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Abstract
Most current risk assessment for complex extreme events relies on catalogues of simi-

lar events, either historical or generated artificially. In the latter, no existing methods

produce completely new events with mathematically justified extrapolation above

observed level of severity. This thesis contributes to the development of stochastic

generators of events based on extreme value theory, with a special focus on natural

hazards.

The sources of historical meteorological records are multiple but climate model out-

put is attractive for its spatial completeness and homogeneity. From a statistical

perspective, these are massive gridded data sets, which can be exploited for accurate

estimation of extreme events. The first contribution of this thesis describes methods

of statistical inference for extremal processes that are computationally tractable for

large data sets. We also relate the extremal behaviour of aggregated data to point

observations, a result that we use to downscale gridded data to local tail distributions.

These contributions are illustrated by applications to rainfall and heatwaves.

Building stochastic generators of extreme events requires the extension of classi-

cal peaks-over-threshold analysis to continuous stochastic processes. We develop

a framework in which characterization of complex extremes can be motivated by

field-specific expertise. The contribution includes the description of the theoretical

limiting distribution of functional exceedances, called the generalized r -Pareto pro-

cess, the functional equivalent of the generalized Pareto distribution, for which we

describe statistical inference procedures, simulation algorithms and goodness-of-fit

diagnostics. We apply these results to build a stochastic weather generator of extreme

wind storms over Europe.

Keywords: Censored likelihood; Downscaling; Extreme value theory; Generalized r -

Pareto process; Gradient score; High-dimensional inference; Natural hazards; Spatio-

temporal statistics; Stochastic processes; Wind storm.
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Résumé
Pour chaque type d’évènements extrêmes, l’estimation du risque associé repose sur

l’utilisation de deux catégories de catalogues : historiques et artificiels. Pour cette

dernière, il n’existe aucune méthode qui soit en mesure de produire des évènements

dont la sévérité est mathématiquement extrapolée au-delà des seuils historiques.

La présente thèse a pour but de contribuer au développement de générateurs aléa-

toires d’évènements fondés sur la théorie des valeurs extrêmes, avec une attention

particulière portée aux catastrophes naturelles.

Les bases de données retraçant l’histoire de notre climat sont d’origines multiples,

mais celles produites par les modèles climatiques sont attrayantes pour leur large

couverture spatiale et leur homogénétié. D’un point de vue statistique, ces modèles

fournissent une gigantesque quantité de données quadrillant l’ensemble du globe

qui peut être exploitée pour estimer précisément le risque climatique. D’une part, la

présente thèse décrit des méthodes pour l’estimation de processus extrêmaux, dont la

complexité computationelle est suffisament faible pour être applicable à des jeux de

données de grande taille. D’autre part, le comportement extrémal limite des données

agrégées est relié à celui des observations ponctuelles, comme celles produites par les

stations météorologiques. Ce résultat est ensuite utilisé pour estimer le comportement

local des queues de distributions à partir d’observations agrégées.

Enfin, la construction de générateurs aléatoires d’évènements extrêmes nécessite

d’étendre les résultats classiques sur l’analyse des excès de seuil aux processus stochas-

tiques continus. Nous développons une méthodologie dans laquelle la caractérisation

d’évènements extrêmes complexes peut être motivée par une expertise spécifique

au domaine d’application. La contribution décrit la distribution théorique limite des

excès de seuils fonctionnels, appelée processus de r -Pareto généralisé. Ce dernier est

présenté comme l’équivalent fonctionel de la distribution de Pareto généralisée, et ses

méthodes d’estimation, de simulation et de validation de modèle sont discutées. Ces

résultats sont ensuite appliqués pour construire un générateur aléatoire de tempêtes

extrêmes en Europe.
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Introduction

Motivation

‘It’s rough out there’.

It was with this title that in January 2008 the front page of The Economist compared the

global sub-prime crisis to a category 5 cyclone. In the past few decades, the number

of unexpected and extreme events has seemed to multiply, a trend partly conveyed by

a large increase in media coverage mainly focused on tracking down responsibilities.

For instance, a broad consensus attributes the roots of the 2007 financial crisis to

faulty mathematical models embodied by the now famous ‘formula that killed Wall

Street’. In 2009, Italy adopted a different point of view and opted for human culprits

when sentencing six scientific experts for their failure to give an ‘adequate warning’

before the earthquake of l’Aquila, which caused 300 deaths and more than 1500 other

casualties.

These stories illustrate how the expectations of the general public changed over the

past few years: citizens are no longer satisfied by the assurance of a quick recovery pro-

vided by national solidarity, but expect such catastrophes to be, if not avoided, at least

mitigated as much as possible; if not, regulators are held responsible. Thus risk miti-

gation for natural catastrophes such as floods, cyclones, earthquakes, heatwaves and

droughts has taken a central place in the political decision process, especially since

the assessment of climate change, whose consequences are far from fully understood.

To get an idea of the human and financial impact of natural hazards on our society,

consider the case of extreme wind storms. During summer 2005, hurricane Katrina, in

Figure 1, struck the Gulf coast of the United States. Its unusually deep trajectory into

the land caused more than 1000 fatalities and around 125 billion dollars of damage.

Subsequently about 80% of the city of New Orleans was flooded due to fatal engi-

neering flaws in the flood protection system. Twelve years later, hurricanes Harvey,

Irma and Maria consecutively swept over the east coast of the U.S. causing a total

of 278 billion dollars of damage within a month. Understanding the frequency and
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Figure 1 – Satellite picture of hurricane Katrina. The storm struck the east coast of
the U.S. during summer 2005, causing more than 1000 fatalities and about 125 billion
dollars of damage.

intensity of extreme windstorms is key to ensuring the safety of people and infras-

tructure. For instance, the likelihood of flooding caused by extreme windstorms is

expected to increase with the forecasted rise in sea levels caused by global warming,

and flood protection systems must be modified accordingly. Similarly, for (re-)insurers,

understanding and quantifying their risk exposure is essential to ensure sufficient

financial resources and avoid potential bankruptcy following a series of unusually

severe disasters.

Most current risk assessment for extreme windstorms relies on catalogues of events

that are used as ‘stress tests’ for human infrastructure or insurance portfolios. These

catalogues usually consist of historical records or are artificially generated by climate

models. However, we know of no existing method that can generate completely

new extreme events and allow mathematically justified extrapolation above observed

intensity levels. Stochastic weather generators are mathematical models that create

random but realistic events which could be used to enlarge or even create catalogues.

However, existing generators have not been designed for extreme events.

Extreme value theory describes the statistical behaviour of extreme events, and

provides a mathematical framework to extrapolate above the intensity of histori-

2
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cal records. This thesis develop a methodology to analyse complex extreme events

and build stochastic generators that go beyond the Gaussian approximation, the

central component of the formula that killed Wall Street. From numerical complexity

to theoretical development, this work tackles the various challenges posed by risk

estimation of natural hazards, with a focus on extreme windstorms. Ultimately, we

build a generator of storms over Europe that can be used to assess the resilience of

human infrastructure and serve as a basis for political and for economic decisions.

Outline of the thesis

Chapter 1 gives notions on probabilistic spaces and summarizes classical results of

extreme value theory. We present the generalized extreme value and generalized

Pareto distributions, which respectively describe the univariate limiting distribution

of block maxima and threshold exceedances. Max-stable processes are introduced as

the functional limits of component-wise block maxima, and we give a new derivation

of existing results on functional exceedances. For applications to the environment,

specific measures and models of dependence are required; we describe them both for

classical spatio-temporal statistics and for extremal processes.

In environmental applications, data sets are likely to be large, and thus statistical

inference methodologies need to be tractable and computationally efficient. In-

deed, high-dimensional applications have been mostly limited to Gaussian models

due to their relative computational simplicity. Chapter 2 reviews existing inference

procedures for extremal processes. One of the most successful methodologies, the

peaks-over-threshold censored likelihood, requires heavy computations, so we de-

velop an efficient algorithm that makes inference tractable for larger data sets than

with previous implementations. However, even with optimized code, inference is

limited to ∼ 500 dimensions, although it is not rare in environmental applications to

deal with thousands of measurements. Thus we introduce an alternative inference

procedure based on proper scoring rules, which is both computationally cheaper and

robust. We compare these methods in a simulation study and show their practical

applicability by estimating the extremal dependence of two types of severe rainfall.

The largest source of spatial data in environmental applications is climate models,

which are defined on grids. One way to conceptualize their gridded nature is to

suppose that they are the result of the aggregation of an underlying and non-observed

physical process. In Chapter 3 we derive the limiting tail distribution of aggregated

data. Our results allow us to generalize a classical measure of tail dependence, namely

the extremal coefficient, to reflect the impact of aggregation on the observations. We

3
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apply our theory to estimate the local tail distribution of extreme temperatures in the

South of France using only coarse gridded data, a procedure known as downscaling.

The classical approach for peaks-over-threshold analysis of stochastic processes relies

on specific notions of exceedance defined once the marginal behaviour of the process

has been standardized, for instance to unit Fréchet. In Chapter 4, we generalize

this methodology to allow more general definitions of exceedance and derive the

limiting distribution of functional excesses when they are defined directly on the

original process. We introduce the generalized r -Pareto process, a generalization of

the generalized Pareto distribution to functions, that uniquely describes the functional

limit tail distribution.

Finally, Chapter 5 illustrates the methodology of Chapter 4 with the construction of

a stochastic weather generator for extreme windstorms over Europe. We propose

a complete analysis with preliminary data exploration, marginal and dependence

modelling and fitting diagnostics. The model is convincing but further work is required

to quantify its uncertainties and to build more realistic dependence structures.

4



1 Asymptotic tail distributions: theory
and models

This chapter introduces the background necessary to a proper mathematical descrip-

tion of asymptotic tail distributions, followed by a presentation of univariate extreme

value theory. Then these results are generalized to functional component-wise max-

ima. In Section 1.4, we review existing results on functional peaks-over-threshold

analysis, and give new derivations of the convergence results. We highlight the limits

of the current state of the literature on functional threshold exceedances to motivate

Chapter 4. Section 1.5 introduces tools for measuring dependence, while Section 1.6

is a broad survey of spatio-temporal extremal processes built using Gaussian random

functions.

1.1 Probabilistic functional spaces

In this section, we introduce the mathematical objects required to derive the asymp-

totic distributions of component-wise maxima and threshold exceedances. While

these concepts are necessary for formal mathematical derivations, the practitioner

could just skip this section. However we give insights on the practical implications of

these notions when using the statistical models described in the following chapters,

in order to make these abstract notions more concrete.

A metric is a non-negative symmetric function d :M×M→R satisfying the identity

of indiscernibles, i.e.,

d(x, y) = 0 ⇒ x = y, x, y ∈M,

and the triangle inequality

d(x, z)� d(x, y)+d(y, z), x, y, z ∈M.

5



Chapter 1. Asymptotic tail distributions: theory and models

A set M associated with a metric is called a metric space. If M contains a countable,

dense subset, i.e., there exists a sequence {xn}∞n=1 of elements of the space such that

every nonempty open subset ofM contains at least one element of the sequence, then

M is separable. The space M is complete if every Cauchy sequence in M converges in

M. To study environmental phenomena, we consider functions defined on a subset S

of a complete separable metric space, e.g., M=R2 for spatial applications or M=R3

for the spatio-temporal case. For instance, when modelling extreme windstorms in

Chapter 5, we chose S to represent the region of interest, western Europe, and its state

over a 24-hour window.

A vector space is a spaceM for which x+y ∈M and ax ∈M for any x, y ∈M and a ∈R.

A Banach space is a complete vector space associated with a distance d(x, y) = ‖x − y‖
(x, y ∈ M), called a norm, such as the infinity norm ‖x‖∞ = sups∈S x(s). To derive

functional limit distributions, we consider the Banach space C (S) of continuous

functions x : S → R endowed with the infinity norm. With this choice, we suppose

that the underlying physical process that we aim to model, such as a wind field over

Europe, is continuous is space and time.

A Borel set is any set in M that can be formed from open sets through countable

unions, countable intersections, and relative complements. The collection of all Borel

sets on M is known as the Borel σ-algebra and denoted B(M).

A probability space is a triplet including a sample space, e.g., the space C (S) of real-

valued continuous functions over S, a σ-algebra containing all possible events, in our

case B{C (S)}, and a probability measure P assigning probabilities to these events.

These are the basic mathematical notions required to derive the functional limit

distributions of extreme events.

1.2 Univariate asymptotic distributions

1.2.1 Preliminary: convergence type and regular variation

Let M be a complete, separable metric space and let C (M,R) denote the space of

real-valued continuous functions on M. Given a sequence {Xn}∞1 of random variables

taking values in M with distribution functions Fn(x) = Pr(Xn � x), x ∈M, we say that

{Xn}∞1 converges weakly to X , if for any bounded function f ∈C (M,R),∫
M

f (x)Fn(dx) →
∫
M

f (x)F (dx), n →∞. (1.1)

6



1.2. Univariate asymptotic distributions

A simpler characterization is obtained when M=R and restricting M to the subset

M(F ) = {x ∈M : F (x) <∞ and F is continuous at x};

in this case, weak convergence is equivalent to

Fn(x) → F (x), n →∞, x ∈M(F ).

In other words, univariate weak convergence is equivalent to the convergence of

probability measures, but, in practice and for a multivariate extension, dealing with

distribution functions can be inconvenient, especially from a statistical point of view,

and for this reason (1.1) is usually preferred.

In extreme value theory, probability measures with infinite masses on certain sets,

such as the origin {0}, are common, with the consequence that equation (1.1) may

not be finite. Vague convergence (Resnick, 2007, p. 49) is a generalized notion of

convergence capable of handling infinite measures. Let M now be a locally compact

space with a countable basis and σ-field B(M). A measure Λ is called Radon if

Λ(K ) <∞, for any compact subset K of M. Let M+(M) be the set of non-negative

Radon measures on M. For a sequence of measures Λn ∈ M+(M), we say that {Λn}∞1
converges vaguely to Λ, if for all continuous, real-valued functions f with compact

support on M, ∫
M

f (x)Λn(dx) →
∫
M

f (x)Λ(dx), n →∞.

When studying tails of distributions, as in Section 1.2.2 for instance, vague conver-

gence can be linked with the class of regularly-varying functions. A measurable

function F : R+ →R+ is regularly-varying at ∞ with index α, written F ∈ RVα, if

lim
t→+∞

F (t x)

F (t )
= xα, x > 0.

Similarly, a random variable X , with survival function F = 1−F , is regularly varying of

index α if

F (x) = xαL(x), x > 0,

where L is a slowly-varying function, i.e., for any c > 0, limx→+∞ L(cx)/L(x) = 1. The

notions described above are key components in deriving the theoretical limiting

distributions of block maxima and threshold exceedances.
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Chapter 1. Asymptotic tail distributions: theory and models

1.2.2 Limit distribution of block maxima

In this Section, X1, . . . , Xn denote independent identically distributed copies of a

random variable X with distribution function F . The statistical analysis of extremes

was first developed for block maxima (Gumbel, 1958, Section 5.1): The variable

Mn = max
i=1,...,n

Xi

is called a block maximum and its distribution function is Pr(Mn � x) = F n(x). Let x∗

denote the upper bound sup{x : F (x) < 1} of the support of X , which is not necessarily

finite. Then

Mn → x∗, n →∞; (1.2)

in other words, the distribution of Mn degenerates to a distribution with unit mass

on x∗ as n →∞. When studying the sample average, the central limit theorem states

that the distribution of
∑n

i=1 Xi converges to standard normal as n →∞, under mild

conditions and suitable affine normalization. Following the same principle, the

distribution Mn is studied for rescaling sequences chosen such that the degeneracy in

(1.2) is avoided.

Theorem 1.1 (Fisher and Tippett (1928),Gnedenko (1943)) Suppose there exist

sequences an > 0, bn ∈R such that

Pr

(
Mn −bn

an
� x

)
→G(x), n →∞,

where G is not degenerate. Then G belongs to one of the following three classes:

• Fréchet: G(x) =
{

0, x < b,

exp
{
−
(

x−b
a

)−α}
, x � b,

• Gumbel: G(x) = exp
{
−exp

(
− x−b

a

)}
, x ∈R,

• Weibull: G(x) =
{

exp
{
−
(
− x−b

a

)α}
, x < b,

1, x � b.

for α, a > 0 and b ∈R.

These three classes constitute the family of extreme-value distributions and fully

describe the class of max-stable distributions, which we now introduce.
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1.2. Univariate asymptotic distributions

Definition 1.1 (Distribution of same type) Two distribution functions F and G are of

the same type, if for some a > 0, b ∈R,

F (x) =G(ax +b), x ∈R.

A random variable X is said to be max-stable if for any n � 1, F n is of the same type as

F , i.e., if there exist an > 0, and bn ∈R, such that

Mn −bn

an

D= X ,

where
D= denotes equality in distribution. In Theorem 1.1, the class of max-stable

distributions is divided into three categories, but Proposition 1.1 motivates a unified

parametrization of this family.

Proposition 1.1 (Resnick (1987), p. 7) Let F and G be non-degenerate distribution

functions. Suppose that for a sequence {Fn}∞1 of distributions there exist an , a′
n > 0 and

bn ,b′
n ∈R such that

Fn(an x +bn) → F (x), Fn(a′
n x +b′

n) →G(x),

weakly as n →∞, then

an

a′
n
→ a > 0,

b′
n −bn

an
→ b ∈R, n →∞,

and

G(x) = F (ax +b).

Proposition 1.1 implies that the limit distribution of a sequence {Fn}∞1 is unique up

to affine transformations. For this reason, the choice of rescaling sequences can be

made so that we obtain a single family of distributions, the generalized extreme-value

distributions (Fisher and Tippett, 1928),

Gξ(x) =
{

exp
[
−{1+ξ

( x−μ
σ

)}−1/ξ
+

]
, ξ 
= 0,

exp
{−exp

(− x−μ
σ

)}
, ξ= 0,

(1.3)

where x ∈ {x ∈R : 1+ξ(x −μ)/σ� 0,
}
, σ> 0 and μ ∈R. In this family, the parameters

σ and μ are respectively the scale and location of the distribution and the tail decay

regime is determined by the shape parameter ξ (Jenkinson, 1955). The Fréchet type

corresponds to ξ> 0, and is characterized by polynomial tail decay and a support with
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Chapter 1. Asymptotic tail distributions: theory and models

infinite upper bound. For ξ< 0, the generalized extreme value distribution is bounded

above by μ−σ/ξ, giving the Weibull type. The Gumbel class is interpreted as the limit

of the Weibull and the Fréchet distributions when ξ→ 0.

For an arbitrary random variable X with distribution function F , we say that X is in the

max-domain of attraction of an extreme value distribution G if there exist sequences

{an}∞n=1 > 0 and {bn}∞n=1 ∈R such that F n(an x +bn) converges to G , i.e,

Pr

(
Mn −bn

an
� x

)
→G , n →∞, (1.4)

and we write X ∈ MDA(G). Characterization of max-domain of attraction has been

extensively studied (von Mises, 1964; Leadbetter, 1983; Resnick, 1987, Chapter 1); for

the limits of classical distribution functions, see Beirlant et al. (2004, p. 59, 62, 72).

As mentioned in Section 1.2.1, a possible characterization of the max-domain of

attraction is obtained within the framework of regularly varying functions. We focus

on this characterization, as regular variation will be a key component for Section

1.4 and Chapter 4. Following Resnick (1987, p. 54), a random variable X belongs to

the Fréchet domain of attraction if and only if its survival function 1−F is regularly

varying with index −α< 0. In this case, the sequence {an}∞1 tends to infinity as n →∞
and thus, using Proposition 1.1, {bn}∞1 can equivalently be chosen equal to 0 for any

n � 1. These properties are key components in Chapter 3 to derive our results in the

Fréchet domain of attraction. For the Weibull domain of attraction, regular variation

of the random variable x∗ − X −1 with index −α < 0 is necessary and sufficient for

membership of this class of tail decay. In this case, the sequence {bn}∞1 can be chosen

constant and equal to the finite upper bound x∗ of X .

From a practical perspective, for independent identically distributed copies Xi (i =
1, . . . ,mn) of an arbitrary random variable X , we create blocks maxima

Mn, j = max
i=( j−1)n+1,..., j n

Xi , j = 1, . . . ,m,

for sufficiently large n, and then we estimate an > 0 and bn ,ξ ∈R such that

Pr

(
Mn,i −bn

an
� x

)
≈Gξ(x). (1.5)

Equation (1.5) emphasises that the generalized extreme value distribution provides a

unified framework to model block maxima of a random variable X for a sufficiently

large n.
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1.2. Univariate asymptotic distributions

1.2.3 Limit distribution of threshold exceedances

The statistical analysis of extremes using block maxima (Gumbel, 1958, Section 5.1)

is widely used, but the reduction of a complex dataset to maxima with a block size

such that approximation (1.5) is sufficiently good can lead to a significant loss of

information (Madsen et al., 1997), so modelling exceedances over a high threshold is

often preferred in applications (Davison and Smith, 1990).

Let X be a random variable in the max-domain of attraction of a generalized extreme

value distribution Gξ. Then by Taylor expansion of the logarithm, equation (1.4) is

equivalent to

n Pr(X > bn +an x) →− logGξ(x), n →∞, (1.6)

for all x ∈R such that 1+ξ(x−μ)/σ> 0. Equation (1.6) can also be formulated in terms

of convergence of measures and in this case, vague convergence is required.

Theorem 1.2 (Threshold exceedances) Suppose there exist an > 0, bn ∈ R, and ξ ∈ R

such that

n Pr

{(
1+ξ X−bn

an

)1/ξ

+ > x

}
n Pr

{
exp

(
X−bn

an

)
+ > x

}
⎫⎪⎬⎪⎭→Λ(x), x > 0, n →∞,

where (x)+ = max(0, x). Then Λ is either degenerate or equal to Λ(x) = x−1.

Similarly to block maxima, conditions for the existence of sequences {an}∞1 and {bn}∞1
such that Λ is not degenerate are linked to the notion of regular variation: If X is

regularly varying with index −1/ξ < 0, then there exist a sequence {an}∞n=1 > 0 and

{bn}∞1 ∈R such that

nPr

(
X −bn

an
� x

)
→
(
1+ξ

x

σ

)−1/ξ
, n →∞,

in M+(0,∞] (Resnick, 2007, Theorem 3.6), where similarly to block maxima, an →∞
as n →∞ and {bn}∞1 can be chosen equal to 0. Similar results can be obtained for the

Weibull case when the variable x∗−X −1 is regularly varying with index −1/ξ.

Form a practical point of view, Theorem 1.2 provides a basis for a unified description

of the tails of distributions in terms of threshold exceedances. For a large enough

threshold u < inf{x : F (x) = 1}, the tail distribution of X can be approximated by a

generalized Pareto distribution H(ξ,σ) (Davison and Smith, 1990), i.e.,

Pr(X −u > x | X > u) ≈ H(ξ,σ̃)(x) =
{

(1+ξx/σ̃)−1/ξ
+ , ξ 
= 0,

exp(−x/σ̃) , ξ= 0,
(1.7)
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Chapter 1. Asymptotic tail distributions: theory and models

where σ̃=σ+ξ(u −μ) > 0 and a+ = max(a,0). Similarly to the max-stable case, if the

shape parameter ξ is negative, then x must lie in the interval [0,−σ/ξ], whereas x can

take any positive value with positive or zero ξ. The random variable X is said to belong

to the Weibull, the Gumbel or the Fréchet family if its shape parameter is respectively

negative, zero or positive. These results can also be motivated on the basis of a point

process characterization of high-level exceedances; see Leadbetter (1983), Falk et al.

(1994) and Embrechts et al. (1997, pp. 237–247) for more details.

As a consequence of equation (1.7), Davison and Smith (1990) propose to approximate

the upper tail of the distribution function of a random variable X by

F (x) ≈ 1−ζu H(ξ,σ,μ)(x −u), x > u,

where u > 0 is a sufficiently high threshold, and ζu , the probability that X exceeds the

threshold u, is determined by u.

In their simplest form, models for univariate extreme value theory apply to inde-

pendent and identically-distributed variables, but the theory has been used for time

series (Leadbetter, 1983; Hsing et al., 1988; Beirlant et al., 2004, p. 383), non-stationary

(Smith, 1989; Chavez-Demoulin and Davison, 2005, 2012) and spatial data (Davison

and Gholamrezaee, 2012). The analysis of block maxima and threshold exceedances

can also be generalized to random vectors and continuous processes.

1.3 Multivariate and functional limits of componentwise

maxima

Due to recent events and because the impact of global warming is not well understood,

there has been a surge of interest in environmental applications, especially regarding

severe climatic events such as floods, windstorms, and heatwaves, which cannot be

modelled using only univariate extreme value theory. Multivariate and functional

extreme value theory was first developed for component-wise maxima by extending

the generalized extreme value distribution. In this section, we describe only functional

asymptotic distributions because the multivariate case can be derived by replacing

the random process X by a random vector.

1.3.1 Max-domain of attraction

Let S be a compact subset of a complete separable metric space M, let C (S) denote

the space of real-valued continuous functions on S equipped with the supremum

12



1.3. Multivariate and functional limits of componentwise maxima

norm ‖ · ‖∞, defined by ‖x‖∞ = sups∈S |x(s)|, and let B{C (S)} be the Borel σ-algebra

associated to C (S).

For independent copies Xi (i = 1, . . . ,n) of a stochastic process X = {X (s) : s ∈ S}, the

process of component-wise maxima Mn (n = 1,2, . . . ) is defined as the local maximum

over a block of n observations, i.e.,

Mn(s) = max
i=1,...,n

Xi (s), s ∈ S.

For instance, if X represents the daily mean temperature over S, e.g., Switzerland,

then, for n = 360, Mn corresponds to the pointwise annual maximum daily mean

temperature over the region. The stochastic process X is said to belong to the max-

domain of attraction of some process Z , if there exist sequences of functions an : S →
(0,∞), bn : S →R, all continuous in s ∈ S, and ξ ∈R, such that (Mn −bn)/an converges

in distribution to Z on the space C (S) as n →∞, i.e.,

L
{

max
i=1,...,n

Xi (s)−bn(s)

an(s)
, s ∈ S

}
−→L{Zξ(s), s ∈ S}, n →∞, (1.8)

where L(η) denotes the law of a process η and

Zξ(s) =
⎧⎨⎩sgn(ξ)Z (s)ξ, ξ 
= 0,

log Z (s), ξ= 0,
s ∈ S.

It follows that for any s ∈ S, the univariate random variable X (s) belongs to the max-

domain of attraction of an extreme value distribution

Gξ(x) =
⎧⎨⎩exp

[−{sgn(ξ)x}−1/ξ
]

, ξ 
= 0,

exp
{−exp(−x)

}
, ξ= 0,

(1.9)

for all x ∈R with xξ≥ 0. Equation (1.9) explicitly links the functional generalization

(1.8) with the univariate results presented in Section 1.2.2. Here, for simplicity, we

present results for ξ ∈ R, but the definitions (1.8) and (1.9) remain valid if the scalar

ξ is replaced by a continuous function ξ : S →R; see de Haan and Ferreira (2006, pp.

294–296).

As in the univariate case, the existence of the scaling functions an and bn for the

Fréchet domain of attraction is linked to the notion of regular variation; see Resnick

(2007, Chapter 6) for the multivariate case, and de Haan and Lin (2001) for functions.

In Section 1.4, regularly varying sequences of measures are introduced to describe the

limit distribution of functional exceedances, and their link with max-stable processes
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Chapter 1. Asymptotic tail distributions: theory and models

is given in Chapter 4.

1.3.2 Max-stable process

Like with the univariate theory, the right-hand side of equation (1.8) describes the

class of max-stable processes: for any ξ ∈ R, the limit process Zξ is max-stable, i.e.,

for Zξ,i (i = 1, . . . ,n) independent copies of Zξ, there exist functions an(s) > 0 and

bn(s) ∈R such that

L
{

maxi=1,...,n Zξ,i (s)−bn(s)

an(s)
, s ∈ S

}
=L{Zξ(s), s ∈ S}, (1.10)

and then for any fixed location s ∈ S, Zξ(s) is a generalized extreme-value random

variable.

The introduction of the affine transformation in Theorem 1.1 was motivated by an

analogy with the central limit theorem. For stochastic processes,
∑n

i=1 Xi also con-

verges, as n →∞, to a Gaussian random process with zero mean and unit variance

but after subtraction of its mean function μ(s) and division by the square root of

the variance function σ2(s) of X . When studying the tails of stochastic processes,

not only may the location and scale vary over space, but also the tail regime with a

functional shape parameter ξ. Thus, it is usually convenient to transform the process

X to have unit Fréchet marginals (de Haan and Ferreira, 2006, Chapter 9). In this case,

the normalizing sequences are known: an(s) = n and we can conveniently choose

bn(s) = 0; see Proposition 1.1. Also, de Haan and Ferreira (2006, Theorem 9.2.1) justify

this by proving that the convergence of Mn to a max-stable process is equivalent to,

first, the convergence of X (s) to a generalized extreme value distribution for any s ∈ S

and second, the convergence of the standardized process X ∗,

L
[

X ∗(s) = 1

1−Fs{X (s)}
, s ∈ S

]
→L{Z (s),S}, n →∞,

where Fs is the distribution function of X at s ∈ S and Z = Z1, known as a simple max-

stable process. This two-step procedure, standardization followed by the analysis

of the normalized process X ∗, is similar to copula modelling (Nelsen, 2006), for

which before studying the dependence, marginals are first standardized to a common

distribution, for instance to unit Fréchet or unit Pareto (Klüppelberg and Resnick,

2008).

In practice, normalizing the process requires knowledge of the distribution function

Fs , which is unknown in general. Coles et al. (1999) used a non-parametric approach
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1.3. Multivariate and functional limits of componentwise maxima

based on the empirical distribution function

F n
s (x) = (n +1)−1

n∑
i=1

1Xi (s)<x ,

where the use of n+1 avoids mapping the maximum of the observed values to infinity,

while Coles and Tawn (1991) propose the semi-parametric model

Fs(x) =
{

n−1∑n
i=1 1Xi (s)<x x � u,

1−ζu H(ξ,σ)(x −u), x > u,
(1.11)

where ζu is the probability that X exceeds the threshold u. Pre-processing X by

normalizing the margins is a common practice in multivariate extreme-value theory,

especially because statistical inference of the marginal tail behaviour jointly with

the extremal dependence can be difficult. For this reason, we now suppose that the

process X has been standardized to X ∗, with unit Fréchet margins, and focus on

the description of the properties of simple max-stable processes. Generalizations of

max-stable processes to more general spaces, for instance to the space of real-valued

càdlàg functions on [0,1] (Lindskog et al., 2014), exist, but are of limited interest for

environmental applications.

1.3.3 Exponent and spectral measure

Let X ∗ be a stochastic process in the domain of attraction of a simple max-stable

process Z and define the sequence of measures

Λn(A) = nPr

(
X ∗

an
∈ A

)
, A ⊂C+(S)

where C+(S) = {x ∈ C (S) \ {0} : x(s) � 0, s ∈ S}. The sequence {Λn}∞n=1 converges to a

limit measure Λ as n →∞ (de Haan and Ferreira, 2006, Theorem 9.3.1), i.e., for any

Borel set A in C+(S)

Λn(A) →Λ(A), n →∞.

The limiting measure Λ characterizes the distribution of the max-stable process Z ;

more precisely, for any u > 0,

Pr[Z ∈ {x ∈C+(S) : ‖x/u‖∞ � 1}] = exp[−Λ{A∞(u)}] , (1.12)

where A∞(u) = {x ∈C+(S) : ‖x/u‖∞ � 1}. In multivariate extreme value theory, the

quantity Λ{A∞(u)} is known as the exponent measure and is used to characterize

extremal dependence; see Section 1.5 for more details. Also, the limit measure is
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homogeneous of order −1, i.e., for any scalar t > 0,

Λ(t A) = t−1Λ(A), A ⊂C+(S). (1.13)

Equation (1.13) is a key property of extremal processes, as it enables extrapolation of

the tail probabilities above observed intensity levels. For instance consider a closed

set A containing at least one observation of the sample Zi (i = 1, . . . ,n). Then for a

large enough t > 0, the set t A = {t x : x ∈ A} does not include any observation, but its

probability Pr(t A) can be directly obtained from Pr(A) using equation (1.13). Also,

combining (1.12) and (1.13), it is easy to retrieve the max-stability of Z , i.e., to prove

that

Pr
{
n−1Z ∈ A∞(r )

}n = Pr{Z ∈ A∞(r )} , n = 1,2, . . . .

The representation of the limit measure Λ is not unique and the homogeneity property

is key to alternative representations.

Theorem 1.3 (Giné et al. (1990)) Let X ∗ lie in the max-domain of attraction of a sim-

ple max-stable process Z with limiting measure Λ. Then there exists a measure σ‖·‖ on

C‖·‖(S) = {x ∈C+(S) : ‖x‖ = 1} such that∫
C‖·‖(S)

x(s)dσ(x) = 1, s ∈ S, (1.14)

and

Λ

({
x ∈ A‖·‖(r ) :

x

‖x‖ ∈ A

})
= r−1σ‖·‖(A), (1.15)

where A‖·‖(r ) = {x ∈C+(S) : ‖x‖� r }.

In decomposition (1.15), r−1 measures the intensity of the process, while σ‖·‖, called

the angular measure, characterizes the dependence of Z . Choosing different norms in

(1.15) yields different decompositions. For instance, with the L1 norm ‖x‖1 =
∫

S |x|d x,

the variable W = Z /‖Z‖1 is called the pseudo-angle, and σ‖·‖1 satisfies

σ‖·‖1 {C1(S)} =Λ{C+(S)}

=
∫

C+(S)
r−2dr dσ‖·‖1 (w)

=
∫

C1(S)

∫
1/‖w‖1

r−2dr dσ‖·‖1 (w),

=
∫

S

∫
C1(S)

w(s)dσ‖·‖1 (w)ds,

= ‖S‖1,
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which is thus independent of the distribution of W . For this reason, choosing the

L1 norm is often convenient because the computation of the measure Λ{A‖·‖(r )}, for

instance to perform statistical inference, is straightforward. Finally in Theorem 1.3,

any measure σ‖·‖ on C‖·‖(S) satisfying condition (1.14) yields a valid limit measure Λ

and thus a simple max-stable process on S, so the family of max-stable processes is

not finite.

1.3.4 Spectral representation

The multiple decompositions obtained with (1.15) also impact the possible represen-

tations of a max-stable process with limit measure Λ.

Theorem 1.4 (de Haan (1984); Giné et al. (1990); Penrose (1992)) Let Z be a simple

max-stable process with continuous sample path on C+(S). Then Z can be written

Z (s) = max
i∈N

Ui Wi (s), s ∈ S, (1.16)

where {Ui : i ∈ N} are the points of a Poisson point process on (0,∞) with intensity

measure u−2du and the spectral functions Wi (i ∈N), are independent copies of some

non-negative, continuous process {W (s), s ∈ S} with E{W (s)} = 1 for all s ∈ S and

E{sups∈S W (s)} <∞.

By making a parallel between the decomposition of Λ in (1.15) and Theorem 1.4, we

use that for any simple max-stable process Z , we can write

Z (s) = max
i∈N

Ui Wi (s), s ∈ S, (1.17)

where {Ui : i ∈N} are the points of a Poisson point process on (0,∞) with intensity

measure u−2du, and the spectral functions Wi (i ∈N) now refer simply to a stochastic

process on C1(S) with E{W (s)} = 1 (s ∈ S). Equation (1.16) is more useful in practice

than (1.17) because the requirements on the process W are weaker, making it easier

to build models.

In environmental applications, the decomposition (1.16) was compared to rainfall-

storms (Smith, 1990): each couple (Ui ,Wi ) (i = 1, . . . ) represents a storm contributing

to the field of maxima, whose severity is given by Ui and whose spatial pattern is

determined by the angular process Wi . This interpretation was exploited by Huser

and Davison (2014) to model hourly rainfall using a spatio-temporal max-stable

process.
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Finally the representation (1.16) is the key component for most algorithms to simulate

max-stable processes, but the maximum over an infinite set of points yields, without

further restriction, inefficient or approximate algorithms (Schlather, 2002; Engelke

et al., 2011; Oesting et al., 2011). Exploitation of either alternative but equivalent

representations or more restrictive formulations of (1.16), for instance by Dieker and

Mikosch (2015) and Dombry et al. (2016), leads to exact and efficient methods for

simulation. Conditional simulation of max-stable process is also possible; see Dombry

et al. (2013), Oesting and Schlather (2013), Bechler et al. (2015a), and Oesting et al.

(2017a) for more details.

1.4 Multivariate and functional limits of threshold ex-

ceedances

Section 1.3 presented the extension of univariate block maxima and its limit distri-

bution, namely the generalized extreme value distribution, to functions. For peaks-

over-threshold analysis, the notion of exceedances for vectors or functions is not

unique and thus a functional extension of the univariate theory is more delicate. In

this section we present existing results on functional peaks-over-threshold analysis,

which we revisit to make the parallel with their generalization in Chapter 4 easier.

Similarly to the current literature, we focus on the case where the process X belongs to

the Fréchet domain of attraction. In this case, generalization of peaks-over-threshold

analysis to functions is possible within the framework of functional regular variation.

Proofs of the theoretical results in this section can be found in Appendix A.

1.4.1 Functional regular variation

Definition

Let S be a compact metric space, such as [0,1]2 for spatial applications. We write F+ =
C {S, [0,∞)} for the closed subset of the Banach space of continuous functions x : S →R

endowed with the uniform norm ‖x‖∞ = sups∈S |x(s)|. A measurable closed subset C
of F+ is called a cone if t x ∈ C for any x ∈ C and t > 0. In the study of extremes, the

cones C = {0} or C = {x ∈F+ : infs∈S x(s) = 0} are often excluded from F+ to avoid the

appearance of limiting measures with infinite masses at the origin or on the coordinate

axes. Let MF+\C denote the class of Borel measures on B(F+ \C) for any cone C, and

say that a set A ∈B(F+ \C) is bounded away from C if d(A,C) = infx∈A,y∈C ‖x− y‖∞ > 0.

A sequence of measures {Λn}∞1 ⊂ MF+\C is said to converge to a limit Λ ∈ MF+\C ,
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1.4. Multivariate and functional limits of threshold exceedances

written Λn
ŵ−→ Λ (Hult and Lindskog, 2005), if Λn(A) → Λ(A) as n → ∞, for all A ∈

B(F+ \C) bounded away from C with Λ(∂A) = 0, where ∂A denotes the boundary of A.

For equivalent definitions of this so-called ŵ-convergence, see Lindskog et al. (2014,

Theorem 2.1).

A stochastic process X with sample paths in F+ \C is regularly varying (Hult and

Lindskog, 2005) if there exist a sequence of strictly positive continuous functions

{an}∞n=1 with an(s) →∞ as n →∞ for all s ∈ S and a measure Λ ∈ MF+\C such that

n Pr
(
a−1

n X ∈ ·) ŵ−→Λ(·), n →∞; (1.18)

then we write X ∈ RV(F+ \C, an ,Λ). The limiting measure Λ satisfies a homogeneity

property of order −1/ξ, i.e., for any t > 0,

Λ(t A) = t−1/ξΛ(A), A ∈B(F+ \C), (1.19)

for some positive ξ called the tail index.

Mapping theorem

For the remainder of this section, X is a regularly varying stochastic process and Λn

refers to the sequence of measures n Pr
(
a−1

n X ∈ ·) defined in (1.18). As the notion of

exceedance for functional peaks-over-threshold analysis is not unique, a means to

switch between definitions is required. For this reason, we introduce the mapping

theorem to link the different representations.

Theorem 1.5 (Mapping theorem, Lindskog et al. (2014)) Let F and F ′ be measur-

able and complete metric spaces with cones C and C′ respectively and let h be a measur-

able mapping

h :F+ \C,→F ′
+ \C′

such that h−1
(

A′)= {x ∈F+ \C : f (x) ∈ A′} is bounded away from C for any A′ ∈B(F ′+ \

C′)
⋂

h(F+ \C) bounded away from C′. Then the mapping h̃ : MF+\C → MF ′+\C′ defined

by

h̃(Λ) =Λ◦h−1

is continuous at Λ ∈ MF+\C provided Λ(Dh) = 0, where Dh is the set of discontinuity

points of h.

For the study of extremes, we will be interested in the exclusion from F+ of a specific

family of cones that is tied to the definition of exceedances. First, we define a risk func-
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Chapter 1. Asymptotic tail distributions: theory and models

tional r :F+ → [0,∞) as a continuous functional satisfying a homogeneity property,

i.e., a functional for which there exists κ> 0 such that

r (ax) = aκr (x), x ∈F+, a > 0.

As r (·) could be replaced by r (·)1/κ without loss of generality, below we assume that

κ= 1. For any risk functional r , the set Cr = {x ∈F+ : r (x) = 0} is a closed cone of F+.

We say that an r -exceedance is an event of the form {r (X )� un}, where the sequence

of thresholds un > 0 is chosen such that Pr{r (X )� un} → 0 as n →∞.

Now we consider the mapping hr :F+ \C→F+ \C′, with C′ = C∪Cr , defined as

hr (x) =
{

x, r (x) > 0,

0, r (x) = 0.
(1.20)

Applying Theorem 2.1 in Lindskog et al. (2014) and Theorem 1.5 with the mapping

(1.20) ensures the convergence of {Λn}∞1 restricted to the space {x ∈F+ \C : r (x) > 0}.

Corollary 1.1 Suppose Λn →Λ in M(F+ \C) as n →∞. Then

Λn ◦h−1
r →Λ◦h−1

r , n →∞, (1.21)

in M {F+ \ (C∪Cr )}.

Corollary 1.1 implies that if X ∈ RV(F+ \C, an ,Λ) then the stochastic process X is

also regularly varying on F+ \ (C∪Cr ) with limit measure Λ◦h−1
r , and the converse is

true only if Λ{Cr \C} = 0 or C = Cr . The mapping theorem and Corollary 1.1 are key

components in describing the limit distribution of r -exceedances.

Pseudo-polar decomposition

Alternative representations of the limiting measure Λ are obtained from pseudo-

polar transformations. For a norm ‖ ·‖ang on F+, called the angular norm, and a risk

functional r , a pseudo-polar transformation hpp
r is a map F+ \C → [0,∞)×Sr such

that

hpp
r (x) =

(
r ′ = r (x), w = x

‖x‖ang

)
, x ∈F+ \C, (1.22)

whereSr is the unit sphere {x ∈F+\C : r (x) > 0,‖x‖ang = 1}. If {x ∈F+\C : r (x) = 0} =�,

then hpp
r is a homeomorphism with inverse

(
hpp

r
)−1

(r ′, w) = r ′ × w

r (w)
.
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1.4. Multivariate and functional limits of threshold exceedances

Theorem 1.6 combines the family of pseudo-polar mappings and the mapping theo-

rem to factorize the limiting measure Λ.

Theorem 1.6 Suppose X ∈ RV(F+ \ {0}, an ,Λ) and let r be a risk functional. Then there

exists ξ> 0 such that

nPr

[
X

an
∈ (hpp

r
)−1 {

[r ′,∞),W}] ŵ−→Λξ{[r ′,∞)}×σr (W), n →∞, r ′ > 0, W ⊂Sr ,

in M (F+ \Cr ), where

Λξ{[r ′,∞)} = (r ′)−1/ξΛ(Ar ),

with Ar = {x ∈F+ \C : r (x)� 1} and σr is the probability measure on B(Sr ),

σr (·) = Λ
{

x ∈F+ \Cr : r (x)� 1, x/‖x‖ang ∈ (·)}
Λ(Ar )

.

The converse holds if there exist a family of risk functionals rl (l = 1, . . . ,L) with L � 1

such that for every l , X ∈ RV
(F+ \Crl , an ,Λ

)
and

⋂L
l=1Crl = {0}.

Theorem 1.6 is used in Section 1.4.2 to describe the asymptotic distribution of r -

exceedances. For specific risk functionals such as sups∈S x(s) or
∫

S x(s)d s for which

Cr = {0}, the pseudo-polar transformation is a homeomorphism and the convergence

of the factorized version of the measures is equivalent to the regular variation of the

stochastic process X on F+\{0}. Alternatively, let Sl ⊂ S (l = 1, . . . ,L) satisfy
⋃L

l=1 Sl = S,

and define the functions

rSl (x) =
∫

S
1{s ∈ Sl }x(s)d s, l = 1, . . . ,L.

In this case, we see that {x ∈ F+ : rSl (x) = 0} 
= {0} individually but the family rSl

satisfies
⋂L

l=1Cri = {0}, and then the conditions for equivalence in Theorem 1.6 are

met, ensuring regular variation of the stochastic process X on F+ \ {0}.

Theorem 1.6 implies that there is a pseudo-polar decomposition of Λ for any valid risk

functional, and for this reason we link pseudo-polar representations in Corollary 1.2.

Corollary 1.2 For an angular norm ‖·‖ang and 1-homogeneous risk functionals r1 and

r2 with Cr1 = Cr2 , the angular probability measures σr1 and σr2 are linked by

σr1 (dw) = Λ(Ar2 )

Λ(Ar1 )

{
r1(w)

r2(w)

}1/ξ

σr2 (dw), dw ∈Sr , (1.23)

where Ari = {x ∈F+ \Cri | ri (x)� 1}, i = 1,2.
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Chapter 1. Asymptotic tail distributions: theory and models

Equation (2.3) can thus be used to obtain the probability measure σr2 when σr1 is

known, as for certain combinations of norm and risk functional the mathematical

expression for σr is much simpler.

Link with multivariate regular variation

All the previous definitions and results also hold for finite dimensions, i.e., for L-

dimensional random vectors, by replacing ŵ-convergence by vague convergence

(Resnick, 2007, Section 3.3.5) on MRL+\CL , the class of Borel measures on B(RL+ \CL)

endowed with the ‖ ·‖∞ norm, where CL denotes a cone in RL+ (Opitz, 2013b).

The mapping theorem also makes it possible to describe the relation between the

multivariate theory and functional regular variation. Let s1, . . . , sL be L > 1 locations in

S, and consider the map hproj :F+ \C→RL+ \CL defined as

hproj(x) = {x(s1), . . . , x(sL)},

where CL = hproj(C). We now use the mapping hproj to prove that multivariate regular

variation is embedded in the functional theory.

Corollary 1.3 If X ∈ RV(F+ \ {0}, an ,Λ), then

Λn ◦h−1
proj →Λ◦h−1

proj, n →∞,

in M
{
RL+ \CL

}
.

Corollary 1.3 shows how applications, which are by nature finite-dimensional, are

linked to the functional regular variation model. Indeed, suppose that a physical

process X , for instance rainfall or temperature, is produced by a continuous stochastic

process over a region of interest. In practice, we observe the process at only a finite

number of locations. Supposing functional regular variation for X implies, through

Corollary 1.3, that the vector of sampled locations is also regularly varying with the

same limiting measure as the full process. For parametric models, this means that

the parameters estimated using station measurements equal those of the functional

model.

However, multivariate regular variation does not in general imply functional regu-

lar variation and the condition for equivalence is still an open question. Following

Lindskog et al. (2014, Theorem 4.1), Theorem 1.7 gives a necessary condition for

equivalence when replacing F+ by R∞+ .
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1.4. Multivariate and functional limits of threshold exceedances

Theorem 1.7 Suppose X ∈ RV
(
R∞+ \C, an ,Λ

)
and for every L � 1, the closed set C ⊂F+

is such that hproj,L(C) is closed in RL+ and

{x(s1), . . . , x(sL)} ∈ hproj,L(C) ⇒ {x(s1), . . . , x(sL),0∞} ∈ C, (1.24)

where ⇒ means implication. Then Λn →Λ in M
(
R∞+ \C) if and only if for all L � 1

such that RL+ \ hproj,L(C) 
= �,

Λn ◦h−1
proj,L →Λ◦h−1

proj,L , n →∞,

in M
{
RL+ \CL

}
.

For the family of cones CL
r = {x ∈RL+ : r (x) > 0} defined in Section 1.4.1, condition (1.24)

is ensured by the homogeneity of the risk functional, and thus Theorem 1.7 holds.

1.4.2 Limit distribution of functional r -exceedances

In this section, r :F+ → [0,+∞) is a risk functional as defined in Section 1.4.1, which

we consider, without loss of generality, to be 1-homogeneous, ‖ · ‖ang is a norm on F+,

and X is a regularly varying process on F+ \ {0} with limiting measure Λ and tail index

ξ> 0. In practice, the choice of the angular norm ‖ · ‖ang has no impact and is usually

made for convenience, but choosing a risk functional r allows a focus on particular

types of extreme event.

Risk functionals as a characterization of risk

In Dombry and Ribatet (2015), r is called a ‘cost functional’ and Opitz (2013b) named

it a ‘radial aggregation function’, but we prefer ‘risk functional’ as it better reflects the

fact r measures the severity of the risk under study.

Threshold exceedances were originally studied with the functional r (x) = sups∈S{x(s)}

by Rootzén and Tajvidi (2006) in a multivariate setting and by Ferreira and de Haan

(2014) for continuous processes. In this case, events for which there is a threshold

exceedance at least one location are considered extreme. Alternatively, Coles and

Tawn (1996) modelled areal rainfall based on the functional
∫

S X (s)d s, a model that

can be generalized with the family rSi (i = 1, . . . ,L) defined in equation (1.4.1) to

describe the exceedances of cumulative rainfall over L > 1 catchments of a river basin;

see Chapter 3 where we describe the multivariate limit tail distribution of aggregated

data. More generally, risk functionals such as
∫

S X 2(s)d s for wind energy inside a

climatic system (Powell and Reinhold, 2007), mins∈S′ X (s)/u(s) for exceedances over

23



Chapter 1. Asymptotic tail distributions: theory and models

dams, X (s0) for risks impacting a specific location s0, and so forth, can be relevant,

depending on the application.

r -Pareto processes as asymptotic distribution of r -exceedances

We now focus on in the limiting distribution of the r -exceedances of a regularly varying

process, i.e., we wish to describe the limiting behaviour of

Pr

{
X ∈ A

∣∣∣∣r (X

u

)
> 1

}
, A ⊂F+ \Cr ,

as the threshold function u tends to infinity, i.e., u(s) →∞ for all s ∈ S.

Theorem 1.8 Let X be a regularly varying stochastic process on F+ \ {0} with limiting

measure Λ and tail index ξ. Then

lim
n→∞Pr

[
X

an
∈ (hpp

r
)−1

{[r ′,∞),W}

∣∣∣∣r ( X

an

)
� 1

]
= (r ′)−1/ξσr (W), r ′ � 1,W ⊂Sr ,

where Sr = {x ∈F+ \Cr : ‖x‖ang = 1}.

Theorem 1.8 motivates the definition of the family of r -Pareto processes, which char-

acterizes the limiting distribution of r -exceedances.

Definition 1.2 Let r be a 1-homogeneous risk functional. An r -Pareto process P with

tail index ξ> 0 is a stochastic process on {x ∈F+ : r (x)� 1} such that

Pr
[

P ∈ (hpp
r
)−1

{[r ′;∞),W}
]
= (r ′)−1/ξ×σr (W), r ′ � 1,W ⊂Sr , (1.25)

where σr is a probability measure on Sr and hpp
r denotes the pseudo-polar decomposi-

tion associated to the risk functional r .

Thus, as a direct consequence of Theorem 1.8, r -Pareto processes are defined to be the

unique possible limit for r -exeedances of regularly varying stochastic processes. This

means that for any X ∈ RV(F+ \ {0}, an ,Λ) and a sufficiently high threshold function

u > 0, we can approximate the distribution of X by

Pr

[
X

u
∈ (hpp

r
)−1 {

[r ′;∞),W}∣∣∣∣r (X

u

)
> 1

]
≈ (r ′)−1/ξ×σr (W) . (1.26)
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Construction of the r -Pareto processes

Let ξ> 0 and σr be the tail index and the probability measure of an r -Pareto process

P . The pseudo-polar decomposition defined in Section 1.4.1 gives the construction

principle

P = R
W

r (W )
, (1.27)

where R is a univariate Pareto variable with tail parameter 1/ξ and unit scale, and W

is a stochastic process on Sr with probability measure σr .

An important property of Pareto processes is peaks-over-threshold stability, i.e., for

any real number u > 0

Pr
{
u−1P ∈ ·|r (P )� u

}= Pr{P ∈ ·} , (1.28)

which means that the distribution of r -exceedances over a threshold u > 0 is stable

with respect to rescaling. Peaks-over-threshold stability allows one to extrapolate

the extremal behaviour of a regularly varying stochastic process X to intensities that

may not have been observed yet. Equation (1.28) is a direct consequence of the

homogeneity of order −1 satisfied by the limiting measure Λ.

Multivariate density function

In practice, σr is rarely available but finite-dimensional versions of Λ are fairly com-

mon. For this reason, the Cartesian representation of the multivariate density function

of the r -Pareto process

f r (x) = λ(x)

Λ{Ar (1)}
, x ∈ Ar (1), (1.29)

where Ar (1) = {x ∈F+ : r (x)� 1}, and

Λ{Ar (1)} =
∫

Ar (1)
λ(x)d x,

is often preferred. Using equation (1.29), with the help of a change of variables, closed

forms for σr have been derived for special choices of risk functionals such as the

L1-norm (Coles and Tawn, 1991).
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Marginal properties

Consider a location s0 ∈ S and a sufficiently high threshold u0 > 0 such that {x ∈F+ :

x(s0) > u0} ⊂ {x ∈F+ : r (x) � 1}. Using the Cartesian representation of the spectral

measure in Theorem 1.6, we obtain

Pr
{
P (s0) > r ′}= ( r ′

u0

)−1/ξ
Λ {x ∈F+ \Cr : r (x)� 1, x(s0)� u0}

Λ {x ∈F+ \Cr : r (x)� 1}
, r ′ � u0, (1.30)

which means that above the threshold u0, the r -Pareto process has Pareto margins

with tail index ξ. The proof of (1.30) can be found in Appendix A.

From a practical point of view, equation (1.30) has two consequences: as supposed

at the beginning of this section, the dataset of observations should lie in the Fréchet

domain of attraction and have a common tail index. For environmental applications,

having a common tail index is a reasonable assumption if there is no mixture in the

physical process studied, but data with finite upper bound (Weibull) or exponential

tail decay (Gumbel) are commonly encountered. If one or both of these properties is

not satisfied, a two-step procedure, as described in Section 1.3.2 for block maxima,

is used: the data X are transformed to X ∗, whose margins are standardized to unit

Fréchet or unit Pareto. However, the risk functional r is now applied to X ∗, so the

r -exceedances are defined on the Fréchet scale and thus any physical interpretation of

the risk is compromised. For example, exceedances of spatially accumulated rainfall

X usually do not correspond in practice to exceedances of spatial accumulation

applied to the transformed process X ∗. In Chapter 4 we discuss how and under which

conditions we can modify the r -Pareto process to have generalized Pareto margins in

order to cover the three possible regimes of tail decay and to keep the definition of the

risk for the original process.

Statistical inference

Let Xn ∈ RL+ (n = 1, . . . , N ) be realizations of a regularly varying stochastic process

sampled at locations s1, . . . , sL ∈ S. To fit an r -Pareto process using the sample Xn

(n = 1, . . . , N ), we propose a likelihood inference procedure based on equation (1.26):

the distribution of r -exceedances of X above a sufficiently high threshold vector

u > 0 is approximated by the density function f r in (1.29). In practice, this means

maximizing the log-likelihood

LThres(θ) = ∑
m∈Ku

log f r
θ

(
xm

u

)
,

26
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where Ku is the index set of the r -exceedances, i.e., Ku = {m ∈ (1, . . . ,n) : r (xm/u)� 1},

and θ ∈Θ denotes the parameter vector of a parametric limit measure Λθ. For such

an inference procedure, two elements need to be specified: a risk functional and

a threshold vector. Under the assumption that X ∈ RV(F+ \ {0}, an ,Λ), Theorem 1.6

suggests that these choices should not affect model estimates, but this is not entirely

true, because the events selected depend on the risk functional r , the choice of which

enables the detection of mixtures in the extremes and can improve sub-asymptotic

behaviour by fitting the model using only those observations closest to the chosen

type of extreme event. For example, we might expect the extremal dependence of

intense local rainfall events to differ from that of heavy large-scale precipitation, even

in the same geographical region.

Choosing a threshold vector is not trivial, because the components of u cannot be

taken arbitrarily high, and there is no unified methodology for this task. Tools for uni-

variate threshold selection have been developed (e.g. Hill, 1975; Davison and Smith,

1990; Northrop and Coleman, 2014) and are mainly based on the detection of a sta-

bility region in some graphical diagnostic; see Scarrott and MacDonald (2012) for an

extensive review of existing procedures. For instance, components of u can be chosen

as local empirical quantiles whose levels belongs to a region of [0,1] where the esti-

mated shape parameter of a generalized Pareto distribution is stable. For multivariate

threshold selection, the literature is unfortunately fairly restricted: Wadsworth (2016)

presents a methodology based on the independent-increments structure of maximum

likelihood estimators, while Wan and Davis (2018) look for a stability region within

the regular variation framework. But so far, univariate methods applied locally have

dominated applications in the environmental sciences.

An alternative to the log-likelihood function LThres assumes that the number of ex-

cesses is Poisson distributed, and has the benefit of reducing the sensitivity of the

estimator to the choice of the threshold u. In this case, starting from equation (1.18),

the approximation

Pr

{
X (s1)

an(s1)
> u1, . . . ,

X (sL)

an(sL)
> uL

}
≈ 1

n
Λθ(u1, . . . ,uL),

is used to estimate the scaling function an jointly with the r -Pareto process parameters

θ, which yields the log-likelihood

LPP(θ, an) =−Λθ

{
u1

an(s1)
, . . . ,

uI

an(sL)

}
+ ∑

m∈Ku

λθ

(
xm

an

)
. (1.31)

In this case, the threshold vector u does not appear in the density function λθ but only

in the distribution of excesses, and thus the impact of the choice of the threshold on
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parameter estimates is limited. On the other hand, a parametric model needs to be

specified for an ; see Section 3.5.2 for an example. Practical experience showed that

the threshold approach is convenient to obtain preliminary point estimates of the

parameters that can be used as starting values to initialize the maximization of the

Poisson process likelihood.

In Chapter 4, further models for the distribution of excesses are considered and

linked together. For a thorough discussion on likelihood based methods for statistical

inference of extremal processes, we refer the reader to Chapter 2.

1.5 Characterization of bivariate tail dependence

In spatial statistics, the correlation between two locations of a stochastic process

is often used as a simple summary to study the dependence structure. However,

for an extremal process a covariance may not exist. Hence, alternative measures of

bivariate dependence have been introduced. Such measures do not fully specify the

dependence structure of the process, but remain very useful for data exploration and

model validation. They allow a user to distinguish between the two regimes of tail

dependence, namely asymptotic dependence and asymptotic independence.

1.5.1 Asymptotic independence

Let X be a stochastic process over S with common marginal distribution function F

for all s ∈ S and let x∗ = sup{x ∈R+ : F (x) < 1} be the upper bound of the support of X .

Asymptotic independence arises when for any locations s1, s2 ∈ S,

Pr{X (s2)� x |X (s1)� x} → 0, x → x∗. (1.32)

While equation (1.32) defines the regime of asymptotic independence, it does not

measure the speed of convergence toward this limit. To this end, Ledford and Tawn

(1996) introduce the coefficient of tail dependence: if a stochastic process X satisfying

(1.32) has been standardized to X ∗ with unit Fréchet marginals, then for any s1, s2 ∈ S

there exist 0 < ηs1,s2 � 1 and a slowly-varying function Ls1,s2 , such that

Pr
{

X ∗(s2)� x, X ∗(s1)� x
}= Pr

[
min

{
X ∗(s2), X ∗(s1)

}
� x

]≈ Ls1,s2 (x)x−1/ηs1,s2 ;

(1.33)

see Section 1.2.1 for a definition of slowly-varying functions. The parameter ηs1,s2 ,

called the coefficient of tail dependence and now denoted η for simplicity, measures

the speed of convergence toward the asymptotic independence regime: the rate
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increases as η→ 0. The limit case η= 1 corresponds to asymptotic dependence, which

will be discussed in Section 1.5.2. In practice, η can be estimated by computing the

univariate summary Y = min
{

X ∗(s2), X ∗(s1)
}

of the standardized observations and

then fitting a generalized Pareto distribution to Y ∗. Equation (1.33) is easily linked to

(1.32), as for sufficiently large x > 0,

Pr
{

X ∗(s2)� y
∣∣X ∗(s1)� x

} = Pr
{

X ∗(s2)� x, X ∗(s1)� x
}

Pr{X ∗(s1)� x}
≈ L(x)x1−1/η;

it is easy to check that for 0 < η< 1, the probability tends to 0 as x tends to infinity.

Finally, the tail coefficient also allows us to distinguish three asymptotic independence

regimes:

• for 1/2 < η< 1, X (s1) and X (s2) are positively associated. This is the case for a

Gaussian process with cov{X (s1), X (s1)} > 0, for instance;

• for η= 1/2, X (s1) and X (s2) are exactly independent in the limit, while typically

having weak dependence at sub-asymptotic levels;

• for 0 < η < 1/2, X (s1) and X (s2) are negatively associated, as is the case for a

Gaussian process with cov{X (s1), X (s1)} < 0.

The coefficient χ̄ introduced by Coles et al. (1999) is an alternative measure of the

speed of convergence toward asymptotic independence : for a bivariate random vector

X = (X1, X2) with distribution function F1 and F2, define the function

χ̄(u) = 2logPr{F1(X1) > u}

logPr{F1(X1) > u,F2(X2) > u}
−1, 0 < u < 1. (1.34)

The coefficient χ̄ is then defined as the limit of χ̄(u) as u → 1. The function χ̄(·) and

its limit χ̄ take values in [−1,1], but χ̄(·) satisfies the stricter lower bound 2log(1−
u)/ log{max(1−2u,0)}−1� χ̄ (Beirlant et al., 2004, p. 344). Also, χ̄ can be linked with

the coefficient of tail dependence η through the relation

χ̄= 2η−1.

Thus the three regimes described above for η are equivalent to χ̄> 0, χ̄= 0 and χ̄< 0

with asymptotic dependence appearing as the limit case χ̄ = 1. The coefficient χ̄,

while more difficult to interpret from its definition than η, is simply equal to the

correlation ρ ∈ [−1,1] when X has a bivariate Gaussian distribution, which makes it

sometimes more attractive. Finally, χ̄ can be estimated using a graphical diagnostic

where estimates of χ̂(u), obtained by replacing the quantities in (1.34) by empirical
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Chapter 1. Asymptotic tail distributions: theory and models

estimates of the probabilities and distribution functions, are plotted for different

values of u ∈ [0,1].

As mentioned above, the Gaussian process is a good example of asymptotic indepen-

dence, which implies that with an increasing marginal intensity, the strength of the

dependence decreases. In other words, the spatial extent of extreme events generated

by an asymptotically independent process shrinks with the growth of the return period

until it degenerates to a point in the limit model.

1.5.2 Asymptotic dependence

When the limit in equation (1.32) is strictly positive, the process X is asymptotically

dependent and we write

Pr{X (s2)� x |X (s1)� x} →π(s1, s2), x → x∗. (1.35)

The quantity π(s1, s2) is called the coefficient of extremal dependence (Beirlant et al.,

2004, Section 9.5.1), and for obvious reasons takes values in [0,1]. If π(s1, s2) = 1, the

process is exactly dependent, i.e, X (s1) = X (s2), while for π(s1, s2) = 0, we retrieve

asymptotic independence. If we suppose that X is an r -Pareto process, as described

in Section 1.4, then there exists umin > 0 such that

π(s1, s2) = Pr{X (s2)� u |X (s1)� u} , u � umin.

The coefficient of extremal dependence was introduced by Ledford and Tawn (1996)

through the coefficient χ, defined for any stochastic process X as

χ(s1, s2) = lim
u→1

Pr[F1{X (s2)}� u |F1{X (s1)}� u] ,

where F1 and F2 refer to the marginal distribution functions at locations s1 and s2

respectively; thus for a process with common distribution function F over S, π=χ.

When the process X is stationary over S, the coefficient of extremal dependence can

be viewed as a function of the distance h = s2 − s1 ; see Section 1.6.1 for a formal

definition of stationarity. In this case, π(h) is called the extremogram (Davis et al.,

2013b) and a simple natural estimator of it is obtained by replacing the probabilities

in (1.35) by empirical estimators, i.e.,

π̂(h) =
∑n

t=1 1{X (s2)� u, X (s1)� u}∑n
t=1 1{X (s1)� u}

, (1.36)
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1.5. Characterization of bivariate tail dependence

where 1{·} is the indicator function. In Davis and Mikosch (2009), the extremogram was

presented for stationary time series; it was generalized to spatio-temporal processes

by Buhl and Klüppelberg (2018).

Let X now refer to a stochastic process in the max-domain of attraction of a simple

max-stable process Z with limiting measure Λ. Another widely used measure of

extremal dependence for X sampled at locations s1, s2 ∈ S is the extremal coefficient

θ(s1, s2) =Λ [x ∈C+(s) : max{x(s1), x(s2)}� 1] = 2−π(s1, s2).

The strength of the extremal coefficient is its interpretability. Indeed the pairwise

distribution function of Z at s1 and s2 can be written as

Pr{Z (s1)� x, Z (s2)� x} = exp

{
−
(

1

x

)θ(s1,s2)
}

, x > 0; (1.37)

for θ(s1, s2) = 1, we retrieve the distribution function of a perfectly dependent bi-

variate vector with Fréchet marginals, and for θ(s1, s2) = 2 the distribution function

equals the product of two unit Fréchet distribution functions, corresponding to exact

independence. An alternative definition of the extremal coefficient is

θ(s1, s2) = 2 lim
u→∞u−1Pr[max{X (s1), X (s2)}� u] , (1.38)

for which equality holds for finite values of u > 0 if X is a r -Pareto process with unit

tail index. Similarly to the extremogram, if we further suppose that X is stationary,

the extremal coefficient can be considered as a function of the distance h between s1

and s2. For general X with common distribution function over S, a simple estimator

similar to (1.36) can be derived from (1.38). Schlather and Tawn (2003) propose an

alternative maximum likelihood estimator based on (1.37), yielding

θ̂(s1, s2) = Card([i : max{xi (s1), xi (s2)} > u])∑n
i=1 max{u, xi (s1), xi (s2)}

, u > 0, (1.39)

where X i , (i = 1, . . . ,n) are independent replicates of X . However, this estimator

does not equal 1 when n = 1 and u = 0, and so must be corrected. The extremal

coefficient can be generalized to more than two locations (Smith, 1990) and to different

probabilities with the same principle as for (1.38); see Chapter 3 for more details.

Last but not least, the F -madogram (Cooley et al., 2006) is a third dependence measure
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Chapter 1. Asymptotic tail distributions: theory and models

for stationary extremal processes, defined by

φmado(h) = 1

2
E[|F1{Z (s1)}−F2{Z (s2)}|]

where Z is a max-stable process with marginal distributions F1 and F2 at locations

s1 and s2 respectively. The F -madogram is linked to the extremal coefficient, and by

extension to the extremogram, by the relationship

θ(h) = 1+2φmado(h)

1−2φmado(h)
.

This quantity, while less popular than its competitors, is closer in definition to the a

semi-variogram γ(h) = 2−1E
[
{X (s2)−X (s1)}2

]
which is the dependence measure of

reference in classical spatial statistics. For extremal processes, γ(h) cannot be used in

general as the second moments of the increments do not usually exist for heavy-tailed

processes, but we see in the Section 1.6.2 that it is possible to build a class of extremal

measures whose dependence is driven by a semi-variogram.

1.6 Spatio-temporal extremal processes based on Gaus-

sian random functions

Estimation of the risk related to extreme natural hazards is usually based on cata-

logues of historical events, used as ‘stress tests’ to assess the resistance of human

infrastructure or insurance portfolios. Stochastic weather generators are a natural tool

to enlarge or create catalogues with unobserved extreme events. The spatio-temporal

nature of environmental phenomena requires specific models that we describe in this

section.

1.6.1 Classical geostatistics

Existing stochastic weather generators were built within the frame of classical spatio-

temporal statistics and so are based on Gaussian processes (Cressie, 1993; Wacker-

nagel, 2003; Diggle and Ribeiro, 2007; Gelfand et al., 2010; Cressie and Wikle, 2011), for

which a large class of dependence models have been developed, with corresponding

software (Pebesma and Graeler, 2013; Renard et al., 2017). However, with its exponen-

tial tail decay, the Gaussian distribution is likely to badly underestimate the probability

of rare events and thus is not recommended for the study of extremes.

For better marginal modelling, heavy-tailed data can be transformed to have normal
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1.6. Spatio-temporal extremal processes based on Gaussian random functions

distributions, for instance with a marginal transform, before applying tools from

spatial analysis. Such methodology is referred to as copula modelling in statistics

(Nelsen, 2006), and in geostatistics an approach, called Gaussian anamorphosis, uses a

semi-parametric marginal transform based on Bernstein polynomials (Lajaunie, 1993).

This procedure is attractive because it takes advantage of existing models developed

for Gaussian processes, but Mikosch (2006) argues that in general the copula approach

might have some undesirable effects; see McNeil et al. (2015, p. 210) for a discussion

of the Gaussian copula in extreme value theory. Indeed for a threshold u > 0 and a

bivariate vector X with Fréchet margins and dependence driven by Gaussian copula

with correlation −1 < ρ < 1, we have (Ledford and Tawn, 1996)

Pr(X1 > u | X2 > u) ∼C ×u−(1−ρ)/(ρ+1)(logu)−ρ/(1+ρ), (1.40)

where C > 0. In equation (1.40), we notice that

lim
u→∞Pr(X1 > u | X2 > u) = 0.

Thus when the vector X represents a physical process in space, the spatial coverage

of extreme events decreases as the intensity u increases. Such behaviour can be

attractive in applications, for instance when trying to model rain storms, which tend to

be more localized with increasing intensity, as observed for ‘Cévenol’ rain in the South

of France. On the contrary, for events such as heatwaves, windstorms or cyclones,

we do not expect the the spatial extent to shrink with severity, so asymptotically

independent processes are not suited for their statistical analysis and alternative

models are required.

As explained in Klüppelberg and Resnick (2008), heavy-tailed copulas do not suffer

from this shortcoming and models derived from Gaussian processes, such as the

Brown–Resnick model (Brown and Resnick, 1977), allow classical dependence func-

tions to be used. For this reason, in this section we present the concepts and results of

classical spatio-temporal statistics needed to build this class of extreme value copulas.

Basic notions on stochastic processes

Let S be a subset of RD , D = 1,2, . . . , such as [0,1]2 for spatial applications or [0,1]2 ×
[0,∞) for spatio-temporal extensions. A set of random variables {X (s), s ∈ S} indexed

by the parameter s and defined on a common probability space (C (S),B{C (S)},Λ)

is called a random process or a random function and its realizations x are named

regionalized variables (Wackernagel, 2003, p. 42). When D = 2, X is also known as

a random field; it is called a time series for S = R+. In applications, regionalized
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Chapter 1. Asymptotic tail distributions: theory and models

variables are never observed throughout the whole of S but only at a finite sample

s1, . . . , sL , of locations in a spatial setting and times for time series.

A random process X is characterized by knowledge of the distribution functions

Fs1,...,sL (x1, . . . , xL) = Pr{X (s1)� x1, . . . , X (sL)� xL} ,

of the vector (X (s1), . . . , X (sL)) for any set s1, . . . , sL ∈ S of any size L > 0. Consequently

two random processes X 1 and X 2 are identically distributed if their distribution func-

tions F 1
s1,...,sL

and F 2
s1,...,sL

are equal for any set {s1, . . . , sL} of any size L. An important

class of random functions is that of Gaussian processes, for which the distribution of

the vector (X (s1), . . . , X (sL)) is multivariate Gaussian for any set {s1, . . . , sL} and every L.

Stationarity is an important property which greatly simplifies models. While the

corresponding intuition is associated to the notion of invariance, its mathematical

formalization is more delicate and multiple definitions have been given. The first,

called strict stationarity, requires that for any set {s1, . . . , sL} and any vector h ∈ RD ,

called a lag vector, satisfying {s1 +h, . . . , sL +h} ∈ S, we have

Fs1,...,sL (x1, . . . , xL) = Fs1+h,...,sL+h(x1, . . . , xL),

i.e., the distribution function Fs1,...,sL is invariant under translation of {s1, . . . , sL} by a

vector h.

More generally a weaker definition of stationarity, called second-order stationarity,

requires first that the random process X has a constant mean m(s) = m and second

that covariance function cov{X (s), X (s +h)} is finite for all s ∈ S and depends only

of the lag vector h ∈RD (Wackernagel, 2003, p.44). As a Gaussian process is entirely

specified by its first two moments, strict stationarity is equivalent to the first-order

stationarity for such processes.

Finally, a third type of stationarity, called intrinsic stationarity, requires the field of

increments X (s)−X (sref) to be stationary of second-order for all sref ∈ S (Wackernagel,

2003, p. 44). For a Gaussian process, second-order stationarity implies intrinsic

stationarity, but the converse is not true in general. Indeed, in case of intrinsic sta-

tionarity, the variance var{X (s)} may not exist, whereas its existence is a necessary

condition for strict stationarity. In classical spatial statistics, intrinsic stationarity is

rarely considered alone, and was introduced mostly for historical reasons, but for

extremal processes, it is key to constructing flexible models; see Section 1.6.2.

Another important property of stationary random functions is isotropy: if the covari-

ance function C (h) = cov{X (s), X (s +h)} depends only of the norm ‖h‖2 of the lag
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1.6. Spatio-temporal extremal processes based on Gaussian random functions

vector, and so not on its direction, then the process X is called isotropic. In practice,

isotropy is rarely satisfied for environmental studies, for which it is usual to find a

direction of stronger dependence, for instance in the presence of prevailing currents

caused by wind or water flows. Thus isotropic models are usually unrealistic but

constitute a basis for building complex anisotropic dependence functions.

Covariance function and semi-variogram

Once the mean m ∈R is known, a stationary Gaussian process is characterized by its

covariance function

C (h) = cov{X (s), X (s +h)} = E{X (s)X (s +h)}−m2.

For simplicity of exposition we now suppose without loss of generality that m = 0;

otherwise just replace X by X −m. The covariance function C (h) of X is bounded by

C (0) = var{X (s)} and is nonnegative definite, i.e., for any L and any set {s1, . . . , sL},

L∑
i=0

L∑
j=0

ci c j C (si − s j )� 0, c1, . . . ,cL ∈R. (1.41)

Positive definite functions in (1.41) are specific types of kernel functions, and thus

are well-understood on R; see for instance Berg et al. (1984, Chapter 4) for a review of

classical kernels. However, kernels on RD with D > 1 or on the sphere {x ∈RD : ‖x‖2 =
1} constitute a very active field of research. Let DD be the class of all D-dimensional

correlation functions on RD , and let D∞ refer to the class of isotropic correlation

functions that belong to DD for any D > 0. Then

D1 ⊃D2 ⊃ ·· · ⊃DL ⊃ ·· · ⊃D∞.

The setD1 coincides with the set of all real positive definite functions but may not yield

a valid covariance function for L > 1; see Gelfand et al. (2010, p. 62) for more details.

In general, the class of valid covariance functions on RD is described by Bochner’s

theorem.

Theorem 1.9 (Bochner (1955)) A function C (h) : RD →R+ is a covariance function if

and only if it is the Fourier inverse-transform of a positive bounded symmetric measure

F (dw), i.e.,

C (h) =
∫

exp(2πi 〈w,h〉)F (dw), (1.42)

where 〈·, ·〉 is a scalar product and
∫

F (dw) <∞.
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Chapter 1. Asymptotic tail distributions: theory and models

As mentioned earlier in this section, for second-order stationary processes, the co-

variance function may not exist, so an alternative measure of dependence is required,

such as the (semi-)variogram

γ(s1 − s2) = 1

2
var{X (s2)−X (s1)} , s1, s2 ∈ S.

The existence of γ is ensured by the strict stationarity of the increments, and for

isotropic random processes, it simplifies to γ(h) = γ(‖h‖2) and satisfies

γ(h) = γ(−h), γ(h)� 0, γ(0) = 0, h ∈ [0,∞).

Similarly to a covariance function, the semi-variogram satisfies mathematical proper-

ties such as conditional negative definiteness, i.e.,

−
L∑

i=0

L∑
j=0

ci c jγ(si − s j )� 0,
L∑

i=0
ci = 0. (1.43)

Berg et al. (1984, Section 3.2) gives general links between positive and negative definite

kernels, and the set of conditionally negative definite functions is included in the

set of negative definite functions. A straightforward consequence of equation (1.43)

is that for two valid variograms γ1 and γ2 on RD , the function γ1 +γ2 is also a valid

variogram: this simple fact is used to combine variograms to build models known as

‘gigognes’ with greater flexibility. Also, Berg et al. (1984, Theorem 2.2) shows that for

any semi-variogram γ on RD , the function exp
{−tγ(h)

}
is a valid covariance function.

Similarly to Bochner’s theorem, a valid semi-variogram admits a representation in

the Fourier domain, i.e., there exists a quadratic form Q(h) and a positive bounded

symmetric measure F (dw) satisfying∫
F (dw)

1+4π2‖w‖2
<∞

such that

γ(h) =
∫

1−cos(2π〈w,h〉)
4π2‖w‖2

F (dw)+Q(h). (1.44)

Equation (1.44) suggests that for any semi-variogram γ, there is a positive scalar A > 0

such that

γ(h)� A‖h‖2, h ∈RD ,

with the inequality being strict if the corresponding intrinsic random process is not

differentiable. Also, if there exists a constant Csill ∈R such that

γ(h)�Csill, h ∈RD ,
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1.6. Spatio-temporal extremal processes based on Gaussian random functions

then the corresponding intrinsic random process is also strictly stationary, meaning

that we can link its covariance function C and semi-variogram γ with the relation

γ(h) =C (0)−C (h), h ∈RD .

On the contrary, if γ is unbounded, then a covariance function does not exist because

var{X (s)} = limh→∞γ(h) is infinite. In this case, if the process is observed at a location

s0, we can write the covariance between two locations s1, s2 ∈ S conditioned on the

observation X (s0) = x0 ∈R, i.e.,

cov{X (s1)−X (s0), X (s2)−X (s0) | X (s0) = x0} = γ(s1 − s0)+γ(s2 − s0)−γ(s2 − s1).

Finally, if there exists α ∈ (0,2] such that

γ(h) ∼ ‖h‖α2 , ‖h‖2 → 0,

then the corresponding Gaussian process has a fractal or Hausdorff dimension D +
1−α/2 (Gelfand et al., 2010, p. 23). The parameter α drives the smoothness of the

process, with larger values of α giving smoother realizations. For D = 1, the process is

differentiable only if α= 2; see Figure 2.3 in Gelfand et al. (2010, p. 24) for illustrations.

In this section, we have seen that a semi-variogram function must satisfy a very specific

set of mathematical properties, so it is not straightforward to build dependence

models. Luckily, equations (1.42) and (1.44) give convenient representations that

motivate a large class of parametric models.

Classical dependence models in RD

Table 1.1 reviews most of the classical semi-variogram models, and, when relevant,

the corresponding covariance functions. The nugget variogram is the simplest de-

pendence function; it models the discontinuity of the variogram at the origin and

so is equivalent to white noise. Although we expect the variogram of a continuous

process to be continuous at the origin, the nugget accounts for small variations such

as support variation or measurement errors.

The most popular model in spatial statistics is the Matèrn semi-variogram (Matern,

1960), which is a valid model on RD for any D > 0, and whose smoothness is driven

by a parameter ν: the associated Gaussian process is m times differentiable if m < ν.

The Matèrn covariance is widely used because it unifies a wide range of classical

models. For instance for ν = 1/2, we obtain the exponential covariance function

Cexp(h) =σ2 exp(−‖h‖/τ). The nugget effect arises as a limiting case when ν→ 0, and
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for a Gaussian covariance, we set τ = (2ν1/2)−1 and then let ν→∞ . Whittle (1954,

1963) proved that a Gaussian process with Matern covariance function arises as a

solution of the stochastic partial differential equation

(τ−1 −�)(2ν+D)/4x(s) =W (s), x ∈RD , (1.45)

where W is a spatial Gaussian white noise with unit variance and � is the Laplacian

operator

�=
D∑

i=1

∂2

∂2xi
.

While theoretical, these results have led to recent development of high-dimensional

applications in spatio-temporal statistics. Indeed, classical techniques for statistical

inference are limited in size by the computational complexity required to invert the

dense covariance matrix Σ = [cov{X (si ), X (s j )}]i , j=1,...,L . To work around this limit,

Lindgren et al. (2011) propose to directly model the precision matrix Σ−1, which can

be well approximated by solving equation (1.45) with finite-element methods. Also

Σ−1 can be constrained to be sparse, and thus large and dense datasets sampled at

hundreds of thousands of locations can be handled. The framework also offers ground

to build new flexible models with varying dependence over space and time (Fuglstad

et al., 2015a,b). For inference, Lindgren et al. (2011) advocate a Bayesian framework

based on Laplace approximation, which they implement in the R-INLA package (Rue

et al., 2017).

With a Matérn dependence function, the corresponding semi-variogram is bounded

and thus it can only model random processes that are stationary of second order.

Schlather and Moreva (2017) introduced a model based on Bernstein polynomials

(Schilling et al., 2012), which bridges bounded and unbounded semi-variograms,

γB (h) = (1+‖h/τ‖α)β/α−1

2β/α−1
, h ∈RD , τ> 0, α ∈ (0,2], β� 2.

For this model, the parameter α determines the smoothness of the associated Gaus-

sian process, while β indicates long-range behaviour. Indeed, for β< 0, the variogram

has upper bound (1−2β/α)−1 and for β> 0, it is unbounded. Roughly speaking, γB

behaves like ‖h‖α at the origin and like ‖h‖β as ‖h‖→∞. This unifies many existing

models: the power variogram ‖h‖α when α=β, corresponding to a fractional Brown-

ian random field, the generalized Cauchy variogram (Gneiting and Schlather, 2004)

for β< 0, the logarithmic model (Schilling et al., 2012, p. 90) as β→ 0, and the nugget

model as α→ 0 and β� 0. Quoting Gelfand et al. (2010, p. 25), ‘the long-memory

behaviour is usually not relevant for interpolation purposes but can be critical for in-

ference’; this is even more true in the context of extremal processes, as we will explain
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1.6. Spatio-temporal extremal processes based on Gaussian random functions

in Section 1.6.2. For its flexibility, the Bernstein model is strongly recommended for

spatial analysis of extreme events.

So far, we have described isotropic dependence models only, but isotropy is rarely a

reasonable assumption in spatial statistics. All the aforementioned models can be

made anisotropic with the help of a deformation matrix Ω, using

γanisotropic(h) = γisotropic
(
Ω1/2h

)
,

where for instance in R2,

Ω=
[

cosη sinη

−a sinη a cosη

]
,

where a > 0 and η ∈ (−π/4,π/4] and Ω1/2 is such that Ω = Ω1/2Ω1/2. This type of

anisotropy is called geometrical because it relies on a deformation of the space based

on a dilation of scale a combined with a rotation of angle η. A second type of model for

anisotropy, called zonal anisotropy or stratified anisotropy (Wackernagel, 2003, p. 65),

was developed for applications where the empirical covariance function calculated

in different directions has different upper bounds. In this case, a variogram model is

fitted in one direction only, and then a geometrical anisotropic model is fitted to the

overall data, yielding for instance in R2,

γzonal(h) = γ1(h1)+γ2
(
Ω1/2h

)
, h = (h1,h2) ∈R2.

for which the corresponding Gaussian process X is composed of the sum of two

independent processes X1 and X2 with variograms γ1 and γ2 respectively.

Spatio-temporal models

We have reviewed classical isotropic dependence models along with some specific

cases of anisotropy. For spatio-temporal processes, the behaviour of the temporal

component is usually very different from the spatial components, and this charac-

teristic cannot be handled by the models presented so far. Thus, specific models for

space-time dependence functions have been developed.

In this section, we suppose that S is a subset of R2×[0,∞), and write (s, t ) ∈ S×R, where

s and t denote the spatial and the temporal coordinates respectively. The notation

{X (s, t ) : (s, t ) ∈ S} thus refers to a spatio-temporal random process. A covariance

function C , respectively a variogram function γ, on R2 ×R is separable if there exist
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1.6. Spatio-temporal extremal processes based on Gaussian random functions

covariance functions Cspace and Ctime, variogram γspace and γtime such that

C {(s1, t1), (s2, t2)} =Cspace(s1, s2)Ctime(t1, t2),

γ{(s1, t1), (s2, t2)} = γspace(s1, s2)+γtime(t1, t2).

Separable dependence functions are easily obtained by combining the isotropic mod-

els described in Table 1.1. However in practice, separability is often too simplistic, as

it does not account for space-time interactions.

Symmetry is also an important property for spatio-temporal dependence functions: a

random function {X (s, t ) : (s, t ) ∈ S} with a semi-variogram γ is fully symmetric if

γ(s, t ) = γ(s,−t ) = γ(−s, t ) = γ(−s,−t ), (s, t ) ∈ S ×R.

From practical perspective, with a fully symmetric random process, it is not possible to

detect whether the regionalized variable is moving forward or backward in space and

time. While such an assumption can be plausible in some cases, for instance when

modelling daily mean temperature, it is not a reasonable assumption for phenomena

that are under the influence of prevailing currents such as windstorms, rainstorms or

tides. A simple non-separable and fully symmetric covariance function is (Christakos

et al., 2000)

Cs−t(s, t ) =C

{(‖s‖2

τ1
+ t 2

τ2

)1/2}
, (s, t ) ∈ S ×R, τ1,τ2 > 0

where τ1,τ2 are anisotropy parameters for the space and time dimensions, and C is a

valid covariance function on R. Cressie and Huang (1999) propose also a wide and

flexible class of non-separable models, that were used by Huser and Davison (2014) to

model extreme rainfall.

Due to their complexity, few non-fully symmetric models exist, however for modelling

extreme windstorms in Europe, for which prevailing wind comes from the Atlantic

Ocean, such models are required. A physically motivated construction (Cox and

Isham, 1988) relies on the introduction of a wind vector V ∈R2, such that for any valid

covariance function C on R2,

CV (s, t ) =C (‖s −V t‖), (s, t ) ∈R2 × [0,∞).

The wind vector can be either randomly drawn from a bivariate distribution, or fixed,

in which case the model is known as the frozen field model. In Chapter 5, we use this

model to develop a stochastic weather generator for extreme windstorms.
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Chapter 1. Asymptotic tail distributions: theory and models

1.6.2 Extremal processes based on Gaussian random functions

Section 1.6.1 presented basic notions of spatio-temporal statistics necessary to build

heavy-tailed stochastic processes for extreme environmental events. We now describe

extremal processes that use covariance or semi-variogram functions to characterize

their dependence. Looking at Theorem 1.4 and the definition (1.27) of r -Pareto pro-

cesses, it is clear that modelling the dependence of an extremal process is equivalent

to specifying the distribution of the stochastic process W .

In the max-stable case, the spectral functions, denoted Wmax, take values in the set

of continuous functions F+ over S ⊂ r D , and satisfy E{Wmax(s)} = 1 for all s ∈ S and

E{sups∈S Wmax(s)} <∞, while for the r -Pareto process (1.27), the angular component,

denoted Wpot, refers to any process on the set of continuous functions over S with a

unit norm, and is linked to Wmax through the relation

Wpot =
[

Wmax

‖Wmax‖ang

]1/ξ

. (1.46)

Max-stable models were derived first so here presentation of extremal processes is

given in terms of Wmax, but equation (1.46) allows us to switch representations.

Smith model

The first spatial model, introduced by Smith (1990) and called the Gaussian extreme

value process, was physically inspired; the angular process was designed to represent

a deterministic storm shape randomly shifted in space, yielding

Wmax(s) =φ(s −U ,C ), s ∈ S

where φ(s,C ) is a Gaussian density on RD with mean zero and covariance function C ,

and U is uniformly distributed on S. For this model, the bivariate exponent measure

(1.12) of the corresponding max-table process Z at locations s1 and s2 is

ΛSmith
{

A2
∞(u)

}= 1

u1
Φ

(
a

2
+ 1

a
log

u2

u1

)
+ 1

u2
Φ

(
a

2
+ 1

a
log

u1

u2

)
, u1,u2 > 0,

where A2∞(u) = {x ∈R2 : max(x1/u1, x2/u2)� 1}, Φ is the standard Gaussian distribu-

tion function, and a2
h = (s1 − s2)Σ−1(s1 − s2) with Σi j =C (si , s j ), (i , j = 1,2). The Smith

model yields extremal coefficient θ(h) = 2Φ(ah/2) < 2, so the process is asymptotically

dependent but satisfies

θ(h) → 2, h →∞,
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1.6. Spatio-temporal extremal processes based on Gaussian random functions

which implies that the dependence weakens as the distance between the sites s1 and s2

grows, and reaches independence as h →∞. The speed of weakening is determined by

the covariance function C which can favour specific directions by using the anisotropic

dependence functions described in Section 1.6.1.

Owing to its computational tractability and its relative simplicity, the Smith model

was the first which was used in applications. Padoan et al. (2010) fit a Smith model to

extreme rainfall in the U.S., but the Gaussian kernel makes the process too smooth

to be realistic. For historical reasons, this extremal process is a standard in academic

examples. In Smith (1990), the multivariate t density function are proposed as an

alternative to the Gaussian kernel, but though more general, the corresponding model

suffers from a lack of flexibility. More general models have been developed, which we

now present.

Brown–Resnick model

A more realistic alternative to the Smith process is the Brown–Resnick model (Brown

and Resnick, 1977): let X be a zero-mean Gaussian process with stationary increments

and semi-variogramγ, and letσ2(s) = var{X (s)} for any s ∈ S. Then the limiting process

of component-wise maxima defined in Theorem 1.4 with the spectral functions

Wmax(s) = exp
{

X (s)−σ2(s)/2
}

, s ∈ S,

is a stationary Brown–Resnick process with standard Fréchet margins, whose distri-

bution depends only on γ (Kabluchko et al., 2009). In this case, the L-dimensional

exponent measure of the corresponding max-stable process at locations s1, . . . , sL is

(Huser and Davison, 2013)

ΛBR {A∞(u)} =
L∑

l=1

1

ul
Φ{ηl (u),Rl }, (1.47)

where A∞(u) = {x ∈ RL : max(x/u) � 1}, γl ,i denotes γ(sl , si ) (sl , si ∈ S), Φ(·,Rl ) is

the multivariate normal distribution function with zero mean and covariance ma-

trix Rl having (i , j ) entry (γl ,i +γl , j −γi , j )/{2(γl ,iγl , j )1/2}, with i , j ∈ {1, . . . , l − 1, l +
1, . . . ,L}, and ηl is the (L−1)-dimensional vector with i th component ηl ,i =

(
γl ,i /2

)1/2+
log(ui /ul )/(2γl ,i )1/2.

In Section 1.4.2 it was shown that the multivariate density function of the r -Pareto

process is closely related to the intensity function λ, which can be found by taking

partial derivatives of ΛBR{A∞(u)} with respect to u1, . . . ,uL. For the Brown–Resnick
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Chapter 1. Asymptotic tail distributions: theory and models

process, a closed form for λBR is (Engelke et al., 2015)

λBR(x) = |Σ|−1/2

x2
1 x2 · · ·xL(2π)(L−1)/2

exp

(
−1

2
x̃TΣ−1x̃

)
, x ∈RL

+, (1.48)

where x̃ is the (L − 1)-dimensional vector with components {log(xi /x1)+γi ,1 : i =
2, . . . ,D} and Σ is the (L −1)× (L −1) matrix with elements {γi ,1 +γ j ,1 −γi , j }i , j∈{2,...,L}.

Wadsworth and Tawn (2014) derive an alternative symmetric expression of (1.48),

which can be found in Appendix C and which will be useful in Chapter 2, but we prefer

equation (1.48) which is more readily interpreted.

The Brown–Resnick model has bivariate extremal coefficient

θ(h) = 2Φ

[{
γ(h)

2

}1/2
]

, h = s2 − s1;

θ(h) → 2 as h → ∞ only if γ(h) → ∞. Thus, asymptotic independence for infinite

distance between sites is possible only if the underlying Gaussian process is intrinsi-

cally stationary, whereas if the semi-variogram is bounded, i.e., γ(h) →σ2 as h →∞,

then the extremal coefficient has the upper bound 2{1−Φ (σ/2)}. The long range

behaviour of the variogram determines extremal dependence at far distances, while,

as explained in Section 1.6.1, its behaviour at the origin determines the smoothness of

the process. Figure 1.1 illustrates the importance of these mathematical properties of

the variogram and their impact on the appearance of a r -Pareto process.

For classical models the long-range dependence and the smoothness of the process

are driven by only one parameter, for instance the shape parameter α in the power

variogram, and will most likely fail to produce realistic simulations in practice. For

this reasons, flexible models such as the Bernstein variogram are required so that the

smoothness and long-range behaviour are governed by more than one parameter.

Oesting et al. (2017b) propose the ‘gigogne’ variogram model

γ(h) = γmatern(h)+ ‖h‖2

(1+‖h‖2)α
, h ∈R2,

where γmatern drives the behaviour of the variogram at the origin while the second

term determines the long range behaviour with the parameter α. Modelling spatio-

temporal extremes requires very precise properties for variogram models and thus

opens up a field of research for flexible parametric models that can capture both the

smoothness and the middle to long distance behaviour of the process.
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Figure 1.1 – Simulated r -Pareto process with risk functional r (x) = maxs∈S x(s) and
different semi-variogram models. The intensity is fixed to a 100-year return level for
each simulation: Top: γ(h) = ‖h/λ‖α with α = 1.8, λ = 30 (left) and α = 0.5, λ = 1
(right) ; Bottom: γ(h) = 2

{
1−exp(−‖h/λ‖α)

}
with α = 1.8, λ = 30 (left) and α = 0.5,

λ= 1 (right).

Schlather model

Schlather (2002) proposed to construct the angular process Wmax by taking the positive

part of a stationary Gaussian process X with zero mean, unit variance and covariance

function C , i.e.,

Wmax(s) = (2π)1/2 max{X (s),0}, s ∈ S. (1.49)

In this case, similarly to a Gaussian random field, the smoothness of the resulting max-

stable process is driven by the behaviour of C at the origin. The bivariate exponent

measure of the corresponding max-stable process Z at locations s1 and s2 is

ΛSchalther
{

A2
∞(u)

}= 1

2

(
1

u1
+ 1

u2

)(
1+
[

1−2
{1+C (s1 − s2)}u1u2

(u1 +u2)2

])
, u1,u2 > 0,

where A2∞(u) = {x ∈R2 : max(x1/u1, x2/u2)� 1}, which yields the extremal coefficient

θ(h) = 1+ [{1−C (h)}/2]1/2, with upper bound 1.838 when S ⊂R2 (Davison and Gho-

lamrezaee, 2012). The corresponding model is thus always asymptotically dependent

and, from a practical point of view, the probability of observing an exceedance at

location s2 knowing that there is an excess at location s1 decreases to a minimum of
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Chapter 1. Asymptotic tail distributions: theory and models

0.162. This particularity of the Schlather model might not be realistic when studying

physical processes over large regions, where we expect the probability to decrease to

zero as the distance grows arbitrarily large. Schlather (2002) proposed to alleviate this

by introducing random sets that ensure that extremes at sites sufficiently far apart

are close to independence. This approach was successfully applied by Huser and

Davison (2014) to model extreme rainfall in Switzerland, but statistical inference on

the random set is difficult and thus is limited to problems of small size.

Extremal-t model

The extremal-t model (Opitz, 2013a), which appears as limit of component-wise

maxima for all elliptical random functions, is characterized by the angular process

Wmax(s) =π1/22−(ν−2)/2 max{X (s),0}ν, s ∈ S,

where ν> 0 and X is a stationary Gaussian process X with unit variance and correla-

tion function C . We see that for ν= 1 we retrieve (1.49), which makes the extremal-t

model a direct generalization of the Schlather model, and if we consider the limit

case where we let ν→∞, we obtain a Brown–Resnick model (Nikoloulopoulos et al.,

2009). The bivariate exponent measure of the corresponding max-stable process Z at

locations s1 and s2 is (Ribatet and Sedki, 2013)

Λt
{

A2
∞(u)

}= 1

u1
tν+1

{
−C (h)

b
+ 1

b

(
u2

u1

)1/ν
}
+ 1

u2
tν+1

{
−C (h)

b
+ 1

b

(
u1

u2

)1/ν
}

,u1,u2 > 0,

where A2∞(u) = {x ∈ R2 : max(x1/u1, x2/u2) � 1}, tν+1 is the standard distribution

function of a t distribution with ν+1 degree of freedom and b2 = {1+C (h)2}/(ν+1).

This yields the extremal coefficient

θ(h) = 2tν+1

[
(ν+1)1/2

{
1−C (h)

1+C (h)

}1/2
]

, (1.50)

from which we deduce that θ(h)� 2tν+1
{
(ν+1)1/2

}
, so the resulting max-stable pro-

cess is asymptotically dependent, a limitation similar to that of the Schlather model

for applications in large regions if ν is too small.

A closed form for the L-dimensional exponent measure at locations s1, . . . , sL has been

derived by Nikoloulopoulos et al. (2009) :

Λt
{

AL
∞(u)

}= L∑
l=1

u−1
l tν+1

{
u−l

ul
−Σ−l ,l , (ν+1)−1

(
Σ−l ,−l −Σ−l ,lΣ

T
−l ,l ,

)}
,
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1.7. Discussion

where AL∞(u) = {x ∈RL : max(x/u)� 1}, Σ= {C (sl−sk )}l ,k=1,...,L is the correlation matrix

of the underlying Gaussian process X and tν+1(·,Σ) is the distribution function of a

zero mean multivariate t distribution with ν+1 degrees of freedom and covariance

matrix Σ. Thibaud and Opitz (2015) derived the corresponding intensity function,

λt(x) = ν1−Lπ(1−L)/2

|Σ|−1/2

Γ{(ν+L)/2}

Γ{(ν+1)/2}

(
L∏

l=1
|xl |
)1/ν−1 {

T1/ν(x)TΣ−1T1/ν(x)
}−(ν+D)/2

, x ∈RL ,

(1.51)

where T1/ν(x) = sign(x)|x|1/ν, and used it to develop a censored likelihood inference

procedure, similar to those presented in Chapter 2.

1.7 Discussion

This chapter has introduced notions required to study extreme environmental events.

We first described the univariate asymptotic distributions of block maxima and thresh-

old exceedances. For applications in the environment univariate quantities are limited

as they do not capture the spatio-temporal nature of physical processes. Thus, the

max-stable process is presented as functional generalization of the generalized ex-

treme value distribution. We reviewed the main properties of this family of processes,

which have been successfully applied in environmental studies.

For risk estimation and mitigation, regulators and (re-)insurers might often prefer

models for single extreme events. For this reason, we presented the r -Pareto pro-

cess which generalizes peaks-over-thresholds analysis to functions. The proofs of

the original construction by Dombry and Ribatet (2015) were revisited and we em-

phasized their limitations from the perspective of applications. Indeed, the r -Pareto

process is limited to the Fréchet domain of attraction, while its univariate counterpart,

the generalized Pareto distribution, covers the three possible regimes of tail decay.

Chapter 4 generalizes the r -Pareto process to become the functional equivalent of the

generalized Pareto distribution. Also, in this framework we defined the risk through

the aggregation of the original process by a risk functional. In practice, the joint

distribution of more than one aggregations might be of interest, for instance when

modelling the cumulative rainfall over several catchments of a river. In Chapter 3, we

derive the multivariate asymptotic tail distribution of a family of risk functionals and

apply this result to estimate the local tail behaviour of extreme temperature in the

South of France from aggregated data.

Catalogues of extreme historical events are commonly used for risk estimation of

natural hazards. One way to enlarge these catalogues is stochastic weather generators,
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Chapter 1. Asymptotic tail distributions: theory and models

for which classical models rely on Gaussian processes and therefore fail to accurately

reproduce extreme events. However, a class of extremal processes whose dependence

is driven by Gaussian random fields has been developed, and so we presented the

basic results of spatial statistics with classical models of dependence functions. Then,

we introduced extremal processes, highlighting their strengths and limitations with

an emphasis on the requirements for the semi-variogram function to build realistic

stochastic weather generators: flexible dependence models that can capture both

local and mid- to long-range extremal behaviour need to be further developed.

For environmental applications, we must be able to handle large datasets, such as

climate model outputs, and thus statistical inference in high-dimensions, around

a few thousand, must be possible. Chapter 2 reviews existing techniques for fitting

an extremal process, but these methods are usually limited, either theoretically or

computationally, to a few dozen locations. For this reason, we develop alternative

methodologies that can handle large datasets.
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2 High-dimensional peaks-over-
threshold inference

This chapter is a postprint version of the article ‘High-dimensional peaks-over-threshold

inference’ written with Anthony Davison and published in Biometrika (de Fondeville

and Davison, 2018). Some parts of this chapter may be redundant with other sections

of the thesis, but we decided to keep the chapter self-standing for clarity. Only light

modifications were performed for consistency with the rest of the thesis.

2.1 Introduction

Recent contributions to extreme value theory describe models capable of handling

spatio-temporal phenomena (e.g., Kabluchko et al., 2009) and provide a flexible frame-

work for modelling rare events, but their complexity makes inference difficult, if not

intractable, for high-dimensional data. For instance, the number of terms in the block

maximum likelihood for a Brown–Resnick process grows with dimension D like the

Bell numbers (Huser and Davison, 2013), so computationally cheaper methods like

composite likelihood (Padoan et al., 2010) or the inclusion of partition information

(Stephenson and Tawn, 2005; Thibaud et al., 2016) have been advocated. The first is

slow and, though more efficient, the second is liable to bias if the partition is incorrect

(Wadsworth, 2015).

An attractive alternative to the use of block maxima is peaks-over-threshold analy-

sis, which includes more information by focusing on single extreme events. In the

multivariate case, specific definitions of exceedances have been used (e.g., Rootzén

and Tajvidi, 2006; Ferreira and de Haan, 2014; Engelke et al., 2015), which can be

unified within the framework of r -Pareto processes (Dombry and Ribatet, 2015). For

this approach, a full likelihood is often available in closed form, thus increasing the

maximum number of variables that can be jointly modelled from a handful to a few

dozen, but biased estimation may occur if non-extreme components are included.
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Chapter 2. High-dimensional peaks-over-threshold inference

Censored likelihood, proposed in this context by Wadsworth and Tawn (2014), is

more robust with regard to non-extreme observations, but it involves multivariate

normal distribution functions, which can be computationally expensive. Nevertheless,

inference is feasible for D ≈ 30.

Nonparametric alternatives to full likelihood inference developed using the tail de-

pendence coefficient (Davis and Mikosch, 2009; Davis et al., 2013a) or the stable tail

dependence function (Einmahl et al., 2016a) rely on pairwise estimators and allow

peaks-over-threshold inference for D ≈ 100, but are potentially inefficient and may be

limited by combinatorial considerations.

Applications of max-stable processes (e.g., Asadi et al., 2015) or Pareto processes

(Thibaud and Opitz, 2015) have focused on small regions and have used at most a

few dozen locations with particular types of exceedance, but exploitation of much

larger gridded datasets, along with more complex definitions of risk, is needed for

a better understanding of extreme events and to reduce model uncertainties. The

goals of this paper are to highlight the advantages of functional peaks-over-threshold

modelling using r -Pareto processes, to show the feasibility of high-dimensional infer-

ence for the Brown–Resnick model with hundreds of locations, and to compare the

robustness of different procedures with regard to finite thresholds. We develop an

estimation method based on the gradient score (Hyvärinen, 2005) for a general notion

of exceedances, for which the computation of multivariate normal probabilities is not

needed and computational complexity is driven by matrix inversion, as with classical

Gaussian likelihood inference. This method focuses on single extreme events and a

general notion of exceedance, modelled by Pareto processes, instead of the max-stable

approach.

2.2 Modelling exceedances over a high threshold

2.2.1 Functional regular variation

Let S be a compact metric space, such as [0,1]2 for spatial applications. We write

F+ =C {S, [0,∞)} for the closed subset of the Banach space of continuous functions x :

S →R endowed with the uniform norm ‖x‖ = sups∈S |x(s)|, F0 for F with the singleton

{0} excluded, and B(Ξ) for the Borel σ-algebra associated to a metric space Ξ. Let MF0

denote the class of Borel measures on B(F0), and say that a set A ∈B(F0) is bounded

away from {0} if d(A, {0}) = infx∈A ‖x‖ > 0. A sequence of measures {Λn} ⊂ MF0 is said

to converge to a limit Λ ∈ MF0 (Hult and Lindskog, 2005), if limn→∞Λn(A) =Λ(A), for

all A ∈B(F0) bounded away from {0} with Λ(∂A) = 0, where ∂A denotes the boundary
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2.2. Modelling exceedances over a high threshold

of A. For equivalent definitions of this so-called ŵ-convergence, see Lindskog et al.

(2014, Theorem 2.1).

Regular variation provides a flexible mathematical setting in which to characterize

the tail behaviour of random processes in terms of ŵ-convergence of measures. A

stochastic process X with sample paths in F0 is regularly varying (Hult and Lindskog,

2005) if there exists a sequence of positive real numbers a1, a2, . . . with limn→∞ an =∞,

and a measure Λ ∈ MF0 such that

n Pr
(
a−1

n X ∈ ·)→Λ(·), n →∞; (2.1)

then we write X ∈ RV(F0, an ,Λ). For a normalized process X ∗, obtained for instance

by standardizing the margins of X to unit Fréchet (Coles and Tawn, 1991, Section 5)

or unit Pareto (Klüppelberg and Resnick, 2008), regular variation is equivalent to the

convergence of the renormalised pointwise maximum n−1 maxn
i=1 X ∗

i of independent

replicates of X ∗ to a non-degenerate process Z∗, with unit Fréchet margins and

exponent measure Λ∗ (de Haan and Lin, 2001). The process Z∗ is called simple

max-stable, and X ∗ is said to lie in the max-domain of attraction of Z∗.

Regular variation also impacts the properties of exceedances over high thresholds.

For any nonnegative measurable functional r : F0 → [0,∞) and stochastic process

{X (s)}s∈S , an r -exceedance is defined to be an event {r (X ) > un} where the threshold

un is such that Pr{r (X ) > un} → 0 as n →∞. We further require that r is homogeneous,

i.e., there exists κ> 0 such that r (ax) = aκr (x), for a > 0 and x ∈F0. As r (·) could be

replaced by r (·)1/κ without loss of generality, below we assume that κ= 1. Dombry

and Ribatet (2015) called r a cost functional and in his 2013 Université de Montpellier

II PhD thesis Thomas Opitz called it a radial aggregation function, but we prefer the

term risk functional because r determines the type of extreme event whose risk is to

be studied.

A natural formulation of subsequent results on r -exceedances uses a pseudo-polar

decomposition. For a norm ‖·‖ang onF0, called the angular norm, and a risk functional

r , a pseudo-polar transformation Tr is a map such that

Tr :F0 → [0,∞)×Sang, Tr (x) =
{

r ′ = r (x), w = x

‖x‖ang

}
,

where Sang is the unit sphere {x ∈F0 : ‖x‖ang = 1}. If r is continuous and T is restricted

to {x ∈ F0 : r (x) > 0}, then T is a homeomorphism with inverse T −1
r (r ′, w) = r ′ ×

w/r (w).

Theorem 2.1 in Lindskog et al. (2014) provides an equivalent pseudo-polar formula-
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Chapter 2. High-dimensional peaks-over-threshold inference

tion of equation (2.1). For any X ∈ RV(F0, an ,Λ) and any uniformly continuous risk

functional r not vanishing Λ-almost everywhere, there exist ξ> 0 and a measure σr

on B(Sang) such that

n Pr

[
T −1

r

{
a−1

n r (X ),
X

‖X ‖ang

}
∈ ·
]
→Λ◦T −1

r (·) =Λξ×σr (·), n →∞, (2.2)

where Λξ[r ′,∞) = (r ′)−1/ξ and σr (·) =Λ
{

x ∈F0 : r (x) ≥ 1, x/‖x‖ang ∈ (·)} is called the

angular measure. The converse holds if {x ∈F0 : r (x) = 0} =� (Lindskog et al., 2014,

Corollary 4.4).

The functional r (x) = sups∈S x(s), used by Rootzén and Tajvidi (2006) in a multivariate

setting and by Ferreira and de Haan (2014) for continuous processes, implies that

realisations of X (s) exceeding the threshold at any location s ∈ S are labelled extreme,

but this functional can only be used in applications where X (s) is observed throughout

S. Thus it may be preferable to use functions such as maxs∈S′ X (s) or maxs∈S′ X (s)/u(s),

where S′ ⊂ S is a finite set of gauged sites. Other risk functionals include
∫

S X (s)d s for

the study of areal rainfall (Coles and Tawn, 1996), mins∈S′ X (s)/u(s), or X (s0) for risks

impacting a specific location s0. Although the choice of risk functional allows a focus

on particular types of extreme event, the choice of the angular norm ‖ · ‖ang has no

impact and is usually made for convenience.

Finally, for a common angular norm ‖·‖ang, the angular measures of two risk function-

als r1 and r2 that are strictly positive Λ-almost everywhere are linked by the expression

σr1 (d w) =
{

r1(w)

r2(w)

}1/ξ

σr2 (d w), d w ∈B(Sang). (2.3)

Equation (2.3) is useful for simulation and when we are interested in r2-exceedances

but inference has been performed based on r1. All the previous definitions and results

hold for finite dimensions, i.e., for D-dimensional random vectors, by replacing ŵ-

convergence by vague convergence (Resnick, 2007, Section 3.3.5) on MRD+ \{0}, the class

of Borel measures on B(RD+ \ {0}) endowed with the ‖ · ‖ norm; see the PhD thesis of

Thomas Opitz mentioned above.

2.2.2 r -Pareto processes

In this section, r denotes a functional that is nonnegative and homogeneous with

α= 1. The r -Pareto processes (Dombry and Ribatet, 2015) are important for modelling
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2.2. Modelling exceedances over a high threshold

exceedances, and may be constructed as

P =U
W

r (W )
, (2.4)

where U is a univariate Pareto random variable with Pr(U > r ′) = (r ′)−1/ξ (r ′ ≥ 1) and

W is a random process with sample paths in Sr
ang = {x ∈ F0 : r (x) ≥ 1,‖x‖ang = 1}

and probability measure σang. The process P is then called an r -Pareto process with

tail index ξ > 0 and angular measure σang; in order to distinguish different Pareto

processes, below we use the notation P r
ξ,σr

for P .

An important property of r -Pareto processes is threshold-invariance: for all A ∈B({x ∈
F0 : r (x) ≥ 1}) and all u ≥ 1 such that Pr{r (P ) ≥ u} > 0,

Pr
{
u−1P ∈A | r (P ) ≥ u

}= Pr(P ∈A) . (2.5)

Furthermore, for X ∈ RV(F0, an ,Λ) with index ξ> 0 and for a risk functional r that is

continuous at the origin and does not vanish Λ-almost everywhere, the distribution

of the r -exceedances converges weakly to that of a r -Pareto process, i.e.,

Pr
{
u−1X ∈ · | r (X ) ≥ u

}→ Pr
(
P r
ξ,σr

∈ ·
)

, u →∞, (2.6)

with tail index ξ and probability measure σr defined in (2.2) (Dombry and Ribatet,

2015, Theorem 2). When working with a normalized process X ∗, the exponent mea-

sure Λ∗ of the limiting max-stable process Z∗ and the measure Λ1 ×σr of the Pareto

process are equal up to a coordinate transform, as suggested by equation (2.2).

For two different risk functionals r1 and r2 and angular measures σr1 and σr2 for which

there exists Λ ∈ MF0 such that

Λ◦T −1
r1

(·) =Λ◦T −1
r2

(·),

the associated Pareto processes P r1
ξ,σr1

and P r2
ξ,σr2

are defined on different subsets of

F0, but, as suggested by equation (2.3), if there exists a threshold umin such that

{x ∈F0 : r1(x) ≥ umin} ⊂ {x ∈F0 : r2(x) ≥ 1},

then

Pr

⎧⎨⎩ P r1
ξ,σr1

u
∈ ·
∣∣∣∣∣∣r2

(
P r1
ξ,σr1

)
≥ u

⎫⎬⎭= Pr
(
P r2
ξ,σr2

∈ ·
)

, u ≥ umin. (2.7)

Simulation of r -Pareto processes is feasible only for a few risk functionals, such as

r1(x) = ‖x‖1, but equation (2.7) can be used to obtain samples of one process from
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Chapter 2. High-dimensional peaks-over-threshold inference

those of another: for independent replicates x1, . . . , xN from P r1
ξ,σr1

, {yn = xn/umin :

r2(yn)� 1} is a sample from P r2
ξ,σr2

.

Finally, let σr be a probability measure on Sr
ang, and define the process

M(s) = max
n∈N

U n W n(s)

r (W n)
, s ∈ S, (2.8)

where {U n : n ∈N} is a Poisson process on (0,∞) with intensity u−2du and W 1,W 2, . . .

are replicates of a process W with probability measure σr . Then M is a max-stable

process with exponent measure Λ {Amax(x)} = Λ1 ×σr {Amax(x)}, where Amax(x) ={
y ∈F0 : sups∈S y(s)/x(s) ≥ 1

}
. Thus equation (2.8) connects r -Pareto processes and

their max-stable counterparts.

2.2.3 Extreme value processes associated to log-Gaussian random

functions

We focus on a class of r -Pareto processes based on log-Gaussian stochastic processes,

whose max-stable counterparts are Brown–Resnick processes. This class is particularly

useful, not only for its flexibility but also because it is based on Gaussian models widely

used in applications. Chiles and Delfiner (2012, p. 84–108) review these classical

models.

Let Z be a zero-mean Gaussian process with stationary increments, i.e., the semi-

variogram γ(s, s′) = E[{Z (s)−Z (s′)}2]/2 (s, s′ ∈ S) depends only on the difference s − s′

(Chiles and Delfiner, 2012, p. 30), and let σ2(s) = var{Z (s)}. If Z 1, Z 2, . . . are indepen-

dent replicates of Z and {U n : n ∈ N} is a Poisson process on (0,∞) with intensity

u−2du, independent of the Z n , then

M(s) = max
n∈N

U n exp{Z n(s)−σ2(s)/2}, s ∈ S, (2.9)

is a stationary Brown–Resnick process with standard Fréchet margins, whose depen-

dence is driven only by γ (Kabluchko et al., 2009); such processes are max-stable. Let

γθ denote a parametrized semi-variogram whose parameter θ lies in a compact set Θ,

and let σ2
θ

denote the corresponding variance function.

Let s1, . . . , sL be locations of interest in S. In the rest of the paper, x denotes an element

of RL+ with components xl ≡ x(sl ) (l = 1, . . . ,L). The finite-dimensional exponent
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2.3. Inference for r -Pareto processes

measure Λθ(·) of a simple Brown–Resnick process with L variables is

Λθ {Amax(x)} = E

[
max

l=1,...,L

{
Z (sl )−σ2

θ
(sl )/2

xl

}]
, (2.10)

where Λθ(·) is the finite-dimensional projection of the measure defined in (2.1). Then

we can write (Huser and Davison, 2013)

Λθ {Amax(x)} =
L∑

l=1

1

xl
Φ{ηl (x),Rl }, (2.11)

where ηl is the (L − 1)-dimensional vector with i th component ηl ,i =
(
γl ,i /2

)1/2 +
log(xi /xl )/(2γl ,i )1/2, γl ,i denotes γ(sl , si ) (sl , si ∈ S), and Φ(·,Rl ) is the multivariate

normal distribution function with zero mean and covariance matrix Rl having (i , j )

entry (γl ,i +γl , j −γi , j )/{2(γl ,iγl , j )1/2}, where i , j ∈ {1, . . . , l −1, l +1, . . . ,L}.

The r -Pareto processes associated to log-Gaussian random functions are closely re-

lated to the intensity function λθ corresponding to the measure Λθ, which can be

found by taking partial derivatives of Λθ(x) with respect to x1, . . . , xL , yielding (Engelke

et al., 2015)

λθ(x) = |Σθ|−1/2

x2
1 x2 · · ·xL(2π)(L−1)/2

exp

(
−1

2
x̃TΣ−1

θ x̃

)
, x ∈RL

+, (2.12)

where x̃ is the (L − 1)-dimensional vector with components {log(xi /x1)+γi ,1 : i =
2, . . . ,L} and Σθ is the (L−1)× (L−1) matrix with elements {γi ,1 +γ j ,1 −γi , j }i , j∈{2,...,L}.

Wadsworth and Tawn (2014) derive an alternative symmetric expression for (2.12) that

will be useful in Section 2.3.3, but Equation (2.12) is more readily interpreted. Similar

expressions exist for extremal-t processes (Thibaud and Opitz, 2015).

2.3 Inference for r -Pareto processes

2.3.1 Generalities

In this section, x1, . . . , xN are independent replicates of an L-dimensional r -Pareto

random vector P with tail index ξ= 1 and y1, . . . , y N are independent replicates of a

regularly-varying L-dimensional random vector Y ∗ with normalized margins.

As in the univariate setting, statistical inference based on block maxima and the max-

stable framework discards information by focusing on maxima instead of single events.

These models are difficult to fit not only due to the small number of replicates, but
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Chapter 2. High-dimensional peaks-over-threshold inference

also because the likelihood is usually too complex to compute in high dimensions

(Castruccio et al., 2016). For the Brown–Resnick process, the full likelihood cannot be

computed for L greater than around ten (Huser and Davison, 2013), except in special

cases. When the occurrence times of maxima are available, inference is typically

possible up to L ≈ 30 (Stephenson and Tawn, 2005; Thibaud et al., 2016).

A useful alternative is composite likelihood inference (Padoan et al., 2010; Varin et al.,

2011) based on subsets of observations of sizes smaller than L, which trades off a

gain in computational efficiency against a loss of statistical efficiency. The number

of possible subsets increases very rapidly with L, and their selection can be vexed,

though some statistical efficiency can be retrieved by taking higher-dimensional

subsets. Castruccio et al. (2016) found higher-order composite likelihoods to be more

robust than the spectral estimator, but in realistic cases these methods are limited to

fairly small dimensions.

Estimation based on threshold exceedances and the Pareto process has the advan-

tages that individual events are used, the likelihood function is usually simpler, and

the choice of the risk functional can tailor the definition of an exceedance to the

application. Equation (2.2) suggests that the choice of risk functional should not affect

the estimates, but this is not entirely true, because the threshold cannot be taken arbi-

trarily high and the events selected depend on the risk functional, the choice of which

enables the detection of mixtures in the extremes and can improve sub-asymptotic

behaviour by fitting the model using only those observations closest to the chosen

type of extreme event. For example, we might expect the extremal dependence of

intense local rainfall events to differ from that of heavy large-scale precipitation, even

in the same geographical region.

The probability density function of a Pareto process for r -exceedances over the thresh-

old vector u ∈ RL+ can be found by rescaling the intensity function λθ by Λθ{Ar (u)},

yielding

λr
θ,u(x) = λθ(x)

Λθ{Ar (u)}
, x ∈Ar (u), (2.13)

where

Λθ{Ar (u)} =
∫
Ar (u)

λθ(x)d x, (2.14)

and Ar (u) is the exceedance region
{

x ∈RL+ : r (x/u) ≥ 1
}
. Equation (2.13) yields the

loglikelihood

�(θ; x1, . . . , xN ) =
N∑

n=1
1

{
r

(
xn

u

)
≥ 1

}
log

[
λθ(xn)

Λθ{Ar (u)}

]
, (2.15)
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2.3. Inference for r -Pareto processes

where division of vectors is component-wise and 1 denotes the indicator function.

Maximization of � gives an estimator θ̂r (x1, . . . , xN ) that is consistent, asymptotically

normal and efficient under mild conditions.

Numerical evaluation of the L-dimensional integral Λθ{Ar (u)} is generally intractable

for large L, though it simplifies for certain risk functionals; an example is r (x) =
maxl xl , for which the integral is a sum of multivariate probability functions; see Equa-

tion (2.11). Similarly, Λθ{Ar (u)} does not depend upon θ when r (x) = L−1∑
d xd (Coles

and Tawn, 1991); we call the corresponding version of (2.15) the spectral loglikelihood

and its maximiser the spectral estimator.

In practice observations cannot be assumed to be exactly Pareto distributed; it is

usually more plausible that they lie in the domain of attraction of some extremal

process. As a consequence of Theorem 3.1 of de Haan and Resnick (1993), asymptotic

properties of θ̂r (x1, . . . , xN ) hold for θ̂r (y1, . . . , y N ) as N → ∞ and u → ∞ with the

number of exceedances Nu = o(N ) →∞; see Section 2.3.3. However, the threshold u

is finite and thus low components of yn ∈Ar (u) may lead to biased estimation. As it

is due to model mis-specification, this bias is unavoidable, and moreover, it grows

with L, so these methods can perform poorly, especially if the extremal dependence is

weak, as it is then more likely that at least one component of yn will be small (Engelke

et al., 2015; Thibaud and Opitz, 2015; Huser et al., 2016). The bias can be reduced by a

censored likelihood proposed in the multivariate setting by Joe et al. (1992) and used

for the Brown–Resnick model by Wadsworth and Tawn (2014) and for the extremal-t

process by Thibaud and Opitz (2015). This method works well in practice but typically

requires the computation of multivariate normal and t probabilities, which can be

challenging in realistic cases if standard code is used. Some modest changes to the

code to perform quasi-Monte Carlo maximum likelihood estimation with hundreds

of locations are described in Section 2.3.2.

For spatio-temporal applications, inference for r -Pareto processes must be performed

using data from thousands of locations, and in Section 2.3.3 we discuss an approach

that applies to a wide range of risk functionals and is computationally fast, statistically

efficient and robust with regard to finite thresholds.

2.3.2 Efficient censored likelihood inference

Censored likelihood estimation for extreme value process associated to log-Gaussian

random functions was developed by Wadsworth and Tawn (2014) and is based on

equation (2.15) with maxl xl /ul as risk functional and where any component lying

below the threshold vector (u1, . . . ,uL) > 0 is treated as censored. The corresponding

57



Chapter 2. High-dimensional peaks-over-threshold inference

estimator has a higher variance but a lower bias than the spectral estimator. The

censored likelihood density function for the Brown–Resnick process is (Asadi et al.,

2015)

λcens
θ,u (x) = 1

Λθ{Amax(u)}

1

x2
1 x2 · · ·xk

φk−1(x̃2:k ;Σ2:k )ΦL−k {μcens(x1:k ),Σcens(x1:k )},

(2.16)

where x ∈Amax(u), k components exceed their thresholds, x̃2:k and Σ2:k are subsets

of the variables x̃ and Σθ in equation (2.12), and φk−1 and ΦL−k are the multivariate

Gaussian density and distribution functions with mean zero. The argument and

covariance matrix for ΦL−k are

μcens(x1:k ) = {log(u j /x1)+γ j ,1} j=k+1,...,L −Σ(k+1):L,2:kΣ
−1
2:k,2:k x̃2:k ,

Σcens(x1:k ) = Σ(k+1):L,(k+1):L −Σ(k+1):L,2:kΣ
−1
2:k,2:kΣ2:k,(k+1):L .

Wadsworth and Tawn (2014) derived similar expressions. The estimator

θ̂cens(y1, . . . , y N ) = argmax
θ∈Θ

∑
n=1,...,N

1

{
max

l

( yn
l

ul

)
≥ 1

}
logλcens

θ,u (yn), (2.17)

is also consistent and asymptotically normal as u →∞, N →∞, Nu →∞ with Nu =
o(N ). For finite thresholds, θ̂cens has been found to be more robust to the presence

of low components than the spectral estimator (Engelke et al., 2015; Huser et al.,

2016), but it is awkward due to the potentially large number of multivariate normal

integrals involved, thus far limiting its application to L � 30 (Wadsworth and Tawn,

2014; Thibaud et al., 2016).

When maximizing the right-hand side of equation (2.17), the normalizing constant

Λθ{Amax(u)} described in equation (2.10) and the multivariate normal distribution

functions require the computation of multidimensional integrals. Theorem 7 of Geyer

(1994) suggests that we approximate θ̂cens by maximizing

�
p
cens(θ) =

N∑
n=1

1

{
max

(
xn

u

)
≥ 1

}[
log

{
φk−1(x̃2:k ;Σ2:k )

(xn
1 )2xn

2 · · ·xn
k

}
+ log

Φ
p
L−k {μcens(xn

1:k ),Σcens(xn
1:k )}

Λ
p
θ

{Amax(u)}

]
,

where Φ
p
L−k and Λ

p
θ

are Monte Carlo estimates of the corresponding integrals based

on p simulated samples, yielding a maximizer θ̂p
cens that converges almost surely to

θ̂cens as p →∞.

Classical Monte Carlo estimation for multivariate integrals yields a probabilistic error
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2.3. Inference for r -Pareto processes

bound that is O(ωp−1/2), where ω = ω(φ) is the square root of the variance of the

integrand φ. Quasi-Monte Carlo methods can achieve higher rates of convergence

and thus improve computational efficiency while preserving the consistency of θ̂p
cens.

For estimation of multivariate normal distribution functions, Genz and Bretz (2009,

Section 4.2.2) advocate the use of randomly-shifted deterministic lattice rules, which

can achieve a convergence rate of order O(p−2+ε) for some ε> 0. Lattice rules rely on

regular sampling of the hypercube [0,1]L , taking

zq = |2× frac(qv ′ +Δ)−1|, q = 1, . . . , p, (2.18)

where frac(z) denotes the component-wise fractional part of z ∈RL , p is a prime num-

ber of samples in the hypercube [0,1]L , v ′ ∈ {1, . . . , p}L is a carefully-chosen generating

vector and Δ ∈ [0,1]L is a uniform random shift. Fast construction rules exist to find

an optimal v ′ for given numbers of dimensions L and samples p (Nuyens and Cools,

2004). The existence of generating vectors achieving a nearly optimal convergence

rate, with integration error independent of the dimension, has been proved and

methods for their construction exist (Dick and Pillichshammer, 2010).

Our implementation of this approach applied to equation (2.17) and coupled with

parallel computing is tractable for L of the order of a few hundred; see Appendix B.1.

Our algorithm extends to the extremal-t model by writing multivariate t probabilities

in terms of the multivariate normal distribution function; see Genz and Bretz (2009)

for more details.

2.3.3 Score matching

Classical likelihood inference requires either evaluation or simplification of the scaling

constant Λθ{Ar (u)}, whose complexity increases with the number of dimensions.

Hence we seek alternatives that do not require its computation.

Let S be a sample space such as RL+, P a convex class of probability measures on S ,

and X a random variable with distribution F ∈S . A proper scoring rule (Gneiting and

Raftery, 2007) is a functional δ :P ×S →R such that

Δδ(G ,F ) = EX {δ(G , X )}−EX {δ(F, X )}� 0, G ∈P . (2.19)

The scoring rule is said to be strictly proper if Δδ(G ,F ) = 0 if and only if G = F , and,

under this hypothesis, Δδ defines a divergence measure on P (Thorarinsdottir et al.,

2013).

Let δ denote a strictly proper scoring rule, let {Fθ : θ ∈Θ} ⊂S be a parametric family of
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distributions, and let X 1, . . . , X N be independent observations from Fθ0 . The first term

of the divergence Δδ(Fθ,Fθ0 ) can be estimated by

δ(θ) = 1

N

N∑
i=1

δ(Fθ, X i ),

minimization of which defines an unbiased and asymptotically normal estimator of

θ0 (Dawid et al., 2016, Theorem 2) under suitable regularity conditions; see Huber

(1967), Barndorff-Nielsen and Cox (1994, Section 9.2), or Molenberghs and Verbeke

(2005, Section 9.2.2). Consequently, for a risk functional r , the estimator

θ̂r
δ,u(X 1, . . . , X N ) = argmin

θ∈Θ

N∑
n=1

1

{
r

(
X n

u

)
> 1

}
δ

(
λr
θ,u ,

X n

u

)
, (2.20)

is also consistent and asymptotically normal. Owing to de Haan and Resnick (1993,

Propositions 3.1, 3.2), these asymptotic properties can be generalized to samples from

a regularly-varying random vector with normalized marginals; see Appendix B.6 for

the proof.

Proposition 2.1 Let Y 1, . . . ,Y N be independent replicates of a regularly-varying ran-

dom vector Y ∗ with normalized marginals and limiting measure Λθ0 and let δ be a

strictly proper scoring rule. Under suitable regularity conditions, if N →∞ and Nu →∞
in such a way that Nu/N → 0 as N →∞, then

Nu
1/2
{
θ̂r
δ,N /Nu

(
Y 1, . . . ,Y N )−θ0

}
→N {

0,K −1 J (K −1)T }
in distribution, where

J = E

{
∂δ(θ)

∂θ

∂δ(θ)

∂θT

}∣∣∣∣
θ=θ0

, K = E

{
∂2δ(θ)

∂θ∂θT

}∣∣∣∣
θ=θ0

. (2.21)

Estimates of the Godambe information matrix K J−1K can be used for inference, and

the scoring-rule ratio statistic

V δ = 2

⎧⎨⎩∂δ (θ0)

∂θ
−
∂δ
(
θ̂r
δ,N /Nu

)
∂θ

⎫⎬⎭ ,

properly calibrated, can be used to compare nested models (Dawid et al., 2016, Sec-

tion 4.1).

The log-likelihood is the proper scoring rule associated to the Kullback–Leibler di-
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vergence. Although efficient, it is not robust with respect to model misspecifications,

which is problematic for fitting asymptotic models like Pareto processes, and a closed

form for the normalizing coefficient Λθ{Ar (u)} defined in equation (2.14) is avail-

able only in special cases. The gradient scoring rule (Hyvärinen, 2005) uses only the

derivative ∇x logλr
θ,u , and thus does not require computation of Λθ{Ar (u)}. Hyväri-

nen (2007) adapted this scoring rule for strictly positive variables, and we propose to

extend it to any domain of the form Ar (u) = {x ∈RL+ : r (x/u) ≥ 1}, using the divergence

measure

Δgrad(θ,θ0) =
∫

Ar (u)
‖∇x logλθ(x)⊗w(x)−∇x logλθ0 (x)⊗w(x)‖2

2 λθ0 (x)d x, (2.22)

where λθ is differentiable for all θ ∈Θ on Ar (u) \∂Ar (u), ∂A denotes the boundary

of A, ∇x is the gradient operator, w :Ar (u) →RL+ is a positive weight function, and ⊗
denotes the Hadamard product. If w is differentiable on Ar (u), and satisfies certain

boundary conditions discussed in Appendix B.2, then the scoring rule

δw (λθ, x) =
L∑

l=1

(
2wl (x)

∂wl (x)

∂xl

∂ logλθ(x)

∂xl
+wl (x)2

[
∂2 logλθ(x)

∂x2
l

+ 1

2

{
∂ logλθ(x)

∂xl

}2
])

(2.23)

for x ∈Ar (u) is strictly proper. The gradient score for a log-Gaussian Pareto process

satisfies the regularity conditions for Theorem 2 in Dawid et al. (2016), so the resulting

estimator θ̂w is asymptotically normal.

For the Brown–Resnick model, two possible weight functions are

w 1
l (x) = xl

[
1−e−{r (x/u)−1}] , w 2

l (x) = {1−e−3(xl−ul )/ul
}[

1−e−{r (x/u)−1}] , l = 1, . . . ,L,

(2.24)

where r is a risk functional differentiable on RL+ and the threshold vector u lies in

RL+. The weights w 1 are derived from Hyvärinen (2007), whereas w 2 is designed

to approximate the effect of censoring by down-weighting components of xn near

u. These weighting functions are well-suited for extremes: a vector x ∈ Ar (u) is

penalized if r (x/u) is close to 1, and low components of x induce low weights for

the associated partial derivatives. For these reasons, inference using δw with the

weighting functions in equation (2.24) should be more robust to low components than

is the spectral estimator. The estimator θ̂w is much cheaper to compute than θ̂cens

and can be obtained for any risk functional differentiable on RL+. Expressions for the

gradient score for the Brown–Resnick model can be found in Appendix B.3, and the

performances of these inference procedures are compared in Section 2.4.

The gradient score can be applied to any extremal model with a multivariate density

function whose logarithm is twice differentiable away from the boundaries of its
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support, and if these display discontinuities on this support then a carefully chosen

weighting function w ensures the existence and the consistency of the score. Indeed,

similar expressions can be derived for the extremal-t model, though choices for the

weight functions are more restricted: w 2 satisfies the boundary conditions, but w 1

does not ensure that the score is proper.

2.4 Simulation study

2.4.1 Exact simulation

The inference procedures and simulation algorithms described herein are wrapped in

an R package, mvPot (de Fondeville, 2016) available on CRAN.

We first illustrate the feasibility of high-dimensional inference by simulating r -Pareto

processes associated to log-normal random functions at L locations in S = [0,100]2.

Details of the algorithm can be found in Appendix B.7.

We use an isotropic power semi-variogram, γ(s, s′) = (‖s − s′‖/τ
)α /2, shape parame-

ters α= 0.5,1,1.3,1.8, and scale parameter τ= 2.5, chosen such that the dependence

models defined on S cover strong to weak extremal dependence. For this simulation,

the dependence model withα= 1.8 requires us to work on the log-scale to avoid round-

ing errors. For each simulation, N = 10,000 r -Pareto processes, with r (x) = L−1∑
l xl ,

were simulated on regular 10×10, 20×10 and 20×15 grids. The grid size was restricted

to at most 300 locations for ease of comparison with the second simulation study. For

the gradient score, we use r (x) = L−1∑
l x(sl ). The components of the threshold vector

u are taken equal to the empirical 0.99 quantile of r (x1), . . . ,r (xN ), giving Nu = 100. For

censored likelihood inference, we use the approach described in Appendix B.1.2 with

p̄ = 10 and threshold u equal to the empirical 0.99 quantile of maxl x1
l , . . . ,maxl xN

l , so

that conditions for equation (2.7) are satisfied. One hundred replicates are used in

each case.

Table 2.1 gives the relative root mean square error for estimation based on the censored

loglikelihood and the gradient score with weights w 1 and w 2, compared to that based

on the spectral estimator. For all the methods and parameter combinations, bias is

negligible and performance is mainly driven by the variance. As expected, efficiency is

lower than 100% because when simulating and fitting from the true model, the spectral

estimator performs best. The gradient score and censored likelihood estimators

deteriorate as the extremal dependence weakens and the number of low components

in the simulated vectors increases. The gradient score outperforms the censored

likelihood except when censoring is low, i.e., when α = 0.5. The performance of
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Table 2.1 – Relative root mean square error (%) for comparison of estimates based on
censored loglikelihood (left) and the gradient score with weights w 1 (middle) and w 2

(right) relative to spectral estimates, for the parameters α and τ= 2.5. Efficiency of
100% would correspond to the spectral estimator, and smaller values to less efficient
estimators. Inference is performed using the top 1% of 10,000 Pareto processes with
semi-variogram γ(s, s′) = (‖s − s′‖/τ

)α /2 simulated on regular 10× 10, 20× 10 and
20×15 grids.

Shape α

Grid size α= 0.5 α= 1 α= 1.3 α= 1.8
10×10 53/46/44 10/32/33 4.7/39/39 1.0/51/52
20×10 67/51/52 10/25/24 5.4/34/35 1.0/54/55
20×15 67/47/47 11/30/31 4.1/25/25 1.4/49/49

Scale τ

Grid size α= 0.5 α= 1 α= 1.3 α= 1.8
10×10 52/58/57 19/60/59 10/63/66 1.7/53/53
20×10 41/80/79 17/70/70 9.2/71/70 3.3/52/51
20×15 38/68/69 17/82/81 7.1/62/61 3.9/51/52

censored likelihood estimation deteriorates when L increases, suggesting that the

gradient score will be preferable in high dimensions. These results does, however, not

reflect real case studies, since the data are simulated from the model fitted, whereas in

practice the model is used as a high-threshold approximation to the data distribution.

The optimization of the likelihood based on the spectral density and gradient score

functions takes only a dozen seconds even for the finest grid. The same random

starting point is used for each optimization to ensure fair comparison. Estimation

using the censored approach takes several minutes and slows greatly as the dimension

increases; see Appendix B.4.

2.4.2 Domain of attraction

As in practice the asymptotic regime is never reached, we now compare the robust-

ness of each inference procedure for finite thresholds. The Brown–Resnick process

belongs to its own max-domain of attraction, so its peaks-over-threshold distribution

converges to a generalized Pareto process with log-Gaussian random function. We

repeat the simulation study of Section 2.4.1 with 10,000 Brown–Resnick processes and
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Table 2.2 – As Table 2.1 but with inference based on the top 1% of 10,000 simulated
Brown–Resnick processes. “NC” means that optimization does not converge.

Shape α

Grid size α= 0.5 α= 1 α= 1.3 α= 1.8
10×10 154/111/81 473/183/108 196/170/105 NC
20×10 172/122/95 413/150/114 309/181/137 144/168/122
20×15 142/119/99 369/133/110 314/170/140 163/173/137

Scale τ

Grid size α= 0.5 α= 1 α= 1.3 α= 1.8
10×10 107/127/116 263/38/35 109/231/452 NC
20×10 105/133/119 206/94/80 315/66/53 105/336/261
20×15 104/138/126 173/102/90 290/92/46 103/211/144

the same parameter values. This simulation uses the algorithm of Dombry et al. (2016)

and is computationally expensive, so we used only 300 variables. It took around three

hours using 16 cores to generate N = 10,000 samples on the finest grid.

Table 2.2 shows the results. As expected when the model is misspecified, the root

relative mean square error is mainly driven by bias, which increases with the shape

α and the dimension L. Spectral estimation is overall outperformed by both other

methods. For α= 0.5, the three methods show fairly similar overall performance, with

the censored likelihood better capturing the shape parameter, whereas the gradient

score does better for the scale. The moderate extremal dependence cases, with α=
1 and 1.3, are dominated by the censored likelihood, whereas for weak extremal

dependence, α= 1.8, the gradient score performs best, because too much information

is lost by censoring. For the 100-point grid, the optimization procedures do not

converge when the extremal dependence is too weak. The choice of the weighting

function w affects the robustness of the gradient score. Computation times are similar

to those in 2.4.1.

Quantile-quantile plots show that the score-matching estimators are very close to

normally distributed, but censored likelihood estimates can deviate somewhat from

normality due to the quasi-Monte Carlo approximation; this can be remedied by

increasing the value of p.

To summarise: for strong extremal dependence, the three types of estimator are

roughly equivalent. For moderate extremal dependence, we recommend using the
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censored likelihood if the number of variables permits, this is L � 500 with our compu-

tational capabilities, though if extremal independence is reached at far distances and

the grid is dense, the gradient score is an excellent substitute. Owing to its robustness

and lack of dimensionality limitations, the gradient score appears to be the best choice

for gridded applications with fine resolution. Empirical work suggests that it can be

robustified by careful design of the weight function.

2.5 Extreme rainfall over Florida

2.5.1 General

We fit an r -Pareto process based on the Brown–Resnick model to radar measurements

of rainfall taken every 15 minutes during the wet season, June–September, from 1999

to 2004 on a regular 2 km grid in a 120 km×120 km region of east Florida; see Figure 2.2.

There are 3,600 spatial observations in each radar image, and 70,272 images in all.

The region was chosen to repeat the application of Buhl and Kluppelberg (2016), but

in a spatial setting only; a spatio-temporal model is outside the scope of the present

paper. Buhl and Kluppelberg (2016) analysed daily maxima for 10 km×10 km squares,

but we use non-aggregated data to fit a non-separable parametric model for spatial

extremal dependence, using single extreme events instead of daily maxima.

The marginal distributions for each grid cell were first locally transformed to unit

Pareto using their empirical distribution functions. For general application, where

we wish to extrapolate the distribution above observed intensities, a model for the

marginal distributions of exceedances is needed, but since our goal here is to illustrate

the feasibility of dependence model estimation on dense grids, we regard marginal

modelling as outside the scope of this study.

2.5.2 Multivariate extremal dependence model

The spatial model of Buhl and Kluppelberg (2016) is fully separable, i.e., it is a sum

of two separate semi-variograms. This has the advantage that inference for each

direction can be performed separately, but it cannot capture anisotropy that does

not follow the axis of the grid, i.e., is not in the South-North or East-West directions.

Furthermore their pairwise likelihood approach focuses on short-distance pairs, and

so might mis-estimate dependence at longer distances. To better capture possible
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anisotropy, we use the non-separable semi-variogram

γ(si , s j ) =
∥∥∥∥Ω(si − s j )

τ

∥∥∥∥α , si , s j ∈ [0,120]2, i , j ∈ {1, . . . ,3600}, 0 <α� 2,τ> 0,

(2.25)

and anisotropy matrix

Ω=
[

cosη −sinη

a sinη a cosη

]
, η ∈

(
−π

4
,
π

4

]
, a > 0. (2.26)

The semi-variogram γ achieves asymptotic extremal independence as the distance

between sites tends to infinity, i.e., the pairwise extremal index increases to 2 as

‖s − s′‖→∞.

To apply peaks-over-threshold methodology, we must define exceedances by choosing

risk functionals. We focus on two types of extremes: local very intense rainfall at any

point of the region, and high cumulative rainfall over the whole region. We therefore

take the risk functionals

rmax(X ∗) =
{

3600∑
l=1

X ∗(sl )20

}1/20

, rsum(X ∗) =
{

3600∑
l=1

X ∗(sl )ξ0

}1/ξ0

.

The function rmax is a differentiable approximation to maxd X (sd ), which cannot be

used with the gradient score because of its non-differentiability. Censored likelihood

is computationally out of reach with so many locations. Directly summing normalized

observations X ∗ makes no physical sense, so our function rsum, which selects extreme

events with large spatial extent, attempts to transform the data back to the original

scale; we take ξ0 = 0.114, which is the average of independent local estimates of a

generalized Pareto distribution.

We fitted univariate generalized Pareto distributions to rsum(x∗n) and rmax(x∗n) (n =
1, . . . ,70,272) with increasing thresholds. The estimated shape parameters are stable

around the 99.9 percentile, which we used for event selection, giving 59 exceedances;

just two events were found to be extreme relative to both risk functionals. This

threshold may appear rather high, but it corresponds to around 10 events per year,

which seems reasonable in light of the time-frame. Here we merely illustrate the

feasibility of high-dimensional inference, so we treat them as independent, but in

practice temporal declustering should be considered.

Optimization of the gradient score with the w 1 weighting function on a 16-core cluster

took from 1 to 6 hours, depending on the initial point. Different initial points must be

considered because of the possibility of local maxima. Results are shown in Table 2.3,
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Table 2.3 – Parameter estimates (standard errors) for an r -Pareto process derived from
log–Gaussian random functions with the semi-variogram γ(s, s′) = {‖Ω(s − s′)‖/τ

}α
obtained by maximization of the gradient score for events corresponding to 59 highest
exceedances of the risk functionals rsum and rmax for the Florida radar rainfall data.
Standard errors are obtained using a jackknife with 20 blocks.

Risk functional α τ η a
rsum 0.814 (0.036) 25.63 (4.70) −0.009 (0.458) 1.059 (0.031)
rmax 0.955 (0.048) 3.540 (0.67) −0.316 (0.410) 0.940 (0.029)

where standard deviations are obtained using a jackknife procedure with 20 blocks.

Both the estimated bias and variance are fairly low. For rsum(X ∗), we obtain a model

similar to that of Buhl and Kluppelberg (2016).

The estimated parameters differ appreciably for the two risk functionals, suggest-

ing the presence of a mixture of types of extreme events. The structure for rmax is

consistent with the database, in which the most intense events tend to be spatially

concentrated. Our model suggests higher dependence for middle distances than was

found by Buhl and Kluppelberg (2016), but they note that their model underestimates

dependence, especially for high quantiles. The estimated smoothness parameters are

very close, and neither estimate of η differs significantly from zero, as imposed by Buhl

and Kluppelberg (2016). For rsum, the estimated parameters show strong extremal de-

pendence even at long distances, corresponding to exceedances of cumulated rainfall

with large spatial cover. As â ≈ 1, there is no evidence of anisotropy.

2.5.3 Model checking and simulation

For model checking, we propose to use the conditional exceedance probability,

πi j = Pr
[

X ∗(s j ) ≥ u′ | {X ∗(si ) ≥ u′}∩ {r (X ∗/u) ≥ 1}
]= 2

[
1−Φ

{(
γi j

2

)1/2
}]

, (2.27)

where γi , j is the semi-variogram for sites si and s j (i , j = 1, . . . ,3600), as defined

in (2.11) and u′ > 0. An empirical estimator of πi j is

π̂i j =
∑N

n=1 1
[{

r (x∗n/u) ≥ 1
}∩{x∗n

i ≥ u′}∩{x∗n
j ≥ u′

}]
∑N

n=1 1
[
{r (x∗n/u) ≥ 1}∩{x∗n

i ≥ u′}] , (2.28)
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Figure 2.1 – Estimated conditional exceedance probability πi j for the risk functional
rsum (left) and rmax (right) as a function of the distance between locations si and s j ,
i , j = 1, . . . ,3600. The solid black line represents the model fitted using gradient score
estimation.

whose asymptotic behaviour derives from Davis and Mikosch (2009). For both risk

functionals, the fitted model, represented by the solid black lines in Figure 2.1, follows

the cloud of estimated conditional exceedance probabilities reasonably well and

captures the general trend, but fails to represent some local variation, perhaps due to

a lack of flexibility of the power model.

Finally, we use the models fitted in Section 2.5.2 to simulate events with intensities

equivalent to the weakest of the 59 events found by our risk functionals. Simula-

tion is performed by generating the corresponding r -Pareto process with the fitted

dependence structure, as in Section 2.4.1. Figure 2.2 compares observations from

the database and representative simulations, which seem to successfully reproduce

both the spatial dependence and the intensity of the selected observations. A closer

examination suggests that in both cases the models produce over-smooth rainfall

fields. This could be addressed by improving event selection using risk functionals r

that characterize special spatial structures or physical processes. Although we fail to

detect anisotropy, more complex models for dependence that allow stochasticity of

the spatial patterns might be worthwhile.

These models can reproduce both spatial patterns and extreme intensity for spatially

accumulated and local heavy rainfall. In both cases the fitted dependence model

provides a reasonable fit and simulations seem broadly consistent with observations.

However, the presence of two contrasting dependence structures highlights the com-

plexity of extreme rainfall and suggests that a mixture model for both dependence

and margins might be considered. Marginal and dependence parameters are often
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Figure 2.2 – Fifteen-minute cumulated rainfall (inches), observed (first row) and
simulated (second row) for the risk functionals rsum (left) and rmax (right) with an
intensity equivalent to the 59th most intense event.

estimated separately, but with the presence of mixtures, which can be detected using

different risk functionals, joint estimation is required, which is outside the scope of

this paper. For this reason and because we neglected the temporal dependence, our

model is merely a first step towards a spatio-temporal rainfall generator.
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3 Extremal behaviour of aggregated
data

This chapter is a postprint version of the article ‘Extremal Behaviour of Aggregated

Data with an Application to Downscaling’ written with Sebastian Engelke and Marco

Oesting. This paper has been accepted for publication in Biometrika (Engelke et al.,

2019). Some parts of this chapter may be redundant with other sections of the thesis,

but we decided to keep the chapter self-standing for clarity. Only light modifications

were performed for consistency with the rest of the thesis.

3.1 Introduction

Spatial extreme value models and, especially, max-stable processes, are widely applied

to assess risks in environmental science. These processes are motivated by the study

of

Mn(s) = max
i=1,...,n

Xi (s)−bs(n)

as(n)
, s ∈ S, (3.1)

where X1, . . . , Xn are independent observations of a continuous process X , modelling a

phenomenon of interest such as rainfall or temperature on some region S. The scaling

functions as(n) > 0 and bs(n) ∈ R, n ∈ N, are both continuous in s ∈ S. Functional

limits obtained from this construction as n →∞, named max-stable processes, are

appealing models for spatial extremes. Their realizations, however, are composed of

different single events Xi , which prohibits direct interpretation and renders efficient

inference and simulation challenging (e.g., Dombry et al., 2016; Thibaud et al., 2016).

It is often more natural to study threshold exceedances, or, more precisely, the extremal

behaviour of r (Xi ) (i = 1, . . . ,n), where r is a functional on the space of continuous

functions on S. For instance, Buishand et al. (2008) consider the daily rainfall over a

certain region S, and therefore choose r (X ) =∫S X (s)ds. Using the same functional,

Coles and Tawn (1996) relate the tail of the distribution of the integral to the tail of the
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distribution at a single location, and Ferreira et al. (2012) formalize this idea through

the so-called reduction factor. For general homogeneous functionals r , Dombry

and Ribatet (2015) characterize the functional limits of threshold exceedances u−1X

conditional on r (X ) > u, for a high threshold u.

In this paper we follow Coles and Tawn (1996) and Ferreira et al. (2012) and investigate

the tail behaviour of more general functionals r . Under certain conditions, we show

that for sufficiently large n

Pr

[
r (X )− r {bs(n)}

r {as(n)}
> x

]
≈ θr Pr

{
X (s0)−bs0 (n)

as0 (n)
> x

}
, x ∈R, s0 ∈ S, θr > 0. (3.2)

Thus, the tail of the r -functional of X behaves like the tail at an individual location

times a reduction factor θr , which we call the r -extremal coefficient. In different

contexts, the interpretation of θr might differ, but it summarizes the effect of spatial

extremal dependence in X on the risk diversification through the functional r .

The r -extremal coefficient relates the tail of the univariate random variable r (X ) to

the multivariate or spatial extremal dependence in X . This functional perspective

has the advantage of producing return level estimates that are consistent with respect

to the underlying structure of X , even when considering different aggregation func-

tionals applied to X . Indeed, for functionals r1, . . . ,rL, we study the multivariate tail

behaviour of {r1(X ), . . . ,rL(X )}, which turns out to be in the max-domain of attraction

of a multivariate max-stable distribution.

Popular models for the functional limit of the maxima Mn in (3.1) are Brown–Resnick

processes, which take a role in spatial extremes similar to Gaussian processes in

classical geostatistics. The reason for this is that the former are essentially the only

such limits when X is a stationary Gaussian process and an additional rescaling is

allowed (Kabluchko et al., 2009). This connection can be exploited to perform efficient

inference (Wadsworth and Tawn, 2014; Engelke et al., 2015; Thibaud and Opitz, 2015)

and simulation (Dombry et al., 2013, 2016; Oesting et al., 2017a) for Brown–Resnick

processes based on densities and sampling algorithms of Gaussian random vectors.

In our framework, this link to Gaussian distributions allows us to use results from the

geostatistical literature on data aggregation (e.g., Wackernagel, 2003) to obtain explicit

expressions for θr and the extremal dependence in {r1(X ), . . . ,rL(X )} if the limiting

process Z in (3.1) is Brown–Resnick with Gumbel margins.

An important consequence is that our findings allow us to recover the tail distribution

of X based only on information from the aggregated vector. This is similar to inferring

the extremal dependence of X based only on extremal coefficients (Schlather and
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Tawn, 2003). In meteorology, for instance, large-scale climate models provide only

data over grid cells, but practical questions require risk assessment at point locations

such as cities. Techniques to perform this transition from large to small scales are

summarized under the notion of downscaling. In the second part of the paper we

propose a statistical downscaling method to infer the tail behaviour of the underlying

stochastic process X in a spatially consistent way based on aggregated data. Relevant

outputs are the exceedance probabilities at point locations and simulations of spatial

extreme events of X , both unconditionally and conditionally on the observed aggre-

gated extremes. We apply this procedure to coarse-scale gridded temperature data in

the south of France from the e-obs data set (Haylock et al., 2008). The fitted model

provides fine-resolution simulations of the warmest day during the 2003 heatwave,

conditionally on the observed grid values.

3.2 Limit results for extremes of aggregated data

3.2.1 Background on extremes

Let S be a compact subset of a complete separable metric space, and let C (S) denote

the space of real-valued continuous functions on S equipped with the supremum

norm ‖ ·‖∞, defined by ‖x‖∞ = sups∈S |x(s)|, and the corresponding Borel σ-algebra

C (S).

We consider a continuous stochastic process {X (s) : s ∈ S}, which we assume to

be in the max-domain of attraction of a max-stable process with common extreme

value index ξ ∈R. More precisely, for independent copies X1, . . . , Xn of X , there exist

functions as : (0,∞) → (0,∞) and bs : (0,∞) →R, both continuous in s ∈ S, such that

as n →∞, the process Mn of componentwise maxima defined in (3.1) converges in

distribution on the space C (S), i.e.,

L
{

max
i=1,...,n

Xi (s)−bs(n)

as(n)
, s ∈ S

}
−→

⎧⎨⎩L{sgn(ξ)Z (s)ξ, s ∈ S}, ξ 
= 0,

L{log Z (s), s ∈ S}, ξ= 0,
(3.3)

where L(η) denotes the law of a process η. By definition, the process Z in the limit

is max-stable, and it is simple in the sense that it has unit Fréchet margins (de Haan

and Ferreira, 2006, Chapter 9). Moreover, for any s ∈ S, the margin X (s) is in the

max-domain of attraction of an extreme value distribution

Gξ(x) =
⎧⎨⎩exp

[−{sgn(ξ)x}−1/ξ
]

, ξ 
= 0,

exp
{−exp(−x)

}
, ξ= 0,

(3.4)
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for all x ∈R with xξ≥ 0. The different distributions are called (1/ξ)-Fréchet for ξ> 0,

Gumbel for ξ= 0 and (−1/ξ)-Weibull for ξ< 0. The assumption of a spatially constant

ξ in (3.3) is usually reasonable in applications and common in the literature since it

is required to obtain meaningful theoretical results: when ξ is allowed to vary over

space, the asymptotic distribution of r (X ) is driven only by the location(s) in S with

the largest tail index.

According to its spectral representation (cf., de Haan, 1984; Giné et al., 1990; Penrose,

1992),

Z (s) = max
i∈N

Ui Wi (s), s ∈ S, (3.5)

where {Ui : i ∈N} are the points of a Poisson point process on (0,∞) with intensity

measure u−2du and the spectral functions Wi (i ∈N) are independent copies of some

non-negative, continuous process {W (s), s ∈ S} with E{W (s)} = 1 for all s ∈ S.

Below we assume that in the Fréchet case X (s) possesses a finite lower endpoint

x∗(s) >−∞ (s ∈ S), and, due to the continuity of X , the infimum infs∈S X (s) is bounded

from below on the compact domain S.

Example 3.1 Let S be a compact subset of RD , D � 1 and let {G(s) : s ∈ S} be a centred

Gaussian process with variogram γ(s, s′) = var{G(s)−G(s′)}. A Brown–Resnick process

is the max-stable process Z in (3.5) where the spectral functions follow the distribution

of

W (s) = exp[G(s)−var{G(s)}/2] , s ∈ S.

The distribution of Z only depends on the variogram γ, and for s1, . . . , sm ∈ S, the finite

dimensional distribution of {Z (s1), . . . , Z (sm)} is called the Hüsler–Reiss distribution

(Hüsler and Reiss, 1989) with parameter matrix Γ = {γ(s j , sk )} j ,k=1,...,m; more details

can be found in Appendix C.2.1 and in Brown and Resnick (1977), Kabluchko et al.

(2009) and Kabluchko (2011).

3.2.2 Univariate limiting distributions of aggregated data

We first derive the univariate asymptotic distribution of aggregated data. Following

Ferreira et al. (2012), we assume that the normalizing functions as(t ) can be decom-

posed asymptotically into positive functions A(s) and a(t ) in the sense that

sup
s∈S

∣∣∣∣as(t )

a(t )
− A(s)

∣∣∣∣=
⎧⎨⎩o(1), ξ 
= 0,

0, ξ= 0,
(3.6)
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where o(1) → 0 as t →∞. For data aggregation, we consider a positive homogeneous

functional r : C (S) →R, i.e., r satisfies r (ax) = ar (x) for all a > 0, x ∈C (S). We further

assume that r is uniformly continuous and monotone, i.e., r (x) ≤ r (x ′) if x(s) ≤ x ′(s)

for all s ∈ S.

The following theorem is a particular case of Theorem 3.2. Alternatively it can be

proved similarly to Ferreira et al. (2012, Theorem 2.1).

Theorem 3.1 Let r be a positive homogeneous, monotone and uniformly continuous

functional on C (S), which for ξ≤ 0 is assumed to be linear. If (3.3) and (3.6) hold, then

lim
t→∞ t Pr

[
r (X )− r {b·(t )}

a(t )r (A)
> x

]
=
⎧⎨⎩θr

ξ
|x|−1/ξ, ξ 
= 0,

θr
0 exp(−x) , ξ= 0,

x ∈R, xξ≥ 0, (3.7)

where for ξ 
= 0 and ξ= 0

θr
ξ = E

[{
r (AW ξ)

r (A)

}1/ξ]
, θr

0 = E

[
exp

{
r (A logW )

r (A)

}]
, (3.8)

respectively. For ξ > 0 we may always choose bs(t) ≡ 0, and for ξ < 0 we can use

bs(t ) = x∗(s), where x∗(s) is the upper endpoint of the distribution of X (s) (s ∈ S).

Remark 3.1 Theorem 3.1 is formulated for threshold exceedances, but can be refor-

mulated to describe the limiting behaviour of maxn
i=1 r (Xi ), for independent copies

X1, . . . , Xn of X .

Remark 3.2 For ξ ≤ 0, the functions W ξ and logW may take the value −∞ if W is

not strictly positive. The terms in (3.8) then contain expressions of the type r (x) for

continuous functions x : S →R∪ {−∞}, which we interpret as r (x) = infx ′>x r (x ′). If this

value is −∞, the expression inside the expectations in (3.8) is 0, i.e., θr
ξ

is not necessarily

positive.

We call the quantity θr
ξ

the r -extremal coefficient, as it describes the change of the

upper tail of the r -aggregated data compared to the tail of the univariate marginal

data. Our definition of θr
ξ

in Theorem 3.1 contains a normalization by r (A), making it

invariant under multiplication of r by a constant and thus simplifying interpretation.

Indeed,

θr
ξ = lim

u→∞
Pr{r (X )/r (A) > u}

Pr{X (s0)/A(s0) > u}
, ξ> 0, s0 ∈ S.
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In general, θr
ξ

summarizes the effect of the spatial extremal dependence in X on the

diversification of risk through the functional r . Both the dependence and the marginal

tail index ξ affect the coefficient θr
ξ

, which we stress in Theorem 3.1 and henceforth

through the index ξ.

The concept of the r -extremal coefficient extends and unifies various notions in

extreme value statistics and applied sciences such as extremal coefficients, diversifi-

cation factors in portfolios and areal reduction factors. We present these and other

examples for illustration, always assuming that X satisfies the conditions of Theorem

3.1.

Example 3.2 The important case where S ⊂R2 is a compact region and

r (x) = |S|−1
∫

S
x(s)ds

was first studied in Coles and Tawn (1996) and Buishand et al. (2008) in the framework

of total areal rainfall, and then formalized by Ferreira et al. (2012). In this case of a

spatial average, the coefficient θr
ξ
= θ

avg
ξ

is popular in environmental science, where

it is called the areal reduction factor. Hydrologists use it to convert quantiles of point

rainfall to quantiles of total rainfall over a river catchment. If the spectral functions

W are almost surely strictly positive then this coefficient satisfies 0 < θ
avg
ξ

≤ 1 for ξ≤ 1,

and θ
avg
ξ

≥ 1 for ξ≥ 1 (Ferreira et al., 2012, Prop. 2.2), so average rainfall is less extreme

than point rainfall if the marginal distributions have finite expectation, as typically

encountered in practice, and more extreme if they have infinite expectation.

Example 3.3 If S = {s1, . . . , sm} is a finite set and r (x) =∑m
i=1 ci x(si ) is a weighted sum

with fixed c1, . . . ,cm ≥ 0, then Zhou (2010) and Mainik and Embrechts (2013) computed

the corresponding coefficient θr
ξ

for ξ > 0. In this setup, X (si ) (i = 1, . . . ,m) are inter-

preted as dependent, heavy-tailed risk factors, and θr
ξ

represents the diversification

in the portfolio P =∑m
i=1 ci X (si ). More precisely, the value-at-risk of P for high levels

α → 1 can be expressed as the value-at-risk of a single factor times a constant that

involves the r -extremal coefficient θr
ξ

. Theorem 3.1 yields an analogous result also for

light-tailed risk factors.

Example 3.4 Another well-known example is the case of S = {s1, . . . , sm} being a finite

set and r (x) = maxm
i=1 x(si ). If A(s1) = ·· · = A(sm), then θr

ξ
= E

{
maxm

i=1 W (si )
}

corre-

sponds to the classical extremal coefficient (Schlather and Tawn, 2003), a number

between 1 and m that is usually interpreted as the number of asymptotically indepen-

dent random variables among X (s1), . . . , X (sm). A similar interpretation applies if S
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is an arbitrary compact subset, and θr
ξ
= E{maxs∈S W (s)} is a spatial extension of the

classical extremal coefficient.

Example 3.5 As a last example, we consider energy functionals of r (x) = {
∫

S x2(s)ds}1/2,

for x ≥ 0, which appear in various applications in physics. In the case of X being a

wind field, r 2(X ) represents the integrated kinetic energy over a region S, which is an

indicator for the potential damage caused by the corresponding storm event (e.g., Powell

and Reinhold, 2007).

The expressions in (3.8) for the r -extremal coefficient are expected values of functions

of the spectral process W . The distribution of the latter is known for most popular

models, and it includes truncated Gaussian processes (Schlather, 2002; Opitz, 2013a)

and log-Gaussian processes (Brown and Resnick, 1977; Kabluchko et al., 2009), for

instance. Numerical evaluation of θr
ξ

is thus readily implemented through simulation

of W . In the important case of ξ= 0 and W corresponding to a log-Gaussian process,

we obtain a closed-form expression for θavg
0 .

Example 3.6 Suppose that ξ= 0 and Z is a Brown–Resnick process on a compact set

S ⊂RD , as introduced in Example 3.1. The extremal coefficient of the spatial average

then is

logθavg
0 =−

∫
S

∫
S A(s)A(t )γ(s, t )dsdt

4
{∫

S A(s)ds
}2 . (3.9)

Let D = 1 and S = [0,T ], T > 0, and let A ≡ 1 be constant over S. For the popular power

variogram model γ(s, t ) = |(s − t )/τ|α with α ∈ (0,2],τ> 0, we obtain

θ
avg
0 = exp

{
− T α

2τα(α+1)(α+2)

}
.

This expression tends to zero if the length of the domain T →∞, meaning that the distri-

bution of the average eventually has a much lighter tail than the marginal distributions.

This strong diversification effect can be explained by the fact that the Brown–Resnick

process with power variogram is mixing (cf., Kabluchko and Schlather, 2010).

3.2.3 Multivariate limiting distributions of aggregated data

In the previous section we derived the univariate tail distribution of data aggregated

through a functional r . In applications we often observe data through several different

functionals, e.g., the integrals over not necessarily disjoint areas. The consistency

of return level estimates discussed in the introduction has even more important
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implications when different risk functionals are applied to the data. The univariate tail

of each aggregation could be estimated separately, but the dependence between the

tails would not be captured. We therefore consider arbitrary positive homogeneous,

uniformly continuous functionals r1, . . . ,rL : C (S) → R, and we aim to describe the

multivariate tail behaviour of the vector (r1(X ), . . . ,rL(X )). The proof of the following

theorem is given in Appendix C.1.

Theorem 3.2 Let r1, . . . ,rL be a positive homogeneous, monotone and uniformly con-

tinuous functionals on C (S), which for ξ≤ 0 are assumed to be linear. If (3.3) and (3.6)

hold, then for ξ 
= 0 and all xi ∈R with ξxi > 0 (i = 1, . . . ,L)

lim
t→∞ t Pr

(
L⋃

j=1

[
r j (X )− r j {b·(t )}

a(t )r j (A)
> x j

])
= E

⎡⎣ L∨
j=1

{
r j (AW ξ)

|x j |r j (A)

}1/ξ
⎤⎦ , (3.10)

and for ξ= 0 and x1, . . . , xL ∈R,

lim
t→∞ t Pr

(
L⋃

j=1

[
r j (X )− r j {b·(t )}

a(t )r j (A)
> x j

])
= E

[
L∨

j=1
exp

{
−x j +

r j (A logW )

r j (A)

}]
. (3.11)

Theorem 3.2 states that the vector {r1(X ), . . . ,rL(X )} of aggregations is in the max-

domain of attraction of the multivariate max-stable distribution with exponent mea-

sure given by the right-hand side of (3.10) or (3.11), respectively. For the j th margin,

for ξ 
= 0, the scale of the Weibull or Fréchet distribution is (θ
r j

ξ
)ξ, and for ξ = 0 the

location parameter of the Gumbel distribution is logθ
r j

0 . This recovers the univari-

ate results in Theorem 3.1. For details on multivariate domains of attraction and

exponent measures, see Resnick (1987, Chapter 5). In general this max-stable distribu-

tion is not available in closed form, but for the purpose of evaluating risk regions for

{r1(X ), . . . ,rL(X )}, it can be approximated by Monte Carlo methods. In the following

important special case, we can compute the multivariate distribution explicitly.

Example 3.7 Consider the same framework as in Example 3.6, namely S ⊂RD compact,

ξ= 0 and X in the max-domain of attraction of Brown–Resnick process with spectral

functions W . Suppose that for all j = 1, . . . ,L, the functional r j is the spatial average

over the compact region A j ⊂ S, respectively. Since W is log-Gaussian in this case, the

random vector {
r1(A logW )/r1(A), . . . ,rL(A logW )/rL(A)

}
(3.12)
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is multivariate Gaussian, and its variogram matrix Γ ∈RL×L can be computed explicitly;

see Appendix C.2.2. The exponent measure in (3.11) therefore corresponds to a L-variate

Hüsler–Reiss distribution with dependence matrix Γ whose j th margin has a Gumbel

distribution with location parameter logθ
r j

0 given in (3.9).

3.3 Statistical Inference

3.3.1 Setting

Suppose we observe independent data X1, . . . , Xn (n ∈ N) of the process X = {X (s) :

s ∈ S}, but only through the aggregation functionals r j satisfying the conditions of

Theorem 3.2. The observations are therefore L-dimensional and of the form

{r1(Xi ), . . . ,rL(Xi )} , i = 1, . . . ,n.

We aim to use Theorems 3.1 and 3.2 to infer the extremal behaviour of the whole

process from the observed aggregated data. This requires estimation of both the

marginal tail behaviour and the extremal dependence of X .

We suppose that the process X is in the functional max-domain of attraction of a max-

stable process Z as in (3.3) with marginal distributions of Z (s) of the form (3.4) for all

s ∈ S. A natural and fairly general assumption is that the marginal distributions of X

belong to a location-scale family, i.e., for some distribution function F and continuous

A : S → (0,∞), B : S →R,

Pr{X (s) ≤ x} = F

{
x −B(s)

A(s)

}
, s ∈ S.

Since X (s) lies in the max-domain of attraction of Z (s), the distribution of Mn(s) must

converge to Gξ as n →∞. In particular, F must satisfy limt→∞ F t {a(t )x +b(t )} =Gξ(x)

for all x ∈R with ξx ≥ 0 and appropriate functions a : (0,∞) → (0,∞) and b : (0,∞) →R.

This implies that the normalizing functions as and bs of X (s) can be chosen as

as(t ) = A(s)a(t ), bs(t ) = B(s)+ A(s)b(t ), t ∈R. (3.13)

Moreover, if ξ 
= 0, without loss of generality, we may assume b(t ) ≡ 0 does not depend

on t by the arguments in the proof of Theorem 3.2. For ξ> 0, we may further assume

that B(s) ≡ 0, as a shift in location does not affect the asymptotic behaviour of the

process, while, for ξ< 0, B(s) can be assumed to be the possibly unknown upper end

point x∗(s) of the distribution of X (s).
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We impose a parametric structure on the marginal scale and location parameters,

i.e., the unknown functions A and B , and the extremal dependence of X , which is

given by the exponent measure of Z . For the marginal distributions, we assume that

A and B belong to parametric families of functions {AϑA , ϑA ∈ΘA} and {BϑB , ϑB ∈ΘB }

where ΘA and ΘB are subsets of RkA and RkB . For the dependence, we suppose that

the probability measure Pspec induced by the spectral function W of the limiting

max-stable process Z belongs to a parametric class {Pspec
ϑW

, ϑW ∈ΘW } with ϑW ⊂RkW .

Further, the extreme value index ξ ∈R and the joint normalization constants a(t) ∈
(0,∞) and b(t) ∈ R must be estimated for some large t . We present two ways to

estimate the parameter vector ϑ= {ξ, a(t ),b(t ),ϑA,ϑB ,ϑW } based on the marginal and

multivariate tail behaviour of {r1(X ), . . . ,rL(X )} in Theorems 3.1 and 3.2, respectively.

3.3.2 Fitting based on marginal estimates

As a first approach, we approximate the tail of the distribution of r j (X ) separately for

each j = 1, . . . ,L. From an equivalent formulation of (3.7) for maxima over blocks with

sufficiently large length t , we obtain

[
E
{
r j (X ) ≤ x

}]t ≈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
exp

{
−
∣∣∣∣x −μ j ,t

σ j ,t

∣∣∣∣−1/ξ
}

, ξ 
= 0,

exp

{
−exp

(
−x −μ j ,t

σ j ,t

)}
, ξ= 0,

(3.14)

where the location parameters μ j ,t and the scale parameters σ j ,t ( j = 1, . . . ,L), are

given by

μ j ,t =
⎧⎨⎩r j

(
BϑB

)
, ξ 
= 0,

r j (AϑA )
{

b(t )+a(t ) logθ
r j

0

}
+ r j

(
BϑB

)
, ξ= 0,

(3.15)

σ j ,t =
⎧⎨⎩(θ

r j

ξ
)ξa(t )r j (AϑA ), ξ 
= 0,

a(t )r j (AϑA ), ξ= 0,
(3.16)

where θ
r j

ξ
is defined in (3.8) and depends on ϑ. Analogously, the exceedance probabil-

ity of some value x ∈R that is larger than the (1−1/t )-quantile of the distribution of

r j (X ) is

E
{
r j (X ) > x

}≈
⎧⎪⎪⎪⎨⎪⎪⎪⎩

t−1
{

sgn(ξ)
x −μ j ,t

σ j ,t

}−1/ξ

, ξ 
= 0,

t−1 exp

(
−x −μ j ,t

σ j ,t

)
, ξ= 0.

(3.17)
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While the asymptotic behaviour of μ j ,t and σ j ,t as t →∞ is uniquely determined by

(3.17), additional assumptions on A(s) and B(s), such as r1(A) = 1 and r1(B) = 0, are

necessary to ensure the identifiability of a, b, A, B and θ
r j

ξ
from (3.15) and (3.16).

For large t , estimates of the three parameters ξ, μ j ,t and σ j ,t can be obtained using

standard techniques of univariate extreme value statistics by assuming equality in

(3.14) or (3.17). For instance, with u j being a suitably high marginal threshold and

I = {i = 1, . . . ,n : r j (Xi ) > u j }, (3.17) provides the censored log-likelihood for ξ, μ=μ j ,t

and σ=σ j ,t by

log�cens
j (ξ,μ,σ)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(n −|I|) log

[
1− t−1

{
sgn(ξ)

u j −μ

σ

}−1/ξ
]

−|I| log(t |ξ|σ)− (1+ξ−1)
∑
i∈I

log

{
sgn(ξ)

r j (Xi )−μ

σ

}
, ξ 
= 0,

(n −|I|) log
{

1− t−1 exp
(
−u j −μ

σ

)}
−|I| log(tσ)−∑

i∈I

r j (Xi )−μ

σ
, ξ= 0.

We obtain the estimate ϑ̂IndCens as the maximizer of the independence log-likelihood

logLIndCens(ϑ) =∑L
j=1�

cens
j (ξ,μ j ,t ,σ j ,t ) (Chandler and Bate, 2007).

3.3.3 Censored likelihood for the joint tail behaviour

Alternatively, we can estimate ϑ making use of the multivariate tail behaviour of the

whole vector {r1(X ), . . . ,rL(X )}. For simplicity, we present formulae for ξ= 0 only, but

similar formulae can be obtained for ξ 
= 0. For x1, . . . , xL ∈ R and sufficiently large

t > 0, by Theorem 3.2,

E

[
L⋃

j=1

{
r j (X )−μ j ,t

σ j ,t
> x j

}]
≈ t−1Vϑ(x1, . . . , xL),

where

Vϑ(x1, . . . , xL) = E

[
L

max
j=1

exp

{
−x j − logθ

r j

0 + r j (AϑA logW )

r j (AϑA )

}]
, (3.18)

is the exponent measure of a max-stable vector with standard Gumbel margins. Thus,

ϑ can be estimated by a censored likelihood approach. Define a vector u = (u1, . . . ,uL)

whose j th element u j ∈ R is a suitably high marginal threshold for r j (X ), such as

its empirical (1−1/t)-quantile, and let Ki = { j = 1, . . . ,L : r j (Xi ) > u j }. Denoting the
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normalized thresholds and data by ũ = (ũ1, . . . , ũL) and Yi = (Yi 1, . . . ,Yi L) with

ũ j =
u j −μ j ,t

σ j ,t
, Yi j =

r j (Xi )−μ j ,t

σ j ,t
, j = 1, . . . ,L,

respectively, we let ϑ̂cens be the maximizer of the log-likelihood

(n −|I|) log
{
1− t−1Vϑ(ũ)

}+∑
i∈I

log

[{∏
j∈Ki

1

a(t )r j (AϑA )

}
(−1)t−1Vϑ,Ki (Yi )

]
, (3.19)

where I = {i = 1, . . . ,n : r j (Xi ) > u j with j = 1, . . . ,L} and Vϑ,Ki are the partial deriva-

tives of Vϑ in directions Ki . By the homogeneity of Vϑ, it can be seen that the like-

lihood (3.19) asymptotically does not depend on the choice of t , but only on the

u1, . . . ,uL. This likelihood corresponds to multivariate threshold exceedances and

their approximation by Pareto processes (Thibaud and Opitz, 2015). The censoring of

the exponent measure Vϑ reduces possible bias for observations below the marginal

threshold that might not yet have converged to the limit model; see Wadsworth and

Tawn (2014).

Using the censored likelihood requires knowledge of the distribution of r j applied to

logW . This limits this multivariate approach to the special though important case

of the Brown–Resnick model where the aggregations are spatial averages and the

marginals are in the Gumbel domain of attraction, that is, ξ = 0. For this case, in a

simulation study described in Appendix C.3, we compare the inference procedures de-

scribed above. The censored likelihood approach is significantly more efficient since

it uses the full information on extremal dependence. In the other cases, namely ξ< 0

and ξ> 0, the simulation study shows that the independence likelihood procedure

provides accurate estimates of the model parameters, including the shape parameter

ξ if it is treated as unknown.

3.4 Simulation of Extreme Events

Environmental risk assessment is often based on rare event simulation of scenarios

with long return periods. Two kinds of simulations are typically required: uncon-

ditional simulations of a given or fitted model capturing the spatial extent and the

variability of possible extreme events; and simulations at points of interest conditional

on a particular event that was only observed at different locations or scales. Condi-

tional and unconditional simulations have for instance been studied for max-stable

processes (Dombry et al., 2013, 2016) and for threshold exceedances (Thibaud and

Opitz, 2015; de Fondeville and Davison, 2018).
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In this section, we discuss how the multivariate result in Theorem 3.2 allows us to per-

form these two kinds of simulations for extreme events of the process X . We assume

that the process X satisfies the assumptions of Theorem 3.2 for known normalizing

functions as and bs with representation (3.13), extreme value index ξ ∈R, and known

distribution of the spectral process W . For simplicity, we again restrict to the case

ξ= 0, but the procedure can be adapted for ξ 
= 0.

For simulation of X at locations s1, . . . , sK ∈ S, we artificially augment the vector of

functionals to {r1(X ), . . . ,rL(X ),rL+1(X ), . . . ,rL+K (X )}, where rL+k (X ) = X (sk ) is the

point evaluation at location sk (k = 1, . . . ,K ). We apply Theorem 3.2 to this augmented

vector to obtain

lim
t→∞ t E

[
L⋃

j=1

{
r j (X )−μ j ,t

σ j ,t
> x j

}]
= E

{∨L+K
j=1 exp(−x j + logΨ j )

}
,

where (Ψ1, . . . ,ΨL+K ) is a random vector with distribution P given by

Ψ j = exp

{
r j (A logW )

r j (A)
− logθ

r j

0

}
, j = 1, . . . ,L+K ,

and μ j ,t and σ j ,t ( j = 1, . . . ,L+K ; t > 0) are defined in (3.15) and (3.16). In other words,

{r1(X ), . . . ,rL+K (X )} is in the max-domain of attraction of a max-stable distribution

with standard Gumbel margins and spectral vector (Ψ1, . . . ,ΨL+K ).

For conditional and unconditional simulation of an extreme event we consider the

case of only one aggregation functional, i.e., L = 1, which is assumed to be large. This

functional might itself be an aggregation of other functionals, which makes this setting

rather general. Reformulating Theorem 3.2 in terms of threshold exceedances, we

obtain the convergence in distribution

L
[{

r j (X )−μ j ,t

σ j ,t

}L+K

j=1

∣∣∣ r1(X )−μ1,t

σ1,t
> 0

]
−→L(U + logΨ(1)), t →∞, (3.20)

where U is a standard exponential random variable and, independently of U , Ψ(1) is a

(L+K )-dimensional random vector satisfying Ψ(1)
1 = 1 almost surely. The distribution

P1 of Ψ(1) is obtained from P via a measure transform (Dombry and Ribatet, 2015;

Dombry et al., 2016) and in many cases it can be simulated by rejection sampling

(de Fondeville and Davison, 2018).

While unconditional simulation requires X to be extreme in the sense that {r1(X )−
μ1,t }/σ1,t > 0 for large t , for conditional simulation, the large value y1 of r1(X ) is

explicitly given. Assuming equality in (3.20), this condition determines the value
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u = (y1 −μ1,t )/σ1,t > 0 of the exponential random variable U since logΨ(1)
1 = 0 al-

most surely. We can perform unconditional and conditional simulation of the vector

{X (s1), . . . , X (sK )} in the following way.

(i) Sample a realization u of standard exponential random variable for an un-

conditional simulation. For a conditional simulation given r1(X ) = y1, set

u = (y1 −μ1,t )/σ1,t .

(ii) Simulate a realization (ψL+1, . . . ,ψL+K ) of the distribution of (Ψ(1)
L+1, . . . ,Ψ(1)

L+K ).

(iii) Return x = {x(s1), . . . , x(sK )} with

x(sk ) = as(t )(u + logψL+k )+bs(t ), k = 1, . . . ,K .

Equation (3.20) can also be used for conditional simulation when L > 1, i.e., if the

values y1, . . . , yL for several functionals r1(X ), . . . ,rL(X ) are given. In this case, only

the second step of the above procedure has to modified: instead of an unconditional

simulation of (Ψ(1)
L+1, . . . ,Ψ(1)

L+K ), a conditional simulation given Ψ(1)
j = (y j −μ j ,t )/σ j ,t −

u ( j = 2, . . . ,L) has to be performed. To this end, the conditional distribution of the

transformed measure P1 needs to be tractable, which is true in few cases only. For

our running example of a limiting Brown–Resnick process, the following makes this

explicit.

Example 3.8 As in Example 3.7, let S ⊂ RD be compact, let ξ = 0 and let X be in the

max-domain of attraction of a Brown–Resnick process. The aggregation functionals

r j are spatial averages over compact regions S j ⊂ S ( j = 1, . . . ,L) or point evaluations

rL+k (X ) = X (sk ) at locations sk ∈ S (k = 1, . . . ,K ). The vector {r1(X ), . . . ,rL+K (X )} then

satisfies the assumptions of Theorem 3.2, and it is in the max-domain of attraction of a

multivariate Hüsler–Reiss distribution with dependence matrix

Γ=
(

{Γ j k } j ,k {Γ j q } j ,q

{Γpk }p,k {Γpq }p,q

)
,

{
j ,k = 1, . . . ,L,

p, q = L+1, . . . ,L+K .

The entries of the four sub-matrices and the explicit form of the exponent measure

are given in Appendix C.2.2. In this case, the above algorithms essentially reduce to

conditional and unconditional simulation of Gaussian processes.
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3.5 Application: downscaling extremes

3.5.1 Statistical downscaling

Environmental data can be classified into two broad categories. On the one hand, sta-

tion measurements are obtained through direct observation of the physical quantity.

This type of data refers to a precise location in space, but may suffer from inhomo-

geneities between stations due to varying record lengths and differences between

measurement instruments, and, moreover, it usually has sparse spatial coverage. Grid-

ded databases, for instance generated by climate models, on the other hand, cover a

large region or even the entire globe, but at a coarse scale where data points can be

considered as an aggregation of the physical variable.

Understanding the link from these gridded data to point measurements is an im-

portant area of research in environmental sciences called downscaling. Apart from

dynamical downscaling procedures based on the solution of partial differential equa-

tions describing the physical processes, a large number of downscaling techniques

relying on the statistical relationship between variables at different scales have been

proposed. Most of these techniques focus on central characteristics of the distribution

such as its mean and variance. In geostatistics, for instance, the so-called change of

support problem has been extensively studied for Gaussian processes (cf., Chiles and

Delfiner, 2012, and references therein). There are few examples of statistical down-

scaling procedures for extremes. Mannshardt-Shamseldin et al. (2010) and Kallache

et al. (2011) follow an approach related to univariate extreme value theory, and Bech-

ler et al. (2015b) and Oesting et al. (2017a) propose conditional simulation from a

spatial max-stable process that has been estimated from station measurements. The

downscaling method in Towe et al. (2017) for significant wave height involves several

other variables but it is not multivariate in space.

Here, using the theoretical results in Section 3.2, we extend the idea of changing the

support of a stochastic process X to the context of extremes, basing inference only on

aggregated observations r1(X ), . . . ,rL(X ). These might come from gridded data sets, as

in our case, supposing that the grid values represent an aggregation of the underlying

physical quantity. If additional station measurements X (s1), . . . , X (sK ) are available,

they can also be used. The method allows the estimation of marginal characteristics

such as return levels at point locations, as well as unconditional and conditional

simulations of rare events on the entire region S.
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Figure 3.1 – The study region consisting of 12 grid cells in the south of France (left),
mean altitude within each cell (middle) and elevation in the region.

3.5.2 Application to extreme temperature in the South of France

We apply our downscaling procedure to daily temperature maxima in Europe from

the e-obs data set (Haylock et al., 2008), which covers the period from 1950 to 2016 at

a 0.25◦ grid resolution. To avoid potential temporal non-stationarity, we restrict the

study to July and August. Our study region S is a 80km×80km subset of the gridded

product located in the south of France, west of Perpignan; see Figure 3.1. The region

is mountainous and thus altitude is a natural covariate for our model. The underlying

spatial process of temperatures is denoted by {X (s) : s ∈ S}, and the observations

{r1(Xi ), . . . ,rL(Xi )} on day i (i = 1, . . . ,n) can be considered as the spatial averages

over the L = 12 cells in S. Here, n is the number of days in the given time span of 67

years. The null hypothesis that the marginal tails of the aggregated data are in the

Gumbel domain of attraction cannot be rejected, and we thus assume below that

ξ= 0. This simplification, while dangerous in practice, as it is likely to induce a severe

underestimation of the confidence intervals, is made to illustrate the full potential of

our downscaling model.

Throughout we assume the same setting as in Section 3.3.1, namely that the marginal

distributions of X (s) belong to a location-scale family for all s ∈ S, parametrized

through the functions

A(s) = 1, BϑB (s) = b0 +b1alt(s)+b2lon(s)+b3lat(s),

where alt(s), lon(s) and lat(s) denote the altitude, longitude and latitude at location

s ∈ S. We further suppose that X is in the functional max-domain of attraction of a

max-stable process Z belonging to a parametric family {ZϑW : ϑW ∈ΘW }, for which

we consider the Brown–Resnick processes introduced in Example 3.1, parametrized
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3.5. Application: downscaling extremes

an bn b1 b2 b3 α τ η a
Estimate 1.90 35.53 4.51 −0.53 −0.20 0.90 6.42 −0.08 1.14

Standard deviation 0.06 0.27 0.14 0.26 0.28 0.07 0.51 0.22 0.08

Table 3.1 – Estimated parameters and standard deviations for the temperature down-
scaling model. Standard deviations are computed using a block jackknife with 19
blocks of size 6.

by ϑW = (α,τ,η, a) for the anisotropic power variogram

γ(s1, s2) =
∥∥∥∥Ω(s1 − s2)

τ

∥∥∥∥α , s1, s2 ∈ S,

with 0 <α� 2,τ> 0 and anisotropy matrix

Ω=
[

cosη −sinη

a sinη a cosη

]
, η ∈

(
−π

2
;
π

2

]
, a > 1.

In Section 3.3.2 and Section 3.3.3 we discussed two approaches to estimating the

parameters of this model, namely independence likelihood and censored likelihood

estimation for multivariate threshold exceedances. The formulae required for the

implementation of these approaches were derived in Section 3.2 and Section 3.3 and

in Appendix C.2.2. For censored likelihood estimation of the model parameters in

(3.19), we require the partial derivatives VK of the exponent measure V , which can be

obtained as in Asadi et al. (2015, Section 4.3.2). In order to assess its effectiveness and

to compare the efficiency of the two methods, we conduct a simulation study with

a setup similar to this application, that can be found in Appendix C.3. The censored

likelihood approach is significantly more efficient since it uses the full information on

extremal dependence.

The parameters of our model for temperature extremes are therefore fitted using

the censored likelihood procedure based on all observations where the empirical

marginal 0.98 quantile is exceeded at at least one location. To avoid possible temporal

dependence we keep only observations that are at least 5 days apart, yielding 114

events. The parameter estimates are displayed in Table 3.1, where standard deviations

are obtained using a jackknife procedure with 19 blocks of size 6; censored maximum

likelihood estimation is performed repeatedly with one block left out.

We assess the model fit in the diagnostic plots shown in Appendix C.4. We check

the marginal distributions implied by the fitted linear model by comparing them in

quantile-quantile plots to the observations. The model provides a good fit for most
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50 years 100 years

Figure 3.2 – Downscaled return levels of daily temperature maxima (◦C) for the 50-
(left) and 100- (right) year return periods in the study region at a 25×25m resolution.

stations and the quantiles of the fitted model generally remain in the confidence

bounds obtained by parametric bootstrap. For a small number of stations, the model

slightly over-estimates return levels.

Verification of the dependence structure is based on a graphical comparison of the

pairwise extremogram (Davis and Mikosch, 2009) from the fitted multivariate Hüsler–

Reiss model to its empirical counterpart based on the gridded observations. The

extremogram values were significantly larger than zero for increasing thresholds and

stable around the empirical 0.98 quantile, validating the asymptotic dependence

model. The fitted variogram model successfully captures the major trend of the cloud

of points. The effect of spatial anisotropy seems to be rather weak, which is also

reflected in the parameter estimate for a close to 1.

The fitted marginal model allows us to obtain return level maps for point locations at

arbitrarily fine resolutions. In Figure 3.2, we produced such maps for the 50 and 100

year return periods. The full fitted model of marginal distributions and dependence

structure further enables us to conditionally and unconditionally generate spatial

extreme events of temperature fields at both a coarse and a fine resolution grid via the

simulation procedures described in Section 3.4. Figure 3.3 displays two high resolu-

tion simulations of the temperature field conditionally on the observed aggregated

temperatures during the warmest day of the 2003 heatwave. The simulations show

that extreme temperatures at fine resolutions can be much larger than at a coarse

scale. Moreover, both simulations are constrained to have the same observed averages

on the grid boxes, but they may exhibit different spatial patterns. This illustrates

the variability of such a heatwave and provides practitioners with a set of possible
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Figure 3.3 – Maximal temperature (◦C) on the warmest day during the 2003 heat-
wave. Gridded data from the e-obs database (Haylock et al., 2008) (left); conditional
simulations with a 1×1 km resolution (centre and right).

scenarios that can be used for risk assessment.
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4 Functional peaks-over-threshold anal-
ysis

This chapter is a preprint of a paper entitled ‘Functional peaks-over-threshold anal-

ysis and generalized r -Pareto processes’ jointly written with Anthony Davison. For

this reason, the chapter is structured to be self-standing and thus for clarity of the

exposition some parts may overlap with other chapters of the thesis.

4.1 Introduction

Extreme Value Theory (EVT) provides a theoretical framework to describe and model

tails of statistical distributions within which estimating the frequency of past ex-

treme events as well as to extrapolating beyond observed severities is possible. These

have been extensively studied in a univariate framework (Fisher and Tippett, 1928;

Gnedenko, 1943; Davison and Smith, 1990) especially for independent identically

distributed replicates, and applications have been developed in fields such as finance,

insurance, hydrology and telecommunications (Hosking and Wallis, 1987; Katz et al.,

2002; Embrechts et al., 1997).

Due to recent extreme events, there has been a surge of interest in environmental

applications, motivated by the necessity to better understand the impact of global

warming. Floods, windstorms, heatwaves have a complex spatio-temporal structure

that cannot be modelled using univariate extreme value theory.

Max-stable processes (de Haan and Ferreira, 2006, Section 9.2), which provide a func-

tional extension of the generalized extreme value distribution, have successfully been

used to study the extremal behaviour of monthly and annual maxima (Coles, 2001,

p.47-48), but applications have been limited due to the mathematical and compu-

tational complexity of such models (Huser and Davison, 2013). Also, the study of

maxima discards a fair amount of information, making detection of mixtures in tail
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Figure 4.1 – The middle panel displays the spatial mean
∫

S X (s)d s against the spatial
maxima maxs∈S X (s) of observed fifteen-minute cumulated rainfall (inches) from
radar rainfall measurements over Florida from 1999 to 2004. The red lines represent
the thresholds corresponding to the top 20 events. The left panel displays the most
intense event for spatial accumulation, while the right displays the largest exceedances
for spatial maxima.

behaviour very difficult. For example, rainfall is usually divided into two classes:

convective rain, which is local and marginally very intense, and cyclonic spells gen-

erating larger spatial accumulations of water but with lower local intensities. These

phenomena are driven by different independent weather conditions that may both

cause severe floods and, as suggested by Figure 4.1, their tail marginal distribution

and spatio-temporal structure are likely to differ. With block maxima, marginally

intense events naturally dominate and thus impose a focus on convective rainfall,

while disregarding potential extreme cyclonic events. For risk mitigation, studying

extremes of different natures is crucial, and max-stable processes are inappropriate for

modelling such complex phenomena, since taking maxima largely eliminates certain

types of events.

Functional peaks-over-thresholds methods, similarly to the generalized Pareto distri-

bution in univariate extreme value theory, define extreme events as exceedances over

a threshold and enable the analyst to detect and model intricate and complex extreme

events. Indeed, the framework gives a theoretical foundation to detect mixtures of tail

behaviour through different definitions of exceedances tailored to the type of extreme

events of interest.

In this context, reduction of multivariate datasets to univariate structural variables,

such as max(X1, X2) or X 2
1 +X 2

2 , on which generalized Pareto distributions are fitted

(Coles and Tawn, 1994), is common to study complex multivariate extreme events.

However, this approach does not give insight on the combination of events yielding an

exceedance and is hindered by the fact that different univariate summaries may lead to
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4.1. Introduction

different tail behaviour. One way to understand these differences is to suppose that the

observations are generated by an underlying mixture of generative processes, which

are disentangled by computing these univariate summaries. Thus if the summary

captures only one of these processes, for instance only cyclonic, it is not surprising

that we obtain different tail behaviours. Functional peaks-over-threshold analysis

generalizes this methodology for a better understanding of the underlying dependence

structure.

Classical approaches to functional peaks-over-threshold rely on particular types of

exceedances (Ferreira and de Haan, 2014) or are limited to regularly-varying stochastic

processes (Hult and Lindskog, 2005; Dombry and Ribatet, 2015). The latter means

in practice that the data must have an unbounded support and share the same

polynomial-type tail decay. If not, observations are standardized to have, for instance,

unit Pareto marginals (Klüppelberg and Resnick, 2008), so exceedances must be de-

fined on the transformed data. An extreme event caused by a natural phenomenon

such as cyclonic rain is more easily characterized on the original scale, and thus stan-

dardization limits the applicability of functional peaks-over-threshold methods. In

univariate extreme value theory, the generalized Pareto distribution gives a unified

framework to describe directly the tail decay of the original data, and encompasses

the Weibull, Gumbel and Fréchet tail decay regimes. This paper provides a similar

unified formulation for functional peaks-over-threshold analysis under the assump-

tion that the process has the same tail decay over its domain. This restriction on the

tail behaviour is necessary to define the exceedances directly on the original process,

otherwise the region or location with the heaviest tail dominates the limit distribution

and yields unrealistic models. In this context, we extend Dombry and Ribatet (2015) by

introducing the generalized r -Pareto process, allowing more flexible excess definitions

and generalized Pareto tail margins. The generalized r -Pareto process is the only limit

of exceedances of a properly rescaled regularly varying process and for some specific

definitions of exceedance, it can be factorized to enable simulation of events with a

fixed intensity, i.e. events for which the risk measure equals a pre-determined return

level.

Section 4.2 reviews classical results for univariate and functional peaks-over-threshold

analysis and highlights their limitations. In Section 4.3, we derive convergence re-

sults for the three possible regimes of tail decay and show how these results simplify

depending on the properties of the exceedance functional. Section 4.4 defines and

characterizes the generalized r -Pareto process, for which we emphasize the relation

with max-stable processes and present potential simulation algorithms. In Section

4.5, we discuss statistical inference and conclude in Section 4.6 by describing methods

for model validation. The proof of the main results are relegated to Appendix D.
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4.2 Modelling exceedances over a high threshold

4.2.1 Univariate model

Let X be a random variable for which there exist sequences of constants an > 0 and

bn such that

n Pr

(
X −bn

an
> x

)
→− logG(x), n →∞, (4.1)

where G is a non-degenerate distribution function. Then, X is said to belong to the

max-domain of attraction of G (Resnick, 1987, p. 12). For a large enough threshold

u < inf{x : F (x) = 1}, its tail distribution can be approximated by a generalized Pareto

distribution (Davison and Smith, 1990), yielding

Pr(X −u > x | X > u) ≈ H(ξ,σ)(x) =
{

(1+ξx/σ)−1/ξ
+ , ξ 
= 0,

exp(−x/σ) , ξ= 0,
(4.2)

where σ=σ(u) > 0 and a+ = max(a,0). If the shape parameter ξ is negative, then x

must lie in the interval [0,−σ/ξ], whereas x can take any positive value with positive

or zero ξ. The random variable X is said to belong to the Weibull, the Gumbel or the

Fréchet domains of attraction if the limiting shape parameter is respectively negative,

zero or positive. The max-domain of attraction conditions are satisfied by a vast class

of random variables (e.g. Beirlant et al., 2004, pp. 59, 62, 72). Davison and Smith (1990)

use equation (4.2) to approximate the distribution function F of X by

F (x) ≈ 1−ζu H(ξ,σ)(x −u), x > u, (4.3)

where ζu , the probability that X exceeds the threshold u, is determined by u. The

generalized Pareto distribution offers a flexible and unified model for tails of a wide

class of random variable X , and is today considered as a standard approach for

univariate risk estimation and extrapolation.

In its simplest form the model for univariate exceedances in equation (4.3) applies to

independent and identically distributed variables, but its use has been extended to

time series, non-stationary and spatial data. The modelling of exceedances can be

extended to a multivariate setting (Rootzén and Tajvidi, 2006; Rootzén et al., 2018b,a)

and to continuous processes (Ferreira and de Haan, 2014; Dombry and Ribatet, 2015)

within the functional regular variation framework, which we now describe.
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4.2.2 Functional regular variation and R-Pareto processes

Let S ⊂RD (D � 1) be a compact metric space, such as [0,1]2 for spatial applications.

We write F+ =C {S, [0,∞)} for the subset of the Banach space of continuous functions

x : S →R endowed with the uniform norm ‖x‖∞ = sups∈S |x(s)| and B(Ξ) for the Borel

sigma-algebra associated to a metric space Ξ. A measurable closed subset C of F+ is

called a cone if t x ∈ C for any x ∈ C and t > 0. When studying extremes the cones C = {0}

or C = {x ∈F+ : infs∈S x(s) = 0} are often excluded from F+ to avoid the appearance

of limiting measures with infinite masses at the origin or on the coordinate axes. Let

MF+\C denote the class of Borel measures on B(F+ \C) for a cone C, and say that a set

A ∈B(F+ \C) is bounded away from C if d(A,C) = infx∈A,y∈C ‖x − y‖ > 0.

A sequence of measures {Λn} ⊂ MF+\C is said to converge to a limit Λ ∈ MF+\C , written

Λn
ŵ−→ Λ (Hult and Lindskog, 2005), if limn→∞Λn(A) = Λ(A), for all A ∈ B(F+ \C)

bounded away from C with Λ(∂A) = 0, where ∂A denotes the boundary of A. For

equivalent definitions of this so-called ŵ-convergence, see Lindskog et al. (2014,

Theorem 2.1).

One way to generalize equation (4.1) to functions is to use the concept of functional

regular variation (Hult and Lindskog, 2005): a stochastic process X with sample paths

in F+ \C is regularly varying if there exist a sequence of strictly positive continuous

functions {an}∞n=1 with limn→∞ an(s) = ∞ for each s ∈ S and a measure Λ ∈ MF+\C
such that

n Pr
(
a−1

n X ∈ ·) ŵ−→Λ(·), n →∞; (4.4)

then we write X ∈ RV(F+ \C, an ,Λ). Equation (4.4) can be seen as a generalization

of equation (4.1), where we supposed that an →∞ and bn = 0, corresponding to the

Fréchet regime. The limiting measure Λ satisfies a homogeneity property: for any

positive scalar t > 0, the measure of the set tA, where A is an element of B(F+ \C),

is equal to t−1/ξΛ(A), for some ξ > 0, called the tail index. Homogeneity is a key

component of functional extreme value theory, because it allows the extrapolation of

the measure of any set containing observed extreme events to sets containing only

unobserved events; see Section 1.3.3 for more details.

In a scalar context, it is straightforward to define the exceedance of a random vari-

able X over a threshold u. For functions, an appropriate notion of exceedance can

be defined through the concept of r -exceedances (Dombry and Ribatet, 2015). A

risk functional r : F+ → [0,∞) is defined to be a continuous functional satisfying a

homogeneity property, i.e., there exists κ> 0 such that r (ax) = aκr (x) for x ∈F+ and

a > 0. An r -exceedance is an event of the form {r (X )� u} for some u � 1. Under these

hypotheses, it is straightforward to verify that the set Cr = {x ∈F+ : r (x) = 0} is a cone
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of F+ and thus following Lindskog et al. (2014, Theorem 2.3), regular variation on

F+ \ {0} implies regular variation on F+ \Cr .

Suppose that X denotes a regularly varying stochastic process on F0 =F+ \ {0} with

limiting measure Λ. Then, there exist ξ > 0 and a probability measure σr on Sr =
{x ∈F+ : ‖x‖ang = 1}, such that for any r ′ � 1 and W ⊂Sr (de Fondeville and Davison,

2018),

lim
n→∞Pr

[
X

an
∈
{

x ∈F0 : r (x)� r ′,
x

‖x‖ang
∈W

}∣∣∣∣r ( X

an

)
� 1

]
= r ′−1/ξσr (W).

The factorization in (4.5) is called a pseudo-polar decomposition and separates the

intensity of the r -exceedances, measured by r ′−1/ξ, with their dependence driven

by the angular component X /‖X ‖ang. The stochastic process P on {x ∈F0 : r (x)� 1}

with probability measure given by equation (4.5) is called an r -Pareto process and

can be used to approximate the distribution of r -exceedances over a sufficiently high

threshold u > 0, see Dombry and Ribatet (2015) for more details. de Fondeville and

Davison (2018) develop and compare high-dimensional inference procedures for

r -Pareto processes, and apply their results to extreme rainfall over Florida for two

types of exceedances.

The r -Pareto processes lack flexibility: for any location s0 ∈ S and a sufficiently high

threshold u0 > 0 satisfying {x ∈ F0 : x(s0) > u0} ⊂ {x ∈ F0 : r (x) � 1}, the marginal

upper tail probability of P at location s0 is

Pr
{
P (s0) > r ′}= ( r ′

u0

)−1/ξ
Λ {x ∈F \Cr : r (x)� 1, x(s0)� u0}

Λ {x ∈F \Cr : r (x)� 1}
, r � u0, (4.5)

so above u0, the r -Pareto process has Pareto-type marginals with tail index ξ. From a

practical point of view, this limits application of the r -Pareto process to datasets with

Fréchet-type tails or it requires one to standardize the marginals to be unit Fréchet

(Coles and Tawn, 1991, Section 5) or unit Pareto (Klüppelberg and Resnick, 2008). In

the latter, r -exceedances are defined using the transformed data, potentially leading

to rather unintuitive risk functionals to discriminate between the different processes

generating the observations; see Chapter 2 for examples of functionals characterizing

cyclonic against convective rainfall. Also, in this setting, the risk functionals must be

continuous and homogeneous, which can be restrictive. In Section 4.3, we generalize

r -exceedances to a wider class of functionals and derive the convergence theorem for

the three possible tail decay regimes.

96



4.3. Limiting distributions of r -exceedances

4.3 Limiting distributions of r -exceedances

Similarly to Section 4.2.2, S ⊂RD (D � 1) denotes a compact metric space but F now

denotes the Banach space of real-valued continuous functions on S, denoted C (S,R),

and we write F0 =C {S, [0,∞)} \ {0}. Let ξ ∈R, A ∈C {S, (0,∞)}, B ∈C (S,R), and define

the sets

Fξ,A,B =

⎧⎪⎨⎪⎩
{x ∈F \ {B −ξA} : x(s)�B(s)−ξA(s), s ∈ S}, ξ> 0,

F , ξ= 0,

{x ∈F : x(s) < B(s)−ξA(s), s ∈ S}, ξ< 0,

Sξ
r =

{
{x ∈F : r (x)� 0,‖x‖ang = 1}, ξ 
= 0,

{x ∈F : r (x) = 0}, ξ= 0,

and Uξ
r = [0,∞) if ξ� 0 and Uξ

r = [0,r (B −ξA)) if ξ < 0. In this section, X denotes a

stochastic process with sample path in the Banach space of real-valued continuous

functions for which there exist ξ ∈R, sequences {an}∞n=1 > 0 and {bn}∞n=1 of continuous

functions on S, and a measure Λ ∈ MF0 such that

n Pr

[{
1+ξ

(
X−bn

an

)}1/ξ

+ ∈ ·
]

, ξ 
= 0

n Pr
{

exp
(

X−bn
an

)
∈ ·
}

, ξ= 0

⎫⎪⎬⎪⎭ ŵ−→Λ(·), n →∞, (4.6)

where {·}+ = max(·,0) is taken component-wise and an and bn are chosen such that

for any s ∈ S

n Pr

{
X (s)−bn(s)

an(s)
> x

}
→
{

(1+ξx)−1/ξ , ξ 
= 0

exp(−x) , ξ 
= 0
n →∞, (4.7)

with 1+ξx > 0 when ξ 
= 0, and x > 0 for ξ= 0. Equation (4.6) generalizes (4.1) and de-

fines a general form of functional regular variation introduced by Ferreira and de Haan

(2014); we write X ∈ GRV(F0,ξ, an ,bn ,Λ). Similarly to classical regular variation, the

limiting measure Λ is (−1)-homogeneous (Lindskog et al., 2014, Theorem 3.1).

We now extend the notion of risk functional by relaxing some assumptions of Section

4.2.2. Now a functional r : F →R is said to be a valid risk functional for the process

X ∈ GRV(F0,ξ, an ,bn ,Λ) if it is monotonic increasing, there exist continuous functions

A > 0 and B such that

lim
n→∞

sup
s∈S

∣∣∣∣an(s)

r (an)
− A(s)

∣∣∣∣= 0, lim
n→∞

sup
s∈S

∣∣∣∣bn(s)− r (bn)

r (an)
−B(s)

∣∣∣∣= 0, s ∈ S, (4.8)
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and

r is continuous at {B −ξ−1 A}, r (B − Aξ−1) < 0, ξ> 0,

r (x) →−∞ as x →−∞, r (x + t ) = r (x)+ t , t ∈ (0,∞), ξ� 0.
(4.9)

These technical assumptions are the minimal requirements needed to prove the con-

vergence of r -exceedances over a threshold u � 0 to a non-degenerate limit measure.

Condition (4.8) implies that the functions an and bn can be decomposed asymptot-

ically into r (an)A(s) and r (bn)+ r (an)B(s) respectively, and also requires that the

speed of convergence of r (an) and an(s) must be the same for all s ∈ S, restricting

the class of valid risk functionals. For instance, when ξ > 0 and B = 0, the class of

1-homogeneous functionals properly shifted satisfies (4.8) and (4.9), while the class of

linear functionals with r (A) > 0 and r (B) = 0 yields valid risk functionals for all ξ ∈R.

Similar assumptions were used in Ferreira et al. (2012) and Engelke et al. (2019) and

seem reasonable in many environmental applications. For instance, assuming that

the distribution Fs at each s ∈ S belongs to a location-scale family F [{x −B(s0)}/A(s0)],

describing the marginal behaviour of the underlying physical process characterized

by the risk functional r , implies a common shape ξ ∈ R and that we can choose

an(s) = a(n)A(s) and bn(s) = A(s)b(n)+B(s) with {a(n)}, {b(n)} ∈R∞.

Theorem 4.1 Let X ∈ GRV(F0,ξ, an ,bn ,Λ), and consider a valid risk functional r .

Then for any W ⊂Sξ
r , and r ′ ∈Uξ

r ,

n Pr
[

X−r (bn )
r (an ) ∈

{
x ∈Fξ,A,B : r (x)� r ′, x

‖x‖ang
∈W

}]
n Pr

[
X−r (bn )

r (an ) ∈ {x ∈F0,A,B : r (x)� r ′, x − r (x) ∈W}]
⎫⎬⎭ ŵ−→Λ

{
(r ′,W)

}
, n →∞,

in M
(Fξ,A,B

)
, where

Λ
{
(r ′,W)

}=
⎧⎨⎩ Λ

{
y ∈F0 : r

(
A yξ−1

ξ
+B

)
� r ′, A(yξ−1)+ξB

‖A(yξ−1)+ξB‖ang
∈W

}
, ξ 
= 0,

Λ
{

y ∈F0 : r
(

A log y +B
)
� r ′, A log y +B − r (A log y +B) ∈W}

, ξ= 0.

Theorem 4.1 describes the limiting measure for r -exceedances of the rescaled process

{X − r (bn)}/r (an) rather than that of the process X . This standardization is simpler

than the marginal transform of the classical regular variation methodology described

in Section 4.2.2, as it only requires two real-valued sequences, which cam be unknown

in practice, and does not modify the tail decay regime. Thus with Theorem 4.1, the risk

functional r is defined on the properly rescaled process, which is close to the desired

characterization of the risk through r (X ).

Also, let Req be the class of valid risk functionals for which there exists un � 0 for any
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req ∈ Req and u � 0 such that

{x ∈Fξ,A,B : req[{x − req(bn)}/req(an)]� u} = {x ∈Fξ,A,B : req(X )� un}. (4.10)

Then for this class of risk functionals, Theorem 4.1 describes the limiting measure of

req-exceedances over the threshold un of original process X as n →∞. The class Req

includes linear functionals and the infimum and supremum. Similarly, for a threshold

u � 0, if a valid risk functional rhom is 1-homogeneous then Theorem 4.1 describes

the rhom-exceedances over the threshold un = rhom(an)u of the process X − rhom(bn),

which is just the original process X shifted by a constant. Moreover, in the Fréchet

domain of attraction, the sequence bn can be chosen to equal zero (Resnick, 1987,

Proposition 0.2) and thus Theorem 4.1 retrieves the results of Dombry and Ribatet

(2015) for homogeneous functionals. Finally, when considering the class Rlin of linear

risk functionals rlin, Corollary 4.1 gives a factorized representation of the limiting

measure Λ.

Corollary 4.1 Suppose that the conditions of Theorem 4.1 are satisfied, that rlin is a

valid linear risk functional with r (A) = 1 and r (B) = 0, and that for ξ= 0, rlin satisfies

exp{rlin(log x)} = rlin(x). Then for any W ⊂Sξ
r , and r ′ ∈Uξ

r ,

n Pr

[
rlin(X )− rlin(bn)

rlin(an)
� r ′,

X − rlin(bn)

‖X − rlin(bn)‖ang
∈W

]
, ξ 
= 0

n Pr

[
rlin(X )− rlin(bn)

rlin(an)
� r ′,

X − rlin(X )

r (an)
∈W

]
, ξ= 0

⎫⎪⎪⎬⎪⎪⎭ ŵ−→Λξ{Uξ(r ′)}×σang(W),

(4.11)

as n →∞ in M
(Fξ,A,B

)
, where

Λξ{Uξ(r ′)} =
{

(1+ξr ′)−1/ξΛ
[{

y ∈F0 : rlin
(

Ayξ
)
� 1

}]
, ξ 
= 0,

exp(−r ′)Λ
[{

y ∈F0 : rlin
(

A log y
)
� 1

}]
, ξ= 0,

with Uξ
r (r ′) = {R ∈Uξ

rlin
: R � r ′}, and

σang(·) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Λ
{

y ∈F0 : rlin
(

Ayξ
)
� 1, {A(yξ−1)+ξB }/‖A(yξ−1)+ξB‖ang ∈ (·)}

Λ
{

y ∈F \ {0} : rlin
(

Ayξ
)> 1

} , ξ 
= 0

Λ
{

y ∈F0 : rlin
(
y exp A

)
� 1, A log y +B − r (A log y +B) ∈ (·)}

Λ
{

y ∈F \ {0} : rlin
(
y exp A

)
� 1

} , ξ= 0,

(4.12)

is a probability measure on B(Sξ
rlin

).

The conditions r (A) = 1 and r (B) = 0 in Corollary 4.1 ensure that the measure of the

radial component has zero location and unit scale, but can be relaxed by properly
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rescaling Λξ. In general the pseudo-polar decomposition in (4.11) holds only for linear

risk functionals, but it can also be derived when ξ> 0 to the class of 1-homogenous

functionals Rhom by imposing bn = 0; see Dombry and Ribatet (2015). Our result

might seems less general as Corollary 4.1 holds only for Rlin, but this small restriction

allows us to link Theorem 4.1 to the classical univariate results of Section 4.2.1, and

thus allows greater flexibility for modelling by covering the three regimes of tail decay.

Indeed, projections rs0 (X ) = X (s0) for s0 ∈ S are an important class of linear functionals

that can be used to derive the limiting marginal tail behaviour of X : For any X ∈
GRV(F0,ξ, an ,bn ,Λ) and a sufficiently high non-negative threshold u, Corollary 4.1

yields

Pr
{
rs0 (X )−u > r ′ ∣∣rs0 (X ) > u

} ≈
⎧⎨⎩
(
1+ξ r ′

σ(s0)

)−1/ξ
, ξ 
= 0,

exp
(
− r ′

σ(s0)

)
, ξ= 0,

(4.13)

where σ(s0) > 0. Equation (4.13) links the functional framework to the classical uni-

variate results described in equation (4.2).

4.4 Generalized r -Pareto processes

In this section, let ξ ∈R, u � 0, A > 0 and B denote a tail index, a threshold in Uξ
r , and

two functions continuous on S.

4.4.1 Definition

For generalized regularly varying stochastic processes, Theorem 4.1 describes the

limiting measure of r -exceedances, and can be used to express the limit distribution of

conditional r -exceedances Pr{X ∈ ·|r (X )� u}, for some u � 0, through the generalized

r -Pareto process.

Definition 4.1 Let r : F → R be a continuous functional satisfying condition (4.8),

let A > 0 and B be continuous functions over S, and let Λ be a (−1)-homogeneous

probability measure on F \ {0}. The generalized r -Pareto process P with tail index ξ ∈R

is a stochastic process on {x ∈Fξ,A,B : r (x) � u}, u ∈Uξ
r , with probability distribution

function

• for ξ 
= 0,

Pr

{
r (P )� r ′,

P

‖P‖ang
∈W

}
=
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Λ
{

y ∈F0 : r
(

A yξ−1
ξ

+ξB
)
� r ′, A(yξ−1)+B

‖A(yξ−1)+ξB‖ang
∈W

}
Λ
{

y ∈F0 : r
(

A yξ−1
ξ +B

)
� u

} , (4.14)

where r ′ ∈Uξ(u) and W ⊂Sξ
r ; and

• for ξ= 0,

Pr
{
r (P )� r ′,P − r (P ) ∈W}=
Λ
{

y ∈F0 : r
(

A log y +B
)
� r ′, A log y +B − r (A log y +B) ∈W}

Λ
{

y ∈F0 : r
(

A log y +B
)
� u

} , (4.15)

where r ′ ∈Uξ(u) and W ⊂S0
r .

Theorem 4.1 implies that the generalized r -Pareto process is the only possible limiting

process for r -exceedances of properly rescaled regularly varying stochastic processes.

Hence, for any X ∈ GRV(F \ {0},ξ, an ,bn ,Λ) and sufficiently large n, the distribution

of r -exceedances of the process {X − r (bn)}/r (an) over a threshold u � 0 can be

approximated by the corresponding generalized r -Pareto process P . If we further

suppose that req ∈ Req, for instance if req satisfies r (x+ t ) = r (x)+ t for any scalar t ∈R,

then

Pr {X ∈ ·|r (X )� un} ≈ Pr(P ∈ ·) , (4.16)

where un was defined in (4.10). Thus, with equation (4.16), the generalized req-Pareto

process is the only possible limit of large r -exceedances for any generalized regularly

varying stochastic process X . For 1-homogeneous functionals rhom, the generalized

rhom-Pareto process is in general limited to approximating the r -exceedances of X −
rhom(bn). When rlin ∈ Rlin, the pseudo-polar decomposition introduced in Corollary

4.1 gives an equivalent definition of the generalized r -Pareto process.

Definition 4.2 Let rlin be a valid linear risk functional, let A > 0 and B be continuous

functions on S satisfying r (A) = 1 and r (B) = 0, and let u ∈ Uξ
r . The generalized rlin-

Pareto process P with tail index ξ ∈R is a stochastic process on {x ∈Fξ,A,B : rlin(x) > u}

with distribution

• for ξ 
= 0,

Pr

{
rlin (P )� r ′,

P

‖P‖ang
∈W

}
=
(
1+ξ

r ′ −u

σ

)−1/ξ

×σA,B (·), r � u,W ⊂Sξ
rlin

,

(4.17)
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where r ′ ∈ Uξ(u), W ⊂ Sξ
rlin

and σA,B is the angular probability measure for a

stochastic process W on Sξ
rlin

such as that defined in Corollary 4.1;

• for ξ= 0,

Pr
{
rlin (P )� r ′,P − rlin(P ) ∈W}= exp

(
−r ′ −u

σ

)
×σA,B (·), (4.18)

where r ′ ∈ Uξ(u), W ⊂ S0
rlin

and σA,B is the angular probability measure for a

stochastic process W on S0
rlin

such as that defined in Corollary 4.1.

The pseudo-polar decomposition in Definition 4.2 reveals the structure of the general-

ized rlin-Pareto process, which is the product of a radial component, with univariate

generalized Pareto distribution representing the intensity of the exceedance, and an

angular component driving the dependence structure. With this characterization and

when ξ> 0, the r -Pareto process of Dombry and Ribatet (2015) is retrieved by setting

A = ξ, B = 1 and u =σ/ξ, in a similar fashion to the univariate equivalence between

generalized and classical Pareto distributions.

4.4.2 Construction and marginal properties

As suggested by Theorem 4.1 and Definition 4.1, the generalized r -Pareto process is

closely related to the stochastic process Yu (u � 0) defined on

Ar (u) =
{ {

y ∈F0 : r
(

A yξ−1
ξ +B

)
� u

}
, ξ 
= 0,{

y ∈F0 : r
(

A log y +B
)
� u

}
, ξ= 0,

with probability measure Λ(·)/Λ{Ar (u)} and where Λ is a (−1)-homogenous measure

on F0. A standard approach to modelling dependence in multivariate statistics relies

on copulas, and requires that all the components of a random vector follow a uniform

distribution. Similarly, in extremes the marginal behaviour and dependence structure

are handled separately, but contrary to classical copula modelling, the data are often

standardized to have a common heavy-tailed distribution such as the unit Pareto. For

this reason, Yu , whose marginals are in the Fréchet domain of attraction with unit

tail index, is used as the process of reference. A natural construction of a generalized

r -Pareto process derived from Definition 4.1 is

P =
{

Aξ−1(Y ξ
u −1)+B , ξ 
= 0,

A logYu +B , ξ= 0.
(4.19)
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Similarly, following Definition 4.2, if r is linear, then the generalized rlin-Pareto process

can also be constructed as

P =
{

R W
r (W ) , ξ 
= 0,

R +W, ξ= 0,
(4.20)

where R is a univariate generalized Pareto variable with tail parameter ξ, scale σ> 0

and location u � 0 and

W =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
A(Y ξ

u′ −1)+ξB∥∥∥A(Y ξ
u′ −1)+ξB

∥∥∥
ang

, ξ 
= 0,

A logYu′ +B − r (A logYu′ +B), ξ= 0,

(4.21)

for any u′ � 0 that can be chosen for convenience, for instance u′ = 0. The representa-

tions (4.19) and (4.20) are used in Section 4.4.3 to derive simulation algorithms.

What makes generalized r -Pareto processes useful are their marginal properties:

consider a location s0 ∈ S and a sufficiently high threshold v0 > 0 such that the set

{y ∈F0 : y(s0) > v0} is included in
{

y ∈F0 : r
[

A(yξ−1)/ξ+B
]
� u

}
. Then

Pr{P (s0) > x} ∝
{

1+ξ
x −u0

σ(s0)

}−1/ξ

, x � u0, (4.22)

where ∝ stands for proportionality, σ(s0) = A(s0)+ξ{u0 −B(s0)} and the threshold u0

equald
{
1+ξA(s)−1v0

}1/ξ
. This means that using equation (4.22), the conditional dis-

tribution of exceedances above the threshold u0 is generalized Pareto. The univariate

distribution of the aggregated process Pr{r (P ) > r ′}, r ′ ∈Uξ(u) is not in general avail-

able in closed form but is obtainable by numerical evaluation of Λ
{Ar (r ′)

}
/Λ {Ar (u)}.

When rlin ∈ Rlin, the marginal distribution of rlin(P ) simplifies to a generalized Pareto

distribution Hξ−1,σ(x−u) and the generalized rlin-Pareto process P is threshold-stable,

i.e.,

Pr
{
P ∈ [r ′ +u′,∞)×W ∣∣rlin (P )� u′ }= Pr

{
κ(u′)×P ∈ [r ′,∞)×W}

, r ′ � 0,W ⊂Sξ
r .

(4.23)

where κ(u′) = {σ+ ξ(u′ −u)}/σ, assuming u′ � u and ξ 
= 0. Thus the distribution

of rlin-exceedances, similarly to the univariate case, is stable in distribution up to a

scaling parameter κ that is a function of the new threshold ν.

4.4.3 Simulation

The process Yu defined in Section 4.4.2, is key to the construction of generalized

r -Pareto processes and is also central to their simulation. Thus, it is necessary to be
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able to draw samples from Yu , which is usually possible for a restricted class of risk

functionals. The case r (x) = ‖x‖1 with ξ= 1 is usually convenient because E(‖Y1‖1) is

constant and independent of the dependence structure. From this observation, simple

simulation algorithms that rely on the pseudo-polar decomposition in equation (4.5)

have been developed; see for example Asadi et al. (2015) for the Brown–Resnick model.

If a simulation algorithm for Yu with risk functional r (X ) = ‖X ‖1 is available, then we

can sample from the angular component W of Yu whose probability measure σ‖·‖1 is

defined in equation (4.5). We generalize the principle described in de Fondeville and

Davison (2018, Section 2.3) to develop an accept-reject algorithm for the generalized r -

Pareto process. We detail the case ξ 
= 0, but generalization for ξ= 0 is straightforward.

Let r be a risk functional and let P be the corresponding generalized r -Pareto process

with limiting measure Λ, tail index ξ ∈R, scale function A > 0 and location function B .

We suppose that we have a threshold u′ > 0 such that{
y ∈F0 : r

(
A

yξ−1

ξ
+B

)
> u

}
⊂ {y ∈F0 : ‖y‖1 > u′} . (4.24)

We stress that u′ is a deterministic quantity that can be found analytically. Algorithm

1 gives an accept-reject algorithm for simulation of P when an algorithm for Yu with

the L1-norm is available.

Algorithm 1: Simulation of generalized r -Pareto process, P
Set Yu = 0;
while r [Aξ−1{(Yu′)ξ−1}+B ] < u do

generate a unit Pareto variable R on [u′,∞);
generate W on S‖·‖1 = {y ∈F0 : ‖x‖1 = 1} with probability measure σ‖·‖1 defined in

equation (4.5);
set Yu′ = RW ;

end
Set P = Aξ−1{(Yu′)ξ−1}+B ;

The efficiency of Algorithm 1 is determined by the capacity to find the largest possible

threshold u′
sup such that (4.24) is satisfied, and its rejection rate is given by the ratio of

the measures of the two corresponding sets. If r is linear, then we suppose that we

have a threshold u′ > 0 such that{
y ∈F0 : rlin

(
Ayξ

)
� 1

}
⊂ {y ∈F0 : ‖y‖1 > u′} .
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Algorithm 2: Simulation of generalized rlin-Pareto process, P
Set Y1 = 0;
while rlin

{
A(Y1)ξ

}< 1 do
generate a unit Pareto variable R on [u′,∞);
generate W on S‖·‖1 = {y ∈F0 : ‖x‖1 = 1} with probability measure σ‖·‖1 defined in

equation (4.5);
set Y1 = RW ;

end

set W2 = A{(Y1)ξ−1}+ξB
‖A{(Y1)ξ−1}+ξB‖ang

;

generate a generalized Pareto random variable R2 ∼ H(ξ,σ)(x);
set P = (R2 +u)W2/rlin(W2);

While Algorithm 2 is more complex than Algorithm 1, it also allows the simulation

of events for a given intensity of the risk functional, which is not possible in general.

Indeed, the first steps of Algorithm 2 describe how to sample from W2, i.e., how to

simulate from the spectral measure σang defined in Corollary 4.1.

4.4.4 Link to max-stable processes

In the univariate theory, marginal assumptions given by equation (4.7) are equiva-

lent to convergence of rescaled block maxima toward the generalized extreme value

distribution, i.e.,

lim
n→∞Pr

{
maxi=1,...,n Xi (s)−bn(s)

an(s)
� z

}
=
{

exp
[
−{1+ξ

( z−μ
σ

)}−1/ξ
]

, ξ 
= 0,

exp
[−{exp

( z−μ
σ

)}]
, ξ= 0,

for z ∈ R if ξ = 0 or on {z ∈ R : 1+ξ
(
z −μ

)
/σ > 0} if ξ 
= 0. Similarly, it is possible to

link generalized r -Pareto processes to the functional extensions of the generalized

extreme value distributions known as max-stable processes. The representation of

these processes is not unique; we use that introduced by de Haan (1984) which relies

on the Poisson point processes (Rn ,Wn)n=1,... on (0,∞)×S‖·‖1 with intensity measure

r−2dr ×σ‖·‖1 (d w), where σ‖·‖1 is defined in equation (4.5). Then the process

M(s) =
{

maxn�1 A(s) {RnWn (s)}ξ−1
ξ

+B(s), ξ 
= 0,

maxn�1 A(s) log{RnWn(s)}+B(s), ξ= 0,
s ∈ S, (4.25)
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is max-stable with exponent measure Λ ◦Tξ,A,B (·) (Resnick, 1987, Proposition 3.7),

where Tξ,A,B (z) is the non-atomic map

Tξ,A,B (z) =
{

z → {1+ξ(z −B)/A}1/ξ , ξ 
= 0,

z → exp{(z −B)/A} ξ= 0.

With this notation, the finite-dimensional distribution function of M at locations

s1, . . . sL ∈ S is

Pr{M(sl ) < zl , l = 1, . . . ,L} = exp
[
−Λ◦Tξ,A(sl ),B(sl )

{
(0, zl ]c

l=1,...,L

}]
,

where in the exponential term we recognize the measure of a generalized r -Pareto

process with risk functional r (x) = max1=1,...,L x(sl ). With this representation, the

process M is constituted by infinitely many single events whose intensity is Poisson-

distributed, and the r -exceedances distribution of these events above a threshold

u � 0 corresponds to a generalized r -Pareto process. When r is linear, this link is

even clearer, as we can replace the Poisson process in equation (4.25) by the pseudo-

polar representation RnWn/r (Wn) introduced in equation (4.20), whose measure is

σ−1
{
1+ξ(r ′ −u)/σ

}−1/ξ−1 dr ′ ×σang(d w). In short, the generalized r -Pareto process

arises as the distribution of r -exceedances of the single events constituting a max-

stable process. The Poisson intensity, which is necessary to model the occurrence

of single events in the max-stable process, disappears through the r -exceedance

conditioning, and thus the distribution of the number of exceedances can be chosen

independently of the generalized r -Pareto process model. Further details are given in

Section 4.5.

4.5 Statistical inference

Let Xn ∈RL+ (n = 1, . . . , N ) be realizations of a generalized regularly varying stochastic

process X sampled at locations s1, . . . , sL ∈ S and let r be a valid risk functional, as in

Section 4.3. Here we explain how to fit generalized r -Pareto process as an approxima-

tion for the distribution of r -exceedances of X over a threshold u > 0. Theorem 4.1

suggests that, from a theoretical point of view, the choice of risk functional should

not impact the model parameters, but it affects what data are considered extreme

especially in the presence of a mixture in the tail behaviour, as illustrated by Figure 4.1.

Designing a risk functional r enables us to focus on one component of this mixture

by incorporating field-specific expertise, while improving sub-asymptotic behaviour

by fitting the model using only those observations closest to the chosen type of ex-

treme event. Thus, suppose that we have a risk functional r , for which exceedances
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correspond to only one physical process, such as cyclonic rainfall, and that under this

hypothesis it is reasonable to consider a tail index ξ ∈R constant over space.

More specifically, we assume that the marginal distributions of X belong to a location-

scale family, that is, for some distribution function F and continuous A : S → (0,∞),

B : S →R we have

P{X (s) ≤ x} = F

{
x −B(s)

A(s)

}
,

for any fixed s ∈ S and where F satisfies equation (4.1). This implies that the normaliz-

ing functions satisfy

an(s) = A(s)a(n), bn(s) = B(s)+ A(s)b(n), s ∈ S,

where a(n) > 0 and b(n) ∈ R, ensuring the asymptotic decomposition required in

condition (4.8).

We impose a parametric structure on the marginal scale and location parameters,

i.e., on the unknown functions A and B , and on the extremal dependence of X . For

the marginal distributions, we assume that A and B belong to parametric families

of functions {AθA ; θA ∈ ΘA} and {BθB ;θB ∈ ΘB } where ΘA and ΘB are appropriate

subsets of RdA and RdB . Similarly, we suppose that the limiting measure Λ belongs to a

parametric class {ΛθΛ ; θΛ ∈ΘΛ} with θΛ ⊂RdΛ . In the following, we describe a method

to jointly infer the complete parameter vector

θ = {a(n),b(n),θA,θB ,θW } ∈ (0,∞)×R×ΘA ×ΘB ×ΘW .

Identifiability issues may arise with the parametric models for A and B , which thus

need to be carefully designed, for instance by assuming r (A) = 1 and r (B) = 0; see

Chapter 3.

Statistical inference for r -exceedances of stochastic processes X ∈ GRV(F0,ξ, an ,bn ,Λ)

is based on the approximation

Pr

{
X − r (bn)

r (an)
∈A

}
= Pr

[
r

{
X − r (bn)

r (an)

}
� u

]
×Pr

[
X − r (bn)

r (an)
∈A

∣∣∣∣r {X − r (bn)

r (an)

}
� u

]
,

≈ Pr

[
r

{
X − r (bn)

r (an)

}
� u

]
×Pr(P ∈A) , (4.26)

with A ⊂ {x ∈ Fξ,A,B : r (x) � u}, and where 1{·} is the indicator function and the

probability of observing the event {r (X ) > u} is replaced by the distribution of the
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Chapter 4. Functional peaks-over-threshold analysis

binary variable {r (X )� u}. Thus, following (4.26), a natural choice for fitting a gener-

alized r -Pareto process to r -exceedances over the threshold u � 0 is to maximize the

log-likelihood function

LThres(θ) = logPr(Nu = nu)+
∑

n∈Ku

log f r
u (xn) ,

where Nu is the random number of exceedances, Ku is the index set of r -exceedances

over u, i.e., {n ∈ 1, . . . , N : r (Xn)� u}, with nu being its cardinality, and f r is the finite-

dimensional density function of the generalized r -Pareto process with threshold

u ∈Uξ
r sampled at locations s1, . . . sL , i.e.,

f r
u (x) =

λ
{(

1+ξ x−B
A

)1/ξ
}

Λ {Ar (u)}

L∏
l=1

A(sl )−1
{

1+ξ
x(sl )−B(sl )

A(sl )

}1/ξ−1

, x ∈Ar (u), (4.27)

where Λ{Ar (u)} =∫Ar (u)λ(x)dx. The derivation of equation (4.27) and the expression

for linear risk functionals can be found in Appendix D.6. A model needs to be specified

for the random number of exceedances Nu appearing in the log-likelihood function:

Wadsworth and Tawn (2014) and Engelke et al. (2015) use a Poisson distribution,

inspired by Poisson point processes, yielding log likelihood

LPoiss(θ) =− lognu !+nu logΛ

[
An

r

{
u − r (bn)

r (an)

}]
−

Λ

[
An

r

{
u − r (bn)

r (an)

}]
+ ∑

m∈Ku

log f r
u

{
xm − r (bn)

r (an)

}
, (4.28)

with

An
r (u) =

{(
1+ξ

x − r (bn)− r (an)B

r (an)A

)1/ξ

∈F0 : r

(
x − r (bn)

r (an)

)
� u

}
.

The Pareto methodology is more flexible than the Poisson point process approach

because various models for the distribution of the number of exceedances Nu can be

considered. For instance, when supposing that the number of exceedances is fixed,

choosing a binomial distribution yields

LBin(θ) = (n −nu) log

(
1− 1

n
Λ

[
An

r

{
u − r (bn)

r (an)

}])
+

nu log

(
1

n
Λ

{
An

r

{
u − r (bn)

r (an)

}])
+ ∑

m∈Ku

λr
{

xm − r (bn)

r (an)

}
. (4.29)

Equation (4.29) slightly differs from the formulation in Thibaud and Opitz (2015)

where the probability of exceedance is Pr[1{r (X ) > u} = 1] = Λ
[An

r (u)
}

instead of

n−1Λ
{An

r (u)
}
. By contrast, our expression yields a valid probability distribution for
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4.5. Statistical inference

any u > n−1 and can be linked to the Poisson point process model; see Appendix D.7.

For likelihood-based inference, maximizing equations (4.28) and (4.29) will be numer-

ically unstable if Ku depends on r (an) and r (bn), which are unknown in general. One

way to ensure numerical stability is to focus on risk functionals for which we can find

u′ � 0 such that

r (x)� u
′
n ⇐⇒ r

{
x − r (bn)

r (an)

}
� u, (4.30)

where ⇐⇒ stands for equivalence. This property is satisfied by any functional such

that r (x + t ) = r (x)+ t for any scalar t ∈R, and then u
′
n = r (an)u + r (bn). In this case,

as explained in Section 4.4, r -exceedances of X above a large enough threshold u′ � 0

can be approximated by a generalized r -Pareto process, so log-likelihood functions

(4.28) and (4.29) can be directly exploited by replacing u by {u
′
n − r (bn)}/r (an).

When equation (4.30) is not satisfied, for instance with the functional
{∫

S X (s)2d s
}1/2

,

a two-step procedure might be used to first estimate a(n), A, b(n) and B , and then to

find the remaining components of the vector θ. Other procedures might be considered

depending on the choice of functional and model hypotheses.

Lastly, applying the risk functional directly to X might not always be desirable. For

instance, with maxs∈S X (s), extreme events at locations with the largest scales and

locations might dominate the set of exceedances. This effect can be removed by using,

rq (xn) = max
s∈S

{
xn(s)

uq (s)

}
� 1,

where uq (s) denotes the empirical q-quantile at location s ∈ S. The marginal param-

eters an and bn do not influence rq -exceedances, and thus the corresponding set

An
rq

(u) in (4.28) is stable and equals

An
rq

(u) =
(

0,

{
1+ξ

uq (s1:L)−b(n)−a(n)B(s1:L)

a(n)A(s1:L)

}1/ξ
]c

,

where s1:L = s1, . . . , sL and Ac denotes the complement of A in r L \ {0}. Maximum like-

lihood estimators based on equations (4.28) and (4.29) have been studied for specific

choices of risk functional and were found to perform poorly in practice because the

limiting process is used as an approximation for finite n, yielding a naturally misspeci-

fied model (Engelke and Malinowski, 2014; Huser et al., 2016). Classical maximum

likelihood estimators satisfy the Cramer–Rao lower bound and are thus efficient but

can be sensitive to model misspecification. For this reason more robust alternatives

have been considered, using censoring of low components (e.g. Wadsworth and Tawn,
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2014), composite methods (Padoan et al., 2010; Huser and Davison, 2013; Castruccio

et al., 2016) and M-estimation using pairwise tail indexes (Einmahl et al., 2016a,b).

All are more robust with regard to sub-asymptotic observations, but they work for

specific risk functionals and are dimensionally limited, either by the computational

burden due to the numerical evaluation of the scaling constant Λ
{An

r (u)
}

and the

censoring, or, for pairwise procedures, by combinatorial considerations. For the

Brown–Resnick and extremal t models, efficient algorithms for censored likelihood

are available (de Fondeville, 2016) and tractable for hundreds of dimensions. Gradi-

ent scoring (de Fondeville and Davison, 2018) can be applied to a large class of risk

functionals and avoids the computation of Λ
{An

r (u)
}

, making inference tractable for

thousands of dimensions: for the Brown–Resnick case, its numerical complexity is

driven only by that of matrix inversion.

4.6 Model validation

Suppose that we have an estimate θ̂ of the complete vector of parameters introduced

in Section 4.5, and a measure of its uncertainty, obtained for instance using a block

jackknife or bootstrap, and that we wish to check the quality of the model. For each

sampled location s1, . . . , sL, we can compare the observations with the theoretical

quantiles of the marginal model. Let uq (sl ) denote the q th empirical quantile of r -

exceedances at location sl , i.e., estimated using only observations satisfying r (Xn)� u,

and let nq denote the number of observations exceeding uq (sl ). Following equation

(4.13), we have

Pr
{

X (sl )−uq (sl )� x | X (sl )� uq (sl )
}≈ Hξ̂,σ̂(sl )(x), x � 0,

with σ̂(sl ) =2a(n)Â(sl )+ ξ̂{uq (sl )− B̂(sl )−2b(n)}. Then we use quantile-quantile plots

to check the quality of the marginal fit. Confidence intervals can be obtained by

resampling: we draw Ns samples of size Nq (Z 1
1 , . . . , Z 1

Nq
), . . . , (Z Ns

1 , . . . , Z Ns
Nq

) from the

fitted distribution and let Z 1
(n), . . . , Z Ns

(n) denote the nth order statistic of each sample.

A 95% confidence interval for the generalized Pareto fit is then defined as the 2.5

and 97.5 empirical percentiles of the sets {Z m
(n) : m = 1, . . . , Ns}. When the estimator

used to obtain θ̂ is asymptotically normal, the uncertainty of the model parameters

can be taken into account by drawing the Ns samples from different generalized

Pareto distributions whose parameters are normally distributed with means ξ̂ and

σ̂(sl ) respectively and standard deviations corresponding to the uncertainty of the

vector θ̂; strictly positive parameters being handled on the log-scale.

A check of the dependence model can be based on a generalization of the extremogram
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(Davis and Mikosch, 2009) introduced in de Fondeville and Davison (2018), i.e.,

π(sl , sk ) = Pr
[

X (sl ) > uq (sl ) | {X (sk ) > uq (sk )}∩ {r (X ) > u}
]

, l ,k = 1, . . . ,L.

If the model is stationary and isotropic, π depends only the distance h = |sl − sk |
between the locations sl and sk . The theoretical values of the model are then compared

to empirical estimates of π and summarized using what we call an extremogram cloud:

a graphical diagnostic, which displays π as a function of the distance, and if relevant,

the orientation of the pair (sl , sk ).

Model comparison can be performed using classical likelihood criteria, such as the

Akaike Information Criterion (AIC), the Composite Likelihood Information Criterion

(CLIC) (Davison and Gholamrezaee, 2012) or the Continuous Ranked Probability Score

(CRPS) (Gneiting and Raftery, 2007). Formal testing is possible for nested models

(de Fondeville and Davison, 2018).

4.7 Discussion

Peaks-over-threshold analysis is widely used for modelling tails of univariate distri-

butions through the generalized Pareto distribution, but natural hazards cannot be

studied using only univariate results. In this chapter, we have extended peaks-over-

threshold analysis to extremes of functional data. Exceedances are defined using

a real-valued functional r , and modelled with the generalized r -Pareto process, a

functional generalization of the generalized Pareto distribution, covering the three

possible tail decay regimes. This family appears as the limit for r -exceedances of

a properly rescaled process. We derive construction rules for generalized r -Pareto

processes, give simulation algorithms and highlight their link to max-stable processes.

Finally we discuss inference procedures and model validation.

The strength of the theoretical results developed in this chapter depends on the

relevance of the properties satisfied by r . The class of linear functionals is particularly

attractive because in this case the risk is directly defined on the original process

and Corollary 4.1 gives the limit distribution of large rlin-exceedances of X . Also,

the generalized rlin-Pareto process can be factorized into two components: a radial

part measuring the intensity of the excess and an angular component modelling

the dependence. This decomposition enables simulations for fixed intensities, i.e.

for determined values of r (X ), and allows the generation of catalogues of extreme

events for fixed return periods; such events can later be used as input for stress tests

either on human infrastructure or insurance portfolios. In Chapter 5, we illustrate this

methodology by developing a stochastic weather generator for extreme windstorms
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Chapter 4. Functional peaks-over-threshold analysis

over Europe.

While the class Rlin might seems restrictive, for spatial applications it can be combined

with tools from image processing such as Fourier or wavelet transforms, that have

been successfully used to classify large and complex datasets of images. This chapter

opens the development of flexible, and if possible linear, risk functionals able to

discriminate between different meteorological phenomena.
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5 Statistical modelling of extreme wind-
storms over Europe

5.1 Introduction

On 25 January 1990, the wind storm Daria, also known as the ‘Burns Day Storm’ as

it started on the birthday of Scottish poet Robert Burns, struck the United Kingdom.

Daria is famous for being one the most severe extra-tropical cyclones in this region.

During the two days where the storm was active, 97 deaths were reported and damage

was valued at around 8.2 billion dollars. The strongest gusts were measured to be 170

km.h−1, a speed equivalent to a category 1 hurricane. Figure 5.1 shows the maximum

speed over the past 3h hours of the wind gusts sustained for at least 3s. The selected

time steps correspond to the 24 hours during which the storm was at its peak.

About 10 years later, on 26 December 1999, the storm Lothar swept across western and

central Europe during a period of 36 hours. A wind speed of 169 km.h−1 was recorded

in Paris, and at the summit of the ‘Dole’ in Switzerland, the weather station reported a

maximum wind gust of 201.2 km.h−1. Lothar was classified as a category 2 cyclone,

and caused 8 billion dollars loss and more than 100 deaths.

Estimating the risk linked to such extreme natural hazards has become a major ques-

tion in recent decades, because of the possible influence of global warming. Even

if the influence of human activity on the climate has been established, according to

the IPCC (Pachauri et al., 2014), its impact on specific types of events is much less

certain. To issue long-range projections or to minimize risks linked to wind storms,

both climatologists and insurers want to better understand the extremal behaviour of

weather events.

In this chapter, we use the theory presented in Chapter 4 to develop a stochastic

weather generator of extreme wind storms over Europe. The model can create cata-

logues of wind storms with unobserved shapes and tracks, and potentially unobserved
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intensities. These catalogues can then be used as ‘stress tests’ for physical infrastruc-

ture or insurance portfolios.

Figure 5.1 – Maximum speed (m.s−1) over the past 3h hours of the wind gusts sustained
for at least 3s from ERA-Interim reanalysis during the peak of wind storm Daria, which
swept over Europe during January 1990.
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5.2 Risk estimation for extreme windstorms

Up until now, risk estimation for extreme wind storms has been limited to straightfor-

ward exploitation of historical catalogues (Haylock, 2011; Pinto et al., 2012). These

sources of data are limited because records usually do not exceed 40 to 50 years in

length. In order to increase the size of those catalogues, one approach has been to

statistically perturb the wind field intensity, shape and location (Hall and Jewson,

2008). A second method detects extreme storms in reanalysis data and climate model

projections (Della-Marta et al., 2010). With this methodology, the same events may be

used twice or more but the climatological indexes always differ slightly because of dif-

ferent hypotheses and approximations between models. Uncertainties and bias linked

to this approach are likely to be large and difficult to estimate. Moreover recent stud-

ies on climatological projections stressed the inability of these models to accurately

reproduce the behaviour of extreme events (e.g., Weller et al., 2013). More recently,

an approach has been developed to create new events from historical catalogues

by reordering time steps based on spatial analogues (Yiou, 2014). All these meth-

ods generate extreme wind storms with a tail behaviour that is not mathematically

justified.

Extreme value theory provides a theoretical basis to study and develop models for

tail distributions. Della Marta and Mathis (2008) performed a peaks-over-threshold

analysis on univariate summaries characterizing extreme wind storms, but they ignore

spatial dependence. Ferreira and de Haan (2014) developed a method to upscale

historical wind storm records to higher intensities using Pareto processes. Economou

and David (2014) adapted Bayesian hierarchical models to extra-tropical cyclones, but

in this case dependence is included using covariates such as mean sea level pressure,

which limits the capability of the model to generate new patterns and intensities.

We propose a different approach based on generalized r -Pareto processes, which

generalizes the Della Marta and Mathis (2008) approach to a functional setting and

allows not only local risk estimation but also the simulation of completely new and

spatially and temporally consistent extreme events.

5.3 Data set and region of study

To build our stochastic weather generator, we follow the methodology of the extreme

wind storms (XWS) catalogue (Roberts et al., 2014). This database, publicly released

in 2013, is the first, and still as of today the only, one of its kind. It provides historical

records on the 50 most extreme storms over Europe between 1979 and 2012; more
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precisely it contains maps of 72–hour maximum wind gusts over northern Europe.

In this catalogue, the notion of extreme storm is chosen to focus on events with high

impact on infrastructure. Indeed storms with the overall highest maximum wind

speed are not necessarily the ones that induce the most damage, as their trajectories

may not include inhabited areas. The difficulty is thus to define a meaningful univari-

ate summary to characterize such impactful events. Roberts et al. (2014) compare

methods for storm tracking and build an index to characterize their catalogue, which

motivates our choice of risk functional in Section 5.4.

The XWS catalogue tracks storms in the ERA-Interim reanalysis (Dee et al., 2011), a

real-time climate model whose records start in 1979. This catalogue provides time

series for many climatological indexes, and in particular for the maximum speed

over the past 3 hours of the wind gusts sustained for at least 3s. The model is run

every six hours on a worldwide grid, whose cells are squares with a side that can

be chosen between 3◦ and 0.125◦; 0.75◦ is the native grid size, the other resolutions

being obtained by interpolation. In addition to the 6-hourly fields obtained by data

assimilation, i.e., by constraining the grid values to station measurements, 256-hour

forecasts are generated each day at 00UTC and 12UTC, and can be used to obtain

a 3-hourly database. Most European winter storms are limited in time and evolve

quickly, so such a fine time resolution is necessary to accurately detect them.

Our study focuses on western Europe, i.e., an area with boundaries N57.75, S44.25,

E25 and W10.5, from which the mountainous regions such as the Pyrenees and the

Alps are removed; see Figure 5.2. The reanalysis model is known to have a systematic

bias over regions with high variations of altitude (Donat et al., 2011). Similarly to the

XWS catalogue methodology, we use the maximum of wind gusts sustained for at

least 3s since previous post-processing from the ERA-Interim reanalysis and use the

forecasts to obtain a 3-hourly database. We retrieve the data with the native resolution

of 0.75◦, yielding a grid with 605 cells. The study is restricted to October–March in

order to avoid any seasonality effects, as extra-tropical wind storms over Europe occur

only during the winter. For illustration, Figure 5.1 shows the 3s maximum wind gust

during the storm Daria. To give an idea of the severity of this extreme event, damaging

windspeeds are considered to start at 25 m.s−1 (Roberts et al., 2014).

5.4 Storm definition and frequency modelling

Following the comparison of Roberts et al. (2014), we define a storm as the exceedance

of the spatial mean over a region with very dense human infrastructure during a 24-

hour temporal frame . The spatio temporal process X (s, t ), s ∈ S and t ∈ T , represents
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Figure 5.2 – Area of study (coloured cells) for modelling extreme wind storms over
Europe. Mountainous regions were removed to avoid the systematic bias of the
reanalysis model. Green cells represent the selected region whose density of human
infrastructure is high.

the wind field over the region S, here a subset of Europe, and over the period T =
[1979;2014]. Our mathematical definition of risk functional r at a time t ∈ T is

r (X )(t ) = max
t ′=−12,9,...12

|SPLBA|−1
∫

SPLBA

X (s, t + t ′)d s, x ∈C (S,R),

where SPLBA refers to the green region in Figure 5.2, which includes Paris, London,

Brussels and Amsterdam. To suppress the effect of temporal clustering, we center

the time frame on the spatial mean maxima and keep only events that are at least 48

hours apart, yielding n = 1561 observations. For illustration, storm Daria corresponds

to an intensity r (x) = 32.1m.s−1.

The stochastic weather generator that we develop is based on the approximation (4.26),

which, with the properties of the risk functional and the same notations, simplifies to

Pr{X ∈ · } ≈ Pr[1{r (X )� un} = 1]×Pr(P ∈ · ) , (5.1)

where un = ur (an)+ r (bn). In (5.1) three components must be modelled: the mar-

gins, which include a tail index ξ and the functions an and bn ; the distribution of

1{r (X )� un}; and the dependence of the generalized r -Pareto process P .

To model the probability of observing an r -exceedance, for simplicity we choose u = 0

such that r -exceedances are defined as events for which r (X ) � r (bn). In this case,

a high quantile of the random variable r (X ) is a natural choice for un = r (bn), as it
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ensures if the quantile level is sufficiently high that n is large. In order to include

most of the XWS storms in our set of exceedances, we take un = q0.96{r (X )} = 24m.s−1,

yielding 63 events for the period 1979 to 2016. This quantile level also corresponds to

a stability region in the estimated tail index of the univariate variable r (X ). The risk

functional, the r -exceedances and the XWS storms are shown in Figure 5.3. The 63

events, depicted by the red dots, coincide with most of the wind storms from the XWS

catalogue represented by the vertical lines: the exceedances of the risk functional r

successfully characterise extreme wind storms hitting Europe in the region SPLBA. The

events from the catalogue that do not match an exceedance mostly pass over southern

regions of Europe and thus are logically not captured by r .

Figure 5.3 also shows that the temporal distribution of 1{r (x) � u} is not stationary,

probably due to the influence of external factors. Several studies point out the im-

portance of climatic circulation patterns such as the North Atlantic Oscillation index

(NAO) (Donat et al., 2010; Pfahl, 2014) in the frequency of extreme wind storms. Thus

to include the influence of potential covariates, we choose to model the distribution

of 1{r (x)� u} with logistic regression.

To compute the NAO index, the 3-hourly mean sea level pressure is extracted from the

ERA-interim reanalysis and the North Atlantic Oscillation index is computed using

its definition based on Empirical Orthogonal Functions (EOF) (Blessing et al., 2005),

i.e., the first eigenvalue of the mean sea level pressure anomaly at time t . We proceed

similarly to compute the Antarctic Oscillation (AAO) index and create indexes for the

temperature anomaly based on EOF analysis. Time is also considered as a potential

covariate.

An analysis of deviance reveals that the NAO index and the first and third eigenvalues

of the temperature anomaly have a significant influence on the occurrence of winter

storms at the 0.1% confidence level. Figure 5.4 shows a yearly summary of the model,

and more detailed plots can be found in Appendix E.

5.5 Marginal model

Following equation (5.1), fitting the marginal model is equivalent to the estimation of

a tail index ξ ∈R and the functions an and bn . To ensure condition (4.8), we define the

functions A > 0 and B ∈C (S,R), such that

an(s) = a(n)A(s), bn(s) = b(n)+a(n)B(s), s ∈ S,
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Figure 5.3 – Risk functional r (X )(t) = maxt ′=−12,9,...12 |SPLBA|−1
∫

SPLBA
X (s, t + t ′)d s

(m.s−1) computed on the ERA–Interim data set for each winter. r -exceedances above
the 0.96 empirical quantile are represented by red dots and wind storms from the XWS
catalogue are represented by vertical lines coloured by dates.

with a(n) ∈ [0,∞), b(n) ∈R. To avoid any identifiability issues, we further suppose that

r (A) = 1 and r (B) = 0, which implies that r (an) = a(n) and r (bn) = b(n). In general,

a parametric model for the functions A and B is necessary, see Section 3.5 for an

example. But, for simplicity, we choose to have two parameters A(sl ) = al > 0 and

B(sl ) = bl ∈R for every location sl (l = 1, . . .605).

With the model for the probability of storm occurrence in Section 5.4, the parameter

b(n) = r (bn) is fixed to the 0.96 empirical quantile of the series r (X ). The threshold-

stability property of the generalized r -Pareto process makes the function B non-
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Figure 5.4 – Yearly summary of the model for the probability of storm occurrence: Ob-
served frequency (Top), modelled frequency (Second row), North Atlantic Oscillation
index (Third row) and aggregated temperature anomaly indexes (Bottom).

identifiable without further hypotheses on the distribution of 1{r (X ) � un}. With a

logistic regression, the greater flexibility enables us to account for non-stationarity,

but the model defined in Section 5.4 does allow us to identify B . Thus, we set

bl = uq ′{X (sl )}−b(n), l = 1, . . . ,605,

where uq ′{X (sl )} is the q ′th local empirical quantile at location sl of the set of r -

exceedances above threshold un and q ′ is chosen such that r (B)−b(n) = 0. For our

data set, which includes 63 storms measured every 3 hours over a 24 hour frame, we

find q ′ = 0.675, yielding 9×63×0.675 = 382 excesses; the estimated function B is

shown in Figure 5.5.

For an accurate quantification of the model’s uncertainties, the marginal and depen-

dence models should be estimated jointly. With the theory described in Chapter 4,

full uncertainty quantification is possible, but for simplicity we prefer a step-wise

procedure where the marginal model is estimated first. This simplified approach

should be seen as a preliminary analysis that can later be used as a starting point for

more complex procedures. Thus the tail index ξ ∈R and the scale parameters al > 0

(l = 1, . . . ,605) are estimated by maximizing the independence log-likelihood

�indep(ξ, a1, . . . , aL) =
567∑
i=1

L∑
l=1

1{Xi (sl )� bl } log a−1
l

{
1+ξ

Xi (sl )−bl

al

}1/ξ−1

.
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5.6. Dependence model

For the maximization, we proceed with a grid search: for a given tail index xi , the

likelihood function of the exceedances at location sl above the threshold bl is opti-

mized independently for all sl (l = 1, . . . ,L). We find the maximum for ξ̂=−0.22; the

corresponding scale function A is shown in Figure 5.5.
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Figure 5.5 – Estimated functions A (left) and B (right) of the generalized r -Pareto
process for modelling extreme windstorms over Europe. Estimates are obtained by
shifting the local empirical quantiles u0.675{X (sl )} by b(n) = 24m.s−1.

To check the quality of the marginal model, Figure 5.6 displays QQ-plots of the lo-

cal tail distribution at eight selected locations. The overall fit is convincing, as the

observations mostly remain within the 99% confidence intervals; see Section 4.6 for

details about the methodology used to obtain these diagnostics. Finally, the quality of

the model fit for the distribution of r (X ) above the threshold un is shown in Figure

5.7. The model is reasonable but shows a systematic bias for low values with a few

observations lying outside the point-wise 99% confidence intervals. However, these

intervals do not account for the uncertainty of the parameter estimates and are thus

likely to be too narrow.

5.6 Dependence model

At this point, only the dependence of the generalized r -Pareto process in equation

(5.1) remains to be specified. For the angular component W , we choose a process with
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Figure 5.6 – QQ-plots of the local tail distributions for the six locations represented
by the green cells on the bottom-left corner map. The positions in the Table match
the relative position in space. The blue dashed lines corresponds to point-wise 99%
confidence intervals. The thresholds correspond to the local 0.675 quantiles of the
r -exceedances, yielding 382 excesses for each cell.

log-Gaussian random functions, see Section 1.6.2 for more details. In this case, the

extremal dependence is characterized by the semi-variogram function γ, for which

we choose a Bernstein model (Schlather and Moreva, 2017)

γ(s, s′, t , t ′) = (1+‖h‖α)β/α−1

2β/α−1
, 0 <α� 2, β� 2, (5.2)

where (Gelfand et al., 2010, p. 428, p. 432)

‖h‖ =
{∥∥∥∥Ω{s′ − s}−V (t ′ − t )

τs

∥∥∥∥2

2
+
∣∣∣∣ t ′ − t

τt

∣∣∣∣2
}1/2

, s, s′ ∈ S, t , t ′ ∈ {0,3, . . . ,24}, (5.3)
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Figure 5.7 – QQ-plot for the distribution of exceedances of r (X ) above the threshold
un = 24 modelled by a generalized Pareto distribution with scale a(n) and tail index
ξ = −0.22. The blue dashed lines corresponds to the point-wise 99% confidence
intervals.

with τs ,τt > 0, a wind vector V ∈R2, and an anisotropy matrix

Ω=
[

cosη −sinη

a sinη a cosη

]
, η ∈

(
−π

4
;
π

4

]
, a > 0.

As explained in Section 1.6.1, the Bernstein semi-variogram is attractive for its flexi-

bility: the parameter α determines the smoothness of the process while β drives the

long-range dependence. Also, in (5.3), the spatial dependence is allowed to decrease

faster in a particular direction by the introduction of the anisotropy matrix Ω with

scaling factor a and angle η. To model the displacement of the storm, a wind vector V

is included while the temporal component with scale τt accounts for the weakening

of extremal dependence with time.

The semi-variogram function (5.2) is motivated by an exploratory analysis in which

the extremogram

π(hs ,ht ) = Pr{X (s′, t ′)� u′ | X (s, t )� u}, hs = s′ − s ∈ S, ht = t ′ − t ∈ {0,3, . . . ,24},

with thresholds equal to local 0.675 empirical quantiles of the set of r -exceedances, is

estimated using the empirical estimator (1.36) of Chapter 1; see Figure 5.8.
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Table 5.1 – Estimated parameters for the semi-variogram function γ. Estimates are
obtained by minimizing the squared difference of the empirical extremogram with its
theoretical value from the model.

α β τs(km) τt (h) a η(◦) V1(km.h−1) V2(km.h−1)
1.7 −0.1 458.3 17.0 1.39 −4.6 51.7 14.7

To estimate the parameters θ of the semi-variogram function, we minimize the least

squares criterion

�extr(θ) = ∑
t ,t ′∈{0,3,...24}

∑
l ,l ′=1,...,L

{π̂(sl ′ − sl , t − t )−πθ(sl ′ − sl , t − t )}2 .

Estimates are shown in Table 5.1 and the corresponding model for extremal depen-

dence is illustrated in Figure 5.8. Due to the negativity of β, γ is bounded, but the

closeness of β̂ to zero yields a model near asymptotic independence for increasing

distance between sites. The fitted model is quite smooth because α̂ is relatively high.

The anisotropy matrix has a major axis with angle η̂ = −4.6◦ , i.e., a South–North

direction, and the scale â = 1.39 implies that dependence decreases about 50% faster

in this direction. Storms are born over the Atlantic and usually move towards the

North Sea, which is consistent with the estimated wind vector V̂ , whose direction is

East/North-East. In Figure 5.8, the overall fit looks reasonable: the modelled spatial

dependence is similar to empirical estimates but the model does not reproduce the

diamond pattern observed at long distance. The estimated semi-variogram function

successfully captures the displacement of the storms in time, but looks too regular

compared to local variations of the empirical probabilities.

5.7 Simulations

The relevance of our stochastic storm generator is checked by simulating from the fit-

ted model. To do so, Algorithm 1 of Chapter 4 is modified to ensure that the maxima of

the spatial mean is reached at t = 12 hours. First the angular component of the spatial

process at time t = 12 is simulated. Then we iteratively simulate the remaining time

steps by consecutively generating the spatial process at times t = 9,6,3,0,15,18,24

conditionally on the variables already simulated. If the new time step yields a spatial

mean greater than its value at time t = 12, the sample is rejected and we repeat the

procedure until a suitable candidate is found.

For an angular process with log-Gaussian random functions, such a simulation al-
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gorithm is easy to implement because it is equivalent to conditional simulation of

multivariate Gaussian random vectors. A simulated storm from our generator with

intensity r (X ) = 29.1m.s−1 is shown in Figure 5.9. Visually the simulation is convincing

as it produces an overall spatio-temporal pattern similar to that of storm Daria in

Figure 5.1, but the simulation is rougher than the original process.

5.8 Discussion

In this chapter we presented a stochastic weather generator for extreme wind storms

over Europe. The model is based on the generalized r -Pareto process introduced

in Chapter 4 and is capable of generating storms with unobserved patterns and

intensities. Goodness-of-fit diagnostics in Figure 5.6 for the local tail margins and in

Figure 5.8 for the dependence structure are fairly convincing.

The simulated storms look consistent with historical records, though the model might

still be too simplistic from a climatological point of view: The current dependence

function might not be flexible enough with regard to the complexity of the spatio-

temporal structure of extreme wind storms. Indeed, further exploratory analysis

reveals that the dependence changes over space. Thanks to Oesting et al. (2017b),

we know that the potential types of non-stationarity models are limited, but models

with varying local anisotropy, such as in Fuglstad et al. (2013) or Fouedjio et al. (2016),

should be considered.

Fixing the wind vector V in the semi-variogram function is an oversimplification of the

movement of a wind storm. Supposing that V is drawn from an underlying random

distribution would be a first step toward more realistic storm tracks. In this case, V

would be a latent variable whose model must be specified and for which inference

might be delicate. Alternatively, the methodology of Lindgren et al. (2011) based on

approximations of stochastic partial differential equations could be generalized to

build physically inspired spatio-temporal dependence structures, for instance using

the diffusion equation. This approach has the advantage of being computationally

efficient and of bringing physics into the model.

In this chapter, we use a two-step fitting procedure: the marginal and the depen-

dence models are estimated independently. From a statistical standpoint, for a better

quantification of uncertainty, and obtain the standard errors of the parameters es-

timates, joint estimation of the model should be performed using, for instance, the

methodology developed in Chapter 2.

Finally, designing a risk functional tailored to the risk of interest is a topic that remains
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generally unexplored, and potential risk functionals taking more meteorological and

climatological expertise into account should be investigated.

The model developed in this chapter is, so far as we are aware, the first of its kind and

opens up the field of stochastic generators for extreme events. We focused on extreme

wind storms, but similar models could be developed for other types of extremes, such

as heat waves, rainfall, and more generally, financial markets or network loads.
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Figure 5.8 – Extremogram π(s, t ) = Pr{X (s, t ) > u | X (0,0) > u} estimated empirically
(left) and modelled (right). Each row represents a 3-hour time step. The model
parameters are obtained by minimum least squares.
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Figure 5.9 – Simulated maximum speed (m.s−1) over the past 3h hours of wind gusts
sustained for at least 3s. The storm has an intensity r (X ) = 29.1 m.s−1.

128



6 Conclusion and future work

The research presented in this thesis describes methodological contributions to the

development of stochastic generators of extreme events. In this approach, extremes

are defined through an exceedance over a threshold of a well-chosen univariate sum-

mary. Simulations from these models can then be used as stress test scenarios to

quantify the risk characterized by the chosen definition of exceedance.

In Chapter 2, we develop statistical inference procedures tractable in medium to high

dimensions. An efficient implementation of censored likelihood allows us to work

with a few hundred dimensions, while the gradient scoring rule is tractable for several

thousand. With the latter, similarly to Gaussian models, the size of the problem that

can be handled is limited only by the time required to invert a dense matrix. Data

sets with hundreds of thousands of dimensions could possibly be handled by using

sparse matrices or directly modelling the inverse covariance matrix. In a simulation

study we show that the the gradient score is more robust to model misspecification

than the classical log-likelihood, but is on average outperformed by the censored

procedure. Empirical work shows that the robustness of the score and its efficiency

are determined by the choice of the weighting function. Thus a thorough comparison

through an extensive simulation study would be necessary to evaluate the impact of

the different weighting functions on the performance of the method.

Chapter 3 describes the limit tail distribution of aggregated data and introduces

the r -extremal coefficient, a measure of dependence that quantifies the impact of

aggregation on the marginal tail distribution of r -exceedances. These theoretical con-

tributions are used to build a statistical model for downscaling extreme temperatures

in the South of France. The model relies on a specific tail decay regime and choice of

risk functional for which the likelihood function can be written in closed form. For

other tail decay regimes and risk functionals, model fitting is possible with the inde-

pendence likelihood, but generalization of the full likelihood procedure would enlarge
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the horizon of applications and the impact of this contribution. Downscaling is key to

understanding the relationship between climate models and station measurements

in order to produce more accurate projections of the future state of the climate.

The research focus of this thesis was directed toward building a generator of ex-

treme wind storms to create catalogues of events usable by insurers and regulators

to quantify their risk. To this end, Chapter 4 derives the theoretical convergence

results necessary for such generators: we introduce the generalized r -Pareto process,

the functional equivalent of the generalized Pareto distribution. This new process

describes the asymptotic behaviour of r -exceeedances of a properly rescaled regularly-

varying stochastic process. We discuss statistical inference and fitting diagnostics.

Chapter 5 illustrates how this methodology applies to the analysis the severe wind

storms over Europe. Currently the model is fairly convincing, but quantification

of uncertainties using the inference procedures described in Chapter 2 should be

performed.

The size of the data sets used for this research makes the limitations of existing de-

pendence models clear. For this reason, future research should focus on the develop-

ment of new, more flexible, dependence models with spatially-varying parameters.

Only a few such models exist, but some derived from stochastic partial differential

equations (Lindgren et al., 2011) are attractive for their flexibility and their low com-

putational complexity. This approach would allow us to incorporate physics into the

model through the choice of a partial differential equation: generalization to a spatio-

temporal setting with the diffusion equation would strongly increase the appeal of our

approach to a non-statistical audience. Also to analyse the risk of extreme cyclones

in the U.S. or in Asia, which have a more specific structure than European storms,

models based on partial differential equations are handy as they can reproduce their

spinning pattern. Finally, the model described in Chapter 5 relies on a stationarity

assumption which, in a changing climate, is likely to be too restrictive. The method-

ology presented is flexible enough to incorporate the influence of global warming

using covariates such as time, temperature or anthropogenic forcing; a possibility that

should be investigated in future work.

This research opens up the field of stochastic generators for complex extreme events,

where field-specific expertise can exploited. These results apply not only to the

environment but also motivate applications in finance, insurance, computer science,

civil engineering, and other fields, which will give strong insights in the mechanisms

driving extreme events, and will provide more accurate risk estimation and solutions

for better mitigation.
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A Proofs for Chapter 1

A.1 Theorem 1.6

Let r ′ > 0 andW ∈Sr . Recall that for any setA ∈F and coneC, d(A,C) = infx∈A,y∈C ‖x−
y‖∞. Then

d
[(

hpp
r
)−1 {

[r ′,∞)×W}
, {0}

]
= d

[
{ρw/r (w) ∈F+ \ {0} : ρ� r ′, w ∈W}, {0}

]
,

= r ′ ×d [{ρw/r (w) ∈F+ \ {0} : ρ� 1, w ∈W}, {0}],

� r ′ ×d [{x ∈F+ \ {0} : r (x)� 1}, {0}].

Also the continuity of the risk functional r ensures that d∞ [{X ∈F+ \ {0} | r (X )� 1}, {0}] >
0, we obtain that

d
[(

hpp
r
)−1 {

[r ′,∞)×W}
, {0}

]
> 0,

and the hypotheses for the mapping theorem are satisfied.

For the polar decomposition of the limit measure, we use the homogeneity of Λ. If

r ′ > 0 and W ⊂Sr , then

Λ◦ (hpp
r
)−1

(U (r ′),W) =Λ
{
ρw/r (w) ∈F+ \ ({0}∪Cr ) : ρ� r ′, w ∈W}

,

=Λ
[
r ′ ×{ρw/r (w) ∈F+ \ ({0}∪Cr ) : ρ� 1, w ∈W}]

,

= (r ′)−1/ξΛ
{
ρw/r (w) ∈F+ \ ({0}∪Cr ) : ρ� 1, w ∈W}

,

= (r ′)−1/ξΛ(Ar )× Λ
{
ρw/r (w) ∈F+ \ ({0}∪Cr ) : ρ� 1, w ∈W}

Λ(Ar )
,

= (r ′)−1/ξΛ(Ar )×σr (W).

For the converse, let A⊂F+ \ {0}. If
⋂L

l=1CrL = {0} then there exist A1, . . . ,AL such that
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Appendix A. Proofs for Chapter 1

⋃L
l=1 h−1

rl
(Al ) =A and for all l , Al ⊂F+ \Crl . Thus

lim
n→∞Λn(A) =

L∑
l=1

lim
n→∞Λn ◦h−1

rl
(Al ) =Λ

{
L⋃

l=1
h−1

rl
(Al )

}
=Λ(A).

�

A.2 Corollary 1.2

Let dw ⊂Sr . Using the definition of σr from Theorem 1.6,

σr1 (dw)

σr2 (dw)

= Λ
{
ρw/r1(w) ∈F+ \ ({0}∪Cr1 ) | ρ > 1, w ∈ dw

}
Λ(Ar1 )

×
Λ(Ar2 )

Λ
{
ρw/r2(w) ∈F+ \ ({0}∪Cr2 ) | ρ > 1, w ∈ dw

}
= Λ(Ar2 )

Λ(Ar1 )

r1(w)1/ξΛ
{
ρw ∈F+ \ ({0}∪Cr1 ) | ρ > 1, w ∈ dw

}
r2(w)1/ξΛ

{
ρw ∈F+ \ ({0}∪Cr2 ) | ρ > 1, w ∈ dw

}
= Λ(Ar2 )

Λ(Ar1 )

{
r1(dw)

r2(dw)

}1/ξ

,

where we used the homogeneity of the measure to get from the first to the second line.

�

A.3 Corollary 1.3

We use Corollary 2.1 in Lindskog et al. (2014). It is straightforward to see that hproj({0})

is closed in RI+, but we need to verify that hproj is uniformly continuous. Let ε> 0 and

take x, y ∈F+ \C such that ‖x − y‖∞ < δ= ε. Then

‖hproj(x)−hproj(x)‖∞ � ‖x − y‖∞ < δ= ε.

Conditions to apply Corollary 2.1 in (Lindskog et al., 2014) are then satisfied and we

get the desired convergence result. �
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A.4 Theorem 1.8

Let r ′ > 0 and W ∈Sr . We use Theorem 1.6:

lim
n→∞Pr

[
X

an
∈ (hpp

r
)−1

{[r ′;∞),W} : r

(
X

an

)
� 1

]
= lim

u→∞

Pr
[

X
an

∈ (hpp
r
)−1

{[r ′;∞)×W}
]

Pr
[

r
(

X
an

)
� 1

]
= lim

u→∞

n−1 Pr
[

X
an

∈ (hpp
r
)−1

{[r ′;∞)×W}
]

n−1 Pr
[

X
an

∈ (hpp
r
)−1

{[1;∞)×Sr }
]

= Λβ(r ′)×σr (W)

Λβ(1)×1

= (r ′)−1/ξσr (W).

�

A.5 Equation (1.30)

Let r ′ > 0. We use the homogeneity of the Cartesian representation of the Pareto

process measure:

Pr
{
P (s0) > r ′}= Λ

{
x ∈F+ \Cr : r (x)� 1, x(s0)� r ′}

Λ {x ∈F+ \Cr : r (x)� 1}

=
Λ
{

x ∈F+ \Cr : r (x)� 1, x(s0)� r ′
u0

u0

}
Λ {x ∈F+ \Cr : r (x)� 1}

=
(

r ′

u0

)−1/ξ
Λ {x ∈F+ \Cr : r (x)� 1, x(s0)� u0}

Λ {x ∈F+ \Cr : r (x)� 1}
,

where the hypothesis {x ∈F+ : x(s0) > u0} ⊂ {x ∈F+ : r (x)� 1} ensures that

{x ∈F+ : x(s0) > r ′u0,r (x)� 1} = r ′ × {x ∈F+ : x(s0) > u0,r (x)� 1}.

�
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B Supplementary material for Chapter 2

B.1 High-dimensional censored likelihood

B.1.1 Computational considerations

The algorithm due to Genz and Bretz (2009) and implemented in the R package

mvtnorm (Genz et al., 2014) provides an unbiased estimate of a multivariate normal

probabilities, with an indication of its largest probable error. An improved Matlab

implementation (Genz, 2013) makes better use of quasi-Monte Carlo methods. We

translated this code into C++ to speed it up; see Appendix B.1.2.

Function evaluation is independent for each sample, so we also adapted the algorithm

for GPU computing and compared different implementations. Our C++ implemen-

tation is about four times faster than the mvtnorm implementation for a probable

worst-case error of order 10−3. GPU computing provides a slight improvement in

speed compared to C++ for reasonably low error, but shows a significant speed-up for

higher accuracies (� 10−4). A computation time of 1 s for estimation of one integral

seems reasonable for censored likelihood, and is achievable for L ≈ 500 for probable

worst-case errors of order 10−3 without GPU computing. GPU computing improves

the computation time of a single estimation of multivariate normal distribution func-

tions, but when estimating hundreds, a higher level of parallelization using the CPU is

usually more efficient. For this reason, we decided to keep the CPU implementation

for the R package but GPU code is available upon request.

Although Jensen’s inequality implies that estimation of the log-likelihood function is

biased for finite p, quasi-Monte Carlo estimation of an integral is unbiased, so for a
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sufficiently high p,

logΦp = log(Φ+εp ) = log(Φ)+ εp

Φ
+op

(
εp

Φ

)
, (B.1)

where εp is a random error with zero mean and bounded variance. Using equa-

tion (B.1) with a small εp , we have θ̂cens ≈ E
(
θ̂

p
cens

)
. On a multi-node cluster, for

scalability purposes, it is more efficient to combine independent estimates θ̂
p
cens,q

(q = q, . . . , p̄) into θ̃p̄ = p̄−1∑p̄
i=q θ̂

p
cens,q than to compute a single estimate θ̂

p×p̄
cens with

p × p̄ samples in the quasi-Monte Carlo procedures. Indeed, maximization of �p
cens(θ)

requires a reduction step, in which the computations performed on each node are

assembled, for every evaluation of the objective function. Hence for a cluster with sev-

eral nodes, where communication is usually slow and reduction steps expensive, θ̃p̄ is

more efficient because the computation of several θ̂p
cens,q can be done independently

on different nodes. Moreover, use of θ̃p allows var(θ̂p
cens) to be estimated.

We parallelized the ideas above on a cluster with 12 nodes each of 16 cores. First com-

putation of �p
cens(θ) was parallelized within each node using the R package parallel.

The time needed to compute the censored likelihood for a 300-dimensional vector

for a generalized Pareto process associated to a log-Gaussian random function with

p = 499 and different dependence strengths dropped from minutes to a dozen seconds.

Each node performs an independent maximization using the R routine optim. Even if

slightly biased, this approach is computationally efficient for our cluster infrastructure.

If the empirical variance of θ̂p
cens is too high then the number of samples p should be

increased. For high accuracy and/or complex models, GPU computing may still be

useful. Lastly, the tolerance of the optimization algorithm must be reduced for low p

to ensure its convergence if the quasi-Monte Carlo estimates vary substantially.

B.1.2 Algorithm for multivariate normal distribution function esti-

mation

This algorithm is a simplified version of that of Genz and Bretz (2009). To estimate the

L-dimensional zero-mean multivariate normal distribution function ΦL(x,Σ):

1. input covariance matrix Σ, upper bound x, number of deterministic samples p,

number of random shifts p ′ and generating vector v ′;

2. compute lower triangular Cholesky factor L for Σ, permuting x, and rows and

columns of Σ for variable prioritisation;

3. initialize Φ= 0, δ= 0 and V = 0;
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4. for q ′ in 1, . . . , p ′:

(a) set Iq ′ = 0 and generate uniform random shift Δ ∈ [0,1]L ;

(b) for q in 1, . . . , p:

i. set zq = (zq,1, . . . , zq,L−1) = |2× (qv ′ +Δ)−1|
e1 =Φ(b1/l1,1)

f1 = e1;

ii. for i in 2, . . . ,L

set yi−1 =Φ−1(zq,i−1ei−1)

ei =Φ

(
bi−

∑i−1
j=1 li , j y j

li ,i

)
fi = ei fi−1

End i loop;

iii. set Iq ′ = Iq ′ + ( fi − Iq ′)/q ;

End q loop;

(c) Set δ= (Iq ′ −Φ)/i , Φ=Φ+δ, V = (q ′ −2)V /i +δ2 and ERR =α
�

V ;

end q ′ loop;

5. output Φ≈ΦL(−∞, x;Σ) with error estimate ERR.

B.2 Properness of the gradient scoring rule

To derive the gradient score, we expand the divergence measure∫
Ar (u)

‖∇x logλθ(x)⊗w(x)−∇x logλθ0 (x)⊗w(x)‖2
2 λθ0 (x)d x

in equation (26) of the paper to separate off the terms that do not depend on the

parameters θ, giving

L∑
l=1

∫
Ar (u)

wl (x)2
{
∂ logλθ(x)

∂xl

}2

λθ0 (x)d x−

2
L∑

l=1

∫
Ar (u)

wl (x)2∂ logλθ(x)

∂xl

∂ logλθ0 (x)

∂xl
λθ0 (x)d x+

L∑
l=1

∫
Ar (u)

wl (x)2
{
∂ logλθ0 (x)

∂xl

}2

λθ0 (x)d x.

We write this as Δ1(θ)+Δ2(θ)+Δ3, where Δ3 does not depend on θ and can be omitted

when minimizing the divergence.
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An empirical estimate of integral Δ1(θ) is straightforward to obtain, but Δ2(θ) requires

simplification using integration by parts:

Δ2(θ) = 2
L∑

l=1

∫
Ar (u)

wl (x)2∂ logλθ(x)

∂xl

∂λθ0 (x)

∂xl
d x

= 2
L∑

l=1

∫
∂dAr (u)

wl (x)2∂ logλθ(x)

∂xl
λθ0 (x)d x−

2
L∑

l=1

∫
Ar (u)

∂

∂xl

{
wl (x)2∂ logλθ(x)

∂xl

}
λθ0 (x)d x

where

∂lAr (u)l = {x ∈Ar (u) : xl ∈ ∂Ar (u)}

and ∂Ar (u) denotes the boundary of Ar (u).

Now suppose that the function w is chosen such that for all x ∈Ar (u)

lim
xl→∞wl (x)2∂ logλθ(x)

∂xl
λθ0 (x)− lim

xl→al (x−l )
wl (x)2∂ logλθ(x)

∂xl
λθ0 (x) = 0, (B.2)

where al (x−l ) is the lower bound of xl onAr (u) for fixed x−l = (x1, . . . , xl−1, xl+1, . . . , xL).

Then the expression for Δ2(θ) simplifies to

Δ2(θ) =−2
L∑

l=1

∫
Ar (u)

∂

∂xl

{
wl (x)2∂ logλθ(x)

∂xl

}
λθ0 (x)d x.

Finally, suppose that X 1, . . . , X N are independent replicates of the random variable X

with density function h. Then the gradient scoring rule is obtained by replacing the

integrals Δ1(θ) and Δ2(θ) by their empirical versions, giving

δw (θ, X ) =
N∑

n=1

L∑
l=1

wl (X n)2
{
∂ logλθ(X n)

∂xl

}2

+2
∂

∂xl

{
wl (X n)2∂ logλθ(X n)

∂xl

}
.

B.3 Gradient score for Brown–Resnick processes

Wadsworth and Tawn (2014) derive an alternative expression for the intensity function,
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expression (15) of the paper:

λθ(x) =|detΣ∗
θ
|−1/2(1T

Lρ)−1/2

(2π)(L−1)/2x1 · · ·xL
exp

(
−1

2

[
log xTΓ log x + log xT

{
2ρ

1T
Lρ

+ (Σ∗
θ

)−1
σ− ρρTσ

1T
Lρ

}])
×exp

[
−1

2

{
1

4
σT
(
Σ∗
θ

)−1
σ− 1

4

σTρρTσ

1T
Lρ

+ σTρ

1T
Lρ

− 1

1T
Lρ

}]
, x ∈Ar (u),

(B.3)

where Σ∗
θ

is the L-dimensional covariance matrix of a non-stationary Gaussian pro-

cess with semi-variogram γ, ρ = (Σ∗
θ

)−1 1L, Γ = (Σ∗
θ

)−1 −ρρT/1T
Lρ and σ = diag(Σ∗

θ
).

This expression is symmetric, so computing its gradient and Laplacian is relatively

straightforward.

The gradient of logλr
θ,u with respect to x and with the notation of equation (B.3) above

is

∇x logλr
θ,u(x) =−Γ log x ⊗ 1

x
− 1

2x
⊗
(

2ρ

1T
Lρ

+2+ (Σ∗
θ

)−1
σ− ρρTσ

1T
Lρ

)
, x ∈Ar (u), u > 0,

(B.4)

where ⊗ is the Hadamard product, 1L is a L-dimensional vector with unit compo-

nents, Σ∗
θ

is the covariance matrix of the non-stationary Gaussian process with semi-

variogram γθ, ρ = (Σ∗
θ

)−1 1L , Γ= (Σ∗
θ

)−1 −ρρT/1T
Lρ and σ= diag(Σ∗

θ
). The Laplacian of

�x logλr
θ,u(x) equals

−diag(Γ)T

(
1− log x

x2

)
+
∥∥∥∥{Γ−diag(Γ)} log x ⊗ 1

x2

∥∥∥∥
1
+ 1

(2x2)T

{
2ρ

1T
Lρ

+2+ (Σ∗
θ

)−1
σ− ρρTσ

1T
Lρ

}
,

(B.5)

where x ∈ Ar (u), u > 0 and ‖ ·‖1 denotes the L1 norm.

B.4 Average computation times of the fitting procedures

Table B.1 contains some timings for optimization of the different objective functions.

B.5 Detailed results for simulations in Section 2.4

Tables 2.2 and B.3 contain detailed results for the simulations in §4.2 of the paper.
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Table B.1 – Average times (s) of the optimization for the different objective functions,
when fitting a Brown–Resnick process applied to the three different semi-variogram
models γ with α = {0.5,1,1.3,1.8} and the three grids 10× 10, 20× 10 and 20× 15.
Random starting points are used for fair comparison.

Grid size α Spectral likelihood Censored log-likelihood Gradient score

10×10

0.5 4 135 6.2
1 4 140 4.9

1.3 4.5 129 4.8
1.8 5.1 235 6

20×10

0.5 6.2 486 10
1 6 492 9.7

1.3 6.7 483 9.8
1.8 10 1636 15

20×15

0.5 14 1190 18
1 14 1217 16.4

1.3 14.6 1236 18.8
1.8 20 4043 29

B.6 Proof of Proposition 2.1

Let (Y n)n=1,...,N be independent replicates of a L-dimensional regularly-varying ran-

dom vector Y with marginal distributions normalized as mentioned after equation (4)

of the paper and limiting measure Λθ0 . Let Nu = Nu(N ) be a sequence of integers such

that Nu(N ) →∞ and Nu(N )/N → 0 as N →∞ and suppose we only keep those Y n for

which r (Y n) > N /Nu , and consider the subset

Ar (1) = {y ∈RL
+ : r

(
y
)> 1

}
.

For any A⊂RL+, we first establish the asymptotic normality of the empirical measure

estimator

Λ̃Nu (A) = 1

Nu

N∑
n=1

1
(
NuY n/N ∈A)

Since Y lies in the max–domain of attraction of a multivariate extreme-value distri-

bution P , Proposition 2.1 in de Haan and Resnick (1993) gives the convergence in

probability

Λ̃Nu (A) →Λ (A) , A⊂RL
+, N →∞, (B.6)
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Table B.2 – Estimated bias for the spectral likelihood (left), censored log-likelihood (sec-
ond) and the gradient score with weights w 1 (third) and w 2 (right). Inference is based
on the top 1% of 10000 simulated Brown–Resnick processes with semi-variogram
γ(s, s′) = (‖s − s′‖/τ

)α /2. In each case the scale parameter equals τ= 2.5 and grids are
regular of sizes 10×10, 20×10 and 20×15. All the values were multiplied by −10 for α
and 10 for τ. “NC” means that optimization does not converge.

Shape α

Grid size 10×10 20×10 20×15
α= 0.5 0.45/0.034/0.33/0.52 0.39/0.11/0.28/0.38 0.38/0.14/0.28/0.06
α= 1 4.5/0.63/2.4/4.2 3.5/0.29/2.3/3.0 3.3/0.47/2.5/3.0
α= 1.3 9.6/4.7/5.6/9.1 6.9/1.8/3.8/5.0 6.3/1.6/3.7/4.5
α= 1.8 NC 14.3/9.3/8.5/11.7 13.4/7.5/7.8/9.8

Scale τ

Grid size 10×10 20×10 20×15
α= 0.5 7.3/6.8/5.4/6.0 8.2/7.8/6.1/6.9 8.3/8.0/5.9/6.5
α= 1 5.9/0.8/15.7/17.4 15.8/7.1/16.9/20.0 17.3/9.5/17.1/19.4
α= 1.3 −15.1/−13.6/6.4/−1.3 7.6/−0.031/11.6/14.3 10.6/2.5/11.7/13.6
α= 1.8 NC −11.9/−10.7/3.5/4.4 −6.4/−5.2/3.0/4.5

where Λ is the exponent measure associated to P . Moreover, following Propositions 3.1

and 3.2 in de Haan and Resnick (1993), define the random field

ZN (x) = Nu
1/2 [Λ̃Nu {(0, x]}−Λ

{
(0, x]c}] , x ∈ (0,∞]L .

There exists a zero-mean Gaussian random field Z (x), x ∈ (0,∞]L, with continuous

sample paths and covariance function

cov
{

ZN (x1), ZN (x2)
}=Λ

{
(0, x1]c ∩ (0, x2]c} , x1, x2 ∈ (0,∞]L ,

such that ZN (x) converges weakly to Z (x) in the space of cadlag functions defined on

(0,∞]L equipped with the Skorohod topology.

Now let δ be a proper scoring rule satisfying the regularity conditions of Theorem

4.1 of Dawid et al. (2016). The maximum scoring rule estimator θ̂δku
is defined by

∑
{n:Nu Y n /N∈Ar (1)}

∇θδ
(
θ̂r
δ,Nu

, NuY n/N
)
= 0,
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Table B.3 – Estimated standard deviation for the spectral likelihood (left), censored
log-likelihood (second) and the gradient score with weights w 1 (third) and w 2 (right).
Inference is based on the top 1% of 10000 simulated Brown–Resnick processes with
semi-variogram γ(s, s′) = (‖s − s′‖/τ

)α /2. In each case the scale parameter equals
τ= 2.5 and grids are regular of sizes 10×10, 20×10 and 20×15. All the values were
multiplied by 102. “NC” means that optimization does not converge.

Shape α

Grid size 10×10 20×10 20×15
α= 0.5 1.1/3.0/2.6/2.6 0.78/2.0/1.7/1.7 0.70/2.4/1.6/1.6
α= 1 1.7/7.2/3.7/1.1 2.7/7.9/2.5/2.4 4.1/7.5/2.2/2.2
α= 1.3 3.7/15/5.3/3.7 1.1/13/2.6/2.8 3.6/11/2.7/2.8
α= 1.8 NC 1.4/33/3.5/3.7 1.3/34/2.6/3.3

Scale τ

Grid size 10×10 20×10 20×15
α= 0.5 16/17/23/24 12/13/14/15 12/13/13/14
α= 1 14/22/18/23 12/30/10/12 18/33/10/11
α= 1.3 3.6/381/19/32 7.4/24/6.2/8.1 1.3/27/6.4/7.5
α= 1.8 NC 9.1/38/4.9/8.7 7.0/34/4.1/5.6

where δ
(
θ, y

)= δ
(
λr
θ,u , y

)
, and which is equivalent to

∫
Ar (1)

∇θδ
(
θ̂r
δ,Nu

, y
)
Λ̃Nu

(
dy
)= 0.

The second-order condition in the hypotheses of Theorem 4.1 in Dawid et al. (2016)

allows us to use a Taylor expansion around θ0, yielding

0 =
∫

Ar (1)
∇θδ

(
θ0, y

)
Λ̃Nu

(
dy
)+ (θ̂r

δ,Nu
−θ0

)∫
Ar (1)

∇2
θδ
(
θ0, y

)
Λ̃Nu

(
dy
)+o

(
θ̂r
δ,Nu

−θ0

)
.

Also equation (B.6) ensures the convergence in probability∫
Ar (1)

∇2
θδ
(
θ0, y

)
Λ̃Nu

(
dy
)→ EP

{
∂2δ

∂θ2
(θ0)

}
= K , N →∞,
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and using the convergence of ZN , we get the convergence in distribution

N 1/2
u

∫
Ar (1)

∇θδ
(
θ0, y

)
Λ̃Nu

(
dy
)→N

[
0,EP

{
∂δ

∂θ
(θ0)

∂δ

∂θT
(θ0)

}]
, N →∞.

Then it is straightforward to establish the convergence in distribution

Nu
−1/2

(
θ̂r
δ,Nu

−θ0

)
→N

{
0,K −1 J

(
K −1)T

}
, N →∞,

with J = EP
{
∂δ(θ0)/∂θ∂δ(θ0)/∂θT

}
.

B.7 Pareto process simulation

The comparison of the performances of our estimators in Section 4 of the paper

requires the simulation of an r -Pareto process P . We perform this for L locations over

S = [0,100]2 with semi-variogram γ and risk function r (x) = L−1∑L
l=1 x(sl ) as follows:

• for locations {s1, . . . , sL} ∈ S, choose l ∈ {1, . . . ,L} uniformly at random;

• for a given semi-variogramγ(s, s′), s, s′ ∈ [0,100]2, generate an (L−1)-dimensional

Gaussian vector Z with covariance matrix

Σ= {γ(si , sl )+γ(s j , sl )−γ(si , s j )}i , j∈{1,...,L}\{l }

and mean μ= {−γ(si , sl )}i∈{1,...,L}\{l }, i.e., conditional on the value at sl ;

• set Wl = 1 and W1 = exp(Z1), . . . ,Wl−1 = exp(Zl−1),Wl+1 = exp(Zl ), . . . ,WL =
exp(ZL−1);

• generate a Pareto random variable U with distribution function 1−1/x (x > 1)

and set P =UW /{(L−1)‖W ‖1};

• return P .
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C.1 Proof of Theorem 3.2

Condition (3.3) implies that the exponent measure ν of Z , defined by

ν(E) = E

(∫∞

0
u−21{uW (s) ∈ E }du

)
, E ∈C+(S), (C.1)

where C+(S) and C+(S) denote the analogues to C (S) and C (S) for non-negative func-

tions, satisfies

ν(E) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
lim

t→∞ t Pr

([{
sgn(ξ)

X (s)−bs(t )

as(t )

}1/ξ

+
, s ∈ S

]
∈ E

)
, ξ 
= 0,

lim
t→∞ t Pr

([
exp

{
X (s)−bs(t )

as(t )

}
, s ∈ S

]
∈ E

)
, ξ= 0.

(C.2)

Closely related to the process W , the measure ν incorporates the extremal dependence

structure of X .

For the Fréchet case, by Proposition 1.11 in Resnick (1987), bs(t ) ≡ 0 and at (s) = inf[x ∈
R : Pr{X (s) ≤ x} ≥ 1−1/t ] are valid choices for the norming constants. In particular,

a(t ) →∞ as t →∞. Thus, for any ε> 0, a(t )−1| infs∈S x∗(s)| < ε for sufficiently large t .

As the continuous function A is strictly positive and thus bounded away from zero on

the compact domain S, by (3.6), we also have |a(t )−1as(t )− A(s)| < εA(s) for all s ∈ S

and sufficiently large t . We obtain the uniform bounds

X (s)

a(t )
= as(t )

a(t )

{
X (s)

as(t )

}
+
−
{

X (s)

a(t )

}
−

≥ as(t )

a(t )

{
X (s)

as(t )

}
+
−
∣∣∣∣inf

s∈S

x∗(s)

a(t )

∣∣∣∣
145



Appendix C. Supplementary material for Chapter 3

≥ (1−ε)A(s)

{
X (s)

as(t )

}
+
−ε,

and

X (s)

a(t )
≤ (1+ε)A(s)

{
X (s)

as(t )

}
+

.

As each r j ( j = 1, . . . ,L) is uniformly continuous, there exists a function h : (0,∞) →
(0,∞), limε↘0 h(ε) = 0, such that sup j=1,...,L |r j (x)− r j (x ′)| ≤ h(ε) for all x, x ′ ∈ C+(S)

such that ‖x − x ′‖∞ ≤ ε. The monotonicity and homogeneity of each r j ( j = 1, . . . ,L)

entail

(1−ε)r j

[{
X

a·(t )

}
+

A

]
−h(ε) ≤ r j (X )

a(t )
≤ (1+ε)r j

[{
X

a·(t )

}
+

A

]
.

With ε↘ 0, for x1, . . . , xL > 0, we obtain

lim
t→∞ t Pr

[
L⋃

j=1

{
r j (X )

a(t )
> x j

}]
= lim

t→∞ t Pr

{
L⋃

j=1

(
r j

[{
X

a·(t )

}
+

A

]
> x j

)}

= lim
t→∞ t Pr

⎡⎣ L⋃
j=1

⎧⎨⎩r j

⎛⎝[{ X

a·(t )

}1/ξ

+

]ξ
A

⎞⎠> x j

⎫⎬⎭
⎤⎦

= ν

(
L⋃

j=1

{
x ∈C+(S) : r j

(
xξA

)
> x j

})

= E

{∫∞

0
u−21

(
L⋃

j=1

[
r j {(uW )ξA} > x j

])
du

}

= E

⎡⎣∨L
j=1

{
r j (W ξA)

x j

}1/ξ
⎤⎦ ,

where we used (C.2) and (C.1). In the Weibull case, by Proposition 1.13 in Resnick

(1987), we may choose bs(t ) = x∗(s). Then, by the linearity of each r j , we have

r j (X )− r j (x∗)

a(t )
= r j

{
a·(t )

a(t )

X −x∗

a·(t )

}
= r j

[
−a·(t )

a(t )

{
−X −x∗

a·(t )

}
+

]
.

The rest follows analogously to the Fréchet case. In the Gumbel case, the integral in

the proof of Theorem 2.1 in Ferreira et al. (2012) can just be replaced by the linear

functionals r1, . . . ,rL to obtain that

lim
t→∞ t Pr

(
L⋃

j=1

[
r j (X )− r j {b·(t )}

a(t )
> x j

])
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= lim
n→∞ t Pr

(
L⋃

j=1

[
r j

{
X −b·(t )

a·(t )
A

}
> x j

])

= lim
n→∞ t Pr

[
L⋃

j=1

{
r j

(
log

[
exp

{
X −b·(t )

a·(t )

}]
A

)
> x j

}]

= ν

[
L⋃

j=1
{x ∈C+(S) : r j (A log x) > x j }

]
,

for x1, . . . , xL ∈R. Using its definition in (C.1), the exponent measure can be calculated

yielding

ν

[
L⋃

j=1
{x ∈C+(S) : r j (A log x) > x j }

]

= E

(∫∞

0
u−21

[
L⋃

j=1

{
logu > x j − r j (A logW )

r j (A)

}]
du

)

= E

[∨L
j=1 exp

{
x j − r j (A logW )

r j (A)

}]
.

Replacing x j by x j r j (A) closes the proof.

C.2 Background and formula related to Hüsler–Reiss dis-

tributions

C.2.1 Hüsler–Reiss distributions

The class of Brown–Resnick processes has a similar role in spatial extreme value statis-

tics as the class of Gaussian processes in classical geostatistics. In order to specify

their finite-dimensional distributions, we recall a popular model in multivariate ex-

treme value theory, namely the Hüsler–Reiss distribution (Hüsler and Reiss, 1989).

An m-dimensional max-stable random vector (Z1, . . . , Zm) with distribution function

FZ (x1, . . . , xm) = exp{−V (x1, . . . , xm)} is Hüsler–Reiss distributed with Gumbel mar-

gins and strictly conditionally negative definite parameter matrix Γ ∈ [0,∞)m×m if its

exponent measure has the form

V (x1, . . . , xm) = E

[
max

j=1,...,m
exp

{
−x j +Y j − 1

2
var(Y j )

}]
, (C.3)
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for a centred Gaussian random vector (Y1, . . . ,Ym) with variogram matrix Γ j k = E{(Y j −
Yk )2}, j ,k = 1, . . . ,m. In this case, one possible choice for the covariance matrix of Y is

Σ= 1

2

(
Γ j 1 +Γk1 −Γ j k

)
1≤ j ,k≤m . (C.4)

The exponent measure V is normalized in the sense that V (∞, . . . , x j , . . . ,∞) = exp(−x j ),

for any j = 1, . . . ,m. If Z is a Brown–Resnick process associated to the variogram

γ, then the distribution of {Z (s1), . . . , Z (sm)} is Hüsler–Reiss with parameter matrix

Γ= {γ(s j , sk )} j ,k=1,...,m .

For censored likelihood estimation of models with Hüsler–Reiss limit, we require the

partial derivatives VK of V in (C.3) with respect to any non-empty subset of variables

K ⊂ {1, . . . ,m}. Let b ∈ {1, . . . ,m} be the number of components that exceed their

thresholds, and, without loss of generality, let K = {1, . . . ,b}. Based on the results in

Engelke et al. (2015), Wadsworth and Tawn (2014) and Asadi et al. (2015, Section 4.3.2),

we obtain the representation

−VK(z) = exp(−z1)ϕb−1(z̃2:b ;Σ2:b)Φm−b{μC,ΣC}, (C.5)

where z̃ = {(z j − z1)+Γ1 j /2}1≤ j≤m , Σ is as in (C.4) and ϕk (·,Ψ) and Φk (·,Ψ) are the

multivariate density and distribution function of a k-variate normal distribution with

mean zero and covariance Ψ. We use the convention that ϕ0 ≡ 1 if b = 1 and Φ0 ≡ 1 if

b = m. The mean and covariance matrix are

μC = z̃(b+1):m −Σ(b+1):m,2:bΣ
−1
2:b,2:b z̃2:b ,

ΣC =Σ(b+1):m,(b+1):m −Σ(b+1):m,2:bΣ
−1
2:b,2:bΣ2:b,(b+1):m .

C.2.2 Explicit formulas for extremes of aggregated data

When the underlying process X is in the domain of attraction of a Brown–Resnick

process with Gumbel margins, we can obtain explicit formula for the r -extremal

coefficient and the multivariate limits for certain aggregation functionals.

Throughout this section we work with the general assumptions and notation in Sec-

tion 3.2 of the paper, and concentrate on the case where ξ= 0 and the limiting process

Z is Brown–Resnick on a compact region S ⊂ RD . We further assume that the var-

iogram γ as defined in Example 3.1 depends on the spatial lag s − t only and we

therefore write γ(s − t ) for γ(s, t ). Then, without loss of generality, we may assume
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that G(0) = 0 and the spectral function simplifies to

W (s) = exp
{
G(s)−γ(s)/2

}
, s ∈ S.

We first prove the closed-form expression of the r -extremal coefficient θavg
0 , where r

is a spatial average over the region S; see Example 3.6. With Ā =∫S A(s)ds, it follows

from Theorem 3.1 that

θ
avg
0 = E

(
exp

[
1

Ā

∫
S

{
G(s)−γ(s)/2

}
A(s)ds

])
= exp

{
σ2

avg

2
− 1

2Ā

∫
S

A(s)γ(s)ds

}
, (C.6)

since the integral over a Gaussian process is normally distributed with variance

σ2
avg = var

{∫
S A(s)G(s)ds

Ā

}
= 1

Ā

∫
S

A(s)γ(s)ds − 1

2Ā2

∫
S

∫
S

A(s)A(t )γ(s − t )ds dt ,

which is a simple extension of Wackernagel (2003, p. 67–69). Plugging this into (C.6)

yields formula (3.9).

For censored likelihood inference in Section 3.3.3 and conditional or unconditional

simulation described in Section 3.4 in the paper, the multivariate limit behaviour of

different functions is required. We consider here the case that is used in the applica-

tion, namely that the aggregation functionals are either spatial averages over compact

regions Sl ⊂ S, (l = 1, . . . ,L), or point evaluations at locations sk ∈ S, (k = 1, . . . ,K ), i.e.,

r j (X ) =
{

1
|S j |
∫

S j
X (s)ds, j = 1, . . .L,

X (s j−L), j = L+1, . . . ,L+K .
(C.7)

The vector (r1(X ), . . . ,rL+K (X )) then satisfies the assumptions of Theorem 3.2 and its

limiting exponent measure Ṽ is the right-hand side of (3.11). This exponent measure

is not normalized, since by Theorem 3.1, Ṽ (∞, . . . , x j , . . . ,∞) = exp(−x j + logθ
r j

0 ), and

logθ
r j

0 is given by (3.9) for j = 1, . . . ,L, and is equal to 0 for j = L +1, . . . ,L +K . We

therefore define the corresponding normalized exponent measure by

V (x1, . . . , xL+K ) = E

{
max

j=1,...,L+K
exp

(
−x j +

r j {(G −γ/2)A}

r j (A)
− logθ

r j

0

)}
= E

{
max

j=1,...,L+K
exp

(
−x j +

r j (G A)

r j (A)
− 1

2
var

[
r j (G A)

r j (A)

])}
, (C.8)

where the second equality follows from (C.6). Since all aggregation functionals are

either spatial averages or point evaluations, and the vector (Y1, . . . ,YL+K ) with Y j =
r j (G A)/r j (A), j = 1, . . . ,L + K , is multivariate Gaussian, we recognize in (C.8) the
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exponent measure of a Hüsler–Reiss distribution with parameter matrix Γ where

Γ j k = E(Y j −Yk )2, j ,k = 1, . . . ,L+K . We can separate Γ into different blocks such that

Γ=
(

{Γ j k } j ,k {Γ j q } j ,q

{Γpk }p,k {Γpq }p,q

)
,

{
j ,k = 1, . . . ,L,

p, q = L+1, . . . ,L+K .
(C.9)

We directly see that Γpq = γ(sp−L−sq−L) for p, q = L+1, . . . ,L+K . Since Γ is symmetric,

letting Ā j =
∫

S j
A(s)ds, j = 1, . . . ,L, it suffices to compute

(i) for j ,k = 1, . . .L,

Γ j k = 1

Ā j Āk

∫
S j

∫
Sk

A(s)A(t )γ(s − t )ds dt − 1

2Ā2
j

∫
S j

∫
S j

A(s)A(t )γ(s − t )ds dt

− 1

2Ā2
k

∫
Sk

∫
Sk

A(s)A(t )γ(s − t )ds dt ;

(ii) for j = 1, . . .L, q = L+1, . . . ,L+K ,

Γ j q = 1

Ā j

∫
S j

A(s)γ(s − sq−L)ds − 1

2Ā2
j

∫
S j

∫
S j

A(s)A(t )γ(s − t )ds dt .

In order to show (i), we note that for s, t ∈ S,

var

{
A(s)G(s)

Ā j
− A(t )G(t )

Āk

}
= A(s)2

Ā2
j

γ(s)+ A(t )2

Ā2
k

γ(t )− A(s)A(t )

Ā j Āk

{
γ(s)+γ(t )−γ(s − t )

}
,

(C.10)

since E{G(s)2} = γ(s) and E{G(s)G(t)} = 1/2
{
γ(s)+γ(t )−γ(s − t )

}
and we use the fol-

lowing formula (Wackernagel, 2003, p. 67–69)

Γ j k = var

{
1

Ā j

∫
S j

A(s)G(s)ds − 1

Āk

∫
Sk

A(t )G(t )dt

}

=
∫

S j

∫
Sk

var

{
A(s)G(s)

Ā j
− A(t )G(t )

Āk
ds

}
ds dt−

1

2

∫
S j

∫
S j

var

{
A(s)G(s)

Ā j
− A(t )G(t )

Ā j

}
ds dt−

1

2

∫
Sk

∫
Sk

var

{
A(s)G(s)

Āk
− A(t )G(t )

Āk

}
ds dt . (C.11)
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Using (C.10), the first term in the last equation equals

|Sk |
Ā2

j

∫
S j

A(s)2γ(s)ds − |Sk |
Ā j

∫
S j

A(s)γ(s)ds+

|S j |
Ā2

k

∫
Sk

A(s)2γ(s)ds − |Sk |
Āk

∫
Sk

A(s)γ(s)ds+

1

Ā j Āk

∫
S j

∫
Sk

A(s)A(t )γ(s − t )ds dt .

Similarly, the second term in (C.11) is

2|S j |
Ā2

j

∫
S j

A(s)2γ(s)ds − 2|S j |
Ā j

∫
S j

A(s)γ(s)ds + 1

Ā2
j

∫
S j

∫
S j

A(s)A(t )γ(s − t )ds dt ,

and analogously for the third term. Putting this together, we obtain the formula in (i).

Very similar calculations yield the result in (ii).

The above calculation shows that the (L+K )-dimensional vector in (C.7) is in the max-

domain of attraction of a Hüsler–Reiss distribution with known parameter matrix, and

we can use the inference and simulation methodology described in Section 3.3 and

Section 3.4 in the paper and in the literature.

C.3 Simulation study

C.3.1 Gumbel case

We now apply our downscaling approach to a simple model that resembles the setup

in the application in Section 3.5 of the paper. We suppose that we observe indepen-

dent data X1, . . . , Xn from a process X on S = [0,5]2, but only through aggregating

functionals r j ( j = 1, . . . ,L) with L = 25, which we will take to be spatial averages. The

observations are thus 25-dimensional and of the form(
1

|S1|
∫

S1

Xi (s)ds, . . . ,
1

|S25|
∫

S25

Xi (s)ds

)
, i = 1, . . . ,n,

where S j = [s j
1, s j

1 + 1]× [s j
2, s j

2 + 1], with s j
1, s j

2 ∈ {0, . . . ,4}, i.e., a regular grid of 1× 1

squares. We consider X in the Gumbel (ξ= 0) max-domain of attraction of a Brown–

Resnick process associated to the semi-variogram model

γ(s, t ) =
(‖s − t‖2

λ

)α
, α= 1.5,λ= 1.
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We impose a linear structure on the unknown functions A and B of the margins

appearing in the setting described in Section 3.3.1,

A(s1, s2) = a0 +a1s1 = 0.8+0.4s1,

B(s1, s2) = b0 +b2s2 =−0.4+0.8s2,
(s1, s2) ∈ [0,5]2,

where the parameters were chosen such that r1(A) = 1 and r1(B) = 0.

By Theorem 3.2 and Example 3.7, the vector of aggregated data (r1(X ), . . . ,rL(X )) is

in the max-domain of attraction of a multivariate Hüsler–Reiss distribution with

dependence matrix Γ described in Section C.2.2 and normalizing vectors {μ j ,t }L
j=1

and {σ j ,t }L
j=1 as given in Equations (3.15) and (3.16), respectively. Such a vector of

aggregated data can be simulated as follows.

1. Randomly select j0 ∈ {1, . . . ,L}.

2. Generate an exponential variable U ∼ Exp(1).

3. Generate a (L−1)-dimensional Gaussian vector G with covariance matrix Σ=
(1/2){Γ j j0 +Γk j0 −Γ j k } j ,k 
= j0 and mean μ=−{Γ j j0 /2} j 
= j0 .

4. Set G̃ j0 = 0, G̃− j0 =G and Ỹ = {U +G̃ − log‖exp(G̃)‖1}+ logL.

5. Set Y j = r j (A)
(
Ỹ j + logθ

r j

0

)
+ r j (B) for j = 1, . . . ,L.

6. Return Y = (Y1, . . . ,YL).

We simulate n = 104 samples Y1, . . . ,Yn of the random vector Y , which are then used

to estimate the model parameters via the independence and full censored likelihood

procedures. We could also have simulated the process X on a fine grid and then ag-

gregated it over the squares. This approach, used in Section C.3.2 and Section C.3.3, is

computationally less efficient and gives essentially the same results as those presented

below.

For the independence likelihood procedure, we use the peaks-over-threshold rep-

resentation described in Section 3.3.2 of the paper: for each grid cell, observations

below the local 0.99 empirical quantile are censored, yielding exactly 100 exceedances

with parameters a(t ) = 1 and b(t ) = log10000 with t = 10000.

For the censored likelihood method, we choose a threshold vector u ∈RL , also based

on the local 0.99 empirical quantiles, such that we keep the Nu observations satisfying

max(Yi ,1/u1, . . . ,Yi ,L/uL)� 1 (i = 1, . . . ,n). In this setting, the theoretical value of a(t )
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Table C.1 – Relative root mean square error (%) with respect to the true parameters
value for estimates based on censored and independence likelihood methods for the
Gumbel domain of attraction. Inference is performed based on n = 104 simulated data,
from which only vectors with at least one component exceeding its local empirical
0.99 quantile are used.

a(t ) a0 a1 b(t ) b0 b2 α λ Mean
Full censored LLH 1.2 0.6 2.2 0.3 2.9 2.9 1.3 2.0 1.7

Independence LLH 1.8 1.0 3.9 0.3 3.3 3.3 2.0 2.7 2.3

and b(t) are the same as for the independence likelihood case. We use these Nu

exceedances in the full censored likelihood procedure described by Equation (3.19).

By repeating inference a 100 times, we confirm that both methods are unbiased and

the results in Table C.1 show that all parameters can be estimated accurately. The

censored likelihood approach, which makes use of the multivariate tail distribution,

outperforms the independence likelihood procedure by about 30%.

C.3.2 Weibull case

We reproduce the simulation study described in Section C.3.1, but we now consider X

in the Weibull domain of attraction (ξ=−0.3) of the same Brown–Resnick process. In

this case, ξ is considered as unknown and needs to be estimated. A closed form for the

joint tail distribution of the aggregated process is not available, so only the indepen-

dence likelihood procedure is possible. Consequently, simulation of the aggregated

vector (r1(X ), . . . ,rL(X )) cannot be performed exactly, and thus is approximated by

aggregating samples of X on a regularly spaced dense grid with D � 25 locations.

1. Randomly select j0 ∈ {1, . . . ,D}.

2. Generate a univariate exponential variable U ∼ Pareto(1,1).

3. Generate a D −1-dimensional Gaussian vector G with covariance matrix Σ=
(1/2){Γ j j0 +Γk j0 −Γ j k } j ,k 
= j0 and mean μ=−{Γ j j0 /2} j 
= j0 .

4. Set G̃ j0 = 0, G̃− j0 =G and X̃ = sng(ξ)[U ˜exp(G)/{D−1‖exp(G̃)‖1}]ξ.

5. Compute Ỹ = (r1(X̃ ), . . . ,rL(X̃ )).

6. Set Y j = r j (A){Ỹ j + log θ̂
r j

0 }+ r j (B) for j = 1, . . . ,L.
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7. Return Y = (Y1, . . . ,YL).

In step 6, numerical evaluation of r -extremal coefficient is required. Following the

representation of equation (3.8), θ̂
r j

0 is estimated by replacing the expectation with an

empirical mean of replicates Wi , i = 1, . . . ,1000, of the spectral function sampled on a

dense grid.

Inference is performed on n = 104 replicates and using a 0.99 empirical quantile for

censoring. Similarly to the Gumbel case, the estimator is unbiased and the results in

Table C.2 show that all parameters can be estimated accurately. We emphasizes the

good performance for the shape parameter that is a consequence of the exploitation

of the multivariate structure of the problem.

Table C.2 – Relative root mean square error (%) with respect to the true parameters
value for estimates based on censored and independence likelihood methods for the
Weibull domain of attraction (ξ = −0.3). Inference is performed based on n = 104

simulated data, from which only vectors with at least one component exceeding its
local empirical 0.99 quantile are used.

ξ a(t ) a0 a1 b(t ) b0 b2 α λ Mean
4.7 2.7 0.4 1.7 0.6 0.3 0.3 0.5 0.6 1.6

C.3.3 Fréchet case

In this Section, we consider X in the Fréchet domain of attraction (ξ = 0.1) of the

Brown–Resnick process described in Section C.3.1. As explained in Theorem 3.1, we

suppose that b(n)B(t ) ≡ 0, and the parametric model for the scale

A(s1, s2) = a0 +a1s1 +a2s2 = 0.8+0.4s1 +0.2s2, (s1, s2) ∈ [0,5]2.

For positive tail index, the aggregation functional r does not need to be linear, thus to

illustrate the flexibility of our results, we consider the functional in Example 3.5, i.e.,

the observations are of the form

Y =
({

1

|S1|
∫

S1

X 2
i (s)ds

}1/2

, . . . ,

{
1

|S25|
∫

S25

X 2
i (s)ds

}1/2
)

, i = 1, . . . ,n,

where S j = [s j
1, s j

1 +1]× [s j
2, s j

2 +1], with s j
1, s j

2 ∈ {0, . . . ,4}. Simulation of the vector Y is

done with the algorithm described in Section C.3.2. Marginal likelihood inference is
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Table C.3 – Relative root mean square error (%) with respect to the true parameters
value for estimates based on censored and independence likelihood methods for
the Fréchet domain of attraction (ξ= 0.1). Inference is performed based on n = 104

simulated data, from which only vectors with at least one component exceeding its
local empirical 0.99 quantile are used.

ξ a(t ) a0 a1 a2 α λ Mean
2.4 0.2 3.1 7.0 9.8 2.8 5.2 4.4

performed 100 times with n = 104 and using the 0.99 quantile threshold. The estimator

is unbiased and its performance is shown in Table C.3.
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C.4 Model assessment for the downscaling application
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Figure C.1 – Quantile-quantile plots comparing the observations and the fitted
marginal distribution for every grid cell. Pointwise confidence intervals are obtained
by parametric bootstrap taking into account the uncertainty of the parameter esti-
mates.
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Figure C.2 – Estimated pairwise extremogram (dots) as function of the distance (km)
between the centres of the grid cells and direction (◦). The solid lines represent the
theoretical extremogram for the estimated anisotropic power variogram.
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D Proofs of theoretical results in Chap-
ter 4

D.1 Equation (4.5)

LetF0 =C {S, [0,∞)}\{0}. Take u0 � 0 such that {y ∈F0 : y(s0) > u0} ⊂ {y ∈F0 : r (y)� 1}.

Homogeneity of the limiting measure Λ gives

Pr
{
P (s0) > r ′}= Λ

{
y ∈F0 : r (y)� 1, y(s0)� r ′}
Λ
{

y ∈F0 : r (y)� 1
}

= Λ
{

x ∈F0 : r (y)� 1, y(s0)� r ′u−1
0 u0

}
Λ
{

y ∈F0 : r (y)� 1
}

=
(

r ′

u0

)−1/ξ Λ
{

y ∈F0 : r (y)� 1, y(s0)� u0
}

Λ
{

y ∈F0 : r (y)� 1
} ,

because for any r ′ � 1

{y ∈F0 : y(s0) > r ′u0,r (y)� 1} = r ′ × {y ∈F0 : y(s0) > u0,r (y)� 1}.

�

D.2 Theorem 4.1

Let F0 =C {S, [0,∞)}\{0}. For ξ> 0, let r ′ ∈Uξ
r and W ∈Sξ

r . The continuous function A

is strictly positive and thus bounded away from zero on the compact set S. Hence, for

any ε> 0, equation (4.8) gives |r (an)−1an(s)−A(s)| < εA(s) and |{bn(s)−r (bn)}/r (an)−
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Appendix D. Proofs of theoretical results in Chapter 4

B(s)| < ε for all s ∈ S and sufficiently large n. Thus, for ξ 
= 0,

X − r (bn)

r (an)
= an

r (an)

X −bn

an
+ {bn − r (bn)}

r (an)
≥ (1−ε)A

(
X −bn

an

)
+
+B −ε,

and analogously

X − r (bn)

r (an)
≤ (1+ε)A

(
X −bn

an

)
+
+B +ε.

With ε↘ 0, equation (4.6) leads to

limn→∞ n Pr
[

X−r (bn )
r (an ) ∈ ·

]
= limn→∞ n Pr

{
A X−bn

an
+B ∈ ·

}
=Λ

{
y ∈F0 : A yξ−1

ξ +B ∈ ·
}

.

To check that the sets
{

y ∈F0 : r
(

A yξ−1
ξ

+B
)
� r ′

}
are bounded away from the single-

ton {0}, note that if ξ> 0,

d∞
[{

y ∈F0 : r
(

A yξ−1
ξ +B

)
� r ′

}
, {0}

]
� d∞

[{
y ∈F0 : r

(
A yξ−1

ξ +B
)
� 0

}
, {0}

]
,

by definition of a valid risk functional r {B − Aξ−1} < 0, and its continuity at B − Aξ−1

ensures that

d∞
[{

y ∈F0 : r

(
A

yξ−1

ξ
+B

)
� 0

}
, {0}

]
> 0.

We can then apply ŵ-convergence on these sets, yielding

lim
n→∞n Pr

{
X − r (bn)

r (an)
∈
{

x ∈Fξ,A,B : r (x)� r ′,
x

‖x‖ang
∈W

}]
=

Λ

{
y ∈F0 : r

(
A

yξ−1

ξ
+B

)
� r,

A(yξ−1)+ξB

‖A(yξ−1)+ξB‖ang
∈W

}
.

For ξ� 0, the hypothesis r (x) →−∞ as x →−∞ ensures that
{

y ∈F0 : r
(

A log y +B
)
� 0

}
and

{
y ∈F0 : r

{
Aξ−1(yξ−1)+B

}
� 0

}
are bounded away from {0}. The case ξ < 0 is

analogous to the Fréchet domain of attraction and for ξ= 0, we obtain:

lim
n→∞nPr

[
X − r (bn)

r (an)
∈ {x ∈F0,A,B : r (x)� r ′, x −‖x‖ang ∈W

}]=
Λ
{

y ∈F0 : r
(

A log y +B
)
� r ′, A log y +B −‖A log y +B‖ang ∈W

}
.

�
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D.3. Corollary 4.1

D.3 Corollary 4.1

Recall that F0 =C {S, [0,∞)} \ {0}. We start with the results of Theorem 4.1. For ξ 
= 0,

r ′ ∈Uξ, and W ⊂Sξ
r , using the linearity of rl i n ,

Λ
{
(r ′,W)

}=Λ

{
y ∈F0 : rl i n

(
Ayξ

)
� 1+ξr ′,

A(yξ−1)+ξB

‖A(yξ−1)+ξB‖ang
∈W

}
.

The homogeneity of Λ yields

Λ
{
(r ′,W)

}= (1+ξr ′)−1/ξΛ

{
y ∈F0 : rl i n

(
Ayξ

)
� 1,

A(yξ−1)+ξB

‖(Ayξ−1)+ξB‖ang
∈W

}
= (1+ξr ′)−1/ξΛ

{
y ∈F0 : rl i n

(
Ayξ

)
� 1

}
×σ

ξ
r (W),

where we define

σ
ξ
rl i n

(W) =
Λ
{

y ∈F0 : rl i n
(

Ayξ
)
� 1, A(yξ−1)+ξB

‖A(yξ−1)+ξB‖ang
∈W

}
Λ
{

y ∈F0 : rl i n
(

Ayξ
)
� 1

} .

Similarly, for ξ= 0, the condition exp{rl i n(log x)} = rl i n(x) on rl i n ensures that

Λ
{
(r ′,W)

}=Λ
{

y ∈F0 : rl i n
(
y exp A

)
� expr ′, A log y +B − rl i n(A log y +B) ∈W}

,

and the homogeneity of Λ yields

Λ
{
(r ′,W)

}= exp(−r ′)Λ
{

y ∈F0 : rl i n
(
y exp A

)
� 1, A log y +B − r (A log y +B) ∈W}

= exp(−r ′)Λ
{

y ∈F0 : rl i n
(
y exp A

)
� 1

}×σ
ξ
rl i n

(W),

with

σ
ξ
r (W) = Λ

{
y ∈F0 : rl i n

(
y exp A

)
� 1, A log y +B − r (A log y +B) ∈W}

Λ
{

y ∈F0 : rl i n
(
y exp A

)
� 1

} .

�
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D.4 Derivation of (4.13)

Let F0 = C {S, [0,∞)} \ {0} and X ∈ GRV(F0,ξ, an ,bn ,Λ). Suppose that for n � 1, we

have un = an(s0)u +bn(s0) = u with u > 0. For ξ 
= 0 and r ′ � 0, we have

Pr
{
rs0 (X )−un > r ′ ∣∣rs0 (X ) > un

} =Pr
{
rs0 (X ) > r ′ +un

}
Pr
{
rs0 (X ) > un

}
=

n Pr
{

rs0 (X )−bn (s0)
an (s0) > r ′

an (s0) +u
}

n Pr
{

rs0 (X )−bn (s0)
an (s0) > u

} .

Then because n is large, we can approximate the probability ratios by their limits,

yielding

Pr
{
rs0 (X )−un > r ′ ∣∣rs0 (X ) > un

} ≈
[

1+ξ
{

r ′
an (s0) +u

}]−1/ξ×Λ
[{

y ∈F0 : r (Ayξ)� 1
}]

[1+ξu]−1/ξΛ
[{

y ∈F0 : r (Ayξ)� 1
}]

≈
(
1+ξ

r ′

an(s0)(1+ξu)

)−1/ξ

.

Setting σ(s0) = an(s0)(1+ ξu) gives the desired expression. The derivation for the

Gumbel case is similar. �

D.5 Derivation of (4.22)

We use similar calculations as for equation (4.5):

Pr{P (s0) > u′} = Pr
[

P ∈
{

x ∈Fξ,A,B : x(s0) > u′
}]

=
Λ
[{

1+ξA−1(x −B)
}1/ξ ∈Fξ,A,B : x(s0)� u′,r (x)� u

]
Λ
{

y ∈F0 : r
(

A yξ−1
ξ

+B
)
� u

}
=

Λ
{

y ∈F0 : A(s0) y(s0)ξ−1
ξ

+B(s0)� u′,r
{

A yξ−1
ξ

+B
}
� u

}
Λ
{

y ∈F0 : r
(

A yξ−1
ξ

+B
)
� u

}
=
[

1+ξ
(u′ −u0)

A(s)+ξ{u0 −B(s0)}

]−1/ξ

×

Λ
{

y ∈F0 : y(s0)� 1+ξA(s0)−1{u0 −B(s0)},r
{

A yξ−1
ξ

+B
}
� u

}
Λ
{

y ∈F0 : r
(

A yξ−1
ξ

+B
)
� u

} ,
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D.6. Derivation of (4.27)

so for any r ′ � 0

Pr
[
P (s0) > r ′ +u′ ∣∣P (s0) > u′] = Pr{P (s0) > r ′ +u′}

Pr{P (s0) > u′}

=
[
1+ξA(s0)−1{r ′ +u′ −B(s0)}

]−1/ξ[
1+ξA(s0)−1{u′ −B(s0)}

]−1/ξ

= Hξ,σ(u′)
(
r ′) ,

where σ(u′) = A(s0)+ξ{u′ −B(s0)}. For the linear case, we similarly obtain

Pr
[
P (s0) > r ′ +u′ ∣∣P (s0) > u′] = Hξ−1,σ(u′)(r ′), r ′ � 0,

where σ(u′) =σA(s0)+ξ{u′ − A(s0)u −B(s0)} with u′ > u0. �

D.6 Derivation of (4.27)

For u � 0 and any r ′ � u, we simplify the measure

Pr

[
P ∈

{
x ∈Fξ,A,B : r (x)� r ′,

x

‖x‖ang
∈W

}]

=
Λ
{

y ∈F0 : r
(

A yξ−1
ξ +B

)
� r ′, w = A(yξ−1)+ξB

‖A(yξ−1)+ξB‖ang
∈W

}
Λ
{

y ∈F0 : r
(

A yξ−1
ξ

+B
)
� 0

}
=

Λ
[{

1+ξA−1(x −B)
}1/ξ ∈F0 : r (x)� r ′, w = x

‖x‖ang
∈W , x ∈Fξ,A,B

]
Λ
{

y ∈F0 : r
(

A yξ−1
ξ

+B
)
� 0

} ,

and thus using a chain rule to compute partial derivatives with respect to the elements

of the vector x, we get

∂Pr(P ∈ ·)
∂x

=
λ
{(

1+ξ x−B
A

)1/ξ
}

Λ
{

y ∈F0 : r
(

A yξ−1
ξ

+B
)
� u

} L∏
l=1

A(sl )−1
(
1+ξ

x −B(sl )

A(sl )

)1/ξ−1

,

which gives (4.27).

For the linear case, let r ′ � 0 and W ⊂Sr , then

Pr

{
r (P )� r ′,

P

‖P‖ang
∈W

}
= Hξ−1,σ,u(r ′)×σr (W),
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=
{

1+ξ
r ′ −u

σ

}−1/ξ Λ
{

y ∈F0 : r
(

A yξ−1
ξ

+B
)
� 0, w = A(yξ−1)+ξB

‖A(yξ−1)+ξB‖ang
∈W

}
Λ
{

y ∈F0 : r
(

A yξ−1
ξ +ξB

)
� 0

} .

The hypothesis r (A) = 1 ensures that{
y ∈F0 : r

(
A

yξ−1

ξ
+B

)
� 0

}
=
{

y ∈F0 : r

(
A

yξ

ξ
+B

)
� ξ−1

}
.

Then the linearity of r and the measure’s homogeneity give

Pr

{
r (P )� r ′,

P

‖P‖ang
∈W

}

=
Λ
{

y ∈F0 : r
(

A yξ

ξ
+B

)
� ξ−1 + r ′−u

σ
, w = A(yξ−1)+ξB

‖A(yξ−1)+ξB‖ang
∈W

}
Λ
{

y ∈F0 : r
(

A yξ−1
ξ

+B
)
� 0

}
=

Λ
{

y ∈F0 : r
(

Aσ yξ−1
ξ +B + Au

)
� r ′, w = A(yξ−1)+ξB

‖A(yξ−1)+ξB‖ang
∈W

}
Λξ
{

y ∈F0 : r
(

A yξ−1
ξ

+B
)
� 0

}
=

Λ
[{

1+ξ(σA)−1(x − Au −B)
}1/ξ ∈F0 : r (x)� r ′, w = x

‖x‖ang
∈W , x ∈Fξ,A,B

]
Λ
{

y ∈F0 : r
(

A yξ−1
ξ

+B
)
� 0

} .

Then we proceed similarly as for equation (4.27), yielding

f r
u (x) =

λ

{(
1+ξ

x−A(si )u−B(si )
σA(si )

)1/ξ
}

Λ
{

y ∈F0 : r
(
σA yξ−1

ξ +B s
)
� u

}×
L∏

i=1
(A(si )σ)−1

(
1+ξ

x − A(si )u −B(si )

σA(si )

)1/ξ−1

, x ∈Ar (u). �

D.7 Poisson process and binomial representation equiv-

alence

Let Nn be the Poisson process[
A

{Rn Xn(s)}ξ−1

ξ
+B

]
n=1,...
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D.7. Poisson process and binomial representation equivalence

defined on Fξ,A,B and where {Rn = (1/i ), Xn}n=1,... is also a Poisson process on (0,1]×{
y ∈F0 : |S|−1‖y‖1 � 1

]
with intensity r−2dr ×λ(d x). Then Nn → N as n →∞, and N

is a Poisson process on Fξ,A,B with intensity measure λ given in (4.27).

The Poisson point process Nn lies the set {x ∈Fξ,A,B : |S|−1‖{(x −B)ξ/A}1/ξ‖1 � n−1},

which is also the set A‖·‖1 (n−1) = {y ∈ F0 : |S|−1‖y‖1 � n−1}, so the probability that

exactly n points lie in A‖·‖1 (n−1) is

Pr(N = n) = Λ
{A‖·‖1

(
n−1

)}n

n!
exp

[−Λ{A‖·‖1

(
n−1)}] .

Similarly, for a functional r and threshold u ∈Uξ, the probability that the number of

exceedances Nu equals nu is

Pr(Nu = nu) = Λ {Ar (u)}nu

nu !
exp[−Λ {Ar (u)}] ,

where Ar (u) = {y ∈F0 : r
[

A(yξ−1)/ξ+B
]
� u

}
. Thus with N c

u denoting the number

of points lying in AL1 (n−1) but not in Ar (u), we get

Pr(Nu = nu | N = n) = Pr
{

Nu = nu , N c
u = n −nu

}
Pr {N = n}

= n!

nu !(n −nu)!

Λ {Ar (u)}nu Λ
{A‖·‖1

(
n−1

)
\Ar (u)

}n−nu

Λ
{
A‖·‖Ł1

(
n−1

)}n

=
(

n

nu

)(
Λ {Ar (u)}

Λ
{A‖·‖1

(
n−1

)})nu
(
1− Λ {Ar (u)}

Λ
{A‖·‖1

(
n−1

)})n−nu

,

Finally, we have Λ
{A‖·‖1

( 1
n

)}= nΛ
{A‖·‖1 (1)

}= n, so

Pr(Nu = nu |N = n) =
(

n

nu

)[
Λ {Ar (u)}

n

]nu
[

1− Λ {Ar (u)}

n

]n−nu

,

and thus we obtain the representation (4.29).
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E Supplementary material for Chapter 6

This Appendix gives the detailed plots of the logistic regression modelling the dis-

tribution of 1{r (x) � u}, the probability of storm occurence in Europe. The North

Atlantic Oscillation (NAO) index and the first and third eigenvalues of the tempera-

ture anomaly, shown in Figures E.1, E.2, and E.3, have a significant influence on the

occurrence of winter storms at the 0.1% confidence level.
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E.1 Diagnostic plots for modelling the frequency of wind

storms
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Figure E.1 – Three-hourly North Atlantic Oscillation (NAO) index computed on the
ERA–Interim data set for each winter. r -exceedances above the 0.96 empirical quantile
are represented by red dots and wind storms from XWS catalogue are represented by
vertical lines coloured by dates.
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Figure E.2 – Three-hourly first eigenvalue of the temperature anomaly index com-
puted on the ERA–Interim data set for each winter. r -exceedances above the 0.96
empirical quantile are represented by red dots and wind storms from XWS catalogue
are represented by vertical lines coloured by dates.
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Figure E.3 – Three-hourly third eigenvalue of the temperature anomaly index com-
puted on the ERA–Interim data set for each winter. r -exceedances above the 0.96
empirical quantile are represented by red dots and wind storms from XWS catalogue
are represented by vertical lines coloured by dates.
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Figure E.4 – Modelled three-hourly probability of r -exceedance for each winter from a
logistic regression with the NAO index and the first and third temperature anomaly
eigenvalues as covariates. Observed r -exceedances are represented by red points and
the vertical lines coloured by dates correspond to the storms from the XWS catalogue.
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