
Accelerated Stochastic Matrix Inversion: General
Theory and Speeding up BFGS Rules for Faster

Second-Order Optimization

Anonymous Author(s)
Affiliation
Address
email

Abstract

We present the first accelerated randomized algorithm for solving linear systems1

in Euclidean spaces. One essential problem of this type is the matrix inversion2

problem. In particular, our algorithm can be specialized to invert positive definite3

matrices in such a way that all iterates (approximate solutions) generated by the4

algorithm are positive definite matrices themselves. This opens the way for many5

applications in the field of optimization and machine learning. As an application of6

our general theory, we develop the first accelerated (deterministic and stochastic)7

quasi-Newton updates. Our updates lead to provably more aggressive approxima-8

tions of the inverse Hessian, and lead to speed-ups over classical non-accelerated9

rules in numerical experiments. Experiments with empirical risk minimization10

show that our rules can accelerate training of machine learning models.11

1 Introduction12

Consider the optimization problem13

min
w∈Rn

f(w), (1)

and assume f is sufficiently smooth. A new wave of second order stochastic methods are being14

developed with the aim of solving large scale optimization problems. In particular, many of these15

new methods are based on stochastic BFGS updates [26, 32, 17, 18, 33, 4]. Here we develop a new16

stochastic accelerated BFGS update that can form the basis of new stochastic quasi-Newton methods.17

Another approach to scaling up second order methods is to use randomized sketching to reduce the18

dimension, and hence the complexity of the Hessian and the updates involving the Hessian [23, 35],19

or subsampled Hessian matrices when the objective function is a sum of many loss functions [2, 1].20

The starting point for developing second order methods is arguably Newton’s method, which performs21

the iterative process22

wk+1 = wk − (∇2f(wk))−1∇f(wk), (2)

where∇2f(wk) and∇f(wk) are the Hessian and gradient of f , respectively. However, it is inefficient23

for solving large scale problems as it requires the computation of the Hessian and then solving a24

linear system in each iteration. Several methods have been developed to address this issue, based on25

the idea of approximating the exact update.26

Quasi-Newton methods, in particular the BFGS [3, 7, 8, 27], have been the leading optimization27

algorithm in various fields since the late 60’s until the rise of big data, which brought a need for28

simpler first order algorithms. It is well known that Nesterov’s acceleration [20] is a reliable way29

Submitted to 32nd Conference on Neural Information Processing Systems (NIPS 2018). Do not distribute.

to speed up first order methods. However until now, acceleration techniques have been applied30

exclusively to speeding up gradient updates. In this paper we present an accelerated BFGS algorithm,31

opening up new applications for acceleration. The acceleration in fact comes from an accelerated32

algorithm for inverting the Hessian matrix.33

To be more specific, recall that quasi-Newton rules aim to maintain an estimate of the inverse Hessian34

Xk, adjusting it every iteration so that the inverse Hessian acts appropriately in a particular direction,35

while enforcing symmetry:36

Xk(∇f(wk)−∇f(wk−1)) = wk − wk−1, Xk = X>k . (3)

A notable research direction is the development of stochastic quasi-Newton methods [11], where the37

estimated inverse is equal to the true inverse over a subspace:38

Xk∇2f(wk)Sk = Sk, Xk = X>k , (4)

where Sk ∈ Rn×τ is a randomly generated matrix.39

In fact, (4) can be seen as the so called sketch-and-project iteration for inverting ∇2f(wk). In this40

paper we first develop the accelerated algorithm for inverting positive definite matrices. As a direct41

application, our algorithm can be used as a primitive in quasi-Newton methods which results in a42

novel accelerated (stochastic) quasi-Newton method of the type (4). In addition, our acceleration43

technique can also be incorporated in the classical (non stochastic) BFGS method. This results in44

the accelerated BFGS method. Whereas the matrix inversion contribution is accompanied by strong45

theoretical justifications, this does not apply to the latter. Rather, we verify the effectiveness of this46

new accelerated BFGS method through numerical experiments.47

1.1 Sketch-and-project for linear systems48

Our accelerated algorithm can be applied to more general tasks than only inverting matrices. In49

its most general form, it can be seen as an accelerated version of a sketch-and-project method in50

Euclidean spaces which we present now. Consider a linear system Ax = b such that b ∈ Range (A).51

One step of the sketch-and-project algorithm reads as:52

xk+1 = argminx ‖xk − x‖2B subject to S>k Ax = S>k b, (5)

where ‖x‖2B = 〈Bx, x〉 for some B � 0 and Sk is a random sketching matrix sampled i.i.d at each53

iteration from a fixed distribution.54

Randomized Kaczmarz [13, 30] was the first algorithm of this type. In [12], this sketch-and-project55

algorithm was analyzed in its full generality. Note that the dual problem of (5) takes the form of a56

quadratic minimization problem [10], and randomized methods such as coordinate descent [19, 34],57

random pursuit [29, 28] or stochastic dual ascent [10] can thus also be captured as special instances58

of this method. Richtárik and Takáč [25] adopt a new point of view through a theory of stochastic59

reformulations of linear systems. In addition, they consider the addition of a relaxation parameter,60

as well as mini-batch and accelerated variants. Acceleration was only achieved for the expected61

iterates, and not in the L2 sense as we do here. We refer to Richtárik and Takáč [25] for interpretation62

of sketch-and-project as stochastic gradient descent, stochastic Newton, stochastic proximal point63

method, and stochastic fixed point method.64

Gower [11] observed that the procedure (5) can also be applied to find the inverse of a matrix. Assume65

the optimization variable itself is a matrix, x = X , b = I , the identity matrix, then sketch-and-66

project converges (under mild assumptions) to a solution of AX = I . Even the symmetry constraint67

X = X> can be incorporated into the sketch-and-project framework since it is a linear constraint.68

There has been recent development in speeding up the sketch-and-project method using the idea of69

Nesterov’s acceleration [20]. In [15] an accelerated Kaczmarz algorithm was presented for special70

sketches of rank one. Arbitrary sketches of rank one where considered in [29], block sketches in [21]71

and recently, Tu and coathors [31] developed acceleration for special sketching matrices, assuming72

the matrix A is square. This assumption, along with any assumptions on A, was later dropped73

in [24]. Another notable way to accelerate the sketch-and-project algorithm is by using momentum74

or stochastic momentum [16].75

We build on recent work of Richtárik and Takáč [24] and further extend their analysis by studying76

accelerated sketch-and-project in general Euclidean spaces. This allows us to deduce the result for77

2

matrix inversion as a special case. However, there is one additional caveat that has to be considered78

for the intended application in quasi-Newton methods: ideally, all iterates of the algorithm should be79

symmetric positive definite matrices. This is not the case in general, but we address this problem by80

constructing special sketch operators that preserve symmetry and positive definiteness.81

2 Contributions82

We now present our main contributions.83

Accelerated Sketch and Project in Euclidean Spaces. We generalize the analysis of an accelerated84

version of the sketch-and-project algorithm [24] to linear operator systems in Euclidean spaces. We85

provide a self-contained convergence analysis, recovering the original results in a more general86

setting.87

Faster Algorithms for Matrix Inversion. We develop an accelerated algorithm for inverting positive88

definite matrices. This algorithm can be seen as a special case of the accelerated sketch-and-project89

in Euclidean space, thus its convergence follows from the main theorem. However, we also provide a90

different formulation of the proof that is specialized to this setting. Similarly to [31], the performance91

of the algorithm depends on two parameters µ and ν that capture spectral properties of the input92

matrix and the sketches that are used. Whilst for the non-accelerated sketch-and-project algorithm93

for matrix inversion [11] the knowledge of these parameters is not necessary, they need to be given94

as input to the accelerated scheme. When employed with the correct choice of parameters, the95

accelerated algorithm is always faster than the non-accelerated one. We also provide a theoretical96

rate for sub-optimal parameters µ, ν, and we perform numerical experiments to argue the choice of97

µ, ν in practice.98

Randomized Accelerated Quasi-Newton. The proposed iterative algorithm for matrix inversion is99

designed in such a way that each iterate is a symmetric matrix. This means, we can use the generated100

approximate solutions as estimators for the inverse Hessian in quasi-Newton methods, which is a101

direct extension of stochastic quasi-Newton methods. To the best of our knowledge, this yields the102

first accelerated (stochastic) quasi-Newton method.103

Accelerated Quasi-Newton. In the standard BFGS method the updates to the Hessian estimate104

are not chosen randomly, but deterministically. Based on the intuition gained from the accelerated105

random method, we propose an accelerated scheme for BFGS. The main idea is that we replace the106

random sketching of the Hessian with a deterministic update. The theoretical convergence rates do107

not transfer to this scheme, but we demonstrate by numerical experiments that it is possible to choose108

a parameter combination which yields a slightly faster convergence. We believe that the novel idea109

of accelerating BFGS update is extremely valuable, as until now, acceleration techniques were only110

considered to improve gradient updates.111

2.1 Outline112

Our accelerated sketch-and-project algorithm for solving linear systems in Euclidean spaces is113

developed and analyzed in Section 3, and is used later in Section 4 to analyze an accelerated sketch-114

and-project algorithm for matrix inversion. The accelerated sketch-and-project algorithm for matrix115

inversion is then used to accelerate the BFGS update, which in term leads to the development of an116

accelerated BFGS optimization method. Lastly in Section 5, we perform numerical experiments to117

gain different insights into the newly developed methods. Proofs of all results and additional insights118

can be found in the appendix.119

3 Accelerated Stochastic Algorithm for Matrix Inversion120

In this section we propose an accelerated randomized algorithm to solve linear systems in Euclidean121

spaces. This is a very general problem class and it comprises for instance also the matrix inversion122

problem. Thus, we will use the result of this section later to analyze our newly proposed matrix123

inversion algorithm, which we then use to estimate the inverse of the Hessian within a quasi-Newton124

method.1125

1Quasi-Newton methods do not compute an exact matrix inverse, rather, they only compute an incremental
update. Thus, it suffices to apply one step of our proposed scheme per iteration. This will be detailed in Section 4.

3

Let X and Y be finite dimensional Euclidean spaces and let A : X 7→ Y be a linear operator. Let126

L(X ,Y) denote the space of linear operators that map from X to Y. Consider the linear system127

Ax = b, (6)

where x ∈ X and b ∈ Range (A) . Consequently there exists a solution to the equation (6). In128

particular, we aim to find the solution closest to a given initial point x0 ∈ X :129

x∗
def
= arg min

x∈X
1
2‖x− x0‖

2 subject to Ax = b. (7)

Using the pseudoinverse and Lemma 22 item vi, the solution to (7) is given by130

x∗ = x0 −A†(Ax0 − b) ∈ x0 + Range (A∗) , (8)

where A† and A∗ denote the pseudoinverse and the adjoint of A, respectively.131

3.1 The algorithm132

Let Z be a Euclidean space and consider a random linear operator Sk ∈ L(Y,Z) chosen from some133

distribution D over L(Y,Z) at iteration k. Our method is given in Algorithm 1, where Zk ∈ L(X) is134

a random linear operator given by the following compositions135

Zk = Z(Sk)
def
= A∗S∗k(SkAA∗S∗k)†SkA. (9)

The updates of variables gk and xk+1 on lines 8 and 9, respectively, correspond to what is known as136

the sketch-and-project update:137

xk+1 = arg min
x∈X

1
2‖x− yk‖

2 subject to SkAx = Skb, (10)

which can also be written as the following operation138

xk+1 − x∗ = (I − Zk)(yk − x∗). (11)

This follows from the fact that b ∈ Range (A), together with item i of Lemma 22. Furthermore,139

note that the adjoint A∗ and the pseudoinverse in Algorithm 1 are taken with respect to the norm140

in (7).141

Algorithm 1 Accelerated Sketch-and-Project for solving (10) [24]
1: Parameters: µ, ν > 0, D = distribution over random linear operators.
2: Choose x0 ∈ X and set v0 = x0, β = 1−

√
µ
ν , γ =

√
1
µν , α = 1

1+γν .

3: for k = 0, 1, . . . do
4: yk = αvk + (1− α)xk
5: Sample an independent copy Sk ∼ D
6: gk = A∗S∗k(SkAA∗S∗k)†Sk(Ayk − b) = Zk(yk − x∗)
7: xk+1 = yk − gk
8: vk+1 = βvk + (1− β)yk − γgk
9: end for

Algorithm 1 was first proposed and analyzed by Richtárik and Takáč [24] in the special case when142

X = Rn and Y = Rm. Our contribution here is in extending the algorithm and analysis to the more143

abstract setting of Euclidean spaces. In addition, we provide some further extensions of this method144

in Sections D and E, allowing for a non-unit stepsize and variable α, respectively.145

3.2 Key assumptions and quantities146

Denote Z = Z(S) for S ∼ D. Assume that the exactness property holds147

Null (A) = Null (E [Z]) ; (12)

this is also equivalent to Range (A∗) = Range (E [Z]). The exactness assumption is of key148

importance in the sketch-and-project framework, and indeed it is not very strong. For example, it149

holds for the matrix inversion problem with every sketching strategy we consider. We further assume150

that A 6= 0 and E [Z] is finite. First we collect a few observation on the Z operator151

4

Lemma 1. The Z operator (9) is a self-adjoint positive projection. Consequently E [Z] is a self-152

adjoint positive operator.153

The two parameters that govern the acceleration are154

µ
def
= inf

x∈Range(A∗)
〈E[Z]x,x〉
〈x,x〉 , ν

def
= sup

x∈Range(A∗)

〈E[ZE[Z]†Z]x,x〉
〈E[Z]x,x〉 . (13)

The supremum in the definition of ν is well defined due to the exactness assumption together with155

A 6= 0.156

Lemma 2. We have157

1 ≤ ν ≤ 1
µ = ‖E [Z]

†‖. (14)

Moreover, if Range (A∗) = X , we have158

Rank(A∗)
E[Rank(Z)] ≤ ν. (15)

3.3 Convergence and change of the norm159

For a positive self-adjoint G ∈ L(X) and x ∈ X let ‖x‖G
def
=
√
〈x, x〉G

def
=
√
〈Gx, x〉. We now160

informally state the convergence rate of Algorithm 1. Theorem 3 generalizes the main theorem from161

[24] to linear systems in Euclidean spaces.162

Theorem 3. Let xk, vk be the random iterates of Algorithm 1. Then163

E
[
‖vk − x∗‖2E[Z]†

+ 1
µ‖xk − x∗‖

2
]
≤
(

1−
√

µ
ν

)k
E
[
‖v0 − x∗‖2E[Z]†

+ 1
µ‖x0 − x∗‖

2
]
.

This theorem shows the accelerated Sketch-and-Project algorithm converges linearly with a rate of164 (
1 −

√
µ
ν

)
, which translates to a total of O(

√
ν/µ log (1/ε)) iterations to bring the given error in165

Theorem 3 below ε > 0. This is in contrast with the non-accelerated Sketch-and-Project algorithm166

which requires O((1/µ) log (1/ε)) iterations, as shown in [12] for solving linear systems. From (14),167

we have the bounds 1/
√
µ ≤

√
ν/µ ≤ 1/µ. On one extreme, this inequality shows that the iteration168

complexity of the accelerated algorithm is at least as good as its non-accelerated counterpart. On the169

other extreme, the accelerated algorithm might require as little as the square root of the number of170

iterations of its non-accelerated counterpart. Since the cost of a single iteration of the accelerated171

algorithm is of the same order as the non-accelerated algorithm, this theorem shows that acceleration172

can offer a significant speed-up, which is verified numerically in Section 5. It is also possible to get173

the convergence rate of accelerated sketch-and-project where projections are taken with respect to a174

different weighted norm. For technical details, see Section B.4 of the Appendix.175

3.4 Coordinate sketches with convenient probabilities176

Let us consider a simple example in the setting for Algorithm 1 where we can understand parameters177

µ, ν. In particular, consider a linear system Ax = b in Rn where A is symmetric positive definite.178

Corollary 4. Choose B = A and S = ei with probability proportional to Ai,i. Then179

µ = λmin(A)
Tr(A) =: µP and ν = Tr(A)

mini Ai,i
=: νP (16)

and therefore the convergence rate given in Theorem 3 for the accelerated algorithm is180 (
1−

√
µ
ν

)k
=

(
1−
√
λmin(A)mini Ai,i

Tr(A)

)k
. (17)

Rate (17) of our accelerated method is to be contrasted with the rate of the non-accelerated method:181

(1 − µ)k = (1 − λmin(A)/Tr (A)))k. Clearly, we gain from acceleration if the smallest diagonal182

element of A is significantly larger than the smallest eigenvalue.183

In fact, parameters µP , νP above are the correct choice for the matrix inversion algorithm, when184

symmetry is not enforced, as we shall see later. Unfortunately, we are not able to estimate the185

parameters while enforcing symmetry for different sketching strategies. We dedicate a section in186

numerical experiments to test, if the parameter selection (16) performs well under enforced symmetry187

and different sketching strategies, and also how one might safely choose µ, ν in practice.188

5

4 Accelerated Stochastic BFGS Update189

The update of the inverse Hessian used in quasi-Newton methods (e.g., in BFGS) can be seen as190

a sketch-and-project update applied to the linear system AX = I , while X = X> is enforced,191

and where A denotes and approximation of the Hessian. In this section, we present an accelerated192

version of these updates. We provide two different proofs: one based on Theorem 3 and one based on193

vectorization. By mimicking the updates of the accelerated stochastic BFGS method for inverting194

matrices, we determine a heuristic for accelerating the classic deterministic BFGS update. We then195

incorporate this acceleration into the classic BFGS optimization method and show that the resulting196

algorithm can offer a speed-up of the standard BFGS algorithm.197

4.1 Accelerated matrix inversion198

Consider the symmetric positive definite matrix A ∈ Rn×n and the following projection problem199

A−1 = arg min
X
‖X‖2F (A) subject to AX = I, X = X>, (18)

where ‖X‖F (A)
def
= Tr

(
AX>AX

)
= ‖A1/2XA1/2‖2F . This projection problem can be cast as an200

instantiation of the general projection problem (7). Indeed, we need only note that the constraint201

in (18) is linear and equivalent to A(X)
def
=
(

AX
X−X>

)
= (I0) . The matrix inversion problem can be202

efficiently solved using sketch-and-project with a symmetric sketch [11]. The symmetric sketch is203

given by SkA(X) =
(
S>k AX

X−X>

)
, where Sk ∈ Rn×τ is a random matrix drawn from a distribution D204

and τ ∈ N. The resulting sketch-and-project method is as follows205

Xk+1 = arg min
X
‖X −Xk‖2F (A) subject to S>k AX = S>k , X = X>, (19)

the closed form solution of which is206

Xk+1 = Sk(S>k ASk)−1S>k +
(
I − Sk(S>k ASk)−1S>k A

)
Xk

(
I −ASk(S>k ASk)−1S>k

)
. (20)

By observing that (4.2) is the sketch-and-project algorithm applied to a linear operator equation, we207

have constructed an accelerated version in Algorithm 2. We can also apply Theorem 3 to prove that208

Algorithm 2 is indeed accelerated.209

Theorem 5. Let Lk
def
= ‖Vk −A−1‖2M + 1

µ‖Xk −A−1‖2F (A). The iterates of Algorithm 2 satisfy210

E [Lk+1] ≤
(

1−
√

µ
ν

)
E [Lk] , (21)

where ‖X‖2M = Tr
(
A1/2X>A1/2E [Z]

†
A1/2XA1/2

)
. Furthermore,211

µ
def
= inf

X∈Rn×n

〈E[Z]X,X〉
〈X,X〉 = λmin(E [Z]), ν

def
= sup

X∈Rn×n

〈E[ZE[Z]†Z]X,X〉
〈E[Z]X,X〉 , (22)

where212

Z
def
= I ⊗ I − (I − P)⊗ (I − P), P

def
= A1/2S(S>AS)−1S>A1/2, (23)

and Z : X ∈ Rn×n → Rn×n is given by Z(X) = X − (I − P)X (I − P) = XP + PX(I − P).213

Moreover, 2λmin(E [P]) ≥ λmin(E [Z]) ≥ λmin(E [P]).214

Notice that preserving symmetry yields µ = λmin(E [Z]) , which can be up to twice as large as215

λmin(E [P]), which is the value of the µ parameter of the method without preserving symmetry. This216

improved rate is new, and was not present in the algorithm’s debut publication [11]. In terms of217

parameter estimation, once symmetry is not preserved, we fall back onto the setting from Section 3.4.218

Unfortunately, we were not able to quantify the effect of enforcing symmetry on the parameter ν.219

4.2 Vectorizing – a different insight220

Define Vec : Rn×n → Rn2

to be a vectorization operator of column-wise stacking and denote221

x
def
= Vec (X). It can be shown that the sketch-and-project operation for matrix inversion (4.2) is222

equivalent to223

xk+1 = arg min
x
‖x− xk‖2A⊗A subject to (I ⊗ S>k)(I ⊗A)x = (I ⊗ S>k)Vec (I) , Cx = 0,

6

Algorithm 2 Accelerated BFGS matrix inversion (solving (18))
1: Parameters: µ, ν > 0, D = distribution over random linear operators.
2: Choose X0 ∈ X and set V0 = X0, β = 1−

√
µ
ν , γ =

√
1
µν , α = 1

1+γν

3: for k = 0, 1, . . . do
4: Yk = αVk + (1− α)Xk

5: Sample an independent copy S ∼ D
6: Xk+1 = Yk + (YkA− I)S(S>AS)−1S> − S(S>AS)−1S>AYk
7: +S(S>AS)−1S>AYkAS(S>AS)−1S>

8: Vk+1 = βVk + (1− β)Yk − γ(Yk −Xk+1)
9: end for

where C is defined so that Cx = 0 if and only if X = X>. The above is a sketch-and-project224

update for a linear system in Rn2

, which allows to obtain an alternative proof of Theorem 5, without225

using our results from Euclidean spaces. The details are provided in Section H.2 of the Appendix.226

4.3 Accelerated BFGS as an optimization algorithm227

As a tweak in the stochastic BFGS allows for a faster estimation of Hessian inverse and therefore228

more accurate steps of the method, one might wonder if a equivalent tweak might speed up the229

standard, deterministic BFGS algorithm for solving 1. The mentioned tweaked version of standard230

BFGS is proposed as Algorithm 3. We do not state a convergence theorem for this algorithm—due231

to the deterministic updates the analysis is currently elusive—nor propose to use it as a default232

solver, but we rather introduce it as a novel idea for accelerating optimization algorithms. We leave233

theoretical analysis for the future work. For now, we perform several numerical experiments, in order234

to understand the potential and limitations of this new method.235

Algorithm 3 BFGS method with accelerated BFGS update for solving (1)
1: Parameters: µ, ν > 0, stepsize η.
2: Choose X0 ∈ X , w0 and set V0 = X0, β = 1−

√
µ
ν , γ =

√
1
µν , α = 1

1+γν .

3: for k = 0, 1, . . . do
4: wk+1 = wk − ηXk∇f(wk)
5: sk = wk+1 − wk, ζk = ∇f(wk+1)−∇f(wk)
6: Yk = αVk + (1− α)Xk

7: Xk+1 =
δkδ
>
k

δ>k ζk
+
(
I − δkζ

>
k

δ>k ζk

)
Yk

(
I − ζkδ

>
k

δ>k ζk

)
8: Vk+1 = βVk + (1− β)Yk − γ(Yk −Xk+1)
9: end for

To better understand Algorithm 3, recall that the BFGS updates an estimate of the inverse Hessian via236

237

Xk+1 = argminX ‖X −Xk‖2F (A) subject to Xδk = ζk, X = X>, (24)

where δk = wk+1 − wk and ζk = ∇f(wk+1)−∇f(wk). The above has the following closed form238

solutionXk+1 =
δkδ
>
k

δ>k ζk
+
(
I − δkζ

>
k

δ>k ζk

)
Xk

(
I − ζkδ

>
k

δ>k ζk

)
. This update appears on line 7 of Algorithm 3239

with the difference being that it is applied to a matrix Yk.240

5 Numerical Experiments241

We perform extensive numerical experiments to bring additional insight to both the performance of242

and to parameter selection for Algorithms 2 and 3. More numerical experiments can be found in243

Section A of the appendix. We first test our accelerated matrix inversion algorithm, and subsequently244

perform experiments related to Section 4.3.245

7

5.1 Accelerated Matrix Inversion246

We consider the problem of inverting a matrix symmetric positive matrix A. We focus on a few247

particular choices of matrices A (specified when describing each experiment), that differ in their248

eigenvalue spectra. Three different sketching strategies are studied: Coordinate sketches with249

convenient probabilities (S = ei with probability proportional to Ai,i), coordinate sketches with250

uniform probabilities (S = ei with probability 1
n) and Gaussian sketches (S ∼ N (0, I)). As matrices251

to be inverted, we use both artificially generated matrices with the access to the spectrum and also252

Hessians of ridge regression problems from LIBSVM.253

We have shown earlier that µ, ν can be estimated as per (16) for coordinate sketches with convenient254

probabilities without enforcing symmetry. We use the mentioned parameters for the other sketching255

strategies while enforcing the symmetry. Since in practice one might not have an access to the exact256

parameters µ, ν for given sketching strategy, we test sensitivity of the algorithm to parameter choice .257

We also test test for ν chosen by (16), µ = 1
100ν and µ = 1

10000ν .258

0 50 100
time (s)

10-20

10-15

10-10

10-5

100

r
e
s
i
d
u
a
l

BFGS
nsymBFGS
BFGS-a
nsymBFGS-a

0 5 10 15 20
time (s)

10-20

10-15

10-10

10-5

100

r
e
s
i
d
u
a
l

BFGS
nsymBFGS
BFGS-a
nsymBFGS-a

0 500 1000 1500 2000
time (s)

10-8

10-6

10-4

10-2

100

r
e
s
i
d
u
a
l

BFGS
hBFGS100
hBFGS10000

0 500 1000 1500 2000
time (s)

10-6

10-4

10-2

100

r
e
s
i
d
u
a
l

BFGS
hBFGS100
hBFGS10000

Figure 1: From left to right: (i) Eigenvalues of A ∈ R100×100 are 1, 103, 103, . . . , 103 and coordinate sketches with convenient probabilities are
used. (ii) Eigenvalues of A ∈ R100×100 are 1, 2, . . . , n and Gaussian sketches are used. Label “nsym” indicates non-enforcing symmetry and “-a” indicates
acceleration. (iii) Epsilon dataset (n = 2000), coordinate sketches with uniform probabilities. (iv) SVHN dataset (n = 3072), coordinate sketches with convenient
probabilities. Label “h” indicates that λmin was not precomputed, but µ was chosen as described in the text.

For more plots, see Section A in the appendix as here we provide only a tiny fraction of all plots.259

The experiments suggest that once the parameters µ, ν are estimated exactly, we get a speedup260

comparing to the nonaccelerated method; and the amount of speedup depends on the structure of A261

and the sketching strategy. We observe from Figure 1 that we gain a great speedup for ill conditioned262

problems once the eigenvalues are concentrated around the largest eigenvalue. We also observe from263

Figure 1 that enforcing symmetry combines well with µ, ν computed for the algorithm which do not264

enforce symmetry. On top of that, choice of µ, ν per (16) seems to be robust to different sketching265

strategies, and in worst case performs as fast as nonaccelerated algorithm.266

5.2 BFGS Optimization Method267

We test Algorithm 3 on several logistic regression problems using data from LIBSVM [5]. In all268

our tests we centered and normalized the data, included a bias term (a linear intercept), and choose269

the regularization parameter as λ = 1/m, where m is the number of data points. To keep things as270

simple as possible, we also used a fixed stepsize which was determined using grid search. Since271

our theory regarding the choice for the parameters µ and ν does not apply in this setting, we simply272

probed the space of parameters manually and reported the best found result, see Figure 2. In the273

legend we use BFGS-a-µ-ν to denote the accelerated BFGS method (Alg 3) with parameters µ and ν.274

20 40 60 80 100 120 140
iterations

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

re
sid

ua
l

BFGS
BFGS-a-1228.33-0.1

0 50 100 150 200 250
iterations

10 17.5

10 15.0

10 12.5

10 10.0

10 7.5

10 5.0

10 2.5

100.0

re
sid

ua
l

BFGS
BFGS-a-8124.0-0.01

20 40 60 80 100 120
iterations

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

re
sid

ua
l

BFGS
BFGS-a-30.0-0.5

10 20 30 40 50 60 70 80
iterations

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

re
sid

ua
l

BFGS
BFGS-a-1000.0-0.9

Figure 2: Algorithm 3 (BFGS with accelerated matrix inversion quasi-Newton update) vs standard
BFGS. From left to right: phishing, mushrooms, australian and splice dataset.

On all four datasets, our method outperforms the classic BFGS method, indicating that replacing275

classic BFGS update rules for learning the inverse Hessian by our new accelerated rules can be276

beneficial in practice. In A.4 in the appendix we also show the time plots for solving the problems in277

Figure 2, and show that the accelerated BFGS method also converges faster in time.278

8

References279

[1] Naman Agarwal, Brian Bullins, and Elad Hazan. Second-order stochastic optimization for280

machine learning in linear time. The Journal of Machine Learning Research, 18(1):4148–4187,281

2017.282

[2] Albert S. Berahas, Raghu Bollapragada, and Jorge Nocedal. An investigation of Newton-sketch283

and subsampled Newton methods. CoRR, abs/1705.06211, 2017.284

[3] Charles G Broyden. Quasi-Newton methods and their application to function minimisation.285

Mathematics of Computation, 21(99):368–381, 1967.286

[4] Richard H. Byrd, S. L. Hansen, Jorge Nocedal, and Yoram Singer. A stochastic quasi-newton287

method for large-scale optimization. SIAM Journal on Optimization, 26(2):1008–1031, 2016.288

[5] Chih-Chung Chang and Chih-Jen Lin. Libsvm: A library for support vector machines. ACM289

Trans. Intell. Syst. Technol., 2(3):27:1–27:27, May 2011.290

[6] C. A. Desoer and B. H. Whalen. A note on pseudoinverses. Journal of the Society of Industrial291

and Applied Mathematics, 11(2):442–447, 1963.292

[7] Roger Fletcher. A new approach to variable metric algorithms. The computer journal, 13(3):317–293

322, 1970.294

[8] Donald Goldfarb. A family of variable-metric methods derived by variational means. Mathe-295

matics of computation, 24(109):23–26, 1970.296

[9] Robert Gower, Donald Goldfarb, and Peter Richtárik. Stochastic block BFGS: Squeezing more297

curvature out of data. In International Conference on Machine Learning, pages 1869–1878,298

2016.299

[10] Robert M. Gower and Peter Richtárik. Stochastic dual ascent for solving linear systems.300

arXiv:1512.06890, 2015.301

[11] Robert M. Gower and Peter Richtárik. Randomized quasi-Newton updates are linearly con-302

vergent matrix inversion algorithms. SIAM Journal on Matrix Analysis and Applications,303

38(4):1380–1409, 2017.304

[12] Robert Mansel Gower and Peter Richtárik. Randomized iterative methods for linear systems.305

SIAM Journal on Matrix Analysis and Applications, 36(4):1660–1690, 2015.306

[13] S. Kaczmarz. Angenäherte Auflösung von Systemen linearer Gleichungen. Bulletin Interna-307

tional de l’Académie Polonaise des Sciences et des Lettres, 35:355–357, 1937.308

[14] Dong C Liu and Jorge Nocedal. On the limited memory BFGS method for large scale optimiza-309

tion. Mathematical programming, 45(1-3):503–528, 1989.310

[15] Ji Liu and Stephen J. Wright. An accelerated randomized Kaczmarz algorithm. Math. Comput.,311

85(297):153–178, 2016.312

[16] Nicolas Loizou and Peter Richtárik. Momentum and stochastic momentum for stochastic gradi-313

ent, Newton, proximal point and subspace descent methods. arXiv preprint arXiv:1712.09677,314

2017.315

[17] Aryan Mokhtari and Alejandro Ribeiro. Global convergence of online limited memory BFGS.316

The Journal of Machine Learning Research, 16:3151–3181, 2015.317

[18] Philipp Moritz, Robert Nishihara, and Michael Jordan. A linearly-convergent stochastic L-BFGS318

algorithm. In Artificial Intelligence and Statistics, pages 249–258, 2016.319

[19] Yu. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems.320

SIAM Journal on Optimization, 22(2):341–362, 2012.321

[20] Yurii Nesterov. A method of solving a convex programming problem with convergence rate322

O(1/k2). Soviet Mathematics Doklady, 27(2):372–376, 1983.323

9

[21] Yurii Nesterov and Sebastian U. Stich. Efficiency of the accelerated coordinate descent method324

on structured optimization problems. SIAM Journal on Optimization, 27(1):110–123, 2017.325

[22] G.K. Pedersen. Analysis Now. Graduate Texts in Mathematics. Springer New York, 1996.326

[23] Mert Pilanci and Martin J. Wainwright. Newton sketch: A near linear-time optimization327

algorithm with linear-quadratic convergence. SIAM Journal on Optimization, 27(1):205–245,328

2017.329

[24] Peter Richtárik and Martin Takáč. Stochastic reformulations of linear systems: accelerated330

method. Manuscript, October 2017, 2017.331

[25] Peter Richtárik and Martin Takáč. Stochastic reformulations of linear systems: algorithms and332

convergence theory. arXiv:1706.01108, 2017.333

[26] Nicol N Schraudolph and G Simon. A stochastic quasi-Newton method for online convex334

optimization. In Proceedings of 11th International Conference on Artificial Intelligence and335

Statistics, 2007.336

[27] David F Shanno. Conditioning of quasi-Newton methods for function minimization. Mathemat-337

ics of computation, 24(111):647–656, 1970.338

[28] S. U. Stich, C. L. Müller, and B. Gärtner. Variable metric random pursuit. Mathematical339

Programming, 156(1):549–579, Mar 2016.340

[29] Sebastian U. Stich. Convex Optimization with Random Pursuit. PhD thesis, ETH Zurich, 2014.341

Diss., Eidgenössische Technische Hochschule ETH Zürich, Nr. 22111.342

[30] Thomas Strohmer and Roman Vershynin. A randomized Kaczmarz algorithm with exponential343

convergence. Journal of Fourier Analysis and Applications, 15(2):262, 2009.344

[31] Stephen Tu, Shivaram Venkataraman, Ashia C. Wilson, Alex Gittens, Michael I. Jordan, and345

Benjamin Recht. Breaking locality accelerates block Gauss-Seidel. In Proceedings of the 34th346

International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11347

August 2017, pages 3482–3491, 2017.348

[32] Xiao Wang, Shiqian Ma, Donald Goldfarb, and Wei Liu. Stochastic quasi-newton methods for349

nonconvex stochastic optimization. SIAM Journal on Optimization, 27(2):927–956, 2017.350

[33] Xiao Wang, Shiqian Ma, Donald Goldfarb, and Wei Liu. Stochastic quasi-Newton methods for351

nonconvex stochastic optimization. SIAM Journal on Optimization, 27(2):927–956, 2017.352

[34] Stephen J. Wright. Coordinate descent algorithms. Math. Program., 151(1):3–34, June 2015.353

[35] Peng Xu, Jiyan Yang, Farbod Roosta-Khorasani, Christopher Ré, and Michael W Mahoney.354

Sub-sampled newton methods with non-uniform sampling. In Advances in Neural Information355

Processing Systems, pages 3000–3008, 2016.356

10

A Further Experiments with Accelerated quasi-Newton Updates357

In this section, we test the the empirical rate of convergence of Algorithm 2, the accelerated BFGS358

update for inverting positive definite matrices. Only vector sketches are considered, as the standard359

quasi-Newton methods also update the inverse Hessian only according to the action in one direction.360

We compare the speed of the accelerated method with precomputed estimates of the parameters µ, ν361

to the nonaccelerated method. The precomputed estimates of µP , νP are set as per (16):362

µP =
λmin(A)

Tr (A)
, νP =

Tr (A)

mini(Ai,i)
,

which is the optimal choice for coordinate sketches with convenient probabilities without enforcing363

symmetry. In practice we might not have an access to λmin(A), thus we cannot compute µP exactly.364

Therefore we also test sensitivity of the algorithm to the choice of parameters, and we run some365

experiments where we only guess parameter µP .366

Lastly, the tests are performed on both artificial examples and LIBSVM [5] data. We shall also explain367

the legend of plots: “a” indicates acceleration, “nsym” indicates the algorithm without enforcing368

symmetry and “h” indicates the setting when νP is not known, and a naive heuristic choice is casted.369

A.1 Simple and well understood artificial example370

Let us consider inverting the matrix A = αI + β11> for α > 0 and β ≥ −αn so as in this case we371

have control over both µ and ν. This artificial example was considered in [31] for solving linear372

systems. In particular, we show that for coordinate sketches with convenient probabilities (which is373

indeed the same as uniform probabilities in this example), we have374

µP
def
= λmin(E [P]) =

min (α, α+ nβ)

n(α+ β)
,

νP
def
= λmax

(
E
[
E [P]

− 1
2 PE [P]

−1
PE [P]

− 1
2

])
= n.

Due to the fact that we do not have a theoretical justification of µ, ν for n > 2 when enforcing375

symmetry, we set µ = µP and ν = νP for Gaussian sketches as well.376

0 5 10
time (s)

10-20

10-15

10-10

10-5

100

r
e
s
i
d
u
a
l

BFGS
nsymBFGS
BFGS-a
nsymBFGS-a

0 1 2 3 4
time (s)

10-20

10-15

10-10

10-5

100

r
e
s
i
d
u
a
l

BFGS
nsymBFGS
BFGS-a
nsymBFGS-a

Figure 3: Parameter choice: α = 1 + 10−1, β = −n−1, n = 100. From left to right we have:
Coordinate sketch with uniform (convenient) probabilities and Gaussian sketch respectively.

11

0 5 10 15
time (s)

10-6

10-4

10-2

100

r
e
s
i
d
u
a
l

BFGS
nsymBFGS
BFGS-a
nsymBFGS-a

0 5 10 15
time (s)

10-20

10-15

10-10

10-5

100

r
e
s
i
d
u
a
l

BFGS
nsymBFGS
BFGS-a
nsymBFGS-a

Figure 4: Parameter choice: α = 1 + 10−3, β = −n−1, n = 100. From left to right we have:
Coordinate sketch with uniform (convenient) probabilities and Gaussian sketch respectively.

0 5 10 15
time (s)

0.85

0.9

0.95

1

r
e
s
i
d
u
a
l

BFGS
nsymBFGS
BFGS-a
nsymBFGS-a

0 5 10 15
time (s)

10-2

10-1

100

r
e
s
i
d
u
a
l

BFGS
nsymBFGS
BFGS-a
nsymBFGS-a

Figure 5: Parameter choice: α = 1 + 10−5, β = −n−1, n = 100. From left to right we have:
Coordinate sketch with uniform (convenient) probabilities and Gaussian sketch, respectively.

As expected from the theory, as the matrix to be inverted becomes more ill conditioned, the accelerated377

method performs significantly better compared to the nonaccelerated method for coordinate sketches.378

In fact, an arbitrary speedup can be obtained by setting β = −n−1 and α → 1 for the coordinate379

sketches setup. On the other hand, Gaussian sketches report the slowing of the algorithm, most likely380

caused by the fact that the theoretical parameters µ, ν for Gaussian sketches with enforced symmetry381

are different to µP , νP , which are estimated for coordinate sketches without enforced symmetry. In382

the case of coordinate sketches with symmetry enforced, we suspect a great speedup even though the383

parameters µ, ν were set to µP , νP .384

A.2 Random artificial example385

We randomly generate an orthonormal matrix U , choose diagonal matrix D, and set A = UDU>.386

Clearly, diagonal elements of D are eigenvalues of A. We set them in the following way:387

• Uniform grid. The eigenvalues are set to 1, 2, . . . , n.388

• One small, the rest larger. The smallest eigenvalue is 1, remaining eigenvalues are all 10 in389

the first example, all 100 in the second example and all 1000 in the third example in this390

category.391

• One large, the rest small. The largest eigenvalue is 104, the remaining eigenvalues are all 1.392

Firstly, consider coordinate sketches with convenient probabilities. Notice that we can easily estimate393

νP , µP due to the results from Section 3.4 since we have control of λmin(A) and therefore also of µ.394

Therefore, we set µ = µP = minDi,i and ν = νP for Algorithm 2. Then, we consider coordinate395

sketches with uniform probabilities and Gaussian sketches. In both cases, we set the parameters µ, ν396

as for coordinate sketches with convenient probabilities.397

12

0 2 4 6
time (s)

10-20

10-15

10-10

10-5

100

r
e
s
i
d
u
a
l

BFGS
nsymBFGS
BFGS-a
nsymBFGS-a

0 2 4 6 8
time (s)

10-20

10-15

10-10

10-5

100

r
e
s
i
d
u
a
l

BFGS
nsymBFGS
BFGS-a
nsymBFGS-a

0 5 10 15 20
time (s)

10-20

10-15

10-10

10-5

100

r
e
s
i
d
u
a
l

BFGS
nsymBFGS
BFGS-a
nsymBFGS-a

Figure 6: Eigenvalues set to 1, 2, 3, . . . n. From left to right we have: Coordinate sketch with conve-
nient probabilities, coordinate sketch with uniform probabilities and Gaussian sketch respectively.

0 0.5 1 1.5
time (s)

10-30

10-20

10-10

100

r
e
s
i
d
u
a
l

BFGS
nsymBFGS
BFGS-a
nsymBFGS-a

0 1 2 3
time (s)

10-20

10-15

10-10

10-5

100

r
e
s
i
d
u
a
l

BFGS
nsymBFGS
BFGS-a
nsymBFGS-a

0 1 2 3 4
time (s)

10-20

10-15

10-10

10-5

100

r
e
s
i
d
u
a
l

BFGS
nsymBFGS
BFGS-a
nsymBFGS-a

Figure 7: Eigenvalues set to 1, 10, 10, . . . 10. From left to right we have: Coordinate sketch
with convenient probabilities, coordinate sketch with uniform probabilities and Gaussian sketch
respectively.

0 5 10
time (s)

10-20

10-15

10-10

10-5

100

r
e
s
i
d
u
a
l

BFGS
nsymBFGS
BFGS-a
nsymBFGS-a

0 5 10 15
time (s)

10-20

10-15

10-10

10-5

100

r
e
s
i
d
u
a
l

BFGS
nsymBFGS
BFGS-a
nsymBFGS-a

0 10 20 30 40
time (s)

10-20

10-15

10-10

10-5

100

r
e
s
i
d
u
a
l

BFGS
nsymBFGS
BFGS-a
nsymBFGS-a

Figure 8: Eigenvalues set to 1, 100, 100, . . . 100. From left to right we have: Coordinate sketch
with convenient probabilities, coordinate sketch with uniform probabilities and Gaussian sketch
respectively.

0 50 100
time (s)

10-20

10-15

10-10

10-5

100

r
e
s
i
d
u
a
l

BFGS
nsymBFGS
BFGS-a
nsymBFGS-a

0 50 100 150
time (s)

10-20

10-15

10-10

10-5

100

r
e
s
i
d
u
a
l

BFGS
nsymBFGS
BFGS-a
nsymBFGS-a

0 50 100 150
time (s)

10-20

10-15

10-10

10-5

100

r
e
s
i
d
u
a
l

BFGS
nsymBFGS
BFGS-a
nsymBFGS-a

Figure 9: Eigenvalues set to 1, 1000, 1000, . . . 1000. From left to right we have: Coordinate sketch
with convenient probabilities, coordinate sketch with uniform probabilities and Gaussian sketch
respectively.

13

0 50 100 150
time (s)

10-20

10-15

10-10

10-5

100

r
e
s
i
d
u
a
l

BFGS
nsymBFGS
BFGS-a
nsymBFGS-a

0 20 40 60
time (s)

10-20

10-15

10-10

10-5

100

r
e
s
i
d
u
a
l

BFGS
nsymBFGS
BFGS-a
nsymBFGS-a

0 2 4 6
time (s)

10-20

10-15

10-10

10-5

100

r
e
s
i
d
u
a
l

BFGS
nsymBFGS
BFGS-a
nsymBFGS-a

Figure 10: Eigenvalues set to 10000, 1, 1, . . . 1. From left to right we have: Coordinate sketch
with convenient probabilities, coordinate sketch with uniform probabilities and Gaussian sketch
respectively.

The numerical experiments in this section indicate that one might choose µ, ν as per Section 3.4. In398

other words, one might pretend to be in the setting when symmetry is not enforced and coordinate399

sketches with convenient probabilities are used. In fact, the practical speedup coming from the400

acceleration depends very strongly on the structure of matrix A. Another message to be delivered is401

that both preserving symmetry and acceleration yield a better convergence and they combine together402

well.403

We also consider a problem where we pretend to not have access to λmin(A), therefore we cannot404

choose µ = µP . Instead, we naively choose µ = 1
100ν and µ = 1

10000ν .405

0 1 2 3 4
time (s)

10-20

10-15

10-10

10-5

100

r
e
s
i
d
u
a
l

BFGS
hBFGS100
hBFGS10000

0 1 2 3 4
time (s)

10-20

10-15

10-10

10-5

100

r
e
s
i
d
u
a
l

BFGS
hBFGS100
hBFGS10000

0 5 10 15
time (s)

10-20

10-15

10-10

10-5

100

r
e
s
i
d
u
a
l

BFGS
hBFGS100
hBFGS10000

Figure 11: Eigenvalues set to 1, 2, . . . , n. From left to right we have: Coordinate sketch with conve-
nient probabilities, coordinate sketch with uniform probabilities and Gaussian sketch respectively.

0 0.5 1
time (s)

10-20

10-15

10-10

10-5

100

r
e
s
i
d
u
a
l

BFGS
hBFGS100
hBFGS10000

0 0.5 1
time (s)

10-20

10-15

10-10

10-5

100

r
e
s
i
d
u
a
l

BFGS
hBFGS100
hBFGS10000

0 1 2 3
time (s)

10-20

10-15

10-10

10-5

100

r
e
s
i
d
u
a
l

BFGS
hBFGS100
hBFGS10000

Figure 12: Eigenvalues set to 1, 10, 10, . . . 10. Coordinate sketch with convenient probabilities,
coordinate sketch with uniform probabilities and Gaussian sketch respectively.

14

0 2 4 6 8
time (s)

10-20

10-15

10-10

10-5

100

r
e
s
i
d
u
a
l

BFGS
hBFGS100
hBFGS10000

0 2 4 6 8
time (s)

10-20

10-15

10-10

10-5

100

r
e
s
i
d
u
a
l

BFGS
hBFGS100
hBFGS10000

0 5 10 15 20
time (s)

10-20

10-15

10-10

10-5

100

r
e
s
i
d
u
a
l

BFGS
hBFGS100
hBFGS10000

Figure 13: Eigenvalues set to 1, 100, 100, . . . 100. From left to right we have: Coordinate sketch
with convenient probabilities, coordinate sketch with uniform probabilities and Gaussian sketch
respectively.

0 20 40 60
time (s)

10-20

10-15

10-10

10-5

100

r
e
s
i
d
u
a
l

BFGS
hBFGS100
hBFGS10000

0 20 40 60
time (s)

10-20

10-15

10-10

10-5

100

r
e
s
i
d
u
a
l

hBFGS10000
hBFGS100
hBFGS10000

0 50 100 150
time (s)

10-15

10-10

10-5

100

r
e
s
i
d
u
a
l

BFGS
hBFGS100
hBFGS10000

Figure 14: Eigenvalues set to 1, 1000, 1000, . . . 1000. From left to right we have: Coordinate sketch
with convenient probabilities, coordinate sketch with uniform probabilities and Gaussian sketch
respectively.

0 5 10 15 20
time (s)

10-20

10-15

10-10

10-5

100

r
e
s
i
d
u
a
l

BFGS
hBFGS100
hBFGS10000

0 5 10
time (s)

10-20

10-15

10-10

10-5

100

r
e
s
i
d
u
a
l

hBFGS10000
hBFGS100
hBFGS10000

0 2 4 6 8
time (s)

10-20

10-15

10-10

10-5

100

r
e
s
i
d
u
a
l

BFGS
hBFGS100
hBFGS10000

Figure 15: Eigenvalues set to 10000, 1, 1, . . . 1. From left to right we have: Coordinate sketch
with convenient probabilities, coordinate sketch with uniform probabilities and Gaussian sketch
respectively.

Notice that once the acceleration parameters are not set exactly (but they are still reasonable), we406

observe that the performance of the accelerated algorithm is essentially the same as the performance407

of the nonaccelerated algorithm. We have observed the similar behavior when setting µ = µP for408

Gaussian sketches.409

A.2.1 Sensitivity to the acceleration parameters410

Here we investigate the sensitivity of the accelerated BFGS to the parameters µ and ν. First411

we compute νP , µP and from this we extract the following exponential grids: µi = 2i−4µ and412

νi = 5i−4ν for i = 1, 2, . . . 7. To gauge the gain is using acceleration with a particular (µ, ν) pair, we413

run the accelerated algorithm for a fixed time then store the error of the final iterate. We then compute414

average per iteration decrease and divide it by average per iteration decrease of nonaccelerated415

algorithm. Thus if the resulting difference is less than one, then the accelerated algorithm was faster416

to nonaccelerated.417

In the plots below, n = 200 was chosen. We focused on 2 problems described in the previous418

section—when the eigenvalues are uniformly distributed and when the the largest eigenvalue have419

multiplicity n− 1.420

15

0.9996

0.9998

4.2 10-7 32

1

1.0002

1.0004

12010-5

1.0006

1.0008

0.00025 490
19000.0059

0.9996

0.9998

1

1.0002

1.0004

1.0006

1.0008

0.9996

4.2 10-7

0.9998

30

1

1.0002

1.0004

10-5 120

1.0006

1.0008

4600.00025
18000.0059

0.9996

0.9998

1

1.0002

1.0004

1.0006

1.0008

0.9994

4.2 10-7 32

0.9996

0.9998

1

1.0002

12010-5

1.0004

0.00025 490
18000.0059

0.9994

0.9996

0.9998

1

1.0002

1.0004

Figure 16: Sensitivity to acceleration parameters. Eigenvalues of A are set to 1, 2 . . . , n. From left to
right we have: Coordinate sketches with convenient probabilities, coordiante sketches with uniform
probabilities and Gaussian sketches. Choice of parameters as per (16) in the middle of plots. Each
instance was run for 5 seconds.

0.999

0.0000 27

1

1.001

1000.0001

1.002

4100.0025
16000.06

0.999

0.9995

1

1.0005

1.001

1.0015

1.002

1.0025

0.999
0.0000 27

1

1.001

1000.0001

1.002

4100.0025
16000.06

0.999

0.9995

1

1.0005

1.001

1.0015

1.002

0.999

0.0000 27

0.9995

1

1.0005

1000.0001

1.001

0.0025 420
16000.06

0.999

0.9995

1

1.0005

1.001

Figure 17: Sensitivity to acceleration parameters. Eigenvalues of A are set to 1, 10, 10, . . . , 10. From
left to right we have: Coordinate sketches with convenient probabilities, coordiante sketches with
uniform probabilities and Gaussian sketches. Choice of parameters as per (16) in the middle of plots.
Each instance was run for 2 seconds.

16

0.9995

4.2 10-8 27

1

100

1.0005

10-6

0.000025 420
16000.0006

0.9994

0.9996

0.9998

1

1.0002

1.0004

1.0006

1.0008

0.9996

4.2 10-8 27

0.9998

1

1.0002

10010-6

1.0004

0.000025 420
16000.0006

0.9995

0.9996

0.9997

0.9998

0.9999

1

1.0001

1.0002

1.0003

1.0004

4.2 10-8 27

0.9998

1

1.0002

10010-6

1.0004

0.000025 410
16000.0006

0.9997

0.9998

0.9999

1

1.0001

1.0002

1.0003

1.0004

1.0005

Figure 18: Sensitivity to acceleration parameters. Eigenvalues ofA are set to 1, 1000, 1000, . . . , 1000.
From left to right we have: Coordinate sketches with convenient probabilities, coordiante sketches
with uniform probabilities and Gaussian sketches. Choice of parameters as per (16) in the middle of
plots. Each instance was run for 10 seconds.

The crucial aspect to make the accelerated algorithm to converge is to set ν large enough. In fact,421

combination of both small ν and small µ leads almost always to non-convergent algorithm. On the422

other hand, it seems that once ν is chosen correctly, big enough µ leads to fast convergence. This423

indicates how to compute µ in practice (recall that computing ν is feasible)—one needs just to choose424

it small enough (definitely smaller than 1
ν).425

A.3 Experiments with LIBSVM426

Next we investigate if the accelerated BFGS update improves upon the standard BFGS update when427

applied to the Hessian∇2f(x) of ridge regression problems of the form428

min
x∈Rn

f(x)
def
=

1

2
‖Ax− b‖22 +

λ

2
‖x‖22, ∇2f(x) = A>A+ λI, (25)

using data from LIBSVM [5]. Datapoints (rows of A) were normalized such that ‖Ai:‖2 = 1 for all i429

and the regularization parameter was chosen as λ = 1
m .430

First, we run the experiments on smaller problems when parameters µ, ν are precomputed for431

coordinate sketches with convenient probabilities (16).432

0 100 200 300
time (s)

10-20

10-15

10-10

10-5

100

r
e
s
i
d
u
a
l

BFGS
nsymBFGS
BFGS-a
nsymBFGS-a

0 100 200 300 400
time (s)

10-15

10-10

10-5

100

r
e
s
i
d
u
a
l

BFGS
nsymBFGS
BFGS-a
nsymBFGS-a

0 100 200 300 400
time (s)

10-10

10-5

100

r
e
s
i
d
u
a
l

BFGS
nsymBFGS
BFGS-a
nsymBFGS-a

Figure 19: Dataset aloi: n = 128. From left to right we have: Coordinate sketch with convenient
probabilities, coordinate sketch with uniform probabilities and Gaussian sketch respectively.

17

0 100 200 300 400
time (s)

10-10

10-5

100

r
e
s
i
d
u
a
l

BFGS
nsymBFGS
BFGS-a
nsymBFGS-a

0 100 200 300 400
time (s)

10-8

10-6

10-4

10-2

100

r
e
s
i
d
u
a
l

BFGS
nsymBFGS
BFGS-a
nsymBFGS-a

0 100 200 300 400
time (s)

10-4

10-3

10-2

10-1

100

r
e
s
i
d
u
a
l

BFGS
nsymBFGS
BFGS-a
nsymBFGS-a

Figure 20: Dataset w1a: n = 300. From left to right we have: Coordinate sketch with convenient
probabilities, coordinate sketch with uniform probabilities and Gaussian sketch respectively.

0 100 200 300 400
time (s)

10-8

10-6

10-4

10-2

100

r
e
s
i
d
u
a
l

BFGS
nsymBFGS
BFGS-a
nsymBFGS-a

0 100 200 300 400
time (s)

10-8

10-6

10-4

10-2

100
r
e
s
i
d
u
a
l

BFGS
nsymBFGS
BFGS-a
nsymBFGS-a

0 100 200 300 400
time (s)

10-4

10-3

10-2

10-1

100

r
e
s
i
d
u
a
l

BFGS
nsymBFGS
BFGS-a
nsymBFGS-a

Figure 21: Dataset w2a: n = 300. From left to right we have: Coordinate sketch with convenient
probabilities, coordinate sketch with uniform probabilities and Gaussian sketch respectively.

0 100 200 300 400
time (s)

10-8

10-6

10-4

10-2

100

r
e
s
i
d
u
a
l

BFGS
nsymBFGS
BFGS-a
nsymBFGS-a

0 100 200 300 400
time (s)

10-8

10-6

10-4

10-2

100

r
e
s
i
d
u
a
l

BFGS
nsymBFGS
BFGS-a
nsymBFGS-a

0 100 200 300 400
time (s)

10-6

10-4

10-2

100

r
e
s
i
d
u
a
l

BFGS
nsymBFGS
BFGS-a
nsymBFGS-a

Figure 22: Dataset mushrooms: n = 112. From left to right we have: Coordinate sketch with conve-
nient probabilities, coordinate sketch with uniform probabilities and Gaussian sketch respectively.

0 100 200 300 400
time (s)

10-8

10-6

10-4

10-2

100

r
e
s
i
d
u
a
l

BFGS
nsymBFGS
BFGS-a
nsymBFGS-a

0 100 200 300 400
time (s)

10-6

10-4

10-2

100

r
e
s
i
d
u
a
l

BFGS
nsymBFGS
BFGS-a
nsymBFGS-a

0 100 200 300 400
time (s)

10-6

10-4

10-2

100

r
e
s
i
d
u
a
l

BFGS
nsymBFGS
BFGS-a
nsymBFGS-a

Figure 23: Dataset protein: n = 357. From left to right we have: Coordinate sketch with convenient
probabilities, coordinate sketch with uniform probabilities and Gaussian sketch respectively.

18

0 100 200 300 400
time (s)

10-10

10-5

100

r
e
s
i
d
u
a
l

BFGS
nsymBFGS
BFGS-a
nsymBFGS-a

0 100 200 300 400
time (s)

10-15

10-10

10-5

100

r
e
s
i
d
u
a
l

BFGS
nsymBFGS
BFGS-a
nsymBFGS-a

0 100 200 300 400
time (s)

10-8

10-6

10-4

10-2

100

r
e
s
i
d
u
a
l

BFGS
nsymBFGS
BFGS-a
nsymBFGS-a

Figure 24: Dataset phishing: n = 68. From left to right we have: Coordinate sketch with convenient
probabilities, coordinate sketch with uniform probabilities and Gaussian sketch respectively.

In the vast majority of examples, the accelerated method performed significantly better than the433

nonaccelerated method for coordinate sketches (with both convenient and uniform probabilities),434

however the methods were comparable for Gaussian sketches. We believe that this is due to the fact435

that choice of parameters as per (16) is close to the optimal parameters for coordinate sketches, and436

further for Gaussian sketches. However, the experiments on coordinate sketches indicates that for437

some classes of problems, accelerated algorithms with finely tuned parameters bring a great speedup438

compared to nonaccelerated ones.439

We also consider a problem where we do not compute λmin(A), and therefore we cannot choose440

µ = µP in (16). Instead, we choose µ = 1
100ν and µ = 1

10000ν .441

0 200 400 600 800
time (s)

10-5

100

r
e
s
i
d
u
a
l

BFGS
hBFGS100
hBFGS10000

0 200 400 600 800
time (s)

10-5

100

r
e
s
i
d
u
a
l

BFGS
hBFGS100
hBFGS10000

0 200 400 600 800
time (s)

10-4

10-3

10-2

10-1

100

r
e
s
i
d
u
a
l

BFGS
hBFGS100
hBFGS10000

Figure 25: Dataset madelon: n = 500. From left to right we have: Coordinate sketch with convenient
probabilities, coordinate sketch with uniform probabilities and Gaussian sketch respectively.

0 500 1000 1500 2000
time (s)

10-8

10-6

10-4

10-2

100

r
e
s
i
d
u
a
l

BFGS
hBFGS100
hBFGS10000

0 500 1000 1500 2000
time (s)

10-8

10-6

10-4

10-2

100

r
e
s
i
d
u
a
l

BFGS
hBFGS100
hBFGS10000

0 500 1000 1500 2000
time (s)

10-6

10-4

10-2

100

r
e
s
i
d
u
a
l

BFGS
hBFGS100
hBFGS10000

Figure 26: Dataset epsilon: n = 2000. From left to right we have: Coordinate sketch with convenient
probabilities, coordinate sketch with uniform probabilities and Gaussian sketch respectively.

0 500 1000 1500 2000
time (s)

10-6

10-4

10-2

100

r
e
s
i
d
u
a
l

BFGS
hBFGS100
hBFGS10000

0 500 1000 1500 2000
time (s)

10-6

10-4

10-2

100

r
e
s
i
d
u
a
l

BFGS
hBFGS100
hBFGS10000

0 500 1000 1500 2000
time (s)

10-4

10-3

10-2

10-1

100

r
e
s
i
d
u
a
l

BFGS
hBFGS100
hBFGS10000

Figure 27: Dataset svhn: n = 3072. From left to right we have: Coordinate sketch with convenient
probabilities, coordinate sketch with uniform probabilities and Gaussian sketch respectively.

19

0 200 400 600 800
time (s)

10-3

10-2

10-1

100

r
e
s
i
d
u
a
l

BFGS
hBFGS100
hBFGS10000

0 200 400 600 800
time (s)

10-4

10-3

10-2

10-1

100

r
e
s
i
d
u
a
l

BFGS
hBFGS100
hBFGS10000

0 200 400 600 800
time (s)

10-3

10-2

10-1

100

r
e
s
i
d
u
a
l

BFGS
hBFGS100
hBFGS10000

Figure 28: Dataset gisette: n = 5000. From left to right we have: Coordinate sketch with convenient
probabilities, coordinate sketch with uniform probabilities and Gaussian sketch respectively.

Notice that once the acceleration parameters are not set exactly (but they are still reasonable), we442

observe that the performance of the accelerated algorithm is essentially the same as the performance443

of the nonaccelerated algorithm, which is essentially the same conclusion as for artificially generated444

examples.445

A.4 Additional optimization experiments446

In Figure 29 we solve the same problems with the same setup as in 29, but now we plot the time447

versus the residual (as opposed to iterations versus the residual). Despite the more costly iterations,448

the accelerated BFGS method can still converge faster than the classic BFGS method.449

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

re
sid

ua
l

BFGS
BFGS-a-1228.33-0.1

0 2 4 6 8 10 12
time

10 17.5

10 15.0

10 12.5

10 10.0

10 7.5

10 5.0

10 2.5

100.0

re
sid

ua
l

BFGS
BFGS-a-8124.0-0.01

0.00 0.01 0.02 0.03 0.04 0.05 0.06
time

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

re
sid

ua
l

BFGS
BFGS-a-30.0-0.5

0.000 0.025 0.050 0.075 0.100 0.125 0.150
time

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100
re

sid
ua

l
BFGS
BFGS-a-1000.0-0.9

Figure 29: Algorithm 3 (BFGS with accelerated matrix inversion quasi-Newton update) vs standard
BFGS. From left to right: phishing, mushrooms, australian and splice dataset.

We also give additional experiments with the same setup to the ones found in Section 5.2. Much450

like the phishing problem in Figure 2, the problems madelon, covtype and a9a in Figures 30, 31451

and 32 did not benefit that much from acceleration. Indeed, we found in our experiments that even452

when choosing extreme values of µ and ν, the generated inverse Hessian would not significantly453

deviate from the estimate that one would obtain using the standard BFGS update. Thus on these two454

problems there is apparently little room for improvement by using acceleration.455

20 40 60 80 100 120 140
iterations

10 12

10 10

10 8

10 6

10 4

10 2

100

re
sid

ua
l

BFGS
BFGS-a-800.0-0.1

Figure 30: madelon:

0 50 100 150 200
iterations

10 8

10 6

10 4

10 2

100

re
sid

ua
l

BFGS
BFGS-a-581012.0-0.02

Figure 31: covtype

0 50 100 150 200 250
iterations

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

re
sid

ua
l

BFGS
BFGS-a-32561.0-0.01

Figure 32: a9a

20

B Proofs for Section 3456

B.1 Proof of Lemma 2457

First note that Z is a self-adjoint positive operator and thus so is E [Z] . Consequently.458

µ
(13)
= inf

x∈Range(A∗)

〈E [Z]x, x〉
〈x, x〉

(12)
= inf

x∈Range(E[Z])

〈E [Z]x, x〉
〈x, x〉

Lemma 22 item ii
= inf

x∈X

〈E [Z]E [Z]
†
x,E [Z]

†
x〉

〈E [Z]
†
x,E [Z]

†
x〉

Lemma 22 item i
= inf

x∈X

〈E [Z]
†
x, x〉

〈E [Z]
†
x,E [Z]

†
x〉

Lemma 18
= inf

z∈Range((E[Z]†)1/2)

〈z, z〉
〈E [Z]

†
z, z〉

(set z = (E [Z]
†
)1/2x)

(71)
=

1

‖E [Z]
†‖
. (26)

For the bounds (14) we have that459

ν
(13)
= sup

x∈Range(A∗)

E
[
〈E [Z]

†
Zx,Zx〉

]
〈E [Z]x, x〉

≤ sup
x∈Range(A∗)

‖E [Z]
†‖E

[
‖Zx‖22

]
〈E [Z]x, x〉

= ‖E [Z]
†‖

(26)
≤ 1

µ
.

To bound ν from below we use that E [Z]
† is self adjoint together with that the map X 7→460

〈XE [Z]
†
Xx, x〉 is convex over the space of self-adjoint operators X ∈ L(X) and for a fixed461

x ∈ X . Consequently by Jensen’s inequality462

E
[
〈ZE [Z]

†
Zx, x〉

]
≥ 〈E [Z]E [Z]

†
E [Z]x, x〉 Lemma 22 item i

= 〈E [Z]x, x〉. (27)

Finally463

ν
(27)
≥ sup

x∈Range(A∗)

〈E [Z]x, x〉
〈E [Z]x, x〉

= 1.

Lastly, to show (15) we have464

Rank (A∗) (12)
= Rank (E [Z])

Lemma 17+ Lemma 22 (v)
= Tr

(
E [Z]E [Z]

†
)

= E
[
Tr
(
ZE [Z]

†
)]

= E
[
Tr
(
ZE [Z]

†
Z
)]

≤ νE [Tr (Z)]
Lemma 17

= νE [Rank (Z)] ,

where we used that 〈E
[
ZE [Z]

†
Z
]
u, u〉 ≤ ν〈E [Z]u, u〉 for every u ∈ Range (E [Z]) =465

Range (A∗) = X .466

21

Proof that X 7→ 〈XE [Z]
†
Xx, x〉 = ‖Xx‖2

E[Z]†
is convex: Let G = E [Z]

† then467

‖(λX + (1− λ)Y)x‖2G = λ2‖Xx‖2G + (1− λ)2‖Y x‖2G + 2λ(1− λ)〈xXGY, x〉
= −λ(1− λ)‖(X − Y)x‖2G

+λ‖Xx‖2G + (1− λ)‖Y x‖2G
≤ λ‖Xx‖2G + (1− λ)‖Y x‖2G.

B.2 Technical lemmas to prove Theorem 3468

Lemma 6. For all k ≥ 0, the vectors yk − x∗, xk − x∗ and vk − x∗ belong to Range (A∗) .469

Proof. Note that x0 = y0 = x0 and in view of (8) we have x∗ ∈ x0 + Range (A∗) . So y0 −470

x∗ ∈ Range (A∗) , v0 − x∗ ∈ Range (A∗) and x0 − x∗ ∈ Range (A∗) . Assume by induction471

that yk − x∗ ∈ Range (A∗) , vk − x∗ ∈ Range (A∗) and xk − x∗ ∈ Range (A∗) . Since472

gk ∈ Range (A∗) and xk+1 = yk − gk we have473

xk+1 − x∗ = (yk − x∗)− gk ∈ Range (A∗) .

Moreover,474

vk+1 − x∗ = β(vk − x∗) + (1− β)(yk − x∗)− γgk ∈ Range (A∗) .

Finally475

yk+1− x∗ = αvk+1 + (1−α)xk+1− x∗ = α(vk+1− x∗) + (1−α)(xk+1− x∗) ∈ Range (A∗) .

476

Lemma 7.

E
[
‖Zk(yk − x∗)‖2E[Z]†

| yk
]
≤ ν‖yk − x∗‖2E[Z] (28)

Proof. Since yk − x∗ ∈ Range (A∗) we have that477

E
[
‖Zk(yk − x∗)‖2E[Z]†

| yk
]

= 〈E
[
ZkE [Z]

†
Zk

]
(yk − x∗), (yk − x∗)〉

(13)
≤ ν〈E [Z] (yk − x∗), (yk − x∗)〉
= ν‖yk − x∗‖2E[Z].

478

Lemma 8.
‖yk − x∗‖2E[Z] = ‖yk − x∗‖2 −E

[
‖xk+1 − x∗‖2 | yk

]
(29)

Proof.

E
[
‖xk+1 − x∗‖2 | yk

]
= E

[
‖(I − Zk)(yk − x∗)‖2 | yk

]
= 〈(I −E [Z])(yk − x∗), yk − x∗〉
= ‖yk − x∗‖2 − ‖yk − x∗‖2E[Z].

479

22

B.3 Proof of Theorem 3480

Let rk
def
= ‖vk − x∗‖2E[Z]†

. It follows that481

r2k+1 = ‖vk+1 − x∗‖2E[Z]†

= ‖βvk + (1− β)yk − x∗ − γZk(yk − x∗)‖2E[Z]†

= ‖βvk + (1− β)yk − x∗‖2E[Z]†︸ ︷︷ ︸
I

+γ2 ‖Zk(yk − x∗)‖2E[Z]†︸ ︷︷ ︸
II

−2γ 〈β(vk − x∗) + (1− β)(yk − x∗),E [Z]
†
Zk(yk − x∗)〉︸ ︷︷ ︸

III

= I + γ2II − 2γIII. (30)

The first term can be upper bounded as follows482

I = ‖β(vk − x∗) + (1− β)(yk − x∗)‖2E[Z]†

= β2‖vk − x∗‖2E[Z]†
+ (1− β)2‖yk − x∗‖2E[Z]†

+ 2β(1− β)〈vk − x∗, yk − x∗〉E[Z]†

(32)
= β‖vk − x∗‖2E[Z]†

+ (1− β)‖yk − x∗‖2E[Z]†
− β(1− β)‖vk − yk‖2E[Z]†

≤ βr2k + (1− β)‖yk − x∗‖2E[Z]†
, (31)

where in the third equality we used a form of the parallelogram identity483

2〈u, v〉 = ‖u‖2 + ‖v‖2 − ‖u− v‖2, (32)

with u = vk − x∗ and v = yk − x∗.484

Taking expectation with to Sk in the third term in (30) gives485

E [III | yk, vk, xk] = 〈βvk + (1− β)yk − x∗,E [Z]
†
E [Z] (yk − x∗)〉

= 〈βvk + (1− β)yk − x∗, yk − x∗〉 (33)

= 〈β
[

1

α
yk −

1− α
α

xk

]
+ (1− β)yk − x∗, yk − x∗〉

= 〈yk − x∗ + β
1− α
α

(yk − xk), yk − x∗〉

= ‖yk − x∗‖2 + β
1− α
α
〈yk − xk, yk − x∗〉

= ‖yk − x∗‖2 − β
1− α

2α

(
‖xk − x∗‖2 − ‖yk − xk‖2 − ‖yk − x∗‖2

)
(34)

where in the second equality (33) we used that yk − x∗ ∈ Range (A∗) (12)
= Range (E [Z]) together486

with a defining property of pseudoinverse operators E [Z]
†
E [Z]w = w for all w ∈ Range (E [Z]) .487

In the last equality (34) we used yet again the identity (32) with u = yk − xk and v = yk − x∗.488

Plugging (31) and (34) into (30) and taking conditional expectation gives489

E
[
r2k+1 | yk, vk, xk

]
= I + γ2E [II | yk]− 2γE [III | yk, vk, xk]

(31)+(34)+(28)
= βr2k + (1− β)‖yk − x∗‖2E[Z]†

+ γ2ν‖yk − x∗‖2E[Z]

+2γ

(
−‖yk − x∗‖2 + β

1− α
2α

(
‖xk − x∗‖2 − ‖yk − xk‖2 − ‖yk − x∗‖2

))
(29)+(14)
≤ βr2k +

1− β
µ
‖yk − x∗‖2 + γ2ν

(
‖yk − x∗‖2 −E

[
‖xk+1 − x∗‖2 | yk

])
+2γ

(
−‖yk − x∗‖2 + β

1− α
2α

(
‖xk − x∗‖2 − ‖yk − x∗‖2

))
. (35)

23

Therefore we have that490

E
[
r2k+1 + γ2ν‖xk+1 − x∗‖2 | yk, vk, xk

]
≤ β

r2k + γ
1− α
α︸ ︷︷ ︸
P1

‖xk − x∗‖2

+

1− β
µ
− 2γ + γ2ν − βγ 1− α

α︸ ︷︷ ︸
P2

 ‖yk − x∗‖2.
To establish a recurrence, we need to choose the free parameters γ, α and β so that P1 = γ2ν491

and P2 = 0. Furthermore we should try to set β as small as possible so as to have a fast rate of492

convergence. Choosing β = 1−
√

µ
ν , γ =

√
1
µν , α = 1

1+γν gives P2 = 0, γ2ν = 1/µ and493

E
[
r2k+1 + 1

µ‖xk+1 − x∗‖2 | yk, vk, xk
]
≤

(
1−

√
µ

ν

)(
r2k + 1

µ‖xk − x∗‖
2
)
. (36)

Taking expectation and using the tower rules gives the result.494

B.4 Changing norm495

Given an invertible positive self-adjoint B ∈ L(X), suppose we want to find the least norm solution496

of (7) under the norm defined by ‖x‖B
def
=
√
〈Bx, x〉 as the metric in X . That is, we want to solve497

x∗
def
= arg min

x∈X
1
2‖x− x0‖

2
B , subject to Ax = b. (37)

By changing variables x = B−1/2z we have that the above is equivalent to solving498

z∗
def
= arg min

z∈X
1
2‖z − z0‖

2, subject to AB−1/2z = b, (38)

with x∗ = B−1/2z∗, and B1/2 is the unique symmetric square root of B (see Lemma 18). We can499

now apply Algorithm 1 to solve (38) where AB−1/2 is the system matrix. Let xk and vk be the500

resulting iterates of applying Algorithm 1. To make explicit this change in the system matrix we501

define the matrix502

ZB
def
= B−1/2A∗S∗k(SkAB−1A∗S∗k)†SkAB−1/2,

and the constants503

µB
def
= inf

x∈Range(B−1/2A∗)

〈E [ZB]x, x〉
〈x, x〉

(39)

and504

νB
def
= sup

x∈Range(B−1/2A∗)

〈E
[
ZBE [ZB]

†
ZB

]
x, x〉

〈E [ZB]x, x〉
. (40)

Theorem 3 then guarantees that505

E

[
‖vk+1 − z∗‖2E[ZB]†

+
1

µB
‖xk+1 − z∗‖2

]
≤
(

1−
√
µB
νB

)
E

[
‖vk − z∗‖2E[ZB]†

+
1

µB
‖xk − z∗‖2

]
.

Reversing our change of variables x̄k = B−1/2xk and v̄k = B−1/2vk in the above displayed equation506

gives507

E

[
‖v̄k+1 − x∗‖2B1/2E[ZB]†B1/2 +

1

µB
‖x̄k+1 − x∗‖2B

]
≤
(

1−
√
µB
νB

)
E

[
‖v̄k − x∗‖2B1/2E[ZB]†B1/2 +

1

µB
‖x̄k − x∗‖2B

]
. (41)

Thus we recover the same exact from the main theorem in [24], but in a much more general setting.508

24

C Proof of Corollary 4509

Clearly, Z = 1
Ai,i

A
1
2SS>A

1
2 , and hence E [Z] = A

Tr(A) and µP = λmin(A)
Tr(A) . After simple algebraic510

manipulations we get511

E
[
E [Z]

− 1
2 ZE [Z]

−1
ZE [Z]

− 1
2

]
= Tr (A)

2
E
[

1
A2

i,i
SS>SS>

]
= Tr (A)Diag

(
A−1i,i

)
,

and therefore νP = λmaxE
[
E [Z]

− 1
2 ZE [Z]

−1
ZE [Z]

− 1
2

]
= Tr(A)

mini Ai,i
.512

D Adding a stepsize ω513

In this section we enrich Algorithm 1 with several additional parameters and study their effect on514

convergence of the resulting method.515

First, we consider an extension of Algorithm 1 to a variant which uses a stepsize parameter 0 < ω < 2.516

That is, instead of performing the update517

xk+1 = yk − gk, (42)

we perform the update518

xk+1 = yk − ωgk. (43)
Parameters α, β, γ are adjusted accordingly. The resulting method enjoys the rate519

O
((

1−
√

ν
µω(2− ω)

)k)
, recovering the rate from Theorem 3 as a special case for ω = 1.520

The formal statement follows.521

Theorem 9. Let 0 < ω < 2 be an arbitrary stepsize and define522

η
def
= 2ω − ω2 ≥ 0 . (44)

Consider a modification of Algorithm 1 where instead of (42) we perform the update (43). If we use523

the parameters524

α = 1
1+γν β = 1−

√
µη
ν γ =

√
η
µν , (45)

then the iterates {vk, xk}k≥0 of Algorithm 1 satisfy525

E
[
‖vk − x∗‖2E[Z]†

+ 1
µ‖xk − x∗‖

2
]
≤
(

1−
√

µη
ν

)k
E
[
‖v0 − x∗‖2E[Z]†

+ 1
µ‖x0 − x∗‖

2
]
.

Proof. See Appendix F.526

E Allowing for different α527

In this section we study how the choice of the key parameter α affects the convergence rate.528

This parameter determines how much the sequence yk = αvk + (1− α)xk resembles the sequence529

given by xk or by vk. For instance, when α = 0, yk ≡ xk, i.e., we recover the steps of the530

non-accelerated method, and thus one would expect to obtain the same convergence rate as the non-531

accelerated method. Similar considerations hold in the other extreme, when α→ 1. We investigate532

this hypothesis, and especially discuss how β and γ must be chosen as a function of α to ensure533

convergence.534

The following statement is a generalization of Theorem 3. For simplicity, we assume that the optional535

stepsize that was introduced in Theorem 9 is set to one again, ω ≡ 1.536

Theorem 10. Let 0 < α < 1 be fixed. Then the iterates {vk, xk}k≥0 of Algorithm 1 with parameters537

β(s) =
1 + s− s

√
ν+4µs−2νs+νs2

νs2

2s
, γ(s) =

1

(1− sβ(s))ν
. (46)

25

where τ
def
= 1−α

α and s
def
= τ

βγ , satisfy538

E
[
‖vk − x∗‖2E[Z]†

+ γτ‖xk − x∗‖2
]
≤ ρkE

[
‖v0 − x∗‖2E[Z]†

+ γτ‖x0 − x∗‖2
]
.

(or put differently):539

E
[
‖vk − x∗‖2E[Z]†

+ (1− α)γ‖xk − x∗‖2
]
≤ ρkE

[
‖v0 − x∗‖2E[Z]†

+ (1− α)γ‖x0 − x∗‖2
]
.

where ρ = max{β(s), sβ(s)} ≤ 1.540

We can now exemplify a few special parameter settings.541

Example 11. For α = 1, i.e., if s→ 0, we get the rate ρ = 1− µ
ν with β = 1− µ

ν , γ = 1
ν .542

Example 12. For α→ 0, i.e., in the limit s→∞, we get the rate ρ = 1− µ
ν .543

Example 13. The rate ρ is minimized for s = 1, i.e., β = 1 −
√

ν
µ and γ =

√
1
µν ; recovering544

Theorem 3.545

The best case, in terms of convergence rate for both non-unit stepsize and a variable parameter choice546

happened to be the default parameter setup. The non-optimal parameter choice was studied in order547

to have theoretical guarantees for a wider class of parameters, as in practice one might be forced to548

rely on sub-optimal / inexact parameter choices.549

F Proof of Theorem 9550

The proof follows by slight modifications of the proof of Theorem 3.551

First we adapt Lemma 8. As we have xk+1 − x∗ = (1 − ωZk)(yk − x∗) the following statement552

follows by the same arguments as in the proof of Lemma 8.553

Lemma 14 (Lemma 8’).
η‖yk − x∗‖2E[Z] = ‖yk − x∗‖2 −E

[
‖xk+1 − x∗‖2 | yk

]
(47)

Proof.
E
[
‖xk+1 − x∗‖2 | yk

]
= E

[
‖(I − Zk)(yk − x∗)‖2 | yk

]
= E [〈(I − ωZk)(yk − x∗), (I − ωZk)yk − x∗〉]
= ‖yk − x∗‖2 − η‖yk − x∗‖2E[Z].

554

We now follow the same steps as in proof of Theorem 3 in Section B.3. We observe, that the first555

time Lemma 8 is applied is in equation (35). Using Lemma 14 instead, gives556

E
[
r2k+1 | yk, vk, xk

]
≤ βr2k +

1− β
µ
‖yk − x∗‖2 +

γ2ν

η

(
‖yk − x∗‖2 −E

[
‖xk+1 − x∗‖2 | yk

])
+2γ

(
−‖yk − x∗‖2 + β

1− α
2α

(
‖xk − x∗‖2 − ‖yk − x∗‖2

))
. (48)

Therefore we have that557

E
[
r2k+1 + γ2ν‖xk+1 − x∗‖2 | yk, vk, xk

]
≤ β

r2k + γ
1− α
α︸ ︷︷ ︸
P ′1

‖xk − x∗‖2

+

1− β
µ
− 2γ +

γ2ν

η
− βγ 1− α

α︸ ︷︷ ︸
P ′2

 ‖yk − x∗‖2.
Noting that 1−α

α = γν and γ2ν
η = γ(1−α)

ηα = 1
µ , we observe P ′2 = 0 and deduce the statement of558

Theorem 9.559

26

G Proof of Theorem 10560

It suffices to study equation (35). We observe that for convergence the big bracket, P2, should be561

negative,562

(1− β)
1

µ
+ γ2ν − 2γ − γβ 1− α

α
≤ 0 (49)

The convergence rate is then563

ρ
def
= max

{
β,

(1− α)β

αγν

}
. (50)

or in the notation of Theorem 10, ρ = max{β, sβ}.564

This means, that in order to obtain the best convergence rate, we should therefore choose parameters565

β and γ such that β is as small as possible. This observation is true regardless of the value of s (which566

itself depends on γ).567

With the notation τ = sγβ, we reformulate (49) to obtain568

1

µ
+ γ2ν − 2γ ≤ β

(
1

µ
+ sγ2ν

)
(51)

Thus we see, that β cannot be chosen smaller than569

β?(s, γ) =
1 + µγ2ν − 2µγ

1 + sµγ2ν
(52)

Minimizing this expression in γ gives570

β?(s) =
1 + s− s

√
ν+4µs−2νs+νs2

νs2

2s
(53)

with γ?(s) = 1
(1−sβ?(s))ν .571

We further observe that this parameter setting indeed guarantees convergence, i.e. ρ ≤ 1. From (53)572

we observe (ν > 0, s ≥ 0, µ ≥ 0):573

β?(s) ≤
1 + s−

√
ν−2νs+νs2

ν

2s
=

1 + s− (s− 1)

2s
=

1

s
(54)

Hence sβ?(s) ≤ 1. On the other hand, (1 − s) ≤
√

(1− s)2 + 4µs
ν and hence (1 + s) −574 √

(1− s)2 + 4µs
ν ≤ 2s, which shows β?(s) ≤ 1.575

H Proofs and Further Comments on Section 4576

H.1 Proof of Theorem 5577

We perform a change of coordinates since it is easier to work with the standard Frobenius norm as578

opposed to the weighted Frobenius norm. Let X̂ = A1/2XA1/2 so that (18) and (20) become579

X̂∗
def
= I = arg min‖X̂‖2F subject to X̂ = I, X̂ = X̂>, (55)

and580

X̂k+1 = P + (I − P) X̂k (I − P) , (56)

respectively, where P = A1/2S(S>AS)−1S>A1/2. The linear operator that encodes the constaint581

in (4.2) is given by Â(X) =
(
X, X −X>

)
the adjoint of which is given by Â∗(Y1, Y2) = Y1 +582

Y2 − Y >2 . Since Â∗ is clearly surjective, it follows that Range
(
Â∗
)

= Rn×n.583

27

Subtracting the identity matrix from both sides of (56) and using that P is a projection matrix, we584

have that585

X̂k+1 − I = (I − P) (X̂k − I) (I − P) . (57)
To determine the Z operator (9), from (11) and (57) we know that586

(I − P) (X̂k − I) (I − P) = (I − Z)(X̂k − I).

Thus for every matrix X ∈ Rn×n we have that587

Z(X) = X − (I − P)X (I − P) = XP + PX(I − P). (58)

Denote column-wise vectorization of X as x: x def
= Vec (X). To calculate a useful lower bound on µ,588

note that589

Tr
(
X>Z(X)

)
= Tr

(
X>XP

)
+ Tr

(
X>PX(I − P)

)
= x>Vec (XP) + x>Vec (PX(I − P))

= x>(P ⊗ I)x+ x>((I − P)⊗ P)x
(23)
= x>Zx, (59)

where we used that Tr
(
A>B

)
= Vec (A)

>
Vec (B) and Vec (AXB) = (B>⊗A)Vec (x) holds590

for any A,B,X .591

Consequently, µ is equal to592

µ
(??)
= inf

X∈Rn×n

〈E [Z]X,X〉F
‖X‖2F

(59)
= inf

x∈Rn2×n2

x>E [Z]x

x>x
= λmin(E [Z]).

Notice that we have 2λmin(E [P]) ≥ λmin(E [Z]) ≥ λmin(E [P]) since (P ⊗ I) + (I ⊗ P) ≥ Z ≥593

(P ⊗ I).594

In light of Algorithm 1, the iterates of the accelerated version of (56) are given by595

Ŷk = αV̂k + (1− α)X̂k

Ĝk = Zk(Ŷk − I)

X̂k+1 = Ŷk − Ĝk
V̂k+1 = βV̂k + (1− β)Ŷk − γĜk (60)

where Ŷk, V̂k, Ĝ ∈ Rn×n. From Theorem 3 we have that V̂k and X̂k converge to the identity matrix596

according to597

E

[
‖V̂k+1 − I‖2E[Z]†

+
1

µ
‖X̂k+1 − I‖2F

]
≤
(

1−
√
µ

ν

)
E

[
‖V̂k − I‖2E[Z]†

+
1

µ
‖X̂k − I‖2F

]
,

(61)
where ‖X‖2

E[Z]†
= 〈E [Z]

†
X,X〉F . Changing coordinates back to X̂k = A1/2XkA

1/2 and defin-598

ing Yk
def
= A−1/2ŶkA

−1/2, Vk
def
= A−1/2V̂kA

−1/2 and Gk
def
= A−1/2ĜkA

−1/2, we have that (61)599

gives (21). Furthermore, using the same coordinate change applied to the iterates (60) gives Algo-600

rithm 2.601

H.2 Matrix inversion as linear system602

Denote x = Vec (X), i.e. x is n2 dimensional vector such that X(n(i−1)+1):ni = X:,i. Similarly,603

denote e = Vec (I). System (6) can be thus rewritten as604

(I ⊗A)x = e. (62)

Notice that all linear sketches of the original system AX = I can be written as605

S0
>(I ⊗A)x = S0

>e (63)

for a suitable n2 × n2 matrix S0, therefore the setting is fairly general.606

28

H.2.1 Alternative proof of Theorem 5607

Let us now, for a purpose of this proof, consider sketch matrix S0 to capture only sketching the608

original matrix system AX = I by left multiplying by S, i.e. S0 = (I ⊗ S), as those are the609

considered sketches in the setting of Section 4.610

As we have611

Tr
(
BX>BX

)
= Vec (BXB)

>
x = x>(B ⊗B)x,

weighted Frobenius norm of matrices is equivalent to a special weighted euclidean norm of vectors.612

Define also C to be a matrix such that Cx = 0 if and only if X = X>. Therefore, (4.2) is equivalent613

to614

xk+1 = arg min‖x− xk‖2A⊗A subject to (I ⊗ S>)(I ⊗A)x = (I ⊗ S>)e, Cx = 0, (64)

which is a sketch-and-project method applied on the linear system, with update as per (20):615

xk+1 = xk − (H ⊗ I)((I ⊗A)x− e)− (I ⊗H)((I ⊗A)x− e) + (HA⊗H)((I ⊗A)x− e)

for H def
= S

(
S>AS

)−1
S>. Using substitution x̂ = (A

1
2 ⊗A 1

2)x; Ŝ = A
1
2S and comparing to (11),616

we get617

Z = I ⊗ I − (I − P)⊗ (I − P)

for P as defined inside the statement of Theorem 5. Therefore, we have all necessary information to618

apply the results from [24], recovering Theorem 5.619

I Linear Operators in Euclidean Spaces620

Here we provide some technical lemmas and results for linear operators in Euclidean space, that621

we used in the main body of the paper. Most of these results can be found in standard textbooks of622

analysis, such as [22]. We give them here for completion.623

Let X ,Y,Z be Euclidean spaces, equipped with inner products. Formally, we should use a notation624

that distinguishes the inner product in each space. But instead we use 〈·, ·〉 to denote the inner625

product on all spaces, as it will be easy to determine from which space the elements are in. That is,626

for x1, x2 ∈ X , we denote by 〈x1, x2〉 the inner product between x1 and x2 in X .627

Let628

‖T‖ def
= sup
‖x‖≤1

‖Tx‖,

denote the operator norm of T . Let 0 ∈ L(X ,Y) denote the zero operator and I ∈ L(X ,Y) the629

identity map.630

The adjoint. Let T ∗ ∈ L(Y,X) denote the unique operator that satisfies631

〈Tx, y〉 = 〈x, T ∗y〉,

for all x ∈ X and y ∈ Y. We say that T ∗ is the adjoint of T . We say T is self-adjoint if T = T ∗.632

Since for all x ∈ X and s ∈ S,633

〈x, (ST)∗s〉 = 〈STx, s〉S = 〈Tx, S∗s〉Y = 〈x, T ∗S∗s〉,

we have634

(ST)∗ = T ∗S∗.

Lemma 15. For T ∈ L(X ,Y) we have that Range (T ∗)
⊥

= Null (T) . Thus635

X = Range (T ∗)⊕Null (T) (65)
Y = Range (T)⊕Null (T ∗) (66)

Proof. See 3.2.6 in [22].636

29

I.1 Positive Operators637

We say that G ∈ L(X) is positive if it is self-adjoint and if 〈x,Gx〉 ≥ 0 for all x ∈ X . Let638

(ej)
∞
j=1 ∈ X be an orthonormal basis. The trace of G is defined as639

Tr (G)
def
=

∞∑
j=1

〈Gej , ej〉. (67)

The definition of trace is independent of the choice of basis due to the following lemma.640

Lemma 16. If U is unitary and G ≥ 0 then Tr (UGU∗) = Tr (G) .641

Proof. See 3.4.3 and 3.4.4 in [22].642

Lemma 17. If P ∈ L(X) is a projection matrix then Tr (P) = dim(Range (P)) = Rank (P) .643

Proof. Let d = dim(Range (P)) which is possibly infinite. Given that P is a projection we have644

that Range (P) is a closed subspace and thus there exists orthonormal basis (ej)
d
j=1 of Range (P).645

Consequently, Tr (P)
(67)
=
∑d
j=1 1 = d = dim(Range (P)).646

A square root of an operator G ∈ L(X) is an operator R ∈ L(X) such that R2 = G.647

Lemma 18. If G : X → X is positive, then there exists a unique positive square root of G which we648

denote by G1/2.649

Proof. See 3.2.11 in [22].650

Lemma 19. For any T ∈ L(X ,Y) and any G ∈ L(Y,Y) that is positive and injective,651

Null (T) = Null (T ∗GT) , (68)

and652

Range (T ∗) = Range (T ∗GT). (69)

Proof. The inclusion Null (T) ⊂ Null (T ∗GT) is immediate. For the opposite inclusion, let653

x ∈ Null (T ∗GT) . Since G is positive we have by Lemma 18 that there exists a square root654

with G1/2G1/2 = G. Therefore, 〈x, T ∗GTx〉 = 〈G1/2Tx,G1/2Tx〉 = 0, which implies that655

G1/2Tx = 0. Since G is injective, it follows that G1/2 is injective and thus x ∈ Null (T).656

Finally (69) follows by taking the orthogonal complements of (68) and observing Lemma 15.657

As an immediate consequence of (68) and (69) we have the following lemma.658

Corollary 20. For G : X → X positive we have that659

Null
(
G1/2

)
= Null (G) (70)

Range
(
G1/2

)
= Range (G) (71)

I.2 Pseudoinverse660

For a bounded linear operator T define the pseudoinverse of T as follows.661

Definition 21. Let T ∈ L(X ,Y) such that Range (T) is closed. T † : Y → X is said to be the662

pseudoinverse if663

i) T †Tx = x for all x ∈ Range (T ∗) .664

ii) T †x = 0 for all x ∈ Null (T ∗) .665

iii) If x ∈ Null (T) and y ∈ Range (T ∗) then T †(x+ y) = T †x+ T †y.666

It follows directly from the definition (see [6] for details) that T † is a unique bounded linear operator.667

The following properties of pseudoinverse will be important.668

30

Lemma 22 (Properties of pseudoinverse). Let T ∈ L(X ,Y) such that Range (T) is closed. It669

follows that670

i) TT †T = T671

ii) Range
(
T †
)

= Range (T ∗) and Null
(
T †
)

= Null (T ∗)672

iii) (T ∗)† = (T †)∗673

iv) If T is self-adjoint and positive then T † is self-adjoint and positive.674

v) T †TT ∗ = T ∗, that is, T †T projects orthogonally onto Range (T ∗) and along Null (T) .675

vi) Consider the linear system Tx = d where d ∈ Range (T). It follows that676

T †d = arg minx∈X
1
2‖x‖

2 subject to Tx = d. (72)

677

vii) T † = T ∗(TT ∗)†678

Proof. The proof of items i, ii, iii, iv, v can be found in [6]. The proof of item vi is alternative679

characterization of the pseudoinverse and it can be established by using that d ∈ Range (T)680

together with item i thus TT †d = d. The proof then follows by using the orthogonal decomposition681

Range (T ∗) ⊕Null (T) to show that T †d is indeed the minimum of (72). Finally item (vii) is a682

direct consequence of the previous items.683

J Conclusions and Extensions684

We developed an accelerated sketch-and-project method for solving linear systems in Euclidean685

spaces. The method was applied to invert positive definite matrices, while keeping their symmetric686

structure. Our accelerated matrix inversion algorithm was then incorporated into an optimization687

framework to develop both accelerated stochastic and deterministic BFGS, which to the best of our688

knowledge, are the first accelerated quasi-Newton updates.689

We show that under a careful choice of the parameters of the method, and depending on the problem690

structure and conditioning, acceleration might result into significant speedups both for the matrix691

inversion problem and for the stochastic BFGS algorithm. We confirm experimentally that our692

accelerated methods can lead to speed-ups when compared to the classical BFGS algorithm.693

As a future line of research, it might be interesting to study the accelerated BFGS algorithm (either694

deterministic or stochastic) further, and provide a convergence analysis on a suitable class of functions.695

Another interesting area of research might be to combine accelerated BFGS with limited memory696

[14] or engineer the method so that it can efficiently compete with first order algorithms for some697

empirical risk minimization problems, such as, for example [9].698

As we show in this work, Nesterov’s acceleration can be applied to quasi-Newton updates. We699

believe this is a surprising fact, as quasi-Newton updates have not been understood as optimization700

algorithms, which prevented the idea of applying acceleration in this context.701

Since since second-order methods are becoming more and more ubiquitous in machine learning702

and data science, we hope that our work will motivate further advances at the frontiers of big data703

optimization.704

31

	Introduction
	Sketch-and-project for linear systems

	Contributions
	Outline

	Accelerated Stochastic Algorithm for Matrix Inversion
	The algorithm
	Key assumptions and quantities
	Convergence and change of the norm
	Coordinate sketches with convenient probabilities

	Accelerated Stochastic BFGS Update
	Accelerated matrix inversion
	Vectorizing – a different insight
	Accelerated BFGS as an optimization algorithm

	Numerical Experiments
	Accelerated Matrix Inversion
	BFGS Optimization Method

	Further Experiments with Accelerated quasi-Newton Updates
	Simple and well understood artificial example
	Random artificial example
	Sensitivity to the acceleration parameters

	Experiments with LIBSVM
	Additional optimization experiments

	Proofs for Section 3
	Proof of Lemma 2
	Technical lemmas to prove Theorem 3
	Proof of Theorem 3
	Changing norm

	Proof of Corollary 4
	Adding a stepsize
	Allowing for different
	Proof of Theorem ??
	Proof of Theorem ??
	Proofs and Further Comments on Section 4
	Proof of Theorem 5
	Matrix inversion as linear system
	Alternative proof of Theorem 5

	Linear Operators in Euclidean Spaces
	Positive Operators
	Pseudoinverse

	Conclusions and Extensions

