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Abstract
Dynamically-scheduled elastic circuits generated by High-Level Synthesis (HLS) tools are

inherently out-of-order, following the flow of data rather than the evolution of an instruc-

tion pointer. Components of the circuit which access memory need to be connected to a

Load-Store Queue (LSQ) that dynamically checks for memory dependencies, performs store

ordering and forwarding, and allows unordered access to Random-Access Memory (RAM)

whenever possible. While connecting every memory access (load/store) component to an

LSQ ensures correctness of program execution, the hardware and power cost makes this

solution unattractive. Statically ruling out dependencies allows circuits to access memory

via lightweight components that use an arbitrator to handle RAM port sharing. Reducing the

number of components using the LSQ allows the compiler to generate smaller queues which

results in superlinear savings in hardware and power for the memory subsystem.

This work describes additions to the Elastic Compiler (EC) that allow it to analyze algorithms

expressed in LLVM-IR, an intermediate code representation, to rule out memory dependen-

cies between load/store instructions and their underlying insights. These analyses leverage

pointer analysis as well as array access patterns to narrow down the list of possibly dependent

instructions. We also enhance the compiler to leverage our analyses and automatically gener-

ate relevant memory-access components for the circuit and to connect them to the relevant

arbitrator or LSQ.
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Introduction

A ubiquitous feature of modern computational environments is the functional accelerator.

From FPGA filled datacenters [2] for faster web-search to specialized AI coprocessors on hand-

held devices, accelerators move the execution of commonly used and compute-intensive

applications away from general-purpose processors to specialized processors on dedicated

(ASIC) or reconfigurable (FPGA/CGRA) hardware. These accelerators offer faster executions of

specific functionality, often under strict power constraints. Other examples of accelerators

include cryptographic accelerators which enable fast, efficient and secure communication

between arbitrary endpoints and digital signal processors (DSPs) which handle the particularly

circumscribed set of processing required for broadband telecommunication.

With the end of Dennard Scaling, power-density constraints have almost halted the tradition-

ally drastic increases in operating frequency between processor generations. No longer can

the ballooning computational requirements of modern workloads be met by pushing up core

frequencies. Other work has projected that power scaling will also arrest the current trend

of scaling up processors by increasing the number of cores [5]. Proposals [8, 16] have called

for populating the abundant, power-constrained on-die area with heterogeneous, efficient,

application-specific processors.

Developing application specific processors is currently an involved process that requires

significant investment in highly-skilled personnel and resources. This leads to a gap between

the demand for rapid development of a large variety of application specific hardware and the

current capabilities for the same. High-Level-Synthesis (HLS) aims to accelerates this process

by automating the generation of hardware from algorithms expressed in high level languages

such as C or even functional languages such as Haskell.

Currently available HLS solutions almost universally depend on statically scheduled datapaths.

Due to indeterminacy in timing introduced by control decisions based on data from memory

accesses, long latency operations or by possible memory dependencies the static schedules

generated by HLS tools are overly conservative and restrict parallelism in loops. While dynamic

scheduling in elastic circuits removes the necessity to conservatively schedule operations,

the inherently out-of-order nature of dataflow circuits warrants the use of bulky load-store-

queue (LSQ) interfaces to memory. In accelerators, the ability to disambiguate addresses at

compile time can allow the usage of lightweight ports which bypass the power-hungry LSQs
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Contents

and directly access memory.

This work focuses on the problem of statically disambiguating memory accesses in dynami-

cally scheduled elastic circuits in order to exploit the lack of memory dependencies between

components. We wish to connect only the minimal set of nodes to LSQs while allowing other

provably data-dependency free components to directly access the memory. For this, we exploit

known techniques such as alias analysis and develop a novel approach that leverages the

determinate nature of Static Control Parts and the properties of data flow through an elastic

circuit.
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1 Background

1.1 High Level Synthesis

Data-driven architectures are a class of computer architectures where operations are triggered

by the availability of data as operands, rather than a requirement for the results [17] as in a

traditional von-Neumann architecture. Dataflow circuits are an implementation of a data-

driven architecture. They consist of hardware components for various operations which are

connected to reflect the natural flow of data in the algorithm. An example of a dataflow circuit

is shown in Fig. 1.1.

High-level Synthesis (HLS) is the compilation of algorithms expressed in high-level languages

such as C/C++/SystemC or functional languages to digital hardware expressed in a Register-

Transfer Level (RTL) language such as Verilog or VHDL. The output, a netlist, can be used by a

logic synthesis tool to synthesize a gate-level dataflow circuit that implements the algorithm.

This gate-level description may be used by VLSI tools to fabricate ASICs or to program an

FPGA.

1.2 Scheduling and Elastic Circuits

Scheduling in a dataflow circuit is the activation of the hardware elements of the circuit to per-

form their function. Most existing HLS frameworks use static scheduling where the schedule

is set at compile time and a central scheduling unit may be responsible for these activations.

When control and/or data dependencies are indeterminable at compile time, static schedulers

follow conservative schedules based on worst-case assumptions. This is demonstrated in

Fig. 1.2, where the static scheduler must assume that the summation operation from the

previous iteration might execute, and must delay the current operation accordingly. On the

other hand, a dynamic scheduler can execute the current summation earlier, if the previous

value is not positive.

Elastic circuits [3] are dynamically-scheduled circuits where each hardware element corre-

3



Chapter 1. Background

Figure 1.1 – Dataflow circuit for computing the Discrete Fourier Transform of a 4-wide array

sponds to a node in a dataflow-graph. Nodes are activated dynamically when they are ready

(to perform their operation) and their operands are available. Each component is augmented

with ready and valid signals to its predecessor and successor nodes, which forms a hand-

shake mechanism for regulating the flow of data through the circuit. An example elastic

node with two predecessors and a single successor is shown in Fig. 1.3. When data passes

from one element to the next, a token is said to have passed between them. Unlike statically-

scheduled circuits, there is no central scheduling unit activating elements according to some

pre-determined schedule. Josipovic et al. [11] propose an algorithm for generating elastic

circuits from C code.

1.3 LLVM

The LLVM Project is a research initiative that was started at the University of Illinois to de-

sign a comprehensive, modular compiler framework [12, 13]. It includes compiler frontends

for a variety of programming languages including C/C++/Objective-C which compile code

to LLVM-IR, an intermediate representation in Static Single Assignment (SSA) form with a

simple, language-independent type-system that can cleanly represent code in high-level

languages [14]. External projects have extended frontend support to other high-level lan-

guages such as Python, Java and Haskell. LLVM-IR is the basis of a number of analysis and

transformation passes which respectively aim to generate insights about the code and to

optimize it. Several commonly-used passes are included with the project, while most external

projects implement passes of their own. LLVM also provides backends for generating static

and just-in-time (JIT) code for popular existing architectures such as ARM, x86, and MIPS as

well as research architectures such as RISC-V.

4



1.3. LLVM

1 for(i = 0; i < n; i++){
2 val = a[i];
3 if(val > 0)
4 sum += val;
5 }

(a) C code (b) Portion of the corresponding
dataflow circuit

(c) Conservative scheduling by static scheduler

(d) Possible optimal schedule by dynamic scheduler

Figure 1.2 – Example code to compute the sum of all positive elements in an array. Fig. 1.2b
shows a portion of the corresponding dataflow circuit. A static schedule may produce the
schedule shown in Fig. 1.2c. In contrast, a dynamic scheduler may produce the optimal
schedule shown in Fig. 1.2d.

5



Chapter 1. Background

Figure 1.3 – A node in an elastic circuit with ready and valid signals which regulate the flow of
tokens

1.3.1 Pass Infrastructure

LLVM includes a number of analysis and transformation passes which operate on LLVM-

IR [15]. These are the basis for LLVM’s multi-stage optimization paradigm. Analysis passes

generate information about the code which the transformation passes may exploit to generate

optimized code. Commonly used analysis passes include:

• Alias Analysis - which checks whether or not two pointers may alias i.e. reference the

same location. It is implemented by various modules which provide information at vari-

ous levels of analysis. For example, BasicAA distinguishes between distinct global, stack

and heap allocated variables. It also disambiguates different members of a struct, indices

into arrays with statically different subscripts. SteensAA, implements a variation of the

Steengaard’s Points-To analysis algorithm and is capable of providing inter-procedural

alias analysis.

• Loop Information - which generates information about loops such their depth and

contained basic blocks. Basic blocks within loops have an associated level (≥ 1) where

the outermost loop is at level 1 and each subsequent nesting raises the level by 1.

• Dominator/Post-Dominator Tree - which computes the dominator/post dominator

tree1 by analyzing the control-flow graph (CFG).

• Region Information - which generates a list of valid regions2 in the CFG.

1https://en.wikipedia.org/wiki/Dominator_(graph_theory)
2In LLVM-IR, a region is defined by a single-entry header and a single-exit footer basic blocks. It is a set all basic

blocks which are dominated by the header and post-dominated by the footer, excluding the footer.
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1.4. Integer Polyhedra

1 for(i = 0; i < n; i++){
2 for(j = 0; j <= i; j++){
3 Instruction(i, j)
4 }
5 }

(a) An example nested loop code in C (b) The domain of Instruction(i, j)

Figure 1.4 – The domain for an instruction inside a nested-loop in C is shown to form a polygon
in 2-dimensional integer-space

1.4 Integer Polyhedra

An integer polyhedron P is defined as a set of m dimensional vectors of the form P = {x ∈
Zm |Ax ≤ b} for some matrix A ∈Zm×n and some vector b ∈Zn . An integer polyhedron is often

an apt descriptor for the domains of induction variables3 for loops in a high-level language.

As an example, the induction variables in the code from Fig. 1.4a are bound by the constraints

0 ≤ j ≤ i < n. The execution domain for the instruction is described by the set shown below.{
[i , j ] :

(
1 0
0 −1−1 1

)( i
j

)≤ (
n−1

0
0

)}

1.4.1 Integer Set Library

The Integer Set Library isl is a C library for creating and manipulating sets and relations of

integer tuples bounded by affine constraints [18]. Among others, isl defines data structures

representing the following types of objects4:

• Basic Integer Set

• Set

• Basic Map

• Map

3An induction variable is a variable that gets increased or decreased by a fixed amount on every iteration of
a loop. Without loss of generality, this thesis assumes that induction variables start at 0 and increase by 1 every
iteration. Ref. Wikipedia

4The definitions in this section have been taken from Grosser [7].

7
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Chapter 1. Background

1 for(i = 0; i < n; i++){
2 if(i % 2 == 0){
3 from = i;
4 to = n - 1 - i;
5 a[to] = a[from];
6 }
7 }

(a) (b) The array, before and after running the code. Arrows
show the copying of data.

Figure 1.5 – Code to generate a palindromic array from the elements at even position of an
array

Definition 1. An isl basic set is a function S :Zn → 2Z
d

: s 7→ S(s), where

S(s) = {
x ∈Zd |∃z ∈Ze : Ax +B s +Dz + c ≥ 0

}
with A ∈Zm×d ,B ∈Zm×n ,D ∈Zm×e ,c ∈Zm .

In the definition, m is the number of constraints on the set, d is the number of set dimensions,

n is the number of parameters and e is the number of existentially qualified variables.

An example of a basic set is [n] → {i |∃e : 0 ≤ i < n, i = 2e}. This basic set can be used to

represent the execution domains for the load and store instructions from the loop in Fig. 1.5a.

The induction variable i is used to parse through the even positions in an array of size n. The

same set can be represented as:

[n] →
{

[i ] :
( 1−1

1−1

)(
i
)+ (0

1
0
0

)(
n
)+ ( 0

0−2
2

)(
e
)+ ( 0−1

0
0

)
≥ 0

}
where the constraints 0 ≤ i < n, i = 2e are re-arranged to get:

• i ≥ 0 and

• n −1− i ≥ 0

• i −2e ≥ 0

• −(i −2e) ≥ 0

To express the same basic set as per definition 1,

8



1.4. Integer Polyhedra

• d = 1

• m = 4

• n = 1

• e = 1

• A =
( 1−1

1−1

)
• B =

(0
1
0
0

)
• D =

( 0
0−2
2

)
• c =

( 0−1
0
0

)

An isl set is a union of a finite number of isl basic sets, each of which have the same number

of set and parameter dimensions.

Definition 2. An isl basic map is a function M :Z→ 2Z
d1×Zd2

: s 7→ M(s) where

M(s) = {
x1 → x2 ∈Zd1 ×Zd2|∃z ∈Ze : A1x1 + A2x2 +B s +Dz + c ≥ 0

}
with A1 ∈Zm×d1 , A2 ∈Zm×d2 ,B ∈Zm×n ,D ∈Zm×e ,c ∈Zm

In the definition, d1 is the number of input dimensions, d2 is the number of output dimensions,

m is the number of constraints on the set, n is the number of parameters and e is the number

of existentially qualified variables.

An example of a basic map is [n] → {i → o : o = n − 1− i }. This basic map can be used to

represent the access relation for the store instruction in the loop from Fig. 1.5a. The location

at index n −1− i is accessed in the i th iteration. The same map can be represented as

[n] →
{

[i ] → [o] :
(

1−1

)(
i
)+ (

1−1

)(
o
)+ (−1

1

)(
n
)(

1−1

)≥ 0
}

where the constraint o = n −1− i is expressed as:

• i +o −n +1 ≥ 0 and

• −(i +o −n +1) ≥ 0

To express the same basic map as per definition 2,

• d1 = 1

• d2 = 1

• m = 2

• n = 1

• e = 0

• A1 =
(

1−1

)
• A2 =

(
1−1

)
• B = (−1

1

)
• D = ()
• c = (

1−1

)
An isl map is a finite union of basic maps, each of which have the same number of input,

output and parameter dimensions.

For the purpose of readability, constraints on isl sets and maps will be written as a list for the

rest of the document. Syntactic sugar (e.g. ’i mod 2 = 0’) will be used where possible.

9



Chapter 1. Background

1.5 Polly

Polly is a framework based on LLVM which uses polyhedral analysis to optimize loops within

programs for data locality and parallelism [7]. Implemented as a series of LLVM passes, Polly

includes separate modules for preparing code for Polly (canonicalization), detecting SCoPs

and creating polyhedral descriptions for memory accesses, optimizing them and re-generating

the IR.

Polly performs the following loop canonicalization passes:

• Loop Simplification: This pass ensures that each loop has a pre-header from which

there is a single entry-edge to the loop header. It also ensures that the loop has a single

latch edge5 like in Fig.1.6b.

• Induction variable canonicalization: This modifies each loop to have a single induction

variable counting from zero with steps of one, like in Fig. 1.6d.

• Tail call elimination: This pass transforms tail-recursive functions into their iterative

form. This enables Polly to analyze and optimize loops written in functional program-

ming languages or with functional paradigms in mind like in Fig. 1.6f.

1.5.1 Static Control Parts

Static Control Parts are regions of a program in which all control flow decisions and memory

accesses are known at compile time and hence, may be statically scheduled by a control

unit. SCoPs must be side-effect free [6] and contained loops must have affine expressions in

induction variables and parameters for:

• Loop bounds.

• Flow control conditions.

• Memory access relations.

Examples of loops which are SCoPs can be found in Fig. 1.5a and Fig. 1.8 while loops which

violate one or more of these conditions are shown in Fig. 1.7.

1.5.2 ScopInfo Pass

The pass ScopInfo implemented by Polly detects SCoP regions and creates polyhedral descrip-

tions for memory accesses in them. Grosser [7] defines a SCoP in LLVM-IR and describes the

5A latch for a loop is a CFG edge where control moves back to the header.

10



1.5. Polly

(a) (b) Canonicalized CFG for loop in Fig.1.6a.

1 for(i = a; i < b; i += c){
2 ...
3 }

(c)

1 for(j = 0; j < (b - a)/c; j++){
2 i = a + c * j
3 ...
4 }

(d) Canonicalized loop equivalent to Fig.1.6c

1 int factorial(int n){
2 if(n < 2)
3 return 1;
4 else
5 return n * factorial(n-1);
6 }

(e)

1 int factorial(int n){
2 int product = 1, i;
3 for(i = 2; i <= n; i++)
4 product *= n;
5 return product;
6 }

(f) Iterative equivalent of the recursive function from
Fig.1.6e

Figure 1.6 – Examples of loop canonicalization passes used by Polly

11



Chapter 1. Background

1 for(i = 0; i*i < n; i++){
2 lock(i);
3 a[i] = i;
4 unlock();
5 }

(a) Loop has a non-affine upper-bound and function
calls with side-effects (modifies a lock variable)

1 while(low < high){
2 mid = (low + high)/2;
3

4 if(a[mid] == n)
5 ...
6 else if(a[mid] < n)
7 low = mid + 1;
8 else if(a[mid] > n)
9 high = mid;

10 }

(b) Loop has data-dependent control decisions and
loop bound

Figure 1.7 – Two non-SCoP loop regions. The algorithm in Fig. 1.7a acquires a lock before
writing to the array at index i . Fig. 1.7b shows an implementation of the binary search
algorithm.

SCoP-detection algorithm. The ScopInfo pass analyzes the LLVM-IR representation allowing

detection of regions that are semantically a SCoP, but are not expressed as such. Examples

may be seen in Fig. 1.8.

For every valid region, ScopInfo creates a Scop object containing ScopStmt objects corre-

sponding to each contained basic block. A description is generated for each memory access

(load/store) in a MemoryAccess object comprising a domain, a schedule, a base and an access

relation map.

• The base for a MemoryAccess is a pointer to the base of the array accessed by the

instruction.

• For an instruction I nested inside m loops, the domain D for a MemoryAccess is the

set of vectors vi nd = {v1, . . . vm} of the values of induction variables for which I will be

executed. Each vi refers to the value of the induction variable for the loop at level i .

Therefore, v1 is the value of the induction variable for the outermost loop and vm is the

value of the induction variable for the innermost loop. Polly describes the domain for

an instruction in an isl set object. Values from outside the outermost loop which are

used in the SCoP are specified as parameters.

• The access relationship for a MemoryAccess is a function that maps a vector of m induc-

tion variables to a vector of n indices into the n-dimensional base array. Polly represents

the access relationship as an isl map object. Values from outside the outermost loop

which are used in the SCoP are specified as parameters.

12



1.6. Elastic Compiler

1 i = 0;
2

3 do {
4 int a = 3 * i;
5 int b = n/2 + i + 5 * a;
6

7 arr[b] = i;
8 i += c;
9 } while (i < n);

(a) Using a complicated index expression

1 for(i = 0; i == 0 || i < n; i += c){
2 arr[n/2 + 16 * i] = i;
3 }

(b) Equivalent code in canonical form

1 int *iter = arr;
2 int *end = &arr[n];
3 int count = 0;
4

5 while(iter != end) {
6 *iter++ = count++;
7 }

(c) Using pointer arithmetic to parse an array

1 for(i = 0; i < n; i++)
2 arr[i] = i;

(d) Equivalent code in canonical form

Figure 1.8 – Two valid SCoP regions and their canonicalized counterparts

• The schedule is a vector which allows for partial ordering on the set of memory instruc-

tions within a SCoP. This information is used by Polly for analyzing memory dependen-

cies and parallelizing loops.

1.6 Elastic Compiler

The Elastic Compiler (EC) under development at EPFL implements the HLS strategy as pro-

posed in Josipovic et al. [11] and is based on the LLVM compiler infrastructure. Starting

from the intermediate representation generated by an LLVM frontend (e.g. Clang) and its

corresponding CFG, the Elastic Compiler generates a VHDL netlist for a dynamically sched-

uled circuit. The circuit comprises elements implementing specific basic operations (e.g.

arithmetic, branch, select) similar to those in traditional dataflow circuits, but augmented

with elastic control signals connecting each element to its predecessors and successors in

order to achieve latency-insensitive scheduling. It also includes other elastic components

such as elastic buffers, elastic FIFOs, eager and lazy forks and joins. These are described in

detail in previous work [4, 9]. Connections to arrays of random-access-memory (RAM) are

made through read and write ports that connect to an arbitrator or a load-store-queue. The

connection to memory is the focus of this work and is described in more detail in chapter 2.

Elastic sub-circuits are first generated for each basic block by literally translating the dataflow

13



Chapter 1. Background

Figure 1.9 – The template for generating elastic basic blocks

graph by replacing operators with their corresponding functional units, connecting compo-

nents to their predecessors and successors and introducing forks wherever the output of a

component has more than one successor (at least one of which is within the same basic block).

Control nodes resembling a data-less variable are added for each block. These sub-circuits

are then augmented with branch nodes for each live value leaving a basic block and merge

nodes for each value entering it. Finally, the sub-circuits are stitched together. For each basic

block edge in the CFG, the branch node from the predecessor for each live value is connected

to the corresponding merge node in the successor. This is illustrated in Fig. 1.9 reproduced

from Jospovic et al. [11]. Other added components include FIFOs to decouple fast paths from

slower ones, and buffers to break combinatorial loops or critical edges.
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2 Memory Dependencies in Elastic Cir-
cuits

Nodes in an elastic circuit are dynamically scheduled when their operands are available. As

a result, the temporal ordering between the activations of any arbitrary pair of nodes in the

circuit is unclear at compile time and memory accesses are inherently out-of-order. The flow

of tokens through the circuit provides us with the only mechanism for temporally ordering

the activations of pairs of nodes where one depends on the other for receiving a token, and

hence being activated. Nodes corresponding to memory instructions (load/store) may have

read-after-write (RAW) and write-after-write (WAW) dependencies. Being out-of-order, these

nodes might need a load-store-queue (LSQ) to dynamically resolve memory dependencies

and correctly order dependent accesses.

Load-store queues are structures that allow memory operations to be issued to memory

out-of-order by checking addresses with all previous operations. For example, a load may

be issued to the RAM as soon as all previous store addresses are available to the LSQ and it

verifies that none of them write to the same address as the load. For this purpose, it uses

Content-Addressable Memory (CAM) which incorporates comparison circuitry with every

address storage cell. Since every address must be compared with all previous addresses, the

hardware and energy costs of an LSQ increase super-linearly with its size, i.e. the number of

outstanding memory operations it can handle.

An LSQ must be sized to handle the latency between a load entering the queue and addresses

for all previous stores becoming available. To store all addresses that arrive in this period,

the size of its queues must increase with the number of read and write ports. As a result,

it is desirable to only connect memory components to the relevant LSQ if there might be

RAW/WAW dependencies at runtime.

2.1 Elastic compiler: Memory access

Memory components in the circuits generated by the Elastic Compiler (EC) are connected to

arrays of dual-ported random-access memory (RAM). Each RAM corresponds to an array in
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Chapter 2. Memory Dependencies in Elastic Circuits

Figure 2.1 – Elastic memory components may be connected to the memory via an arbitrator or
an LSQ. The LSQ also has a control connection to the basic blocks from which it has read/write
connections

the C-representation of the algorithm. The hardware node for a memory element might be a

simple port which connects to an arbitrator that uses one of the RAM ports or a connection to

a LSQ that uses the other RAM port.

EC implements LSQs as described in Josipovic et al. [10]. Elastic components corresponding

to memory instructions are connected to the relevant LSQ via elastic interfaces which include

separate elastic signals for the data and address. An example connection is shown in Fig 2.2.

When control reaches a basic block, slots corresponding to the loads and stores in the block

are allocated in the LSQ prior to any of those components being activated. In the existing EC

compiler, memory nodes need to be manually connected to the memory subsystem. Further,

they are all conservatively attached to the LSQ.

In this work, we extend EC by automating and optimizing the assignment of memory nodes

to LSQs. We describe the insights which allow the compiler to make the decision to connect

to memory via a simple port to the arbitrator instead of the LSQ. Further, it describes the

implementation of memory disambiguation passes based on these insights in EC which allows

it to automate the process of connecting the elastic circuit to memory. An example of a portion

of a possible circuit generated by the final compiler is shown in Fig. 2.1. In this example, the

load node connected to the arbitrator must have been proved to be independent of all other

nodes accessing the same RAM.
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2.2. Architecture

Figure 2.2 – Generated LSQs have connections to elastic read/write ports and to their basic
blocks. Yellow blocks represent basic blocks.

In the augmented EC infrastructure, the MemElemPass analysis pass generates a MemElem-

Info object containing information used while generating the hardware components for

accessing memory. For each node corresponding to a memory instruction, we can query

whether it requires an LSQ connection or a basic memory port, and which RAM it needs to

access, in order to connect it correctly. Finally, MemElemInfo tracks the necessary control

connections between basic blocks and LSQs for slot allocation [10].

2.2 Architecture

The architecture of the memory dependence analysis infrastructure is shown in Fig. 2.3. Nodes

indicate analyses while arrows from Node A to Node B indicates that analysis A depends on

results produced by analysis B.

Token dependence is defined in Chapter 3 and relates the flow of tokens between pairs

of circuit components within a loop. The TokenDependenceInfo class presents the query

interface for this analysis.

IndexAnalysis checks for memory dependencies within SCoPs and is described in Chapter 4. It
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Chapter 2. Memory Dependencies in Elastic Circuits

Figure 2.3 – Analysis passes for analyzing memory dependencies between instructions. Arrows
indicate dependences between passes.

uses polyhedral information from the ScopInfo wrapper pass to create sets of indices accessed

by each instruction and then checks for overlapping sets to detect possible dependencies. It

also uses token dependence information from the TokenDependence analysis to temporally

relate the activations of memory operations to further rule out dependencies.

MemElemInfo provides the high-level abstraction that the compiler can use to assign hardware

components to memory operations. It uses information from IndexAnalysis and AliasAnalysis

passes to detect pairs of instructions with memory dependencies and thereby create sets of

instructions to be assigned to every LSQ. This pass is described in Chapter 5.
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3 TokenDependenceInfo

The TokenDependenceInfo class tries to determine if there is a token dependence or reverse

dependence, as defined below, between a pair of instructions by examining the LLVM-IR

generated by the compiler frontend.

We define two types of token dependence to describe the flow of tokens between a pair of

nodes:

• Token Dependence

• Reverse Token Dependence

Definition 3. An instruction IB is dependent on I A (written as I A
D−→ IB ) w.r.t. a set Si nd of

induction variables if every token arriving at the node corresponding to IB has passed through

the node for I A without passing though basic block edges that would increment any of the

induction variables in Si nd .

Definition 4. An instruction I A is reverse dependent on IB (written as I A
RD−−→ IB ) w.r.t. a set

Si nd of induction variables if every token arriving at the node corresponding to I A will flow

to the node for IB without passing through basic block edges that would increment any of the

induction variables in Si nd .

In Fig. 3.1, we see a snippet of C code, its intermediate representation in LLVM and a portion

of the elastic circuit generated as a result. From the LLVM code, we can find the following

dependences, among others:

• I0
D−→ I1

• I1
D−→ I2

• I2
D−→ I3

• I3
D−→ I4

• I3
D−→ I5

• I3
D−→ I8

• I3
D−→ I9

• I6
D−→ I8

• I7
D−→ I8

• I8
D−→ I9

However, we can also determine that the instruction I6 does not have a token dependence on

I3 because there is a path in which it gets a token from the node with the constant value −1.
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Also, there is no token dependence between I4 and I5 because there is no path between them

without incrementing the induction variable i .

The elastic circuit also has the following reverse dependencies, among others:

• I3
RD−−→ I8

• I3
RD−−→ I9

• I4
RD−−→ I6

• I4
RD−−→ I8

• I4
RD−−→ I9

• I5
RD−−→ I7

• I5
RD−−→ I8

• I5
RD−−→ I9

• I6
RD−−→ I8

• I6
RD−−→ I9

• I7
RD−−→ I8

• I7
RD−−→ I9

• I8
RD−−→ I9

In contrast, the instruction I4 does not have a reverse dependence on I5 since there is no path

from the basic-block if.then to if.else without incrementing the induction variable i . I4 also

does not have a reverse dependence on I7 since there is a path in which I7 gets a token from

the node with the constant value 1.

3.1 Properties

1. If I A
D−→ IB , BB A dominates1 BBB .

2. If I A
RD−−→ IB , BBB post-dominates2 BB A .

3. Both dependence and reverse dependence are transitive, non-symmetric and non-

reflexive.

4. If I A
D−→ IB w.r.t the set of common induction variables Si nd , I A cannot be within a

deeper loop body.

5. If I A
RD−−→ IB w.r.t the set of common induction variables Si nd , IB cannot be within a

deeper loop body.

6. If I A
D−→ IB or I A

RD−−→ IB w.r.t the set of common induction variables Si nd , every execution

of I A for iteration vector 3 v will finish before any execution of IB for the same iteration

vector.

7. If I A
D−→ IB or I A

RD−−→ IB w.r.t the set of common induction variables Si nd , every execution

of I A for iteration vector v A ≤ v0 will finish before any execution of IB starts for iteration

vector vB ≥ v0.

1In control-flow graphs, a basic block BB A dominates another BBB if every path from the entry node to BBB
must pass through BB A .

2In control-flow graphs, a basic block BBB post-dominates another basic block BB A if every path from BB A to
the exit node must pass through BBB .

3The vector of the values of induction variables in use at a certain time forms the iteration vector. Comparisons
of iteration vectors are done lexicographically.
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3.1. Properties

1 for(i = 0; i < n; i++) {
2 int val = a[i];
3 if(cond){
4 op0 = val;
5 op1 = 1;
6 } else {
7 op0 = -1;
8 op1 = val;
9 }

10 a[i] = op0 * op1;
11 }

(a) C code (b) Portion of the elastic circuit

1 for.head:
2 %i = phi i32 [0, %entry], [%i.inc, %if.end] ...(I0)
3 %cmp = icmp slt i32 %i, %n
4 br i1 %cmp, label %if.entry, label %final
5 if.entry:
6 %idx = sext i32 %i to i64 ...(I1)
7 %ptr = getelementptr inbounds i32, i32* %vla, i64 %idx ...(I2)
8 %val = load i32, i32* %ptr, align 4 ...(I3)
9 br i1 %cond, label %if.then, label %if.else

10 if.then:
11 %0 = %val ...(I4)
12 if.else:
13 %1 = %val ...(I5)
14 if.end:
15 %op0 = phi i32 [%0, %if.then], [-1, %if.else] ...(I6)
16 %op1 = phi i32 [1, %if.then], [%1, %if.else] ...(I7)
17 %mul = mul nsw i32 %op0, %op1 ...(I8)
18 store i32 %mul, i32* %ptr, align 4 ...(I9)
19 %i.inc = add nsw i32 %i, 1
20 br label %for.head

(c) LLVM code

Figure 3.1 – Example code and circuit
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3.2 Proofs of properties

1. If I A
D−→ IB , but BB A does not dominate BBB , the token may flow to IB along a path that

does not pass through BB A . IB will execute with a token that has not passed through I A .

This violates the definition of token dependence.

2. If I A
RD−−→ IB , but BBB does not post-dominate BB A , the token may flow from I A along

a path that does not pass through BBB . I A will execute on a token that shall not pass

through IB . This violates the definition of token reverse dependence.

3. The proof is trivial and omitted.

4. If I A is in a deeper inner-loop, BB A does not dominate BBB since the inner-loop might

never be entered. This result follows from property 1.

5. If IB is in a deeper inner-loop, BBB does not post-dominate BB A since the inner-loop

might never be entered. This result follows from property 2.

6. Given I A
D−→ IB , every token reaching I A must have the same iteration vector v for

common induction variables. IB might be within a deeper loop and execute multiple

times, but I A might not by property 4. By the properties of elastic circuits, the deeper

loop will be entered after the token flows through I A . Similarly, given I A
RD−−→ IB , I A

might be in a deeper loop, but IB might not by property 5. In an elastic circuit, the

deeper loop will complete before the token flows to IB . If neither are in deeper loops,

the token flow is obvious. In all cases, the property holds.

7. From property 6, the execution of IB for iteration vector v0 is strictly after the execution

of I A for the same iteration vector. Elastic circuits have the property that each node

processes all of its tokens in-order. Thus, the node for I A will process tokens for v A < v0

before that for v0 followed by IB processing the token for v0 and, finally, tokens for

vB > v0.

3.3 Finding dependence relations

Let us consider instructions I A (in basic block BB A) and IB (in basic block BBB ). Let Si nd be

the set of induction variables corresponding to loops common to both instructions.

Definition 5. A valid path P w.r.t. a set of induction variables Si nd is a vector of basic blocks

[BB1, . . .BBn] such that

• ∀i ∈ {1, ...n −1} BBi to BBi+1 is an edge in the CFG.

• BBn is the latch block4 for the innermost loop whose induction variable is in Si nd or

• BB1 is the header block for the innermost loop whose induction variable is in Si nd
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3.3. Finding dependence relations

The definition above assumes a canonicalized CFG where each loop has unique header and

latch blocks.

For determining token dependence/reverse-dependence relations, we need to track the flow

of tokens along every path that the program may take through the CFG. If we want to check if

I A
D−→ IB holds, we need to find out the various valid paths to the basic block containing IB

and confirm that along each of these paths, IB directly or indirectly uses the value produced

by I A . Conversely, to explore whether I A
RD−−→ IB , we need to find the various valid paths from

the basic block containing I A and confirm that along each of these paths, the value produced

by I A is used by IB .

The K −sets as defined below track those instructions that produce values on which an instruc-

tion IB directly or indirectly depend. Each sequence of K − sets (K0, K1, ..., Kn) is defined for

a path P = [BB1, . . .BBn]. Kn is defined to contain only IB . If BBi+1 to BBn are the final n − i

blocks in P , Ki for i < n contains those instructions in these basic-blocks on which IB depends.

As we work backwards along a path, moving from BBi+1 to BBi , we add those instructions

in BBi to the set Ki−1 if it produces a value used in Ki or itself. If BB A appears at a position

i = i A in the path P , IB is directly or indirectly dependent on the value produced by I A iff Ki A−1

contains I A . Therefore, to check for token dependence, this condition needs to be checked for

each valid path.

Definition 6. For each path P = [BB1, . . .BBn],∀i < n we define the set Ki corresponding to the

basic block BBi+1 in the path as

Ki =Ki+1

∪{
v |∃w : w ∈ BBi , w ∈ Ki+1, v ∈ operands(w)

}
∪{

v |∃w : w ∈ BBi , w ∈ Ki , v ∈ operands(w)
}

For phi instructions, only the operand corresponding to the previous basic block BBi−1 is

considered. The set Kn is specially defined.

Similarly, the M − sets as defined below track those instructions that use the value produced

by I A directly or indirectly. Each sequence of M − sets (M0, M1, ..., Mn) is defined for a path

P = [BB1, . . .BBn]. M0 is defined to contain only I A . If BB0 to BBi are the first i blocks in P ,

Mi for i > 0 contains those instructions in these basic-blocks which depend on I A . As we work

our way along a path, moving from BBi to BBi+1, we add those instructions in BBi+1 to the

set Mi+1 which use values produced by instructions in Mi or itself. If BBB occurs at position

i = iB in the path P , IB is directly or indirectly dependent on the value produced by I A iff MiB

contains IB . Therefore, to check for reverse token dependence, this condition needs to be

checked for each valid path.

Definition 7. For each path P = [BB1, . . .BBn],∀i > 0 we define the set Mi corresponding to the

4The latch block for a latch is the block containing the branch to the header.
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basic block BBi in the path as

Mi =Mi−1

∪{
v |∃w : v ∈ BB i , w ∈ Mi−1, w ∈ operands(v)

}
∪{

v |∃w : v ∈ BBi , w ∈ Mi , w ∈ operands(v)
}

For phi instructions, only the operand corresponding to the previous basic block BB i−1 is

considered. The set M0 is specially defined.

3.3.1 Dependence

For Kn = {IB }, I A
D−→ IB if ∀ valid paths P ending in BBB ,

• P contains BB A at least once, and

• If BB A first occurs at index i in P , Ki−1 contains I A .

Examples

Consider the example code in Fig. 3.1. Let us see if I3
D−→ I9. The two valid paths ending in the

basic block for I9, if.end, are P0 = [for.head, if.entry, if.then, if.end] and P1 = [for.head, if.entry,

if.else, if.end]. The basic block containing I3 is if.entry.

• For P0, the K-sets are shown in Fig. 3.2a. For K3 the previous basic block is if.then, and

only operand %0 is considered for I6 and the constant 1 for I7. It can be seen that the

basic block if.entry occurs at index 2 and I3 ∈ K1. For this path, I3 produces a value

indirectly used by I9.

• For P1, the K-sets are shown in Fig. 3.2b. For K3 the previous basic block is if.else, and

only operand %1 is considered for I7 and the constant −1 for I6. It can be seen that the

basic block if.entry occurs at index 2, and I3 ∈ K1. For this path as well, I3 produces a

value indirectly used by I9.

It can be seen that the conditions hold for both paths, implying I3
D−→ I9.

Now, let us see if I3
D−→ I6. The two valid paths are as in the previous example.

• For P0, the K-sets are shown in Fig. 3.3a. For K3, the previous basic block is if.then and

only operand %0 is considered for I6. The conditions hold for this path. For this path, I3

produces a value indirectly used by I6.
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3.3. Finding dependence relations

• K4 = {I9}

• K3 = {I9, I8, I7, I6, I4, I2}

• K2 = {I9, I8, I7, I6, I4, I3, I2}

• K1 = {I9, I8, I7, I6, I4, I3, I2, I1, I0}
(a) K-sets for path P0

• K4 = {I9}

• K3 = {I9, I8, I7, I6, I5, I2}

• K2 = {I9, I8, I7, I6, I5, I3, I2}

• K1 = {I9, I8, I7, I6, I5, I3, I2, I1, I0}
(b) K-sets for path P1

Figure 3.2 – K-sets for determining if I3
D−→ I9 in Fig. 3.1c

• K4 = {I6}

• K3 = {I6, I4}

• K2 = {I6, I4, I3}

• K1 = {I6, I4, I3, I2, I1, I0}
(a) K-sets for path P0

• K4 = {I6}

• K3 = {I6}

• K2 = {I6}

• K1 = {I6}
(b) K-sets for path P1

Figure 3.3 – K-sets for determining if I3
D−→ I6 in Fig. 3.1c

• For P1, the K-sets are shown in Fig. 3.3b. For K3, the previous basic block is if.else and

only the constant −1 is considered for I6. The basic block if.entry occurs once at index

2 and I3 ∉ K1, so the conditions do not hold for this path. For this path, I3 does not

produce a value used by I9.

The conditions do not hold for path P1. Therefore, there is no dependence.

3.3.2 Reverse Dependence

For M0 = {I A}, I A
RD−−→ IB if ∀ valid paths P starting in BB A ,

• P contains BBB at-least once

• If BBB last occurs at index i in P , Mi contains IB .

Examples

Consider the example code in Fig. 3.1. Let us see if I3
RD−−→ I9. The two valid paths starting in

the basic block for I3, if.entry, are P0 = [if.entry, if.then, if.end] and P1 = [if.entry, if.else, if.end].

The basic block containing I9 is if.end.

• For P0, the M-sets are shown in Fig. 3.4a. It can be seen that the basic block if.end

appears at index 3, and I9 ∈ M3. For this path, I3 produces a value indirectly used by I9.
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• M0 = {I3}

• M1 = {I3}

• M2 = {I3, I4}

• M3 = {I3, I4, I6, I8, I9}
(a) M-sets for path P0

• M0 = {I3}

• M1 = {I3}

• M2 = {I3, I5}

• M3 = {I3, I5, I7, I8, I9}
(b) M-sets for path P1

Figure 3.4 – M-sets for determining if I3
RD−−→ I9/ I3

RD−−→ I6 in Fig. 3.1c

• For P1, the M-sets are shown in Fig. 3.4b. It can be seen that the basic block if.end

appears at index 3, and I9 ∈ M3. For this path as well, I3 produces a value indirectly used

by I9.

Since the conditions hold for all paths, I3
RD−−→ I9.

Now, let us see if I3
RD−−→ I6. The two valid paths and their M-sets are as in the previous example.

We can see that the conditions hold on path P0 but not on path P1(I6 ∉ M3), implying that

there is no reverse dependency.
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4 IndexAnalysisInfo

IndexAnalysisInfo checks for memory dependences between memory accesses in a SCoP.

Implemented as a LLVM FunctionPass (IndexAnalysisPass), this EC component analyzes the

indices within an array accessed by load/store instructions to decide if the same location may

be accessed by different instructions.

In the example from Fig. 4.1, the load instruction accesses the first half of the string, while the

store accesses the second half of the string. In other words, the set of accessed indices by the

load is {0, . . .bn/2c−1} while that for the store is {dn/2e, . . .n −1}. It can be seen that the above

sets are disjoint, ruling out the possibility of a RAW dependency.

When a pair of instructions access memory locations in the same array, an analysis of accessed

indices may reveal that they cannot access the same address. This is the insight behind

IndexAnalysisInfo as a memory disambiguation pass.

It uses TokenDependenceInfo as described in chapter 3 to determine if pairs of instructions

have token dependences or reverse token dependences. Either dependence can be used to

temporally relate activations of memory nodes and thereby rule out certain memory depen-

dencies. Consider an example where stores to an array at indices 1 to 5 precede loads to

the same. The accesses are demonstrated in the example shown in Fig. 4.2. All the stores

should complete before the loads. Without timing information, we cannot be sure that any of

the stores actually happens before the load to the same address. Therefore, all the accesses

might violate memory dependencies as shown in Fig. 4.2. With cycle information as shown in

1 int n = strlen(str);
2 for(i = 0; i < n/2; i++){
3 str[n-1-i] = str[i];
4 }

Figure 4.1 – Example C code to create a palindrome from the first half of the character array str
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(a) Without timing information, we cannot know
if the write actually precedes the read to the same
index. In this example, every read may potentially
violate RAW dependencies.

(b) With timing information, we can see that the last
two reads definitely respect RAW dependencies.

Figure 4.2 – Violations of read-after-write (RAW) dependencies, indicated by arrows, between
instructions accessing the array a where the store programmatically precedes the load.

Fig. 4.2b, we can see that the accesses for indices 1 and 2 are properly ordered while those for

indices 3, 4 and 5 might not be.

4.1 Information from Polly

The IndexAnalysisInfo pass requires precise information about the index within an array

accessed by each memory instruction. For SCoPs, Polly is able to provide this information from

its ScopInfoWrapperPass. This pass generates Scop objects containing domain sets(Dom),

bases(B ase) and access relations(AR) for each memory access instruction in the SCoP.

For the example in Fig. 4.1, Polly gives us the following information:

• For the load:

– Domain: [n] → {
[i ] : 0 ≤ i < floor(n/2)

}
– Base: Array str

– Access relation: [n] → {
[i ] → [o] : o = i

}
• For the store:

– Domain: [n] → {
[i ] : 0 ≤ i < floor(n/2)

}
– Base: Array str

– Access relation: [n] → {
[i ] → [o] : o = n −1− i

}
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4.2. Base algorithm

4.2 Base algorithm

IndexAnalysisInfo analyzes pairs (I A , IB ) of instructions within a SCoP. For RAW/WAW depen-

dences to exist between the statements:

• at least one of them must write to memory,

• both instructions must access the same array which is stored in a unique RAM structure

in the circuit, and

• there must exist vectors of induction variables v A , vB and a vector of array indices i d x

such that v A ∈ DomA , vB ∈ DomB , (v A → i d x) ∈ ARA and (vB → i d x) ∈ ARB .

For pairs of instructions that satisfy the first two conditions, IndexAnalysisInfo creates the sets

{o|∃i : i ∈ Dom, i → o ∈ AR} for both. If these sets are disjoint, there are no memory dependen-

cies between them.

4.3 Exploiting Token Dependence

In section 4.2, we discussed the algorithm allowing us to statically analyze memory accesses for

memory dependencies within a SCoP. However, in certain cases, the properties of token flow

in elastic circuits as discussed in Chapter 3 allow us to put restrictions between the iteration

vectors being processed by a pair memory nodes. These additional restrictions might allow us

to rule out certain dependencies as illustrated in Fig. 4.2. When we can statically determine

that the read and store to an address must happen in the same order in an elastic circuit as in

the LLVM code, we do not need an LSQ to order them.

If I A is a load instruction, IB is a store instruction currently executing iteration vector vB

and Si nd is the set of induction variables for loops common to both instructions, property 7

from section 3.1 assures us that every execution of I A for iteration vectors v A < vB will have

completed if I A
D−→ IB or I A

RD−−→ IB w.r.t Si nd . We only need to check if the store for iteration

vector vB and the load for lexicographically larger iteration vectors can access the same array

index. Since we cannot determine the temporal ordering between them, RAW dependency

violations are possible and we need to connect them to a LSQ.

Consider the example in Fig. 4.3 in which the elements of an array are shifted forward by one

position. Based on SCoP analysis, we know that the set of indices accessed by the load is {1, 2,

..., n −1} while the set of indices accessed by the store is {0, 1, ..., n −2}. Since the same indices

are accessed by both instructions, RAW dependencies between the load and the store seem

possible. However, token dependence implies that, in an elastic circuit, the store to any index

must happen after the load to the same index, as explained hereon. When the store is storing

to the index iB in iteration i = iB , the load for all iterations i ≤ iB must have finished. Possible

read indices in the future are to index i A +1 for iterations i A > iB . The store to iB cannot be

read in the future which proves that RAW dependences are practically impossible in this case.
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1 for(i = 0; i < n - 1; i ++)
2 arr[i] = arr[i + 1];

Figure 4.3 – Example of a loop with intersecting read and write sets. Temporally ordering the
operations by token dependence shows the lack of RAW dependencies.

4.3.1 Algorithm for dependent instructions

Suppose I A is a load instruction and IB is a store instruction such that I A
D−→ IB or I A

RD−−→ IB

and Si nd is the set of induction variables for loops common to both instructions. For an

iteration vector v , let common(v) be the vector of values from v corresponding to members

of Si nd .

Definition 8. For a load instruction, the Future load set is defined as:i → o|∃ild , i ′ld :

ild ∈ DomA , ild → o ∈ ARA ,

common(i ′l d ) < common(il d ),

i = common(i ′ld )


Definition 9. For a store instruction, the Store set is defined as:{

i → o|∃ist :
ist ∈ DomB , ist → o ∈ ARB ,

i = common(ist )

}

Suppose (i0 → o0) is an element of both sets. By membership in the store set, there exists a

iteration ist s.t. common(ist ) = i0 that accesses o0. By membership in the future load set,

there exists a later iteration ild for which the load instruction accesses the array index o0 and

common(ist ) < common(il d ). A RAW dependence exists and since token flow cannot order

these accesses, incorrect execution is possible in the absence of an LSQ.

Congruently, suppose there is a RAW dependency between the iteration il d of the load

and the iteration ist of the store, both of which access the same index o0. It must be that

ild ∈ DomA , (il d → o0) ∈ ARA , ist ∈ DomB , (ist → o0) ∈ ARB . Token dependence implies that

common(ist ) < common(ild ). Therefore, (ist → o0) will be a member of both sets and the

intersection of the sets cannot be empty.

Let us follow along with the example code from Fig. 4.4 where a is a 3×3 array of integers.

There is a reverse dependency from the load to the store.

• For the load

– Domain: [] → {
[0,0], [0,1], [0,2], [1,0], [1,1], [1,2]

}
– Access Relation: [] → {

[i , j ] → [i , j ]
}
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4.3. Exploiting Token Dependence

1 for(i = 0; i < 2; i++) {
2 sum = 0;
3 for(j = 0; j < 3; j++)
4 sum += a[i][j];
5 a[i + 1][0] = sum;
6 }

(a) Example code for adding rows of an array, storing the sum in the first space of the next row.

(b) Temporal ordering between memory accesses. Solid links indicate known temporal ordering due to token flow.
Dotted links indicate unknown temporal ordering

Figure 4.4 – Illustrative example of code with token reverse dependence and showing temporal
ordering relations

– Future Load Set:
{
[0] → [1,0], [0] → [1,1], [0] → [1,2]

}
• For the store

– Domain: [] → {
[0], [1]

}
– Access Relation: [] → {

[i ] → [i +1,0]
}

– Store Set:
{
[0] → [1,0], [1] → [2,0]

}
The timing relations due to token flow can be seen in Fig. 4.4b. The timing between the load

for iteration [1,0] and the store for iteration [0], both of which access the index [1,0] in the

array, cannot be determined. Hence, these instructions have a RAW dependency which may

be violated if they use simple memory ports. As expected, the store and future load sets are

non-disjoint.
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5 MemElemInfo

MemElemInfo is a LLVM FunctionPass used by EC to make decisions while generating hard-

ware components for nodes which access memory.

For loops, it uses IndexAnalysisInfo and AliasAnalysis to decide whether pairs of instructions

may have memory dependencies. It is designed to be extensible i.e. to be able to consider

more sub-analyses that can rule out dependencies for other special cases. Currently, it uses

the dependency decision for IndexAnalysisInfo for a pair of instructions from the same SCoP.

For all other pairs, it uses aliasing information.

After it generates a comprehensive list of such pairs, it creates sets of instructions accessing

the same array base which require a LSQ.

The known shortcomings of the MemElemInfo analysis are:

• Since non-loop instructions do not practically affect the depth of the load-store-queue,

all memory accesses for these instructions are assigned to a LSQ. However, we could use

ports if token flow serializes these accesses.

• To limit the scope of other instructions with which an instruction may alias, MemElem-

Info assumes serialization of top-level loops. This may lead to fewer components being

connected to LSQs at the cost of increased execution time if the loops could significantly

overlap at runtime. This presents a trade-off in the design space between performance

and hardware/power costs.
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6 Results

In this section, we show examples of code for which we have used the Elastic Compiler to

generate VHDL circuits. We focus on three example kernels that demonstrate the utility of our

insights and uses the passes discussed earlier to optimize the connections to LSQs required.

For all examples, we use Clang as a frontend to compile the C-code to LLVM-IR without any

optimization (-o0 option). Next, they are run though some standard LLVM optimization

passes to propagate constants (constprop), use registers instead of stack memory to pass

values through the circuit (mem2reg), eliminate dead instructions (die) and simplify the CFG

to remove trivial branches (simplifycfg). Finally, we use the EC to generate netlists in VHDL.

We use this netlist to find the number of load/store ports used and their connections to LSQs,

and to evaluate the cost of connecting to memory.

6.1 Methodology

We shall demonstrate the utility of each of our insights towards optimizing the generated

circuit’s interface to memory, specifically the size of the LSQs, by running the Elastic Compiler

on three code kernels. Each of these kernels demonstrates the utility of a separate part of the

analysis architecture.

As discussed earlier, the size of the queues of an LSQ are directly related to the number of read

and write ports connected to it. We currently have an implementation that automates the

process of compilation upto generating the required VHDL netlist. However, we would also

need to place and route our designs onto an FPGA using a tool such as Vivado to be able to

accurately measure the power and resource requirements for the LSQ. As an equivalent, but

approximate metric, we shall estimate the cost of an LSQ as the square of the sum of number

of connected read and write ports.
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For each code kernel, we shall compare the following cases:

• All memory components are connected to a single LSQ. We designate this as the base

case.

• We use AliasAnalysis to distinguish accesses to different arrays, and use different queues

for each. We refer to this case as AA.

• We use basic IndexAnalysis without TokenDependenceInfo to analyse accesses within

an array. We shall refer to this case as IA.

• We use IndexAnalysis with ordering information from TokenDependenceInfo. We refer

to this case as IA+TD.

Each case incorporates and improves upon the results of the previous case. Our implementa-

tion in the Elastic Compiler corresponds to the final case listed above (i.e. IA+TD).

6.2 Test Cases

Here, we describe the test cases and the number of ports to LSQs at each step of the analysis.

The final costs are summarized in Table 6.1. We can see that in these examples, our analysis

results in LSQs that cost between 75% and 93% lesser than the base case.

6.2.1 Histogram kernel

The first kernel we analyze is shown in Fig. 6.1. The algorithm calculates an histogram with

associated weights for every element. It is assumed that the elements of the feature vector lie in

the [0,n) range. As can be seen, there are three load operations and a single store. AliasAnalysis

allows us to determine that the loads to the feature and weight arrays do not need connections

to LSQs. Only the hist array requires an LSQ with one read and one write port. As the loop is

not a Static Control Part, IndexAnalysis analysis is not possible.

Kernel Number of Number of Base Case AA IA IA+TD
Load Ports Store Ports

Histogram 1 3 (1+3)2 (1+1)2 4 4
Pivot 1 3 (1+3)2 (1+2)2 (1+1)2 4
Image Processing 18 1 (18+1)2 (9+1)2 100 (4+1)2

Table 6.1 – Cost of LSQs connecting the generated circuit to memory, shown for four degrees
of optimization.
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6.2. Test Cases

1 void histogram(int *feature, float *weight, float *hist, int n)
2 {
3 for (int i = 0; i < n; ++i) {
4 int m = feature[i];
5 float wt = weight[i];
6 float x = hist[m];
7 hist[m] = x + wt;
8 }
9 }

Figure 6.1 – Code for calculating a weighted-histogram expressed in C

1 void pivot (int x[], int a[], int n, int k) {
2 for(int i = k + 1; i <= n; ++i)
3 x[k] = x[k] - a[i] * x[i];
4 }

Figure 6.2 – Code for pivoting a vector at position k expressed in C

6.2.2 Pivot kernel

In the pivot kernel, an n-dimensional vector is pivoted at position k. The code for this kernel

is shown in Fig. 6.2 The generated circuit uses three read ports and one store port. In the base

case, all of them are connected to the same LSQ. AliasAnalysis allows us to determine that

the load to the array a does not need to be compared to the accesses to array x. The LSQ only

connects to two read ports and one write ports in this case. Further, IndexAnalysis allows us to

determine that the load and store to x[k] cannot access the same location as x[i ] as i iterates

in the range [k +1,n). Thus, the LSQ finally connects to one write port and one read port. In

this case, IndexAnalysis with TokenDependenceInfo does not lead to any further benefits.

6.2.3 Image processing kernels

The kernel shown in Fig. 6.3 is used for implementing a number of image processing algorithms

including blur, emboss and sharpen. Essentially, the value of each pixel is updated to be

the weighted-mean of its surrounding pixels. These weights are stored in the weight array.

The multiplier variable allows us to express the weights as integers and avoid floating point

calculations. For example, the weight matrix for the blur kernel is
(

1 2 1
2 4 2
1 2 1

)
and the multiplier

variable is 16. We also use an approximate algorithm that performs updates in-situ, trading off

accuracy for memory space.

This algorithm requires 18 read elements and one write element. In the base case, they are all

connected to a single large LSQ. AliasAnalysis allows us to determine that the accesses to the

array weight do not conflict with those to pic. Further, as they are all loads, the accesses to the
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1 void process(int **pic, int **weight, int n)
2 {
3 for(int x = 1; x <= n; ++x){
4 for(int y = 1; y <= n; ++y){
5 int sum = 0;
6 sum += pic[x-1][y-1] * weight[0][0];
7 sum += pic[x-1][y] * weight[0][1];
8 sum += pic[x-1][y+1] * weight[0][2];
9 sum += pic[x][y-1] * weight[1][0];

10 sum += pic[x][y] * weight[1][1];
11 sum += pic[x][y+1] * weight[1][2];
12 sum += pic[x+1][y-1] * weight[2][0];
13 sum += pic[x+1][y] * weight[2][1];
14 sum += pic[x+1][y+1] * weight[2][2];
15

16 sum /= multiplier;
17 pic[x][y] = sum;
18 }
19 }
20 }

(a) The code for image processing kernels expressed in C. (b) Loads that need connections to the
LSQ with the store shown in red. The other
loads are shown in green.

Figure 6.3 – Test case: image processing

array weight does not require an LSQ. At this point, there is one LSQ for pic with nine read

ports and one store port. The basic IndexAnalysis does not improve this result. However, the

store has a token dependence on each of the loads. Incorporating this, we see that only four of

the loads (shown in Fig. 6.3b) to pic need to share the LSQ with the store. The final LSQ design

has four read ports and one write port for a cost that is 93% lower than the base case.
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7 Conclusion

As accelerators find their way into diverse computing environments, HLS tools endeavor to

streamline their development cycle and create a future where hardware development is as

mainstream and simple as that for software. As these tools move away from the statically

scheduled paradigm, characterized by the necessity to make all decisions at compile time lead-

ing to suboptimal performance, it faces the same requirement that Out-of-Order processors

have with regards to memory access. Namely, it requires a power-intensive Load-Store Queue

(LSQ) to dynamically order dependent instructions. Required to use the same memory units

for all memory operations, OoO processors are unable to benefit from insights gleaned by the

compiler regarding independence of certain accesses. They can only benefit by reordering

instructions to exploit memory-level parallelism or to mask latency from cache misses. All ac-

cesses continue to use the LSQ which unnecessarily consumes power. Dynamically scheduled

HLS, however, can generate circuits that exploit these insights directly by connecting certain

memory operations to memory bypassing the LSQ.

In this work, we have shown a methodology for generating optimized memory access compo-

nents for elastic circuits. Generated circuits have separate LSQs per array, removing address

comparisons between accesses to different arrays. We also remove comparisons between

instructions which access the same array, but never access the same indices in the array.

Finally, we can detect when the characteristics of data flow in an elastic circuit restrict memory

operations to occur in program order, which trivially removes the necessity for connections

to the relevant LSQ. We have implemented the aforementioned analyses and added them

to the Elastic Compiler infrastructure. We have also automated the process of generating

memory access elements using the results from these analysis passes. Finally, we have used

the improved Elastic Compiler to generate VHDL descriptions of circuits corresponding to

three test cases with LSQs that cost 75% to 93% less than the trivial approach.

In the future, we plan to further optimize the compiler design and improve our disambiguation

analyses. We would like to improve the MemElemInfo analysis to allow top-level loops to

run in parallel, as described in Chapter 5. Resolving the trade-off involved may require

heuristics, including determination of the degree of possible overlap between loops, and

39



Chapter 7. Conclusion

whether this overlap can significantly benefit performance. We would also like to be able to

use the polyhedral model to analyze loops which are not Static Control Parts (SCoPs). This

has been proposed in Benabderrahmane et al. [1] and would allow us to broaden the scope

of analyzed loops to include those with data-dependent control flow. Although opportunity

remains for other analyses which would allow us to further optimize our memory subsystem,

we believe that the work presented in this thesis is a step in the right direction towards making

HLS an efficient, performant option.
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A TokenDependenceInfo API

• tokenDepends

– Arguments: Instructions I1 and I0

– Returns: bool

– Description: To query whether I0
D−→ I1

• tokenRevdeps

– Arguments: Instructions I0 and I1

– Returns: bool

– Description: To query whether I0
RD−−→ I1
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B IndexAnalysisInfo API

• getRAWlist

– Returns: A set of instruction pairs

– Description: Returns a set of instruction pairs which exist in some SCoP and have

RAW dependencies between them.

• getWAWlist

– Returns: A set of instruction pairs

– Description: Returns a set of instruction pairs which exist in some SCoP and have

WAW dependencies between them.

• getBase

– Argument: Instruction I

– Returns: An array base

– Description: Returns the base of the array which I accesses

• isInScop

– Argument: Basic block BB

– Returns: bool

– Description: To query whether any SCoP contains BB

• getScopID

– Argument: Basic block BB

– Returns: int

– Description: Returns an integer uniquely identifying the SCoP which contains BB

• getOtherInsts
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Appendix B. IndexAnalysisInfo API

– Returns: A list of instructions

– Description: Returns all memory instructions in SCoPs which do not require an

LSQ connection
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C MemElemInfo API

For MemElemInfo, an LSQset object represents a set of instructions which should be connected

to the same LSQ.

• getLSQList

– Returns: Set of LSQsets

– Description: Returns a set of references to LSQsets, each of which contains those

instructions whose hardware components should be connected to the same LSQ.

• getInstLSQ

– Argument: Instruction I

– Returns: An LSQsets

– Description: Returns a reference to the LSQset containing I

• BBhasLSQ

– Argument: Basic block BB

– Returns: bool

– Description: To query whether BB needs to be connected to any LSQs

• getBBLSQs

– Argument: Basic block BB

– Returns: Set of LSQs

– Description: Get a set of LSQs to which the block connects

• needsLSQ

– Argument: Instruction I

– Returns: bool
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Appendix C. MemElemInfo API

– Description: To query whether the component for I needs to be connected to a

LSQ
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