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Performance Potential of Gas Foil Thrust Bearings

Enhanced with Spiral Grooves

Eliott Guenat1 , Jürg Schiffmann

Ecole Polytechnique Fédérale de Lausanne, Laboratory for applied mechanical design,
Maladière 71b, CP 526, CH-2002 Neuchâtel 2

Abstract

The upscaling of turbomachinery using gas foil thrust bearings is limited be-
cause of their limited load capacity and the thermal issues linked with very
thin film thickness. The improvement potential of spiral grooves manufac-
tured on the top-foil of such bearings is investigated in terms of load capacity
and drag torque for a wide range of ramp depth, compressibility number and
bearing compliance. Multi-objective optimization of grooves parameters al-
lows to identify a trade-off between the drag reduction and the load capacity
improvement. In some cases, load capacity improvements reach nearly 70%
or drag torque at equal load diminishes by 40%. However, the results suggest
that the ultimate load capacity of the bearing is reduced compared to plain
gas foil thrust bearings.
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Roman symbols

a Groove length (m)
b Ridge length (m)
cs NGT coefficient (-)
e Eccentricity (m)
f NGT coefficient (-)
g NGT coefficient (-)
h Clearance (m)
h0 Nominal clearance (m)
hg Groove clearance (m)
hr Ridge clearance (m)
hR Ramp depth (m)
K Foil stiffness (Nm−3)
P Pressure (Pa)
R Radius (m)
r Radial coordinate (m)
s Bump foil pitch (m)
T Drag torque (Nm)
Tr Drag torque ratio (-)
W Load capacity (N)
Wr Load capacity ratio (-)

Greek symbols

α Groove aspect ratio, compliance (-)

β̂ Groove angle (◦)
δ Groove depth (m)
ε Eccentricity ratio (-)
θ Circumferential coordinate (-)
Λ Compressibility number (-)
µ Dynamic viscosity (Pa s)
ω Angular velocity (rad s−1)

Superscripts

− Non-dimensional
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Subscripts

a Ambient condition
F Foil
g Groove
i Inner
o Outer
R Ramp
r Ridge, ratio

Acronyms

GFSGTB Gas foil spiral groove thrust bearing
GFTB Gas foil thrust bearing
NGT Narrow groove theory
SGTB Spiral groove thrust bearing
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1. Introduction1

Gas Foil Thrust Bearings (GFTB) are widely used in oil-free airborne2

applications such as microturbomachinery. While the first applications of3

this technology were small-scale with modest loads, global research efforts are4

being made toward the application of the compliant gas bearing technology5

to upscaled systems, with larger loads, in order to broader the scope of6

application of GFTB and oil-free bearings in general.7

1.1. Nature of the issue8

Heshmat [1] proposed a model of GFTB considering the compliant bump9

foil as a simple elastic foundation and performed a parametric study to iden-10

tify the geometry maximizing the load capacity. A considerable effort was11

spent by the community on the refinement of this model, implementing more12

complex foundation models or refining the method for the computation of the13

compliance coefficient. The layout of GFTB studied by Heshmat is a widely14

used design in oil-free turbomachinery applications such as supercritical CO215

compressors [2] or turbochargers [3]. Moreover, the model developed decades16

ago by Heshmat is still of use in the recent literature, showing a reasonable17

agreement with experimental data [2, 3, 4]. The upscaling trend in size of18

rotors supported on foil bearings is limited by their load capacity and drag19

losses, which may lead to a delicate thermal management [5]. Scaling laws do20

not play in favor of larger applications, as showed by Prasad [6] and Della-21

corte [7]. To overcome this intrinsic limitation, researchers have investigated22

numerous possibilities to further increase the load capacity of GFTB. The23

clearance distribution was optimized by Lehn [8] to maximize the load ca-24

pacity using a gradient-based optimization. A hybrid foil thrust bearings25

was investigated by Lee et Kim [9], where compressed air is supplied to the26

bearing fluid film in order to sustain a thin lubricating gas film even at high27

load. Magnetic bearings can also be a solution to relieve the aerodynamic28

bearing, as suggested by Heshmat et al. [10]. Both alternatives imply the29

use of auxiliaries, which is costly in terms of space, investment and power30

and reduces the reliability.31

In the meantime, the development of rigid spiral groove thrust bearings32

(SGTB) followed a parallel path, starting with Malanoski and Pan [11] who33

applied the Narrow Groove Theory (NGT) to model grooved thrust bearings.34

However, this technology is limited to very small-scale machines because of35

the tight manufacturing tolerances required. The recent literature brought36
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an promising improvement potential in terms of static stiffness and dynamic37

stability for SGB with non-constant groove parameters, with the work of38

Hashimoto et al. [12] and Schiffmann [13].39

Despite the progress accomplished, the two technologies remain isolated40

one from another. An early attempt to combine the SGTB with a compliant41

structure was realized by Licht in 1981 [14] with a full bearing based on42

Malanoski’s rigid design. The compliant structure was designed such that43

the top foil remains parallel to the runner under load in order to preserve the44

validity of Malanoski’s performance predictions. Unfortunately, no model45

was proposed and the improvement potential was not assessed. Based on46

this work it is hypothesized that the addition of spiral grooves on a GFTB’s47

top foil can be of practical interest in the quest of enhanced load capacities48

and eased thermal management. Moreover, the manufacturing of grooves is49

inexpensive and could even be retrofited on existing GFTBs.50

1.2. Goals and objectives51

The present work investigates the use of spiral grooves manufactured52

on the GFTB’s top foil to improve the load capacity and/or to reduce the53

drag losses. The objective are to: (1) develop a model for Gas Foil Sprial54

Groove Thrust Bearings (GFSGTB), (2) investigate the static performance55

of such bearings in comparison to their ungrooved equivalent in terms of load56

capacity and losses and (3) devise design guidelines.57

1.3. Scope of the Paper58

The GFTB model of Heshmat, including a simple foundation model for59

the compliant structure, is combined with the modified Reynolds equation of60

the NGT to model the pumping action of logarithmic grooves manufactured61

on the top foil of the bearing. Multi-objective optimizations are performed for62

various geometries (ramp depth) and operating conditions in order to identify63

trade-offs in terms of load capacity and losses. Compressibility numbers up to64

1000 are evaluated. The potential of the new bearing geometry is highlighted,65

as well as its limitations. Based on these results, a set of design guidelines is66

suggested to take advantage of the new layout.67

2. Theory68

The layout under investigation consists in an inward-pumping spiral groove69

thrust bearing, where grooves are located on the outer diameter (Fig.2). Ini-70

tially, the section covering the angle θR, referred as ramp, is converging (Fig.71
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1) with a depth hR and a nominal clearance h0. The Narrow Groove The-72

ory is employed to predict the overall pressure in the grooved region of the73

bearing, assuming a infinite number of groove-ridge pairs, so the pressure74

variation over a groove-ridge pair vanishes globally, while varying linearly75

between a groove and the following ridge locally. This hypothesis is equiv-76

alent to a local incompressibility of the lubricant. It allows an efficient and77

effective modelling of groove patterns without the need of fine grid size to78

capture the grooves individually. The first use of this theory to analyze SGTB79

was done by Malanoski and Pan [11]. The analysis was later supported by80

Zirkelback and San Andres [15] with the finite element method. Only the81

resulting differential equation, as developed in [16] for an isothermal ideal82

gas for steady state operation is displayed here:83

∂θ

[
P̄

(
1

r̄
f1∂θP̄ + f2∂z̄P̄

)]
+ ∂r̄

[
P̄
(
f2∂θP̄ + f3r̄∂r̄P̄

)]
+cs

(
r̄ sin β∂θ(f4P̄ )− cos β∂r̄(r̄

2f4P̄ )
)

= Λr̄∂θ(f5P̄ )

(1)

where the geometry is presented in Figures 2 and 1 and functions fi are84

summarized in the Appendix. This equations applies to the entire bearing85

domain, reducing to the normal Reynolds equation in the land region, where86

h̄g = h̄r = h̄.87

The modeling is based on the work by Heshmat [1] using a simple foun-88

dation model for the compliant structure. The non-dimensionalization of the89

governing equation is performed as follows:90

P̄ = P/Pa r̄ = r/Ro h̄r/g = hr/g/h0 Λ =
6µωR2

o

Pah2
0

(2)

The non-dimensional ridge and groove clearances are expressed as a func-91

tion of the position and local pressure :92

h̄r = 1− ε+ g(θ) + αF (P̄ − 1)

h̄g = h̄r + δ̄
(3)

where the compliance αF is expressed as follows:93

αF =
Pas

Kfh0

(4)
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Figure 1: Geometry and nomenclature of GFSGTB
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Figure 2: Geometry and nomenclature of inward-pumping GFSGTB
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g(θ) expresses the change in clearance in the converging sector of the fluid94

film domain:95

g(θ) = max
[
h̄R (1− θ/θR) , 0

]
(5)

The term ε is the eccentricity ratio, defined as ε = e/h0, with e being the96

axial displacement of the rotating smooth disk from its nominal position.97

The boundary conditions of Eq. 1 are ambient pressure at r̄ = Ri/Ro, r̄ = 1,98

θ = 0, θ = θB. On the line r̄ = Rg/Ro, the continuity of the radial mass flow99

rate across the land and grooved region is imposed:100

ṁr,groove = ṁr,land (r̄ = Rg/Ro) (6)

which leads to the following expression:101

csf4r̄ cos β − f2
1

r̄
∂θP̄ − f3∂r̄P̄ = −h̄3∂r̄P̄ (7)

The non-linear modified Reynolds equation is discretized using a finite102

difference scheme and iteratively solved with a successive approximation103

method [17]. The field of local clearance (Eq.3) is updated based on the104

previously computed local pressure. The iterative procedure is stopped when105

the maximum relative error between two successive pressure fields pass below106

a convergence threshold of 10−4. After a grid sensitivity analysis was per-107

formed on the bearing model, a grid of 100 points in the radial direction and108

250 in the circumferential direction was selected, which leads to a satisfying109

convergence.110

Because it limits the wider application of the technology, the static per-111

formance is of primary importance in the design of gas thrust bearings. It112

appears more relevant than the dynamic behavior in a first study. Therefore,113

the performance metrics compare the investigated grooved and smooth lay-114

outs are the non-dimensional load capacity W and the non-dimensional drag115

torque T :116

W =

∫ 1

Ri/Ro

∫ θB

0

(P̄ − 1)r̄dθdr̄ (8)

T =

∫ 1

Ri/Ro

∫ θB

0

(
αh̄g + (1− α)h̄r

2
r̄∂θP̄ +

Λ

6
r̄3

(
α

h̄g
+

1− α
h̄r

))
dθdr̄ (9)

They are linked to their dimensional counterparts as follows:117
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W = PaR
2
oW (10)

T = Pah0R
2
oT (11)

It is useful to define the load capacity and drag torque of the grooved
design normalized by the plain GFTB:

W r =
W grooved

W plain

(12)

T r =
T grooved

T plain
(13)

The outputs of the implemented model are compared to the results of Hesh-118

mat [1] as a sanity check for h̄R = 1, α = 1, θB = 45◦ and θR/θB = 0.5,119

Ro/Ri = 2, suggesting a good agreement with the experimentally validated120

model (Figure 3). The largest realtive deviation between the two models121

occurs at Λ = 40 and reaches 1.9%.122

Λ [-]
0 5 10 15 20 25 30 35 40

1
0
0
·
W

[-
]

0

0.01

0.02

0.03

0.04

0.05

Present model

Reference [1]

Figure 3: Comparison of the present model with reference [1]

3. Numerical computations and results123

The main geometrical parameters of the studied bearings follow the con-124

clusion of Heshmat who identified the layout maximizing the load capacity125
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for GFTB as being Ro/Ri = 2, θB = 45◦ and θR/θB = 0.5. The relative126

ramp height h̄R is varied from low values (h̄R = 1) to values in the range127

recommended by Heshmat for maximum load capacity (h̄R > 10). Unless128

specified differently, the compliance is set to αF = 1 and the eccentricity129

ratio ε to 0.130

3.1. Effect of logarithmic grooves on the bearing performance131

In order to investigate the effect of grooved top foils on the defined per-
formance indicators and to identify the optimum groove geometries, multi-
objective optimizations were performed for different bearing geometries (h̄R)
and operating conditions (Λ) simultaneously maximizing the load capacity
and minimizing the drag torque. The decision variables are the 4 geometrical
parameters describing the grooved region, namely:

h̄g ∈ [1, 4] (14)

α =
a

a+ b
∈ [0.3, 0.7] (15)

β ∈ [0, π] (16)

γ =
Rg −Ri

Ro −Ri

∈ [0.1, 0.9] (17)

The optimizations were performed using a genetic algorithm [18] with 104
132

evaluations to obtain a satisfying convergence. The outputs of the opti-133

mization are Pareto fronts representing the optimal trade-offs between load134

capacity and drag torque. Am example is given in Figure 4, for the case135

Λ = 0.1 and four different values of h̄R. The results clearly suggest the136

existence of regions with a positive effect of the spiral grooves on the drag137

torque and on the load capacity compared to plain GFTB. Depending on138

the constraints of a particular design problem, designers may either choose a139

solution favoring a high load capacity ratio or a low drag torque ratio. The140

Pareto fronts obtained for large ranges of hR and Λ are processed to highlight141

two metrics of practical interest: (1) the maximum value of W r and (2) the142

value of T r corresponding to the point where W r = 1, which corresponds to143

(1) maximizing gain in load capacity without considering the drag and (2)144

minimizing the drag torque without losing load capacity compared to the145

plain GFTB design, respectively.146

Figure 5 represents the maximum W r as a function of the compressibility147

number for various ramp depth ratios and a constant complaince αF = 1.148
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W r [-]
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

T
r
[-
]

0.5

0.6

0.7

0.8

0.9

1

hR =1

hR =5

hR =10

hR =20

Figure 4: Pareto fronts for Λ = 0.1 and different ramp depth ratios.

There is a strong influence of the relative ramp depth h̄R on the potential149

performance gain. Low values exhibit stronger improvements at high values150

of Λ and inversely for large h̄R. This behavior can be explained by the absence151

of a limiting solution for Λ→∞ for rigid grooved bearings modeled with the152

NGT [19], which limits the performance of the smooth thrust bearings [20].153

Ultimately, the results suggest that the maximum W r for grooved thrust154

bearings is well above 1 for all values of h̄R. Although not captured by155

the NGT, a limiting solution does exist at very high compressibility in the156

case of grooved bearings. However, it is shifted to higher compressibility157

numbers [19], which maintains the interest of using the NGT even at such158

high values of Λ. For every investigated value of h̄R, a minimum in W r159

is observed at intermediate values of Λ, where the optimal grooved case is160

close to the performance of a smooth design. The location of this minimum161

is shifted toward higher compressibility numbers as h̄R increases. This is162

a consequence of the limiting solution at high compressibility numbers: a163

larger value of h̄R leads to a limiting solution in pressure rise, which becomes164

more difficult to overcome by the pumping effect of grooves.165

Figure 6 represents the drag loss ratio T r as a function of the compress-166

ibility and for various ramp depth ratios at W r = 1. The curves show that167

at equal load capacity, the grooved design can reduce the losses significantly168

depending on the geometry and the operating conditions. The most promis-169
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ing solutions maximizing the load capacity ratio in Figure 5 are also the most170

interesting ones regarding the drag reduction in drag torque in Figure 6. In171

these cases, the whole Pareto front happens to be partially or totally shifted172

in the domain W r > 1, allowing a significant performance in the two met-173

rics. Depending on the case, the reduction of drag torque can exceed 40%. In174

addition, two optimizations performed at high compressibility numbers (500175

and 1000), both with h̄R = 1, only provide Pareto fronts with W r > 1. As a176

consequence, the point of lowest W r (and therefore lowest T r) was displayed177

and the actual value of the load capacity ratio indicated.

Λ [-]

10
-1

10
0

10
1

10
2

10
3

W
r
[-
]

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

hR = 1

hR = 5

hR = 10

hR = 20

Figure 5: Solutions of maximum W r for a compliance αF = 1

178

The groove parameters of the solutions for maximum load capacity shown179

in Figure 5 are displayed in Figure 7. Increasing the value of the ramp depth180

h̄R tends to increase the optimum values of h̄g and α, and decrease β and181

γ. At very high compressibility numbers Λ, the grooves tend to be deeper182

and occupy a larger area (higher α and lower γ), in particular for the cases183

h̄R = 1 and 5. It is important to note that for some cases the optimal184

design yield h̄g = 1, which corresponds to a plain design, where the other185

parameter have no influence on the bearing performance, thus explaining186

their swinging values for these particular cases. The optimal groove geometry187

does not evolve significantly for Λ < 10, which is a indicator for good off-188

design performance, as it will be shown below.189

The points corresponding to Λ = 5 in Figure 5 have their pressure field190
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Λ [-]
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10
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[-
]

0.5
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0.8

0.9

1

W
r=
1.48

W
r=
1.57

hR = 1

hR = 5

hR = 10

hR = 20

Figure 6: Values of T r for solutions with W r = 1 for a compliance αF = 1

represented in Figures 8 and 9. The pressure gradient in t is much stronger191

along the radial direction in the grooved zone for r̄g < r̄ < 1 than in the192

smooth zone, because of the pumping action of the grooved pattern. As the193

relative ramp depth increases, the zone of maximum pressure shifts from the194

center of the bearing toward the plateau, with a zone of maximum pressure195

bordered by the groove zone. In the ramp zone, the grooves tend to loose196

their pumping effect and become locally ineffective at building pressure or197

acting as a radial seal.198

Since the presented results correspond to cases with a compliance αF = 1,199

the influence of this choice on the results is investigated. Figure 10 shows200

the influence of the foil compliance on the maximum load capacity ratio at201

a high compressibility number, resulting from an optimization performed at202

discrete values of αF . Because of the low pressure build-up in the bearing at203

low values of Λ, the compliance has little effect on the performance metric204

because the resulting deflection of the top foil is not significant. W r exhibits205

a minimum at αF ≈ 0.35 and increases approximately linearly at high com-206

pliance. However, the relative variation of W r over the considered domain is207

low. It is therefore suggested that the compliance has little influence on the208

potential of the GFSTB over the plain GFTB.209
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Figure 7: Groove parameters corresponding to solutions in Figure 5

3.2. Off-design operation210

Figure 11 represents the off-design performance in terms of compressibil-211

ity number of two geometries with h̄R = 20 maximizing W r at Λ = 0.1 and212

50 respectively, for a compliance αF = 1. Since the optimal groove geometry213

does not evolve much for the case Λ = 0.1, the performance remains close214

to the optimum at low compressibility number, until Λ ≈ 20. W r drops be-215

low 1 for higher compressibility numbers. The design optimized for Λ = 50216

maintains its performance close to 1 at high values of Λ with an appreciable217

gain at low compressibility, although it performs significantly lower than the218

local optimal geometry.219
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Figure 8: Contour of 100 · (P − 1) for the geometries maximizing the load capacity at
Λ = 5 and ramp depth h̄R = 1 and 5

Figures 12 and 13 extend this analysis with h̄R as a second variable, ex-220

ploring the performance of the geometry optimized for Λ = 0.1 and Λ = 50221

respectively, with h̄R = 20. The domain of interest with W r > 1 is nar-222

rowed further in Λ as h̄R departs from the design value. A local minimum223

in W r is visible, however with a reduction of less than 15% compared to224

the design value. The performance increases sharply for low operating h̄R at225
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Figure 9: Contour of 100 · (P − 1) for the geometries maximizing the load capacity at
Λ = 5 and ramp depth h̄R = 10 and 20

high compressibility, which corroborates with the results in Figure 5. It is226

important to note that for a given off-design value of h̄R, the performance227

passes through a minimum before increasing again. It supports the men-228

tioned conjecture that an optimal groove design with W r > 1 exists at very229

high values of compressibility number Λ for any value of ramp depth ratio230

h̄R, as long as the local incompressibility assumption of the NGT is verified231
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Figure 11: Off-design performance (h̄R = 20) in terms of W r of geometries optimized for
Λ = 0.1 and 50

[19]. A qualitatively similar observation can be made for the performance232

along the variable h̄R at constant Λ. In both investigated cases, W r passes233

through a minimum at h̄R ≈ 2 for Λ < 10. The value of relative ramp height234

associated with this minimum increases at higher compressibility numbers.235

Note that cases close to h̄R = 0 represent two parallel surfaces, which are236
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unable to build-up pressure if grooves are absent. Therefore, W r becomes237

asymptotically large in these cases.238
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Figure 12: Off-design performance in terms of W r of the geometry optimized for Λ = 0.1
and h̄R = 20
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Figure 13: Off-design performance in terms of W r of the geometry optimized for Λ = 50
and h̄R = 20

The evolution of W r with the eccentricity ratio ε is shown in Figure 14.239

The geometry of the four represented cases maximizes W r at ε = 0 and a240
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nominal compliance αF = 1 evaluated at zero eccentricity. Note that for ob-241

taining these results the stiffness of the elastic foundation is kept constant,242

which, according to Eq.4, leads to a compliance that evolves with eccentricity.243

All grooved geometries show an improved load capacity in nominal conditions244

but exhibit a lower performance than the plain GFTB design at high eccen-245

tricity ratios, with a loss of nearly 25%. W r reaches a local maximum a high246

values of h̄R, which is not present for h̄R=1, where it decreases steadily with247

an increasing eccentricity ratio. Theses results suggest that GFSTB do not248

provide a higher ultimate load capacity compared to the plain design. They249

allow though, to achieve higher load capacities at moderate eccentricities,250

which can be beneficial for the thermal management.251
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Figure 14: Off-design performance in terms of W r of the geometry optimized for Λ = 1

4. Conclusions252

Based on Heshmat’s work [1], a model of gas foil thrust bearing enhanced253

with logarithmic spiral grooves is developed using the Narrow Groove Theory.254

The improvement potential is evaluated in terms of load capacity and drag255

torque for a large range of compressibility numbers, relative ramp depth256

and bearing compliance. A multi-objective optimization for identifying the257

optimal groove geometries to maximize the load capacity while minimizing258

the drag torque leads to the following observations:259
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• The improvement potential of a grooved bearing compared to a plain260

one is the highest at low compressibility numbers and large relative261

ramp depth or inversely at high compressibility numbers and low ramp262

depths.263

• Optimum groove geometries allow to improve the load capacity by264

nearly 70%.265

• Optimum groove geometries allow to decrease the drag torque (losses)266

of the thrust bearing by up to 40% compared to a plain Gas Foil Thrust267

Bearing, in cases where the specific load capacity between the two268

bearing types is the same.269

• An assessment on off-design operation suggests that groove geometries270

optimized for low compressibility numbers negatively impact the load271

capacity at higher values (i.e. higher rotor speed and smaller clear-272

ance). However, a design optimized for high compressibility numbers273

still present a significant gain at lower compressibility numbers com-274

pared to plain gas foil thrust bearing.275

• The presence of grooves negatively impacts the ultimate load capacity276

of the thrust bearings compared to the plain GFTB.277

It follows that the addition of spiral grooves on the GFTB’s top foil can be an278

interesting solution to improve the load capacity and/or relieve the thermal279

management of plain gas foil thrust bearings. Due to the simplicity of the280

added manufacturing step, the proposed bearing layout is applicable to both281

new and commissioned bearings (retrofit).282
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AppendixA. NGT350

The terms composing equation 1 are developed here.351

h̄r =
hr
h0

=
hr

hr(θR < θ < θB)
(A.1)

h̄g =
hg
h0

(A.2)

δ̄ =
hg − hr
h0

(A.3)

g1 =h̄3
gh̄

3
r (A.4)

g2 =(h̄3
g − h̄3

r)
2α(1− α) (A.5)

g3 =(1− α)h̄3
g + αh̄3

r (A.6)

cs =
6µωR2

pah2
0

α(1− α)δ̄ sin β̂ (A.7)

f1 =
g1 + g2 sin2 β̂

g3

(A.8)

f2 =
g2 sin β̂ cos β̂

g3

(A.9)

f3 =
g1 + g2 cos2 β̂

g3

(A.10)

f4 =
h̄3
g − h̄3

r

g3

(A.11)

f5 =αh̄g + (1− α)h̄r (A.12)
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