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Università della Svizzera Italiana

Lugano, Switzerland

Amir Aminifar, David Atienza
Embedded Systems Laboratory

EPFL
Lausanne, Switzerland

Leila Cammoun, Philippe Ryvlin
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Abstract—Event detection and classification algorithms are
resilient towards aggressive resource-aware optimisations. In this
paper, we leverage this characteristic in the context of smart
health monitoring systems. In more detail, we study the attainable
benefits resulting from tailoring Support Vector Machine (SVM)
inference engines devoted to the detection of epileptic seizures
from ECG-derived features. We conceive and explore multiple
optimisations, each effectively reducing resource budgets while
minimally impacting classification performance. These strategies
can be seamlessly combined, which results in 12.5X and 16X gains
in energy and area, respectively, with a negligible loss, 3.2% in
classification performance.

Index Terms—Wireless Body Sensor Nodes, Seizure detection,
Ultra-low-power design, Algorithmic optimisation.

I. INTRODUCTION

In this last years, smart health monitors (Wireless Body
Sensor Nodes or WBSNs [1]) have been proposed that, instead
of only sampling and wirelessly transmitting data, are also
capable of autonomous interpretation of acquisitions, in order
to derive features of clinical relevance [2]. When performing a
long-term health assessment, features are usually processed re-
motely. However, when dynamically detecting acute episodes,
the opportunity arises to perform both feature extraction and
event detection (inference) on this wearable devices (see Fig-
ure 1). On-device event detection enables a greater degree of
autonomy, as life-threatening conditions are identified locally.
Moreover, it has the potential to significantly increases energy
efficiency, because only the detection outcome has to be
transmitted on the wireless link [3].

Support Vector Machines (SVMs) are particularly well
suited for the identification of health-threatening episodes,
as they are able to cope with noise in acquisitions and to
expose non-obvious relationships between features and events,
defining characteristics in WBSN scenarios. Of particular
relevance to our contribution is the high performance demon-
strated by SVMs when detecting of epileptic seizures based on
electrocardiogram (ECG) acquisitions, either employing Heart
Rate Variability (HRV) [4] and ones derived from Lorentz
plots [5]. Recently, the authors of [6] reported detection rates
exceeding 80% by considering features extracted from HRV,
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Lorentz plots, and parameters derived from auto-regressive
analysis and from the computation of the spectral density in
various bands.

These studies suggest that the accuracy of ECG-based
seizure detection does benefit from rich models. Nonetheless,
their processing requirements may impose workloads beyond
the capabilities of energy-constrained WBSN platforms. We
therefore herein take a complementary stance, exploring in-
stead the achievable efficiency gains that result from simplify-
ing the inference implementation. We attain energy reductions
of up to 12.5X with respect to the strategy in [6], with only a
3.2% quality degradation.

We base our analysis on ECG data collected from a cohort
of patients with refractory epilepsy, whose seizures were
recorded in an epilepsy monitoring unit. The used dataset
corresponds to 7 patients with 140 hours of recordings and
including 34 focal epileptic seizures, annotated by medical
experts based on video and electroencephalography signals.

II. SVM INFERENCE ANALYSIS

A trained SVM identifies a surface in an Nfeat-dimensional
space that maximally separates the data points of a train-
ing set that belong to two different classes. On the one
hand, the training set is composed of feature vectors
xi = [xi,0, xi,1, ..., xi,Nfeat−1], in which each vector ele-
ment records the value of a feature extracted from three-
minutes signal windows. On the other hand, the vectors Fj =
[x0,j , x1,j , ..., xNtest,j ] record all values assigned to feature j
across windows. Labels y0, ..., yNtest , with yj ∈ {−1,+1},
indicate the class of the corresponding training vector (+1 for
ECG excerpts during seizures, −1 otherwise).
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Fig. 1: ECG-based seizure detection on Wireless Body Sensor
Nodes, which relies on a feature extraction stage followed by
an event detection (inference) stage. This paper focuses on
minimising the resource requirements of the latter stage.



The separating surface is expressed as a function of a subset
of the training samples, termed Support Vectors (SVs), which
allows to assign a label Y to new samples according to the
following formula:

Y = sgn(
∑

i∈SV s

(αiyi k(xT ,xi)) + b) (1)

where xT is the feature vector of the sample under test,
xi are the SVs, αi ∈ (0, 1] are weights assigned to each SV
during the training phase, yi are the SVs labels, b is a scalar
bias term, and a kernel function k() determines the complexity
of the separating surface.

The performance of different kernel functions are compared
in Table I, adopting, as figures of merit, Sensitivity (Se),
Specificity (Sp) and their Geometric Mean GM , defined as
follows [7]:

Se =
TP

TP + FN
Sp =

TN

TN + FP
GM =

√
(Se× Sp)

(2)
where TP is the number of true positives, TN the number

of true negatives, FP and FN the number of false positives
and false negatives, respectively. GM is high only if a high
number of both seizure and non-seizure ECG excerpts are
correctly classified, and is used as a measure of classification
performance throughout the paper. Reported results refer to
the average Se, Sp and GM over 24 folds, where for each
fold the ECG windows originating from a recording session
are used as the test set and all others as the training set.

Table I shows that, when applied to our target scenario,
Gaussian and (especially) polynomial SVMs are much better
than the linear model, with quadratic and cubic kernels having
a similar average GM. We therefore focus the exploration
presented in the rest of the paper on the simpler of these for-
mulations, i.e., the quadratic SVM, whose inference formula
is:

Y = sgn(
∑

i∈SV s

(αiyi (xT · xi + 1)2) + b) (3)

The workload entailed by Equation 3 can be reduced by
decreasing a) the number of features in each feature vector xi,
b) the number of support vectors SVs and c) the number of bits
to represent the feature values xi,j and the αiyi parameters.

While related works have also explored resource-
constrained SVMs (mainly in the context of image processing
applications), they usually deal with only one of the above-
mentioned dimensions, such as the selection of the most repre-
sentative features [8] [9], the reduction of the cardinality of the
SV set [10] [11] or limited-bitwidths data representations [12]
[13]. In the following, we instead explore the effectiveness of

TABLE I: Classification performance of different floating
point SVM implementations.

SVM Kernel Sp % Se % GM
Linear 75.6 82.3 72.9
Quadratic 92.3 86.6 86.8
Cubic 95.3 86.6 88.0
Gaussian 97.0 79.6 82.6
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Fig. 2: Inference pipeline block scheme.
each of these strategies, as well as the attainable efficiency
when all are synergistically employed.

We explore the efficiency gains in terms of the area re-
sources and energy footprint required by a hardware accelera-
tor performing inference on a test sample. The implementation
of such accelerator follows the scheme in Figure 2. At its
input, it embeds an internal memory to store the SVs required
by the SVM. The dot products (xT · xi) in Equation 3 are
performed by a first multiplier-accumulator (MAC) unit, and
results are then squared to compute the kernel function. A
further MAC block accumulates the output of the kernel
functions for each SV, multiplied by the αiyi coefficients. The
accelerator output, and therefore the computed class of the
test sample, is then the sign (i.e., most significant bit) of this
second accumulator, taking into account the bias parameter b.
Faster and more resource-hungry choices are possible, e.g.,
by computing multiple kernel functions in parallel, which
would also benefit from the proposed optimisations with
similar efficiency gains. Area and energy values of different
configurations were retrieved via hardware synthesis targeting
a 40nm technology.

III. APPROXIMATION TECHNIQUES

Reducing the features set. The inference dimensionality is
related to the size of the memory required to store the SVs,
as well as to the number of multiply-accumulate operations
necessary for the computation of the dot product operation
embedded in the kernel function (the MAC1 block in Figure
2), and therefore its energy cost.

The set employed in [6], which we consider as a starting
point for the exploration, is composed by 53 features. Features
1-8 are derived from an analysis of the heart rate while features
9-15 are obtained from Lorentz plots. The third and fourth
feature categories are computed from ECG-Derived Respira-
tion (EDR) time series, either from the linear coefficients of
their auto-regressive (AR) model (features 16-24) or from their
power spectral analysis (PSD) (features 25-53).

Similarly to [8], to reduce this set we analyse their correla-
tions and iteratively remove the ones that are highly correlated
to others. To this end, we first compute pairwise Pearson
coefficients ρ between features:

ρ(Fj1,Fj2) =
cov(Fj1,Fj2)

σ(Fj1), σ(Fj2)
(4)

where cov is the covariance between the features j1 and
j2, and σ their standard deviation. Higher ρ values indicate
a stronger correlation. Figure 3 shows the correlation matrix
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Fig. 3: Correlation coefficient matrix for the baseline feature
set, comprising 53 features.
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Fig. 4: Classification performance and resource requirements,
when varying the number of features.

computed for all feature tuples, indicating that most PSD,
some HRV and some Lorenz features have high mutual Pear-
son coefficients, and therefore encode information redundantly.

In a second step, we sum column-wise the coefficients
in the correlation matrix, identifying the feature having the
highest aggregated Pearson coefficient. By iterating on those
two phases, increasingly reduced feature sets are identified,
for which we trained different SVM implementations and we
synthesised the corresponding pipelines.

The experimental results are shown in Figure 4, both in
terms of geometric mean of sensitivity and specificity (GM,
top), as well as energy for the classification of a test vector
(middle) and area of the inference hardware (bottom). We con-
sidered a 64-bit implementation, which has the same accuracy
as an equivalent floating point version. Counter-intuitively,
between 15 and 8 features we measured an increase in resource
requirements as we decreased the number of features, because
more SVs were selected during training. More importantly, we
observed that GM values slowly worsen for set sizes greater
than 15 features, and drop significantly for smaller ones. Then,
by selecting only 23 features (a design choice highlighted with
the dashed line in Figure 4), energy and area costs are reduced
by 65% and 42%, respectively, with a marginal classification
performance decrease of 1.2% in terms of GM. This feature
set comprises six HRV features, nine from the auto-regressive
model, four extracted from Lorentz plots and four from the
PSD analysis.

Reducing the number of support vectors. The number
of support vectors tends to grow linearly with the size of the
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Fig. 5: Classification performance and resource requirements,
when varying the SV set size.

training set. This effect (known as “curse of kernelization”
[10]) may lead to an over-design of the local memory storing
the vectors, or to an inflexible implementations, unable to
exploit updates of the training data. To counter it, we adopt
a strategy firstly introduced in [10], which imposes a bound
on the number of SVs. It implements a budgeting approach
through the iterative removal of the least significant SV from
the training set according to the following norm:

‖SVi‖ = ‖αi‖2 × k(xi,xi) (5)
The reduced test set is then employed to re-train the

SVM parameters. The result of the ensuing exploration, under
different SV budget thresholds, is shown in Figure 5. The area
benefits of small SV budgets derive from requiring a smaller
local memory, which also reduce its static (leakage) and
dynamic (energy-per-access) energy consumption. A further
factor impacting energy efficiency is the reduced workload re-
quired by a smaller SV cardinality. Classification performance
is instead only marginally affected by the removal of low-norm
support vectors up until only around 50 elements are present,
and sharply worsens after that. At this design point, the GM
is 1.5% less with respect to the un-budgeted case, with an
energy reduction of 76% and an area reduction of 45%.

Reducing bitwidths. A further avenue to decrease resource
requirements is to limit the range and precision to represent
features, parameters, and intermediate values. In this way,
the size of the SVs local memory, as well as the width of
arithmetic operators, can be tailored, saving both area and
energy. To this end, we first discard the least significant bits at
the output of the kernel computation and the square operator.
Then, we quantise the αiyi values, which are bounded by
construction between 1 and -1. Finally, we limit the maximum
magnitude of the features, and express them with limited
precision.

In this last regard, we only consider feature values ranges in
the form [−2Rj , 2Rj ], j = 1..Nfeat, for which up- and down-
scaling can be implemented efficiently with shift operations
instead of dividers. The Rj parameter related to feature j is
the smallest values that verifies the inequalities
avg(Fj)−σ(Fj) > −2Rj ; avg(Fj)+σ(Fj) < 2Rj −1 (6)

where avg(Fj) is the average of the values assigned to
feature j in the SV set and σ(Fj) its standard deviation. If a
feature value (both in the SVs and in the test vector) exceeds its
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Fig. 6: Performance/requirements exploration varying the width of the data (Dbits) and the parameters (Abits) representations.

range, it is saturated to the admissible maximum / minimum.
Precision reduction is then performed by only considering the
bits in the interval [Rj − 1;Rj −Dbits].

While this strategy mandates a scale-back operation during
the kernel computation and a dedicated memory to store the
scale factors, the resulting area and energy overheads are
dwarfed by the gains ensuing from adopting small bitwidths,
as showcased in Figure 6. Across all experiments illustrated
therein, the least significant ten bits are discarded both after the
dot product and after the square operations, with no impact on
classification performance. The point marked with a red circle
corresponds to employing 9 bits to represent features and 15
bits for the coefficients, which exhibits negligible GM loss of
1% compared to a floating point implementation. When instead
the same bitwidth is considered throughout the pipeline, and
the same scaling factor is employed among features and among
αiyi, 64 bits are required to reach the same GM, resulting in
a design having 2.4X more energy and 6.2X more area.

Combining approximation techniques. Even higher ef-
ficiency gains are attained when all three strategies are
performed in sequence. The performance of the resulting
pipelines, at subsequent optimisation stages, are illustrated in
the left part of Figure 7, considering a) a reduction in the
number of features from 53 to 30, b) restricting the size of
the support vector set to 68 vectors, c) the use of 9 bits for
representing features and of 15 bits to encode αiyi values.
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Fig. 7: Left: classification performance and required resources
of inference pipelines, when each optimisation is applied in se-
quence. Above each bar, percentages indicate differences with
respect to the previous optimisation step. Right: performance
of 32-bits and 16-bits pipelines. All data is normalised with
respect to a 64-bits implementation.

Overall, efficiency gains of 12.5X and 16X are attained, in
terms of energy and area footprints, for a GM loss of less then
3.2%. Figure 7 also reports, for comparison, the performance
achievable by a more limited strategy where, as the only
optimisation, two parameters are adopted to homogeneously
scale features and parameters, respectively. The resulting im-
plementations are clearly sub-optimal, with the 32-bit pipeline
demanding 7X more area and 4X more energy, while also
having a 7% lower GM with respect to our fully optimised
design.

IV. CONCLUSION

Health monitoring applications can provide life-saving de-
tections of acute episodes. Nonetheless, their implementation
in resource-constrained WBSNs mandates a careful tailoring
of the ensuing workloads. Against this backdrop, and targeting
the identification of epileptic seizure from ECG features, we
have shown that the efficiency of SVM inference can be
increased by on order of magnitude through resource-aware
optimisations.
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