounted for
during the controllers’ synthesis and in the simulations. Because the cs and fs values for
the sloshing dynamics are uncertain but bounded, mid-range values have been selected,
i.e. cs = 0.33 s−1 and fs = 0.025 Hz. The poles and zeros of the plant without sloshing
are provided in Figure 3.8 and in Figure 3.9 with the sloshing dynamics.

Figure 3.8 – Dynamics poles and zeros without sloshing.

The pairs of complex conjugate poles originate from the oscillatory behaviour of the fuel
sloshing and relative orbital dynamics. As no zeros are laying on the right-half plane, the
controllers will not have any limitations on the achievable bandwidth and performance.
However, due to plant uncertainties, the zeros close to the origin may migrate to the
right-half plane thus limiting the achievable performance.

Using the bounded values for cs and fs, uncertain plants can be sampled and their poles
and zeros are provided in Figure 3.10. The zeros are coming from the sloshing dynamics
as the P2P does not have any zeros. The uncertainties are moving the left-half plane zeros
closer to the origin. When all the uncertainties are considered, they may cross it and
become right-half plane zeros, which could limit the achievable bandwidth (see Chapter
5). For MIMO systems, right-half plane zeros can be moved to a less important output
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and are thus less restricting than for SISO system [286, p. 236]. For the P2P dynamics,
all the output are of equal importance, and such a technique could not be envisaged.

Figure 3.9 – Dynamics poles and zeros with cs = 0.33s−1 and fs = 0.025 Hz. A zoom
on the origin is provided in Figure 3.10.

Figure 3.10 – Dynamics poles and zeros for uncertain sloshing parameters:
cs ∈ [0.16; 0.5] s−1 and fs ∈ [0.01; 0.04] Hz. The circles and crosses are the nom-
inal zeros and poles. The dots are the sampled values.
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In this chapter, a complete package that includes the navigation system and docking
mechanism is presented. Their developments have been conducted in parallel, and the
complete docking package holds in an overall volume of 500 cm3 (0.5U), satisfying the
mission requirements given in Section 2.7.

The docking mechanism has been designed and tested in the frame of EPFL semester
and master projects. The requirements and navigation solution developed within this
research have been used as a starting point for the docking mechanism design. Both the
navigation solution the docking mechanism developments have been published [260,261].

Based on the available sensors, the attitude determination filter will be derived. The
sensors choice will significantly influence the expected performances. It is thus necessary
to explicitly include this filter in the simulations. However, the CDGPS filter is mainly
influenced by the quality of the reception antennas and electronics. Modelling such effects
are out of the scope of this thesis. Consequently, the CDGPS performances described in
Section 1.2.1 are used and modelled merely by a white-noise.

4.1 Vision-Based Navigation

The closed-loop control accuracy required at docking is 5 mm lateral and 1 deg along
each axis (see Section 2.7). As defined in Section 2.1.6, the chaser is always approaching
the target docking port from the −x̂ direction and the 6 DoF P2P dynamics (see Section
3.4), which includes the coupling between rotations and translations, can be used.

Several solutions exist to solve the navigation problem for docking; these have been
discussed in Section 1.2.1. The MIT SPHERES navigation approach, flying within the
ISS, requires the detection of four passive fiducial markers [76,77]. The primary advantage
of such a solution is that these markers can be positioned on any surface, and no power
other than for the camera is required. However, for CubeSat RVD, this compact solution
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has some disadvantages:

1. Specific illumination conditions are required to observe the markers.

2. Important images processing algorithms have to be used to detect the markers.

3. Non-linear solvers are required to compute the navigation solution. The markers
are used to construct non-linear co-linearity equations [78] used to iteratively solve
the exterior orientation problem [79] to obtain the 6 DoF relative state estimate.

4. The relative state estimate is filtered separately.

The illumination condition problem has been solved in [81]. Here, four active LEDs
are used and observed by a monocular camera. The LEDs are detected using an edge
detection algorithm. The 6 DoF navigation solution is then obtained by solving the
perspective 3-points problem [74]. Two different patterns are used as shown in Figure 4.1.

Figure 4.1 – VBN using LEDs fiducial markers [81].

The pattern composed of LEDs L1 to L4 is used for far range and has been tested up
to 0.85 m. At a range of 0.38 m, LEDs pattern handover will occur. The inner pattern,
composed of LEDs S1 to S3, will provide higher accuracy for the docking. The navigation
system has been designed to accommodate a docking mechanism [256] (see Figure 4.2)
and the complete package has been tested in a lab [255].

The mechanism used with this navigation system has already been presented in Section
1.2.4. It relies on four powerful electromagnets individually actuated requiring the chaser
and target to be 15 cm apart [256] . At this point, the GNC is switched off, and the
electromagnets take over, steering the two satellites up to docking.
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Figure 4.2 – CubeSat docking port and navigation system [255].

This compact solution may be used for CubeSat RVD, however, several points need to be
addressed:

• Performing a handover between the two LEDs patterns at a range of ∼ 40 cm
includes a high risk of collision as in case of failure such a short relative range limits
possible contingency plans.

• Solving the perspective 3-points problem requires 12 distinct steps and does not
take into account relative dynamics and sensor noise.

• The navigation has been tested only up to a range of ∼ 1 m.

• Robustness to illumination conditions has not been discussed and is an important
point (see Section 1.1).

• Switching off the GNC before docking and leaving the steering only to electromagnets
implies important safety issues.

• The electromagnets will interact with the Earth’s magnetic field, and the resulting
disturbances must be evaluated to ensure that the GNC can compensate the induced
perturbations.

The VBN developed in this thesis will not rely on the perspective 3-points problem as a
more classical approach, involving Kalman filtering, is preferred. The advantage is that
the sensor noise can be directly accounted for in 6 DoF state determination and, in case
of temporary sensor failure, the state vector can be propagated using the P2P dynamics.

Camille Pirat, December 14, 2018 77



Chapter 4. Navigation & Docking System

The docking mechanism presented in this thesis, which will accommodate the VBN, will
require a 6 DoF control until physical contact. As opposed to the magnetic solution
mentioned above, a precise GNC providing 1 deg and 5 mm relative positioning is required.
This approach leads to a predictable motion and guarantees the performance all the way
until a controlled physical contact is made. The VBN solution presented hereafter is a
first step to achieve this accuracy.

4.1.1 Pinhole Camera Model

The VBN is based on the pinhole camera model, shown in Figure 4.3.

focal length, f

inverted image 
projection, d

object,
D

range, R

Figure 4.3 – Pinhole camera model.

Using this model, knowing the size of the object D and the camera focal length f , the
range R can be deducted from the image size d:

R =
f

d
D (4.1)

A 3D object in the real world, described by a coordinate vector M = [X Y Z]T, can be
transformed into its 2D image m = [u v]T using a homotopy [287]:

sm̃ = A[R t]M̃ (4.2)

where m̃ and M̃ have been augmented adding a 1 as the last element, and s is an
arbitrary scale factor.

The matrix A is called the intrinsic parameters matrix and is defined as:

A =

⎡⎢⎣
f
px

c u0

0 f
py

v0

0 0 1

⎤⎥⎦ (4.3)

f is the focal length, px and py the pixel size, c a skew factor representing non-orthogonal
pixels and [u0 v0]

T the optical centre coordinates. [R t], called the extrinsic parameters
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matrix, represents the rotation and translation of the camera with respect to the object.

In practice, a pinhole model is not representative of a real optical system due to sensors
imperfections and optical aberrations such as radial and tangential distortions.

Non-linear radial and tangential distortions can be included in the pinhole model [288].
The radial distortion is:[

δur
δvr

]
=

[
u(k1r + k2r

2 + k3r
6 + ...)

v(k1r + k2r
2 + k3r

6 + ...)

]
(4.4)

where ki, i = 1, 2, ... are the lens radial distortion coefficients, and r =
√

(u2 + v2).

The tangential distortion is modelled as:[
δut
δvt

]
=

[
2p1uv + p2(r

2 + 2u2)

p1(r
2 + 2v2) + 2p2uv

]
(4.5)

where p1 and p2 are tangential distortion coefficients.

The real image points are thus:[
u′

v′

]
=

[
u+ δur + δut
v + δvr + δvt

]
(4.6)

Solving the model (4.2) and estimating distortion coefficients can be done using the
algorithm proposed in [287] and requires a non-linear least-square minimisation.

In practice, however, the intrinsic matrix A, and tangential and radial distortions effects
can be determined a priori using dedicated calibration methods. Remains the extrinsic
matrix [R t] which can be obtained by solving the perspective n-points problem or using
the approach described hereafter.

4.1.2 Cross-Shaped Patterns

This method relies on observing sets of markers positioned in a cross-shaped pattern,
with one out-of-plane marker, as proposed in [9,88,89]. As explained in Section 1.2.1, the
position can be determined by solving non-linear equations, formed by the observation
vectors between the ith marker and the camera sensor, using a Newton-Raphson solver.
The observation vectors are then fed in a TRIAD or QUEST algorithm [24] to get the
relative attitude. Such an approach suffers from the fact that two different algorithms
are needed to obtain the relative position and attitude, and that the obtained solution
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must still be filtered.

For the ATV, this pattern was viewed by a monocular camera placed on the ISS. It
could then provide a very effective visual indication of the ATV’s relative attitude and
position [9,89]. An analytical solution for the LoS (Azimuth and Elevation angles, see
Figure 4.5) and attitude angles determination is provided in [89] and was used by the
ISS crew to monitor the docking. This solution relies on the requirement that for RVD,
relative attitude and LoS angles are small and thus decoupled from each other. Although
perfectly valid for the ATV, this may not be the case if the pattern and camera sensor
are not aligned.

A pattern example is provided in Figure 4.4.

pitch

yaw

roll relative attitude
angles

E

A

R

R = range
A = azimuth
E = elevation

Figure 4.4 – Example of cross-shaped pattern with out-of-plane marker [9].

From a cross pattern, and for small angles, the centre of the pattern provides the
LoS angles, and the position of the out-of-plane LED with respect to the centre gives
the pitch and yaw relative angles [9, 89]. Here, “small” means that the approximation
sin (α) ≈ α is valid, as in this limit the rotation angles are decoupled from each other and
perspective effects are negligible. For example, using this technique, two 10 deg pitch
and yaw rotations lead to a determination error of ≈ 0.2 deg. This may seem small but
can become significant when combined with coupling effects and range determination
errors. Furthermore, the range, required to get the attitude and LoS angles, can only be
recovered by determining the major axis of the ellipse fitting the beacons’ pattern and is
computationally expensive. Finally, this approach does not reflect the ambiguity between
the rotations and the translations explicitly.
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x̂nt

ẑnt

ŷnt

x̂nc

ŷnc

ẑnc

Fnt

Fnc

camera
Az

El

Figure 4.5 – Cross-shaped pattern in the target navigation frame Fnt and camera in
the chaser navigation frame Fnc .

(a) Chaser rotation. (b) Target rotation.

(c) Chaser translation.

Figure 4.6 – a) Chaser rotation along it’s +ẑnc axis. b) Target rotation along it’s +ẑnt

axis. c) Chaser translation along +ŷnc .
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The pattern and camera position on the target and chaser satellite navigation frame
Fnt and Fnc are shown in Figure 4.5. Figure 4.6 shows the ambiguity between LoS and
attitude angles and the corresponding relative position between the pattern and the
camera is shown in Figure 4.7.

Focal length

(a) Chaser rotation.

Focal length

(b) Target rotation.

Focal length

(c) Chaser translation.

Figure 4.7 – Pattern/camera orientations corresponding to the images in Figure 4.6.

In Figure 4.6a, the central LED is aligned with the centre of the pattern. The pattern
centre is however not aligned with camera’s optical axis, supposing a chaser translation,
but is, in fact, a chaser rotation. The same problem arises when the target is rotated.
Because of the coupling, a target rotation corresponds to a rotation and a translation
for the chaser, which cannot be identified when looking at Figure 4.6b. In this case, the
rotation would first be detected and corrected. This would then lead to detecting another
translation which would need to be compensated.

In Figure 4.6c, a rotation and a translation would be identified, even though in reality,
the chaser only performed a translation (a target translation would lead to an identical
conclusion). A formulation of the problem including the simultaneous detection of
rotations and translations is more optimal as it would allow performing both corrections
at the same time.

Finally, because of the geometrical property of the pattern and the definition of the
LoS angles (see Figure 4.5), LoS and target attitude angles have the same effect on the
pattern image. To correct for a target rotation γ around ẑnt , the chaser has to make a
translation corresponding to an azimuth angle Az = γ. By doing so, the observed pattern
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corresponds to Figure 4.6a. The chaser can then be rotated by an angle γ around ẑnc to
align the pattern with the camera optical axis. Note that in the ATV case, the solution
shown in Figure 4.4 was used as a monitoring system and not as a navigation solution for
the GNC. A similar system, shown in Figure 4.8, is also used by the cosmonauts during
Soyuz or Progress docking.

Figure 4.8 – Circular pattern with out-of-plane marker used for the Soyuz and Progress
docking monitoring. Credit: NASA.

For the ATV, the VBN system was composed of actively illuminated reflectors. In this
thesis, it has been decided to use LEDs on the target, so an active light source on the
chaser is not required.

4.1.3 Measurement equations

To satisfy the accuracy requirement, several patterns with sizes increasing with the range
are commonly used. For this research, two different LEDs patterns set are chosen and
shown in Figure 4.9.

The central pattern is a cross composed of 4 LEDs with an extra central LED out-of-plane.
All the LEDs are at a distance D from the centre. The outer pattern LEDs are at a
distance D1 from the centre and lie in a plane located at a distance D2 from LED 5. As
explained in [88], only two in-plane LEDs and one out-of-plane are necessary to solve the 6
DoF problem. However, a 5 LEDs cross pattern increases the robustness of the system in
case of an LED failure and also allows having an analytical solution. Furthermore, circular
patterns have the advantage that their centre position is not affected by perspective effects.
The drawback of this symmetry is that, first, it is not possible to determine rotations
unambiguously around the roll axis larger than ±π/2. This discrepancy appearing for
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a

D1

b

1

2

3

4

5
D

D

D2

Figure 4.9 – The central pattern is composed of LEDs 1 to 5, with the 5th LED attached
to the centre of the pattern and out-of-plane. The outer pattern is composed of LEDs a
and b, together with the 5th LED of the central pattern. LEDs a and b are are not in
the same plane as the central pattern and are at a distance D2 from LED 5.

±π/2 can be solved by adding a 6th in-plane LED but was not deemed necessary, as
during RVD the roll angle is always expected to be smaller than ±π/2. Secondly, the
out-of-plane LED leads to additional systems integration constraints.

Figure 4.10 shows the pattern, and the camera in their own navigation frames Fnc and
Fnt , located on the chaser and the target. The pattern is centred and aligned with Fnt

and the fifth out-of-plane LED is oriented towards −x̂nt . The camera focal plane is
centred and aligned with Fnc , and the optical axis is aligned with x̂nc . ymax and zmax are
the camera sensor dimensions in unit length. The navigation frames definition and the
dynamics involved are identical to the ones derived in Section 3.4 for the docking ports.

The position of the chaser navigation frame with respect to the target one, sncnt
nt

, and
the relative attitude Ancnt , mapping Fnt into Fnc , are the sought parameters. The range
between the target and the chaser navigation frames is given by (4.1). However, it does
not take into account perspective effects due to relative rotations. To obtain the true
range, the patterns’ image first needs to be corrected to account for the relative attitude
so as to observe the actual size of the pattern.

The measurement equations are non-linear and relate the observation vectors to the state
vector. In this case, the observation vectors are the LEDs positions on the image plane,
and the state vector is, as for the P2P dynamics:

x = [αncnt , ωncnt
dc

, sncnt
nt

, ṡncnt
nt

]T (4.7)
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}
} }

sncnt
nt

d =
Df

R

Fbt

Fnt

Fnc

Fbc

x̂nt

ẑnt

ŷnt

x̂nc

ŷnc

ẑnc

D }

ymax

zmax

rnt

bt

rnc

bc

CCD

Figure 4.10 – Vision-Based Navigation problem scheme. The LED pattern is attached
to the target navigation frame and the camera is to the chaser one.

with αncnt = [α β γ]T the relative attitude angles related to the DCM Ancnt , ω
ncnt
dc

the
relative rotation rate, sncnt

nt
the relative position, and ṡncnt

nt
the relative velocity.

The measurement equations will be derived for the central LED pattern and can be
applied as such to the outer LED pattern.

The information known and available through the camera measurements is threefold:

1. The known position of the ith LED in the target frame Fnt , scaled down by the
range R = ‖sncnt

nt
‖ and focal length f (see Figure 4.10): xi

nt
, i = 1, ..., 5. The

LEDs positions in the target navigation frame are:

x1
nt

= [0
Df

R
0]T (4.8a)

x2
nt

= [0 0
Df

R
]T (4.8b)

x3
nt

= [0 − Df

R
0]T (4.8c)

x4
nt

= [0 0 − Df

R
]T (4.8d)

x5
nt

= [−Df

R
0 0]T (4.8e)
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2. The measured position of the ith LED on the camera focal plane: xi
nc

= [s1 p
i
y p

i
z]

T, i =

1, ..., 5. Parameters py and pz are the LED position on the camera focal plane
expressed in unit length and s1 is an arbitrary parameter with no physical meaning.

3. The position of the centre of the pattern in Fnc : xc
nc

= [s2 yc zc]T with s2, an
arbitrary parameter having no physical meaning.

The LEDs observed with the camera can thus be related to their true positions:

xi
nc

= Ancntx
i
nt

+ xc
nc
, i = 1, .., 5 (4.9)

Equation (4.9) describes the known position of the ith LED in the target frame Fnt , scaled
by the range R and focal length f . It is then transformed in the frame Fnc and corrected
by the position of the pattern centre, as shown in Figure 4.11. Note that only the second
and third component of xi

nc
constitute the measurement (the first component is along

the optical axis and thus not available).

Ancntx
5
nt

x5
nc

xc
nc 1

2

3

4

5

Figure 4.11 – LEDs pattern as observed by the camera with relative attitude angles.
The position of an LED on the camera sensor is the position of the pattern centre plus
the LED rotated position by the relative attitude matrix.

A priori, any Euler sequence could be used to describe the problem. As mentioned
in Chapter 3, the 3-2-1 sequence is usually preferred for RVD. However, only one
sequence can be used, as a measurement equation containing the LoS and attitude angles,
simultaneously, is being sought. In order to be able to correct for the ambiguity between
LoS and pitch/yaw rotations, the observed pattern needs first to be corrected by the roll
angle. Doing so will allow decoupling the roll angle from the pitch and yaw angles. This
is due to the fact that the first component of xi

nc
is not observable. Consequently, only

one asymmetric Euler sequence will be used and the measurement equations are based on
the 1-2-3 sequence:

Ancnt(α, β, γ) = R123(α, β, γ) = R3(γ)R2(β)R1(α) (4.10)
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Because a chaser displacement, corresponding to LoS angles Az and El, has the same
effect on the pattern image than a target yaw and pitch rotation, the measurement
equations can be written as:

xi
nc

= Ancnt(α, β + El, γ +Az)xi
nt

+ xc
nc
, i = 1, .., 5 (4.11)

The relative attitude angles explicitly appear in (4.11) and sncnt
nt

is used in the definition
of R in xi

nt
. Equation (4.11) is thus a function of the state vector, of the camera, and of

the pattern’s physical parameters.

The pattern centre position xc
nc

= [yc zc]T needs to be related to sncnt
nt

. This is done
using the pinhole camera model.

focal length, f

optical axis
Azmax

Az

y

ymax

Figure 4.12 – Position of an object on the camera image plane. Azmax is the camera
FoV and ymax the sensor size.

As shown in Figure 4.12, for the pinhole model, the following holds:

tan (Az) =
y

f
(4.12a)

tan (Azmax) =
ymax

f
(4.12b)

which means that the pattern centre coordinates can be expressed as:

yc = tan (Az)
ymax

tan (Azmax)
(4.13a)

zc = − tan (El)
zmax

tan (Elmax)
(4.13b)

where ymax and zmax are the size of the camera sensor and Azmax and Elmax are the
maximum value of the FoV along +ŷ and +ẑ. The LoS angles are measured from the
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camera frame Fnc towards the target frame Fnt expressed in Fnc and are defined as:

tan (Az) =
sntnc
nc,y

sntnc
nc,x

(4.14a)

tan (El) =
−sntnc

nc,z(
sntnc
nc,x

2 + sntnc
nc,y

2
)1/2 (4.14b)

They can be related to the state variable sncnt
nt

:

sntnc
nc

= −Ancnt(α, β, γ)s
ncnt
nt

(4.15)

Note that here, the LoS angles have not been included in the attitude matrix as (4.15)
is simply a frame transformation. Only the camera image points, i.e. the observation
vectors, suffer from the LoS and attitude angles ambiguity.

The complete measurement equation for the ith LED can be written:

xi
nc

= Ancnt(α, β + El, γ +Az)xi
nt

+

⎡⎢⎣ 0

tan (Az) ymax

tan (Azmax)

tan (El) zmax
tan (Elmax)

⎤⎥⎦ , i = 1, ..., 5 (4.16)

which, using (4.15) and (4.14), is only a function of the state variables αncnt and sncnt
nt

.

Equation (4.16) can be solved analytically to get the relative attitude and position or
can be used in a filter. These measurement equations are similar to the ones proposed
in [289, 290], where the observation vectors of light sources are constructed using the
camera pinhole model. In their solution, the three components of each vector are used in
the observer design. The equations proposed in this thesis only use two components of
each measurement vector and have the advantage to reflect the position/rotation coupling
explicitly.

This equation is also valid for the two outer LEDs using the specific distances D1 and D2

(see Figure 4.9) and can be used for the whole docking sequence. The position of LEDs a,
b and 5 of the outer pattern are expressed as:

xa
nt

= [0
D1f

R
0]T (4.17a)

xb
nt

= [0 − D1f

R
0]T (4.17b)

x5
nt

= [
D2f

R
0 0]T (4.17c)
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Note that a different frame is used for the outer pattern, as shown in Figure 4.13.

x̂nt

ẑnt

ŷntFnt

}D1
D2 } a

b

5

Figure 4.13 – Outer LED pattern and related navigation frame.

Depending on the inner pattern size and the distance D2 of the 5th LED with respect to
the two outer LEDs, the pitch and yaw angles may be poorly observable, which would
degrade the range estimation. The two measurements of the chaser and target star
trackers can be combined to get the relative attitude angles αncnt

ST and an additional
measurement equation can be obtained, providing direct information on the relative
attitude. The target’s star tracker provides Abto, and the chaser’s provides Abco. Thus,

Ancnt = AncbcAbco (AntbtAbto)
T (4.18)

where, as usual, Ancbc and Antbt are the navigation frames orientations in their respective
body frames, and are fixed.

The 1-2-3 Euler’s angles αncnt
ST can be obtained using the algorithm presented in Appendix

B.1. The measurement equation is then:

αncnt
ST = αncnt (4.19)

As the target star tracker measurement is necessary onboard the chaser, an active ISL is
required between the two satellites. This will add systems constraints during the final
stage of docking, and it is preferable to have a meteorology system for the docking which
is self-sufficient. The patterns should be designed to avoid requiring star trackers.

Onboard each CubeSat, sun sensors and a magnetometer provide measurements which can
be used to obtain the relative attitude. Although their values cannot be directly included
in the measurement equation, the relative attitude angles can be obtained outside the
navigation filter with the TRIAD algorithm, which computes the DCM based on two
vector measurements. The measurement equation then becomes identical to the one used
for the star trackers.
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4.1.4 Analytic Navigation Solution

For the central pattern composed of five LEDs, an analytical solution exists, and αncnt

and sncnt
nt

can be obtained.

Equation (4.16) and the pattern centre coordinates provide a set of ten equations with
six unknowns. This system is overdetermined and a priori no solution exists. A least
squares method could be used to obtain an estimated solution. However, because of
the pattern symmetry, the equations for LED 3 are the same as for LED 1 modulo a
π rotation around the optical axis. The same holds true for LEDs 2 and 4. There are
six linearly independent equations for six unknowns, and thus a single solution (or no
solution) exist.

The coordinates of the five LEDs on the focal plane are denoted [piy, p
i
z]

T, i = 1, ..., 5.

Using LEDs 1 to 4, the centre of the pattern can be obtained. As it is a symmetrical
cross, its centre is not affected by perspective effects and is given by:

yc =
1

4

4∑
i=1

piy (4.20a)

zc =
1

4

4∑
i=1

piz (4.20b)

Each of the LED’s position on the camera sensor can now be expressed with respect to
the pattern centre. For convenience the following notation is used: xi

nc
− xc

nc
≡ x′i. The

general form of x′i is:

x′i =

⎡⎢⎣ 0

x′i
y

x′i
z

⎤⎥⎦ (4.21)

Thus, the available equations are:

x′1
y = d (cos (Az + γ) cos (α)− sin (El + β) sin (Az + γ) sin (α)) (4.22a)

x′1
z = −d cos (El + β) sin (α) (4.22b)

x′2
y = d (cos (Az + γ) sin (α) + sin (El + β) sin (Az + γ) cos (α)) (4.22c)

x′2
z = d cos (El + β) cos (α) (4.22d)

x′3
y = −d (cos (Az + γ) cos (α)− sin (El + β) sin (Az + γ) sin (α)) (4.22e)

x′3
z = d cos (El + β) sin (α) (4.22f)

x′4
y = −d (cos (Az + γ) sin (α) + sin (El + β) sin (Az + γ) cos (α)) (4.22g)

x′4
z = −d cos (El + β) cos (α) (4.22h)
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x′5
y = d cos (El + β) sin (Az + γ) (4.22i)

x′5
z = −d sin (El + β) (4.22j)

where d = Df
R .

Using (4.22b) and (4.22d):

x′1
z

x′2
z

= − tan (α) (4.23)

providing that cos (El + β) �= 0.

Using (4.22i) and (4.22h):

x′5
y

x′4
z

= −sin (Az + γ)

cos (α)
(4.24)

providing that cos (El + β) �= 0.

And finally, using (4.22f) and (4.22j):

x′3
y

x′5
z

=
cos (Az + γ) cos (α)

sin (El + β)
− sin (Az + γ) sin (α) (4.25)

Consequently, (4.16) has the following solution:

α = tan−1

(
−x′1

z

x′2
z

)
(4.26a)

γ +Az = sin−1

(
−x′5

y

x′4
z

cos (α)

)
(4.26b)

β + El = sin−1

(
cos (γ +Az) cos (α)

x′3
y /x

′5
z + sin (γ +Az) sin (α)

)
(4.26c)

The LoS angles can be computed using the pattern centre position (4.20) and (4.13):

Az = tan−1

(
yc

ymax
tan (Azmax)

)
(4.27a)

El = tan−1

(
zc

zmax
tan (Elmax)

)
(4.27b)
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Thus:

α = tan−1

(
−x′1

z

x′2
z

)
(4.28a)

γ = sin−1

(
−x′5

y

x′4
z

cos (α)

)
− tan−1

(
yc

ymax
tan (Azmax)

)
(4.28b)

β = sin−1

(
cos (γ +Az) cos (α)

x′3
y /x

′5
z + sin (γ +Az) sin (α)

)
− tan−1

(
zc

zmax
tan (Elmax)

)
(4.28c)

with the following restriction:

|El + β| �= π

2
(4.29)

The range R can be obtained using (4.22b):

R =
Df

x′1
y

(cos (α) cos (γ +Az)− sin (α) sin (γ +Az) sin (β + El)) (4.30)

Finally sncnt
nt

can be computed by first building the vector sntnc
nc

:

sntnc
nc

=

⎡⎢⎣R cos(Az) cos(El)

R sin(Az)cos(El)

−R sin(El)

⎤⎥⎦ (4.31)

Transforming it back to the Fnt frame leads to:

sncnt
nt

= −RT
123(α, β, γ)s

ntnc
nc

(4.32)

This algorithm has the great advantage of providing immediate access to the navigation
solution. It would be useless if one of the 5 LEDs were to fail or if roll rotations larger
than π/2 were performed. The latter is not expected for RVD. Finally, the constraint
|El+β| �= π

2 is not violated as the pattern geometry implies |El+β| < π
4 and |Az+γ| < π

4 .
The out-of-plane LED could otherwise hide individual LEDs composing the cross.

A filtered solution is preferred as a primary navigation layer as it is tolerant to LED
failures. The analytical solution can be used as a watchdog, alongside the covariance
matrix of the EKF, monitoring the navigation filter potential divergence. The use of the
analytical solution carries risk due to its higher noise density and should be analysed
carefully. If the navigation filter diverges, the analytical solution can be used to continue
the docking, or as a contingency navigation mode bringing the chaser to a predefined safe
hold-point, which is yet to be defined depending on mission and systems constraints.
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4.2 VBN Filter

The VBN filter is based on the well-known EKF. Kalman filtering is a form of sequential
state estimation based on weak stationary stochastic processes. An exhaustive discussion
on this topic can be found in [291]. For full-order estimators such as the Luenberger
observer, the poles have to be selected manually to obtain stability while satisfying
signal filtering requirements. In Kalman filters, the poles are rigorously placed using
the stochastic properties of measurement and model errors. Kalman filtering, in its
linear or non-linear formulation, assumes non-correlated, zero-mean Gaussian white-noise
processes.

4.2.1 Discrete-Time Kalman Filter

A discrete linear system, considering stochastic noises, takes the form:

xk+1 = Fkxk +Bkuk +Υkwk (4.33a)

yk = Hkxk + vk (4.33b)

wk and vk are non-correlated zero-mean Gaussian white-noises:

E
{
wkw

T
j

}
=

{
0 k �= j

Qk k = j
(4.34a)

E
{
vkv

T
j

}
=

{
0 k �= j

Rk k = j
(4.34b)

E
{
vkw

T
k

}
= 0 ∀k (4.34c)

where E {x} is the expected value of x. Qk and Rk are discrete-time covariance matrices.

The measurement equation (4.33b) relates the observation vector yk to the state vector
xk .

From the continuous-time state-space matrices A and B, their discrete versions are given
by:

Fk = eAΔt (4.35a)

Bk =

[∫ Δt

0
dτeAτ

]
B (4.35b)

where Δt is the sampling time.
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The discrete time Kalman filter is presented in Table 4.1.

Table 4.1 – Discrete-time Kalman filter.

Model xk+1 = Fkxk +Bkuk +Υkwk, wk ∼ N (0, Qk)

yk = Hkxk + vk, vk ∼ N (0, Rk)

Initialise x̂0 = x0

P0 = E
{
x̃0x̃

T
0

}
Innovation Δyk =

[
ỹk −Hkx̂

−
k

]
Sk =

[
HkP

−
k HT

k +Rk

]
Gain Kk = P−

k HT
k S

−1
k

Update x̂+
k = x̂−

k +KkΔyk

P+
k = [1 −KkHk]P

−
k

Propagate x̂−
k+1 = Fkx̂

+
k +Bkuk

P−
k+1 = FkP

+
k FT

k +ΥkQkΥ
T
k

In Table 4.1, x̃ ≡ x̂− x and x̂ is the estimated variable, and ỹk is the measured value of
yk. The subscript + designates the a posteriori value and the − the a priori value.

P is the covariance matrix of the system. The square root of its diagonal represents the
estimation error covariance of the state estimation error. However, in orbit, a reference
value of the state is not available, and the estimation error cannot be computed to assess
the filter performances.

The filter performance can be assessed using the values computed during the innovation
step. The innovation error covariance, given by the square root of the innovation covariance
Sk diagonal, can be compared to the measurement innovation error Δyk. If the error
covariance does not correspond to the measurement innovation error, the filter sensor
noise or dynamics process noise covariance matrices Rk and Qk, are probably badly tuned
or that a sensor is defective [292].

The effect of the sensor noise covariance matrix is illustrated in Figures 4.14, 4.15, and
4.16.
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In this example, an EKF is fed with a star tracker measurement and estimates the attitude.
The attitude determination problem will be further discussed in Section 4.6. When the
measurement noise covariance matrix is well tuned, the estimation and innovation errors
are well bounded by their respective covariance errors. This is a good indication that the
filter is well tuned.

(a) Estimation error and 1σ bound covariance error.

(b) Innovation error and 1σ bound innovation covariance.

Figure 4.14 – EKF with near optimal tuning parameters. The estimation and innovation
errors are consistent with their respective covariance errors. The EKF is close to an
optimal tuning.
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(a) Estimation error and 1σ bound covariance error.

(b) Innovation error and 1σ bound innovation covariance.

Figure 4.15 – EKF with an over-filtered measurement. The innovation error is much
smaller than the innovation covariance meaning that the measurement covariance matrix
Rk parameters are too large.

If the estimation and innovation measurement errors are not consistent with their respec-
tive covariance errors, it indicates poorly tuned filters.

Consequently, although the estimation error cannot be computed in orbit, the Kalman
filter innovation step contains information which can be used to assess its performances.

96 Camille Pirat, December 14, 2018



4.2. VBN Filter

(a) Estimation error and 1σ bound covariance error.

(b) Innovation error and 1σ bound innovation covariance.

Figure 4.16 – EKF with an under-filtered measurement. The innovation error is much
larger than the innovation covariance meaning that the measurement covariance matrix
Rk parameters are too small.

4.2.2 Discrete-Continuous Extended Kalman Filter

In most cases, the measurement equations and the dynamics are non-linear and continuous:

ẋ = f(x,u) +Gw (4.36a)

y = h(x) + v (4.36b)

However, the measurements provided by the sensors are mostly discrete. The dynamics
and the measurement equations can be linearised, discretised and the discrete-time Kalman
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filter can be used. Another solution is to use the EKF formulation, which takes benefit
from the non-linear equations during the innovation and propagation steps, but using
discrete measurements. However, for onboard implementation, it is preferable to perform
the propagation steps with a discrete state-space as this requires less computational
resources. Furthermore, the VBN is only used in close-range where non-linearities are
small, as shown in Section 3.4.

The state-vector discrete propagation is given by (4.33a). For the covariance matrix
propagation, special care must be given to the process noise covariance matrix Qk if it
is originally defined using a continuous-time system. For the P2P dynamics discussed
in Section 3.4 the environmental and sloshing perturbation errors are continuous. The
continuous-time covariance matrix propagation is expressed as:

Ṗ = AP + PAT +GQGT (4.37)

where Q is the process noise matrix which defines w in (4.36a): w ∼ N (0, Q).

It can be shown that when the sampling time Δt is below Nyquist’s limit, the following
is true [291, p. 172]:

ΥkQkΥ
T
k = ΔtGQGT (4.38)

Using the linearised P2P dynamics and the non-linear measurement equations (4.16),
which are of the form y = h(x) and can be used with discrete or continuous variables,
the Continuous-Discrete EKF is provided in Table 4.2.

Special care must be taken during the update step, as some of the components of the
state vector are Euler angles and thus not additive. The update equation has the form:

z+ = z− +Δz (4.39)

For non-additive angles, it becomes:

R123(α
+, β+, γ+) = R123(Δα,Δβ,Δγ)R123(α

−, β−, γ−) (4.40)

The updated angles can then be obtained using the algorithm presented in Appendix B.1.

The process noise covariance matrix involved in the filtering has the following structure:

Q = diag
[
σ2
α σ2

ω σ2
s σ2

ṡ

]
(4.41)
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Table 4.2 – Continuous-Discrete Extended Kalman filter. x̄, ū are the fixed linearisation
points of the non-linear dynamics.

Model ẋ = f(x,u) +Gw, w ∼ N (0, Q)

yk = h(xk) + vk, vk ∼ N (0, Rk)

Initialise x̂0 = x0

P0 = E
{
x̃0x̃

T
0

}
Innovation Δyk =

[
ỹk − h(x̂−

k )
]

Sk =
[
Hk(x̂

−
k )P

−
k HT

k (x̂
−
k ) +Rk

]
Hk(x̂

−
k ) =

∂h
∂x

∣∣
x̂−
k

Gain Kk = P−
k HT

k (x̂
−
k )S

−1
k

Update x̂+
k = x̂−

k +KkΔyk

P+
k = [1 −KkHk]P

−
k

Propagate x̂−
k+1 = Fkx̂

+
k +Bkuk

P−
k+1 = FkP

+
k FT

k +ΔtGQGT

Fk = eAΔt, with A = ∂f
∂x

∣∣∣
x̄,ū

Bk =
[∫ Δt

0 dτ eAτ
]
B, with B = ∂f

∂u

∣∣∣
x̄,ū

The attitude angles and the position are uniquely determined by their respective dynamics.
Given an initial condition, their value can be obtained by respectively integrating the
rotation rate and the velocity. Thus σ2

α = σ2
s = 0. The values for σ2

ω and σ2
ṡ will need to

be selected to achieve the required filter accuracy.

The danger with such filters lies in the fact that the Kalman gain must be recomputed
at each sampling time, increasing the chances of divergence. This can be avoided by
selecting steady-state Kalman filters in which asymptotic values are used to pre-compute
a constant gain. This solves the divergence problem, but the filter will require more time
to converge.
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For the VBN, this approach cannot be used, as the measurement equations (4.16) depend
explicitly on the state-vector. Asymptotic values can thus not be obtained. However, as
discussed, the analytical solution can be used to monitor the EKF performance and as a
backup in case of failure.

Two different EKFs are needed:

1. The first filter will use the outer and central LEDs combined with the star trackers
measurements that the chaser and target are providing. This filter is used in the 10
m to 5 m range.

2. The second filter will rely only on the 5 LEDs of the central cross pattern and will
be used from 5 m until docking.

As using the ISL communication adds a potential point of failure, the VBN for the final
5 m will not include the star trackers measurements and only rely on the camera. This
choice impacts the sizing of the central pattern.

4.2.3 Outer Pattern Measurement Equations

The observation vector yk of the outer pattern contains the LEDs image in the camera
frame and is described by (4.16). The LEDs positions on this image are given by the
second and third components of xi

nc
, i = a, b, 5. The observation vector contains, in

addition, the relative attitude angles provided by the star trackers (4.19). The vector yk

has the following form:

yk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xa
nc,y

xa
nc,z

xb
nc,y

xb
nc,z

x5
nc,y

x5
nc,z

αST

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= h(αncnt , ωncnt

dc
, sncnt

nt
, ṡncnt

nt
) (4.42)

(4.42) must be linearised around the state vector’s current best estimate. The matrix
H = ∂h

x has been computed using the MATLAB® code provided in Appendix D.2.6.

The associated measurement noise covariance matrix has the following form:

Rk = diag
[
σ2
xa
nc,y

σ2
xa
nc,z

σ2
xb
nc,y

σ2
xb
nc,z

σ2
x5
nc,y

σ2
x5
nc,z

σ2
αST

σ2
βST

σ2
γST

]
(4.43)

The measurement noise will be determine in Section 4.5
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4.2.4 Inner Pattern Measurement Equations

For the inner pattern, the observation vector yk is composed of the LEDs image in the
camera frame. They are described by the second and third components of xi

nc
, i = 1, ..., 5,

given by (4.16):

yk =

⎡⎢⎢⎢⎢⎢⎢⎣
x1
nc,y

x1
nc,z
...

x5
nc,y

x5
nc,z

⎤⎥⎥⎥⎥⎥⎥⎦ = h(αncnt , ωncnt
dc

, sncnt
nt

, ṡncnt
nt

) (4.44)

(4.44) must then be linearised around the state vector’s current best estimate. The matrix
H = ∂h

x has been computed using the MATLAB® code provided in Appendix D.2.7.

The associated measurement noise covariance matrix has the following form:

Rk = diag
[
σ2
x1
nc,y

σ2
x1
nc,z

. . . σ2
x5
nc,y

σ2
x5
nc,z

]
(4.45)

The measurement noise will be determined in Section 4.5.

Similarly to the controllability matrix, an observability matrix can be built:

O = [H HA HA2 ... HAn−1]T (4.46)

For both LEDs pattern, O is full rank and the problem is thus observable.

4.3 VBN Hardware

The sizing of the outer LED pattern is driven by the choice that the docking system
(docking mechanism and metrology system) shall fit in a 10× 10 cm surface, constraining
D1 = 5 cm (Figure 4.9). The handover between the outer and inner pattern will be
performed at 5 m range. The inner pattern dimension must provide sufficient accuracy at
5 m, and also be small enough to remain observable up to docking. Note that to avoid
significant image distortions, a fish-eye optic is not an option. The pattern layout must
also take into account the volume of the docking mechanism. A trade-off between pattern
and mechanism led to a distance D = 2 cm.

For a Charge Coupled Device (CCD) type sensor, the typical error is one pixel. Thus if a
feature of known size D is observed, an error of n pixel (in mm) on the image d translates
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into an error ε:

ε = R− Df

n+ Df
R

(4.47)

Thus, the smaller the pixel size and the larger the focal length, the lower the error.

Furthermore, the CCD size is directly related to the camera FoV and thus constrains the
minimum distance from which a pattern of size D can be observed.

In order to satisfy the accuracy requirements, patterns used in far range are typically
observed with a narrow-angle camera and, in close range, by a wide-angle camera. The
limited volume available restricts the amount of camera to one. Consequently, according
to (4.47), the required camera must have a small pixel size, to reduce errors in far range,
and a large FoV, to be able to observe the pattern until docking. This combination will
ensure to meet the required navigation accuracy up to docking.

No CubeSat-specific COTS camera, satisfying these properties, has been identified. The
mono-chromatic Basler ACE camera acA3800-10um comes closest to the requirements
[293]. This sensor has a size of 2764×3856 pixels and a pixel size of 1.67 μm. The camera
can run at a maximum speed of 14 Frame Per Second (FPS). An optic with a 4 mm focal
length is selected [294].

This camera/optic combination has a total FoV of ≈ 60 deg. Due to its small size and
weight, this solution is compatible with CubeSat form factors. The camera will be placed
4 cm behind the chaser’s panel and the cross pattern in a 3 cm recess on the target. This
configuration also provides baffle-like protection for the camera. The two outer LEDs
are positioned on the target’s panel. Figure 4.17 shows the hardware disposition and
dimensions. Although this configuration (only 1 cm between the front surface and central
LED) makes pitch and yaw angles poorly observable when using the outer pattern, this is
not a problem as from 10 m to 5 m, the star trackers outputs are part of the measurement
equations.

The configuration depicted in Figure 4.17 implies that to be able to observe the LEDs,
the chaser camera FoV has to intercept the LEDs visibility cone. At the final stage of
the docking, the camera is still 7 cm away from the central pattern which ensures that it
remains visible throughout the manoeuvre. At this distance, the central LED pattern has
an angular diameter of 32 deg, smaller than the 60 deg camera’s full FoV. A longer focal
length could have been selected to increase accuracy in far range. However, GNC errors
at the moment of docking can be as large as 5 mm and 1 deg. At 7 cm, 5 mm corresponds
to a LoS displacement of 4.1 deg. Thus, a minimum full FoV of 42 deg (corresponding to
a 6 mm focal length) is necessary, to cope with the GNC errors. The selected 4 mm focal
length provides acceptable margins. The camera, shown in Figure 4.18, has dimensions
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camera

Target Chaser

4cm

1cm

2cm
5cm

5cm

2cm

visibility cone

Figure 4.17 – Position of the two LED patterns and camera in the target and chaser
structures. The dashed lines represent the LEDs visibility cone.

of 41× 29× 29 mm and 70× 29× 29 mm including optics, i.e. 0.03 U. The total mass is
163 g.

Figure 4.18 – Basler ACE camera acA3800-10um and 4 mm focal length optic [293].

The camera sensor has its peak quantum efficiency at 460 nm. LEDs emitting in the
blue part of the spectrum are thus selected. To minimize the influence of stray light and
potential Sun blinding, a bandpass filter is used. The COTS filter peak transmission is at
470 nm [295]. The selected LEDs have a peak emission at 470 nm, a viewing angle of 80
deg and a luminous intensity of 17 cd at 350 mA.

4.4 LEDs Detection and Tracking

The EKF takes as input the LEDs positions on the CCD which have to be detected on
the camera image. Even though several algorithms can be used to detect forms on images,
in order to keep the computational load at the lowest possible level, Blob analysis of
the MATLAB® Computer Vision System toolbox is selected. This algorithm detects
connected regions (blobs) on a binary image without extensive mathematical operations.
The basic working principle of blob analysis is shown in Figure 4.19.

First, the binary image is obtained by thresholding the grayscale image; all pixels with
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(a) Grayscale image. (b) Binary image.

Figure 4.19 – Grayscale to binary image conversion using thresholding and connected
region detection.

a value higher than the threshold are converted to white and the other to black. Then,
all the connected white pixels are gathered in blobs (or centroids). The LEDs centroid
coordinates are then fed to the EKF (4.16) or to the analytical solution (4.22).

The drawback of such a simple algorithm is that there is no a priori way to reject
undesired signals. As opposed to the Hough transform or more advanced image processing
algorithms, which can detect specific shapes, the connected region algorithm detects any
blob of white pixels. Note that the connected region algorithm is capable of characterising
the centroid shape, i.e. computing its semi-major and -minor axes. As each LED blob
should be close to circular, it should be possible to exclude non-circular centroids. However,
as in far-rage each LED only covers a few pixels, and the circularity becomes difficult to
assess, this option is discarded.

To be interesting for CubeSats, the proposed VBN should allow docking in any illumination
conditions in order to minimise operation time and to increase robustness during final
approach. Parasite signals on the image due to Sunlight (reflections on the target structure,
blinding, stray light, Earth albedo) or any other signals appearing on the CCD due to
radiations, must be expected and a robust detection algorithm is required.

The case when part of the Earth is in the camera FoV can be easily dealt with by
discarding blobs connected to the sensor border. The LEDs are surrounded by the
CubeSat structure, and because of the FoV size, the LEDs images will never be close to
the sensor border.

Two cases have to be considered:
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1. The VBN filter has converged and its precision allows active tracking of the LEDs.

2. The VBN is not yet initialised or its precision is not within requirements; active
tracking of each LED cannot be performed. This can be solved using the geometrical
properties of the two patterns .

When the VBN filter has converged, active tracking of the LEDs is achieved with help
of the measurement equations (4.42), (4.44), as well as the navigation filter prediction
x̂−
k to obtain their a priori estimated position within a certain confidence interval, given

by the EKF covariance. The filter covariance defined a Region of Interest (ROI) on the
image which will reduce the number of pixels that the connected region algorithm has to
analyse (see Figure 4.20). Windowing the image will also reduce the number of parasite
signals that the camera may detect. Furthermore, a confidence interval on the predicted
LEDs position can be obtained defining ROIs around each LED. This represents their
predicted location.

Figure 4.20 – Generated image of the central LED pattern observed by the camera.
The total ROI is displayed as well as each individual LED ROI. The cross markers are
the LEDs a priori positions.

Assuming n LEDs have to be observed (xi
nc

, i = 1, ..., n) and m connected regions are
detected (xj

blob, j = 1, ...,m); if m > n, n blobs among m regions need to be selected.
The a priori position of each LED is provided by the EKF:

x̂i
nc

= h
(
x̂−
k

)
(4.48)

where h(x) is the EKF measurement equation (4.36b). The norm between each estimate
and each signal can be calculated

‖x̂i
nc

− xj
blob‖, i = 1 , ..., n, j = 1 , ..., m (4.49)
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and is shown in Figure 4.21. The n connected regions which are closest to the a priori
positions can then be selected. This tracking method works for both the inner and the
outer patterns.

Note that if a parasite signal within a LED ROI is selected by mistake, the navigation
solution is marginally impacted as the wrong signal position is in the order of the current
estimation error.

‖x̂5
nc

− xl
blob‖‖x̂5

nc
− xj

blob‖

Figure 4.21 – The gray crosses are the a priori estimated LEDs’ positions x̂i
nc

,
i = 1, ..., 5. The black elements are signals detected on the CCD.

If the VBN filter did not converge, the individual tracking of each LED is not possible,
and another solution must be used.

4.4.1 Geometrical Features

A first iteration to solve the detection problem involved machine learning. Classifiers,
with the number of inputs equal to the number of LEDs’ coordinates on the CCD, were
trained and compared among themselves. The best classifier, a decision tree, detected
the LEDs in 80% of the cases. The remaining false positives were groups of blobs which
had similar patterns but not in the same proportions. It was then decided to extract
geometrical features from the patterns and use them to train the classifiers. Better results
were obtained, with 93% detection rate using a decision tree. As a decision tree is doing
nothing more than comparing features’ values against expected values obtained during the
classifier training, and as geometrical features and expected values can be easily computed,
it was decided to perform the selection manually. This approach was preferred to the
machine learning algorithm as it removed the “black box” disadvantage of a classifier.

Because the two patterns have fixed geometrical properties, features can easily be extracted.
Figure 4.22 shows the features for the external and internal patterns.

For the external pattern (Figure 4.22a), define:
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d1
d2

α

β

d3

(a) External pattern.

d1

d2

d3

d4

α1

β
γ

d2,4

(b) Internal pattern.

Figure 4.22 – Geometrical features of the two different LEDs patterns.

• d1 and d2 the lengths between the central and outer LEDs.

• d3 the length between the two outer LED’s.

The features are then:

1. α, the angle between d1 and d2.

2. β, the angle between d3 and the sensor horizontal coordinate.

3. d1/d2, the ratio between the outer and central LEDs.

4. d3 the pattern size.

As the perspective effects caused by control and navigation errors are small, the angle α is
expected to be always close to π. The maximum expected attitude errors are known and
boundaries for α can be predicted. The distance ratio between the outer LEDs and the
central LED, d1/d2, is expected to be close to unity. The pattern should be aligned with
the camera sensor horizon, and β must be close to zero. Finally, the expected maximum
and minimum number of pixels between the two outer LEDs can be obtained using (4.1).
The upper bound for this value is given at 5 m and the lower bound at a 10 m range.
The feature vector is thus:

douter =

[
α, β,

d1
d2

, d3

]
(4.50)

For the central pattern, shown in Figure 4.22b, the features extracted are similar than
for the outer pattern. The following values are defined:

• di, i = 1, ..., 4 the lengths between the central and outer LEDs.
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• d2,4 and d1,3 the lengths between the outer LEDs.

• d2,4 and d1,3 the pattern size.

The features are then:

• d1/d2, d1/d3, d1/d4, d2/d3, d2/d4, d3/d4, the length ratios between the outer and
central LEDs.

• α1 the angle between d1 and d3.

• α2 the angle between d2 and d4.

• β the angle between d2,4 and d1,3.

• γ the angle between d1,3 and the sensor horizontal coordinate.

• d2,4 and d1,3 the pattern size.

• d2,4/d1,3 the length ratio between the outer LEDs.

The eight length ratios d1/d2, ..., d3/d4, and d2,4/d1,3, are expected to be close to one.
The angles α1, α2, as in the case of the outer pattern, are expected to be close to π. β

should be close to π
2 and γ close to zero. Finally to bound the maximum and minimum

pattern size, d2,4 and d1,3 can be computed at 5 m and at docking using (4.1). The
feature vector is thus:

dinner =

[
d1
d2

,
d1
d3

,
d1
d4

,
d2
d3

,
d2
d4

,
d3
d4

,
d2,4
d1,3

, α1, α2, β, γ

]
(4.51)

Note that the features are dependent on the LEDs selection order. The LEDs designation
is shown in Figure 4.23. For the central pattern, the LEDs will always be numbered from
1 to 5, and for the outer pattern, the LEDs designation are: a, b, and 5. This sequence
described and shown is imposed.

a

b

1

2

3

4

5

Figure 4.23 – LEDs numbering for the inner and outer patterns.
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For the internal and external patterns, the features values can be bounded using the
expected performances of the GNC plus margins, and the LEDs measurement equations
(4.16).

Using the GNC requirements (5% of the range relative position accuracy and 2 deg
relative attitude), the features for the inner and outer pattern can be generated. In
order to have sufficient margins, a relative lateral position corresponding to 15% of the
range and a relative attitude error of 5 deg around each axis is considered. The features
have been generated systematically by scanning sets of extreme error values using the
requirements mentioned above plus margins. For the outer pattern, values at 12 m, 8 m,
and 4 m range have been generated. For the inner pattern, values at 6 m, 5 m and 7 cm
range have been generated. Taking the extremal values of each feature allows defining
upper and lower bound on douter and dinner.

To differentiate the unwanted signals from the LEDs’, groups of three blobs are constructed
for the external pattern and groups of five blobs for the internal one. For each group,
the features are extracted and tested against their expected values. If the features are
within the bounds, LEDs are considered detected. This method has the inconvenience
that potentially more than one pattern per image can be detected.

4.4.2 Detection Algorithm Performances

To assess the performances of the proposed detection method, images of patterns at
various relative positions and attitudes have been generated using MATLAB® Simulink.
Fake signals, representing reflections have been randomly added to the images. The LEDs
appear as circular marks on the image whereas the false signals have rectangular shapes.
Recall that the signal shape is not used by the connected region algorithm to pre-filter
the output centroids.

The VBN starts at 10 m range, and the 3 LEDs pattern needs to be detected. This is
shown in Figure 4.24. The detection algorithm can always successfully recognise the LEDs
and reject perturbations. The case where a reflection is present between the LEDs has not
been simulated explicitly as in far range, most perturbations come for the surrounding
environment. Note that such extreme cases are expected only when first initialising the
VBN EKF. Once converged, the filter covariance will be used to define ROIs and thus
limit significantly the number of perturbations to reject.

Figure 4.25 shows the central LEDs pattern at a range of 1 m. In Figure 4.25a all
the perturbations are successfully rejected. The only case in which the LEDs could
not be measured is when a fake signal borders an LED. In this case, the combined
LED+perturbation centroid is too far from the accepted value, and the pattern is rejected.
This could typically happen if the Sun was reflected on the pattern edge. Note that the
conclusions for the detection at 1 m range are also valid at a range of 5 m. The pattern
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(a) 3 LEDs pattern at 10 m. (b) Zoom on the 3 LEDs pattern.

(c) 3 LEDs pattern at 5 m. (d) 3 LEDs pattern at 5 m.

Figure 4.24 – 3 LEDs pattern observed at a range of 10 m and 5 m. The detection
algorithm can reject all the perturbations 100% of the time.

footprint on the CCD is simply smaller.

The detection becomes more complicated when the fake signal distribution is comparable
to the central pattern size. This typically happens just before docking, at a range of 7.5
cm. In Figure 4.26, two examples of successful detection are provided. Although the
LEDs are surrounded by fake signals, they do not fit the features boundaries, and only
the pattern is detected.
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(a) Pattern detected. (b) Pattern not detected.

Figure 4.25 – 5 LEDs pattern observed at a range of 1 m. In b) the pattern is not
detected as a perturbation blob is connected to the LED blob.

(a) Pattern detected. (b) Pattern detected.

Figure 4.26 – 5 LEDs pattern observed at a range of 7.5 cm. In b) the pattern is not
detected as a perturbation blob is connected to the LED blob.

Not detecting the LEDs never happened. However, it occurred several times that a nearby
fake signal was taken for an LED, leading to more than one possible pattern. This is
illustrated in Figure 4.27.

In Figure 4.27a, LED and fake signal blobs merged. In Figures 4.27b, 4.27c, and 4.27d,
one or two fake signals were mistaken for LEDs, leading to several potential patterns.
Such a case could typically happen if the Sun was reflected on the CubeSat structure.
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(a) Fake signal and LED merged blobs. (b) Two patterns detected.

(c) Two patterns detected. (d) Three patterns detected.

Figure 4.27 – 5 LEDs pattern observed at a range of 7.5 cm. In a), the LED blob and
a fake signal one merged into one centroid. In b), c), and d), more than one pattern are
detected.

Two or more patterns which are similar in shape are detected, and this would lead to
small navigation errors.

In the extreme cases as shown in Figure 4.28, the wrong pattern would induce considerable
errors in the filter – typically several degrees of error in the LoS determination – and an
additional method to distinguish the possible patterns must be implemented.

The solution to this problem is to combine the active tracking of the LEDs with the
geometrical features algorithm. The distance between each potential pattern and the
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Figure 4.28 – Six possible patterns detected.

VBN EKF a priori solution, h(x̂−
k ), is computed. The pattern which minimises this

norm is then selected, as discussed in Section 4.4. In this case, even if the wrong pattern
was selected, the navigation errors will remain consistent with the EKF current accuracy
level.

It is not possible to use the filter information to accurately select the LEDs before the
first initialisation of the VBN EKF. However, it is possible to use the relative GNSS
position and the target/chaser absolute attitude navigation solutions to obtain the LEDs’

Table 4.3 – LEDs detection and tracking algorithm for the inner and outer patterns.

Prediction Use the a priori navigation solution to estimate
an ROI and the LEDs position.

Centroid detection 1. Threshold the image.
2. Detect all centroids within the ROI.

Geometrical features 1. Among all detected blobs, create groups of 3
blobs (outer pattern) and 5 blobs (inner pattern).
2. For each group of blobs, compute the geomet-
rical features.
3. Select all blobs satisfying the geometrical
features boundaries.

LEDs selection 1. For all possible detected patterns, compute
distances to the a priori pattern.
2. Select the pattern with the smallest distance.
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a priori position. The proposed method combining the geometrical features and active
tracking can, therefore, be used at any time. The complete detection and tracking process
is summarised in Table 4.3. This algorithm can be used at any range for the inner and
outer pattern.

The VBN EKF performances will be provided in Chapter 6. Four examples are provided
in Figure 4.29. Note that in these examples the fake signals size has been reduced to
avoid overlaying with the LEDs. The blue dots are the LEDs a priori position. The
blobs highlighted in green represent possible signals belonging to the patterns, detected
using the geometrical features. Computing the distance between each pattern and LEDs
a priori position allows selecting one solution which is then highlighted in red and used
in the navigation filter. The correct pattern is detected in all cases. Even when a fake
signal borders an LED, modifying the shape of the blob, as shown in Figure 4.27a, the
navigation solution is not affected. The filter performances will be discussed later on.

Note that in practical laboratory experiments, no reflections have been observed near the
central pattern. Both patterns, are visible all the way from 10 m to docking, with always
only one pattern detected. This is discussed in the next section.

4.5 LEDs and Camera Characterisation

Note
In this section, the experiment which allowed characterising the VBN and testing
the detection algorithms has been designed together with Ms Julie Paquette, EPFL
student in mechanical engineering, within the frame of a semester project under
the author’s supervision. Ms Paquette built the 6U mockup and LEDs pattern
support. She performed the measurements which allowed determining the LEDs
noise, the optimal camera parameters, as well as the performance assessment of
the detection algorithms. The algorithms used to detect the LEDs are the ones
developed by the author and are provided in Section 4.4

In Section 4.3, the selected camera and LEDs have been presented. For the camera, the
available COTS models were limited, and only one satisfied all requirements. On the
other hand, a large variety of LEDs at 470 nm are available, with various illumination
intensities and viewing angles. Three models have been selected having viewing angles of
30 deg, 60 deg and 80 deg.

A first step to reduce the number of external effects on the LEDs detection is to equip the
camera with a bandpass filter centred on the LEDs wavelength, as explained in Section
4.3. The integration time on the camera is set to its lowest possible value. This will
reduce the amount of parasite light integrated by the pixels and also limit the CCD dark
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(a) (b)

(c) (d)

Figure 4.29 – 5 LEDs pattern observed at a range of 7.5 cm. The fake signals detected
as LEDs using the geometrical features are highlighted in green. The blue dots are the a
priori LEDs positions. The selected pattern is highlighted in red.

noise. For the selected camera, this value is 35 μs. Such a short exposure time will also
considerably reduce blurring. For a relative rotation rate between the pattern and the
camera of 0.1 deg/s, within one integration period, the pattern displacement on the CCD
is ≈ 1.5 · 10−4 pixels.

The LEDs intensity (i.e. the input current), the camera gain, the threshold level, as well
as the optic focus, have to be tuned. These parameters must be selected in order to
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maximise the LEDs signal to noise ratio, to minimise the remaining perturbation signals,
and to allow the detection of the LEDs at any range. Note that the term “noise” refers to
the LEDs centroid position error and not the CCD noise itself.

The test set-up which has been used to determine these parameters and select the LEDs
is shown in Figure 4.30. It is composed of a Sun simulator, emitting a flux of 1360 Wm−2

matching the solar spectrum, and equipped with a Fresnel lens to obtain a collimated
beam. This will produce sufficiently representative illumination conditions of the space
environment. As stray light effects due to the Earth’s albedo are 70% dimmer than the
Sun’s, they are not included in the experiment.

Sun 0°

Sun 45°

Sun 90°

Sun 135° camera

Figure 4.30 – LEDs patterns, camera, and Sun simulator different illumination angles.

To obtain representative images of the patterns and to simulate possible reflections, the
LEDs have been accommodated in a 6U surface mock-up as shown in Figure 4.31. The
mock-up includes a black anodised aluminium structure, solar cells, two patch antennas
and two sun sensors. It is designed to be representative of an actual 6U satellite side
panel.

Four test campaigns have been conducted, each aiming at fixing a set of parameters.
These tests are repeated for each LED type. Once the optimal camera parameters are
determined, the LED with the lowest noise density is selected. The tests have been
conducted at ranges of 10 m, 5 m, 1 m, and 5 cm (note that the specified minimum
distance between the camera and the LEDs, during the RVD mission, is 7 cm). To
determine the noise density, the camera captured 500 images at each given range and for
each set of parameters. For each LED, assuming uncorrelated noise between the CCD ŷ

and ẑ directions, the standard deviation is computed as:

σLED =
√
σ2
ŷ + σ2

ẑ (4.52)
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Figure 4.31 – 6U surface mock-up.

The threshold can be set between 0 and 1, and the camera gain between 51 and 255.

For each set of LEDs:

1. In eclipse:

(a) Test 1: Optic focus determination Determine the focus parameter which
allows detecting the LEDs from 10 m to docking.

(b) Test 2: Camera parameters selection Set the camera gain, LEDs intensity,
and threshold level. At each distance and for each orientation, varying the
parameters one at a time, select the value or ranges of values which provide
minimum noise.

(c) Test 3: Camera parameters fine tuning Among all the possible parameter
values, select the combination which minimises noise density. The LED’s
intensity should be fixed for all ranges. Note: As LEDs pattern handover
occurs at 5 m, two distinct sets of parameters, for the threshold and camera
gain, can be determined.

2. Illuminated: For each illumination condition described in Figure 4.30 and for the
selected optimal parameters :

(a) Identify possible Sun and camera relative positions which would prevent the
LEDs from being identified.

(b) Assess the noise density change with respect to eclipse.

For the second part of the experiment, relative attitude and lateral displacements were
added. The relative displacement was of ±10% of the range and the relative yaw angle of
±2 deg.
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Note that these tests do not have the goal to verify the accuracy of the proposed VBN
as no reference data was available. In addition to characterising the noise density
and determining the optimal camera parameters, these tests determine the number of
reflections and stray light that can be expected in orbit as well as the performance of the
detection algorithms in different Sun illumination conditions.

4.5.1 Test Results

After Test 1, the LEDs with 30 deg viewing angle have been discarded. Because of their
relatively small viewing angles, in close range, their images were being distorted and noisy
(see Figure 4.32). For the other two sets of LEDs, the optic focus has been selected so
that the pattern could be detected at all the operating ranges. Even if at some distances
(in close range in particular) the LEDs are out of focus, this not an issue as the LEDs are
circular and their images remain circular focused or not. This will only increase their
footprint (number of pixels) on the CCD.

(a) LEDs image and analytical solution. (b) Binary image.

Figure 4.32 – Central LED pattern for 30 deg viewing angle observed at a range of 5
cm. a) The LEDs are distorted, and the analytical solution computes an erroneous range
of 7 cm. b) Binary image using a threshold of 0.4. The LEDs edges are extremely noisy.

Test 2

The LEDs detection noise has two primary sources. The first one is due to blooming;
once a pixel is saturated, its charges will start filling adjacent pixels. The second source
is that the LEDs luminosity presents a gradient from centre to edge, going from white
(pixel with a value of 1) to grey/dark (pixel with a value of 0). The threshold, LEDs
intensity, and gain values will have a substantial impact on the noise density.
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A high LED intensity is necessary to observe them in far range. Furthermore, at these
distances, the number of dark pixels between LEDs is low. Thus, if the LEDs intensity is
too high, the count of dark pixels between the LEDs is further reduced, and detection
becomes impossible. In close range, because the LEDs signals are well separated, their
intensity is less an issue. The intensity was selected to allow detection at 10 m.

For the threshold, a low value (close to 0) will retain most elements of the image whereas
as high value will only capture the brightest pixels. Note that the white noise of a CCD
is typically 1 pixel. To minimise the noise on the centroid position, it is preferable to
detect an object with a large footprint, giving a significant amount of illuminated pixels.
At close range, the LEDs cover several pixels. The edge of the images oscillates with
values close to 0 (black pixels). This phenomenon can be eliminated efficiently selecting
a high threshold value. However, at far range, as the LEDs footprint is merely a few
pixels wide (3 to 4), a high threshold will provide a very noisy image. Most computer
vision algorithms provide auto-threshold functions that can adapt to the current image
allowing extracting centroids of interest. It was decided not to use such a function to
have absolute control over the image processing.

Finally, the camera gain can be adjusted to improve the images quality. This gain does
not impact the amount of active/inactive pixels but allows increasing their brightness
(typically the pixels belonging to the LEDs edges), thus permitting the use of higher
threshold values. This will increase the general CCD noise level. As long as this noise
remains below the threshold value, the detection is not affected. It was also observed
at close range that the LEDs’ centres were less bright, probably due to an effect of the
lenses covering each diode. This effect is reduced by increasing the gain value, as shown
in Figure 4.33.

In Figure 4.33a, the image with a gain of 51 is provided, and dark spots can be observed
at the LEDs’ centres. This effect is undesirable as it could potentially compromise the
centroid detection. These spots disappear when the gain is increased to values above 150,
as shown in Figure 4.33b-4.33d. Note that the expected increase of the LEDs image size
does not significantly affect the noise density.

During Test 2, ranges of optimal values leading to the smallest possible noise density
have been found.

Test 3

To select the value of the optimal parameters, it has been decided first to fix the LEDs
intensity at their minimum acceptable level, to require less power onboard the satellite.
First, optimal values have been obtained at each of the test ranges (10 m, 5 m, 1 m and 5
cm). It is not desirable to change parameters along the approach. However, as a handover
will take place at 5 m range, it was decided to determine two sets of values.
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(a) Gain level: 51. (b) Gain level: 150.

(c) Gain level: 200. (d) Gain level: 120.

Figure 4.33 – Central pattern at a range of 5 cm for four different gain values.

These parameters are provided in Table 4.4. The LED module # 1 has the 60 deg viewing
angle, and module #2 has the 80 deg viewing angle.

Table 4.4 – Parameters optimal values for the LEDs with 60 deg viewing angle (module
#1) and 80 deg viewing angle (module #2).

Module Threshold

inner pattern

Threshold

outer pattern

Current/LED

[mA]

Gain

#1 0.9 0.6 30 110

#2 0.9 0.4 21 120

120 Camille Pirat, December 14, 2018



4.5. LEDs and Camera Characterisation

The parameters in Table 4.4 lead to the measured noise densities for each LED type, and
are presented in Table 4.5. Note that the noise is computed from 500 measurements.

Table 4.5 – Centroid position 1σ noise density in pixel, in eclipse.

Module 10 m 5 m

3 LEDs

5 m

5 LEDs

1 m 5 cm

# 1 0.041 0.042 0.053 0.049 0.039

# 2 0.057 0.065 0.049 0.056 0.039

Module #1 LED has on average a smaller noise density. The noise provided at 5 m takes
different values depending on the pattern used. This is not surprising as the threshold
values are not the same and that the central 5 LEDs images, at 5 m, are only separated
by few pixels. On the other hand, the 3 LEDs of the outer pattern are well separated.

Before selecting LEDs type, the noise density must be re-evaluated in different illumination
conditions.

Test 4

The detection noise has been assessed for the four Sun illumination conditions described
in Figure 4.30, adding relative attitude and lateral displacements (±10% of the range and
±2 deg yaw angle). The measured noise of the two types of LEDs has been compared to
the noise measured in eclipse, obtained during Test 3. Three observations could be made:

1. The LED with a 60 deg viewing angle is hardly detected when not aligned with
the camera optical axis. The LED with an 80 deg viewing angle remains the only
possible candidate.

2. On average, noise variations of 50% have been observed depending on the illumina-
tion conditions and the relative orientation. It seems that relative angles have a
larger influence on the noise than relative displacements.

3. Noises larger than 120% have been observed when the Sun is at an angle of 135
deg. This large variation is not consistent with the other illuminations conditions.
Furthermore, this configuration should normally have less impact on the noise than
if the Sun is directly in the camera FoV. A possible explanation is that the Sun was
very close to the camera, heating it considerably. Such variations are not expected
in orbit as the camera will be in the satellite, protected from extreme temperature
changes.

Based on these results, a noise of 0.06 pixel (1σ) will be assumed for the modelling and
filtering of the VBN. Furthermore, a 50% uncertainty will be considered on the camera
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noise. Note that for the selected LED, a 21 mA current corresponds to a luminous
intensity of 1900 mcd.

This experiment aimed first to assess the typical levels of noise that can be expected
using COTS optical components in order to obtain representative data for simulations.
It also allowed determining whether the VBN solution could be used in any illumination
conditions, which appears to be the case.

The LEDs detection at three different ranges with the Sun directly in the camera’s FoV
is shown in Figure 4.34. The camera is not blinded due to a bandpass filter installed on
the optic, reducing the Sun illumination considerably. As the camera did not need to be

(a) 3 LEDs pattern at 10 m range. (b) 5 LEDs pattern at 5 m range.

(c) 5 LEDs pattern at 1 m range.

Figure 4.34 – LEDs at three ranges. Sun directly in the FoV.
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precisely positioned, the range provided by the analytical solution is not precisely 5 m
and 1 m.

The threshold effect in Figure 4.34c is provided in Figure 4.35 and shows that all the
parasite signals are not removed from the image. The detection algorithm (using only
the geometrical features) is efficiently rejecting reflections.

(a) Grayscale image. (b) Binary image.

Figure 4.35 – Tresholding effect for a grayscale image conversion to binary image. The
central 5 LEDs pattern is seen on the top right corner and the Sun simulator occupies
the image left-half part.

During the whole experiment, no reflections were observed on the CubeSat structure.
However, it is still highly recommended to treat the docking mechanism with an anti-
reflective coating.

4.6 Attitude Determination

As described in Section 2.3.1, several attitude sensors are installed onboard the chaser and
the target. The gyroscope and magnetometer are not influenced by external perturbations
and are nominally always available. The sun sensors are only available out of eclipse.
Finally, the star tracker has a 45 deg sun-to-boresight exclusion angle which will prevent
its use under certain illumination conditions.

An attitude determination filter capable of handling the different sensors availabilities is
necessary to achieve the required attitude pointing accuracy. The Mission Mode Extended
Kalman filter is selected [30, p. 257]. This EKF uses quaternions to represent the attitude.
This is a kinematic filter, and thus only the attitude and gyroscope bias are estimated.
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This filter has the main advantage not to require re-tuning if the satellite inertia changes.
It is thus well adapted for satellites equipped with propulsion, as then CoM and inertia
vary throughout the mission.

The mission mode EKF will not be entirely derived here, but the main steps are provided
for the sake of comprehension. A full derivation of the filter can be found in [30].

4.6.1 Quaternions Error

A quaternion q is composed of a vectorial part q1:3 and a scalar part q4. The convention
used in this thesis follows [30,291]:

q =

⎡⎢⎢⎢⎣
q1
q2
q3
q4

⎤⎥⎥⎥⎦ =

[
q1:3
q4

]
(4.53)

The definition of a quaternion results from the special orthogonal group in dimension
three SO(3). For any DCM R∈ SO(3), RRT = 1 and det(R) = 1. This means that
∀ v ∈ R3

vTRTRv = ‖v‖2 > 0 (4.54)

A vector v is an eigenvector of R if and only if Rv = λv, then:

vTRTRv = (Rv)T (Rv) = λ2‖v‖2 (4.55)

which means that the spectrum of any DCM is

λ = {1, e±iϑ} (4.56)

In particular, ∃e ∈ R3 such that Re = e for R ∈ SO(3). With this definition, any rotation
can be expressed in terms of a rotation axis e and an angle ϑ. The corresponding DCM
is A(e, ϑ) and can be expressed as

A(e, ϑ) = e−[ϑ×] = A(ϑ) (4.57)

where ϑ = eϑ.

124 Camille Pirat, December 14, 2018



4.6. Attitude Determination

A quaternion is defined as:

q(e, ϑ) =

[
e sin

(
ϑ
2

)
cos

(
ϑ
2

)
]

(4.58)

With this formulation, it can be seen that ‖q‖ = 1. The quaternion representation of a
DCM is given by:

A(q) = (q24 − ‖q1:3‖2)1 − 2q4 [q1:3×] + 2q1:3q
T
1:3 (4.59)

where 1 is the dimension three identity matrix.

The product of two quaternions q and q̄ is defined in two alternative ways:

q ⊗ q̄ = [q⊗] q̄ = [Ψ(q) q] q̄ (4.60a)

q � q̄ = [q�] q̄ = [Ξ(q) q] q̄ (4.60b)

with

Ψ(q) =

[
q41 − [q1:3×]

−qT
1:3

]
(4.61a)

Ξ(q) =

[
q41 + [q1:3×]

−qT
1:3

]
(4.61b)

The following identity follows from these definitions:

q ⊗ q̄ = q̄ � q (4.62)

The quaternions multiplication and rotation matrix are related as follow:

A(q ⊗ q̄) = A(q)A(q̄) (4.63)

The difference between two quaternions is defined as:

δq =

[
δq1:3
δq4

]
= ‖q̄‖2q ⊗ q̄∗ (4.64)
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where q∗ is the conjugate quaternion

q∗ =

[
−q1:3
q4

]
(4.65)

Representing an attitude error instead of the true attitude is convenient as it allows a
bijective relation between quaternion and Euler angles, in the small angles approximation.
The first order Taylor expansion assuming δϑ 
 1 is:

A(e, δϑ) = e−[δϑ×] ≈ 1 − [δϑ×] (4.66a)

A(δq) = (δq24 − ‖δq1:3‖2)1 − 2δq4 [δq1:3×] + 2δq1:3δq
T
1:3 ≈ 1 − 2 [δq1:3×] (4.66b)

where δq24 − ‖δq1:3‖2 ≡ cos2(δϑ/2)− sin2(δϑ/2) = cos(δϑ), and
2δq4δq1:3 ≡ 2 sin(ϑ/2) cos(ϑ/2) = sin(ϑ), using the definition of a quaternion.

Thus, in the small angle approximation

δϑ = 2δq1:3 (4.67)

which shows that in this limit (δϑ 
 1), Euler angles and quaternions representations
are identical. The main advantage of using a quaternion representation is that it is free
of singularities, as opposed to Euler angles (see Chapter 3). The P2P dynamics allows
docking in any configuration. Therefore, the ADCS should be able to reach any attitude
to align the chaser and target docking ports before initiating the VBN. The mission mode
EKF with the quaternion representation is thus adapted for RVD missions.

4.6.2 Mission Mode EKF

Only the attitude and gyroscope bias are estimated in the filter. To use the small angle
approximation, the EKF will be estimating differences (errors) rather than the full attitude
and bias. The EKF state vector is thus:

Δx =

[
δϑ

Δβ

]
(4.68)

where β is the gyroscope bias. In this case, the updated attitude matrix is:

A(q̂+) = A(δϑ)A(q̂−) (4.69)

where q̂− is the a priori estimated quaternion.
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To correct the bias present in the gyroscope measurement, the following model is used:

ω = ωtrue + βtrue + ηv (4.70a)

β̇true = ηu (4.70b)

ηv is called Angular Random Walk (ARW) and is a white noise. ηu is called Rate Random
Walk (RRW) and is a brown noise. Only the bias is estimated and used to correct the
measured angular rate. The estimated (corrected) angular rate is:

ω̂(t) = ω(t)− β̂ (4.71)

where ω(t) is the biased angular rate (4.70a).

Sun sensors or magnetometers are measuring directions (i.e. vectors) in the satellite body
frame, denoted b. Their inertial expressions are denoted r. The measurement equations
are:

y =

⎡⎢⎣b1
...
bN

⎤⎥⎦ =

⎡⎢⎣A(q̂−)r1
...

A(q̂−)rN

⎤⎥⎦+

⎡⎢⎣v1
...

vN

⎤⎥⎦ = h(q̂−) + v (4.72)

where v represents measurement noises. These equations relate the measured vectors
in the body frame to their inertial expression. The inertial vectors are obtained using
onboard models.

Such measurement equations between vectors, expressed in the body and inertial frames,
provide the attitude of the satellite with respect to the inertial frame. The attitude
between the body frame and any other frame can be obtained by changing the frame
associated with the reference vectors r.

The Jacobian H of h(q̂−) must be computed for the EKF, with respect to the state
variables δϑ and Δβ. The following relations are established using the a priori and a
posteriori attitude estimates:

b̂+ = A(q̂+)r (4.73a)

b̂− = A(q̂−)r (4.73b)
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The measurement error is then:

Δb̂ = b̂+ − b̂− = A(δϑ)A(q̂−)r −A(q̂−)r (4.74)

= (1 − [δϑ×])A(q̂−)r −A(q̂−)r (4.75)

= [A(q̂−)r×]δϑ (4.76)

For sensors providing a quaternion directly, such as star trackers, the measurement
equation can be built using the error quaternion:

y = δϑST + v = 2
(qST ⊗ (q̂−)∗)1:3
(qST ⊗ (q̂−)∗)4

+ v = h(q̂−) + v (4.77)

where v is measurement noise.

Assuming that a Sun sensor, a magnetometer, and a star tracker are available, the
measurement vector is:

y =

⎡⎢⎣ bsun

bmag.

δϑST

⎤⎥⎦ (4.78)

The non-linear measurement equations are thus:

h(x̂−) =

⎡⎢⎣ A(q̂−)rsun

A(q̂−)rmag.

δϑST

⎤⎥⎦ (4.79)

and the associated Jacobian H is:

H(x̂−) =

⎡⎢⎣ [A(q̂−)rsun×] 0

[A(q̂−)rmag.×] 0

1 0

⎤⎥⎦ (4.80)

The measurement noise covariance matrix is given by:

Rk = diag
[
σ2

sun σ2
mag. σ

2
ST
]

(4.81)

The EKF formulation is provided in Table 4.6.
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Table 4.6 – Mission Mode EKF for Sun sensors, magnetometer and Star tracker mea-
surements.

Initialise q̂(t0) = q̂0, β̂(t0) = β̂0

P (t0) = P0

Gain Kk = P−
k HT

k (x̂
−
k )

[
Hk(x̂

−
k )P

−
k HT

k (x̂
−
k ) +Rk

]−1

H(x̂−
k ) =

⎡⎢⎢⎣
[A(q̂−)rsun×] 0

[A(q̂−)rmag.×] 0

1 0

⎤⎥⎥⎦
Update P+

k =
[
1 −KkH(x̂−

k )
]
P−
k

Δx̂+
k = Kk

[
yk − h(x̂−

k )
]

Δx̂+
k =

[
δϑ̂+

k Δβ̂+
k

]T

h(x̂−
k ) =

⎡⎢⎢⎣
A(q̂−)rsun

A(q̂−)rmag.

δϑST

⎤⎥⎥⎦
q̂∗ = q̂−k + 1

2Ξ(q̂
−
k )δϑ̂

+
k

q̂+k = q̂∗
‖q̂∗‖

β̂+
k = β̂−

k +Δβ̂+
k

Propagate ω̂(t) = ω(t)− β̂

˙̂q(t) = 1
2Ξ (q̂(z)) ω̂(t)

P−
k+1 = FkP

+
k FT

k +Qk

The propagation step for ˙̂q(t) is done using a fourth-order Runge-Kutta [296, p. 711].
Given a first-order differential equation:

dy(x)

dx
= f(x, y) (4.82)
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for a step h, the value of yn+1(x) is given by:

k1 = hf(xn, yn) (4.83a)

k2 = hf(xn +
h

2
, yn +

k1
2
) (4.83b)

k3 = hf(xn +
h

2
, yn +

k2
2
) (4.83c)

k4 = hf(xn + h, yn + k3) (4.83d)

yn+1 = yn +
k1
6

+
k2
3

+
k3
3

+
k4
6

+O(h5) (4.83e)

The covariance matrix P is propagated using a discrete method to decrease computational
loads. The matrix Fk is:

Fk = eΔtF (t) (4.84)

where F is:

F (t) =

[
− [ω̂(t)×] −1

0 0

]
(4.85)

The discrete dynamics process-noise covariance matrix Qk is:

Qk =

⎡⎢⎣
(
σ2
vΔt+ 1

3σ
2
uΔt3

)
1 − (

1
2σ

2
uΔt2

)
1

− (
1
2σ

2
uΔt2

)
1

(
σ2
uΔt

)
1

⎤⎥⎦ (4.86)

The gyroscope ARW and RRW standard deviations are: σv and σu. These values can be
obtained from gyroscope data sheets. Note that the gyroscope bias is modelled with σu
only. The term σv represents the gyroscope white noise disturbance and appears in ˙̂q(t)

through ω. Consequently, σv contains the gyroscope ARW and any kinematics/dynamics
process noise.

The initial bias β0 can be set to zero as there is no a priori knowledge of its initial
value. The initial quaternion q̂0 can be obtained using the TRIAD algorithm [24]. This
algorithm builds a quaternion using two vectors in the body frame and their associated
representation in the inertial frame. The Sun sensors and magnetometer measurement
vectors together with their inertial modelled values can thus be used in the TRIAD
algorithm to obtain the initial quaternion. Finally, the initial covariance P0 must be
chosen according to the level of knowledge on the initial values of attitude and bias.

Figures 4.14, 4.15, and 4.16, illustrating how a Kalman filter accuracy can be assessed,
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have been generated with the mission mode EKF and the measurements of a star tracker.

4.7 Docking Mechanism Details

Note
The design and testing of a docking mechanism were initiated by the author in
September 2015 and finished in June 2017, as semester projects by EPFL master
students, as part of the Minor in Space Technology. The project was supervised by
Dr Pierre-Alain Mäusli and the author. The performance and design requirements
for the mechanism design, as well as the damping mechanism concept and the test
set-up concept, have been provided by the author. Dr Pierre-Alain Mäusli provided
the soft docking precise alignment mechanism, the use of electromagnets to prevent
rebound, the hard docking procedure with three screws synchronously actuated
using a single motor, the design of a preliminary mechanism, and the test set-up
concept. Mr Dimitri Goutaudier worked on the preliminary mechanism. Mr Félix
Martel and Alberto Rigamonti refined and adapted the mechanism to satisfy the
volume requirement, and built the prototype as well as the test set-up. Mr Malik
Fahrni improved the mechanism passive part and thoroughly tested the complete
mechanism. Finally, Mr Yannick Delessert, staff at the Swiss Space Center, built
the assembly of the VBN and docking mechanism for the 3D rendering.

Using existing docking mechanism concepts for nano- and micro-satellites, as well as
a scalability analysis of the ATV mechanism, docking requirements have been derived
(see Section 2.7): The mechanism shall achieve docking under 1 cm lateral and 2 deg
along each axis relative errors. The GNC accuracy requirements are 5 mm lateral and 1
deg along each axis relative errors. Furthermore, the VBN and docking mechanism shall
be compatible with a 10 × 10 cm surface. As such a compact package has never been
designed and tested, it has been decided to first prototype and test a docking mechanism
on its own.

As described in the previous sections, the dimension of the VBN inner pattern is 4× 2 cm.
To accommodate the VBN system, the docking mechanism shall have a 50 mm diameter
hole at its centre. The mechanism is composed of two parts; one active mounted on the
chaser, and one passive mounted on the target.

Figure 4.36 shows the two parts of such a mechanism compliant with the above require-
ments. The mechanical docking process is achieved in three steps:

1. Approach: relative 6 DoF control by the GNC until contact between the active
and passive parts is reached, within an alignment accuracy of 1 cm and angular
misalignment of 2 deg maximum.
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2. Soft docking: two of three spherical pins situated on the passive part enter the
corresponding cone and slot, the third pin contacts the flat seating. The 6 DoF
of the mechanical alignment are fixed when the spheres reach a stable position at
the apex of the cone, slot and flat seating (see Figure 4.36). Elastic dampers and

Electromagnet

Spherical pin with 
damper

Electrical connector

Elastic damper facing 
electromagnets

Cone

Slot
Docking screws

 in retracted position

Electrical motor

Flat seating

Figure 4.36 – Complete docking mechanism.
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switchable electromagnets, activated only during the docking phase, are designed
to prevent rebound.

3. Hard docking: once the alignment is stabilised, the active part of the mechanism
actuates three rods synchronously which lock the parts. The electromagnets are
then switched off so that no further magnetic disturbances are generated, and no
more power is required to maintain position.

The mechanism in the soft docking configuration is shown in Figure 4.37.

Figure 4.37 – Mechanism in soft docking configuration.

Achieving hard docking with three coupled threaded rods requires perfect alignment with
the opposed threaded boreholes. This precise positioning is achieved during the soft
docking. Upon initial contact, two pins will enter the cone and slot fixing 5 DoF. The
remaining rotational DoF is constrained by the third pin, pushed against the flat seating.

The three threaded rods must engage simultaneously in their respective tapped holes in
order to prevent any jamming. This part of the mechanism, presented in Figure 4.38,
guarantees a synchronous rotation.

The threaded rods present a 0.5 mm pitch on the inner side and 1 mm on the outer side
(looking towards the target). When activating the mechanism, the docking rods first
translates towards the target until contact with the opposite tapped hole. Because of the
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double pitch, as the rods push out from the active part of the mechanism, the passive part
is pulled back, compressing the damping springs until an end stop is reached, completing
hard docking. The accurate mechanical alignment and parallel displacement during the
last docking step allow mating of electrical connectors.

Docking screws

External and internal 
free rotating gears 

Electromagnets

Figure 4.38 – Docking screws mechanical synchronisation.

4.7.1 Test

A demonstrator based on this design has been manufactured, and its functions have been
tested in the laboratory [261]. The mechanism is mounted on the test facility shown
in Figure 4.39. While the mechanical functions are easily tested in static conditions,
i.e. when the passive and active parts are approached and aligned manually, the critical
aspects of initial misalignment that would occur in orbit are much more challenging to
represent in the laboratory.

The test set-up consists of a pendulum and a box to which the mechanism is attached. The
pendulum wire length defines a controllable velocity at impact. Attaching the pendulum
wire as close as possible to the box’s CoM allows decoupling the effect of the pendulum
from the box rotations. The active part of the mechanism is attached on gimbal holder
having and angular freedom of two degrees. To reach a velocity of 2 cm/s at docking, a
2.8 m pendulum is used. Achieving the required 1 cm/s speed was not possible due to
the limitations imposed by the ceiling. With a mass of 20 kg, the energy upon impact is
representative of the docking between 12U CubeSats. These numbers are conservative
compared to the current GNC and CubeSat design.

Because the pendulum trajectory is not accurately controllable, the VBN solution de-
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Wire fixed near 
the loaded box 
CoM

Pendulum 
loaded box

Gimbal 
holder

Docking 
mechanism

Figure 4.39 – Test set-up and actual mechanism mounted on the set-up [261].

scribed in Section 4.1 placed on the pendulum is used to measure the exact position at
release and impact and correlate it with the occurrence or non-occurrence of docking.
The observation of 100 impacts with various misalignment and tilt angles have shown that
more than 80% led to a successful docking. Most of these failures are due to an out of
specification misalignment while realising the pendulum, seen thanks to the VBN. Other
failures to dock are attributed to general test environment, in particular the conditions
of release. Indeed, it was observed that torques induced by the pendulum wire, and the
contact of the release mechanism, were influencing the initial displacement of the wooden
box.

Overall, this simple experiment set-up gives confidence that such a mechanism will be
able to handle 1 cm and 2 deg relative misalignments.

4.7.2 Docking Package

The docking mechanism and VBN system are assembled at design level and shown in
Figure 4.40. The configuration of the active part of the mechanism is with the three rods
deployed.

The mechanism and the camera occupy a volume of 0.33 U on the chaser whereas on
the target the hardware occupies a volume of 0.23 U. The volume requirements are thus
satisfied.

For launch, the CubeSats are packed in a deployer. A 12 U deployer is shown in
Figure 4.41. The constraint on the available volume in such deployers means that nothing
must protrude more than 10 mm from the CubeSats panels. During the launch, on the
chaser (active part), the rods are retracted below the panel surface. However, on the
target (passive part), the pins are protruding.
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(a) (b)

(c) (d)

Figure 4.40 – Docking mechanism and VBN assembly.

Figure 4.41 – 12U CubeSat deployer [297].

136 Camille Pirat, December 14, 2018



4.7. Docking Mechanism Details

To address this issue, two scenarios are possible and will have to be further tested in
future iterations.

1. The pins can be maintained compressed by the deployer housing potentially increas-
ing internal friction. This may or may not affect the deployment (a Teflon ribbon
could be applied to reduce friction).

2. A hold-down and release mechanism is added to the design.

Improvements to the mechanism have been thought of and proposed during the test
campaign, in particular with respect to the damping functions. Placing the electromagnets
behind the cone, slot, flat seating, and changing the pins’ material to ferromagnetic could
force and improve the alignment during soft docking.

Also, the mass of the active part of the mechanism must be reduced from the current 1
kg. The allocated mass for the whole package is 600 g (see Section 2.3.3). As the camera
has a total mass of 163 g, the mechanism mass must be reduced to 437 g. This should
be achievable as many parts are currently made of steel and as the design has not been
optimised.
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In this chapter, three different controllers will be presented: LQR, H-infinity (H∞) and
μ-synthesis. The LQR was the first controller designed due to its tuning simplicity.
It has been used to make a preliminary assessment of CubeSats’ capability to dock.
These preliminary results were then used as a starting point to synthesis more advanced
controller types.

The level of CubeSat-specific challenges such as sensors and actuators noise, low actuation
capabilities, and dynamics uncertainties, naturally leads to the use of robust control
schemes, such as H∞ and μ-synthesis, which have some level of flight heritage. Because
uncertain parameters such as mass and inertia, or actuators errors, are present in the
system, the robustness of the controllers has been assessed using μ-analysis.

H∞ and μ-synthesis provide a well-defined framework to handle the substantial amount
of critical uncertainties. Furthermore, linear controllers can be extensively tested for
robustness using dedicated methods, providing the necessary confidence for such a mission.
Schemes such as MPC, although energetically more efficient, require the optimisation of
non-linear equations in real time, making a robustness assessment difficult.

5.1 Closed-Loop Control

The closed-loop problem in presence of disturbances is represented in Figure 5.1.

Such a feedback loop consists of a plant G(s), a stabilising controller K(s), a reference
signal r, sensor noise ν, input perturbations (actuators and environment) di, and output
disturbances d.

Analysing the system can be done computing the transfer function between the different
inputs and outputs. The following equations, which provide the contribution of all inputs
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G
++ Kr

_

+u ug

di d

y

+

+

+ +

n

Figure 5.1 – Closed-loop control system.

on outputs, are valid for internally stable closed-loop systems [298]:

y = To(r − n) +GSidi + Sod (5.1a)

r − y = So(r − d) + Ton−GSidi (5.1b)

u = KSo(r − n)−KSod− Tidi (5.1c)

ug = KSo(r − n)−KSod+ Sidi (5.1d)

The input loop gain (or loop transfer function) Li and output loop gain Lo are defined
as:

Li = KG (5.2a)

Lo = GK (5.2b)

Note that for Single-Input Single-Output (SISO), Li = Lo. The input/output sensitivity
functions Si and So, as well as the input/output complementary sensitivity functions Ti

and To, are defined as:

Si = (1 + Li)
−1 (5.3a)

So = (1 + Lo)
−1 (5.3b)

Ti = 1 − Si = Li(1 + Li)
−1 (5.3c)

To = 1 − So = Lo(1 + Lo)
−1 (5.3d)

The input sensitivity is the transfer function between di and ug and represents the
closed-loop sensitivity to input perturbations. Similarly, the output sensitivity is the
transfer function between d and y and provides information on the closed-loop sensitivity
to output disturbances.

The analysis of Si, So, Ti,and To, provides valuable insight on the expected closed-loop
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performance.

To simplify the notation, S ≡ So, T ≡ To, and L ≡ Lo. The subscript index i will be
specifically used to denote input functions.

The closed-loop response in terms of error is given by (5.1b):

e ≡ r − y = S(r − d) + Tn−GSidi (5.4)

To obtain a null error, S and T would have to be null. This is, of course, impossible
as T + S = 1. Good command tracking and disturbances rejection can be obtained for
S ≈ 0, i.e T ≈ 1. On the other hand, to limit noise amplification in the feedback, T ≈ 0,
i.e. S ≈ 1. A large loop gain L is required for good command tracking and stability
but a small loop gain L is necessary to restrain noise amplification. These conflicting
requirement can be accommodated as signals involved in a feedback loop have different
frequency contents.

Disturbances, di and d, caused by the dynamics or the environment, and the reference
signal r typically have a large amplitude at low frequencies and roll-off above a particular
frequency. On the other hand, sensor noise ν is generally composed of white noise or
high-frequency signals. The different nature between these input signals allows satisfying
competing requirements at the same time. Thus, requiring a large loop gain L at low
frequencies for tracking and disturbances rejection should not amplify sensor noises, or at
least limit its amplification. The loop gain can then roll-off above a particular frequency
thus limiting high-frequency noise amplification.

To prevent noise amplification at the plant input, the term KS is of paramount importance
as it multiplies the noise signal directly (see (5.1c) and (5.1d)). KS should thus be close
to one (0 dB) at low frequencies, to have control authority, and roll-off at high frequencies
where sensors noise is important.

Typical shapes for S and T and KS are shown in Figure 5.2. Note that the abscissa will
often be referred to as the frequency although it is expressed in terms of angular rate.
On the ordinate are the singular values of S and T which provide more information than
the eigenvalues. S, T , and KS being computed at the plant output are composed of as
many channels as there are outputs.

5.1.1 Singular Values

The Singular Values Decomposition (SVD) of a matrix A ∈ Cn×m is:

A = UΣV ∗ (5.5)
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Figure 5.2 – Sensitivity, complementary sensitivity, and controller times sensitivity
functions.

where * denotes the complex conjugate transpose. The matrices U ∈ Cn×n and V ∈ Cm×m

are unitary and contain respectively the input and output singular vector. Σ ∈ Rn×m with
k = min(n,m) singular values σi ordered in decreasing order along the main diagonal.

The largest singular value σ1 is commonly referred to as σ̄. The smallest, σk is denoted
¯
σ.

Singular values, as opposed to eigenvalues, can be computed for any matrix. Furthermore,
eigenvalues can lead to wrong interpretations [286]. For the two-input/two-output plant
G

G =

[
0 100

0 0

]
(5.6)

the eigenvalues are degenerated and null, which means that for any input, the output
should be zero. However, for the input vector [0 1]T , the output is [100 0]T. Eigenvalues
provide a measure of the gain only when the output and input are in the same direction.
The U and V matrices of G are:

U =

[
1 0

0 1

]
, Σ =

[
100 0

0 0

]
, V =

[
0 −1

1 0

]
(5.7)

The input V and output U matrices give the direction so that an amplification σi of the
input signal occurs. The first columns of V and U provide the direction for the maximum
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amplification whereas the last columns give the direction of minimum amplification. It
can be directly seen that an input vector in the direction [0 1]T provides an output in the
direction [1 0]T, amplified by σ1 = 100.

5.1.2 Bandwidth

The bandwidth defines the frequency range over which the control is effective. It can be
derived from the sensitivity function as:

σ̄(S(jωB)) = −3 dB (5.8)

The plant complementary sensitivity T relates the plant output y and the reference
r: y = Tr. Control is thus effective as long as T � 0 dB. This leads to an alternate
bandwidth definition:

σ̄(T (jωBT
)) = −3 dB (5.9)

Finally, the crossover frequency ωc is defined as the frequency at which L changes sign:

σ̄(L(jωc)) = 0 dB (5.10)

For systems with Phase Margin (PM)<90 deg [286, p. 39]:

ωB < ωc < ωBT
(5.11)

In the interval [ωB, ωBT
], S and T are likely to be larger than 0 dB and will then amplify

noises and disturbances in this frequency band, without increasing tracking performances.
Acting on T and S bandwidth allows controlling this specific frequency band where
performances may be degraded.

Note that in the case PM=90 deg, then ωB = ωc = ωBT
.

5.1.3 Margins

Phase Margin (PM) and Gain Margin (GM) are used to measure how much gain and
phase can be included in the feedback before it becomes unstable. Classically, SISO PM
and GM are efficiently represented using Nyquist’s plot, as shown in Figure 5.3 [286].

ω180 defines the frequency at which the phase changes sign. The crossover frequency ωc

relates the PM to the amount of time delay τ that a feedback loop can handle before
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Figure 5.3 – Nyquist plot of the loop gain L.

becoming unstable:

τ =
PM
ωc

(5.12)

For MIMO systems, an alternate definition can be used [299, p. 118]. For a perturbed
feedback system, it can be shown that the system remains stable if it does not have poles
in the half-left plane and if:{

¯
σ(1 + L) > σ̄(Δa(s)) ∀s ∈ DR

¯
σ(1 + L−1) > σ̄(Δm(s)) ∀s ∈ DR

(5.13)

where Δa and Δm are additive and multiplicative uncertainties, and DR is the standard
Nyquist contour, encircling the right-half plane with R sufficiently large.

Defining α = min
ω ¯

σ(1 + L), then:

GM1+L =

[
1

1 + α
,

1

1− α

]
(5.14a)

PM1+L = ±2 sin−1
(α
2

)
(5.14b)

These are margins to additive uncertainties.
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Similarly, defining β = min
ω ¯

σ(1 + L−1), then:

GM1+L−1 =

[
1

1 + β
,

1

1− β

]
(5.15a)

PM1+L−1 = ±2 sin−1

(
β

2

)
(5.15b)

which are margins to multiplicative uncertainties.

The total gain and phase margins are defined as:

GM = GM1+L ∪GM1+L−1 (5.16a)

PM = PM1+L ∪ PM1+L−1 (5.16b)

Note that using this definition the PM is bounded by 60 deg. The negative GM is often
referred to as the “gain reduction” margin.

It is possible to compute guaranteed minimum values on the PM and GM using the
sensitivity function. Defining MS = max

ω
|S(jω)|, the following expressions are true [286, p.

35]:

GM ≥ MS

MS − 1
(5.17a)

PM ≥ 2 sin−1

(
1

2MS

)
(5.17b)

According to [300], the margins shall be at least 6 dB and 30 deg for space missions, at
the plant output. However, for RVD, and according to ESA, it is preferable to aim for 45
deg margins.

Although such definitions allow a preliminary assessment of controller performance, more
advanced techniques can be used to define the robustness of a closed-loop system with
respect to a set of bounded uncertainties. This will be further discussed in the next
sections.

5.1.4 GNC Loop

The complete GNC loop for the RVD problem is shown in Figure 5.4.

This loop represents the P2P GNC. Attitude and relative position control loops have
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G
+

di

y
+

Kr
- +

EKF
Sensors

Actuators

Wheel 
Unloading

+ +u ug
+

OL

+

Figure 5.4 – GNC loop with the sensors, actuators, navigation filter and controller.
The block OL represents the open-loop manoeuvres.

similar structures, with the following exceptions: the reaction wheels unloading controller
that is only present in the attitude loop, and the open-loop ΔV s and other feed-forward
terms which are only present for the relative position control.

This GNC loop does not include the sloshing dynamic; its coupling to the dynamics is
shown in Figure 5.5.

+

++ G
S

y
u

ug

di

Figure 5.5 – Sloshing dynamics.

Note that the LQR controllers will be tuned without sloshing dynamics, whereas H∞ and
μ-synthesis controllers will explicitly account for the sloshing in the generalised plant.

According to Section 3.5.2, to maximise the sloshing perturbation, a filling ratio of τ = 0.5,
corresponding to 1 kg of fuel, will be used. To generate the dynamics (P2P dynamics and
Hill’s equations), the chaser dry mass (10 kg), the docking ports locations and orientations,
as well as the fuel tank location provided in Section 6.2, are used.

To simplify the discussion, only the case where the target docking port is aligned with its
body frame is considered. However, in Chapter 6, controllers for the four different target
docking ports orientations will be tested.
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As each element of the control-loop must be discretised (navigation filters and controllers),
using different sample times for each component of the GNC significantly complexifies
the software. It has thus been decided to use a single sample time.

The sampling frequency should be ∼ 10 times faster than the fastest mode which needs
to be controlled [301]. According to [101], the typical closed-loop bandwidth for RVD are
not larger than 0.1 Hz (i.e. 0.6 rad/s). This consideration leads to a sampling frequency
of 1 Hz.

The camera of the VBN can provide images up to 14 FPS. With a 10 megapixels sensor,
this represents the most significant amount of data that the bus must handle. As the
whole GNC loop is sampled at 1 Hz, it has been decided to run the camera at 1 FPS,
which will unload the data bus. The large capacity margin on the FPS could be used for
other image processing purposes.

5.1.5 Number of Controllers

To satisfy the required accuracy along the approach trajectory, while minimising the
fuel consumption, several controllers are necessary with accuracy increasing as range
decreases.

The reference trajectory is recalled in Figures 5.6 and 5.7

S2

V̄

R̄

S21S22S23S24

com.
rangealtitude

raise

-15m -50m -150m -300m -500m

approach
ellipsoid

-35km-16.5km

2.1km

Homing
CDGPS

Closing
CDGPS

Final
Approach
VBN

S1 S0

29km GNSS
nav.

Figure 5.6 – Trajectory profile for a CubeSat RVD mission.

The relative position control, using the Hill’s equations, will be using different controllers.
For the LQR, a low-bandwidth controller will be used from SK points S2 to S22. From
S22 to S23, a medium bandwidth is used. Finally, from S23 to S3 a high bandwidth
controller is used. For the H∞, only two controllers are necessary; a low bandwidth from
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docking port
axis

S24

S3

-15m

-10m

-5m

S31

fly-around

VBN+ISL

VBN

-2.5m

S32
V̄

R̄

Figure 5.7 – Final Approach.

S2 to S23 and a high bandwidth from S23 to S3.

This is summarised in Table 5.1.

Table 5.1 – Closing: Bandwidth usage.

SK point S2 → S21 S21 → S22 S22 → S23 S23 → S24 S24 → S3

LQR LB LB MB HB HB

H∞ LB LB LB HB HB

For the final approach, the P2P control starts at point S3. At this point, a low bandwidth
controller will be used for the handover between the navigation filters to limit fuel
consumption. Once the navigation handover has been performed, a high bandwidth
controller will be used for the forced translation until docking.

For absolute attitude control, only one controller is necessary as pointing requirement is
constant along the approach.

5.2 Open-Loop Manoeuvres

The open-loop ΔV s are provided as a feed-forward term in the control loop. They are
computed using the CW-targeting technique which solves the impulsive transfer problem
between arbitrary points in a given ToF.
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The CW equations, without the constant acceleration terms, are:

x(t) =

(
4ẋ0
ω

− 6z0

)
sin (ωt)− 2ż0

ω
cos (ωt) + (6ωz0 − 3ẋ0)t+

(
x0 +

2ż0
ω

)
(5.18a)

y(t) = y0 cos(ωt) +
ẏ0
ω

sin(ωt) (5.18b)

z(t) =

(
2ẋ0
ω

− 3z0

)
cos(ωt) +

ż0
ω

sin (ωt) +

(
4z0 − 2ẋ0

ω

)
(5.18c)

Differentiating the CW equations with respect to time provides the velocities:

ẋ(t) = (4ẋ0 − 6z0ω) cos (ωt) + 2ż0 sin (ωt) + (6ωz0 − 3ẋ0) (5.19a)

ẏ(t) = −y0ω sin(ωt) + ẏ0 cos(ωt) (5.19b)

ż(t) = − (2ẋ0 − 3z0ω) sin(ωt) + ż0 cos (ωt) (5.19c)

For a given ToF tf , and knowing the initial (x0, y0, z0) and final (x(tf ), y(tf ), z(tf ))
positions, the CW equations can be solved for ẋ0, ẏ0, and ż0 to obtain the initial velocity.
These values can then be used in (5.19) to obtain the speed at the end of the transfer.

The initial and final ΔV s are thus:

ΔVi =
[
ẋ0 ẏ0 ż0

]T −
[
vix viy viz

]T
(5.20a)

ΔVf =
[
vf x vf y vf z

]T −
[
ẋ(tf ) ẏ(tf ) ż(tf )

]T
(5.20b)

where [vix viy viz]
T is the satellite speed before the transfer, and [vf x vf y vf z]

T is the
desired speed at the end of the transfer.

During the ΔV s executions, no controller is tracking the velocity profile. The accurate
tracking of the trajectory is only obtained using position controllers.

The translations, during Final Approach, are initiated and stopped using constant
acceleration inputs. These inputs must be selected to avoid saturation. This will be
further discussed in Chapter 6.

5.3 Attitude Control

The attitude control-loop is composed of two controllers. The first one is dedicated to
achieving the required pointing accuracy, and the second one to unload the reaction
wheels.
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Different controllers can be used for the attitude. In [101], an LQR was shown to achieve
the required performances. For this research, it has been decided to use the same law as
in [6].

This quaternion feedback regulator was developed by [167] and achieves optimal slew-
ing between two orientations. Such a control law is selected as it guarantees efficient
reconfiguration when the chaser must align itself with the target docking port.

The control law is:

T = −[ωbI
b ×]Ibω

bI
b −DωbI

b −Kδq1:3 (5.21)

where δq1:3 is the error quaternion defined in (4.64), ωbI
b is the satellite angular rate in

the body frame, and Ib is the satellite inertia in the body frame.

The term [ωbI
b ×]Ibω

bI
b is present to suppress the gyroscopic coupling, due to the satellite

rotation. The terms Kδ11:3 and DωbI
b are proportional, and derivative terms, and the

matrices K and D must be tuned.

To achieve optimal slewing around the rotation eigenaxis, the gains matrices K and D

must be of the form D = dIb and K = kIb.

For a critically damped system, the coefficients k and d can be selected as:

k = 2

(
8

Ts

)2

(5.22a)

d = 2
8

Ts
(5.22b)

In this thesis, after various trials, a settling time Ts = 50 s has been selected.

This controller has been shown to be asymptotic globally stable in the sense of Lyapunov
[167]. However, robustness to inertia uncertainties could not be proven. Note that if
robustness issues were to be noticed, it is possible to select the proportional gain as K = k1.
With such a gain, the controller has been proven robust to inertia variations/uncertainties
[167]; however, the rotation does not take place around an eigenaxis any more.

Even if this specific controller is non-linear, and thus cannot be tested for robustness
using μ-analysis, it was selected due to the extensive knowledge of its behaviour and
consequently, its ease if implementation [5].
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5.3.1 Reaction Wheels Unloading

Reaction wheels unloading can be achieved in two different ways: either using the RCS
or magnetorquers. Although the cold gas RCS will be able to provide 6 DoF control,
magnetorquers have been chosen to unload the wheels due to the limited amount of fuel
available.

Magnetorquers produce dipoles m which interact with the Earth magnetic field B and
produce torques:

T = m×B (5.23)

To unload the wheels, the following control law is used [30]:

m =
k

‖B‖
(
HRW × B

‖B‖
)

(5.24)

where HRW is the reaction wheel momentum in the body frame. Such a law does not
allow unloading wheels which are parallel to the magnetic field. However, averaged on
several orbits, this simple law permits to desaturate reaction wheels efficiently.

Note that in the case of polar orbits, the magnetic field is aligned with the velocity
vector for a significant part of the time (except when crossing the poles). The reaction
wheels should then be positioned to avoid having one wheel permanently aligned with
the velocity vector.

5.4 Linear Quadratic Regulator

One of the simplest MIMO controllers is the LQR. Such a control scheme can be easily
tuned and guarantees (under certain conditions) minimum PM of ±60 deg and GM of
[−6, +∞] dB, at the plant input. The LQR is a full state control law as it assumes
that the complete state is available for feedback. A detailed description can be consulted
in [286,299,302].

For a continuous state-space of the form:

ẋ = Ax+Bu (5.25)

the following quadratic cost function is built:

J(u) =

∫ ∞

0
dt

(
xTQx+ uTRu

)
(5.26)
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Defining the feedback law u = −Kx, K is the optimal controller which minimises J(u),
and is defined as:

K = R−1BTX (5.27)

where X = XT is the unique positive semi-definite solution of the algebraic Riccatti
equation:

ATX +XA−XBR−1BTX +Q = 0 (5.28)

The matrix Q and R are symmetric and positive-definite and can be selected to balance
tracking and input usage requirements. Choosing large values for R and small values for
Q will result in a low authority controller.

A good initial assumption for selecting Q and R is [101]:

Q =

⎡⎢⎢⎣
1

x2
1max

. . .
1

x2
nmax

⎤⎥⎥⎦ , R =

⎡⎢⎢⎣
1

u2
1max

. . .
1

u2
mmax

⎤⎥⎥⎦ (5.29)

where ximax and uimax are respectively the maxima of the allowed state error and plant
input values.

Note that selecting R as diagonal, guarantees the LQR margins unless some parts of the
state x are coupled through A or some parts of the input u are coupled through B.

First, for the case where components of the state x are coupled through A; if one entry of
R is much lower than the other, the corresponding input signal can become unacceptably
high [302].

For example, for the Hill’s equations (see Section 3.3), the following values are used in
the Q and R matrices:

x1→3max = 0.1 m, x4→6max = 0.1 m s−1, u1→3max = 4 · 10−5 N (5.30)

In this case, GM=[−13.11, +∞] dB, and PM=±60 deg. The S and T functions are
shown in Figure 5.8a.

If the third input of R is changed to

u3max = 4 · 10−3 N (5.31)
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the margins drop to GM=± 4.2 dB and PM=±22.3 deg. In this case, the S, T , and KS

functions are shown in Figure 5.8b.

(a) (b)

Figure 5.8 – Sensitivity, controller times sensitivity, and complementary sensitivity
functions for a) well-tuned and b) ill-tuned controllers.

Compared to Figure 5.8a, MS and MT , in Figure 5.8b, have increased for one channel,
leading to smaller margins. Furthermore, for the third channel, KS>0 dB at high
frequencies leading to noise amplification in the loop. It is thus important to maintain
consistency between state elements when selecting R.

Note that for the particular case of Hill’s equations, the second channel, representing
cross-track motion, is independent of inputs 1 and 3 and the corresponding input in R

can take any value without compromising margins.

The second case concerns plants which input matrix B contains coupling. This the case
for the P2P dynamics (see Section 3.4). The input matrix has the following form:

Br =

⎡⎢⎢⎢⎣
0 0

B21 0

0 0

B61 B63

⎤⎥⎥⎥⎦ (5.32)

This matrix can be written as:

Br =

⎡⎢⎢⎢⎣
0 0

B21 0

0 0

0 B63

⎤⎥⎥⎥⎦
[

1 0

B−1
63 B61 1

]
(5.33)
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It was shown [302, pp. 122-125], that if a coupling exists at the plant input, to preserve
the LQR margins, the values used in R must be bounded.

For a matrix R of the form:

R =

[
R1 0

0 R2

]
(5.34)

and if an input coupling

Λ =

[
1 0

X 1

]
(5.35)

exists, then the bound on the acceptable values in R, must satisfy:

σ̄2(X) <

[
λmin(R2)

λmax(R1)

]
(5.36)

where λmax and λmin, are the maximum and minimum eigenvalues. This is only a
sufficient condition, and different ratio values may still preserve the LQR margins. Note
that if the states corresponding to the entry R1 or R2 are coupled to each other through
A, then the elements within R1 and R2 should maintain consistency between the states,
as explained before.

The controllers have been computed using the MATLAB® lqr command. To obtain the
gain margins, the continuous controller is used. However, for hardware implementation, a
discrete version can be computed using the lqrd command.

5.4.1 Hill’s Equations

During Closing, the Hill’s equations are used to compute the LQR gain. Three controllers
are necessary to satisfy the required accuracy while limiting fuel consumption. For the
Hill’s equations, the state vector contains the position and velocity along each axis. The
input vector u includes the force inputs and has three components. To compute the
controllers, no sloshing dynamic is added, and the chaser’s dry mass is considered.

Low Bandwidth Controller

The values used in the Q and R matrices are:

x1→3max = 2 m, x4→6max = 1 m s−1, u1→3max = 8 · 10−5 N (5.37)
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leading to ωc = 4.1 · 10−3 rad/s, GM=[−8.5, +∞] dB, and PM=±60 deg. The sensitivity
and complementary sensitivity functions are provided in Figure 5.9.

Figure 5.9 – Sensitivity, controller times sensitivity, and complementary sensitivity
functions for the low bandwidth LQR.

Note that this controller crossover frequency ωc is near the dynamics bandwidth, equal
to the to the orbital mean motion. For a 600 km altitude circular orbit, the dynamics
bandwidth is 1.1 · 10−3 rad/s. The controller crossover frequency is thus 3.75 times faster
than the dynamics bandwidth.

Medium Bandwidth Controller

The values used in the Q and R matrices are:

x1→3max = 1 m, x4→6max = 1 m s−1, u1→3max = 1 · 10−4 N (5.38)

leading to ωc = 5.9 ·10−3 rad/s, GM=[−11.5, +∞] dB, and PM=±60 deg. The sensitivity
and complementary sensitivity functions are provided in Figure 5.10.

The controller crossover frequency is 5.4 times faster than the dynamics bandwidth.
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Figure 5.10 – Sensitivity, controller times sensitivity, and complementary sensitivity
functions for the medium bandwidth LQR.

Figure 5.11 – Sensitivity, controller times sensitivity, and complementary sensitivity
functions for the high bandwidth LQR.
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High Bandwidth Controller

The values used in the Q and R matrices are:

x1→3max = 1 m, x4→6max = 1 m s−1, u1→3max = 5 · 10−4 N (5.39)

leading to ωc = 1.1 ·10−2 rad/s, GM=[−13.2, +∞] dB, and PM=±60 deg. The sensitivity
and complementary sensitivity functions are provided in Figure 5.11.

Here, the controller crossover frequency is 10.7 times faster than the dynamics bandwidth.

These three controllers are used at the same time as the attitude controller, and their
performances are shown in Chapter 6.

5.4.2 P2P Dynamics

From SK point S3 onwards, the 6 DoF must be controlled simultaneously. The P2P
dynamics is used to compute the LQR controller. As in the previous case, only the P2P
dynamics with the chaser dry mass and without sloshing, are considered.

The state vector of the P2P dynamics contains 12 elements coming from the relative
attitude angles, angular rates, positions, and velocities. The input u is composed of the
chaser torques and forces and has dimension six:

x = [αdcdt , ωdcdt
dc

, sdcdtdt
, ṡdcdtdt

]T

u = [T dc , F dc ]
T

For the selected chaser and target masses, and in the case where the chaser docking
port is aligned with its body frame, the singular values of X = B−1

63 B61 appearing in the
coupling matrix Λ (5.35) are:

σ(X) = [8.73 7.86 0] (5.41)

The matrix R is defined as the inverse square of the maximum torque and force:

R =

[
T−2
max1 0

0 F−2
max1

]
(5.42)

Following (5.36), to guarantee the LQR margins, the torque and force input ratio should
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be:

8.73 <
Tmax

Fmax
(5.43)

In the following example, these values will be considered in the Q and R matrices:

x1→3max = 0.1 deg, x4→6max = 0.1 deg s−1, x7→9max = 0.1 m

x10→12max = 0.1 m s−1, u1→3max = 8.73 · 10−4 Nm, u4→6max = 1 · 10−4 N
(5.44)

The S, T , and KS functions are shown in Figure 5.12.

Figure 5.12 – Sensitivity and complementary sensitivity functions for the high band-
width LQR.

Two distinct parts are observed and correspond to the relative position (bandwidth located
at ≈ 10−2 rad/s) and to the relative attitude (bandwidth at ≈ 5 rad/s). The attitude
and position parts are well separated, and the LQR margins are fully preserved.

The margins can be computed for the attitude and position separately, considering only
the relevant channels of the loop gain L. The coupled margins can be calculated using
the full loop gain. The margins are provided in Table 5.2

If the attitude crossover frequency is decreased, by reducing the value of Tmax in R, the
margins are not guaranteed any more, however, they remain close to optimal up to the
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Table 5.2 – P2P LQR input margins example: well-tuned controller.

Chanel GM (dB) PM (deg) ωc (rad/s)

Attitude [−17.7, +∞] ± 60 3.6

Position [−13.3, +∞] ± 60 0.17

Coupled [−13.3, +∞] ± 60 3.6

point where the attitude and position crossover frequencies are similar, or where the
position crossover frequency is bigger than the attitude’s.

For the following values:

x1→3max = 0.1 deg, x4→6max = 0.1 deg s−1, x7→9max = 0.1 m

x10→12max = 0.1 m s−1, u1→3max = 1 · 10−5 Nm, u4→6max = 3 · 10−2 N (5.45)

the margins are provided in Table 5.3, and although the individual attitude and position
channels have the full LQR margins, the coupled margins are clearly degraded. The
individual attitude and position margins are preserved, as when observing the individual
channels, the coupling is bypassed and thus does not deteriorate them.

Table 5.3 – P2P LQR input margins example: ill-tuned controller.

Chanel GM (dB) PM (deg) ωc (rad/s)

Attitude [−13.5, +∞] ± 60 0.3

Position [−13.5, +∞] ± 60 0.3

Coupled [−3.2, 3.5] ± 19.2 0.7

To preserve the LQR margins, the attitude crossover frequency should always be larger
than the position’s. In fact, it has been found that ratios Tmax

Fmax
larger than ∼ 1

4 preserve
the LQR margins. This number is significantly smaller than the boundary found using
the sufficient condition (5.36). Note that to satisfy both attitude and position accuracy
requirements, it may be necessary to sacrifice some of the LQR margins.

To meet the performance requirements, two controllers are required for the P2P 6 DoF
control: low and high bandwidth.
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Low Bandwidth Controller

The values used in the Q and R matrices are:

x1→3max = 0.5 deg, x4→6max = 0.5 deg s−1, x7→9max = 0.1 m

x10→12max = 0.1 m s−1, u1→3max = 2 · 10−5 Nm, u4→6max = 8 · 10−4 N (5.46)

With this selection

Tmax

Fmax
= 0.025 (5.47)

and the LQR margins will be degraded. They are provided in Table 5.4 and the S, T ,
and KS are shown in Figure 5.13.

Table 5.4 – Low bandwidth P2P LQR input margins.

Chanel GM (dB) PM (deg) ωc (rad/s)

Attitude [−13.4, +∞] ± 60 0.17

Position [−13.4, +∞] ± 60 0.05

Coupled [−13.4, 45] ± 59.6 0.17

The controller times sensitivity is well below 0 dB at all frequencies indicating good
robustness to sensor noise.

High Bandwidth Controller

For high bandwidth, position accuracy must satisfy the docking requirement and thus
needs to be controlled more aggressively. Unless the attitude bandwidth is increased
accordingly, margins will suffer.

The values used in the Q and R matrices are:

x1→3max = 0.1 deg, x4→6max = 0.1 deg s−1, x7→9max = 0.025 m

x10→12max = 0.01 m s−1, u1→3max = 1 · 10−5 Nm, u4→6max = 2 · 10−3 N (5.48)

With this selection

Tmax

Fmax
= 0.005 (5.49)
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Figure 5.13 – Sensitivity, controller times sensitivity, and complementary sensitivity
functions for the P2P low bandwidth LQR.

and the margins will be consequently lowered. They are provided in Table 5.5 and S, T ,
and KS are shown in Figure 5.14.

Table 5.5 – High bandwidth P2P LQR input margins.

Chanel GM (dB) PM (deg) ωc (rad/s)

Attitude [−13.5, +∞] ± 60 0.27

Position [−13.5, +∞] ± 60 0.14

Coupled [−10, 16.4] ± 50.2 0.29

As expected, the individual attitude and position margins are preserved, but the combined
margins are degraded. Furthermore, the controller times sensitivity of the position channel
KS = 2.3 dB, for ω > 0.14 rad/s, which may cause robustness issues. These will be
further evaluated using μ-analysis and Monte-Carlo simulations.

5.4.3 Linear Quadratic Integral

Because the LQR does not have an integral term, a steady-state error must be expected.
Such a steady-state can be eliminated using a pre-compensator. This is however not
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Figure 5.14 – Sensitivity, controller times sensitivity, and complementary sensitivity
functions for the P2P high bandwidth LQR.

desirable as such an element needs to be continuously re-tuned, as a function of the
dynamics (influenced by the target and chaser docking ports orientations). The LQI
formulation offers an alternative to pre-compensator by augmenting the state to include
an integral term explicitly. Doing so will, of course, impact margins as it introduces lag
in the control loop.

The state-space is formulated as:

d

dt

[
x

z

]
=

[
Ax+Bu

Cx

]
(5.50)

where C is a matrix, selecting parts of the state on which integral action is required.

During the simulations, it has been found that only the high bandwidth P2P LQR
controller, used for the final docking, requires integral action, as in some cases, it was
meeting the requirement with only small residual margins (see Chapter 6). For the other
legs of the RVD approach trajectory, an integral term is not needed.

Integral action has only been applied to the attitude and position part of the state vector.
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The C matrix thus has the following form:

C =

[
1 0 0 0

0 0 1 0

]
(5.51)

The augmented state vector is:

xint = [αdcdt , ωdcdt
dc

, sdcdtdt
, ṡdcdtdt

, αdcdt
int , sdcdtint,dt

]T (5.52)

The A and B matrices are augmented as:

Aint =

[
A 0 · CT

C 06×6

]
(5.53)

Bint =

[
B

06×6

]
(5.54)

This state-space is then used in the same way as in the standard LQR problem to obtain
an optimal controller. Identical values as in the high bandwidth P2P LQR controller are
used in Qint :

Qint =

⎡⎢⎣Q 0 0

0 0.011 0

0 0 0.11

⎤⎥⎦ (5.55)

The integral term is lightly weighted to minimise impacts on the LQR margins. The R

matrix is the same as in the case of the high bandwidth P2P LQR controller.

The obtained margins are given in Table 5.6, and S, T , and KS are shown in Figure 5.15.

Table 5.6 – High bandwidth P2P LQI input margins.

Chanel GM (dB) PM (deg) ωc (rad/s)

Attitude [−13.5, +∞] ± 60 0.27

Position [−13.5, +∞] ± 60 0.14

Coupled [−9.3, 15] ± 48.5 0.3

Adding an integral term appeared it did not affect the individual phase and gain margins.
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Figure 5.15 – Sensitivity, controller times sensitivity, and complementary sensitivity
functions for the P2P high bandwidth LQI.

This comes from the fact the PMs are larger than 60 deg and cannot be computed
with the MIMO method used in this thesis. Calculating the classical SISO margins for
each individual channel (one loop at a time) shows that the LQR and LQI margins are
respectively ∼ 66 deg and ∼ 65 deg. The coupled margins are also reduced; however,
they remain at an acceptable level and above the requirements.

It can be observed, comparing Figures 5.15 and 5.14, that as predicted, the LQI improves
tracking as the sensitivity gain at low frequency has been considerably decreased, reducing
the steady-state error.

5.4.4 Linear Quadratic Gaussian

In most practical cases, the complete state is not directly available and needs to be
estimated. The most common approach is to use a Kalman filter or EKF. The Kalman
filter/LQR combination is called LQG with the drawback that the LQR margins are no
longer guaranteed [303].

Classically, the observation matrix H , process noise Q, and sensor noise R are all included
in the LQG regulator computation. Note that this is only possible if the H matrix is
constant. A typical LQG block diagram is provided in Figure 5.16.

If a steady-state Kalman filter cannot be used, the estimator and LQR can always be
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Figure 5.16 – LQG block diagram (inspired from [299]).

solved separately [30]. A linear state-space of the following form is assumed:

ẋ = Ax+Bu (5.56a)

y = Hx (5.56b)

For Kc, a control gain, and Kf , an estimator, considering a full state feedback u = −Kcx,
the state-space becomes

ẋ = (A−BKc)x (5.57a)

y = Hx (5.57b)

An estimate of the state x̂ can be obtained using the output equation:

˙̂x = Ax̂+Kf (y −Hx̂) (5.58)

As y = Hx and defining the error ε ≡ x− x̂, the estimator error dynamics can be written
as

ε̇ = (A−KfH) ε (5.59)
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If the full state feedback uses the state estimate u = −Kcx̂, then

ẋ = (A−BKc)x+BKcε (5.60)

The state-space for the controller/estimator problem can thus be written as:[
ẋ

ε̇

]
=

[
A−BKc BKc

0 A−KfH

][
x

ε

]
(5.61)

As the matrix is upper-block triangular, its eigenvalues can be obtained from A−BKc

and A−KfH . This is is called the separation theorem and shows that the estimator and
the controller can always be designed separately.

To compute the LQG margins, the loop transfer function L is needed. It is given by [299]:

LLQG(s) = Kc (s1 −A+BKc +KfH)−1KfH (s1 −A)−1B (5.62)

The last phases of the docking (starting at 10 m range) have been simulated, and the
Kalman gain Kf and observation matrix H have been recorded. Together with the
controller Kc and the P2P dynamics, they have been used to compute the input loop
transfer function. The MATLAB® code is provided in Appendix D.2.8.

Computing the LQG margins at different ranges (from 10 m to docking, with and without
star trackers for the 3 LEDs pattern), shows that the LQR margins are not affected by
the presence of the EKF. A Loop Transfer Recovery (LTR) procedure, which aims at
modifying the Kalman filter process noise matrix to recover some of the LQR margins, is
here not necessary. This was expected as the orbital dynamics can be accurately predicted
and the state is entirely observable.

5.5 H∞ Control

In the LQR formulation, no information exists on the input signals frequency content
(reference, disturbances, and control input), and flexible modes due to solar arrays or fuel
sloshing cannot be explicitly accounted for during the controller synthesis. To prevent
noise amplification, notch filters can be used to limit the controller authority at given
frequency bands. Furthermore, the mathematical description of physical systems can never
be entirely accurate, and modelling errors are always present, to which the controllers
must be robust. It has been often suggested to use frequency dependant LQR weights to
shape the sensitivity and complementary sensitivity functions. Such an approach was
discarded as it would significantly complicate the tuning.
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The H∞ formulation provides a systematic framework to synthesise robust controllers,
explicitly taking into account modelling errors, flexible dynamics, as well as frequency
dependent signals. It allows shaping the sensitivity and complementary sensitivity
functions to satisfy performance and robustness requirements.

The infinity norm ‖ · ‖∞ of a variable x = [x1, ..., xm] is:

‖x‖∞ = max
i

|xi| (5.63)

For a frequency dependant function expressed in the Laplace domain F (s), the infinity
norm is:

‖F (s)‖∞ = max
ω

σ̄(F (jω)) (5.64)

where σ̄ defines the maximum singular value.

H∞ is thus a design procedure which will provide a robust controller in the spirit of
the infinity norm, i.e. which minimises the maximal value (worst case) of the modelled
system. Hence, these controllers are not necessarily optimal, and objectives such as fuel
consumption or time minimisation are not always compatible with the H∞ framework.

Alternatively, the usual 2-norm can be used, and the optimal controller minimises the
signals’ power (provided by the 2-norm). This is called H2 control, and a well-known
example is the LQG. H∞ tends to optimise controllers, pushing down signal peaks,
whereas H2 controllers decrease the signal’s overall energy.

The margin issues resulting from the association of an estimator and an LQR have
previously been discussed. The H∞ also includes an estimator in its structure as described
below. Although no margins can be guaranteed for H∞ controllers, the manual definition
of input and output weights allows achieving required margins without the need for ad
hoc techniques such as LTR. This results from the ∞-norm satisfying the multiplicity
property

‖G(s)K(s)‖∞ ≤ ‖G(s)‖∞‖K(s)‖∞ (5.65)

which the 2-norm does not [286, p. 160]. By evaluating the ∞-norm of individual signals,
it is thus possible to conclude on the behaviour of these signals when interconnected in
cascade. The sensitivity and complementary sensitivity functions can thus be shaped
individually guaranteeing minimum bounds on the margins (see (5.17a) and (5.17b)).

Several formulations of the H∞ problem can be used and [286,304,305] give an extensive
overview of the field. The generic H∞ control framework is shown inf Figure 5.17.
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P

K

zw

u v

Figure 5.17 – Generalised control problem.

The system is:[
z

v

]
= P (s)

[
w

u

]
=

[
P11(s) P12(s)

P21(s) P22(s)

][
w

u

]
(5.66a)

u = K(s)v (5.66b)

P (s) is the generalised plant and K(s) the controller. The inputs are the control variable
u, and an exogenous signal w, representing disturbances, noises or references. At the plant
output, v is the measured signal, fed to the controller, and z an exogenous signal that
must be minimised to satisfy control objectives. The generalised plant has the state-space
form:

P =

⎡⎢⎣ A B1 B2

C1 D11 D12

C2 D21 D22

⎤⎥⎦ (5.67)

For the H∞ problem, the following assumption must be satisfied :

(a1) (A,B2, C2) is observable and controllable.

(a2) (A,B1) is controllable, (A,C1) is detectable. Ensures, together with assumption
(a1), the existence of a stabilising controller.

(a3) D12 and D21 have full rank. Sufficient condition to ensure the controller is proper.

(a4)

[
A− jω1 B2

C1 D12

]
has full column rank ∀ ω.

(a5)

[
A− jω1 B1

C2 D21

]
has full row rank ∀ ω. Ensures, together with assumption (a3),

no pole/zero cancellation on the jω axis, which would result in lightly damped
oscillations.
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(a6) D11 = 0 = D22. D11 = 0 makes P11 strictly proper (i.e. P11(j∞) = 0).

Note that assumption (a6) is a necessary condition for H2 but not for H∞. If D11 �= 0

and D22 �= 0, it is possible to transform the plant in an equivalent H∞ problem, in which
assumption (a6) is satisfied.

The transfer function from z to w is given by the lower LFT

z = Fl(P,K)w (5.68)

The lower LFT Fl is defined as

Fl(P,K) = P11 + P12K(I − P22K)−1P21 (5.69)

where Pij , i, j = 1, 2 are the matrix elements of P . The H∞ problem is to find an optimal
controller K which minimizes the signal from w to z:

‖Fl(P,K)‖∞ = max
ω

σ̄(Fl(P,K)(jω)) (5.70)

Such optimisation will have the effect of pushing down the peak of the largest singular
value. Generally, it is not possible to find the optimal controller although a suboptimal
solution can be obtained using dedicated software. Assuming that the optimal controller
satisfies

‖Fl(P,K)‖∞ < γmin (5.71)

a suboptimal controller satisfying γ ≥ γmin can be efficiently obtained using the MATLAB® Ro-
bust Control Toolbox [306]. The MATLAB® hinfsyn algorithm used to solve the H∞
problem is based on [238], in which an optimal solution is approached by iteratively
decreasing γ. The main steps of the algorithm are outlined below.

H∞ Algorithm

There exists a stabilising controller K(s) satisfying ‖Fl(P,K)‖∞ < γ if and only if

1. X∞ ≥ 0 is a solution of the algebraic Riccati equation

ATX∞ +X∞A+ CT
1 C1 +X∞

(
γ−2B1B

T
1 −B2B

T
2

)
X∞ = 0 (5.72)

such that Re λi

[
A+

(
γ−2B1B

T
1 −B2B

T
2

)
X∞

]
< 0, ∀ i and
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2. Y∞ ≥ 0 is a solution of the algebraic Riccati equation

ATY∞ + Y∞A+BT
1 B1 + Y∞

(
γ−2C1C

T
1 − C2C

T
2

)
Y∞ = 0 (5.73)

such that Re λi

[
A+

(
γ−2C1C

T
1 − C2C

T
2

)
Y∞

]
< 0, ∀ i and

3. ρ(X∞Y∞) < γ2, where ρ(X) ≡ max
i

|λi(X)| is the spectral radius.

All controllers satisfying these points are then given by

K(s) = Fl(Kc, Q) (5.74)

where

Kc(s) =

⎡⎢⎣ A∞ −Z∞L∞ Z∞B2

F∞ 0 1
−C2 1 0

⎤⎥⎦ (5.75a)

F∞ = −BT
2 X∞ (5.75b)

L∞ = −Y∞CT
2 (5.75c)

Z∞ = (1 − γ−2Y∞X∞)−1 (5.75d)

A∞ = A+ γ−2B1B
T
1 X∞ +B2F∞ + Z∞L∞C2 (5.75e)

and Q(s) is any stable proper transfer function with ‖Q‖∞ < γ. In the special case where
Q is trivial (Q(s) = 0, ∀ s), the resulting controller is called the “central” controller:

K(s) = Kc11(s) = −F∞(s1 −A∞)−1Z∞L∞ (5.76)

This controller has the same number of states than the generalised plant P . Similarly to
the LQG, the central controller K(s) can be separated into a state estimator and state
feedback:

˙̂x = Ax̂+B1 γ
−2BT

1 X∞x̂︸ ︷︷ ︸
ŵworst

+B2u+ Z∞L∞(C2x̂− y) (5.77a)

u = F∞x̂ (5.77b)

The state estimator (5.77a) has a similar structure to (5.58). The term Z∞L∞ is the
estimator gain and (C2x̂ − y) the innovation. An extra term is present in the H∞
estimator: B1ŵworst, which influences directly the plant input, representing the worst
case estimate of the exogenous input w.
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5.5.1 Mixed-Sensitivity H∞ Control

As explained earlier, using the sensitivity, complementary sensitivity and loop transfer
functions, three bandwidths definitions could be obtained, and

ωB < ωc < ωBT
(5.78)

which results that in the interval [ωB, ωBT
], S and T are likely to be larger than 0

dB and thus amplify noises within this interval. Adjusting T and S bandwidths allow
controlling the frequency band on which the performances are degraded. It is well known
that for good reference tracking, T should be close to 1 at low frequencies and should
then roll-off for noise rejection. As S + T = 1, it will push S towards 0 at low frequencies
and reach 1 above the bandwidth. Finally, controlling the shape of KS, which represents
the sensitivity of the controller to input noise (typically sensor noise), allows bounding
the signal, avoiding actuator saturation and input noise amplification.

The mixed-sensitivity approach will be used to solve the H∞ problem as it allows efficient
control of the bandwidth, tracking, and noise rejection requirements. The problem is
depicted in Figure 5.18.

++ +-+ +

K

G
u y

e
v

z1

z2

z3

W1

W2

W3

Wr

Wn

Wd

w1

w2

w3

P

Figure 5.18 – S, T , KS mixed-sensitivity.

The dynamics G is transformed into an augmented plant P with three exogenous inputs
w1,...,3 and three exogenous outputs z1,...,3. The inputs are respectively the reference
signal, sensor noise and input disturbances. The outputs are the control error e, the plant
output y, and the control signal u.

Camille Pirat, December 14, 2018 171



Chapter 5. Control

The generalised plant P is:

P =

⎡⎢⎢⎢⎣
W1Wr −W1Wn −W1GWd −W1G

0 0 −W2GWd −W2G

0 0 0 −W3G

Wr −Wn −GWd −G

⎤⎥⎥⎥⎦ (5.79)

In this case, lower LFT connecting the augmented plant P and controller K is:

Fl(P,K) =

⎡⎢⎣ W1SWr −W1SWn −W1SGWd

W2TWr −W2TWn W2TGWd

W3KSWr −W3KSWn W3KSGWd

⎤⎥⎦ (5.80)

As previously explained, a controller K satisfying

‖Fl(P,K)‖∞ ≤ γ (5.81)

is sought.

Ideally γ ≤ 1 as in this case Fl(P,K) does not amplify the signals between the exogenous
inputs and outputs. The weights Wr, Wn, Wd, W1, W2, W3 are frequency dependent
and can be of any order, but are assumed stable and minimum phase [286, p. 107]. In
the case of a central controller, the controller order is always equal to the generalised
plant’s. As low-order controllers are desirable, a trade-off between model complexity and
controller order has to be done.

It should be noted that the mixed-sensitivity influences S, T and KS at the plant output
but not at the plant input. Such an approach does not provide any control over the input
margins.

In this thesis, the mixed-sensitivity is developed for the P2P dynamics as it represents the
highest level of complexity. The controllers for Hill’s equation can then be easily derived
from the P2P considerations.

The plant is given by the P2P state-space matrices (3.89) and (3.90). The D matrix is
zero and

C =

[
1 0 0 0

0 0 1 0

]
(5.82)

which means that only the relative position and attitude angles are available for feedback,
contrarily to the LQG which is full state feedback. The P2P dynamics is then combined
with the sloshing model to form the plant G. A filling ratio of τ = 0.5 is used, i.e. 1kg of
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fuel in the tanks. As for the LQR, the chaser’s dry mass is used to compute the P2P
dynamics.

Note that if C = 1 had been selected, i.e. with the full state available for feedback, the
output loop gain L = GK would be rank deficient. Indeed, for any matrices A and B,
such that dim(A) = m× n and dim(B) = n× k the following holds:

rank(A) ≤ min(m,n), and (5.83a)

rank(AB) ≤ min(rank(A), rank(B)) (5.83b)

Selecting C = 1 implies that dim(G) = 12 × 6 and dim(K) = 6 × 12. Consequently
dim(L) = dim(GK) = 12× 12 which is necessarily rank deficient.

Therefore, for the mixed-sensitivity, not using the relative velocity and angular rate in
the feedback loop ensures a full rank loop gain and does not lead to a lack of information.

Within the H∞ framework, normalised exogenous signals are used, and two different
paradigms exist:

1. Transform the unit signals into physical signals using the weights Wi.

2. Scale the plant G and define the weights Wi accordingly.

Here, it has been decided to use the second approach. Properly defining the weights Wi to
achieve the desired performances is a complicated task. Keeping the physical dimensions
in the plant simplifies the tuning process, as in this case the weights’ relative impact can
be clearly identified and easily adapted because all signals are normalised.

The input and output scaling matrices, U and Y , are such that the scaled plant G′ is:

G′ = Y −1GU (5.84)

The real controller K1, used for implementation, is obtained from the scaled controller K:

K1 = UKY −1 (5.85)

These scaling matrices U and Y serve a similar purpose than the Q and R matrices in
the LQR (selected as the inverse square of the maximum allowed values for the state and
control input). In the LQR case, such weights were ensuring a nearly normalised cost
function.

U can be defined from the available torques and forces. The selected actuators can provide
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2 mNm of torques and 4 mN of force. To avoid actuator saturation, smaller values than
the ones available were chosen:

U =

[
10−31 0

0 10−31

]
(5.86)

To select the output weight, the energy present in the system must be analysed. The
kinetic energy in the system is equal to the mechanical work of the actuation force

1

2
mv2 = Fx (5.87)

While docking, the speed is 1 cm/s and assuming that all the fuel has been depleted, the
spacecraft mass is 10 kg. Thus, considering the 1 mN force in U , the following output
scaling matrix is selected:

Y =

[
1 0

0 0.51

]
(5.88)

With this approach, the output scaling matrix is defined as the distance at which, for
a given kinetic energy, the input force is contributing the most. Note that the attitude
output scaling factor was set to one as the relative angles should always remain constant
and equal to zero.

5.5.2 Weights Definition

As previously mentioned, the exogenous inputs and outputs are unit signals. Their
physical interpretation is recovered through the corresponding scaling matrices. As the
plant G is now scaled, the weights need to be tuned accordingly.

Wr represents the frequency content of the reference signal. Initially, it will be kept
constant and equal to one, which corresponds to the power spectrum of a 0 dB white
noise.

The state is estimated using the VBN filter. The navigation filter output is chosen to be
white noise with a 1 deg error for the relative attitude and 1% of the range error for the
relative position.

Wn =

[
180
π 1 0

0 10−21

]
(5.89)

The first half of Wn diagonal is given in radiant as the output scaling values corresponding
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to the attitude channel has been kept to the identity. The second half of Wn diagonal is
unit-less as in this case the plant output has been scaled.

As for the LQG, the H∞ structure contains a separate estimator-like term. Consequently,
the state could be directly filtered within the H∞ controller with the sensors frequency
content provided in Wn. This is not possible to achieve using the VBN measurement
equations as they are varying with the range. The EKF should however not impact the
H∞ margins. If the EKF is used with an LQR, the LQG closed-loop margins are strictly
equal to the LQR ones (see Section 5.4.4). This gives confidence that the VBN filter will
not affect the H∞ robustness.

The output of the propulsion system is expected to have an accuracy of 10%. Because
of CoM location uncertainties and thrusters misalignments, 5% of the thrust input is
converted into torques. For the reaction wheels, only limited information is available, so
for or lack of a better value, a 10% error on torques will be considered.

As no information is available on the errors’ frequency content, and while aiming to
limit the plant order, white noises will be considered. The input weight Wd representing
actuators’ disturbances is thus:

Wd =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.1 0 0 0 0.05 0.05

0 0.1 0 0.05 0 0.05

0 0 0.1 0.05 0.05 0

0 0 0 0.1 0 0

0 0 0 0 0.1 0

0 0 0 0 0 0.1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(5.90)

The upper-right matrix block represents the thruster-related torque errors. The three
weighting input matrices were kept simple to lower the controller order.

The required controller performances are defined using the weights W1,...,3, as these are
going to shape the sensitivity, complementary sensitivity, and controller times sensitivity
functions respectively.

The performance weight W1 is selected as a diagonal matrix which elements are first
order transfer functions:

W1i,i(s) =
1

M1
s+ ω1

s+ ω1A1
, i = 1, ..., 6 (5.91)

A typical sensitivity function and corresponding performance weight are provided in
Figure 5.19. Note that the H∞ aims at minimising ‖W1S‖∞ which means that in the
case where ‖W1S‖∞ ≤ γ, S is bounded by γ

W1
.
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A1

ω1

M1

Figure 5.19 – Sensitivity function and corresponding performance weighting function.

The mapping between the performance weight W1 and the requirements can be achieved
by tuning M1, A1 and ω1. Looking only at the first exogenous input and output, and as
Wr = 1:

z1 = W1Sw1 (5.92)

where w1 is the reference signal r, and z1 the tracking error e. Thus the steady-state
error (s = 0) is defined as

W1i,i(s = 0) =
1

A1
=

rmax

emax
(5.93)

The parameter A1 here describes the steady-state error percentage and is related to the
integral effect of the controller, as discussed for the LQI above. For this RVD mission
(see Section 2.7), a 5% error is required leading to A1 = 0.05.

At high frequencies, M1 is bounding the sensitivity function. The weight crossover
frequency is ω1. To define M1 and ω1, a prototype second-order loop gain can be
defined [304]:

L =
ω2
n

s(s+ 2ζωn)
(5.94)

In classical control, the quality of a step response can be quantified by the settling time
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ts and percent overshoot Mp. These can be approximated as [304]:

ts ≈ 4

ζωn
(5.95a)

Mp = e
− πζ√

1−ζ2 (5.95b)

The sensitivity function is given by:

S(s) =
1

1 + L
=

s(s+ 2ζωn)

s2 + 2ζωns+ ω2
n

(5.96)

In this case, as |S(jωn/
√
(2)| = 1, the closed-loop bandwidth can be approximated by

ωb =
ωn√
2
, i.e.:

ωb ≈
√
8

ζts
(5.97)

The sensitivity peak MS = ‖S‖∞, can be computed as:

MS =
α
√

α2 + 4ζ2√
(1− α2)2 + 4ζ2α2

(5.98)

with α =

√
0.5 + 0.5

√
1 + 8ζ2. Note that MS has its peak value at ωmax = αωn.

The maximum peak criteria allows relating the phase and gain margins to the sensitivity
peak [286]:

GM ≥ MS

MS − 1

PM ≥ 2 arcsin

(
1

2MS

)
(5.99)

It has been decided that an overshoot smaller than 50% was acceptable. This corresponds
to MS ≈ 2.5. To guarantee sufficient margins, a nominal overshoot of ∼30% is selected
(ζ ≈ 0.3) which leads to M1 = 2 with GM≥6 dB and PM≥29 deg.

The time of the translation from 2.5 m range to docking is 225 seconds. The settling
time shall not exceed 100 seconds (less than half the translation time). As before, to
have margins, an 80 seconds settling time is selected. For the selected 30% overshoot and
settling time, ωb = 0.1 rad/s. This bandwidth is below the sloshing frequency (∼ 0.25

rad/s) and well above the dynamics bandwidth (∼ 0.001 rad/s). As S takes its peak
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value at ωmax ≈ 0.18 rad/s, the sloshing perturbations will hardly be amplified. The
weight W1 crossover frequency can be defined as:

ω1 =
√
2ωb =

4

ζts
(5.100)

Using this relation, ω1 is larger than the required bandwidth. It was noticed that defining
the crossover frequency in such a manner did not leave the H∞ solver enough freedom.
Using ω1 = ωb/2 was providing good results, leading to ω1 = 0.05 rad/s. It should be
noted that, for an 80 seconds settling time, this corresponds to a damping coefficient of
ζ = 1, i.e. a critically damped system. The sensitivity weight crossover frequency ω1 can
thus be defined as:

ω1 ≈ 4

ts
(5.101)

The complementary sensitivity function weight W2 has the same diagonal structure than
W1:

W2i,i(s) =
s+ ω2A2
1

M2
s+ ω2

, i = 1, ..., 6 (5.102)

A typical complementary sensitivity function and corresponding performance weight are

ω2

1

M2

1

A2

Figure 5.20 – Complementary sensitivity function and corresponding performance
weighting function.
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provided in Figure 5.20. Again, as H∞ aims at minimising ‖W2T‖∞, T is bounded by
γ
W2

.

As ωB < ωc < ωBT
, the crossover frequency of W2 should be larger than ω1. To

leave sufficient freedom to the H∞ solver, ω2 = 20ω1 is chosen, allowing the controller
performances to be degraded in this interval.

W2 should roll-off to -20 dB to avoid noise amplification, leading to M2 = 10. At low
frequencies, A2 = 0.05 implying that ‖T‖∞ ≤ 26 dB. Even if T should be bounded by 6
dB, as S is, it was realised that giving the solver more freedom, achieved higher margins.

Finally, the input control weight has to be defined and will also be modelled as a diagonal
matrix:

W3i,i(s) =
1

M3
s+ ω3

s+ ω3A3
, i = 1, ..., 6 (5.103)

A typical controller times sensitivity function and corresponding performance weight are
provided in Figure 5.21. As before, KS is bounded by γ

W3
.

M3

A3

ω3

Figure 5.21 – Controller times sensitivity function and corresponding performance
weighting function.

Ideally, 1/W3 should be a low-pass filter. It is impossible in reality as the augmented
plant P has to be proper [286, p. 354]. For this reason, A3 = 103, meaning that the
control input is not penalised at low frequencies and is properly bounded. The crossover
frequency, above which the control input will be penalised, is chosen to be identical to
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the complementary sensitivity weight: ω3 = ω2. Above this frequency, the weight rolls-off
to -40 dB, M3 = 10−2, limiting high-frequency noise disturbances at the plant input.

The code to solve the H∞ problem is provided in Appendix D.2.9. Solving the suboptimal
H∞ problem leads to γ = 1.02 with a 36 order controller. Although γ > 1, meaning that
the controller exceeds one of the weights, it still might give satisfying results. Figure 5.22
shows S, T and KS at the plant output as well as their corresponding inverse bounds,
scaled by a factor γ, for the scaled plant.

Figure 5.22 – Scaled plant: S, T and KS at the plant output and their respective
weights for Wr = 1. The controller order is 36. γ = 1.02.

It can be seen that the constraint comes from the performance weight W1. Indeed,
‖W1S‖∞ = 1.02, ‖W2T‖∞ = 0.14, and ‖W3KS‖∞ = 0.88. Although W2 seems to have
only a little impact, it guarantees that the controller bandwidth stays below ω2 and
should thus be kept in the synthesis. For the scaled plant, KS goes above 0 dB and thus
may lead to noise amplification at the plant input. However, when unscaling the plant, as
depicted in Figure 5.23, KS stays below 0 dB and thus guarantees no noise amplification.

Simulations showed that this controller does not meet the accuracy requirements and is
thus not satisfying. The reason lies behind the fact that Wr = 1, meaning that changes
at any frequency may happen, including infinitely fast changing reference signals. The
controller was thus synthesised so that the maximum control output would be delivered
for a step reference signal.

Two different approaches can be used to solve this problem. The first one is to model
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Figure 5.23 – Unscaled plant: S, T and KS at the plant output for Wr = 1.

Wr with a transfer function similar to (5.91) in which high frequencies are penalised so
that it is representative of the reference signals. A second approach is to increase the
input scale U (5.86) to give the controller more authority, possibly leading to actuator
saturation. However, the reference that the controller must track does not have high-
frequency content, thus excluding situations leading to saturation. Ultimately, it was
observed that combining both methods was giving the best results. Increasing the input
scale is providing the necessary control authority, and penalising high-frequency content
in Wr is increasing the PM and GM considerably. The new input scaling matrix is:

U =

[
2 · 10−31 0

0 3 · 10−21

]
(5.104)

All the other weights are identical to the case where Wr = 1, i.e. :

W1i,i(s) =
0.5s+ 0.05

s+ 0.0025
, i = 1, ..., 6 (5.105)

W2i,i(s) =
s+ 0.05
1
10s+ 1

, i = 1, ..., 6 (5.106)
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W3i,i(s) =
100s+ 1

s+ 1000
, i = 1, ..., 6 (5.107)

If Wr is kept to the identity, γ = 0.73 and simulation shows that this controller meets the
requirements. Its order is 36; S, T , and KS are provided in Figure 5.24a for the scaled
plant and Figure 5.24b for the unscaled plant.

(a) Scaled plant. (b) Unscaled plant.

Figure 5.24 – a) scaled and b) unscaled plant: S, T and KS at the plant output for
Wr = 1. The controller order is 36. γ = 0.73.

As before for the unscaled plant,KS remains below 0 dB and rolls-off above 1 rad/s. A
clear difference can be observed for the two different input matrices. Increasing U pushed
the sensitivity down at low frequencies, increasing the tracking effect while decreasing
the steady-state error.

For this controller the coupled margins are at the input GM=[-3.7, 4.7] dB, PM= ±24

deg and ωc = 0.19 rad/s, and at the output GM=[-9.9, 11.1] dB, PM= ±42.4 deg and
ωc = 0.12 rad/s.

Penalising high frequency content in the reference signal is done by selecting Wr as:

Wri,i(s) =
1

Mr
s+ ωr

s+ ωrAr
, i = 1, ..., 6 (5.108)

with Mr = 103, Ar = 0.8 and ωr = ω2&3 rad/s. This crossover frequency was selected
so that Wr does not penalise signals before W2 and W3 do so. Thus, above 1 rad/s, the
reference signal frequency content is penalised by -60 dB whereas, below ωr, it is amplified
by 2 dB.
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Doing so gives γ = 0.77 and increases the controller margins. This controller has
indeed GM=[-4.7, 6.7] dB, PM= ±31.3 deg and ωc = 0.2 rad/s at the input, and
GM=[-11.4, 13.7] dB, PM= ±46.7 deg and ωc = 0.13 rad/s at the output.

As for the LQR, the individual position and attitude channels can be computed. The
corresponding margins are provided in Table 5.7.

Table 5.7 – High bandwidth P2P H∞ input and output margins.

Chanel GM (dB) PM (deg) ωc (rad/s)

Input

Attitude [−12.1, 14.6] ± 48.1 0.13

Position [−12.7, 15] ± 48.5 0.12

Coupled [−4.7, 6.7] ± 31.3 0.2

Output

Attitude [−12.3, 14.8] ± 48.3 0.12

Position [−13, 15] ± 48.5 0.12

Coupled [−11.4, 13.7] ± 46.7 0.13

As Wr is now a 6 × 6 diagonal matrix, the controller order grew from 36 to 42. The
impact of Wr can be seen in Figure 5.25.

As before, although KSWr > 0 dB, no noise will be amplified at the plant input as
the controller will be unscaled leading to KSWr < 0 dB. This controller shows good
performances and meets the docking requirements.

Increasing the input scaling values to improve the controller authority removes some
of the physical meaning in the generalised plant. It is, however, simpler to adjust the
tuning using the input and output scaling values, as their impact on the controller
authority can be easily grasped, rather than using the weights. Looking for a one to one
correspondence between the generalised plant and physical system remains a necessary
step in the synthesis process, as it is used as a starting point to embed performance
requirements in the generalised plant.

A noticeable difference between the LQR and H∞ is the shape of the controller times
sensitivity. For the high bandwidth controllers, the LQR KS position channel is greater
than 0 dB at high frequencies and remains constant (see Figure 5.14), which will amplify
the noise and potentially cause robustness issues. For the H∞, as KS is forced to roll-off
above 1 rad/s and is always smaller than zero, and guarantees that no noise is being
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(a) Scaled plant. (b) Unscaled plant.

Figure 5.25 – P2P high bandwidth H∞: a) scaled and b) unscaled plant: SWr, TWr

and KSWr at the plant output and their respective weights for Wr �= 1. The controller
order is 42. γ = 0.77.

amplified through the controller. However, because of the roll-off, the H∞ authority will
be less than the LQR’s, the latter being able to exploit the whole high-frequency range.

The H∞ will have a more important integral effect than the LQR; however, the LQI
steady-state error will be much smaller than the H∞ one. At ω = 10−4 rad/s, σ̄(S) ≈ −70

dB for the H∞, and σ̄(S) ≈ −100 dB for the LQI.

Table 5.8 – High bandwidth P2P mixed-sensitivity weights.

Weights A M ω (rad/s)

W1 =
1
M

s+ω

s+ωA 5 · 10−2 2 5 · 10−2

W2 =
s+ωA
1
M

s+ω
5 · 10−2 10 1

W3 =
1
M

s+ω

s+ωA 103 10−2 1

Wr =
1
M

s+ω

s+ωA 0.8 103 1

Input Scale: U = diag
[
2 · 10−31 3 · 10−21

]
Output Scale: Y = diag [1 0.51]
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5.5.3 P2P Dynamics

The weights and corresponding parameters of the high bandwidth controller which has
been derived above are summarised in Table 5.8. Such a controller has a high bandwidth
to cope with the stringent docking requirements.

A low bandwidth H∞ controller has also been designed, and its parameters are provided
in Table 5.9.

Table 5.9 – Low bandwidth P2P mixed-sensitivity weights.

Weights A M ω (rad/s)

W11:3 =
1
M

s+ω

s+ωA 5 · 10−2 2 2.2 · 10−2

W14:6 =
1
M

s+ω

s+ωA 5 · 10−1 2 2.2 · 10−2

W2 =
s+ωA
1
M

s+ω
5 · 10−2 10 4.4 · 10−1

W3 =
1
M

s+ω

s+ωA 103 10−2 4.4 · 10−1

Wr =
1
M

s+ω

s+ωA 0.8 103 0.8

Input Scale: U = diag
[
1 · 10−31 8 · 10−31

]
Output Scale: Y = diag [1 0.51]

The weights parameters are similar to the high bandwidth controller’s, except for the
crossover frequencies which are decreased, and the value of A for the position channel, in
W1, which is increased by one order of magnitude. Increasing A will lead to lower fuel
consumption but a higher steady state error. This controller achieves γ = 0.77 and the
individual attitude, position, and coupled margins are provided in Table 5.10.

The S, T , and KS functions are shown in Figure 5.26.

The effect of decreasing the input scale can be directly observed as σ(S(0)) has now a
higher value, and thus a higher steady-state error.

For both high and low bandwidth controllers, the input margins are significantly smaller
than the output ones. This is due to the fact that perturbations are already included at
the plant input. This does not mean that the controller is less robust. Such a consideration
shows the limitation of using classical margins to interpret MIMO controllers’ robustness.
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Table 5.10 – Low bandwidth P2P H∞ input and output margins.

Chanel GM (dB) PM (deg) ωc (rad/s)

Input

Attitude [−10.7, 15.6] ± 49.3 0.07

Position [−13.7, 16.1] ± 49.8 0.04

Coupled [−4.1, 5] ± 25.4 0.11

Output

Attitude [−10.8, 16] ± 49.7 0.07

Position [−14 16] ± 49.8 0.05

Coupled [−10.4, 14.3] ± 47.6 0.07

(a) Scaled plant. (b) Unscaled plant.

Figure 5.26 – P2P low bandwidth H∞: a) scaled and b) unscaled plant: SWr, TWr

and KSWr at the plant output and their respective weights for Wr �= 1. The controller
order is 42. γ = 0.77.

5.5.4 Hill’s Equations

Similarly to the P2P dynamics, H∞ controllers have been designed for the closing phase
of the RVD and rely on Hill’s equations. As opposed to the LQR case, the Hill’s equations
have now been coupled with the sloshing dynamics.

Two controllers are necessary with high and low bandwidths. Here, it has been less
straightforward to follow a consistent approach for the scaling matrices and weights
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definitions than with the P2P dynamics.

This is because both controllers are used for Closing, at several ranges, with different
energies involved, and greater care needed to be given to fuel optimality. Thus, as opposed
to the P2P dynamics, it was not possible to accurately scale the plant. The starting point
is to use the identity for the output scaling matrix and

U = 1 · 10−31 (5.109)

as input matrix, to be representative of the actuation capabilities. The actuator distur-
bance and navigation noise weights have the same values than for the P2P dynamics:

Wn = 1 · 10−21 (5.110a)

Wd = 1 · 10−11 (5.110b)

For the performance weight W1, a value M = 2 has been chosen which leads to 30%
overshoot. As 5% maximum steady-state error is still required: A = 0.05. Finally, the
crossover frequency has been determined based on the settling time. These controllers
are used to track the fly-around trajectories during Closing. As an R̄ loop lasts for a half
orbit, i.e. ∼ 2900 s, selecting a settling corresponding to 35% of the fly-around time, as
before, was leading to poor tracking performances. Thus, a settling time of 400 s was
decided on, which corresponds to ∼ 14% of the fly-around time.

After several iterations, it has been observed that decreasing slightly the input and output
scaling matrices, while increasing the integral effect (by reducing the value of A), was
providing excellent results and saving fuel. Following this logic, the A value for the
complementary sensitivity weight has also been decreased. The weight Wr has been
maintained at identity as these controllers must be active during impulsive ΔV which
implies rapidly changing trajectories.

The final weights parameters are provided in Table 5.11. This controller achieves γ = 0.77

and has GM=[-12, 12] dB, PM= ±43.9 deg and ωc = 0.02 rad/s at the input, and
GM=[-12, 12] dB, PM= ±44 deg and ωc = 0.02 rad/s at the output. The controller order
is 15. The S, T , and KS functions are shown in Figure 5.27.

For the low bandwidth controller, the weights are shown in Table 5.12. The input scale
factor has been increased to 1 mN, and the output scale has been brought back to the
identity. To reduce fuel consumption, next to narrowing the bandwidth, the values of A
in both S and T have been increased to allow more steady-state errors. Note that even if
the crossover frequency of W1 is below the dynamics bandwidth, a stabilising controller
can still be obtained.
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Table 5.11 – High bandwidth Hill’s mixed-sensitivity weights.

Weights A M ω (rad/s)

W1 =
1
M

s+ω

s+ωA 2 · 10−2 2 1 · 10−2

W2 =
s+ωA
1
M

s+ω
1 · 10−2 10 2 · 10−1

W3 =
1
M

s+ω

s+ωA 103 1 · 10−2 2 · 10−1

Input Scale: U = 9 · 10−41

Output Scale: Y = 0.51

(a) Scaled plant. (b) Unscaled plant.

Figure 5.27 – Hill’s high bandwidth H∞: a) scaled and b) unscaled plant: S, T and KS
at the plant output and their respective weights for Wr = 1. The controller order is 15.
γ = 0.75.

This controller achieves γ = 0.78. At the input GM=[-8, 12.5] dB, PM= ±44.9 deg, and
ωc = 0.006 rad/s. At the output GM=[-8.1, 12.8] dB, PM= ±45.3, deg and ωc = 0.006

rad/s. The controller order is 15. The S, T , and KS functions are shown in Figure 5.28.

Although W1 crossover frequency has been set to a value smaller than the dynamics
bandwidth, the controller achieves a crossover frequency ∼ 6 times larger.

Achieving a bandwidth equivalent to the low bandwidth LQR, with the H∞, has not
been possible. The low bandwidth H∞ will achieve better performances but will have a
higher ΔV consumption.

It should be noted that no resonance due to fuel sloshing can be observed. The reason is

188 Camille Pirat, December 14, 2018



5.5. H∞ Control

Table 5.12 – Low bandwidth Hill’s mixed-sensitivity weights.

Weights A M ω (rad/s)

W1 =
1
M

s+ω

s+ωA 5 · 10−2 2 7 · 10−4

W2 =
s+ωA
1
M

s+ω
1 · 10−1 10 1.4 · 10−2

W3 =
1
M

s+ω

s+ωA 103 1 · 10−2 1.4 · 10−2

Input Scale: U = 10−31

Output Scale: Y = 1

(a) Scaled plant. (b) Unscaled plant.

Figure 5.28 – Hill’s low bandwidth H∞: a) scaled and b) unscaled plant: S, T and KS
at the plant output and their respective weights for Wr = 1. The controller order is 15.
γ = 0.78.

that fuel sloshing effect is very faint (two orders of magnitude smaller than the available
actuation forces and torques) and thus barely noticeable. Hypothetically, for a tank
configuration with a damping coefficient three orders of magnitude smaller than the
selected one, a resonance would appear. This is shown in Figure 5.29. The controller is
the high bandwidth H∞ with the Hill’s equations.

The resonance is noticeable although it almost did not affect the GM and PM (1 dB
and 1 deg less) as the controller bandwidth is well below the sloshing frequency and thus
filters out the disturbances. This aspect will be further discussed in Chapter 7.
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Figure 5.29 – High bandwidth H∞ controller with hypothetical fuel sloshing.

5.6 μ-Analysis

Classical gain and phase margins are a convenient way to assess the robustness of a
controller. However, for MIMO systems with numerical dispersions on physical parameters,
robustness must be evaluated in another way.

Uncertainties in dynamical systems can be efficiently manipulated using LFTs: Let x be
a bounded uncertain parameter of the dynamical system with nominal value x0 so that

x = x0(1 + αxδx), δx ∈ [−1, 1], x0, αx ∈ R (5.111)

Note that in the case of complex uncertainties, the notation Δx ∈ C is used. Uncertainties
will be described with an upper LFT:

Fu(R,Δ) = R22 +R21Δ(I −R11Δ)−1R12 (5.112)

Then (5.111) can be arranged in the form shown in Figure 5.30

δ

0 1
x0αx x0

Figure 5.30 – Upper LFT of the uncertain parameter x varying as x0−αx ≤ x ≤ x0+αx.

The upper LFT can be defined for additive, multiplicative and inverse uncertainties. Each
time an uncertain parameter appears in the control loop, it is replaced by its upper LFT.

190 Camille Pirat, December 14, 2018



5.6. μ-Analysis

The main advantage of LFTs is that their structure is not affected by algebraic operations
such as feedback interconnection. Thus, in the case of n real and complex uncertain
parameters, δx and Δx will be gathered in a structured block diagonal matrix

Δ = diag
[
δx1 , δx2 , ..., δxi ,Δxi+1 , ...,Δxn

]
(5.113)

with

σ̄(Δi(jω)) ≤ 1 ∀ω, ∀i (5.114a)

σ̄(δi(jω)) ≤ 1 ∀ω, ∀i (5.114b)

⇐⇒ ‖Δ‖∞ ≤ 1 (5.114c)

which shows the importance of properly scaling the plant. Dedicated software [306] allows
the dynamical system uncertainties to be efficiently included and manipulated, and to
extract the Δ structure.

Recall that the H∞ problem can be formulated as a lower LFT (5.68):

N = Fl(P,K) (5.115)

The uncertainties are then related to N by building the upper LFT:

F = Fu(N,Δ) = N22 +N21Δ(I −N11Δ)−1N12 (5.116)

which is the transfer function from w to z: z = Fw. The generalised problem for
μ-analysis is shown in Figure 5.31.

P

K

w

u v

z

Δ
yΔuΔ

(a) Generalised plant.

Nw z

Δ
yΔuΔ

(b) NΔ-structure.

Figure 5.31 – Generalised problem for μ-analysis.

Camille Pirat, December 14, 2018 191



Chapter 5. Control

For the NΔ-structure, the requirements for stability and performance (Nominal Stability
(NS), Nominal Performance (NP), Robust Stability (RS), and Robust Performance (RP))
are [286]:

NS ⇔ N is internally stable (5.117a)

NP ⇔ ‖N22‖∞ < 1, and NS (5.117b)

RS ⇔ F = Fu(N,Δ) is stable ∀Δ, ‖Δ‖∞ ≤ 1, and NS (5.117c)

RP ⇔ ‖F‖∞ ≤ 1∀Δ, ‖Δ‖∞ ≤ 1, and NS (5.117d)

Internal stability can be assessed by looking at the individual stability of the transfer
functions of (5.1). If all poles of each of these transfer functions are contained within the
left-half plane, the closed-loop N is internally stable [286, p. 145].

Nominal Performance (NP) verifies that, for the nominal plant, the weighted exogenous
inputs and outputs are not being amplified. Note that the selected weights must be stable
and minimum phase, but are not necessarily the same as in the mixed-sensitivity H∞
control.

Robust Stability (RS) and Robust Performance (RP) means that for all possible plants
in the uncertainty set, the closed-loop remains stable and the performance objectives are
satisfied. To assess RS and RP, the conditions (5.117c) and (5.117d) cannot be efficiently
tested for all Δ-structures. The μ value has been introduced for this purpose.

5.6.1 Robust Stability

The RS can be assessed by looking only at N11Δ, as it is the only term which can
cause instability in (5.116). It is often referred to as the MΔ-structure in literature (see
Figure 5.32).

M

Δ

Figure 5.32 – MΔ-structure for RS.

Necessary and sufficient conditions for RS can be obtained using the Structured Singular
Values (SSV) or μ [245,246]:

1

μΔ(M)
= max

Δ
{σ̄(Δ)|det(I −MΔ) = 0 for structured Δ} (5.118)
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RS is obtained if and only if, for all allowed perturbations, μΔ(M(jω)) < 1 ∀ω, with
‖Δ‖∞ ≤ 1.

The issue is that μΔ(M) cannot be computed exactly as it contains local extrema. Instead,
bounds can be computed:

ρ(M) ≤ μΔ(M) ≤ σ̄(M) (5.119)

where ρ is the spectral radius. The upper bound is reached when Δ is a fully complex
perturbation. Inversely, ρ(M) = μΔ(M) if Δ is a repeated complex scalar perturbation.

For systems with only real parametric uncertainties, the computation of μ lower bound
can be challenging. To improve the accuracy, a small complex part can be added in the
Δ-structure. Doing so will include conservatism in the bounds computation as fictitious
uncertainties are manually added to the system.

The issue is that the gap between ρ(M) and σ̄(M) can take, a priori, arbitrary large
values, and thus does not permit to conclude on μ, which requires ρ(M) ≈ σ̄(M) [304].
This can be achieved by scaling the Δ-structure, as stability must be independent of
scaling. The new MΔ-structure is shown in Figure 5.33

M

Δ

DD−1

D−1D

Figure 5.33 – Scaled MΔ-structure for RS.

The scaling matrix D is built as:

D = diag[diIi] (5.120)

where di is a scalar and Ii is the identity matrix with dimension equal to the dimension of
the ith element in Δ. As D commutes with Δ i.e. ΔD = DΔ, then Δ = DΔD−1 and thus
(5.119) must be valid for DMD−1. Hence, available μ-solvers optimise D to minimise the
gap between ρ(DMD−1) and σ̄(DMD−1). Note that although the optimisation problems
for K and D are convex (the minimum is the global minimum), the joined convexity is
not guaranteed [286].
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The values that μ takes provide relevant information on the amount of uncertainty the
system can handle. For μ < 1, the system can accept an uncertainty of 1

μΔ. If μ = 1, the
system can handle exactly the amount of uncertainty specified in Δ. If on the other hand
μ > 1, the Δ-structure must be reduced accordingly by a factor μ.

5.6.2 Robust Performance

RP is obtained if and only if ‖F‖∞ < 1, ∀Δ, ‖Δ‖∞ ≤ 1, given that the system is
nominally stable. A necessary condition for the RP can be similarly derived using (5.118)
and transforming (5.116) into an equivalent MΔ-structure. This is done by closing the
loop between w and z with a full complex perturbation ΔP , as shown in Figure 5.34.

Nw z

Δ
yΔuΔ

ΔP

(a)

N

Δ 0
0 ΔP

(b)

Figure 5.34 – Equivalent MΔ-structure for RP.

Thus, RP is guaranteed if and only if, for Δ̂ = diag[Δ Δp], μΔ̂(N(jω)) < 1 ∀ω, with
‖Δ̂‖∞ ≤ 1. Note that the case of purely real Δ is not an issue as the Δ̂-structure is
composed of a fully complex part ΔP

5.6.3 Uncertainties Description

The parameters which can bring uncertainties in the dynamics are the chaser and target
masses mc and mt, their inertia Ic and It, as well as the fuel sloshing damping coefficient
cs, and natural frequency fs. With a dry mass of 10 kg and 2 kg of fuel, the chaser total
mass will vary throughout the mission between 10 and 12 kg:

mc = 11 kg ± 10% (5.121)

The target mass uncertainty will not be considered as it does not carry consumables.
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CubeSats’ inertia tensors are estimated using available 3D modelling software with an
accuracy of ∼ 10%, rather than measured. Note that for μ-analysis , the inertia tensors
are assumed diagonal. This simplification is made to avoid having repeated real uncertain
parameters in the Δ-structure, and thus to ease the computation of μ. This should not
impact results as the sensitivity of the robustness margins to inertia uncertainties is small
(see Table 5.14).

As described in 3.5.2, the damping coefficient and natural frequency of fuel slosh are
difficult parameters to estimate. For the model considered, as explained in [101], the
following uncertainties will be assumed:

cs = 0.33 s−1 ± 48% (5.122)

fs = 0.025 Hz ± 40% (5.123)

At the plant input, an extra source of uncertainty is considered. The actuators uncertain-
ties have been modelled by a diagonal matrix with the upper-right term representing the
forces effects on the torque input. Here, it can similarly be modelled as:

Kd =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

kt 0 0 0 kc kc
0 kt 0 kc 0 kc
0 0 kt kc kc 0

0 0 0 kf 0 0

0 0 0 0 kf 0

0 0 0 0 0 kf

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(5.124)

with kf = kt = 1± 10% and kc = ±5%. Equation (5.124) is a multiplicative gain at the
plant input.

Finally, a time delay will be added at the plant input, lumping the multiple sources of
delay present in the control loop into a single LFT. A first-order Padé approximant
represents the time delay transfer function. As the control loop will be sampled at 1 Hz,
the delay uncertainty δτ is estimated to be:

δτ = 0.5 s ± 100% (5.125)

With this set of uncertainties, for the P2P dynamics, the Δ-structure contains 53 real
elements. For the RS, as explained above, uncertainties where Δ ∈ R can cause issues in
μΔ(M(jω)) lower bound computation. The Δ-structure can be modified to incorporate
fictitious dynamics represented as a purely complex Δxi-block. This will add conservatism
in the RS. This complexification is not required for the RP as the Δ̂-structure already
contains a purely complex part, by construction. The complexified Δ-structure contains
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106 elements.

Each parameter of the Δ-structure is repeated several times. Their occurrences are
provided in Table 5.13.

Table 5.13 – Occurrences of each parameters in the Δ-structure.

Δ Ic11 Ic22 Ic33 It11 It22 It33 mc cs fs δτ kf kt kc

# 4 7 9 2 3 1 3 3 6 6 3 3 3

The P2P dynamics does not have any right-half plane zeros, which could limit the
achievable performances. The sloshing dynamics, however, introduces left-half plane zeros
which may migrate to the right-half plane through the origin or infinity under the effect
of uncertainties. Note that the time delay already introduces a phase lag in the loop and
will thus decrease the phase margins and limit the achievable bandwidth. The effect of a
time delay on the closed-loop stability can be precisely quantified and is therefore not a
concern (see Section 5.1.3).

The evolution of poles and zeros is provided in Figure 5.35 and includes all uncertainties
described above. Only the time delay has not been included as its zeros can be precisely
located and do not contribute relevant information.

No zeros have migrated to the right-half plane which is a good sign with respect to
achievable performances.

5.6.4 P2P H∞ RS and RP

In this section, the RS and RP of the P2P H∞ controller will be assessed The robustness
of the problem will be tested between the disturbance and reference exogenous inputs,
and the error exogenous output. This is shown in Figure 5.36.

As for the H∞ synthesis, G is a scaled plant which includes the sloshing dynamics, Wr

is given by (5.108) and Wd is a diagonal matrix with elements all equal to 10−3. This
corresponds to the number of orbital perturbations acting on the spacecraft (such as
differential drag and gravity gradient), and not to the actuators errors as these are
already accounted for in the upper LFT. Note that these values have already been scaled
accordingly.

A performance weight Wp will be used to assess the sensitivity function behaviour, and
has the usual form:

Wpi,i(s) =

1
Mp

s+ ωp

s+ ωpAp
, i = 1, ..., 6 (5.126)
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(a)

(b)

Figure 5.35 – Poles and zeros for the P2P dynamics with all uncertainties. Circles and
crosses are the nominal zeros and poles. Dots are the sampled values. The delay was not
included as it’s zero can be precisely determined. b) focuses on poles and zeros close to
the origin.

Previously, for W1 in (5.91), the M1 and ω1 values were different from the requirements
to have sufficient margins. For Wp, values of Mp and ωp satisfying the requirements
exactly will be selected. Thus, Mp = 2.5, ωp = 0.04 rad/s and Ap = 0.05 (see section
5.5.2). To compute the bounds of μ, a Linear Matrix Inequality (LMI) solver is used.

The value of μ for the RS and RP are shown in Figure 5.37.

In both cases, μ < 1 which is a sufficient condition to guarantee robustness. Recall
that only upper and lower bounds can be computed for μ. The controller remains
stable for 191% of the modelled uncertainties (lower bound), but there is at least one
set of perturbation corresponding to 195%, that causes instability at ω = 0.18 rad/s
(upper bound). Similarly, the closed-loop gain remains below 1 for 127% of the modelled

Camille Pirat, December 14, 2018 197



Chapter 5. Control

++ + -

 

Δ
Wd

WpK

G

Wr

e

d r

Figure 5.36 – Plant description, used for the μ-analysis.

(a) Robust Stability (b) Robust Performance

Figure 5.37 – P2P dynamics: RS and RP for the high bandwidth H∞ controller.

uncertainties, and there is at least a set of perturbation corresponding to 132%, which
causes a loop gain larger than 1 at ω = 0.04 rad/s. For the RS, a steep drop at ω ≈ 0.19

rad/s can be observed. This is consistent with the controller crossover frequency ωc = 0.13

rad/s.

A major advantage of the μ-analysis is that it allows obtaining the sensitivity of the
closed-loop robustness to uncertainties. RS is most sensitive to cs at 99% and fs at 63%,
which is consistent with the discussion at the end of Section 5.5.4. RP sensitivity is
summarised in Table 5.14. This information can be used to decrease the sensitivity of the
closed-loop to some of these parameters.

For the low bandwidth controller, according to W1 specifications, the performance weight
Wp takes different values for the attitude and the position. For both channels, M = 2.5
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and ω = 0.02 rad/s.

The low bandwidth controller RS and RP is shown in Figure 5.38.

Table 5.14 – Relative sensitivity, in %, of the RP margin, to each of the modelled
uncertainties for the H∞

Δ Ic It mc cs fs δτ kf kt kc

% 2 2 26 49 4 37 36 14 21

(a) Robust Stability (b) Robust Performance

Figure 5.38 – P2P dynamics: RS and RP for the low bandwidth H∞ controller.

Here, the lower bound of μ is poorly defined, and its computation could not be optimised.
This is surprising as the uncertainty structure contains a full complex part. It was however
not deemed problematic as the gap between the upper and lower bound near μ maximum
value is small, allowing to conclude that the closed-loop gain remains below 1 for 130% of
the modelled uncertainties and that there is at least one set of perturbation amounting
131%, which causes a loop gain larger than 1, at ω ≈ 0.02 rad/s. Note finally that
non-linear simulations will improve the confidence on RP.

5.6.5 Hill’s H∞ RS and RP

The same procedure can be applied for controllers which have been tuned using Hill’s
equations. Note that the RP may not be as representative as for the P2P dynamics
because of the scaling matrices, which are not representative of the physics involved.
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For Wp, the values provided in tables 5.11 and 5.12 are used. The size of the Δ-structure
is 18. The high bandwidth controller μ-analysis is shown in Figure 5.39, and the low
bandwidth’s in Figure 5.40.

(a) Robust Stability (b) Robust Performance

Figure 5.39 – Hill’s equations: RS and RP for the high bandwidth H∞ controller.

(a) Robust Stability (b) Robust Performance

Figure 5.40 – Hill’s equations: RS and RP for the low bandwidth H∞ controller.

As for both controllers, μ < 1, they are robust to the set of bounded uncertainties. As
before the lower bound is poorly defined, but the gap at μ maximum value is small
allowing to conclude on the RP.
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5.6.6 P2P LQR and LQI RS

For the LQR and LQI controllers, as the plant has not been scaled during the controllers’
synthesis, weights cannot be used to assess the RP. Consequently, only RS will be tested.
There is no need to define exogenous input and output together with their weighting
functions. In this case, the Δ-structure contains 53 real elements.

Note that the performance will be assessed using non-linear Monte-Carlo simulations and
will increase confidence in the controllers’ design. The μ bounds for the LQR RS are
provided in Figure 5.41 and show that the controller is RS.

(a) High bandwidth (b) Low bandwidth

Figure 5.41 – P2P equations: RS for the LQR controller.

Similarly, the μ bounds for the LQI RS are provided in Figure 5.42 and show that the
controller is RS. The LQI can handle 183% of the modelled uncertainties whereas the
LQR can handle 185%. As expected, the small integral part that has been added reduces
the RS margin.

5.6.7 Hill’s LQR RS

As for the P2P LQR, defining a performance weight does not make sense. The performance
assessment will only be based on Monte-Carlo results. Three controllers are used: high,
medium, and low bandwidth. Their μ values are provided in Figure 5.43.

The three controllers have similar μ values and are all RS to more than twice the modelled
uncertainties.
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Figure 5.42 – P2P equations: RS for the LQI controller.

5.7 μ-Synthesis

A way to increase robustness to uncertain parameters is to design controllers using
μ-synthesis. This method is a combination of H∞ and μ-analysis. The so-called D −K

iteration solves an H∞ problem (K-step) followed by a μ-analysis (D-step) and tries to
reduce the sensitivity of the problem to specified sets of parameters.

The starting point is a scaled NΔ-structure, shown in Figure 5.34b. The steps are as
follow:

1. Synthesise a controller K such that ‖DND−1‖∞ is minimised, with D fixed.

2. Find D with σ̄
(
DND−1

)
minimum, and K fixed.

These steps are repeated until ‖DND−1‖∞ < 1 or until the H∞ norm stabilises. Note
that there is no guarantee to reach a global optimum.

The μ-analysis performed for the high bandwidth P2P H∞ controller showed that the
plant is most sensitive to sloshing and actuators uncertainties (5.124). Furthermore, as
the sloshing model used in this research is scaled to CubeSats but not tailored for it,
increasing the robustness to these parameters is relevant. The Δ-structure for this case
has dimension 28, with three occurrences for cs, 16 for fs, 3 for kf , 3 for kt and 3 for kt.
This means that Δ ∈ R, and for real Δ-structure with repetitions, μ-synthesis is highly
unlikely to converge [307].

This was confirmed in this thesis, and thus, the uncertain dynamics has been approximated
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(a) High bandwidth (b) Medium bandwidth

(c) Low bandwidth

Figure 5.43 – Hill’s equations: RS for the LQR controllers.

by a purely complex multiplicative plant input disturbance:

G = Gnom(1 +WμΔ), Δ ∈ C, ‖Δ‖∞ ≤ 1 (5.127)

Wμ transfer functions parameters are obtained by fitting Gnom(1+WμΔ) to the available
uncertain plants using the MATLAB® ucover command. It has been found that a weight
of order five was giving best results. Figure 5.44 shows Wμ and the dynamics residuals ε.

At low frequencies, the weight does not bound properly the residual. The resonance
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Figure 5.44 – Uncertain dynamics estimation.

visible in Figure 5.44 is the dynamics bandwidth, and thus, although the approximated
plant will have errors at these low frequencies, they will not impact the closed-loop.
Similarly, high-frequency errors will be filtered by the closed-loop gain and should affect
the performances. Wμ is almost constant because actuator uncertainties are outweighing
sloshing uncertainties. It is thus not guaranteed that the μ-synthesis will improve
sensitivity to sloshing. Using the same scaling and weights than for the high bandwidth
P2P H∞, a controller can be synthesised.

The D−K solver was initialised using the high bandwidth P2P H∞ controller previously
obtained. It took nine iterations to reach a minimum with γ = 0.77. The resulting
controller order is 98, and its margins are: at the input GM=[-5.7, 8.36] dB, PM= ±36 deg
and ωc = 0.21 rad/s, and at the output GM=[-12.8, 13.5] dB, PM= ±46.4 deg and
ωc = 0.14 rad/s.

At the plant input, the μ-synthesis has improved GM and PM, but the output margins
are almost identical, even slightly degraded. These increased margins are expected as
uncertainties are acting at the plant input. This will lead to higher RS and RP margins.
The RS and RP are using the same weights and uncertainties described in Section 5.6.4.
The value of μ for the RS and RP are shown in 5.45.

As for the H∞, this controller has μ < 1 and is thus robust and remains stable for 191%
of the modelled uncertainties. There is at least one set of perturbations corresponding to
195% of the modelled uncertainties that causes instability at ω = 0.19 rad/s. Similarly,
the closed-loop gain remains below 1 for 151% of the modelled uncertainties, and there is
at least a set of perturbation corresponding to 152% which causes a loop gain greater
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(a) Robust Stability (b) Robust Performance

Figure 5.45 – P2P dynamics: RS and RP for the μ-synthesis.

than 1 at ω = 0.21 rad/s.

The RS of the μ-synthesis is identical to the H∞. However, the μ-synthesis has ∼ 20

Percent Point (PP) more RP margins. The sensitivity of the controller is provided in
Table 5.15.

Table 5.15 – Relative sensitivity, in %, of the RP margin, to each of the modelled
uncertainties for the H∞.

Δ Ic It mc cs fs δτ kf kt kc

% 3 1 20 72 12 67 31 11 17

It is interesting to notice that although the uncertain parameters for the μ-synthesis were
the sloshing and control input uncertainties and that the RP margins increased, the
controller is more sensitive to the sloshing parameters. It can however still tolerate more
of sloshing uncertainties. The sensitivity to the input uncertainties given by (5.124)
decreased on average by 4 PP.

μ-analysis allows obtaining a set of values for the Δ-structure which causes instability. It
will be valuable to test the controllers in a non-linear simulator using these destabilising
values, to estimate and observe if the closed-loop becomes unstable or losses performance.
This will be discussed in Section 6.7.
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5.8 Order Reduction and Discretisation

As explained above, H∞ controllers have the same order than the generalised plant P .
For the P2P dynamics, the H∞ controller order is 42 and grows to 98 for the μ-synthesis.
Some of the controller poles have large negative real parts and are thus only marginally
contributing to the closed-loop response. The Hankel singular values give the contribution
of each state, and low energy states can be easily discarded. The Hankel singular values
of the P2P high bandwidth H∞ and μ-synthesis are shown in Figure 5.46.

(a) H∞ (b) μ-synthesis

Figure 5.46 – P2P high bandwidth H∞ and μ-synthesis Hankel singular values.

Using a balanced residualisation which preserves the DC gain, the P2P H∞ and μ-
synthesis could be reduced to an order 30 and 43 respectively.

The sensitivity and complementary sensitivity functions for the full and reduced P2P
high bandwidth H∞ controllers are shown in Figure 5.47. The relative error between
the full and reduced models is well below 0 dB and performances will not be degraded.
As a comparison, reductions to order 24 and 21 are provided in Figures 5.48 and 5.49.
Although the states’ contributions until 24 are small, the error significantly grew and
became unacceptably large for the order 21, where a resonance around the crossover
frequency appeared.

The H∞ controllers based on Hill’s equations are of order 15 and could be reduced to an
order 12.

Finally, as the control loop is sampled at 1 Hz, the controllers must be discretised.
This is done using a bilinear transformation to preserve the H∞ norm (MATLAB® c2d
command using the tustin method) [308]. Note that for the presented controllers, the
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(a) S and T (b) Reduction relative error

Figure 5.47 – P2P high bandwidth H∞ reduced model: Order 30.

(a) S and T (b) Reduction relative error

Figure 5.48 – P2P high bandwidth H∞ reduced model: Order 24.

fastest bandwidth is 0.21 rad/s (for the μ-synthesis), i.e. ∼ 0.03 Hz. Thus, theoretically,
the GNC sampling time could be decreased. This would typically contribute to reducing
fuel consumption and should thus be accounted for in future iterations.

Camille Pirat, December 14, 2018 207



Chapter 5. Control

(a) S and T (b) Reduction relative error

Figure 5.49 – P2P high bandwidth H∞ reduced model: Order 21.
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6 GNC Simulation and Validation

To test the closed-loop GNC performances, a simulator using MATLAB® Simulink is
built. All building blocks of the simulator have explicitly been developed; including
environmental, actuator, and sensor models. Realistic environmental models are readily
available as most of them are published. On the other hand, obtaining flight data upon
which sensor and actuator models can be built is another matter. A conservative approach
is here preferred. This conservatism also motivated the sensors’ and actuators’ selection
(see Section 2.3).

The simulator developed here will be used to assess the performances of the GNC
thoroughly. Monte-Carlo simulations will be performed for the scenarios presented in
Section 2.6. The confidence obtained using robust control tools combined with Monte-
Carlo analysis allows concluding on the GNC performance.

6.1 GNC Simulator

6.1.1 Environment

Earth Gravitation

Gravitational force is simulated using the EIGEN-GL04C model [309] (see Appendix A.1).
The most important effect is J2, which causes the RAAN to drift. Although small (0.2
deg/day relative drift for 3 km altitude separation between chaser and target), this effect
is still included in the simulations.

Earth Magnetic Field

The Earth magnetic model is similar to the Earth gravitational field. It is based on
the International Geomagnetic Reference Field (IGRF)-12 model, which computes the
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magnetic field as the negative gradient of a scalar potential [310], represented by a series
of spherical harmonics. The algorithm to calculate their coefficients is detailed in [311, pp.
779-782].

IGRF-12 is useful in simulations, but most of all it is used onboard satellites to provide a
reference model for attitude determination.

For the GNC, the accuracy of the onboard models compared to the actual Earth field
is essential. It has been shown that in orbit, the error between IGRF-12 and the true
magnetic field is 1% (92.8% of the time).

As only the relative error between the true field and onboard model is essential for the
GNC, simulations will be based on the IGRF-12 model, considering the first order only to
reduce computational resources. The onboard model, used in the attitude navigation, will
compute the field value using the first order IGRF-12 and the onboard GNSS position.
Then, a supplementary error amounting 1% of the current field is added. This way, the
onboard model of the field exhibits similar errors than the ones obtained in orbit. The
1% error is generated using a low-correlation time noise. A time constant of 20 sec is
used in the low-pass filter.

Disturbances generated by the residual magnetic dipole (created by the solar cells and other
active pieces of equipment) have already been discussed in Chapter 3. Even if most of these
effects can be characterised in the lab prior to the mission, unquantified time-varying
magnetic disturbances will appear in orbit, disturbing magnetometer measurements,
degrading the attitude determination. No published information exists today quantifying
these internal disturbances for CubeSats. A dynamic bias amounting to 2% of the local
Earth magnetic field is assumed, corresponding to ∼ 0.8 μT.

Sun Position

The Sun position is not only required for simulations but also as an onboard model for the
attitude determination. Such a model is deterministic and relies on the J2000 definition
for inertial frames [312].

The Julian Date (JD) is defined as [312]

JD(Y,M,D, h,m, s) =1, 721, 013.5 + 367Y − INT
{
7

4

[
Y + INT

(
M + 9

12

)]}
+ INT

(
275M

9

)
+D +

60h+m+ s/60

1440
(6.1)
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where INT is the integer part. The Universal Time 1 (UT1) is given by [312]:

TUT1 =
JD(Y,M,D, 0, 0, 0)− 2, 451, 545

36, 525
(6.2)

This value is used to define the current GMST in seconds. Note that although GMST is
a measure of the sidereal day (23h 56m), it is defined in terms of solar day (24h) [312].

θGMST =24, 110.54841 + 8, 640, 184.821866 TUT1 + 0.093104 T 2
UT1

− 6.2 · 10−6 T 3
UT1 + 1.002737909350795(3600h+ 60m+ s) (6.3)

This value is then restrained to a range from 0 to 86,400 seconds and can be converted to
angles. θGMST represents the angle elapsed since the last crossing between the Vernal
equinox and the prime meridian.

To determine the position of the Sun with respect to the ECI frame, the mean longitude
φ� and mean anomaly of the Sun M� must be defined:

φ� = 280.460◦ + 36, 00.771 TUT1 (6.4a)

M� = 357.5277233◦ + 35999.05034 TUT1 (6.4b)

The longitude of the ecliptic is then defined as:

φecliptic = φ� + 1.914666471◦ sin (M�) + 0.019994643 sin (2M�) (6.5)

The obliquity of the ecliptic is:

ε = 23.439291◦ − 0.0130042 TUT1 (6.6)

Finally, the vector from the Earth centre, defined according to ECI, pointing towards the
Sun is:

r�⊕
I =

⎡⎢⎣ cos (φecliptic)

cos (ε) sin (φecliptic)

sin (ε) sin (φecliptic)

⎤⎥⎦ · 1AU (6.7)

where the Astronomical Unit (AU) is : 1AU = 149, 597, 870, 700 m. Note that this
assumes that the Earth orbit is perfectly circular, which is a valid assumption in the
frame of LEO RVD. The Sun vector with origin at the satellite CoM is simply:

r�sat.
I = r�⊕

I − rI (6.8)
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where rI is the satellite inertial position.

The Sun direction with respect to the satellite can be obtained in orbit using GNSS. This
vector contains only errors associated with the satellite’s position, but not to UT1, as the
time provided by the GNSS is extremely precise.

Atmosphere

The atmosphere is based on the CIRA-2012 model [313]. This model provides atmospheric
densities every 20 km, for altitudes ranging from 0 to 900 km. The atmospheric densities
are provided for a low, medium, and high geomagnetic and solar activities. In the
simulations, a mean solar activity is assumed.

To interpolate between tabulated densities, an exponential model can be used

ρ = ρ0e
−h−h0

H (6.9)

where h is the current height, ρ0 is the tabulated density at altitude h0, and H is the
scale height.

The scale height is computed using two tabulated densities ρ0 and ρ1 ≡ ρ0 + 20 km.
Inverting (6.9) gives:

H =
h1 − h0

ln
(
ρ0
ρ1

) (6.10)

6.1.2 Sensors

Note that sensors output signals are written with a tilde: rmeas. ≡ r̃.

Sun Sensor

Sun sensors measure the solar position using photosensitive surfaces which output a
current proportional to illumination. Such sensors do not output noisy measurements
but have errors which increase with the angle of the Sun, measured from the sensor’s
local vertical (see Figure 6.1). The unit vector pointing towards the Sun is constructed
from the measurement of two angles along each axis of the sensor plane. Data-sheets
provide the sensor accuracy only for one undefined angle. Therefore, instead of using two
angles, it has been decided to use spherical coordinates (see Appendix B.2) and to add
the angular error to the co-latitude δ.

In the Sun sensor frame which has an orientation Asb in the body frame Fb, the vector
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rSun

x̂

ŷ

ẑ

δ

Figure 6.1 – Sun sensor angle definition.

pointing towards the Sun, with origin at the satellite’s CoM is

r�sat.
s = AsbAbIr

�sat.
I (6.11)

where AbI is the satellite attitude. Note that the Sun sensor is not located at the satellite’s
CoM. However, as for CubeSats this displacement is at most a few tens of centimetres
and can be safely neglected when compared to the satellite’s inertial position.

The error is modelled as a quadratic function on the co-latitude:

εδ = ε0 + ε1δ
2 (6.12)

δ̂ = δ + εδ (6.13)

For the sensor in Table 2.1 which has a total FoV of 120 deg, ε0 = 0.5 deg. The error
grows to 2 deg at boresight which means that ε1 =

1.5
602

deg. The angle δ̂ is then used to
construct the Sun vector in Cartesian coordinates.

The model is completed adding quantisation to the measured signal. For the selected
sensor, the quantisation interval is q = 0.1 deg.

The complete measurement equation is then:

r̃�sat.
s = q round

(
r�sat.
s (δ + εδ)

1

q

)
(6.14)

where round(X) is the function that rounds X to the nearest integer or decimal. The
vector r̃�sat.

s is then transformed back to the body frame using AT
sb. Note that this model

does not include albedo effects which would increase the errors if sensors are not properly
calibrated.

To obtain full coverage, six orthogonal Sun sensors are required. In practice, several of
these sensors will be illuminated at once. To avoid selecting a specific one to use in the
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attitude filter, they could all be included in the EKF. This would drastically increase the
filter size and require more processing power. Instead, it is decided to select the sensor
output which has the smallest co-latitude angle.

The normalised measured and true Sun vector in Fb is shown in Figure 6.2.

Figure 6.2 – Normalised true and measured Sun position in the body frame.

Magnetometer

The magnetometer model is based on [314]:

B̃b = q round
{
AT

mb [(1 +D)Am′mAmbAbIBI + b+ η]
1

q

}
(6.15)

where BI is the Earth magnetic field. As for the Sun sensor, AbI is the satellite attitude,
and Amb the magnetometer orientation in the body frame. The matrix Am′m is fully
orthogonal and represents sensor misalignment. D is a fully populated, symmetric matrix:

D =

⎡⎢⎣λ1 k1 k3
k1 λ2 k2
k3 k2 λ3

⎤⎥⎦ (6.16)

Its diagonal represents the scale factor, and the off-diagonal terms the non-orthogonality.

The term b is the dynamical bias which has been described above and amounts 2% of the
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local magnetic field. The noise sources are all gathered in the term η which is modelled
by a white noise. Finally, q is the quantisation level.

The measured and true magnetic field in Fb, for the selected magnetometer (Table 2.2)
are shown in Figure 6.3.

Figure 6.3 – True and measured magnetic field in the body frame.

Star Tracker

The star tracker model only contains white noise sources. Its sensor defines the ŷ-ẑ plane,
and the optical axis is aligned with x̂. The star tracker frame orientation in Fb is Asb.
Depending on the configuration, a star tracker can output a quaternion, Euler angles,
or a DCM. All these representations are equivalent (see Section 4.6) and to simplify the
notation, DCM will be used here. The measured DCM is:

ÃbI = AT
sbR3(ηγ)R2(ηβ)R1(ηα)AsbAbI (6.17)

ηγ and ηβ are the cross-boresight noises, and ηα is the around-boresight noise.

Star trackers are subject to blinding and an exclusion angle δexcl. must be added. The
angle between the optical axis and the Sun position is:

δ = cos−1

(
x̂ ·AsbAbIr

�sat.
I

‖r�sat.
I ‖

)
(6.18)

If δ < δexcl. the star tracker output is not available. For Earth blinding, a similar
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computation can be used; however, the angle with the local Earth horizon vector must be
computed. The start tracker will be blinded if and only if the Earth is specifically in the
camera FoV (i.e. no exclusion angle is used). The configuration is depicted in Figure 6.4.

x̂ ŷ

ẑ

δ

FoV

R⊕

rI

Figure 6.4 – Star tracker FoV and Earth horizon.

The angle δ is:

δ = cos−1

(
R⊕
rI

)
(6.19)

Figure 6.5 shows the attitude Euler angles as measured by the star tracker. In this
example, the star tracker optical axis is aligned with the H̄ direction. Its accuracy shown
in Table 2.3, is lower around boresight, which explains angle β’s higher noise density.

Gyroscope

The gyroscope model is based on [315]:

ω̃ = q round
{[

(1 +D)Rω + ηv + ηu + ηf + β0

] 1
q

}
(6.20)

D contains the scale factor and non-orthogonal terms and has the same form as (6.16).
R is a DCM representing the sensor misalignment, β0 the initial bias of the gyroscope
and q the quantisation level.

ηv is the ARW and modelled with a white noise. ηu is the RRW and is a brown noise.
Finally, ηf is the bias instability, often called flicker noise, and is modelled with a pink
noise.
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Figure 6.5 – True and measured attitude Euler angles.

The bias term is thus composed of a brown noise and a pink noise. Note that in the
attitude determination filter, these two terms are lumped into one single noise term. The
reason is that a brown noise can be simply obtained by integrating a white noise and
can thus be written in a state-space form. This is not possible for the pink noise as it is
non-linear. Denoting η a generic white noise, the brown and pink noises are respectively:

ηu =
1

s
η (6.21a)

ηf =
1√
s
η (6.21b)

where s is the standard Laplace variable. These parameters can be represented using
Power Spectrum Density (PSD) or Allan variance. An exhaustive discussion on the PSD
and Allan variance computation applied to gyroscope modelling can be found in [316–318].

The autocorrelation of a random process x(t) is:

Rx(τ) = E [x(t)x(t+ τ)] (6.22)

The PSD is defined as:

Sx(ω) =

∫ ∞

−∞
dτ Rx(τ)e

−iωτ (6.23)

Note that the one-sided PSD is often used graphically with an amplitude twice the PSD.
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The autocorrelation function is the Fourier transform of Sx(ω):

Rx(τ) =
1

2π

∫ ∞

−∞
dω Sx(ω)e

−iωτ (6.24)

The variance is defined as the integral of the PSD for τ = 0:

V ar(x) = E
[
x2
]
= Rx(0) =

1

2π

∫ ∞

−∞
dω Sx(ω) =

∫ ∞

−∞
df Sx(f) (6.25)

The Allan variance can be defined from the PSD as:

σ2
x(τ) = 4

∫ ∞

0
df Sx(f)

sin4(πfτ)

(πfτ)2
(6.26)

Note that the Allan deviation is σx(τ)

The different noise sources in the gyroscope model are shown in Table 6.1. Units for the
PSD and Allan deviation are provided in Table 6.2.

Table 6.1 – Gyroscope noise sources. Δt is the time between two measurements. T is
an integration time.

Noise Variance PSD Allan variance

E
[
δω2

]
Sω(f) σ2

ω(τ)

Angular Random Walk N2
v

Δt N2
v

N2
v
τ

Rate Random Walk N2
uT

N2
u

(2πf)2
N2

uτ
3

Bias instability N2
f log

(
T
Δt

) N2
f

2πf

2N2
f log(2)
π

Quantisation 2
N2

q

Δt2
ΔtN2

q (2πf)
2 3N2

q

τ2

Fictitious gyroscope Allan deviation and PSD are provided in Figures 6.6 and 6.7.

The various noise terms can be obtained directly from the PSD or Allan variance by
reading the values of the different slopes at specific points.

For the RRW, the parameter Nu can be determined reading the slope of the Allan
deviation at τ = 3. Similarly, for the quantisation, Nq is obtained reading the slope at a
value

√
3.

The initial bias β0 cannot be determined as easily. When switching on a gyroscope, this
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Table 6.2 – PSD and Allan deviation units.

Noise PSD Allan Deviation

Angular Random Walk (deg/s)2/Hz deg/
√

s

Rate Random Walk (deg/s)2Hz deg/s/
√

s

Bias instability (deg/s)2 deg/s

Quantisation (deg/s)2/Hz3 deg

ARW

Quant.

Flicker

RRW

∝ 1/τ

∝ 1/
√
τ

∝ √
τ

∝ cst.

Nv

Nu

Nf

Figure 6.6 – Fictitious Allan deviation. The red dashed-line show how to read the
noise values.

bias always takes different values and can therefore not be predicted. Furthermore, it is
a constant term and cannot be represented with a PSD or Allan variance. As already
mentioned in Section 4.6.2, the initial bias estimation is set to zero in the mission mode
EKF.

For the selected gyroscope, most of the parameters are available in data-sheets (see
Table 2.5). The only missing element is the RRW. The Allan deviation is available, and
the different noise parameters can be tuned accordingly. This gyroscope is running at 200
Hz, and such a frequency will considerably slow down the simulations. It has been decided
to run the model at 1 Hz and to tune the noise parameters to obtain a similar Allan
deviation. In this case, the Allan deviation values can be used as such in the coloured
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Flicker

RRW

ARW

Quant.

∝ 1/f2

∝ 1/f

∝ cst.

∝ f2

Figure 6.7 – Fictitious PSD.

noise generators. For RRW, a value of Nu = 0.05 deg/s/
√
s has been used.

The model and actual gyroscope Allan deviations are provided in Figure 6.8.

(a) STIM 300 (b) Model

Figure 6.8 – a) Allan deviation of the STIM 300 gyroscope [276]. b) Allan deviation of
the model at 1 Hz.

The behaviour at low frequencies matches quite closely the true Allan deviation, meaning
that the model ARW is representative of the actual gyroscope. At high frequencies, the
behaviour is less accurate. The modelled flicker noise and RRW will thus have higher
frequency content and power. This inaccuracy was judged acceptable as it will lead to
larger bias and thus conservative results.

220 Camille Pirat, December 14, 2018



6.1. GNC Simulator

Figures 6.9 and 6.10 shows the gyroscope model output.

Figure 6.9 – Gyroscope model output.

Figure 6.10 – Modelled bias. The initial bias is 3 deg/h.
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GNSS

The GNSS model only contains white noise sources for position and velocity measurements.

r̃ = r + ηr (6.27a)

ṽ = v + ηv (6.27b)

where ηr and ηv are white noise sources. The accuracy of the velocity not being readily
available, it has been estimated that ηv = ηr · 10−1.

Camera

The camera model implements the measurement equations presented in Chapter 4. This
may seem an odd choice as the sensor model and navigation filter use the same equations.
If only rotations were considered, any Euler sequence could be used to model the LEDs’
position on a CCD type sensor.

To illustrate this point, LEDs images on the camera sensor have been generated using
Euler sequences different from the 1-2-3 sequence. In Figure 6.11, 15 deg rotations along
each axis have been applied using the 3-1-3 and 3-2-3 sequences. The LEDs’ positions on
the CCD are marked with crosses. The crosses’ positions are then used in the analytical

(a) 3-1-3 Euler sequence (b) 3-2-3 Euler sequence

Figure 6.11 – The crosses are the LEDs’ positions computed using the a) 3-1-3 and b)
3-2-3 Euler sequences. Rotations of 15 deg have been performed along each axis. The
crosses are used in the analytical solution to get the 1-2-3 Euler angles. The circles are
the LEDs’ positions computed with the analytical solution.
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solution to get the Euler angles corresponding to a 1-2-3 sequence and are displayed
on each figure. The solution is verified by recomputing the LEDs’ positions using the
angles obtained with the analytical solution and the corresponding 1-2-3 sequence. This
is displayed with circular markers which are all centred on the cross, showing that the
analytical solution computed the relative angles accurately.

This confirms that the analytical solution can indeed recover relative attitude no matter
which Euler sequence is used to generate images. Consequently, using the 1-2-3 sequence
to generate images does not imply a loss of generality.

The general pinhole camera model could have been used instead as both methods are
equivalent. This is shown in Figure 6.12. Figure 6.12a has been obtained using an
available pinhole model [319]. Figure 6.12b has been generated using the measurement
equations. The two modes produce the same image of central LED pattern observed at
10 cm under a 5 deg yaw rotation.

(a) Pinhole camera model [319]. (b) Measurement equations.

Figure 6.12 – Pattern observed at a range of 10 cm. The chaser performed a 5 deg yaw
rotation.

The method using measurement equations was preferred as it uses the same relative
attitude and position convention that the P2P dynamics. Figure 6.13 shows that the
proposed camera model captures perspective effects under large lateral displacements.
Even under such large displacements, the analytical solution can recover precisely the
relative position (the x position is negative because of the target docking frame definition).

The camera model thus uses the measurement equations (4.16) to produces two-dimensional
images of the LEDs patterns. A white noise is then added to each LEDs coordinates.
Following the test results of Section 4.5.1, a noise of 6 · 10−2 pixels (1σ) is selected. The
camera model output can be seen in Figure 4.29.
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Figure 6.13 – Pattern observed at 1 m range and 50 cm horizontal displacement. The
blue line passes through the four in-plane LEDs and is an ellipse due to perspective effects.
The orange line is the corresponding circle without perspective. The relative position
using the analytical solution is provided.

6.1.3 Actuators

Reaction Wheels

Reaction wheels will generate coupling in the solid body dynamics due to their own
angular momentum (see (3.11)). It was decided to include this effect in the reaction
wheels model. A reaction wheel contains a variety of noise sources. As the GNC will
not be operated at high frequency and the wheel nominal speed is ∼ 1500 Round Per
Minute (RPM), the high-frequency noises will be aliased. It has thus been decided only
to consider three sources of perturbations: A white noise, a low-correlation time noise
(representing high-frequency aliased noises), and cage instabilities. Although friction and
viscous effects should also be considered and modelled, the lack of data about CubeSats
RWs made this task not practical.
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For a command torque in the body frame, the wheel output torque is:

T̃ b =q round

{
AT

wb

[
(1 +D)Aw′wKAwbT b + ηw +

1
Δt
2 s+ 1

ηl

]
1

q

}
−

− [ωbI
b ×](AT

wbIwω
rw
w ) (6.28)

The matrix Awb maps the body frame in the reaction wheel frame, where the wheel is
pointing towards the local ẑ-axis. Only torques along ẑ can thus be generated. The
matrix K selects only the last component of AwbT b:

K =

⎡⎢⎣0 0 0

0 0 0

0 0 1

⎤⎥⎦ (6.29)

Aw′w represents the wheel misalignment, ωbI
b is the satellite angular rate and AT

wbIwω
rw
w ≡

HRW is the wheel angular momentum expressed in the body frame.

The noise sources ηw and ηl are white noises. ηl is low-pass filtered to correlate it at
half the wheel sampling frequency Δt:

LPF =
1

Δt
2 s+ 1

(6.30)

D represents cage instabilities:

D =

⎡⎢⎣0 0 0

0 0 0

0 0 ηcage

⎤⎥⎦ (6.31)

It is modelled by step functions, ηcage, amounting 10% of the torque demand. These steps
occur several times per day and last for about one minute, corresponding to the bearing
cage switching between steady vibration modes [320].

Only a little information exists about actual reaction wheels performances. For the
selected wheels (Table 2.7), the stated accuracy is 5 RPM. For a wheel with 30 mNms
momentum storage at 6000 RPM, such an accuracy corresponds to a torque error of
∼ 3 · 10−5 Nm.

The reaction wheels used on the Rosetta spacecraft have been thoroughly studied, and
their noise content could be obtained [321]. Scaling down these values led to a white
noise standard deviation of 10−5 Nm (3σ) for ηw. For the low-correlation time noise, a
white noise standard deviation of 2 · 10−5 Nm (3σ) for ηl is selected. These two noises
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are consistent with information available on CubeSats reaction wheels. Note that in the
simulations, no quantisation is used due to a lack of available data.

The model output is shown in Figures 6.14 and 6.15.

Figure 6.14 – Reaction wheel model with a constant 1 mNm command torque. The
bearing cage disturbance can be seen at t ≈ 480 s.

Figure 6.15 – Reaction wheel model with non-constant command torque.
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Magnetorquers

The magnetorquer model is kept simple as it is only used to unload reaction wheels. For
an input dipole in the body frame mb, the output torque is:

T̃ b = q round
[
(1 +D) (mb ×Bb)

1

q

]
(6.32)

where, as before, D is fully populated, representing scale factor and non-orthogonality.

Propulsion

The propulsion is a 6 DoF system made up of 24 thrusters, as shown in Figure 6.16.

ẑb

ŷb

x̂b

Figure 6.16 – Integration on the CubeSat of the 6 DoF propulsion system.

The propulsion system characteristics are provided in Table 2.8. For this system, each
thruster is operated individually, and a 6 DoF control can be obtained. In this thesis, the
propulsion will only be used for translation control.

The system is operated in PWM, and each thruster has its own errors. These are
thrust level errors, time-ON errors and CoM position errors. As the valves are managed
individually, thrust and time-ON errors will generate erroneous thrust output as well as
torques. The CoM position errors also generate torques.

The master equation for PWM is:

TON = TPWM
u

a
(6.33)

where TON is the time-ON, TPWM is the PWM period, u is the input value to be
modulated and a the maximum possible value in units of u. Numerically, this is done as
shown in Figure 6.17.

This PWM has been designed specifically for propulsion systems and can take as input
an arbitrary number of command forces. The PWM outputs a signal with amplitude a
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TON

Figure 6.17 – PWM Simulink model.

for a duration TON , where a is the maximum possible force per thruster.

The signal is first held for one PWM period. This value is then used to compute a
thrust error as well as TON . The opening and closing cycle of a thruster valve defines the
Minimum Impulse Bit (MIB), which corresponds to the lowest possible value of TON . If
TON ≤ MIB, the command is skipped. An error, modelled as a white noise, is added
to TON . The sign is kept separated from TON computation and recovered at the end.
Pulses are generated using a sawtooth repeating sequence with interval and amplitude
equal to TPWM . This algorithm can handle any size of input vectors and can be used for
an arbitrary number of thrusters.

The thruster model is shown in Figure 6.18.

The thrust input in the body frame F b is first distributed over all thrusters. For every
axes, vectors containing each thruster contribution are built. Only x̂-axis is shown here:

F+x̂ =

⎧⎪⎪⎨⎪⎪⎩
1
4F b,x

[
1 1 1 1

]T
, F b,x > 0

[
0 0 0 0

]T
, F b,x ≤ 0

(6.34)

F−x̂ =

⎧⎪⎪⎨⎪⎪⎩
1
4F b,x

[
1 1 1 1

]T
, F b,x < 0

[
0 0 0 0

]T
, F b,x ≥ 0

(6.35)
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Figure 6.18 – Thruster model.

F+x̂, F−x̂, F+ŷ, F−ŷ, F+ẑ, F−ẑ are fed into the PWM. The PWM force vector F̂ b is
then reconstructed summing up the different elements.

Thrusters misalignment, time-ON errors, and CoM displacement induce disturbance
torques. The torques are computed individually for each thruster using their defined
position in the body frame. The total torque value is then increased by 5% to account
for thrusters misalignment and CoM displacement.

Figure 6.19 – PWM output and command signal. TPWM = 1 s.

The PWM effect on a continuous signal is shown in Figure 6.19. In the case of saturation,
thruster valves remain open, whereas if the command signal is smaller than the MIB, the
valves stay shut. These effects can be clearly identified in Figure 6.19.

It has been shown that PWM brings time lead in the system, and thus stability margins
are not degraded by it [322].

Each sensor and actuator will induce delays in the control loop. However, instead of
modelling individual delays, they all have been lumped into a single plant input delay.
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This parameter can be easily changed during the Monte Carlo simulations.

6.2 Configurations

The satellites are inserted on a 600 km, 6 AM descending node, Sun Synchronous
Orbit (SSO), whose elements are provided in Table 6.3.

Table 6.3 – Orbital elements: 600 km, 6AM descending node, SSO. The parameters are:
a the semi-major axis, e the eccentricity, i the inclination, Ω the RAAN, θ the argument
or periapsis, and ν the true anomaly at epoch.

a e i Ω θ ν Epoch

600 km 10−3 97.8 deg 190.1 deg 0 100 deg 01/01/2016, 00h00min00s

A 6 AM SSO was chosen to guarantee that the cross-track direction will be nearly
perpendicular to the Sun at all times, simplifying illumination conditions. This orbit
provides 20 minutes of eclipse every 1.6 hours. However, to assess navigation performances,
eclipse occurrences are manually added to simulate worst case scenarios. Note that as
the robustness of the VBN to illumination conditions has been separately assessed, this
particular choice of orbit is not restricting. This will only impact the final positioning of
the sensors, such as the star trackers on the physical CubeSat to minimise Sun blinding.

Note that even if the epoch is 2016, the results are representative, as worst cases are
simulated to cover all specific illuminations that can be expected in LEO. Furthermore,
although the environmental models are assuming a mean solar activity, the effects of a
high solar activity will only marginally influence the relative dynamics as the time span
under consideration for docking is short. Solar activity will have a much larger impact
during Phasing when a long propagation time span is required.

For this specific orbit, the star tracker has been oriented along the cross-track direction
ensuring that it will not be blinded by the Sun. Although the reaction wheel assembly
contains four wheels, only three orthogonal wheels are considered in the simulations. The
assembly is rotated by (45, 45, 0) deg (1-2-3 Euler sequence) in the body frame. Such an
orientation allows efficient unloading as none of the wheels is aligned with the magnetic
field.

The docking port location has been selected to increase the coupling effects between
rotations and translations. To maximise it, the docking port axis should not run through
the satellites’ CoM. To position the pieces of equipment correctly, the geometrical frame
must be used. As explained in Section 2.1, the CoM displacement in the geometrical
frame will generate disturbances which have been accounted for in the propulsion model.
The equipment can thus be defined with respect to the body frame.
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It is assumed that the body frame is located at the geometrical centre of the 6U CubeSats.
In the target and chaser body frames, Fbt and Fbc , the docking ports have the theoretical
following positions:⎧⎪⎪⎨⎪⎪⎩

rdcbc =
[
0.1 0.1 0.1

]T

rdtbt =
[
−0.1 0.1 0.1

]T
(6.36)

Even if these positions are out of the 6U CubeSats structure and thus not manufacturable,
this configuration represents a worst-case position that can be expected and will increase
coupling.

The chaser docking frame, Fdc will always be aligned with Fbc . The target docking port
will take different orientations in Fbt so as to obtain different P2P dynamics as it is
directly impacting the SK point S3, located at a 10 m range from the target docking
port. The four different target docking port orientation in Fbt , Adtbt , and the related S3

location, are provided in Table 6.4. Adtbt is obtained using the usual 1-2-3 Euler sequence
R123(α, β, γ). The location of S3 is denoted rS3o .

Table 6.4 – SK point S3 location in the orbital frame depending on Fdt orientation in
Fbt .

(α, β, γ) [deg] rS3o [m]

(0, 0, 0) [−10.2 0 0]T

(0, 0, −90) [−0.2 10.2 0]T

(0, 90, 0) [−0.2 0 10.2]T

(50, 50, 50) [−4.3 − 8.6 − 2.8]T

The relative angles (0, 0, 0) deg, (0, 0, -90) deg, and (0, 90, 0) deg, represent respectively
V̄ , H̄, and R̄ approaches. The last configuration, with (50, 50, 50) deg orientation, will
be referred to as “Mixed” approach. For all these cases, the location of the docking ports
uniquely defines the camera and LEDs’ patterns positions.

The CubeSat cold gas tanks have been lumped into one single tank located at [0.1 0 0]T m
in the chaser body frame. This location has been selected to increase torques due to fuel
slosh. A filling ratio of τ = 0.5 is assumed meaning that the tank contains 1 kg of fuel.
The chaser mass is thus 11 kg.

The sensors, actuators and GNC schemes are represented in Figure 6.20.
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Figure 6.20 – Target and Chaser GNC block diagram.

6.3 Monte-Carlo

To assess the overall GNC performance, a Monte-Carlo method is used. To determine
the number of simulations required to achieve a certain confidence level on the confidence
interval, the method proposed in [101] is used. This approach is the result of discussions
which took place within the ESA ATV programme. Assuming that the stochastic variables
have Gaussian distributions, the following results are used to compute a required number
of simulations to achieve a certain confidence on the mean and the variance.

6.3.1 Confidence Interval: Mean

The confidence interval for the mean μ with known variance s2 is such that:

P (x̄− cs√
n
≤ μ ≤ x̄+

cs√
n
) = γ (6.37)

P (X) design the probability of X. The confidence level γ is such that

Φ

(
c√
2

)
= γ (6.38)

where Φ is the error function:

Φ(z) =
1√
2π

∫ z

−∞
du e−

u2

2 (6.39)

232 Camille Pirat, December 14, 2018



6.3. Monte-Carlo

For samples values xi, i = 1, ..., n the estimated mean is defined as:

x̄ =
1

n

n∑
i=1

xi (6.40)

and the variance s2:

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 (6.41)

A 2σ confidence level corresponding to Φ
(
1.96√

2

)
= 95%, is selected. For 3σ, Φ

(
2.97√

2

)
=

95%

Defining δ the interval width, the number of simulations to achieve a γ confidence level
is:

n =

(
cs

x̄+ δ

)
(6.42)

The value n can only be computed if an a priori knowledge of x̄ and s is available.

In practice, the number of simulations required to achieve a given confidence level on
the mean is much lower than in the case of the variance, and only the later is used to
compute the sample size.

6.3.2 Confidence Interval: Variance

σ is defined as the standard deviation of a Gaussian process. The probability that 3σ is
within a certain confidence interval is:

P

(
3

√
n− 1

c1
s ≤ 3σ ≤ 3

√
n− 1

c2
s

)
= γ (6.43)

The values c1 and c2 are such that

c1 =
1

2
(
√
n− 1− c)2 (6.44a)

c2 =
1

2
(
√
n− 1 + c)2 (6.44b)

and c is defined as before: Φ
(

c√
2

)
= γ.
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Writing the confidence interval as

3s− δ1 ≤ 3σ ≤ 3s− δ2 (6.45)

with δ1 and δ2 the width of the interval, the following relations holds:

2(n− 1)

(
√
2n− 1− c

)2 =

(
1 +

δ2
3s

)
(6.46a)

2(n− 1)

(
√
2n− 1 + c

)2 =

(
1− δ1

3s

)
(6.46b)

These equations can be solved for n, if an a priori knowledge of s is available. Note that
in most cases, symmetric intervals are used, and only one equation needs to be solved.

6.3.3 Sample Size

Consider a fictitious random variable x with the 3σ requirement that this variable shall
be smaller than 3s.

The confidence interval δ can be defined as a percentage of the deviation requirement:

δ = ε3s (6.47)

In this case:

2(n− 1)

(
√
2n− 1− c)2

= (1 + ε1) (6.48a)

2(n− 1)

(
√
2n− 1 + c)2

= (1− ε2) (6.48b)

Assuming a symmetric interval, i.e. ε1 = ε2 ≡ ε, the required sample size is shown in
Figure 6.21. A confidence level of 95% will be used. The 99.7% level is provided for
comparison.

To achieve a 10% confidence interval with 95% confidence level, 250 simulations are
required. This value will be used for all mission phases, except docking. Thus, the
confidence interval on the attitude is 0.2 deg as the 3σ requirement is 2 deg. For the
relative position, the error shall be smaller than 5% of the range (3σ). This means that
the confidence interval will be 5%� of the range.

For docking, a confidence interval of 6% has been selected, corresponding to 600 simula-
tions. As the relative error shall be smaller than 5 mm and 1 deg (3σ), the confidence
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Figure 6.21 – Sample size at different confidence interval for 95% and 99.7% confidence
level.

intervals are 0.3 mm and 0.06 deg, with a 95% confidence level.

6.3.4 Parameters Variation

The random parameters for the Monte-Carlo simulations are the same than for the robust
stability and performance analysis (see Section 5.6.3). The LEDs detection noise will be
sampled according to the results obtained in Section 4.5. The LEDs noise is thus sampled
as a white noise with a deviation of 0.06 pixels (1σ) ± 50%. Other sensors noises will not
be varied.

The initial position is sampled according to the GNC requirements, i.e. 5% of the range.

6.4 Attitude Determination and Control

Attitude determination and control are both performed in the orbital frame. The attitude
determination filter is estimating attitude angles, expressed using the 1-2-3 Euler sequence
(denoted θx,y,z), and the gyroscope bias βx,y,z.

The EKF tuning parameters are provided in Appendix C.1.1. In all the simulations, the
gyroscope has an initial bias of 10 deg/h.

Note that as the Sun sensors do not contain Gaussian noise, the corresponding value in
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Rk should be close to zero. However, simulations showed that best results were obtained
for a non-zero value.

Three sensor combinations are capable of determining the attitude and will provide
various level of accuracy. Nominally, two sensors are always available: the magnetometer
and the gyroscope. All simulations will include them unless specified otherwise. If not
blinded by the Sun or obstructed by the Earth, the star tracker is available. Finally, when
the satellite is not in eclipse, the Sun sensors are available.

Because Sun sensors can have large biases, depending on the Sun’s direction, including
them in the attitude filter with the star tracker actually degrades performances. This is
shown in Figure 6.22.

(a) Star tracker only. (b) Star tracker and Sun sensors.

Figure 6.22 – Attitude performances with and without the star tracker over four orbits

Clearly, when Sun sensors are in the loop with the star tracker, the accuracy is degraded.
Note that the ŷ direction is not affected by the Sun sensors because of the Sun’s direction
in the orbital plane. As the Sun is perpendicular to the orbital plane, the Sun sensor in the
ŷ direction is being used. The Sun sensor error only affects the directions perpendicular
to the Sun, and thus the θy accuracy is the same in both cases above.

For missions with strict pointing requirements, different values can be computed to reflect
performances and repeatability of the ADCS [323]. Here, the requirement is that the
satellites attitude pointing shall be better than 2 degrees during motion and 4 deg in SK.
Because there are no stability requirements or relative pointing requirements, only the
absolute accuracy is considered.

The nominal scenario assumes the star tracker is available. The closed-loop attitude
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performance is shown in Figure 6.22a. The fact that the error along ŷ decreases is due to
the controller overshooting in this direction and the time needed to reach steady-state.
As the pointing error remains well within the 2 deg requirements, this is not deemed
problematic.

Periodic variations can be observed along the x̂ and ŷ directions. These are due to the
residual dipole disturbances which interact with Earth’s magnetic field, inducing rapidly
changing torques when crossing the Earth’s poles.

To minimise disturbances, the reaction wheels are only constantly unloaded up to the
translation, initiated at point S3. To avoid multiple zero-crossing which damages the
bearings, the wheels are required to spin at 1500 RPM. Because the control law to unload
the wheels uses magnetorquers, this reference cannot be exactly tracked. The three
wheels RPMs are shown in Figure 6.23. Although the reference is not exactly tracked,
the wheels’ rates are close enough to 1500 RPM, not to cause any zero-crossing issues.

Figure 6.23 – Reaction wheels’ rotation rates.

The filter performances are provided in Figures 6.24a and 6.24b. They show the attitude
and bias determination error and the corresponding filter covariance (1σ). The filter
converges in 5 minutes.

The innovation residual and covariance for the star tracker are shown in Figure 6.24c.

In each case the covariance is properly bounding the errors, meaning the filter tuning
provides consistent results. The attitude estimation error is larger for the ŷ direction as
the star tracker has less accuracy along boresight. This is consistent with the innovation
error. The standard deviation can be computed for each axis. For the x̂ and ẑ directions,
the 1σ estimation error is 5 · 10−3 deg and is 1 · 10−2 deg in the ŷ direction. The 1σ
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(a) Attitude estimation error. (b) Bias estimation error.

(c) Star tracker innovation.

Figure 6.24 – Attitude estimation errors, bias estimation errors, and star tracker
measurement innovation with 1σ covariance. The dashed lines are the covariance bounds.

covariance error is 9 · 10−3 for x̂ and ẑ, and 2 · 10−2 for ŷ. The fact that the covariance
is larger than the signal standard deviation indicates relatively high noise values in the
process-noise matrix Q. However, as the GNC is subject to uncertainties, larger process
noise is acceptable as allows handling these uncertainties more efficiently than if the
covariance were smaller than the signals errors. The attitude estimation variation with
uncertain parameters will be shown in the following sections. Note that here, the attitude
estimation error is better than a tenth of the requirement.
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The bias estimation error can seem large with a standard deviation of 1 deg/h. As in the
case of the attitude estimation error, the 1σ covariance is larger: 1.7 deg/h. Note that
for the initial bias of 10 deg/h, this corresponds to a 10% error which is acceptable. As a
matter of fact, in the events where all sensors would be lost, and the attitude would need
to be propagated using only the gyroscope, the attitude pointing remains smaller than 2
deg for 2500 seconds, as shown in Figure 6.25.

(a) Attitude estimation error. (b) Bias estimation error.

Figure 6.25 – Pointing and estimation errors using only the gyroscope. The dashed
lines are the covariance bounds.

In this scenario, the star tracker and magnetometer signals have been lost after 1000 s.
Figure 6.25 shows that there is more than enough time (2500 s) to initiate contingency
manoeuvres and to enter safe mode. The fact the θz exhibits the largest error is due to
the reaction wheels’ rotational speed. As shown in Figure 6.26, the wheel along the ẑ

direction is the slowest and thus provides the least gyroscopic stability, explaining the
estimation error’s rapid increase.

If the star tracker signal is lost, two cases must be investigated. Either to rely only on
the magnetometer and gyroscope (see Figure 6.27a) or to include Sun sensors in the loop
(see Figure 6.27b).

When using only the magnetometer, the attitude is not fully observable as at least two
directions are required to construct a DCM. Consequently, the EKF is initialised with
the star tracker in the loop. After the first 100 s, only the magnetometer and gyroscope
are used. In this case, the attitude error is larger than 4 deg and does not satisfy the
pointing requirements for manoeuvres or SK.

When Sun sensors are used with the magnetometer and gyroscope, out of eclipse, θy
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Figure 6.26 – Reaction wheels’ rotation rates in the body frame.

(a) Magnetometer and gyroscope. (b) Sun sensors, magnetometer and gyroscope.
The dashed line shows the eclipse periods.

Figure 6.27 – Pointing error using magnetometers and Sun sensors.

reaches 2.6 deg and only satisfies the SK requirements. In eclipse, the error largely exceeds
the requirements as θz reaches 6.2 deg. It is surprising that although Sun sensors are
available on most of the orbit, the error in eclipse is more significant than when the
magnetometer is used alone. This is because Sun sensors have a significant bias in their
measurements and are thus considerably disturbing the EKF.

Although none of these two configurations satisfies the pointing requirements, results will
show that even the combination Sun sensors/magnetometer can be used during Closing.
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6.5 Vision-Based Navigation

Two filters have been tuned each using a specific pattern, observed from different operating
ranges. The filters’ tuning parameters are identical and provided in Appendix C.2.1.
The star trackers noise parameter corresponds to the combined noise from the chaser
and target star trackers. The LEDs’ noise value is set to the value used for the camera
simulator, i.e. 0.06 pixels.

In this section, it is considered that the controller is the high bandwidth H∞ and the
target docking port frame is aligned with the orbital frame. Furthermore, apart from the
sensors and actuators noise, no uncertainties are considered yet. These will be included
during the Monte-Carlo simulations.

6.5.1 3 LEDs VBN Handover

When reaching the SK point S3, the 3 LEDs VBN must be initialised. To use the LEDs
detection algorithm provided in Table 4.3, chaser and target absolute attitudes, as well
as the CDGPS solution, are required. These will be used to determine the a priori LEDs’
position. Also, to reduce the number of detected blobs on the image, a ROI can be
defined using the 3σ GNC requirements, i.e. 2 deg around each axis, and 5% of the range,
i.e. 0.5 m at 10 m range.

Two examples of the LEDs detection during handover are shown in Figure 6.28

(a)

(b)

Figure 6.28 – 3 LEDs pattern detection using the absolute attitude values and CDGPS
solution. The white box is the ROI. The blue markers are the a priori LEDs’ positions.

Simulations show that the 3 LEDs are successfully detected 100% of the time even if the
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a priori LEDs’ positions are away from the actual LEDs’ positions. The white squares
represent perturbation signals on the CCD. The example of a full camera image during
handover is appended in Figure C.1.

Once detected, the LEDs’ positions can be fed to the VBN EKF, which solution allows
better tracking of the LEDs, as shown in Figure 6.29. Once the EKF has converged,
the a priori LEDs’ positions are precisely estimated and located well within each LEDs’
centroid.

Figure 6.29 – 3 LEDs pattern detection using the VBN. The white box is the ROI.
The blue markers are the a priori LEDs’ positions.

6.5.2 3 LEDs VBN Performances

In the simulations, translation from 10 m to 5 m range starts after 1200 s, is performed
at a speed of 1 cm/s, and lasts for 555 s. As the range will decrease, the accuracy of the
VBN will increase accordingly.

For the case where the target and chaser are available 100% of the time, the VBN
estimation and innovation errors are provided in Figures 6.30 and 6.31.

For the relative attitude, no improvement of the determination is observed as the range
decreases. This is expected as the star trackers provide a better measurement of the
relative attitude than the LEDs and are therefore the dominant measurements. The
star trackers are both oriented perpendicular to the orbital plane. Their noise density is
larger around boresight, making θy estimation error larger. The standard deviations are
σ(δθx) ≈ σ(δθz) ≈ 0.02 deg, and σ(δθy) ≈ 0.03 deg. The corresponding covariance error
for each axis is ∼ 0.02 deg.

For the relative position, a clear improvement can be noticed as the range decreases.
At 10 m range, σ(δx) ≈ 7 mm and the covariance error is 8 mm, σ(δy) ≈ 3 mm and
σ(δz) ≈ 5 mm with an identical covariance error of 2 mm. At 5 m range, σ(δx) ≈ 3 mm
and the covariance error is 3 mm, σ(δy) ≈ 1 mm and σ(δz) ≈ 2 mm with a covariance
error of 1 mm.

Together with the innovation errors which are well bounded by the innovation covariance,

242 Camille Pirat, December 14, 2018



6.5. Vision-Based Navigation

(a) Attitude estimation error. (b) Position estimation error.

Figure 6.30 – 3 LEDs VBN: P2P attitude and position errors with 1σ covariance. The
star trackers are available 100% of the time.

(a) LEDs innovation error. (b) Star tracker innovation error.

Figure 6.31 – 3 LEDs VBN: LEDs and star trackers innovation errors with 1σ covariance
(dashed lines).

the estimation errors and their respective covariances indicate a well-tuned filter which
largely satisfies the accuracy requirement (1% of the range). Note that the standard
deviation computation assumes white noise, which is not the case for δx. Computing the
standard deviation still provides useful information to assess the coherence of the tuning.

As discussed in Chapter 4, having the star trackers in the VBN filter adds systems
constraints as the target measurements must be sent to the chaser using an ISL. As the
distance between the out-of-plane and in-plane LEDs is only 1 cm, the 3 LEDs VBN
filter must be initialised with the star trackers. Once converged, the star trackers are not
required in the EKF any more. Figures 6.32 and 6.33 show the estimation and innovation
errors if the star trackers are lost after 100 s.
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(a) Attitude estimation error. (b) Position estimation error.

Figure 6.32 – 3 LEDs VBN: P2P attitude and position errors with 1σ covariance (dashed
lines). The star trackers are lost after 100 s.

Figure 6.33 – 3 LEDs VBN: LEDs and star trackers innovation errors with 1σ covariance
(dashed lines). The star trackers are lost after 100 s.

Losing the star trackers signals means that the relative attitude can only be measured
using the LEDs. θx is computed looking at the angle between the two outer LEDs and
the CCD horizon. θy and θz are only measured using the out-of-plane LED and are thus
poorly estimated.

For the relative attitude, an improvement of the determination with the range is observed,
as for the relative position estimation. At 10 m, the standard deviations are σ(δθx) ≈ 0.1

deg, and σ(δθy) ≈ σ(δθz) ≈ 0.2 deg, with a covariances equal to their respective standard
deviations. At 5 m range, σ(δθx) ≈ 0.06 deg with a covariance of 0.05 deg, and σ(δθy) ≈
σ(δθz) ≈ 0.15 deg with a covariance of 0.16 deg

For the relative position, at 10 m range, σ(δx) ≈ 7 mm and the covariance error is 8 mm.
These values are no different than when the star trackers were in the loop. σ(δy) ≈ 4

cm and σ(δz) ≈ 4 cm with a covariance error of 4 cm. Compared to the case with
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star trackers, these values are an order of magnitude larger. This is due to δθy and δθz
errors which are larger and linked to the azimuth and elevation (and thus y and z) in the
measurement equations.

At 5 m range, σ(δx) ≈ 3 mm and the covariance error is 3 mm, σ(δy) ≈ σ(δz) ≈ 1 cm
with a covariance error of 1 cm.

The innovation error has a standard deviation of 0.3 pixels, and the corresponding
covariance is 0.2 pixels.

Therefore, even if the star trackers loss clearly degrades the overall performances of the
filter, the tuning remains coherent, and the requirements are still satisfied.

At 1200 s, when the translation is initiated, the filter covariance varies and is more
susceptible to divergence issues. Losing the star trackers at this specific moment represents
a worst-case scenario, as shown in Figure 6.34.

(a) Attitude estimation error. (b) Position estimation error.

Figure 6.34 – 3 LEDs VBN: P2P attitude and position errors with 1σ covariance (dashed
lines). The star trackers are lost after 1200 s, when the translation starts.

The estimation errors are strictly equivalent to the case with (until 1200 s) and without
star trackers. The filter is not affected by the loss of the star trackers, even if it occurs
during the translation.

The advantage of using an EKF is that the filter can propagate the solution over a few
sampling periods. Three cases must be considered. First, when the star trackers are not
in the loop and the LEDs are lost after 500 s. This case is shown in Figure 6.35.

In this scenario, the LEDs must be recovered after 20 s to maintain the control error
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(a) Attitude estimation error. (b) Position estimation error.

Figure 6.35 – 3 LEDs VBN: P2P attitude and position errors with 1σ covariance
(dashed lines). The star trackers are lost after 100 s, and the LEDs after 500 s. They are
recovered after 20 s.

within requirements. It can be seen that although the LEDs are retrieved, the EKF takes
time to converge.

In the second case, the star trackers and LEDs are lost simultaneously after 500 s, as
shown in Figure 6.36. In this scenario, the LEDs must be recovered after 32 s to maintain
the control error within requirements. Compared to the first case, the EKF converges
back much faster.

Finally, the star trackers are kept in the loop, and the LEDs are lost after 500 s. This case
is shown in Figure 6.37. To maintain the control error within requirements, the LEDs
must be recovered after 103 s. This is the longest time that the LEDs could be absent
from the EKF. A trade-off at systems levels must be performed between LEDs’ reliability,
safety, and the complexity of permanently using an ISL.

As mentioned in Chapter 4, the star trackers measurements could be replaced by TRIAD
quaternions, constructed using the Sun sensors and magnetometers signals. This led to
poor results as the so computed relative attitude angles are extremely noisy and degraded
the VBN performances.

The stability of the 3 LEDs VBN filter is provided in Figure C.2, of the appendix. It
shows 24 hours of SK at 10 m range. Even if the star trackers are lost after 100 s, both
relative attitude and position estimations remain stable.

The 3 LEDs VBN is used from 10 m range down to 5 m range, at which point a handover
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(a) Attitude estimation error. (b) Position estimation error.

Figure 6.36 – 3 LEDs VBN: P2P attitude and position errors with 1σ covariance (dashed
lines). The star trackers and LEDs are lost after 500 s. They are recovered after 32 s.

(a) Attitude estimation error. (b) Position estimation error.

Figure 6.37 – 3 LEDs VBN: P2P attitude and position errors with 1σ covariance
(dashed lines). The LEDs are lost after 500 s but star trackers remain available. They
are recovered after 103 s.

will occur. This 3 LEDs VBN requires the chaser and target’s star trackers for the
initialisation only. If the star trackers are removed from the loop, the LEDs provide
sufficient accuracy. Note that this solution with 3 LEDs can be used up to a range of 30
m if the star trackers are available to obtain the relative attitude.
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6.5.3 5 LEDs VBN Handover

Once at 5 m range, the inner LED pattern must be used. At this time, the 3 LEDs
VBN provides directly the P2P 6 DoF state which will simplify the handover. The LEDs
detection is appended in Figure 6.38.

(a)

(b)

Figure 6.38 – a) 5 LEDs pattern detection using the 3 LEDs VBN. a) Central pattern
tracking once the 5 LEDs VBN has converged. The blue markers are the a priori LEDs’
positions.

A complete camera image during the handover is shown in Figure C.3.

As opposed to the handover at 10 m, the a priori LEDs’ positions are at the centre of
the LEDs centroids, thus excluding any false signal detections. This is due to the high
accuracy provided by the 3 LEDs VBN. Once detected, the central LEDs are fed to the 5
LEDs VBN filter. Following convergence, the ROI surrounding the central LED pattern
decreases, limiting perturbations from the Sun and the Earth.

As previously discussed in Section 4.4.2, the central LEDs are successfully detected 100%
of the time.
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6.5.4 5 LEDs VBN Performances

In the simulations, the translation between S31 at 5 m, and S32 at 2.5 m range starts
after 1200 s. This first translation lasts 305 seconds. Once at 2.5 m range, the chaser
spends 500 seconds in SK (between 1505 and 2005 s) until initiating the last translation
for 225 seconds. The VBN filter estimation errors, and the LEDs innovation error, are
shown in Figures 6.39 and 6.40, respectively.

(a) Attitude estimation error. (b) Position estimation error.

Figure 6.39 – 5 LEDs VBN: P2P attitude and position errors with 1σ covariance (dashed
lines).

At 5 m range, the relative attitude standard deviations are σ(δθx) = 0.08 deg, and
σ(δθy) ≈ σ(δθz) ≈ 0.09 deg. For the relative position, σ(δx) = 5 mm, σ(δy) ≈ σ(δz) = 8

mm. The covariances and corresponding standard deviations all have the same amplitudes.

At 5 m range, compared to the 3 LEDs VBN case, without star trackers, the x̂ attitude
and range are slightly degraded for the central pattern, because of the smaller pattern
size. However, the ŷ and ẑ attitude and position have been considerably improved. This
is due to the larger distance between the out-of-plane and in-plane LEDs for the central
pattern.

At 2.5 m range, the standard deviations are σ(δθx) = 0.04 deg, σ(δθy) ≈ σ(δθz) ≈ 0.05

deg, σ(δx) = 1.5 mm, and σ(δy) ≈ σ(δz) = 3 mm. Again, covariances and standard
deviations have the same amplitude.

Finally, at docking, the absolute estimation errors for the relative attitude, are δθx =

3.3 · 10−3 deg, δθy = 1.9 · 10−3 deg, and δθx = 1.1 · 10−3 deg. For relative position, the
estimation errors are δθx = 0.9 · 10−3 mm, δθy = 2.3 · 10−3 mm, and δθx = 1.9 · 10−3 mm.
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This shows that the 5 LEDs VBN performances are well within the specifications (0.1 deg
and 0.5 mm estimation error at docking) which gives confidence that such a navigation
solution provides sufficient accuracy for docking CubeSats.

The innovation covariance, shown in Figure 6.40, seems to diverge as the relative distance
reaches zero, but not the innovation error itself. This is due to the measurement Jacobian
H becoming singular at zero relative distance. Note that the determination error and
covariance error are not affected by this phenomena.

Figure 6.40 – 5 LEDs VBN: LEDs innovation errors with 1σ covariance (dashed lines).

If for some reasons the LEDs cannot be detected, the EKF can propagate the P2P solution
over a few sample periods. Here, two cases must be studied. First, the case where the
LEDs are lost in SK (see Figure 6.41), and second, the case where the LEDs are lost
during a translation (see Figure 6.42).

(a) Attitude estimation error. (b) Position estimation error.

Figure 6.41 – 5 LEDs VBN: P2P attitude and position errors with 1σ covariance (dashed
lines). The LEDs are lost after 1000 s and recovered after 80 s.

For the first case, the chaser is in SK at 5 m range and loses the LEDs after 1000 s. To
maintain the control errors within requirements, the LEDs must be recovered after 80 s.

250 Camille Pirat, December 14, 2018



6.6. GNC Performances

(a) Attitude estimation error. (b) Position estimation error.

Figure 6.42 – 5 LEDs VBN: P2P attitude and position errors with 1σ covariance (dashed
lines). The LEDs are lost after 1200 s and recovered after 61 s.

For the second case, the LEDs are lost at the beginning of the translation, at 1200 s.
The errors are clearly more significant than previously. To maintain the control errors
within requirements, the LEDs must be recovered after 61 s. If this is not possible, planed
contingency measures must be undertaken.

The stability of this VBN filter under 24 hours of SK at 5 m range is shown in Figure C.4,
of the appendix.

Recall that all the VBN results presented in this section have been produced assum-
ing nominal values for the uncertain parameters. The overall VBN performances will
necessarily suffer from the parameters variations during the Monte-Carlo simulations.

6.6 GNC Performances

6.6.1 Simulations Description

The RVD mission profiles are recalled in Figure 6.43 and Figure 6.44.

The RVD mission will be simulated in two parts. Firstly the Closing, i.e. from 500 m
range to 15 m range (S2 to S24), secondly the Final Approach.

During Closing, each R̄ loop lasts half an orbit, i.e. 48 min. Each time a SK point is
reached, the chaser holds the position for 10 min until the next R̄ manoeuvre is initiated.
For this phase, the absolute attitude and relative position controllers are used. The chaser
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Figure 6.43 – Trajectory profile for a CubeSat RVD mission.
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Figure 6.44 – Final Approach.

is kept aligned with the orbital frame. At the beginning of the simulation, the chaser is
maintained 10 min in SK at point S2 to ensure that the GNC reaches a steady-state.

For the Final approach, the chaser again spends 10 min in SK at point S24, before
initiating the fly-around. Depending on the location of S3, this will last between half an
orbit (S3 lays in the orbital plane) and a quarter of an orbit (S3 has an out-of-plane
component).

Because generating images for the VBN navigation drastically slows down the simulations,
the LEDs’ positions have been directly fed to the navigation filters, bypassing the detection
step. This is justified as handover and detection have been successfully tested separately.
Finally, the star trackers are kept in the loop until the translation from 10 m to 5 m range
is initiated. This translation is thus performed relying on the LEDs measurements only.

The sequences are:
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1. SK at point S24 for the navigation filter convergence.

2. Fly-around manoeuvre to point S3 using the absolute attitude and relative con-
trollers.

3. Point the chaser towards the target using the absolute attitude controller.

4. Switch to P2P control using the absolute navigation solutions to build the P2P
solution.

5. Initiate the 3 LEDs VBN filter and wait for convergence.

6. Use the 3 LEDs VBN solution for the P2P control.

7. Discard the star tracker signals from the filter and simultaneously initiate translation
from S3 to S31.

8. At 5 m range, initiate the 5 LEDs VBN and wait for convergence (the 3 LEDs VBN
is still used for the P2P control).

9. Use the 5 LEDs VBN solution for the P2P control.

10. Initiate the translation from S31 to S32.

11. SK at S32 for a final system check.

12. Initiate the final translation from S32 to docking.

For Closing and Final Approach, 250 Monte-Carlo simulations are performed. To increase
the confidence at docking, 600 specific Monte-Carlo runs, between from 5 m range and
docking, are added.

During Closing, the target attitude is not relevant and only impacts the relative drag. For
the chaser, the attitude pointing accuracy will directly affect the manoeuvre accuracy and
fuel consumption. As the star tracker can be positioned so that it is not blinded by the
Sun, it has been assumed to be available 100% of the time. To assess the impact that a
degraded pointing accuracy would have, Monte-Carlo runs have been performed without
star tracker on the chaser. It is thus only using Sun sensors and/or the magnetometer.
For the final approach, as the star trackers are required to initialise the VBN filter, it has
been assumed that they were available 100% of the time.

For the 600 Monte-Carlo run starting at 5 m range, the target star tracker has been
removed from the loop and will thus have a degraded stability. These simulations start
by initialising the 5 LEDs VBN filter. After 10 min, the VBN is included in the control
loop. At t = 1200 s the translation is initiated. The chaser reaches the 2.5 m SK point at
t = 1505 s and spends 500 s in SK until the last translation is initiated.
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Open-Loop Manoeuvres

Two types of open-loop manoeuvres are being executed during the mission. These open-
loop manoeuvres are included as feed-forward terms in the GNC. The ΔV s used to initiate
the fly-around, and closing manoeuvres, are computed assuming impulses. They are
executed open-loop while the trajectory is closed-loop controlled, as explained in Section
2.6. As long execution times result in significant errors, ΔV s are performed using the full
available thrust, i.e. 4 mN per axis. This will result in saturation and momentary loss
of the closed-loop performance in the direction of the ΔV execution. Such an approach
provides the best results regarding error and fuel consumption.

The second open-loop manoeuvres are those used to initiate and stop translations during
Final Approach, performed at a speed of 1 cm/s. These accelerations are included in the
GNC as feed-forward. To ensures no actuator saturation during the acceleration phases,
a force of only 2 mN is applied. The acceleration profile is a simple “bang-bang”, shown
in Figure 6.45.

Figure 6.45 – Guidance profile for the translation between 10 m and 5 m range.

6.6.2 Closing

Two different controllers are tested: LQR and H∞. Note that all controllers are fed with
the navigation solution coming from the EKF. The LQR is thus formally speaking an
LQG. All control schemes will be referred to using their regulator names although an
estimator is always present. The LQG will thus always be named LQR.

254 Camille Pirat, December 14, 2018



6.6. GNC Performances

For both controllers, the LVLH trajectories and corresponding errors for the 250 Monte-
Carlo runs are shown in Figures 6.46 and 6.47.

(a) LVLH trajectory. (b) Error.

Figure 6.46 – In track Closing trajectory for the H∞ and norm of the error.

(a) LVLH trajectory. (b) Error.

Figure 6.47 – In track Closing trajectory for the LQR and norm of the error.

For the selected sequence, Closing lasts 2.6 orbits, i.e. 4h10min.

Both controllers satisfy the performance requirements. The H∞ has less dispersion when
the open-loop manoeuvres are being executed, due to its integral action, and tracks the
reference trajectory much better than the LQR does. To reduce LQR errors, an integral
term could be added. However, as the LQR provides results which are within the required
performances, this has not been deemed necessary.

The total ΔV s are provided in Figure 6.48.

The H∞ consumes on average 30% more fuel than the LQR does. This difference is
attributed to the integral action of the H∞ and its higher bandwidth. Note that the ΔV

dispersion, due to parameters uncertainties, is the same for both controllers.

Although the LQR consumes less fuel, three controllers have been required during Closing
whereas H∞ only needed two, which is advantageous. For each controller, their bandwidths
have been derived from the performance requirements. Although the ΔV and steady-
state error give essential information, the H∞ and LQR have different bandwidths and
cannot be efficiently compared. Other elements should be taken into account to trade the
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(a) H∞. (b) LQR.

Figure 6.48 – ΔV consumption for the LQR and H∞ controllers.

controllers off, such as robustness. This will be further discussed later.

The chaser and target attitude control is performed with the star trackers in the loop
and performances are similar to those shown in Figure 6.22a. However, due to inertia
uncertainties and sloshing (chaser only), the attitude pointing is affected, as shown in
Figure 6.49.

(a) Chaser. (b) Target.

Figure 6.49 – Chaser and target pointing accuracy using star trackers.

The chaser pointing accuracy is only slightly affected by the sloshing. Inertia uncertainties
are not causing any other instability or performance issues.

Assuming that the star trackers are always available may imply essential system constraints
depending on the selected orbit. Using only the Sun sensors and the magnetometer for the
attitude determination or the magnetometer alone will guarantee an attitude solution on
any orbit but will degrade the pointing accuracy which will impact the relative position
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accuracy and fuel consumption. For these cases, the chaser pointing accuracy is shown in
Figure 6.50.

(a) Sun sensors and magnetometer. (b) Magnetometer.

Figure 6.50 – Chaser pointing accuracy using a) Sun sensors and the magnetometer,
and b) only the magnetometer.

In both cases, the attitude pointing error grows to more than 5 deg and is thus not
satisfying requirements (maximum 2 deg error). However, such poor pointing accuracy
does not prevent Closing. The resulting position error and fuel consumption are shown in
Figures 6.51 and 6.52. Here, H∞ control has been used.

(a) Position error . (b) ΔV .

Figure 6.51 – H∞: LVLH error and ΔV for the Closing using Sun sensors and magne-
tometer.

In both cases, the norm of the error is well below requirements. It is slightly higher when
compared to the case with the star tracker available, and the effects of the degraded
pointing accuracy are barely visible, and the total ΔV increased only by 1 cm/s. This
shows that the pointing requirement during Closing could potentially be relaxed as larger
pointing errors still allow satisfying the position error requirements. This statement would
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(a) Position error . (b) ΔV .

Figure 6.52 – H∞: LVLH error and ΔV for the Closing using only the magnetometer.

have to be revisited if any other error was larger than expected.

6.6.3 Final Approach

As explained in Section 6.2, the four different target docking port configurations each
imply different Final Approaches (V̄ , R̄, H̄ , and Mixed). In this section, only the R̄ case
is described. The other configurations are provided in Appendix C.3 and C.4.

The time required for Final Approach depends mainly on the SK point S3 location. For
approaches with out-of-plane component, this mission phase lasts 1h21min. Without it,
it is increased to 1h45min.

The R̄ approach results, with the LQR and H∞, are shown respectively in Figures 6.53
and 6.54. For each controller, LVLH trajectory (a), ΔV consumption (b), P2P position
(c), P2P attitude (d), LVLH error (e), and P2P error (f) are provided.

The red boundaries (requirements) in the figures always represent the 5% of the range
performance. In SK, the performance requirement is 10% of the range. For this reason,
although the trajectories in Figures 6.53e and 6.54e exceed the 5% bound, the requirements
are satisfied as this overshoots only occurs when reaching S3. At 10 m range, the closed-
loop performance shall be better than 1 m, which is the case as the error remains below
∼ 0.82 m.

As explained above, the star trackers used in the 3 LEDs VBN are always lost at the
beginning of the translation. This does not seem to perturb the LQR (Figure 6.53c).
However, for the H∞ (Figure 6.54c), oscillations are generated and last for more than half
the translation between 10 m and 5 m. Note that these oscillations, due to the integral
action of the H∞, are of no concerns as the error is well within requirements.
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(a) LVLH trajectory.
(b) ΔV consumption.

(c) P2P position.
(d) P2P attitude.

(e) LVLH error. (f) P2P error.

Figure 6.53 – LQR: a) and b): LVLH trajectory and ΔV consumption for an R̄ approach.
c) and d): P2P position and attitude. The red lines are the 5% of the range accuracy
requirements. e) and f): norm of the error.
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(a) LVLH trajectory.
(b) ΔV consumption.

(c) P2P position.
(d) P2P attitude.

(e) LVLH error. (f) P2P error.

Figure 6.54 – H∞: a) and b): LVLH trajectory and ΔV consumption for an R̄ approach.
c) and d): P2P position and attitude. The red lines are the 5% of the range accuracy
requirements. e) and f): norm of the error.
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For the H∞, the position and ΔV of a scenario where the star trackers are kept in the loop
from 10 m to 5 m are shown in Figure 6.55. These oscillations disappeared, drastically
increasing accuracy and decreasing fuel consumption.

(a) P2P position.

(b) ΔV consumption.

Figure 6.55 – H∞: P2P position and fuel consumption using star trackers.

The comments above remain true for all approaches described in Appendix C.3 and C.4,
and all requirements are satisfied. It must be noted that the same tuning is used for all
docking configurations. The only changes come from the P2P dynamics, which explicitly
depend on the docking ports position and orientation.

The minimal ΔV s to dock CubeSats can be estimated, and results are provided in
Table 6.5.

Table 6.5 – Mean ΔV consumption and 1σ deviation for the LQR and H∞ controllers
from 500 m range to docking.

Approach H∞ LQR

V̄ 1.32 m/s ±0.12 0.87 m/s ±0.072

H̄ 1.32 m/s ±0.12 0.9 m/s ±0.07

R̄ 1.4 m/s ±0.12 0.96 m/s ±0.067

Mixed 1.35 m/s ±0.12 0.92 m/s ±0.07

Looking only at the performances, it appears that LQR requires ∼ 45% less fuel than the
H∞. However, realistically, a ΔV for SK must be added to these numbers, to be fully
representative. Using the low bandwidth, H∞ and medium bandwidth LQR (the medium
bandwidth must be used to satisfy performance requirements), 48 hours of SK at 15 m
range have been simulated. Both controllers achieve similar levels of performance (∼ 1 m
error) while dwelling in SK. Results show that the H∞ ΔV , with 0.12 m/s per day, is
lower than the LQR’s with 0.23 m/s per day. This is due to the fact that the LQR has
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a higher bandwidth, but also to its higher steady-state error. V̄ SK points are indeed
equilibrium points. Consequently, a satellite closer to the V̄ axis will tend to consume
less fuel to maintain the position as the amount of destabilising relative accelerations
acting on it will be smaller. Integral action is thus an important added value for V̄ SK.

For H∞, including 100% margins on all ΔV s and assuming ten days of SK, an RCS
capable of delivering 5.2 m/s ΔV should be sufficient. This corresponds to 88 g of fuel,
for a 60 s Isp cold gas RCS and a 10 kg CubeSat (dry mass). For LQR, the ΔV would
be 6.5 m/s (including margins) requiring 11 g of fuel.

Both controllers satisfy the performance requirements but have fuel consumptions which
vary considerably depending on what mission phases are included in the computation.
The H∞ has better tracking and steady-state performances, as well as higher robustness
levels. Furthermore, when considering realistic SK, its fuel consumption is less than the
LQR’s.

Separation manoeuvres (CubeSats launched in a stacked configuration) require their own
ΔV budget. The typical ΔV for a separation manoeuvre in the frame of a close-proximity
formation-flying IOD is ∼0.6 m/s without margins [6]. Other operations such as Phasing
(CubeSats not launched together or attached) would also have to be included, if relevant,
to have an end-to-end mission ΔV budget.

The simulated torques and forces during Final Approach are provided in Figure 6.56.

(a) V̄ approach. (b) Mixed approach.

Figure 6.56 – Torques and forces required during Final Approach for a V̄ and Mixed
docking.

For V̄ approach, the torque commands are always smaller than 0.2 mNm. Between 3000
and 4000 seconds, the command becomes extremely noisy, corresponding to the handover,
during which the absolute attitudes and relative GPS solutions are used to control the
P2P 6 DoF. As soon as the 3 LEDs VBN solution is included, the noise is drastically
attenuated. For the Mixed approach in Figure 6.56b, between 1200 and 1500 seconds, the
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torque commands are higher than 2 mNm. This corresponds to the slewing manoeuvre
aligning the chaser and target’s docking ports. This manoeuvre lasts 50 seconds, which
is consistent with the controller tuning (see Section 5.3). Note that in these cases the
reaction wheels, being not aligned with the body frame, did not saturate (see Section
6.1.3).

The fly-around ΔV s can be observed between 0 and 3000 seconds for the V̄ approach and
between 0 and 1500 seconds for the Mixed approach. When the P2P control is initiated
using the absolute attitudes and relative GPS, the force commands become noisier until
the 3 LEDs VBN is initiated. The force commands are saturating the actuators twice,
corresponding to the times when each P2P controller is first included in the feedback.
These saturation instants only last for 5 to 10 seconds and do not affect performances.

It can be seen that as the range decreases, the force commands become less noisy and
have smaller amplitudes. The main reason for this behaviour is that the VBN’s accuracy
improves during approach. So, one way to reduce fuel consumption is to use larger LEDs’
patterns.

6.6.4 Docking

To increase confidence on the docking accuracy, supplementary Monte-Carlo simulations
are performed for each configuration. Performing 600 runs reduces the confidence intervals
from 0.5 mm to 0.3 mm and from 0.1 deg to 0.06 deg, maintaining a 95% confidence level.

Now, two additional controllers are included in the trade-off: LQI and μ-synthesis. The
LQI has been included as a way to reduce the large biases seen for the LQR. The
μ-synthesis has been included as a way to improve H∞ stability and performance to
actuation errors and fuel sloshing.

Each controller has been used to simulate all four configurations. Note that although each
configuration induces different P2P dynamics, the controllers do not have to be re-tuned
to meet docking requirements. The simulations start with 1200 s of SK at 5m from the
target docking port. This leaves enough time for the GNC to reach steady-state, before
initiating the translations. Recall that for these simulations, the target has a degraded
pointing accuracy as it relies only on its magnetometer. The attitude performance has
been shown in Figure 6.27a.

The results of these simulations are gathered in Appendix C.5, C.6, C.7, and C.8. For
each simulation, the accuracy at docking, ΔV , relative position and relative attitude
are provided. Note that for these simulations, the sole purpose of the ΔV is to provide
a way of trading-off the controllers and is not representative of an RVD mission fuel
consumption.
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For the V̄ approach, the LQR and H∞ results are provided in Figure 6.57.

(a) LQR. (b) H∞.

Figure 6.57 – V̄ approach: Docking accuracy for 600 Monte-Carlo simulations.

A clear bias, due to the relative dynamics, can be noticed in the −ẑ direction. For the
LQR, the bias is so high that the requirements are met with only small residual margins.
The H∞ has an integrator term in its structure and thus benefits from a smaller bias.
However, because of its smaller bandwidth, it has a larger dispersion than the LQR.
As for Closing and Final Approach, LQR consumes less fuel than H∞. For this 5 m
translation, with H∞, 0.29 m/s are required, and 21% less ΔV , with 0.24 m/s, for LQR.

Adding a small integral part to the LQR considerably increases the performance and
removes the bias, leading to a higher accuracy than the H∞. This is shown in Figure 6.58a.
The LQI requires 0.26 m/s ΔV which is only 8% more than the LQR. Note that, as
the bias has now disappeared, the LQI bandwidth could be decreased, increasing the
dispersion at docking but saving fuel.

(a) LQI. (b) μ-synthesis.

Figure 6.58 – V̄ approach: Docking accuracy for 600 Monte-Carlo simulations.

The μ-synthesis performance is provided in Figure 6.58b. Compared to the H∞, the
μ-synthesis shows a smaller dispersion, resulting from its higher bandwidth. However, as
the μ-synthesis integral effect has not been changed, the bias did not improve. Note that
the μ-synthesis objective is to increase the robustness to sets of bounded uncertainties,
not to increase the performances as such. The μ-synthesis, with 0.32 m/s, has a 10%
higher ΔV than H∞.
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The ΔV s for all different approaches are provided in Table 6.6.

Table 6.6 – Mean ΔV and 1σ deviation for LQR, LQI, H∞, and μ-synthesis controllers,
from 5 m to docking.

Approach LQR LQI H∞ μ-synthesis

V̄ 0.24 m/s ±0.036 0.26 m/s ±0.039 0.29 m/s ±0.059 0.32 m/s ±0.066

H̄ 0.2 m/s ±0.038 0.22 m/s ±0.038 0.27 m/s ±0.061 0.3 m/s ±0.067

R̄ 0.25 m/s ±0.034 0.27 m/s ±0.037 0.31 m/s ±0.059 0.33 m/s ±0.066

Mixed 0.21 m/s ±0.036 0.23 m/s ±0.039 0.28 m/s ±0.061 0.31 m/s ±0.066

All controllers, for all simulated approaches, are satisfying the requirements, leading
to successful dockings. As before, the LQ-type controllers require less fuel than the
robust controllers. Furthermore, they appear to provide less dispersed results and the
LQI has no apparent bias at docking. But, the controllers should not be judged only on
their steady-state performances, as robustness is of concern. Indeed, the LQI and LQR
both suffer from sensors noise amplification at the plant input (see Figure 5.15) which
may lead to stability issues. Also, the Monte-Carlo simulations only take into account
100% of the modelled uncertainties, meaning that the LQ-type controllers achieve the
required performances for these levels of uncertainties, and in particular only for the sets
of values scanned during the Monte-Calro runs. However, Monte-Carlo simulations cannot
guarantee that within the nominal set of uncertainties, no specific combination will cause
performance issues. In the frame of the VEGA launch vehicle, μ-analysis has recently been
proven to be more efficient than Monte-Carlo at detecting destabilising combinations of
parameters within the considered set of uncertainties [248]. Therefore, it is not possible to
conclude on the RP of the LQ-type controllers. On the other hand, μ-analysis confirmed
that the robust controllers could handle at least 130% of the modelled uncertainties and
had higher RS margins. If the bias present in the H∞ and μ-synthesis were an issue, it
could easily be removed, as shown at the end of this chapter.

6.6.5 Analytical VBN

In the case of VBN divergence, the analytical solution can still be used to complete
docking, as shown in Figure 6.59.

In these simulations, the VBN filter has been lost at random instants between the
beginning of the translation and docking. When the VBN is lost, the LEDs’ positions on
the camera CCD are used within the analytical solution, providing a backup navigation
option. This P2P navigation can either be used to steer the chaser away from the target
or to complete the mission. If the latter is selected, the navigation solution provides
enough accuracy to ensure docking. The controller used for these simulations is the H∞,
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(a) Docking accuracy. (b) ΔV consumption.

(c) P2P position.
(d) P2P attitude.

Figure 6.59 – 600 Monte-Carlo simulations for the last 5 m using H∞. The VBN is lost
at random instants during the translation and the navigation switches to the analytical
solution to complete the docking.

and the approach is along V̄ .

In this case, the mean ΔV increases from 0.29 m/s to 0.46 m/s. Switching to the analytical
solution induces considerable perturbations. Although the relative position control still
meets requirements, the relative attitude error can increase up to 5 deg (see Figure 6.59d).
This is violating the 2 deg requirement. However, each Monte-Carlo simulation led to a
successful docking, as shown in Figure 6.59a.

These Monte-Carlo simulations, combined with the μ-analysis give confidence that, for
the set of bounded uncertainties that have been defined, the controllers are RS and RP,
and docking can always successfully be performed.
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6.7 Worst Case Perturbation

For the RS and RP introduced in Chapter 5, the destabilising Δ-structure can be recovered
and its values used in the simulations. This is considered as the worst case perturbation.
The results of the μ-analysis can be assessed using non-linear simulations.

Because the controller output will influence the EKF behaviour, the navigation filter
was taken out of the loop and replaced by white noise. The power spectrum density of
the white noise was selected according to the weight definition Wn (5.89). Similarly, the
actuator models for the reaction wheels and propulsion system were taken out of the loop
and replaced by the actuator matrix Kd (5.124), used for the μ-analysis.

Note that this is coherent as the aim is not to judge the performance of the GNC but to
assess if the set of uncertainties, obtained with the μ-analysis, are indeed causing stability
and performance issues.

For high bandwidth P2P H∞ and μ-synthesis, the worst case parameters values for RS
and RP are shown in Tables 6.7, and 6.8, respectively.

Table 6.7 – Uncertain parameters, in % of the nominal value, causing loss of robustness
for the H∞ controller.

H∞ mc cs fs δτ kf kt kc

RS -19.5 -93.6 +71.2 +375.2 -7.7 -0.1 -9.8
RP +13.2 -63.5 -52.9 +157.9 -13.2 -13.2 +6.6

Ic11 Ic22 Ic33 It11 It22 It22

RS +16.1 -19.6 +0.3 -2.1 +18.9 -19.6
RP +13.2 +13.2 +13.2 -12.5 +8.8 +6.9

Table 6.8 – Uncertain parameters, in % of the nominal value, causing loss of robustness
for the μ-synthesis controller.

μ-syn. mc cs fs δτ kf kt kc

RS -19.5 -93.6 +70.4 +372.1 -15.6 -19.3 -9.7
RP -15.2 -72.9 +60.8 +205.1 +15.2 -15.2 -7.6

Ic11 Ic22 Ic33 It11 It22 It22

RS -19.5 -19.5 -18.8 +8.2 +19.5 -19.5
RP +12.1 +15.2 -15.2 +3.38 +2.9 -1.1

To assess the performance, the Mixed approach is used. The worst cases for the RP are
provided in Figure 6.60a and Figure 6.60b.

As expected, the controllers remain stable although the attitude requirements are violated
during translation. At docking, the μ-synthesis is still satisfying the requirements. For
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(a) H∞. (b) μ-synthesis.

Figure 6.60 – Worst case perturbations for the robust performance of the H∞ and
μ-synthesis controllers. The attitude is displayed as a function of time and the lateral
accuracy as a function of the range.

H∞, however, the position requirements are not met.

The worst cases for the RS are provided in Figure 6.61a and Figure 6.61b. Only a station
keeping at 5 m range for one orbit (5801 s) has been simulated. Both controllers remain
stable, although they do not satisfy the attitude requirement. They do however satisfy
the 5% of the range requirement.

(a) H∞. (b) μ-synthesis.

Figure 6.61 – Worst case perturbations for the robust stability of the H∞ and μ-
synthesis controllers.

SSV robustness methods are often considered too conservative. Both controllers seem
to confirm this statement. However, even having a controller which maintains a certain
level of stability and performance in such extreme cases, does not guarantee a successful
mission. The VBN camera has indeed a limited FoV, and the LEDs signals could be lost.
Furthermore, fuel consumption increases dramatically. In the case of μ-synthesis, which
still satisfies the requirements at docking, the 3.7 m/s of ΔV is more than 26 times higher
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than the average obtained in Monte-Carlo simulations shown before.

Such extreme cases are unlikely as they imply poor characterisation of sensors and
actuators, as well as an inaccurate determination of the systems’ physical parameters
before the flight.

For the LQR and LQI, only the worst parameters for the RS are obtained. They are
provided in Table 6.9.

Table 6.9 – Uncertain parameters, in % of the nominal value, causing loss of stability
for the LQR and LQI controllers.

RS mc cs fs δτ kf kt kc

LQR -9.7 -90.5 +75.4 +338.4 -17.3 -16.3 +9.4
LQI +18.8 -90.2 +64.5 +324.6 +13.5 -16.3 -9.4

Ic11 Ic22 Ic33 It11 It22 It22

LQR +17.9 -18.8 -18.8 -18.8 -18.8 -18.8
LQI -11.5 -18.8 +18.5 -18.8 +11.7 -18.8

For these two controllers, as opposed to the H∞ and μ-synthesis, the destabilising
Δ-structure caused the closed-loop to diverge.

The results of the μ-analysis showed that the robust controllers could handle ∼ 195%

of the modelled uncertainties before becoming unstable, and the classical controllers
(LQR and LQI) ∼ 185%. Thus, besides being able to handle more uncertainties, robust
controllers did not diverge when exposed to a destabilising Δ-structure, as opposed to
the LQ-type controllers.

6.8 Improving the H∞

The high bandwidth LQI offers better steady-state performances than the H∞, however,
it suffers from noise amplification at the plant input and is less robust. If the H∞
steady-state bias were of concern, the controller’s performances can easily be improved.

The integral effect in the H∞ design results from the value A1 in the performance weight
(see (5.91) in Section 5.5.2), and directly relates to the steady-state performance. For
the weights selection of the high bandwidth H∞ controller in Section 5.5.2, decreasing
the value of A1 will result in improved docking performance. The minimum value that
can be handled by the MATLAB® Robust Control Toolbox is 10−13 or -260 dB. With
this value, the H∞ achieves nearly perfect tracking, and its sensitivity function reaches
steady-state values similar to the LQI’s, as shown in Figure 6.62. The H∞ KS function,
however, stays bellow 0 dB and rolls-off above the bandwidth, which prevents sensors
noise amplification at the plant input. For this weight selection, the H∞ solver achieves
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(a) LQI (b) H∞.

Figure 6.62 – LQI and H∞ S, T , and KS functions.

γ = 0.78. The S, T , and KS functions for the scaled plant are provided in Figure 6.63.

The performances at docking of this H∞ and LQI are compared in Figure 6.64.

Pushing the H∞ sensitivity function down, clearly improves the docking performance
as the bias (see Figure 6.57b) is removed. The H∞ exhibits more dispersed results than
the LQI, due to its lower bandwidth. The RS, RP as well as the results of the 600
Monte-Carlo simulations for the last 5 m before docking are given in Appendix C.9. Note
that increasing the integral effect does not increase the ΔV and only slightly reduces
the RP margins. Robust controllers such as H∞ and μ-synthesis offer important tuning

Figure 6.63 – H∞ S, T , and KS functions for the scaled plant.
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flexibility, and are able to achieve near-optimal steady-state performances, while providing
excellent robustness properties, making them highly attractive candidates to perform
complicated tasks such as orbital RVD.

(a) LQI. (b) H∞.

Figure 6.64 – V̄ approach: Docking accuracy for 600 Monte-Carlo simulations.
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7 Conclusion

Even if RVD has been mastered over the years it has been in use, and large satellites
have achieved an impressive level of performance and autonomy, CubeSats RVD has not
to this day been performed. The new challenges are mainly associated with the level of
miniaturisation of sensors, actuators, and mechanisms, as well as with the higher required
control accuracy.

The initial research performed within the frame of ESA GSTP 5.4 [5, 6], enabled the
definition of an RVD mission profile adapted to CubeSat, tailored for the expected
available levels of actuation.

COTS actuators and sensors, including reaction wheels, 6 DoF cold gas propulsion, and
star trackers, as well as other critical subsystems, could be integrated together within
the tight physical constraints of a 6U CubeSat platform (10 × 20 × 30 cm, ≤ 12 kg).
Comprehensive mass and volume budgets could be defined and specific allocations made
to accommodate the docking sensor and mechanism.

To achieve the necessary accuracy required for RVD missions, alongside the Hill’s dynamics
and usual absolute attitude dynamics, a dedicated non-linear P2P dynamics has been
developed. It describes the relative 6 DoF between the chaser and target’s docking
ports and is used in the navigation and control functions. Once linearised, the resulting
state-space, as opposed to existing relative P2P dynamics, accounts for all couplings in
the state dynamics, leaving the plant output, identical to the state vector, completely
available for feedback. Linearisation errors could be analysed and simulations showed that
they are of the same order of magnitudes as environmental perturbations. Confidence
was obtained that the developed P2P dynamics can support the strict requirements of
the navigation and control.

It has often been acknowledged that the combination of a vision sensor and active
beacons is well suited for docking in many different illumination conditions. The VBN
developed within this research uses two sets of LEDs patterns, observed by a monocular
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camera, allowing the determination of the P2P 6 DoF from a range of 10 m. The
camera being equipped with a bandpass filter centred on the LEDs’ wavelength (470
nm), LEDs detection is possible in any illumination conditions, even with the Sun facing
the camera. Initial detection is achieved using the geometrical properties of the LEDs’
patterns. Once a navigation solution is available, provided by an EKF, each LED can be
actively tracked and any perturbation from the camera sensor rejected, providing a 100%
detection rate. The simulated estimation accuracy of this solution is better than 1% of
the range to the target. At docking, the estimation accuracy is better than 1%� of the
position misalignment requirement and 1% of the attitude requirement. These docking
requirements are 5 mm relative position lateral misalignment and 1 deg relative attitude
along each axis (3σ). The design requirements for the docking mechanism include a 100%
margin and are thus 1 cm and 2 deg (3σ). These requirements have been determined
and tested through the design of a mechanism, tailored for nano-satellites. The docking
mechanism and VBN both fit in a 0.33U package and 10 × 10 cm surface. It requires
a precise control of the chaser until initial mechanical contact is made. The proposed
docking mechanism thus ensures a predictable motion of the chaser and target and
guarantees performance until docking in any illumination conditions.

The LEDs pattern geometry enabled the development of an analytical navigation solution,
which could be used from 5 m range. Used as a backup solution in case the navigation filter
diverges, docking can still be ensured. The proposed VBN is thus robust to illumination
conditions, EKF failure, and even to the temporary loss of the metrology system. The
VBN design is such that it can be easily scaled to different mission scenarios. Also,
increasing the baseline between the two outer LEDs allows VBN at distances greater than
10 m. For the selected 6U CubeSat, and assuming the docking mechanism is positioned
at the centre of the 20 × 30 cm face, an additional two LEDs pattern could be placed
close to the structure ridges, 30 cm apart. This would allow a handover at a ∼ 110 m,
reducing the dependence on GNSS. This is a theoretical distance, and the LEDs signal to
noise ratio at such ranges will be a limiting factor.

Even if the VBN solution has been extensively tested in non-linear simulations, a con-
sequent amount of work still needs to be performed to reach a flight-qualified system.
Optical systems always suffer from aberrations which need to be addressed with care.
It was shown that the choice of LEDs has an important impact on navigation accuracy.
They should be carefully screened to ensure minimum detection noise, but also be robust
to the harsh space environment. Finally, a thorough test campaign to assess hardware
performances will need to be conducted.

Three controller types have been synthesised: LQR, H∞ and μ-synthesis. They have
been tested for robustness by mean of μ-analysis , and have been shown compliant to
a bounded set of uncertainties. These have been included using LFTs and gathered in
a single Δ-structure containing 53 real elements. The H∞’s most sensitive uncertain
parameters (actuators errors and fuel sloshing), obtained through the μ-analysis, have been
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implemented in a D −K iteration to synthesise a μ controller with reduced sensitivity to
these specific elements. Being purely real, they cannot be used as such for the μ-synthesis.
Instead, an equivalent plant with a purely complex Δ-structure has been estimated. Even
if this plant does not fully reflect the real uncertainties behaviour, μ-synthesis exhibits
higher input margins than H∞ and is 30% more robust to this defined set of uncertainties.

Four different approach trajectories have been tested, leading to different relative dynamics.
Monte-Carlo simulations were run for each controller and each approach. The number
of runs performed provided a 10% confidence interval on the 3σ requirements, with a
95% confidence level. For docking, additional simulations were performed to achieve a
6% confidence interval while maintaining the confidence level at 95%. The 3σ docking
requirements being 5 mm lateral position and 1 deg attitude, the confidence intervals
are as precise as 0.3 mm and 0.06 deg. All controllers, combined with the VBN, meet
requirements and do not need to be re-tuned for the different approaches as long as the
P2P dynamics are modified accordingly.

The H∞ and μ-synthesis both exhibit biases of ∼ 2 mm, while the attitude control has no
apparent bias, and are thus well within the specifications. In general, the LQR exhibits
larger errors but provides less dispersed results at docking. For V̄ and R̄ approaches, a
bias of ∼ 4 mm is present at docking, satisfying requirements with only little margin.
Adding an integral term in the LQR completely removed this bias, transforming it into an
LQI. This controller has the best steady-state performance as it has no apparent bias and
limited fuel consumption when compared to the robust controllers. However, as opposed to
the H∞ and μ-synthesis, the LQI exhibits a 2.3 dB sensors noise amplification at the plant
input, which may lead to stability issues. Moreover, the H∞ and μ-synthesis both exhibit
higher robustness margins. If the H∞ bias would be of concern, a simple modification of
its performance weight can enable near-optimal steady-state performances, comparable
to the LQI’s.

Using the results of μ-analysis, destabilising perturbations could be obtained for all
controllers. These perturbations did not cause a loss of stability for the H∞ and μ-
synthesis. However, for the LQR and LQI, which RS levels are smaller than for H∞
and μ-synthesis, extracting the destabilising Δ-structure from the μ-analysis led to an
instantaneous divergence. This shows that even if μ-analysis seems to provide conservative
results for the robust controllers, LQ-types controllers are much more sensitive to the set
of bounded uncertainties and intrinsically less robust.

At this level of development, it is difficult to rank the controllers definitively. The LQI
performs slightly better at docking for all simulated approaches and has a limited fuel
consumption. These considerations are only based on the performance level, i.e. the
steady-state, and other elements must be taken into account. It has been observed
that the LQI suffers from sensors noise amplification at the plant input, which may
lead to stability issues. Furthermore, robust schemes such as H∞ and μ-synthesis offer
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more tuning flexibility, exhibit higher overall robustness margins, and achieve excellent
steady-state performances. In addition, when considering realistic SK time, the H∞
provides a solution consuming less fuel. Also, during Closing, H∞ requires only two
different controllers with different bandwidths, whereas LQR requires three, which will
increase verification time and add complexity to the flight software. Thus, considering
the robustness levels, sensors noise amplification issues, steady-state performances, and
overall ΔV consumptions, the robust controllers are more appropriate for CubeSats RVD.

Results of the μ-analysis also provide the sensitivity of the closed-loop to each element of
the set of bounded uncertainties. Having this information at an early stage of a mission
allows the identification of critical elements for the closed-loop robustness, and can be
used at a systems level to focus on the development of essential elements specifically.
Here, as expected, the closed-loop is most sensitive to the sloshing model parameters, as
it is the only element in the design which can lead to resonance phenomena.

As noted in Chapter 5, fuel sloshing resonance could not be observed with the selected
model parameters. Decreasing the damping coefficient revealed a resonance with little
impact, as it was positioned outside the controller’s bandwidth. As progress will be
made in modelling fuel sloshing for CubeSats propulsion systems, such a resonance could
potentially interfere with the closed-loop performance. Furthermore, no solar arrays
have been considered in the synthesis, as for 6U CubeSats these arrays will be small and
with high-frequency vibration modes, which will be filtered by the closed-loop. However,
as bigger CubeSats will be used, larger arrays may be included with lower-frequency
contents, disturbing the closed-loop performances. Here also, the benefits of using robust
control schemes with frequency dependent weights are obvious.

In this research, the frequency dependent weights used to model input perturbations
have been kept simple to maintain a low-order generalised plant. The weights modelling
measurement errors thus correspond to a white noise. VBN results show that the EKF
output contains low-correlation time noise. Identifying the power spectrum of the EKF
output and using it in the generalised plant would highly increase the controller order,
and potentially improve the control accuracy. High order controllers can be reduced using
the technique described in Chapter 5. Another approach, called Structured-H∞, which is
the subject of a consequent amount of research, could also be used [324–329].

Essential topics including Phasing, Failure Detection Isolation and Recovery (FDIR),
robustness to failures, and autonomy, will need to be covered in future activities to
guarantee the success of CubeSats RVD. Phasing is only well-known when impulsive
manoeuvres are used. With the actuation levels available to CubeSats, the phasing
profile would be similar to a low-thrust spiraling trajectory. Such Phasing has not been
attempted yet, either with large or small satellites. FDIR and autonomy are joined as
both functions have to provide efficient decision-making processes, to ensure safety and
recoverability of the mission. CubeSats require an additional level of automation, as
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communication with the ground is relatively scarce due to operations costs constraints.
ATV’s operations remain the SoA regarding automated RVD and should be the starting
point for the development of autonomous CubeSats.

Plume impingement on CubeSats has not been addressed yet. Cold gas is more benign
than other hydrazine type thrusters, and impacts on the target satellite should be low.
If relevant, the thruster configuration could be adapted to maximise distances between
the target’s docking port and chaser’s thrusters, or controllers including such constraints
could be used (such as MPC).

Although robust schemes have been preferred here, other controllers such as NDI, adaptive
control, or sliding-mode control, which have been performing extremely well on ground
applications, should be tested in the future.

An appealing application of RVD remains the assembly of large structures in space,
such as telecom antennas, telescopes, or modular satellites. So as not to be limitied
to circular obits, the RVD problem on eccentric obits will also have to be addressed.
This could be achieved combining the well-known Yamanaka-Ankersen STM [330], which
describes the relative motion of two satellites on any elliptical orbits, together with
Linear Parameter-Varying (LPV) control, which guarantees robustness and performance
in-between design points.

The robust GNC developed within this thesis allows docking in any configuration, without
need for retuning the controllers or navigation filters. Sun illumination conditions are of
no concern which makes this GNC a very suitable candidate for a large variety of low
Earth orbits, and even beyond. The results of this research show that CubeSat RVD is
feasible today, using existing technologies, thus paving the way for in-orbit demonstrations
such as the planned ESA RACE mission.
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A External Perturbations

A.1 Earth Gravitational Potential

In the dynamics derived in Sections 3.3 and 3.4, the gravitational term has been modelled
using a simple Newtonian gravitational potential, valid for spherical and homogeneous
bodies:

Φ(r) = − μ

‖r‖ (A.1)

where μ = GM , with G the gravitational constant, and M the mass of the central body.
r is the distance to the central body CoM. The usual gravitational force per unit mass is
then:

F = −∇Φ(r) = − μ

‖r‖3r (A.2)

In the case of non-spherical, non-homogeneous bodies, the gravitational potential per
unit mass can be expressed as:

Φ(r) = −G

∫
d3s

ρ(s)

‖r − s‖ (A.3)

where ρ(s) is the density at point s and ‖r − s‖ is the satellite’s distance to this point.

Computing the gravitational force implies to know the mass distribution of the central
body, and to expand (A.3) in terms of spherical harmonics using Legendre polynomials.
This expansion leads to a central gravitational force (A.2) with additive correction
terms [95]. In practice, the Earth density cannot be computed only the coefficient of the
different harmonics can be measured. The model recommended by the Space environment
ECSS [331] is the EIGEN-GL04C which contains coefficients up to a degree 360 [309].
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The dominant perturbation term in the gravitational force is called J2 and is responsible
for the RAAN and argument of perigee drift. As explained in Section 2.5.1, these terms
should be taken into account during the long phasing manoeuvres to match the target
and chaser RAAN.

Higher degrees coefficients can be safely neglected as their impacts are significantly smaller
than J2. For a reference Earth radius R⊕ = 6378.1363 km, the dimensionless coefficients
values are [51]:

J2 =1.0826 · 10−3

J3 =− 2.532 · 10−6

The J2 effect on the RAAN drift is given by:

dΩ

dt
= −3

2
J2

(
R⊕

a(1− e2)

)2√ μ

a3
cos (i) (A.4)

As during Homing, Closing and Final Approach the semi-major axis difference between
the chaser and target is at most a few kilometres, the relative RAAN drift effect is
minimal. For two satellites with an inclination of 89 deg, a null eccentricity, a target
semi-major axis of 600 km and a chaser 3 km below, the RAAN drift is ∼ 0.2 deg/day.

A.2 Gravity Gradient

Gravity gradient results in a torque that applies to non-symmetrical bodies. This effect
tends to align the satellite’s principal axis of inertia with the local vertical. Using the
moment of inertia of the satellite Ib, the gravity gradient torque is defined as [30, pp.
103–105]:

T gg,b =
3μ

r3
nb × (Ibnb) (A.5)

where nb is a Nadir pointing normalised vector in the body frame and r is the satellite
distance to the central body. For a satellite attitude controlled in the orbital frame with
attitude matrix Abo = R123(α), mapping FO into Fb, nb becomes:

nb = R123(α)no = R123(α)

⎡⎢⎣00
1

⎤⎥⎦ (A.6)
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A.3. Residual Magnetic Dipole

In this case, the gravity gradient torque takes the form:

T gg,b =
3μ

r3

⎡⎢⎣ −cα cβ (cγ sα+ cα sβ sγ) (I22 − I33)

cα cβ (sα sγ − cα cγ sβ) (I11 − I33)

− (cγ sα+ cα sβ sγ) (sα sγ − cα cγ sβ) (I11 − I22)

⎤⎥⎦ (A.7)

where cos(α) ≡ cα, sin(α) ≡ sα and equivalently for β and γ.

A.3 Residual Magnetic Dipole

Because of the various pieces of equipment within the satellite, especially the solar cells
which are likely to create current loops, a residual magnetic dipole mb will remain in the
satellite. This dipole interaction with the Earth magnetic field BI creates a torque in the
body frame:

T dipole,b = [AbIBI×]mb (A.8)

For a 6U CubeSat, the residual dipole is estimated to be ‖mb‖ = 0.1 Am2 [332,333].

A.4 Aerodynamic Force and Torque

Due to the residual atmosphere in LEO, satellites will experience aerodynamic drag. It
can be modelled using the aerodynamic force [95, pp. 83–86]:

F drag,I = −1

2
ρv2

relCDAn
vrel

‖vrel‖ (A.9)

where ρ is the atmospheric pressure and is computed using the CIRA 2012 model [313].The
dimensionless quantity CD, the drag coefficient, is used to quantify the interaction of a
flow with a surface. For CubeSats, CD = 2 is usually selected, 2 being the drag coefficient
of a flat two-dimensional plate. An is the solid cross-section normal to the flow and vrel

is the speed of the solid with respect to the atmosphere.

A CubeSat, due to its simple shape, can be entirely described by an assembly of plates;
two-dimensional, one-sided elements.

As shown in Figure A.1, a plate with dimension S = a× b is positioned in the body frame
Fb with a vector rpb and has an orientation Apb. Apb is the DCM mapping Fb to the
associated plate frame Fp. Fp is located at the plate centre of pressure. The x̂p direction
is perpendicular to the plate. ŷp and ẑp define the plate’s plane.
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rpbFp

Fb

ẑb

ŷb

x̂b

x̂p

ŷp

ẑp
a

b

Figure A.1 – Plate with dimension S = a× b with position rpb and orientation Apb in
the body frame.

The relative speed of the plate with respect to the atmosphere can be obtained as follow:
The plate position in inertial frame FI is:

rpI = rI +AT
bIr

p
b (A.10)

where rI is the satellite inertial position and AbI is the satellite attitude. The differentia-
tion leads to:

ṙpI = ṙI +AT
bI [ω

bI
b ×]rpb (A.11)

where ωbI
b is obtained from the attitude dynamics.

Assuming that the atmosphere, in the inertial frame, is rotating at a constant rate (see
Section 2.2.1):

ωRI
I = [0 0 ωRI

I ]T (A.12)

The speed of a solid relative to the atmosphere, in inertial frame, is:

vrel = ṙI +AT
bI [ω

bI
b ×]rpb − [ωRI

I ×]rI (A.13)

which results from adding the velocities.

In Fp a plate can be represented by its normal vector:

np
p =

⎡⎢⎣S0
0

⎤⎥⎦ (A.14)
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A.5. Solar Radiation Force and Torque

which norm is equal to the plate surface.

The cross-section An can thus be defined as:

An =
(AIbAbpn

p
p) · vrel

‖vrel‖ (A.15)

where AbI is the satellite attitude in the inertial frame.

The drag force in inertial frame is thus:

F drag,I = −1

2
ρv2

relCD
(AIbAbpn

p
p) · vrel

‖vrel‖
vrel

‖vrel‖ (A.16)

and the torque is:

T drag,b = rpb × (AIbF drag,I) (A.17)

Note that if
(
AIbAbpn

p
I

) ·vrel < 0, F drag,I = T drag,I = 0. This follows from the definition
of the plate, a two-dimensional, one-sided element.

A.5 Solar Radiation Force and Torque

The solar radiation disturbances modelling is similar to the aerodynamic one.

The solar radiation force acting on the satellite is due to the radiation absorbed, specularly
reflected and diffusely reflected [311, pp. 571–573]. The absorption, specular, and diffuse
reflection coefficients Ca, Cs and Cd, are such that Ca + Cs + Cd = 1.

Defining r̂�I as the unit vector with origin at the satellite CoM and pointing towards the
Sun and using the same plate definition than for the drag, the solar radiation is [311, pp.
571–573] and [95, pp. 77–78] :

F rad,I = −P�(AIbAbpn
p
p)·r̂�I

[
(1− Cs)r̂

�
I + 2

(
Cs

(AIbAbpn
p
p) · r̂�I

‖np
p‖ +

1

3
Cd

)
r̂�I

]
(A.18)

where P� is the radiation pressure and is given by:

P� =
F�
c

(A.19)

F� = 1367 Wm−2 is the solar constant at the Earth orbit and c = 299, 792, 458 ms−1 the
speed of light.
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The solar radiation torque is:

T rad,b = rpb × (AIbF rad,I) (A.20)

As before, if
(
AIbAbpn

p
I

) · r̂�I vrel < 0, F rad,I = T rad,I = 0.
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B Mathematical Considerations

B.1 DCM to 1-2-3 Euler Sequence

The procedure to determine the Euler angles follows the demonstration for the 3-2-1
sequence in [30, pp. 52-54].

The DCM is defined as

A = R3(γ)R2(β)R1(α) (B.1)

where Ri, i = 1, 2, 3, are the usual rotation matrices:

R1(α) =

⎡⎢⎣1 0 0

0 cos(α) sin(α)

0 − sin(α) cos(α)

⎤⎥⎦ (B.2)

R2(β) =

⎡⎢⎣cos(β) 0 − sin(β)

0 1 0

sin(β) 0 cos(β)

⎤⎥⎦ (B.3)

R3(γ) =

⎡⎢⎣ cos(γ) sin(γ) 0

− sin(γ) cos(γ) 0

0 0 1

⎤⎥⎦ (B.4)

The A matrix from (B.1) has then the following form:

A =

⎡⎢⎣ cβ cγ cα sγ + cγ sα sβ sα sγ − cα cγ sβ

−cβ sγ cα cγ − sα sβ sγ cγ sα+ cα sβ sγ

sβ −cβ sα cα cβ

⎤⎥⎦ (B.5)

where cos(α) ≡ cα, sin(α) ≡ sα and equivalently for β and γ.
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The angle β can be directly obtained from A31:

β = sin−1(A31) (B.6)

Two values of β will give the same sine, which is a common behaviour for asymmetric Euler
sequences. The value of β will thus be constraints to |β| ≤ π

2 meaning that cos(β) ≥ 0.
Two cases have to be evaluated:

1. If cos(β) �= 0:

α = atan2(−A21, A11) (B.7a)

γ = atan2(−A32, A33) (B.7b)

2. If cos(β) = 0 then β = ±π
2 and the DCM matrix (B.5) becomes:

A =

⎡⎢⎣ 0 cα sγ ± cγ sα sα sγ ∓ cα cγ

0 cα cγ ∓ sα sγ cα sγ ± cγ sα

±1 0 0

⎤⎥⎦ (B.8)

which can be rewritten as

A =

⎡⎢⎣ 0 ± sin(α± γ) ∓ cos(α± γ)

0 cos(α± γ) sin(α± γ)

±1 0 0

⎤⎥⎦ (B.9)

This situation is known as “gimbal lock”, where only the summ or difference btween
α and γ can be obtained. This situation can be dealt with computing either α or γ
using (B.7a) and (B.7b) and the remaining angle can be obtained from

(a) If A31 ≥ 0 in (B.9):

α+ γ = atan2(A12 +A23,−A13 +A22) (B.10)

(b) If A31 ≤ 0 in (B.9):

α− γ = atan2(−A12 +A23, A13 +A22) (B.11)
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B.2. Spherical Coordinates

B.2 Spherical Coordinates

x̂
ŷ

ẑ

φ

θ

ρ

δ

Figure B.1 – Spherical coordinates.

The spherical coordinates are defined from Cartesian coordinates as:

⎡⎢⎣ρθ
φ

⎤⎥⎦ =

⎡⎢⎢⎣
√
x2 + y2 + z2

tan−1
( y
x

)
tan−1

(
z√

x2+y2

)
⎤⎥⎥⎦ (B.12)

Inversely, the Cartesian coordinates can be obtained from spherical coordinates:⎡⎢⎣xy
z

⎤⎥⎦ =

⎡⎢⎣ρ cos (θ) cos (φ)ρ sin (θ) cos (φ)

ρ sin (φ)

⎤⎥⎦ (B.13)

This definition follows the latitude/longitude angles definition. Spherical coordinates
are sometimes defined using the co-latitude δ. The relation between these two angles is
simply

δ =
π

2
− φ (B.14)
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C Supplementary Results

C.1 ADCS

C.1.1 EKF Tuning Parameters

Table C.1 – Attitude EKF parameters.

Process-noise Qk

σv 0.375 deg/
√

h

σu 7.5 deg/h/
√

h

Measurement noise Rk

σsun 1 · 10−4 [-]

σmag. 2.5 · 10−6 T

σST 1.7 · 10−2 deg

Initial Covariance P0

P01−3 10−61

P04−6 10−91
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C.2 VBN

C.2.1 EKF Tuning Parameters

Table C.2 – VBN EKF parameters.

Process-noise Qk

σα 0

σω 4.6 · 10−3 deg/s

σs 0

σṡ 5 · 10−5 m/s

Measurement noise Rk

σLEDs 6 · 10−2 pixels

σST 2.9 · 10−2 deg

Initial Covariance P0

P0 10−41
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C.2. VBN

C.2.2 3 LEDs VBN

Figure C.1 – Full camera image during the handover at 10 m range.

Camille Pirat, December 14, 2018 291



Appendix C. Supplementary Results

(a) Attitude estimation error. (b) Position estimation error.

Figure C.2 – 3 LEDs VBN: P2P attitude and position errors with 1σ covariance for 24
h SK at 10 m range.
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C.2. VBN

C.2.3 5 LEDs VBN

Figure C.3 – Full camera image during the handover at 5 m range.
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(a) Attitude estimation error. (b) Position estimation error.

Figure C.4 – 5 LEDs VBN: P2P attitude and position errors with 1σ covariance doe 24
h SK at 5 m range.
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C.3. Final Approach: LQR

C.3 Final Approach: LQR

C.3.1 Along-Track Approach

(a) LVLH trajectory.
(b) ΔV consumption.

(c) P2P position.
(d) P2P attitude.

(e) LVLH error. (f) P2P error.

Figure C.5 – LQR: a) and b): LVLH trajectory and ΔV consumption for a V̄ approach.
c) and d): P2P position and attitude. The red lines are the 5% of the range accuracy
requirements. e) and f): norm of the error.
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C.3.2 Cross-Track Approach

(a) LVLH trajectory.
(b) ΔV consumption.

(c) P2P position.
(d) P2P attitude.

(e) LVLH error. (f) P2P error.

Figure C.6 – LQR: a) and b): LVLH trajectory and ΔV consumption for an H̄ approach.
c) and d): P2P position and attitude. The red lines are the 5% of the range accuracy
requirements. e) and f): norm of the error.
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C.3. Final Approach: LQR

C.3.3 Mixed Approach

(a) LVLH trajectory.
(b) ΔV consumption.

(c) P2P position.
(d) P2P attitude.

(e) LVLH error. (f) P2P error.

Figure C.7 – LQR: a) and b): LVLH trajectory and ΔV consumption for a mixed
approach. c) and d): P2P position and attitude. The red lines are the 5% of the range
accuracy requirements. e) and f): norm of the error.
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C.4 Final Approach: H∞

C.4.1 Along-Track Approach

(a) LVLH trajectory.
(b) ΔV consumption.

(c) P2P position.
(d) P2P attitude.

(e) LVLH error. (f) P2P error.

Figure C.8 – H∞: a) and b): LVLH trajectory and ΔV consumption for a V̄ approach.
c) and d): P2P position and attitude. The red lines are the 5% of the range accuracy
requirements. e) and f): norm of the error.
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C.4. Final Approach: H∞

C.4.2 Cross-Track Approach

(a) LVLH trajectory.
(b) ΔV consumption.

(c) P2P position.
(d) P2P attitude.

(e) LVLH error. (f) P2P error.

Figure C.9 – H∞: a) and b): LVLH trajectory and ΔV consumption for an H̄ approach.
c) and d): P2P position and attitude. The red lines are the 5% of the range accuracy
requirements. e) and f): norm of the error.
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C.4.3 Mixed Approach

(a) LVLH trajectory.
(b) ΔV consumption.

(c) P2P position.
(d) P2P attitude.

(e) LVLH error. (f) P2P error.

Figure C.10 – H∞: a) and b): LVLH trajectory and ΔV consumption for a mixed
approach. c) and d): P2P position and attitude. The red lines are the 5% of the range
accuracy requirements. e) and f): norm of the error.
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C.5. Docking: LQR

C.5 Docking: LQR

C.5.1 Along-Track Approach

(a) Docking accuracy. (b) ΔV consumption.

(c) P2P position.
(d) P2P attitude.

Figure C.11 – 600 Monte-Carlo simulations for the last 5 m using LQR.
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C.5.2 Cross-Track Approach

(a) Docking accuracy. (b) ΔV consumption.

(c) P2P position.
(d) P2P attitude.

Figure C.12 – 600 Monte-Carlo simulations for the last 5 m using LQR.
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C.5.3 Radial Approach

(a) Docking accuracy. (b) ΔV consumption.

(c) P2P position.
(d) P2P attitude.

Figure C.13 – 600 Monte-Carlo simulations for the last 5 m using LQR.
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C.5.4 Mixed Approach

(a) Docking accuracy. (b) ΔV consumption.

(c) P2P position.
(d) P2P attitude.

Figure C.14 – 600 Monte-Carlo simulations for the last 5 m using LQR.
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C.6. Docking: LQI

C.6 Docking: LQI

C.6.1 Along-Track Approach

(a) Docking accuracy. (b) ΔV consumption.

(c) P2P position.
(d) P2P attitude.

Figure C.15 – 600 Monte-Carlo simulations for the last 5 m using LQI.
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C.6.2 Cross-Track Approach

(a) Docking accuracy. (b) ΔV consumption.

(c) P2P position.
(d) P2P attitude.

Figure C.16 – 600 Monte-Carlo simulations for the last 5 m using LQI.
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C.6.3 Radial Approach

(a) Docking accuracy. (b) ΔV consumption.

(c) P2P position.
(d) P2P attitude.

Figure C.17 – 600 Monte-Carlo simulations for the last 5 m using LQI.
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C.6.4 Mixed Approach

(a) Docking accuracy. (b) ΔV consumption.

(c) P2P position.
(d) P2P attitude.

Figure C.18 – 600 Monte-Carlo simulations for the last 5 m using LQI.
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C.7. Docking: H∞

C.7 Docking: H∞

C.7.1 Along-Track Approach

(a) Docking accuracy. (b) ΔV consumption.

(c) P2P position.
(d) P2P attitude.

Figure C.19 – 600 Monte-Carlo simulations for the last 5 m using H∞.
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C.7.2 Cross-Track Approach

(a) Docking accuracy. (b) ΔV consumption.

(c) P2P position.
(d) P2P attitude.

Figure C.20 – 600 Monte-Carlo simulations for the last 5 m using H∞.
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C.7. Docking: H∞

C.7.3 Radial Approach

(a) Docking accuracy. (b) ΔV consumption.

(c) P2P position.
(d) P2P attitude.

Figure C.21 – 600 Monte-Carlo simulations for the last 5 m using H∞.
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C.7.4 Mixed Approach

(a) Docking accuracy. (b) ΔV consumption.

(c) P2P position.
(d) P2P attitude.

Figure C.22 – 600 Monte-Carlo simulations for the last 5 m using H∞.
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C.8. Docking: μ-synthesis

C.8 Docking: μ-synthesis

C.8.1 Along-Track Approach

(a) Docking accuracy. (b) ΔV consumption.

(c) P2P position.
(d) P2P attitude.

Figure C.23 – 600 Monte-Carlo simulations for the last 5 m using μ-synthesis.
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C.8.2 Cross-Track Approach

(a) Docking accuracy. (b) ΔV consumption.

(c) P2P position.
(d) P2P attitude.

Figure C.24 – 600 Monte-Carlo simulations for the last 5 m using μ-synthesis.
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C.8. Docking: μ-synthesis

C.8.3 Radial Approach

(a) Docking accuracy. (b) ΔV consumption.

(c) P2P position.
(d) P2P attitude.

Figure C.25 – 600 Monte-Carlo simulations for the last 5 m using μ-synthesis.
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C.8.4 Mixed Approach

(a) Docking accuracy. (b) ΔV consumption.

(c) P2P position.
(d) P2P attitude.

Figure C.26 – 600 Monte-Carlo simulations for the last 5 m using μ-synthesis.
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C.9 Docking: Alternative H∞

In this appendix the H∞ with improved integral action is presented.

The μ-analysis results are provided in Figure C.27.

(a) RS. (b) RP.

Figure C.27 – P2P dynamics: RS and RP for the H∞ with improved integral action.

The controller is RS for 190% of the modelled uncertainties, and there is a least one set
of perturbation corresponding to 195% that causes instability. Similarly, the closed-loop
gain remains below 1 for 122% of the modelled uncertainties, and there is a least one set
of perturbation corresponding to 127% that causes a closed-loop gain greater than 1.
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C.9.1 Along-Track Approach

(a) Docking accuracy. (b) ΔV consumption.

(c) P2P position.
(d) P2P attitude.

Figure C.28 – 600 Monte-Carlo simulations for the last 5 m using H∞ with improved
integral action.
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D MATLAB® Code

D.1 MATLAB® Version

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
MATLAB Vers ion : 9 . 3 . 0 . 7 1 3 579 (R2017b )
MATLAB License Number : 303238
Operating System : Mac OS X Vers ion : 10 . 1 3 . 5 Build : 17F77
Java Vers ion : Java 1 .8.0_121 - b13 with Oracle Corporat ion Java ...

HotSpot (TM) 64 - Bit Server VM mixed mode
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

MATLAB Vers ion 9 . 3 (R2017b )
Simulink Vers ion 9 . 0 (R2017b )
Aerospace Blockset Vers ion 3 .20 (R2017b )
Aerospace Toolbox Vers ion 2 .20 (R2017b )
Antenna Toolbox Vers ion 3 . 0 (R2017b )
Audio System Toolbox Vers ion 1 . 3 (R2017b )
Automated Driv ing System Toolbox Vers ion 1 . 1 (R2017b )
B io in f o rmat i c s Toolbox Vers ion 4 . 9 (R2017b )
Communications System Toolbox Vers ion 6 . 5 (R2017b )
Computer Vis ion System Toolbox Vers ion 8 . 0 (R2017b )
Control System Toolbox Vers ion 10 . 3 (R2017b )
Curve F i t t i n g Toolbox Vers ion 3 . 5 . 6 (R2017b )
DSP System Toolbox Vers ion 9 . 5 (R2017b )
Database Toolbox Vers ion 8 . 0 (R2017b )
Datafeed Toolbox Vers ion 5 . 6 (R2017b )
Econometrics Toolbox Vers ion 4 . 1 (R2017b )
Embedded Coder Vers ion 6 .13 (R2017b )
F i l t e r Design HDL Coder Vers ion 3 . 1 . 2 (R2017b )
F inanc i a l Instruments Toolbox Vers ion 2 . 6 (R2017b )
F inanc i a l Toolbox Vers ion 5 .10 (R2017b )
Fixed - Point Des igner Vers ion 6 . 0 (R2017b )
Fuzzy Logic Toolbox Vers ion 2 . 3 (R2017b )
Global Optimizat ion Toolbox Vers ion 3 . 4 . 3 (R2017b )
HDL Coder Vers ion 3 .11 (R2017b )
Image Acqu i s i t i on Toolbox Vers ion 5 . 3 (R2017b )
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Image Proce s s ing Toolbox Vers ion 10 . 1 (R2017b )
Instrument Control Toolbox Vers ion 3 .12 (R2017b )
LTE HDL Toolbox Vers ion 1 . 0 (R2017b )
LTE System Toolbox Vers ion 2 . 5 (R2017b )
MATLAB Coder Vers ion 3 . 4 (R2017b )
MATLAB Compiler Vers ion 6 . 5 (R2017b )
MATLAB Compiler SDK Vers ion 6 . 4 (R2017b )
MATLAB Report Generator Vers ion 5 . 3 (R2017b )
Mapping Toolbox Vers ion 4 . 5 . 1 (R2017b )
Model P r ed i c t i v e Control Toolbox Vers ion 6 . 0 (R2017b )
Neural Network Toolbox Vers ion 11 . 0 (R2017b )
Optimizat ion Toolbox Vers ion 8 . 0 (R2017b )
P a r a l l e l Computing Toolbox Vers ion 6 .11 (R2017b )
Pa r t i a l D i f f e r e n t i a l Equation Toolbox Vers ion 2 . 5 (R2017b )
Phased Array System Toolbox Vers ion 3 . 5 (R2017b )
Polyspace Bug Finder Vers ion 2 . 4 (R2017b )
Polyspace Code Prover Vers ion 9 . 8 (R2017b )
Powertrain Blockset Vers ion 1 . 2 (R2017b )
RF Blockset Vers ion 6 . 1 (R2017b )
RF Toolbox Vers ion 3 . 3 (R2017b )
Risk Management Toolbox Vers ion 1 . 2 (R2017b )
Robot ics System Toolbox Vers ion 1 . 5 (R2017b )
Robust Control Toolbox Vers ion 6 . 4 (R2017b )
S igna l Proce s s ing Toolbox Vers ion 7 . 5 (R2017b )
SimBiology Vers ion 5 . 7 (R2017b )
SimEvents Vers ion 5 . 3 (R2017b )
Simscape Vers ion 4 . 3 (R2017b )
Simscape Dr i v e l i n e Vers ion 2 .13 (R2017b )
Simscape E l e c t r on i c s Vers ion 2 .12 (R2017b )
Simscape Flu ids Vers ion 2 . 3 (R2017b )
Simscape Multibody Vers ion 5 . 1 (R2017b )
Simscape Power Systems Vers ion 6 . 8 (R2017b )
Simulink 3D Animation Vers ion 7 . 8 (R2017b )
Simulink Check Vers ion 4 . 0 (R2017b )
Simulink Coder Vers ion 8 .13 (R2017b )
Simulink Control Design Vers ion 5 . 0 (R2017b )
Simulink Coverage Vers ion 4 . 0 (R2017b )
Simulink Design Optimizat ion Vers ion 3 . 3 (R2017b )
Simulink Design V e r i f i e r Vers ion 3 . 4 (R2017b )
Simulink Desktop Real -Time Vers ion 5 . 5 (R2017b )
Simulink Report Generator Vers ion 5 . 3 (R2017b )
Simulink Requirements Vers ion 1 . 0 (R2017b )
Simulink Test Vers ion 2 . 3 (R2017b )
Sta t e f l ow Vers ion 9 . 0 (R2017b )
S t a t i s t i c s and Machine Learning Toolbox Vers ion 11 . 2 (R2017b )
Symbolic Math Toolbox Vers ion 8 . 0 (R2017b )
System I d e n t i f i c a t i o n Toolbox Vers ion 9 . 7 (R2017b )
Text Ana lyt i c s Toolbox Vers ion 1 . 0 (R2017b )
Tracking and Sensor Fusion Toolbox Vers ion 1 . 0 (R2017b )
Trading Toolbox Vers ion 3 . 3 (R2017b )
WLAN System Toolbox Vers ion 1 . 4 (R2017b )
Wavelet Toolbox Vers ion 4 .19 (R2017b )

320 Camille Pirat, December 14, 2018



D.2. Symbolic Computation

D.2 Symbolic Computation

All the dynamics equations Jacobians have been derived using MATLAB® R2017b, and
the Symbolic Math ToolboxTM.

D.2.1 Absolute Attitude Dynamics

%Def ine v a r i a b l e s f o r symbol ic too lbox
% Euler ang l e s and t h e i r d e r i v a t i v e s
syms alpha beta gamma dalpha dbeta dgamma r e a l
% Rotation r a t e s and t h e i r d e r i v a t i v e s
syms wx wy wz dwx dwy dwz w0 r e a l
% Torques Input
syms Tx Ty Tz r e a l
% I n e r t i a t enso r
syms I11 I12 I13 I21 I22 I23 I31 I32 I33 r e a l
% L i n e r i s a t i o n po in t s f o r the a t t i t ud e
syms a b c r e a l

%Kinematics
Angle=[ alpha ; beta ; gamma ] ;

cg=cos (gamma) ;
sg=s i n (gamma) ;
cb=cos ( beta ) ;
sb=s i n ( beta ) ;

B_angle=1/cb * [ cg - sg 0 ;
cb*sg cb*cg 0 ;
- sb*cg sb*sg cb ] ;

dAngle=B_angle* [wx ;wy ; wz ] ;

%Dynamics
I =[ I11 I12 I13 ;

I21 I22 I23 ;
I31 I32 I33 ] ;

T=[Tx Ty Tz ] ' ;
Abo=R3(gamma)*R2( beta )*R1( alpha ) ; %o r b i t a l to body a t t i t ud e matrix
Omega=[wx ;wy ; wz ] ;
Omega0=[0 -w0 0 ] ' ;
w=Omega+Abo*Omega0 ;

dOmega=I \(T- skew (w) *( I*w) ) ;
dwx=dOmega(1 ) ;
dwy=dOmega(2 ) ;
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dwz=dOmega(3 ) ;

%Prepare non - l i n e a r equat ions f o r the Jacobian computation
%Kinematics Jacobian
f1=dAngle ;
F1=jacob ian ( f1 , [ Angle' Omega' ] ) ;
B1=jacob ian ( f1 ,T') ;
%Dynamics Jacobian
f2=dOmega ;
F2=jacob ian ( f2 , [ Angle' Omega' ] ) ;
B2=jacob ian ( f2 ,T') ;

%L i n e a r i s a t i o n po in t s
alpha=a ;
beta=b ;
gamma=c ;
wx=0;
wy=0;
wz=0;
Tx=0;
Ty=0;
Tz=0;

%Evaluate the Jacobian at the l i n e a r i s a t i o n po in t s and bu i ld the ...
s ta te - space A and B matr i ce s

f11=eva l ( f 1 ) ;
F11=eva l (F1) ;
F11=subs (F11 , s i n (b) / cos (b) , tan (b) ) ;
B11=eva l (B1) ;
f21=eva l ( f 2 ) ;
F21=eva l (F2) ;
B21=eva l (B2) ;
A=[F11 ; F21 ] ;
B=[B11 ; B21 ] ;
A=s imp l i f y (A) ;
B=s imp l i f y (B) ;
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D.2.2 Port to Port Attitude Dynamics

%Def ine v a r i a b l e s f o r symbol ic too lbox
% P2P r e l a t i v e a t t i t ud e ang le v a r i a b l e s
syms alphaDCDT betaDCDT gammaDCDT dalphaDCDT dbetaDCDT dgammaDCDT r e a l
% P2P r e l a t i v e angular v e l o c i t y v a r i a b l e s
syms wxDCDT wyDCDT wzDCDT dwxDCDT dwyDCDT dwzDCDT r e a l
% Target Docking port a t t i t ud e Var iab l e s
syms alphaDTo betaDTo gammaDTo dalphaDTo dbetaDTo dgammaDTo r e a l
% Target r e l a t i v e angular v e l o c i t y v a r i a b l e s
syms wxDTo wyDTo wzDTo dwxDTo dwyDTo dwzDTo r e a l
% Chaser I n e r t i a parametres expres sed in docking portm frame
syms ICDC11 ICDC12 ICDC13 ICDC21 ICDC22 ICDC23 ICDC31 ICDC32 ICDC33 mC r e a l
% Target I n e r t i a parameters expres sed in docking port frame
syms ITDT11 ITDT12 ITDT13 ITDT21 ITDT22 ITDT23 ITDT31 ITDT32 ITDT33 r e a l
% Docking por t s p o s i t i o n s expres sed in docking port frame
syms rxDTDT ryDTDT rzDTDT rxDCDC ryDCDC rzDCDC r e a l
% r e l a t i v e p o s i t i o n v a r i a b l e s
syms sxDT syDT szDT rT dsxDT dsyDT dszDT mu r e a l
% Control Input
syms TxDT TyDT TzDT TxDC TyDC TzDC FxDC FyDC FzDC r e a l
% Other parameters
syms mu w0 r e a l
% L i n e r i s a t i o n po int
syms aDT0 bDT0 cDT0 r e a l

%Kinematics P2P
AngleDC=[alphaDCDT ;betaDCDT ;gammaDCDT] ;

cg=cos (gammaDCDT) ;
sg=s i n (gammaDCDT) ;
cb=cos (betaDCDT) ;
sb=s i n (betaDCDT) ;

B_angle=1/cb * [ cg - sg 0 ;
cb*sg cb*cg 0 ;
- sb*cg sb*sg cb ] ;

dAngleDC=B_angle* [wxDCDT;wyDCDT;wzDCDT] ;

%Kinematics Target Orb i ta l
AngleDTo=[alphaDTo ; betaDTo ;gammaDTo ] ;

cg=cos (gammaDTo) ;
sg=s i n (gammaDTo) ;
cb=cos (betaDTo) ;
sb=s i n (betaDTo) ;

B_angle=1/cb * [ cg - sg 0 ;
cb*sg cb*cg 0 ;
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- sb*cg sb*sg cb ] ;

dAngleDTo=B_angle* [wxDTo;wyDTo;wzDTo ] ;

%Re la t i v e Dynamics
ICDC=[ ICDC11 ICDC12 ICDC13 ;

ICDC21 ICDC22 ICDC23 ;
ICDC31 ICDC32 ICDC33 ] ;

ITDT=[ ITDT11 ITDT12 ITDT13 ;
ITDT21 ITDT22 ITDT23 ;
ITDT31 ITDT32 ITDT33 ] ;

TDC=[TxDC TyDC TzDC] ' ;
TDT=[TxDT TyDT TzDT] ' ;
ADTo=R3(gammaDTo)*R2(betaDTo)*R1( alphaDTo ) ;
ADCDT=R3(gammaDCDT)*R2(betaDCDT)*R1(alphaDCDT) ;
wDTo=[wxDTo;wyDTo;wzDTo ] ;
wDCDT=[wxDCDT;wyDCDT;wzDCDT] ;
wo=[0 -w0 0 ] ' ;
wIT=wDTo+ADTo*wo ;

%Dynamics f o r a t t i t ud e DTO
dwDTo=ITDT\(TDT- skew (wIT) *(ITDT*wIT) ) ;
dwxDTo=dwDTo(1) ;
dwyDTo=dwDTo(2) ;
dwzDTo=dwDTo(3) ;

%Dynamics f o r a t t i t ud e DCDT
dwDC=ICDC\(TDC- skew (wDCDT+ADCDT*wIT) *(ITDT*(wDCDT+ADCDT*wIT) ) ) . . .

- ( skew ( -wDCDT) *(ADCDT*wDTo)+ADCDT*dwDTo) ;

dwxDCDT=dwDC(1) ;
dwyDCDT=dwDC(2) ;
dwzDCDT=dwDC(3) ;

%P2P Trans la t i on dynamics
rTo =[0 ; 0 ; - rT ] ;
sDCDT=[sxDT ; syDT ; szDT ] ;
dsDCDT=[dsxDT ; dsyDT ; dszDT ] ;
rDCDC=[rxDCDC;ryDCDC;rzDCDC ] ;
rDTDT=[rxDTDT;ryDTDT;rzDTDT ] ;
rDCDT=ADCDT'*rDCDC;
rxCDT=rDCDT(1) ;
ryCDT=rDCDT(2) ;
rzCDT=rDCDT(3) ;
FDC=[FxDC FyDC FzDC] ' ;
rcDT=ADTo*rTo+sDCDT-rDCDT+rDTDT;

accDT=mu*ADTo*rTo/norm(ADTo*rTo ) ^3 -mu*(rcDT) /norm(rcDT)^3+ADCDT'*FDC/mC;
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s=sDCDT-rDCDT+rDTDT;
ddsDCDT=-skew (dwDTo)*s . . .

- skew (wDTo)*skew (wDTo)*s . . .
- skew (ADTo*wo)*skew (ADTo*wo)*s . . .
-2* skew (wDTo)*dsDCDT . . .
-2* skew (ADTo*wo)*dsDCDT . . .
-2* skew (ADTo*wo)*skew (wDTo)*s . . .
+2*skew (ADTo*wo+wDTo)*skew (ADCDT'*wDCDT) *(rDCDT) . . .
+accDT . . .
+skew (ADCDT'*dwDC) *(rDCDT) . . .
+2*skew (ADCDT'*wDCDT)*skew (ADCDT'*wDCDT)*rDCDT;

%Compute jacob ian
f t o t =[dAngleDC ;dwDC; dAngleDTo ;dwDTo;dsDCDT;ddsDCDT ] ;
Atot=jacob ian ( f t o t , [ AngleDC' wDCDT' AngleDTo' wDTo' sDCDT' dsDCDT' ] ) ;
Btot=jacob ian ( f t o t , [TDC' TDT' FDC' ] ) ;

%L i n e a r i s a t i o n
alphaDCDT=0;
betaDCDT=0;
gammaDCDT=0;
wxDCDT=0;
wyDCDT=0;
wzDCDT=0;
alphaDTo=aDT0 ;
betaDTo=bDT0 ;
gammaDTo=cDT0 ;
wxDTo=0;
wyDTo=0;
wzDTo=0;
TxDC=0;
TyDC=0;
TzDC=0;
TxDT=0;
TyDT=0;
TzDT=0;
sxDT=0;
syDT=0;
szDT=0;
dsxDT=0;
dsyDT=0;
dszDT=0;
FxDC=0;
FyDC=0;
FzDC=0;

Atot=eva l ( Atot ) ;
Btot=eva l ( Btot ) ;
Atot=s imp l i f y ( Atot ) ;
Btot=( s imp l i f y ( Btot ) ) ;
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D.2.3 Hill’s Equations

%Def ine v a r i a b l e s f o r symbol ic too lbox
% Forces Input
syms Fx Fy Fz r e a l
% Chaser mass and g r a v i t a t i o n a l param
syms m mu r e a l
%Target parameters
syms r t w0 r e a l
%Re la t i v e p o s i t i o n
syms sx sy sz r e a l
%Re la t i v e v e l o c i t y
syms dsx dsy dsz r e a l

%Vectors in o r b i t a l frame
r=[0 0 - r t ] ' ;
w=[0 -w0 0 ] ' ;
s=[ sx sy sz ] ' ;
ds=[dsx dsy dsz ] ' ;
F=[Fx Fy Fz ] ' ;
acc=-skew (w)*skew (w)*s -2* skew (w)*ds+w0^2*r -mu*( s+r ) /norm( s+r )^3+F/m;

A=jacob ian ( [ ds ; acc ] , [ s ; ds ] ) ;
B=jacob ian ( [ ds ; acc ] ,F) ;

%L i n e a r i s a t i o n po in t s
sx=0;
sy=0;
sz =0;
dsx=0;
dsy=0;
dsz=0;
Fx=0;
Fy=0;
Fz=0;

A=eva l (A) ;
B=eva l (B) ;
A=subs (A,mu* r t*abs ( r t )* s i gn ( r t ) /( abs ( r t ) ^2) ^(5/2) ,w0^2) ;
A=subs (A, (mu) /( abs ( r t ) ^2) ^(3/2) ,w0^2) ;
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D.2.4 Port to Port Coupled Dynamics

%Def ine v a r i a b l e s f o r symbol ic too lbox
% P2P r e l a t i v e a t t i t ud e ang le v a r i a b l e s
syms alphaDCDT betaDCDT gammaDCDT dalphaDCDT dbetaDCDT dgammaDCDT r e a l
% P2P r e l a t i v e angular v e l o c i t y v a r i a b l e s
syms wxDCDT wyDCDT wzDCDT dwxDCDT dwyDCDT dwzDCDT r e a l
% Target Docking port a t t i t ud e Var iab l e s
syms alphaDTo betaDTo gammaDTo dalphaDTo dbetaDTo dgammaDTo r e a l
% Target r e l a t i v e angular v e l o c i t y v a r i a b l e s
syms wxDTo wyDTo wzDTo dwxDTo dwyDTo dwzDTo r e a l
% Chaser I n e r t i a parametres expres sed in docking portm frame
syms ICDC11 ICDC12 ICDC13 ICDC21 ICDC22 ICDC23 ICDC31 ICDC32 ICDC33 mC r e a l
% Target I n e r t i a parameters expres sed in docking port frame
syms ITDT11 ITDT12 ITDT13 ITDT21 ITDT22 ITDT23 ITDT31 ITDT32 ITDT33 r e a l
% Docking por t s p o s i t i o n s expres sed in docking port frame
syms rxDTDT ryDTDT rzDTDT rxDCDC ryDCDC rzDCDC r e a l
% r e l a t i v e p o s i t i o n v a r i a b l e s
syms sxDT syDT szDT rT dsxDT dsyDT dszDT mu r e a l
% Control Input
syms TxDT TyDT TzDT TxDC TyDC TzDC FxDC FyDC FzDC r e a l
% Other parameters
syms mu w0 r e a l
% L i n e r i s a t i o n po int
syms aDT0 bDT0 cDT0 r e a l

%Kinematics P2P
AngleDC=[alphaDCDT ;betaDCDT ;gammaDCDT] ;

cg=cos (gammaDCDT) ;
sg=s i n (gammaDCDT) ;
cb=cos (betaDCDT) ;
sb=s i n (betaDCDT) ;

B_angle=1/cb * [ cg - sg 0 ;
cb*sg cb*cg 0 ;
- sb*cg sb*sg cb ] ;

dAngleDC=B_angle* [wxDCDT;wyDCDT;wzDCDT] ;

%Kinematics Target Orb i ta l
AngleDTo=[alphaDTo ; betaDTo ;gammaDTo ] ;

cg=cos (gammaDTo) ;
sg=s i n (gammaDTo) ;
cb=cos (betaDTo) ;
sb=s i n (betaDTo) ;

B_angle=1/cb * [ cg - sg 0 ;
cb*sg cb*cg 0 ;
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- sb*cg sb*sg cb ] ;

dAngleDTo=B_angle* [wxDTo;wyDTo;wzDTo ] ;

%Re la t i v e Dynamics
ICDC=[ ICDC11 ICDC12 ICDC13 ;

ICDC21 ICDC22 ICDC23 ;
ICDC31 ICDC32 ICDC33 ] ;

ITDT=[ ITDT11 ITDT12 ITDT13 ;
ITDT21 ITDT22 ITDT23 ;
ITDT31 ITDT32 ITDT33 ] ;

TDC=[TxDC TyDC TzDC] ' ;
TDT=[TxDT TyDT TzDT] ' ;
ADTo=R3(gammaDTo)*R2(betaDTo)*R1( alphaDTo ) ;
ADCDT=R3(gammaDCDT)*R2(betaDCDT)*R1(alphaDCDT) ;
wDTo=[wxDTo;wyDTo;wzDTo ] ;
wDCDT=[wxDCDT;wyDCDT;wzDCDT] ;
wo=[0 -w0 0 ] ' ;
wIT=wDTo+ADTo*wo ;

%Dynamics f o r a t t i t ud e DTO
dwDTo=ITDT\(TDT- skew (wIT) *(ITDT*wIT) ) ;
dwxDTo=dwDTo(1) ;
dwyDTo=dwDTo(2) ;
dwzDTo=dwDTo(3) ;

%Dynamics f o r a t t i t ud e DCDT
dwDC=ICDC\(TDC- skew (wDCDT+ADCDT*wIT) *(ITDT*(wDCDT+ADCDT*wIT) ) ) . . .

- ( skew ( -wDCDT) *(ADCDT*wDTo)+ADCDT*dwDTo) ;

dwxDCDT=dwDC(1) ;
dwyDCDT=dwDC(2) ;
dwzDCDT=dwDC(3) ;

%P2P Trans la t i on dynamics
rTo =[0 ; 0 ; - rT ] ;
sDCDT=[sxDT ; syDT ; szDT ] ;
dsDCDT=[dsxDT ; dsyDT ; dszDT ] ;
rDCDC=[rxDCDC;ryDCDC;rzDCDC ] ;
rDTDT=[rxDTDT;ryDTDT;rzDTDT ] ;
rDCDT=ADCDT'*rDCDC;
rxCDT=rDCDT(1) ;
ryCDT=rDCDT(2) ;
rzCDT=rDCDT(3) ;
FDC=[FxDC FyDC FzDC] ' ;
rcDT=ADTo*rTo+sDCDT-rDCDT+rDTDT;

accDT=mu*ADTo*rTo/norm(ADTo*rTo ) ^3 -mu*(rcDT) /norm(rcDT)^3+ADCDT'*FDC/mC;

328 Camille Pirat, December 14, 2018



D.2. Symbolic Computation

s=sDCDT-rDCDT+rDTDT;
ddsDCDT=-skew (dwDTo)*s . . .

- skew (wDTo)*skew (wDTo)*s . . .
- skew (ADTo*wo)*skew (ADTo*wo)*s . . .
-2* skew (wDTo)*dsDCDT . . .
-2* skew (ADTo*wo)*dsDCDT . . .
-2* skew (ADTo*wo)*skew (wDTo)*s . . .
+2*skew (ADTo*wo+wDTo)*skew (ADCDT'*wDCDT) *(rDCDT) . . .
+accDT . . .
+skew (ADCDT'*dwDC) *(rDCDT) . . .
+2*skew (ADCDT'*wDCDT)*skew (ADCDT'*wDCDT)*rDCDT;

%Compute jacob ian
f t o t =[dAngleDC ;dwDC; dAngleDTo ;dwDTo;dsDCDT;ddsDCDT ] ;
Atot=jacob ian ( f t o t , [ AngleDC' wDCDT' AngleDTo' wDTo' sDCDT' dsDCDT' ] ) ;
Btot=jacob ian ( f t o t , [TDC' TDT' FDC' ] ) ;

%L i n e a r i s a t i o n
alphaDCDT=0;
betaDCDT=0;
gammaDCDT=0;
wxDCDT=0;
wyDCDT=0;
wzDCDT=0;
alphaDTo=aDT0 ;
betaDTo=bDT0 ;
gammaDTo=cDT0 ;
wxDTo=0;
wyDTo=0;
wzDTo=0;
TxDC=0;
TyDC=0;
TzDC=0;
TxDT=0;
TyDT=0;
TzDT=0;
sxDT=0;
syDT=0;
szDT=0;
dsxDT=0;
dsyDT=0;
dszDT=0;
FxDC=0;
FyDC=0;
FzDC=0;

Atot=eva l ( Atot ) ;
Btot=eva l ( Btot ) ;
Atot=s imp l i f y ( Atot ) ;
Btot=( s imp l i f y ( Btot ) ) ;
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D.2.5 Fuel Sloshing

syms w0 r e a l%Orb i ta l mean motion
syms rx ry rz r e a l %Tank po s i t i o n
syms x y z dx dy dz wx wy wz dwx dwy dwz r e a l % State v a r i a b l e s
syms gammax gammay gammaz r e a l %Input a c c e l e r a t i o n
syms Flx Fly Flz Tlx Tly Tls r e a l% Output f o r c e and torque
syms ks cs m1 r e a l%S lo sh ing parameters

w=[wx wy wz ] ' ;
dw=[dwx dwy dwz ] ' ;
x1=[x y z ] ' ;
dx1=[dx dy dz ] ' ;
r=[ rx ry rz ] ' ;
gamma=[gammax gammay gammaz ] ' ;
r1=r+x1 ;
dr1=dx1 ;

%Acce l e r a t i on in tank frame
gamma1=gamma- c r o s s (w, c r o s s (w, r1 ) ) -2* c r o s s (w, dr1 ) - c r o s s (dw, r1 ) ;

%Plant :
f =[dx1 ; - ks /m1*x1 - cs /m1*dx1+gamma1 ] ;
A=jacob ian ( f , [ x1' dx1 ' ] ) ;
B=jacob ian ( f , [ gamma' dw' ] ) ;

%Output equat ion :
Fl=ks*x1+cs*dx1 ;
Tl=c r o s s ( r1 , Fl ) ;
h=[Fl ; Tl ] ;
C=jacob ian (h , [ x1' dx1 ' ] ) ;
D=jacob ian (h , [ gamma' dw' ] ) ;

%Evaluat ion po int :
dwx=0;
dwy=0;
dwz=0;
gammax=0;
gammay=0;
gammaz=0;
x=0;
y=0;
z=0;
dx=0;
dy=0;
dz=0;

A1=eva l (A) ;
B1=eva l (B) ;
C1=eva l (C) ;
D1=eva l (D) ;
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D.2.6 3 LEDs Observation Vector

%st a t e v a r i a b l e s
syms x y z vx vy vz r e a l
syms alpha beta gamma wx wy wz r e a l
%Camera v a r i a b l e s
syms f D1 D2 zmax ymax Azmax Elmax r e a l

ADCDT=R3(gamma)*R2( beta )*R1( alpha ) ;

sCT=[x y z ] ' ; %Pos i t i on from chaser to t a r g e t in chaser frame
dsCT=[vx vy vz ] ' ;
Omega=[wx wy wz ] ' ;
Angle=[ alpha beta gamma] ' ;

X=-(ADCDT)*sCT ; %Pos i t i on from ta rg e t to chaser in t a r g e t frame
xC=X(1) ;
yC=X(2) ;
zC=(X(3) ) ;

Az=atan2 (yC ,xC) ;
El=atan2 ( - zC , sq r t (xC*xC+yC*yC) ) ;
Xcentre =[0 ; yC/xC*ymax/ tan (Azmax) ; zC/ sq r t (xC*xC+yC*yC)*zmax/ tan (Elmax) ] ;
R=sq r t (xC*xC+yC*yC+zC*zC) ;

x1=[0 1 0]'*D1* f /R;
x2=[0 -1 0]'*D1* f /R;
x3=[1 0 0]'*D2* f /R;

ALED=R3(gamma+Az)*R2( beta+El )*R1( alpha ) ;

Y1=ALED*x1+Xcentre ;
Y2=ALED*x2+Xcentre ;
Y3=ALED*x3+Xcentre ;
AngleST=Angle ;

h1=Y1(2) ;
h2=Y1(3) ;
h3=Y2(2) ;
h4=Y2(3) ;
h5=Y3(2) ;
h6=Y3(3) ;
h=[h1 ; h2 ; h3 ; h4 ; h5 ; h6 ; AngleST ] ;
H=jacob ian (h , [ Angle ; Omega ; sCT ; dsCT ] ) ;
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D.2.7 5 LEDs Observation Vector

%st a t e v a r i a b l e s
syms x y z vx vy vz r e a l
syms alpha beta gamma wx wy wz r e a l
%Camera v a r i a b l e s
syms f D zmax ymax Azmax Elmax r e a l

ADCDT=R3(gamma)*R2( beta )*R1( alpha ) ;

sCT=[x y z ] ' ; %Pos i t i on from chaser to t a r g e t in chaser frame
dsCT=[vx vy vz ] ' ;
Omega=[wx wy wz ] ' ;
Angle=[ alpha beta gamma] ' ;

X=-(ADCDT)*sCT ; %Pos i t i on from ta rg e t to chaser in t a r g e t frame
xC=X(1) ;
yC=X(2) ;
zC=(X(3) ) ;

Az=atan2 (yC ,xC) ;
El=atan2 ( - zC , sq r t (xC*xC+yC*yC) ) ;
Xcentre =[0 ; yC/xC*ymax/ tan (Azmax) ; zC/ sq r t (xC*xC+yC*yC)*zmax/ tan (Elmax) ] ;
R=sq r t (xC*xC+yC*yC+zC*zC) ;

x1=[0 1 0]'*D* f /R;
x2=[0 0 1]'*D* f /R;
x3=[0 -1 0]'*D* f /R;
x4=[0 0 -1] '*D* f /R;
x5=[ -1 0 0]'*D* f /R;

ALED=R3(gamma+Az)*R2( beta+El )*R1( alpha ) ;

Y1=ALED*x1+Xcentre ;
Y2=ALED*x2+Xcentre ;
Y3=ALED*x3+Xcentre ;
Y4=ALED*x4+Xcentre ;
Y5=ALED*x5+Xcentre ;

h1=Y1(2) ;
h2=Y1(3) ;
h3=Y2(2) ;
h4=Y2(3) ;
h5=Y3(2) ;
h6=Y3(3) ;
h7=Y4(2) ;
h8=Y4(3) ;
h9=Y5(2) ;
h10=Y5(3) ;
h=[h1 ; h2 ; h3 ; h4 ; h5 ; h6 ; h7 ; h8 ; h9 ; h10 ] ;
H=jacob ian (h , [ Angle ; Omega ; sCT ; dsCT ] ) ;
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D.2.8 LQG Loop Transfer Function

%Def ine Input and Output
K.InputName='e' ; %LQR c o n t r o l l e r
K.OutputName='u' ;
G.InputName='u' ; %P2P dynamics
G.OutputName='x' ;
H.InputName='x' ; % Observation Matrix
H.OutputName='y' ;
Kf.InputName=' e f' ; %Kalman gain
Kf.OutputName='w1' ;
Bf.InputName='u' ; %Plant Input matrix
Bf.OutputName='w2' ;
Gf.InputName='w' ; %Dynamics f o r Kalmn f i l t e r
Gf.OutputName='xf' ;
Hf.InputName='xf' ; %Observat ion matrix f o r Kalman f i l t e r
Hf.OutputName='yf' ;

Sum1=sumblk (' e f=y - y f' , a ) ;
Sum2=sumblk ('e=r - x f' , 12) ;
Sum3=sumblk ('w=w1+w2' , 12) ;

%Build the c losed - loop
G_LQG=connect (G, Gf , Kf , Bf ,K,H, Hf , Sum1 , Sum2 , Sum3 , 'r' ,'x' ,'u') ;
%Get the input gain func t i on
Li=getLoopTransfer (G_LQG,'u' , - 1 ) ;
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D.2.9 H∞ Synthesis

s=t f ('s') ; %de f i n e the Laplace parameter
%% Def ine the parameters f o r the s l o h s i n g l i n e a r model
% tank r o t a t i on ra t e l i n e r a s i t a t i o n po int
wx=0;
wy=-TARGET_MEAN_MOTION;
wz=0;
%tank po s i t i o n
rx=0. 1 ;
ry=0;
rz =0;
% natura l f requency and damping c o e f f i c i e n t
cs=0.33 ;
f s=.025 ;
%F i l l i n g r a t i o
tau=0.44 ;
a lphas=0. 6 ;
lambda=tau*(4* alphas - 1 )+tau ^2*(2 -4* alphas ) ;
mprop=tau *2;
ml=(1 - lambda )*mprop ;

%% Build the Plant with the S lo sh ing
%Se l e c t only the po s i t i o n
C=[1 0 0 0 0 0 0 0 0 0 0 0 ;

0 1 0 0 0 0 0 0 0 0 0 0 ;
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 ;
0 0 0 0 0 0 0 1 0 0 0 0 ;
0 0 0 0 0 0 0 0 1 0 0 0 ] ;

B=[ z e ro s (3 , 6 ) ;
eye (3 ) , z e r o s (3 ) ;
z e r o s ( 3 , 6 ) ;
z e r o s (3 ) eye (3 ) ] ;

B_in=B_DCDT( [ 4 : 6 1 0 : 1 2 ] , : ) ;

i f ml==0
G_P2P=ss (F_DCDT,B,C, 0 ) ;
G1=G_P2P*B_in*D;

e l s e
ks=4*pi^2*tau*ml* f s ^2;

As = A_sloshing ( cs , ks , ml ,wx ,wy , wz) ;
Bs = B_sloshing ( rx , ry , rz ) ;
Cs = C_sloshing ( cs , ks , rx , ry , rz ) ;

G_P2P=ss (F_DCDT,B,C, 0 ) ;
Gs=s s (As , Bs , Cs , 0 ) ;
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G1=G_P2P*( eye (6 )+Gs)*B_in*D;
end

%% Def ine the s c a l e s
Y=diag ( [ ones (1 , 3 ) *1 , ones (1 , 3 )* . 5 ] ) ;
U=diag ( [ ones (1 , 3 )*2e - 3 , ones (1 , 3 ) *30e - 3 ] ) ;
G=inv (Y)*G1*U;

%% Input weight
%Actuators e r r o r s
wdt=1e - 1 ;
wdr=1e - 1 ;
wdrt=0.05 ;
A=abs ( skew ( [ 1 1 1]*wdrt ) ) ;
Wd=ss ( diag ( [ ones (1 , 3 )*wdt ones (1 , 3 )*wdr ] ) ) ;
Wd( 1 : 3 , 4 : 6 )=A;

%Navigat ion no i s e
wnt=1*pi /180 ;
wnr=1e - 2 ;
Wn=ss ( diag ( [ ones (1 , 3 )*wnt ones (1 , 3 )*wnr ] ) ) ;

%Reference t r a j e c t o r y weight
Wr=eye (6 ) ;
%% Output weight
%Performance S
M11=2;
A11=0.05 ;
wc11=4/80;
w11=(1/M11*s+wc11 ) /( s+A11*wc11 ) ;
M12=2;
A12=0.05 ;
wc12=4/80;
w12=(1/M12*s+wc12 ) /( s+A12*wc12 ) ;
W1=t f ( eye (6 ) ) ;
W1( 1 : 3 , 1 : 3 )=eye (3 )*w11 ;
W1( 4 : 6 , 4 : 6 )=eye (3 )*w12 ;

% Performance T
M21=10;
A21=0.05 ;
wc21=wc11*20;
w21=(s+A21*wc21 ) /(1/M21*s+wc21 ) ;
M22=10;
A22=0.05 ;
wc22=wc12*20;
w22=(s+A22*wc22 ) /(1/M22*s+wc22 ) ;
W2=t f ( eye (6 ) ) ;
W2( 1 : 3 , 1 : 3 )=eye (3 )*w21 ;
W2( 4 : 6 , 4 : 6 )=eye (3 )*w22 ;
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% Noise s e n s i t i v i t y KS
M31=0.01 ;
A31=1000;
wc31=wc21*1;
w31=(1/M31*s+wc31 ) /( s+A31*wc31 ) ;
M32=0.01 ;
A32=1000;
wc32=wc22*1;
w32=(1/M32*s+wc32 ) /( s+A32*wc32 ) ;
W3( 1 : 3 , 1 : 3 )=eye (3 )*w31 ;
W3( 4 : 6 , 4 : 6 )=eye (3 )*w32 ;

%% Build the g en e r a l i s e d Plant

systemnames = 'Wr Wd Wn W1 W2 W3 G' ;
inputvar = ' [ r e f ( 6 ) ; d i s t (6 ) ; no i s e (6 ) ; u (6 ) ]' ;
outputvar = ' [W1;W2;W3;Wr-G-Wn]' ;
input_to_G=' [ u+Wd]' ;
input_to_Wr=' [ r e f ]' ;
input_to_Wd=' [ d i s t ]' ;
input_to_Wn=' [ n o i s e ]' ;
input_to_W1=' [Wr-G-Wn]' ;
input_to_W2=' [G]' ;
input_to_W3=' [ u ]' ;

c l e anup sy s i c = 'yes' ;
P = s y s i c ;

%% Hinf s yn th e s i s

[K,CL,gamma, In f o ] = h in f syn (P, 6 , 6 ,'Display' ,'on') ;

%Unscale the c o n t r o l l e r
K1=(U)*K/(Y) ;
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