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Abstract: The intricate relationships linking signal-to-noise ratio and Brillouin frequency shift 
uncertainty after post-processing of Brillouin optical time-domain analysis measurements are 
investigated, highlighting the crucial impact of fitting. 
 
OCIS codes: (060.2370) Fiber optics sensors; (290.5900) Scattering, stimulated Brillouin 
 

1. Introduction 

Brillouin optical time-domain analysis (BOTDA) relies on the local activation of stimulated Brillouin scattering 
(SBS) in optical fibres in order to perform distributed strain and temperature measurements. SBS is locally enabled 
by the interaction between a pulsed optical signal, called pump, with a counter-propagating continuous-wave 
(CW) probe. Properly adjusting the frequency detuning between pump and probe enables scanning the Brillouin 
gain spectrum (BGS) of the sensing fibre, ultimately leading to the determination of its peak resonance frequency 
called Brillouin frequency shift (BFS), at each fibre position. The optical aspects related to this technique have 
benefited from more than two decades of dedicated research, thus qualifying BOTDA as a mature technology. 
Due to the tremendous accumulated amount of work that has been placed in its development, conventional 
BOTDA is now reaching its peak performance, facing ultimately fundamental limits. 

A BOTDA sensor aims at measuring the BFS profile of a given optical fibre with minimum uncertainty σB. 
A recent study [1] showed that the performance of any BOTDA system is ultimately determined by the signal-to-
noise ratio (SNR). Thus, the uncertainty on the BFS estimation of BOTDA system (dominated by additive white 
Gaussian noise) can be written as:  

where δ is the frequency detuning scanning step and Δν is the full-width at half maximum (FWHM) of the BGS. 
The numerical factor ¾ is strictly valid for a quadratic fitting on the upper half of the curve and other techniques 
may result in a modified factor, but the essential information is in the functional dependence on SNR, δ and Δν 
which remains the same. Recently, the scientific community started to pay a close attention to post-processing of 
the acquired data in order to boost the performance of standard BOTDA systems by increasing the SNR of the 
measurements without further modifying the optical setup. Using first one-dimensional noise removal techniques 
[2] followed later by sophisticated two-dimensional image processing algorithms [3], SNR improvements as large 
as 13 dB have been reported. To the best of our knowledge, the exact behavior of these techniques and the way 
they impact BOTDA measurements remain unclear such that no universal guideline on how to adjust them for 
given experimental conditions has been proposed yet.  In this paper, we thoroughly analyze how a 2D digital filter 
impacts SNR and BFS uncertainty, under the strict requirement that the sensor spatial resolution (SR) must not 
suffer from the filtering operation. BOTDA measurements at different SNR levels (3 dB, 6 dB and 9 dB) and SR 
(1 m, 2 m, 5 m), using a frequency scanning step δ = 1 MHz and a sampling interval of 0.5 m have been acquired. 
The sensing fibre employed in this case has been specifically selected to present a non-uniform BFS profile in 
order to identify any impact of the filter on the SR. The sensor SR is further validated using a reference 
measurement for each spatial resolution at 12 dB SNR (achieved by a large number of averaged traces).  

2. BGS Fitting and Filtering 

Generally speaking, the BFS of a given fibre is retrieved at any longitudinal position by fitting the measured data 
points over a function well approximating the shape of the BGS. In this paper, the uppermost part of the gain 
spectrum is fitted over a quadratic function, as illustrated in Figure 1.a). In order to minimize σB, we demonstrate 
here the importance of carefully selecting the window size Wfit containing the samples employed for fitting.  
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The BFS uncertainty σB at the fibre end is evaluated for a window size Wfit varying between 30 and 120 MHz, 
as shown in Figure 1.b). Results clearly point out that a sufficiently large fitting window must be employed in 
order to minimize σB. At low SNR (e.g. 3 dB), the proper selection of the window size becomes extremely critical 
and its optimal value turns out to be larger than the BGS FWHM. Indeed, it can be observed in Figure 1.b) that 
changing the window size from 50 MHz to 80 MHz (with 3 dB SNR) results in nearly halving the measurement 
uncertainty (i.e. σB reduces from 5.9 MHz at 50 MHz down to a minimum value of 3.4 MHz using a 80 MHz 
window). As a matter of fact, fitting should always be exploited to its maximum capability, as it might otherwise 
provide misleading results. Consider for instance the use of a noise removal algorithm that would bring the SNR 
level from 3 dB up to 6 dB when measuring with the same spatial resolution of 2 m: a window size equal to 
50 MHz would exhibit an apparent uncertainty reduction of about 4 MHz (i.e. from 5.9 MHz at 3 dB SNR down 
to 1.8 MHz at 6 dB SNR), whereas an optimal width of 80 MHz would reduce σB only by a bit less than 2 MHz 
(from 3.4 MHz down to 1.6 MHz). Finally, notice that when the SNR further increases (e.g. up to 9 dB), the ideal 
window width moves closer to the Brillouin FWHM without perfectly reaching it yet. This behavior illustrates 
that the fitting window is to some extent dependent on the original SNR. 

In order to reduce the frequency uncertainty on the BFS estimation, the use of a 1D digital filter applied on 
each acquired BGS has been here considered for efficient noise removal. We compute the Fourier transform of 
the BGS in order to analyze its spectral composition. Since we are not interested in the underlying physical 
mechanisms producing such a spectral distribution, the BGS is treated here as a digital signal, corresponding to a 
series of numerical values stored in a vector. Its Fourier transform is therefore given in terms of normalized 
frequency, a unitless quantity corresponding to a fraction of the signal sampling frequency. The BGS is essentially 
a low-frequency signal as illustrated by its Fourier transform given in Figure 2.a) for three different SNR levels 
(values at the end of the sensing fiber) corresponding to the measurements depicted in Figure 2.b). This spectral 
response motivates the use of low-pass filters for noise reduction. The results presented here are obtained using 
Gaussian filters, although similar conclusions may be drawn using any kind of low-pass digital filter. Gaussian 
filters present several interesting properties, including a simple frequency response as well as a single set 
parameter corresponding to the standard deviation of the Gaussian curve σBGS. The latter was adapted to the 
normalized FWHM of the considered BGS using σBGS = FWHM/(Δf kBGS) where kBGS is a correction factor 
enabling to finely adjust the filter. Intuitively, kBGS = 1 corresponds to a Gaussian filter which standard deviation 
matches the BGS FWHM. In this case, the filtering operation was found to oversmooth the BGS, thus biasing the 
BFS estimation. Increasing  kBGS from 1 to 3 relaxed the filter strength and provided optimal results. Figure 2.c) 
illustrates an overall SNR increase of about 8 dB with respect to Figure 2.b). The filtering performances were 
challenged by comparing the SNR increase with the reduction in BFS uncertainty which, according to (1), should 
be identical. BFS uncertainty versus distance for raw data and filtered data are given in Figures 3.a) and 3.b), 
respectively. 

   
Figure 2. a) Normalized Fourier transform of the BGS at different SNR together with the spectral response of Gaussian filter over 

frequency detuning. b) SNR versus distance for raw (unprocessed) data acquired at 2 m spatial resolution. c) SNR versus distance for 
data filtered in 1D by sweeping the Gaussian kernel σBGS over each acquired local BGS. 
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Figure 1. a) Fitting procedure for BFS retrieval from a noisy BGS. b) Measured BFS uncertainty σB when varying the window used in 

the fitting procedure, under different SNR conditions. 
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Quite counterintuitively, the results show only a marginal BFS uncertainty reduction, strongly questioning 
the relevance of filtering the acquired BGS before fitting. Quadratic fitting in BOTDA consists in finding the 
parabolic curve that will best match the uppermost part of the BGS. Intuitively, one seeks at extracting the low-
frequency information that has been corrupted by high frequency noise, and therefore fitting performs a 
mathematical operation similar to the application of a low-pass filter. Polynomial fitting is actually fundamentally 
equivalent to filtering using a special class of filters called Savitzky-Golay filters [4], making the prior use of a 
low-pass filter redundant. To our understanding, the various existing techniques aiming at retrieving the fibre BFS 
with lowest uncertainty are all comparable to an optimized fitting procedure. For instance, BFS retrieval by cross-
correlation of the noisy BGS with an ideal Lorentzian as described in [5] is equivalent with low-pass filtering as 
cross-correlation and convolution are virtually the same operation. Finally, the major discrepancies observed 
between SNR and σB can be explained by the fact that (1) was derived assuming the statistical independence of 
each point within the considered gain spectrum. The use of a filter will however correlate all spectral points within 
the kernel size, thus making the filtered data on BGS no longer compliant with the assumptions underlying (1). 

3. 2D Filtering 

BOTDA measurements are corrupted by noise, dominated either by detector noise or in some cases by optical 
noise. Noise typically takes the form of an additive white Gaussian noise, resulting in a uniform contribution over 
the whole detection bandwidth. Since it proves practically challenging to perfectly match the detection bandwidth 
to the signal bandwidth, BOTDA measurements generally end up occupying only a restricted portion of the 
measurement spectrum. BOTDA measurements are 2D matrices holding the value of the fibre Brillouin gain at 
every location for each frequency detuning step. Note that 2D Gaussian filters are separable filters, and therefore 
noise removal based 2D Gaussian filtering can be achieved by applying two successive 1D Gaussian filters with 
standard deviations denoted as σBGS and σdis along the rows (frequency detuning) and columns (distance) of the 
matrix. We assume here that the first case corresponds to the sweeping of a Gaussian kernel across each of the 
measured BGS (i.e. Brillouin gain versus frequency detuning) as described in Section 2, whereas the second case 
consists in filtering each of the acquired BOTDA temporal traces (i.e. Brillouin gain versus distance). It must be 
pointed out that the latter should depend on the sensor spatial resolution (SR), since the corresponding pump pulse 
width defines the measurement bandwidth. The standard deviation of the normalized distance Gaussian filter σdis 
is set to σdis = SR/(Δd kdis) where Δd is the sampling interval and kdis is a correction factor enabling to finely match 
the filter bandwidth to the signal bandwidth. We found here that using kdis = 3 enables for the highest attained 
noise removal while preserving the initial sensor SR. Note that the BGS Gaussian filter employed here σBGS is 
rigorously the same as the one described in Section 2. 

Figure 4.a) shows the normalized Fourier transform of a Brillouin gain temporal trace under different SNR 
conditions together with 1D Gaussian filtering over distance (σdis) employed for noise removal. Figures 4.b) and 
4.c) contain the resulting SNR measured after 2D and 1D filtering along distance only, respectively. Compared to 
the raw data shown in Figure 2.b), 2D filtering provides a massive SNR increase of about 11 dB, being consistent 

  
Figure 3. σB versus distance for raw (unprocessed) data (a) and data data filtered in 1D (b) by sweeping the Gaussian kernel σBGS	over 

each acquired local BGS acquired at 2 m spatial resolution over 10 km. 

   
Figure 4. a)  Normalized Fourier transform of BOTDA traces at different SNR together with the spectral response of the Gaussian filter 

over distance. SNR versus distance for data processed by 2D (b) and 1D (c) Gaussian filtering over distance (σdis) at 2 m spatial 
resolution. 
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with the results reported in [3], while the 1D distance filter results in a moderate 3 dB increase (compare 
Figure 4.c) with Figure 2.b)). Note that individual contributions of the two 1D filters employed (Figures 2.c) and 
4.c)) sum up to correspond to the improvement brought by the 2D filter (Figure 4.b)). The observed SNR 
enhancements are also challenged with the resulting BFS uncertainties given in Figures 5.a) and 5.b), respectively. 

  
Figure 5. σB versus distance for data filtered using a 2D (a) and 1D (b) Gaussian filter over distance (σdis). 

The results show no major difference, emphasizing that the uncertainty reduction provided by filtering with 
a 2D Gaussian filter comes almost exclusively from the 1D filtering applied over distance, while the filtering 
along the second dimension (frequency detuning) is intrinsically redundant to the BGS fitting process. The SNR 
increase, provided by the filtering over distance (3 dB), is this time consistent with the corresponding uncertainty 
reduction (approximatively a factor 2) according to (1). Finally, it is checked that the Gaussian filter over distance 
σdis does not affect the initial spatial resolution. This is experimentally verified by comparing the BFS profile 
retrieved from the filtered data with a reference (not filtered) profile obtained with a 12 dB SNR (achieved by a 
large increase of the number of averages). The impact on the spatial resolution could be visually inspected at BFS 
transitions. The results, shown in Figure 6 for every original SNR level and at each spatial resolution (1 m, 2 m 
and 5 m), illustrate clearly that the applied filter preserves the sensor original spatial resolution.  

   
Figure 6. BFS versus distance for 1m (a), 2m (b) and 5m (c) SR after data filtering using a 1D Gaussian filter over distance (σdis). 

4. Conclusion 

We presented here two crucial aspects of post-processing on BOTDA measurements. First, the various 
consequences of using a non-optimized fitting procedure were investigated. The fitting parameters have to be 
matched to the measurement spatial resolution, as well as to the signal-to-noise ratio, in order to obtain the lowest 
BFS uncertainty. The evolution of SNR, BFS uncertainty and SR with 2D filtering was then thoroughly studied. 
It turns out that the filtering of the BGS is highly redundant with the fitting procedure, thus having no real impact 
on the reduction of the measurement uncertainty. This suggests that a good fitting procedure is essentially more 
beneficial than a complex filtering post-processing using sophisticated algorithms. Filtering and post-processing 
makes essentially sense on the temporal traces (gain vs distance) and guidelines are provided to design optimized 
noise removal filters based solely on the signal bandwidth, the latter being dictated by the sensor spatial resolution. 
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