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Abstract
Over the last few years, residential and enterprise networking have faced several challenges due

to the increasing demand of users for high-throughput connectivity. As a result, efforts are being

made to improve coverage, throughput, and robustness. Several solutions have been recently

proposed. The first solution is to use mesh networking; it is gaining momentum, as it effectively

improves performance, but at the cost of an increased complexity compared to the infrastructure

mode, as several paths can now be employed with potentially several hops. The second solution

is to exploit the different technologies that are available, wired (e.g., power-line communication

(PLC) or Ethernet) and wireless (e.g., WiFi or cellular). Networks with various technologies

are referred to as hybrid networks. When the technologies do not interfere with each other, it

is possible to aggregate their capacity, thus enabling immediate throughput improvements; by

increasing the number of possible paths that a packet can take, hybrid networks also increase

complexity. The third solution is to use multipath routing, which can improve performance

significantly. But again, this comes at the cost of an increased complexity.

In this dissertation, we study the effect of these solutions in terms of throughput and coverage,

latency, and privacy. We focus, in particular, on hybrid networks with shared-medium and

orthogonal technologies, where two links that use the same technology are subject to interference

(shared-medium), but not two links that use two distinct technologies (orthogonal).

First, we study the effect of these solutions on throughput and coverage. We show that, in hybrid

mesh networks, the optimal number of paths achieving maximal throughput with multipath

routing is tightly linked with the number of technologies. This result makes it possible to develop

an efficient and practical multipath routing protocol that yields the maximal throughput. Next,

we introduce two novel algorithms for optimizing throughput: A distributed multipath congestion

controller that, when each flow uses one multipath fixed in advance, provably achieves optimal

throughput and an algorithm based on the multi-armed-bandit framework that finds the best

multipath and converges to the best achievable throughput. We implement these algorithms in a

real testbed with PLC and two orthogonal WiFi channels. Their experimental evaluation shows

that using technologies with distinct physical layers, such as PLC and WiFi, improves spatial

diversity compared to using multi-channel WiFi and brings further improvements of throughput

and coverage.

Then, we investigate latency in hybrid networks. We study analytically how the variance of

a time-varying service rate affects queueing delays. We also study latency when multipath

routing is used, i.e., when traffic is split between two technologies. We show that finding the

optimal splitting scheme is difficult, as it depends on the rate at which packets arrive, and that the
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best static scheme, where the splitting probability remains the same for all arrival rates, can be

significantly sub-optimal in time-varying networks.

Finally, we study how hybrid networks and multipath can improve privacy. We show that they can

significantly improve the resistance against traffic analysis attacks, such as website fingerprinting,

by enabling the user to split the traffic between two networks.

Keywords: Hybrid networks, multipath routing, power-line communications, wireless technolo-

gies, mesh networks, performance analysis, testbed experiments, privacy, website fingerprinting

attacks.



Résumé
Au cours de ces dernières années, les réseaux résidentiels et d’entreprise ont eu à faire face à

plusieurs défis découlant de la demande toujours plus forte des utilisateurs pour une connectivité

à très haut débit. En conséquence, d’importants efforts sont entrepris pour améliorer la couverture,

le débit et la fiabilité de ces réseaux. Plusieurs solutions ont été récemment proposées. La première

est d’utiliser des réseaux maillés, avec plusieurs points d’accès au réseau au lieu d’un seul. Cette

solution gagne du terrain parce qu’elle peut efficacement améliorer les performances des réseaux.

Mais cela se fait au prix d’une complexité accrue par rapport au mode infrastructure, car plusieurs

chemins sont dorénavant disponibles avec, possiblement, plusieurs sauts. La deuxième solution

est d’exploiter les différentes technologies disponibles, qu’elles soient filaires (par exemple, les

courants porteurs en ligne (CPL) ou Ethernet) ou sans-fil (par exemple, WiFi ou le réseau de

téléphonie mobile). Ces réseaux avec plusieurs technologies sont appelés réseaux hybrides. Quand

les technologies n’interfèrent pas les unes avec les autres, leurs capacités peuvent être agrégées,

ce qui permet d’augmenter directement le débit disponible. Mais là encore, l’augmentation du

nombre de chemins que le trafic peut emprunter et le choix à faire entre les technologies rendent

les choses plus complexes. Une troisième solution est, enfin, d’utiliser plusieurs chemins en

même temps. Elle peut entraîner des gains de performance importants, mais, à nouveau, au prix

d’une complexité accrue.

Dans cette thèse, nous étudions l’effet de ces solutions en termes de débit et de couverture du

réseau, de latence et de vie privée. Nous nous concentrons en particulier sur les réseaux hybrides

constitués de technologies orthogonales et à ressources partagées, pour lesquelles deux liens

utilisant la même technologie interfèrent l’un avec l’autre (technologies à ressources partagées),

mais pas deux liens utilisant deux technologies différentes (technologies orthogonales).

Nous étudions tout d’abord leur effet sur le débit et la couverture du réseau. Nous montrons

d’abord que le nombre optimal de chemins nécessaires pour atteindre le débit maximal, lorsque

le routage multichemin est utilisé dans un réseau maillé hybride, est intrinsèquement lié au

nombres de technologies orthogonales. Grâce à ce résultat, nous développons un protocole de

routage multichemin efficace et pratique. Nous présentons ensuite deux algorithmes novateurs

pour optimiser le débit. Nous décrivons tout d’abord un algorithme distribué et multichemin

de contrôle de la congestion et prouvons qu’il atteint un débit optimal en présence de plusieurs

utilisateurs, lorsque chaque flux de données utilise un seul multichemin choisi en avance. Ensuite,

nous présentons un second algorithme, fondé sur le paradigme du bandit manchot, qui trouve

le meilleur multichemin et converge vers le débit maximal. Ces algorithmes sont mis en œuvre

dans un réseau réel avec CPL et deux canaux WiFi orthogonaux. Leur évaluation expérimentale
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montre qu’utiliser deux technologies avec deux couches physiques différentes, comme les CPL

et le WiFi, améliore la diversité spatiale et, en conséquence, le débit et la couverture, par rapport

à l’utilisation de deux canaux WiFi orthogonaux.

Nous nous intéressons ensuite à la latence dans les réseaux hybrides. Nous étudions un modèle

de file d’attente avec des taux de service variant au cours du temps, et en particulier l’effet

de la variance de ce taux de service sur les temps d’attente. Nous étudions ensuite la latence

lorsque le routage multichemin est utilisé dans un réseau hybride et le trafic divisé entre deux

technologies. Nous démontrons que trouver le mécanisme de division optimal est difficile car

celui-ci dépend du taux d’arrivée des paquets. Nous démontrons également que le meilleur

mécanisme statique (c’est-à-dire ne changeant pas en fonction du taux d’arrivée des paquets)

peut être significativement sous-optimal dans un réseau qui varie au cours du temps.

Enfin, nous examinons comment les réseaux hybrides et le routage multichemin peuvent améliorer

la vie privée des utilisateurs. Nous montrons que ces solutions, en permettant de diviser le trafic

entre deux réseaux différents, peuvent améliorer fortement la protection contre des attaques

d’identification des sites web fondée sur leur signature.

Mots-clés : Réseaux hybrides, routage multichemin, courants porteurs en ligne, technologies

sans-fil, réseaux maillés, analyses théoriques de performance, analyses expérimentales, vie privée.
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1 Introduction

1.1 Mesh Networks, Hybrid Networks and Multipath Routing: So-
lutions to Connectivity Problems and Increased Performance
Demand

Recent years have seen the development, in residential and entreprise networks, of a multitude of

new applications that require an always-increasing demand for high performance. High-definition

streaming requires high data-rates; gaming and voice-over-IP require low latency and high

reliability; and smart-home and smart-city solutions require ubiquitous network coverage for

an increasing number of devices, to name only a few of these applications. Also, the recent

revelations about the large-scale surveillance of people’s web activities have highlighted the

privacy risks caused by these new usages (social networks, etc.).

Because they offer mobility along with attractive data-rates, wireless technologies, in particular

WiFi that is specified by the Institute of Electrical and Electronics Engineers (IEEE) 802.11

standards, are used in the vast majority of the local networks (local networks refer to the networks

that lie within a limited area, such as residential, enterprise and university networks). But WiFi

suffers from the fast attenuation of its signal, in particular due to walls. This leaves large zones

of the residential or enterprise buildings with a weak signal, which results in low throughput or

no connectivity. A recent study [wif15] indicates that nearly 40% of the American households

with a WiFi router suffer from such problems. This study also indicates that these problems are

exacerbated when the number of connected devices is large. This stems from the very nature of

wireless technologies that share the medium hence are prone to interference when a large number

of devices lies within a limited area. With the explosion of the number of connected devices that

comes with the Internet of things (IoT), such issues are likely to become even more problematic

in a close future.

Over the last few years, significant efforts have been made to improve the throughput offered by

wireless technologies. New WiFi standards (such as 802.11n [wif09] and 802.11ac [wif13]) have

been proposed and another (802.11ax [wif18]) is currently under discussion. These standards
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Internet

(a) Infrastructure mode of WiFi

Internet

(b) Mesh WiFi network

Figure 1.1 – Typical residential WiFi network in the infrastructure mode (left) and with a
mesh network (right).

offer high maximal data-rates (theoretical physical rates of up to 1.2 Gb/s for 802.11ac and

802.11ax) and a better efficiency with several users, but they continue to suffer from the inherent

signal attenuation and the high level of interference when the number of devices is large. For this

reason, other directions for improving the performance of local networks have been pursued.

1.1.1 Mesh Networks

Weak signals typically occur when the user is too far from the wireless access-point. Today, most

802.11 WiFi networks — especially in homes — use the infrastructure mode, in which there is a

single access-point to which all users’ devices connect. When there is a single access-point, it is

often impossible, particularly in large houses, to find a spot where the entire house is covered by

a strong wireless signal. Even worse, the location of the access point is usually determined by the

location of the wall socket for the Internet access (fiber optics receptacle, telephone plug, etc.);

this wall socket is rarely chosen to maximize coverage. This can cause some user’s devices to

have a weak signal or no signal at all, which means low throughput or no connectivity: This is

for example the case of the smartphone in the residential infrastructure WiFi network depicted in

Figure 1.1a.

For this reason, mesh networks have recently gained a renewed attention as a way to improve

throughput and coverage. In a wireless mesh network, several routers are connected together

through the wireless medium in an ad-hoc manner. A user’s device can associate with any of the

different routers, typically the one with which it has the highest signal; if the user moves, her

device might associate with a different router. For example, in Figure 1.1b that depicts the same

network as Figure 1.1a but in mesh mode, the smartphone communicates with the closest router
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and gets a strong signal, i.e., it gets a high throughput. To reach another of the routers (typically,

the Internet gateway), the traffic is routed through the network of routers, which might require

several hops (for the smartphone of Figure 1.1b, this requires two hops).

Mesh networks are becoming increasingly popular [Che17] and a large number of commercial

solutions has been launched onto the market [Del18]. They are used for improving high-rate local

networks and are also gaining momentum with the development of smart homes and smart cities,

in which a large number of devices need to be connected to a same network. Many smart-home

and smart-city solutions use mesh networks [Ros18]. Mesh networks can effectively improve

performance, but this comes at the cost of an increased complexity compared to the infrastructure

mode, because several paths can now be employed with potentially several hops.

1.1.2 Hybrid Networks

To improve the performance of local networks, it is possible to combine WiFi with other tech-

nologies. Networks where several technologies cohabit are called hybrid networks. When the

technologies do not interfere with each other, it is possible to aggregate their capacity, thus

enabling immediate performance improvements. Different technologies can be used to form

hybrid networks.

Possible Technologies

Ethernet Ethernet is extensively used in enterprise networks along with WiFi: Ethernet wires

are used to connect the fixed devices (e.g., desktop computers, TVs) and to provide a backbone

for the wireless routers; WiFi is used to connect mobile devices to the enterprise network. This

solution is very effective, as Ethernet wires offer very high rates (the latest Ethernet standard

offer theoretical physical rates of up to 400 Gb/s) and are not subject to interference. Its main

downside is that Ethernet wires are complex and expensive to install, which makes this solution

often impossible to employ.

Technologies other than Ethernet are easier to employ because they do not require any additional

wiring. They can be wireless technologies (such as Bluetooth and cellular) or wired technologies

that exploit the existing infrastructure and do not require new wiring (such as coaxial and

power-line).

WiFi WiFi offers several orthogonal channels, i.e., channels with frequencies that do not

overlap hence do not interfere with each other. Consequently, it is possible to improve the

performance of local networks by using two orthogonal WiFi channels, which is considered as a

particular case of hybrid networks.

Bluetooth Bluetooth uses the same frequency band as WiFi (around 2.4 GHz). Consequently,

it interferes with WiFi, suffers from the same attenuation problems, and offers data rates well
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below those of WiFi. Bluetooth typically targets low-rate, low-power applications, whereas WiFi

targets high-rate applications.

Cellular Cellular technologies use radio frequencies different from those used by WiFi, hence

they do not interfere with WiFi. Cellular technologies are supported by every smartphone, and all

laptops can easily connect to a cellular network by the addition of a lightweight and low-cost

component (e.g., 3G/4G USB dongles) or with a smartphone sharing its connection through

Bluetooth or USB. Cellular is considered as a good candidate for handover when the user moves

out of WiFi coverage [KTZ04, PDD+12]. Recently, small cells, in particular femtocells, have

gained popularity as a solution to improve the coverage of WiFi in local networks; they gave rise

to hybrid cellular/WiFi networks [BSC+13].

Coaxial Coaxial communication exploits the coaxial cables that are already installed in a

large number of houses (for example, 90% of the households in the USA have coaxial cables

installed [coa13]). It is standardized by the Multimedia over Coax Alliance (MoCA) [MoC] and

offers theoretical physical rates of up to 1.4 Gb/s. Coaxial wires are shielded hence not subject

to external interference, in particular from neighboring households or from other technologies.

The main limitation to coaxial communication is that it does not offer much flexibility, because

its performance, especially in terms of coverage, depends on the coaxial system that is already

established, in particular on the number of coaxial outlets.

Power-line Power-line communication (PLC) exploits the electrical wires that are in all build-

ings, which means that PLC does not require any new wiring. It is standardized by the HomePlug

alliance [Homa] and offers theoretical physical rates of up to 1.5 Gb/s with the latest standard.

It offers a coverage typically wider than that of WiFi and is very easy to install, because a PLC

device simply needs to be plugged on an electrical outlet (plug and play). PLC is becoming

very popular, especially in home networks, and 220 million devices have been sold world-

wide [Homb]. PLC presents some downsides. Similarly as WiFi, PLC is shared-medium, i.e., it is

subject to interference, and having a large number of connected devices affects the performance

(PLC, as standardized by HomePlug, employs a CSMA/CA scheme relatively similar to that of

WiFi [VHT13]). Also, the PLC performance varies depending on the wiring quality and on the

structure of the electrical network. Nevertheless, PLC has been shown to be a good candidate for

improving the performance of WiFi [Vla16].

Technologies Considered in this Dissertation To be able to aggregate the capacities that they

offer, the technologies need to be orthogonal, i.e., two links that use two distinct technologies are

not subject to interference (for example, Bluetooth and WiFi are not orthogonal when they use

the same frequency band). Here, we focus on technologies that, in addition to being orthogonal,

are shared-medium, i.e., where two links that use the same technology are subject to interference.

We consider in particular WiFi (single-channel and multi-channel), PLC and cellular. The results

presented in this dissertation can easily be extended to non-shared-medium technologies by

considering that each link is a single technology (e.g., two Ethernet links, which do not interfere
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Figure 1.2 – Example of a residential hybrid mesh network with hybrid WiFi/PLC routers,
a desktop computer with WiFi and PLC, a TV connected with PLC, laptops with WiFi,
and smartphones with WiFi and cellular.

with each other, are considered as two different technologies). An example of a residential hybrid

mesh network is presented in Figure 1.2.

Standardization of Hybrid Networks

The increasing popularity of hybrid networks is illustrated by the standardization efforts made

by the IEEE. The IEEE 1905 standard [Hyb13] specifies abstraction layers to hide the diversity

of technologies in a hybrid network (wireless, coaxial, power-line, Ethernet), which enables a

seamless interoperability between the technologies. According to the IEEE 1905 standard, hybrid

networks operate at layer 2.5, between the MAC and IP layers. The IEEE 1905 standard specifies

link metrics for hybrid networks, but it does not specify routing or load-balancing algorithms

that are vendor specific. Many hybrid devices compatible with the IEEE 1905 standard have

been launched onto the market, such as hybrid PLC/WiFi or coaxial/WiFi range extenders

that simply act as a bridge between the two technologies and hybrid routers that are able to

choose their next hop; recently, hybrid PLC/WiFi routers that work in a mesh network have been

announced [hyb18].

1.1.3 Multipath Routing

To improve throughput, reliability and latency, it is possible to send traffic onto several paths, as

illustrated by Figure 1.3: To reach the laptop (C), the hybrid router (A) can use the WiFi-WiFi path

(Path 2) simultaneously with the PLC-WiFi path (Path 1). Multipath routing has recently gained

popularity with the emergence of multipath TCP (MPTCP) [FRH+11, FRHB13]. Multipath
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local networklocal network

A B
C

Internet

PLC 10 Mb/s

WiFi 15 Mb/s
WiFi 30 Mb/s

Path 1

Path 2

Figure 1.3 – Scenario with a PLC/WiFi router (A), a PLC/ WiFi range extender (B), and a
WiFi user (C).

solutions that support UDP traffic are also being developed [DCB17]. In single-hop hybrid

networks with WiFi and cellular, MPTCP has been shown to improve throughput [RPB+12,

CLG+13], reliability [LAPJ15], and latency [FEB+16]. MPTCP has been adopted by major

vendors: In particular, all Apple operating systems (for smartphones and computers) now support

MPTCP and an MPTCP implementation exists for all Linux-based devices [PB].

1.1.4 Improved Performance and New Challenges

Mesh networks, hybrid networks, and multipath routing can effectively improve the performance

(throughput, coverage, latency, users’ privacy) of local networks. Mesh networks can extend

the coverage and improve throughput (as we show in Part I of this dissertation). By aggregating

the capacities of different technologies, hybrid networks can improve coverage and throughput

(Part I), latency (Part II), and privacy (Part III). By simultaneously exploiting multiple paths,

multipath routing can improve throughput (Part I), latency (Part II), and privacy (Part III).

They also increase, however, the complexity of the algorithms that need to be deployed in local

networks: (i ) In mesh networks, paths are multi-hop and several possible paths between two nodes

exist; (ii ) hybrid networks increase the number of links, because two nodes can now communicate

with several technologies, hence they increase the number of possible paths between two nodes;

and (iii ) multipath routing makes it possible to use several paths, giving a number of possibilities

that is polynomial in the number of existing paths. For this reason, specific algorithms are

required. Because we consider shared-medium technologies, these algorithms must also take into

account interference, which is another challenge.

In this dissertation, we study these challenges and tackle them by introducing several algorithms

to improve throughput (Part I), latency (Part II) and privacy (Part III) with hybrid networks

and multipath routing. We also present fundamental theoretical and experimental results on

throughput (Part I) and latency (Part II). We consider both local mesh networks (Part I) and local

single-hop networks (Part II and III).
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1.2 Dissertation Outline and Contributions

We study three main performance metrics: throughput, latency, and privacy. Consequently, this

dissertation is divided into three parts, each corresponds to one performance metric.

Part I: Throughput We study throughput in hybrid mesh networks. This part is divided into

three chapters.

• Chapter 2: We study multipath routing in hybrid mesh networks. After presenting our

network model, we study the optimal number of paths needed to reach the maximal

throughput in a hybrid mesh network. For certain classes of networks, we show analytically

that there is a tight relation between the optimal number of paths and the number of

orthogonal technologies. Through simulations and experiments, we verify this result and

extend it to general networks. We then describe a multipath-routing protocol that uses

heuristics to compute the set of paths (called a multipath) that offers the highest throughput.

Main contribution: To the best of our knowledge, we are the first to show analytically a

relation between the optimal number of paths and the number of technologies in a hybrid

mesh network, which shows that multipath and hybrid networks are intrinsically related.

We propose a novel multipath routing-protocol that focuses on optimizing throughput.

• Chapter 3: We describe a novel multipath congestion-control algorithm that finds, in a

hybrid mesh network, the optimal amount of traffic to send on each path of a pre-computed

multipath and avoids congestion. This congestion controller is interference-aware and

distributed. We show that it maximizes a global utility function in the presence of multiple

users. We describe the implementation of EMPoWER, the system that combines this

congestion-controller and the multipath-routing protocol presented in Chapter 2. We

extensively evaluate EMPoWER with simulations and testbed experiments in a hybrid

multi-channel WiFi network and in a hybrid PLC/WiFi network.

Main contribution: We show experimentally that, despite similar aggregate capacities,

hybrid PLC/WiFi networks improve throughput compared to hybrid multi-channel WiFi

networks because, for shared-medium technologies, using two distinct technologies brings

an increased spatial diversity.

• Chapter 4: We describe HyMAB, an algorithm that finds the best multipath in a dynamic

hybrid mesh network and converges to the maximal throughput. It is based on the multi-

armed-bandit framework. HyMAB continuously adapts when the network conditions

change (e.g., due to mobility or capacity variations) and it is able to smoothly perform

a handover to another multipath, if needed. HyMAB is implemented and extensively

evaluated in a hybrid PLC/WiFi testbed.

Main contribution: To the best of our knowledge, HyMAB is the first implementation of

a multi-armed-bandit strategy in the context of routing and congestion control.
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Part II: Latency We study latency in time-varying hybrid networks. This part contains one

chapter.

• Chapter 5: We study, in hybrid networks, the effect of variations of the link capacities (e.g.,

due to variations of the signal or users contending for a network medium) on latency. We

apply a queueing model where the service rate varies between two states, a high-rate state

and a low-rate state. We first consider the case where the user employs single-path, i.e.,

she chooses between two technologies that have the same average service rate but different

variances of the service rate. We show analytically and verify experimentally that, as can

be expected when the average service rates are equal, the variance is an important quantity,

but that, surprisingly, the technology with the largest variance can sometimes yield the

smallest delays. We then consider the case where the user employs multipath, i.e., she splits

the traffic between two technologies with different service-rate characteristics (potentially

different means and variances). We show analytically and verify experimentally that when

the traffic arrives at a low rate, it is better to use a single technology, and that multipath

improves latency only when the arrival rate is larger than a certain threshold. We show that

finding the optimal splitting scheme is not an easy task and that the impact of the splitting

scheme is high in time-varying networks.

Main contribution: We show that when the average service rates of two technologies are

equal, the technology with the largest variance can sometimes yield the smallest delays.

We show that multipath improves latency only for sufficiently high rates.

Part III: Privacy We study how the users’ privacy can be improved with hybrid networks and

multipath. This part contains one chapter.

• Chapter 6: We study the so-called website fingerprinting attacks, where an adversary

guesses which website a user visits, even when the user employs encryption and anonymous

communication tools. When the user is connected to two networks (e.g., when she uses

hybrid networks and is connected to the Internet with two technologies) and splits her

traffic between the two networks (i.e., she uses multipath routing), we show that with the

adequate multipath splitting scheme, she significantly improves her privacy without any

performance overhead.

Main contribution: To the best of our knowledge, we are the first to propose a defense

against website fingerprinting attacks that exploits hybrid networks and multipath routing.
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2 Multipath Routing in Hybrid Mesh
Networks

2.1 Introduction

In this chapter,1 we study multipath routing in hybrid mesh networks. When several technologies

cohabit, multipath routing can provide significant throughput gains. Take again the network of

Figure 1.3 on page 6, with a hybrid PLC/WiFi router (Node A), a PLC/WiFi range extender

(Node B), and a laptop with WiFi (Node C). Node C downloads a file from the Internet (i.e.,

through A): Because PLC and WiFi do not interfere with each other, 10 Mb/s can be sent over

the hybrid PLC-WiFi Path 1. This is what would happen with a typical PLC/WiFi extender, but it

would consume only 1/3 of WiFi resources. To maximize throughput, some traffic can be sent

over the two-hop WiFi Path 2. The amount of traffic needs to be carefully calibrated, as it is

well known that saturating multi-hop paths is inefficient and can lead to congestion collapse with

packet losses and instabilities [GSK04, Sri04]. This amount depends on the characteristics of the

two WiFi links A – B and B – C (these links cannot transmit simultaneously and need to share the

capacity because WiFi is a shared-medium technology). In this simple case (see Section 2.4 for

general cases), a back-of-the-envelope computation gives us the rate x to send over Path 2 as the

solution of x/15+x/30 = 2/3, i.e., x � 6.6 Mb/s. Hence using both Path 1 and Path 2 provides a

66% improvement, compared to using Path 1 alone. In the general case, when there are a large

number of possible paths between the source and the destination, finding the best paths to use is a

challenging task that we study in this chapter.

Outline of the Chapter This chapter is structured as follows. After presenting our network

model in Section 2.2, we show in Section 2.3 that multipath and hybrid networks are intrinsically

related, and that using multipath helps in terms of throughput only when several technologies are

available. We then present a novel multipath routing protocol in Section 2.4. We discuss related

work in Section 2.5 and close the chapter with a summary in Section 2.6.

1This chapter is based on the papers by Henri et al. [HVHT16] and by Henri and Thiran [HT18].
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x1↗
x2↘

S1 D1

x3
↓

S2

D2

l4
l6 l8

l3 l5 l7

l1
l2

μl4 = x1/cl5 +x2/cl4 +x2/cl6 +x3/cl1

μl7 = x1/cl7 +x2/cl8

Figure 2.1 – Illustration of a multigraph, with two flows. Dotted blue lines represent WiFi,
plain orange lines PLC. Sources send traffic on the different paths Pi at respective rates xi

(ΛP1 = {l3, l5, l7}, ΛP2 = {l4, l6, l8}, and ΛP3 = {l1}).

2.2 Network Model and Model Validation

We first present and validate our network model that will be used in the three chapters of Part I.

2.2.1 Network Model

We consider a multi-hop mesh network with K orthogonal and shared-medium technologies

(e.g., PLC, WiFi, LTE): Two links that use the same technology are subject to interference

(shared-medium technologies), but two links that use two distinct technologies are not subject

to interference (orthogonal technologies). Two orthogonal WiFi channels are considered as two

different technologies. The network is modelled by a multigraph G(V ,E ), with V the set of nodes

and E the set of links. The total number of links in the network is denoted by L (i.e., L = |E |). E is

partitioned into K sets Ek , k ∈ {1, . . . ,K }, the sets of links available with each technology. A link is

present whenever its two endpoints can communicate with each other with a non-zero rate on the

corresponding technology. Figure 2.1 shows an example of a multigraph with K = 2 technologies,

for example PLC and WiFi (here, E1 = EPLC = {l3, l7, l8} and E2 = EWiFi = {l1, l2, l4, l5, l6}). For

a link l ∈ E , cl is the capacity of l , i.e., the maximum rate achievable on l . For a link l ∈ Ek ,

Il ⊂ Ek is the interference domain of l , defined as the set that contains l as well as all links that

cannot transmit simultaneously with l because otherwise it would create a collision at one of

the links. For example, in Figure 2.1, no link interferes with the PLC link l3, i.e., Il3 = {l3}; all

other WiFi links interfere with the WiFi link l4, i.e., Il4 = {l1, l2, l4, l5, l6}; and the PLC link l8

interferes with the PLC link l7, i.e., Il7 =Il8 = {l7, l8}. For any links l , l ′ ∈ E , l ∈Il ′ ⇔ l ′ ∈Il .

If a node transmits data to another node, we call the source-destination pair a flow. A path is a

self-avoiding path of the multigraph G that connects two nodes. The source of a flow can use

M paths P1, . . . ,PM simultaneously; the set P = (P1, . . . ,PM ) is called a multipath. When M = 1,

the multipath is a single path. The set of links belonging to any path Pi is denoted by ΛPi , with

ΛPi ⊂ E ; for a multipath P = (P1, . . . ,PM ), we write ΛP =⋃M
i=1ΛPi , and LP = |ΛP | for the total

number of links in the multipath. For example, in Figure 2.1, a possible multipath with M = 2

paths from S1 to D1 consists of P1 with ΛP1 = {l3, l5, l7} and P2 with ΛP2 = {l4, l6, l8}.

We define the busy time μl of a link l as the fraction of time during which no transmission can be
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initiated on l , because either (i ) a transmission is already occurring on a link in its interference

domain Il , or (ii ) the channel is idle, but the node cannot transmit because, according to the

distribution coordination function (DCF) and CSMA/CA protocols run by WiFi [wif09] and

PLC [Plc10], it needs to wait for the expiration of an inter-frame space, or because it is in backoff

stage. When a node sends traffic at rate xl on a single link l with no other link transmitting, we

assume that when the link is not saturated (xl ≤ cl ), then it will obtain a busy time proportional to

xl :

μl =
xl

cl
= xl ·dl . (2.1)

The validity of this assumption is discussed in Section 2.2.2; in the general case, it is in not valid

in practice, but for the problems we consider, we show that it is valid. When the link is saturated,

then μl = 1.

The source of a flow sends data at rate xi on each path Pi for i ∈ {1, . . . , M }, and we denote by xP

the rate vector [xi ]i∈{1,...,M }. If xi = 0, path Pi is not used. For each link l ∈ΛP , the total busy

time (accounting for interference) follows, if links are not saturated, from Equation (2.1), and is

given by

μl ,xP
= ∑

l ′∈Il

μl ′ =
M∑

i=1
xi

∑
l ′∈Il∩ΛPi

1

cl ′
=

M∑
i=1

xiαPi ,l , (2.2)

where we define

αPi ,l
.= ∑

l ′∈Il∩ΛPi

1

cl ′
.

Figure 2.1 illustrates the busy time with interfering links. We say that a rate vector xP is

admissible if for all l ∈ΛP , μl ,xP
≤ 1 (the busy-times on the links of the multipath never exceed

100%).

Writing αP ,l ∈RM for the vector [αPi ,l ]i∈{1,...,M }, Equation (2.2) can be recast as μl ,xP
=αT

P ,l · xP

with T denoting transposition. αP ,l is called the multipath-impact vector of P on l ; it depends

only on the network topology (i.e., the link capacities and interference domains) and on the paths,

and not on the rate vector xP . We denote by μxP
∈ RLP the vector μxP

= [μl ,xP
]l∈ΛP

and by

AP ∈RLP ×M the matrix

AP = [αT
P ,l ]l∈ΛP

. (2.3)
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Table 2.1 – Main notation of the network model.

V set of nodes

E set of all links of the network

L total number of links of the network (L = |E |)
Ek set of links of technology k
cl capacity of link l
Il interference domain of link l
μl busy time on link l
P = (P1, . . . ,PM ) multipath with M paths P1, . . . ,PM

ΛP links that constitute path P
ΛP links that constitute a multipath P : ΛP =⋃M

i=1ΛPi

αP,l
∑

l ′∈Il∩P 1/cl ′

αP ,l ∈RM multipath-impact vector [αPi ,l ]i∈{1,...,M }

AP ∈RLP ×M matrix [αT
P ,l ]l∈ΛP

xP ∈RM vector of rates sent on multipath P

xopt
P

optimal rate on the multipath P

Π set of all multipaths for the flow

xopt optimal rate for the flow, xopt = maxP ∈Π
∥∥∥xopt

P

∥∥∥
1

XP matrix [x (i )T
P

]i∈{1,...,M }

With the example of Figure 2.1 and P = (P1,P2), we have

AP =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

αT
P ,l3

αT
P ,l4

αT
P ,l5

αT
P ,l6

αT
P ,l7

αT
P ,l8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/cl3 0

1/cl5 1/cl4 +1/cl6

1/cl5 1/cl4 +1/cl6

1/cl5 1/cl4 +1/cl6

1/cl7 1/cl8

1/cl7 1/cl8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The optimal rate vector on multipath P , denoted by xopt
P

, is the admissible rate vector that

maximizes the 1-norm. Because AP · xP =μxP
, xopt

P
is a solution of the following system:

max
x

1T · x

subject to AP · x � 1 and x 
 0,
(2.4)

where 
 and � denote component-wise inequalities.

For a given flow, the optimal rate or optimal throughput (the two terms are used interchangeably

in this dissertation) is

xopt .= max
P ∈Π

∥∥∥xopt
P

∥∥∥
1

, (2.5)
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where Π denotes the set of all possible multipaths for the flow. We define the optimal number of

paths Mopt as the minimal number of paths in a multipath P opt reaching the optimal rate xopt. In

particular, all the Mopt paths of P opt are used.

Table 2.1 summarizes the main notations of the model.

Using Equation (2.1), we prove the following lemma.

Lemma 1. If n links l1, . . . , ln are all contending for the same medium in a single collision domain
(∀i , j ,Ili =Il j ), then the rate Rmax, defined as the maximum rate simultaneously achievable by
each link (i.e., each individual link transmits at rate Rmax), is given by

Rmax =
(

n∑
i=1

1

cli

)−1

=
(

n∑
i=1

dli

)−1

. (2.6)

Proof. Recall that μli is the airtime of link li (i.e., the proportion of time during which link li is

active). This problem is thus equivalent to solving
∑n

i=1μli = 1 (because all links contend for the

same medium) and μli cli =μl1 cl1 for all i ≥ 2 (all links send at same throughput). The solution to

this linear problem is

μli =
∏

j �=i cl j∑n
j=1

∏
j ′ �= j cl j ′

.

Setting Rmax =μli cli yields the result.

2.2.2 Model Validation

The key assumption made in the previous subsection is the linear relationship (2.1). To evaluate

its validity, we carry out the following experiment on our testbed that consists in 22 nodes spread

over an entire floor of an office building of 65×40 m (see Figure A.1 on page 135). The testbed

is described in details in Section A in the Appendix. A node sends traffic on a link l , in a first

stage with no other link contending, at various rates xl bytes per second (i.e., it sends one packet

of S bytes every S/xl second), and it measures the busy times.2 The experiment is repeated 50

times for each rate xl , and the results are shown in Figure 2.2 for both WiFi (left) and PLC (right).

The link capacity cl , indicated by the black vertical line, is the maximum rate received by the

destination. The dotted orange line indicates the linear relationship (2.1), clearly not valid in this

experiment.

The invalidity of the linear relationship (2.1) comes from the introduction of frame aggregation in

recent standards (e.g., IEEE 802.11n/ac for WiFi, IEEE 1901 for PLC) to increase throughput. At

low rates, frame aggregation is barely used, because the interval between two consecutive packets

2For WiFi, ath9k drivers expose directly the measured busy-times that can be accessed using netlink sockets [Hor04].

For PLC, the node sniffs all packets using faifa [CF08], and uses the duration field of every PLC packet to compute

the busy time.
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Figure 2.2 – Busy time μl versus rate xl sent on link l , without batches. WiFi (left) and
PLC (right). The experiment is repeated 50 times for each rate xl ; each point represents
the average busy time μl , with the bars representing standard deviations.

Figure 2.3 – Busy time μl versus rate sent on link l , with batches of B packets. WiFi (left,
B = 100) and PLC (right, B = 200).

Figure 2.4 – Busy time μl versus rate sent on link l , with 3 contending nodes. WiFi (left)
and PLC (right).
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is too large for the network interface to wait for packets to aggregate. In contrast, it is fully used

when the source sends saturated traffic. Having two different operating regimes invalidates the

linear relationship (2.1). To make it valid, we can force frame aggregation even at low rates

by sending batches of packets. We repeat the experiment with the node now sending traffic by

batches of B packets: For a rate xl , the node sends B packets of S bytes every B ·S/xl second. In

Figure 2.3, we see that the linear relationship (2.1) is now valid for both technologies. We repeat

this experiment on several links with similar results. A difference between PLC and WiFi is that

PLC requires longer batches; we use B = 100 for WiFi and B = 200 for PLC. Note that compared

to Figure 2.2, we see an increase of the standard deviation, in particular for WiFi.

The relation busy time vs. rate is also linear when more than one node transmits, which justifies

Equation (2.2). We repeat the same experiment and send traffic at various rates on link l ; two

other nodes of Il now contend and transmit traffic at constant rate. The transmitting nodes

send traffic by batches of B = 100 packets for WiFi, B = 200 for PLC. In Figure 2.4, we show

the measurements of the busy times μl . The black vertical line now indicates the maximum

achievable rate under the contention of the two other nodes. Busy times μl are also linear in rates

xl when other nodes transmit.

In addition, sending packets by batches is required for Equation (2.2) to be valid, but only

when the medium is significantly below saturation. When the total busy-time (accounting

for interference) approaches 100%, then all nodes use frame aggregation to maximize their

throughput, and the busy-time per link μl is given by Equation (2.1). We show this by verifying

the validity of Lemma 1 with testbed experiments. We select randomly n links in the center of

the testbed, i.e., where interferences are likely to happen (in Figure A.1 on page 135, the lines

between respectively Nodes 5 and 8, Nodes 1 and 6, Nodes 17 and 19, and Nodes 18 and 22 are

thick walls through which WiFi signal is largely attenuated). For WiFi, we use Nodes 6 to 18;

for PLC, we use Nodes 6 to 13, because Nodes 1 to 13 and Nodes 14 to 22 form two different

PLC subnetworks and because a link from one subnetwork does not interfere with a link from the

other subnetwork. We check that the n links indeed interfere with each other by checking that

when a link is active, all the other sources overhear the transmitted packets. We first measure

the individual link capacities by sending UDP traffic (without batches) with iperf on the n

links in a row; we compute the theoretical Rmax by using Equation (2.6). We then measure the

experimental Rmax by sending UDP traffic simultaneously on the n links, with increasing rates,

keeping the maximum rate that all links support. We show the results for 10 randomly selected

experiments, with n = 2 in Figures 2.5 and 2.6 (respectively for WiFi and PLC), and with n = 3 in

Figures 2.7 and 2.8 (respectively for WiFi and PLC). It is clear that Lemma 1 gives very precise

results, which validates Equation (2.1) when the total busy-time approaches 100%.

The results of this section indicate that it is indeed possible to find xopt
P

by solving System (2.4).

Section 4.6 presents additional experimental results that show that this method gives precise

results.
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Figure 2.5 – Theoretical and experimental Rmax, WiFi (n = 2).
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Figure 2.6 – Theoretical and experimental Rmax, PLC (n = 2).
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Figure 2.7 – Theoretical and experimental Rmax, WiFi (n = 3).
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Figure 2.8 – Theoretical and experimental Rmax, PLC (n = 3).

18



2.3. Optimal Number of Paths with Multipath Routing in Hybrid Mesh Networks

2.3 Optimal Number of Paths with Multipath Routing in Hybrid
Mesh Networks

In this section, we study the optimal number of paths Mopt, as introduced in Section 2.2, when

using multipath routing in hybrid networks with shared-medium and orthogonal technologies.

We first explain why this is a difficult problem in practice. We then present our analytical findings

valid for certain classes of networks. Finally, these findings are verified with simulations and

experiments, and we also present numerical and experimental results for general networks.

2.3.1 Practical Difficulties for Computing the Optimal Number of Paths

The optimal number of paths Mopt is the minimal number of paths in a multipath P opt that reaches

the optimal rate xopt. Because a path has no loop, there is a finite number of paths between

the source and the destination, and in theory, it is possible to find xopt by solving System (2.4)

and computing xopt

P all where P all is the multipath containing all the possible paths for a given

flow. However, the number of paths in P all grows exponentially with the number of nodes and

technologies, which makes this method impractical. But in fact, there is no better solution for

finding xopt and P opt: It has been shown that in a network with interference, finding an optimal

multipath is NP-hard [JPPQ05].

Even if we can find the optimal rate xopt, there might be several optimal multipaths with different

number of paths, and finding the minimal number Mopt is still challenging: It has been shown

that computing the minimal-rank solution of a linear problem is also NP-hard [RFP10]. This

means that finding Mopt by computing the minimal-rank solution of System (2.4) is not practical:

The number of possible multipaths grows exponentially with the number of paths, that grows

itself exponentially with the number of nodes and technologies.

Because of these practical difficulties, we study here Mopt without searching for an optimal

multipath of minimum rank. Finding Mopt without knowing the corresponding optimal multipath

P opt remains of practical interest, because it makes it possible to limit the size of the multipaths

returned by a multipath-routing protocol without harming the performance of the protocol.

2.3.2 Analysis

The key result is that in a hybrid mesh network with shared-medium technologies, Mopt is

tightly linked with the number K of orthogonal technologies. This result is straightforward in a

single-hop network (i.e., in the infrastructure mode): If a node is connected to another node with

K distinct technologies, it is obvious that the optimal throughput will be reached when the K

technologies are used, i.e., that Mopt = K . In a multi-hop mesh network, this is not true in general,

and we show that the network needs to verify some specific conditions to prove analytically a

relation between Mopt and K .

19



Chapter 2. Multipath Routing in Hybrid Mesh Networks

A

B

C

D

EF

Figure 2.9 – Example of a typical network for a five-room home with 6 nodes and K = 2
technologies: WiFi (dotted blue lines) and PLC (plain orange lines). This network is both
multi-complete and multi-connected.

We define the following terms.

Definition 1. The network is multi-complete if for every technology k, every link l ∈ Ek of the
network interferes with every other link l ′ ∈ Ek (i.e., the interference graph for each technology is
complete).

Note that this does not mean that the graph (V ,Ek ) is complete (i.e., that every node is directly

connected with every other node): For example, in Figure 2.9 that represents a typical network

for a five-room home, all WiFi links (dotted lines) interfere with each other and all PLC links

(plain lines) interfere with each other, i.e., the network is multi-complete; but there is no direct

WiFi and PLC link for example between Node A and Node C and between Node D and Node E.

Definition 2. The network is multi-connected if all the K sub-networks (V ,E1), . . . , (V ,EK ) are
connected: For each technology k, each node in V can communicate with each other node in V ,
possibly with multiple hops, by using only links of Ek .

The network represented in Figure 2.9 is multi-connected: every node can reach every other node

by using only WiFi links and only PLC links, possibly with multi-hop paths.

We start by showing that for networks that are not multi-complete or not multi-connected, it is

possible to find examples where Mopt �= K .

Let us first consider the network example in Figure 2.10. There are K = 3 technologies, rep-

resented by plain, dashed, and dotted lines with different colors. Clearly, the network is not

multi-connected, because Node 1 cannot reach Node 3 by using any single technology only.

There are only M = 2 possible paths between Node 1 and Node 3; consequently, Mopt ≤ 2, i.e.,

Mopt < K . In fact, depending on the link capacities, either Mopt = 1 if the green dashed link

between Node 2 and Node 3 is the bottleneck link; otherwise, Mopt = 2.
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Node 1 Node 2 Node 3

Figure 2.10 – Example of a network that is not multi-connected, with K = 3 technologies
(plain, dashed and dotted lines).

Source Destination

Figure 2.11 – Example of a network that is not multi-complete, with K = 1 technology.

Let us then consider the network example in Figure 2.11 with K = 1 technology. Links on one

side of the wall (the black rectangle) do not interfere with the links on the other side of the wall,

i.e., the network is not multi-complete. There are two possible paths, and if the bottleneck of

these paths is not the first-hop link or the last-hop link, then using M = 2 path yields a better

throughput than using only one path, and Mopt = 2, i.e., Mopt > K .

We then present our analytical results. We show that the multi-complete and multi-connected

conditions are sufficient to prove analytically a relation between Mopt and K . The proofs of the

theorems of this section are presented in the Appendix B.1.

Theorem 1. In a multi-complete network, Mopt ≤ K .

Because small networks (e.g., typical home networks) are likely to be multi-complete, Theorem 1

shows in particular that in small networks with a single technology (K = 1), multipath routing is

likely to be useless in terms of throughput.

The next analytical results are valid under the following assumption. In the numerical and

experimental results presented in Section 2.3.3, this assumption is not made, and we show that

the results remain true in the vast majority of the cases.

Assumption 1. A property that depends on the link capacities is true if and only if there is ε0 > 0

such that for all 0 < ε< ε0 and all links l0 ∈ E , the property remains true if the capacity of l0 is
modified as cl0 (1±ε) whereas the capacities of the other links remain unchanged.

This means that to be true, a property must be robust against small variations of the link capacities.

For example, Assumption 1 yields that for two links l ,k ∈ E , cl = ck if and only if l = k: If we

assume cl = ck and l �= k, then adding any small ε> 0 to one of the two link capacities invalidates
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the equality, because cl ±ε �= ck . More generally, Assumption 1 yields that

∑
l∈S1

1

cl
= ∑

l∈S2

1

cl
if and only if S1 = S2. (2.7)

Lemma 2. With M ≤ K , an admissible rate vector xP sent on a multipath P with M paths
saturates at most M technologies, i.e., at most M technologies have a link whose busy time is
exactly 1.

A counter-example of Lemma 2 when Assumption 1 is not verified is the case of a single two-hop

path (M = 1) with two links l1 and l2 that use two different technologies (K = 2), but have

the exact same capacity (cl1 = cl2 , which contradicts Assumption 1). In this scenario, sending

traffic only on this single-path at a rate cl1 saturates both l1 and l2, i.e., it saturates the K = 2

technologies. In practice, it is unlikely that two links with different technologies have the same

capacity, and we show in Section 2.3.3 that the result holds in the vast majority of the cases.

Theorem 2. In a multi-connected network, Mopt ≥ K .

Corollary 1. In a multi-complete and multi-connected network, Mopt = K .

For example, in the typical home network presented in Figure 2.9 that is both multi-complete and

multi-connected, Corollary 1 shows that the optimal number of paths Mopt is equal to the number

of technologies K .

2.3.3 Numerical and Experimental Results

In this section, we verify with simulations and testbed experiments the findings of our analysis

for multi-complete and multi-connected networks. We also present numerical and experimental

results for more general networks that are not necessarily multi-complete and multi-connected.

Benchmarking Methods for the Optimal Number of Paths

Brute-force Method As explained in Section 2.3.1, finding an optimal multipath in a network

with interference is NP-hard [JPPQ05]. To the best of our knowledge, all practical multipath-

routing protocols use heuristics and do not guarantee the optimality of their results. We can find

an optimal multipath by using brute-force, i.e., by computing the set P all of all possible paths and

by solving System (2.4) with P =P all. However, the number of possible paths is exponential in

the number of nodes and technologies, which makes this method highly computation-intensive.

In fact, in the simulations of Section 2.3.3, we have to limit the number of paths in order to be

able to solve System (2.4). We do so, in such a way that this is very unlikely to change the final

result, by limiting the number of hops in the paths. We set the maximum number of hops to three

times the minimum number of hops between the source and the destination. For example, if there

exists at least one two-hop path between the source and the destination but no single-hop path,
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we limit the paths between the source and the destination to those with six or fewer hops. If the

source and the destination are two-hop away, it is very unlikely that paths of seven or more hops

are required to reach the optimal rate xopt.

Backpressure Method It is also possible to find a multipath arbitrarily close to an optimal

one with the method described by Neely et al. [NML08]. This method employs a backpressure

scheme: The source initially floods the network by sending traffic in all directions; packets that

arrive at the destination are removed from the network, whereas other packets stay in the queues

of the nodes. Gradually, traffic is sent only to nodes that have small queues, which indicates

that they are in the “right” direction. This scheme is shown to converge arbitrarily close to the

maximal achievable rate xopt as given by Equation (2.5), namely to (1−1/V ) · xopt for some

constant V . In the simulations and experiments, we choose V = 1000, such that the difference

between the optimal rate and the rate that is found by this method is at most 0.001 · xopt. By

considering only the links that are used once the scheme has converged (i.e., the links on which

traffic is sent at a rate above the threshold 0.001 · xopt), we compute a multipath that yields a rate

arbitrarily close to optimum, and we assume that it uses the same number of paths as an optimal

multipath.

These two methods give us one multipath reaching the optimal rate (or arbitrarily close to it),

but they are not guaranteed to return the optimal multipath with a minimal number of paths,

consequently we can only compute an upper bound of Mopt. As explained in Section 2.3.1,

computing the minimal-rank solution of a linear problem is NP-hard; here, with up to several

millions of possible paths, the number of possible multipaths is far too large to enable us to find

the exact value of Mopt. However, we believe that in practice, there is a single optimal multipath

in most of the cases, and that the upper bound is therefore tight in most of the cases.

We have only a benchmarking goal when we experimentally evaluate Mopt, and the efficiency

of the benchmarking schemes is not the subject of this work. In fact, both these benchmarking

schemes are impractical. The brute-force scheme requires solving a system whose size is

exponential in the number of nodes and technologies; most of our simulations take several

hours to find the result. The backpressure scheme would also be difficult to use in a real-world

application for several reasons: (i ) It requires knowing the interference domain of each link

in advance, which is typically challenging or impractical [PD11]. (ii ) It requires a centralized

coordinator that decides at each time slot which links are to be used. (iii ) It initially floods the

entire network.

Simulation Results

We present results obtained with a Matlab simulator.3 Each node has K = 3 technologies, with

random ranges between 20 m and 40 m, and random maximum rates between 20 Mb/s and

3The code of the simulator and the code for the experiments presented in Section 2.3.3 are available at

https://c4science.ch/diffusion/6360.
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180 Mb/s. Each link capacity is distributed according to a linear function that decreases with the

distance, to which is added a zero-mean normally-distributed noise, with parameters chosen such

that the capacities are close to the ones observed on our WiFi-PLC testbed (see Section A.3 in the

Appendix). One technology uses the parameters found for PLC, the other two use the parameters

found for WiFi (i.e., we simulate networks that have PLC and two orthogonal WiFi channels).

The technologies are shared-medium and orthogonal. Two links l and l ′ of a same technology

interfere if one node of l and one node of l ′ are within range of each other. We compute an upper

bound on Mopt with the two different benchmarking methods described in Section 2.3.3, and we

keep the minimum of the two results (in the following, we slightly abuse notation and write Mopt

for this upper bound).

We first simulate a multi-connected and multi-complete network in order to compare our analysis

with the simulation results. The network, denoted by Network 1, is a 40×40 m square with

10 nodes randomly placed. We simulate 1000 different random instances of Network 1: For

each instance, the placement of the nodes is made uniformly at random, the choice of the link

capacities is made randomly according to the distribution described in the previous paragraph,

and the choice of the source and destination is made uniformly at random. If the network instance

is not a multi-connected and multi-complete network, we remove the experiment (this occurs in

3% of the 1000 experiments). In 99.4% of the cases, the optimal number of paths is 3, which

shows that in a multi-complete and multi-connected network, Mopt = K , as proven by Corollary 1.

In a very few instances (0.2%), we find Mopt = 4 > K ; theses cases appear when the optimal

multipath with minimal number of paths is not found. In a very few instances (0.4%), we find

Mopt = 2 < K ; these cases appear when the rate for a third path is below the threshold described

in Section 2.3.3, equal to 0.001 · xopt.

We then study through simulations whether the analytical results presented in Section 2.3.2 can

be extended to more general networks. We simulate three larger networks that are not necessarily

multi-connected and multi-complete: Network 2, a 100×100 m square with 15 nodes; Network 3,

a 200×150 m rectangle with 20 nodes; and Network 4, a 200×150 m rectangle with 30 nodes.

In these larger networks, we simulate the fact that a PLC link exists only when two nodes are

connected to the same central coordinator [Plc10] (in particular, when two nodes are on the

same electrical panel) by dividing the square in two equal parts, and by considering that, for one

of the three technologies (the technology that simulates PLC), a link exists between two nodes

only if the two nodes are in the same part. In particular, this means that the networks are never

multi-connected. We simulate 1000 random instances of Network 2 and Network 4, and 1500

random instances of Network 3; there are more instances for Network 3 because the instances

where there is no connectivity between the source and destination nodes are more frequent. In

total, there are 5% of instances with no connectivity between the source and destination nodes

for Network 2, 39% for Network 3 and 17% for Network 4, and these instances are not included

in the results. Figure 2.12 shows the cumulative distributive function of Mopt for respectively

Network 2 (left), Network 3 (center) and Network 4 (right). Even if no theoretical result has been

proven for this network, we see that the optimal number of hops Mopt remains tightly linked with

the number of technologies K : In a large majority of the instances (respectively 85%, 92% and
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Figure 2.12 – Cumulative distribution function of the optimal number of paths Mopt for
Network 2 (left), a general 100×100 m network with 15 nodes, Network 3 (center), a gen-
eral 200×150 m network with 20 nodes, and Network 4 (right), a general 200×150 m net-
work with 30 nodes. Simulations.
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Figure 2.13 – Upper-bound eK on the error made by using at most K paths when Mopt > K
for Network 2 (left), a general 100×100 m network with 15 nodes, Network 3 (center), a
general 200×150 m network with 20 nodes, and Network 4 (right), a general 200×150 m
network with 30 nodes. Simulations.

79%), we have Mopt ≤ K .

We finally study, for the instances where Mopt > K , the rate loss caused by using at most K paths.

We do so by comparing the optimal rate xopt obtained on an optimal multipath P opt, with the rate

xK obtained by computing the optimal rate on the K best paths in P opt. Note that xK is only a

lower bound on the optimal rate xopt
K achieved with multipaths of K paths, as there is no guarantee

that the optimal multipath with K paths contains only paths that belong to the optimal multipath

P opt. As explained at in Section 2.3.1, computing the actual optimal rate with multipaths of

M = K paths is NP-hard, and it cannot be computed in practice with up to several millions of

possible paths, hence more than 1018 possible multipaths of M = 3 paths when K = 3. Using

the K best paths of P opt is simple and enables us to find an upper bound eK
.= xopt−xK

xopt on the

minimum relative error eopt
K

.= xopt−xopt
K

xopt .

Figure 2.13 shows eK for Network 2 (left), Network 3 (center) and Network 4 (right), in the

(respectively) 17%, 9% and 21% of the instances where Mopt > K = 3. We see that the error made

by using only K paths is very small: In (respectively) 95%, 95% and 90% of the instances where

Mopt > K , the relative error made by using only K paths is smaller than 0.1. Over all instances for

each network, the relative error made by using only K paths is smaller than 0.1 in (respectively)
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99.2%, 99.6% and 97.8% of the instances; and the relative error made by using only K paths is

smaller than 0.05 in (respectively) 96.5%, 98.5% and 93.6% of the instances. Over all instances

of Networks 1 to 4, the relative error made by using only K paths is smaller than 0.1 in 99.2% of

the instances and smaller than 0.05 in 97.3% of the instances.

Experimental Results

We now present results obtained on our testbed described in Section A in the Appendix. All the

nodes have two WiFi interfaces, and a HomePlug AV PLC interface connected to the electrical

network of the building. The first WiFi channel is connected to a channel in the 2.4 GHz band,

the second to a channel in the 5 GHz, consequently, they do not interfere. We run our experiments

at night to avoid external interference from the WiFi network of our university that operates in the

2.4 GHz band. To compute the interference domain Il of each link l ∈ E , we run saturated traffic

simultaneously on l and l ′ for each link l ′ �= l , and we say that l ′ ∈Il if we observe a throughput

degradation compared with the throughput when traffic is sent only on l . Note that this method is

quadratic in the number of links, and is therefore not practical.

We first carry experiments with Nodes 6 to 13 only. This network is multi-complete (for each

technology, all links interfere with each other). Again, this does not mean that the network

itself is complete (e.g., Node 6 cannot communicate directly with Node 12 with any technology).

We start with a scenario where the PLC network is not multi-connected. This is achieved by

setting logically two PLC networks with two different network management keys [Plc10], one

for Nodes 6 to 9, one for Nodes 10 to 13. Links in the two different PLC networks still interfere

with each other, i.e., the network is multi-complete. We choose randomly 28 different flows

(i.e., source-destination pairs) and run the optimal backpressure algorithm described above.

The measurements of the link capacities and interference domains take several hours, and the

algorithm converges in about 20 minutes on average. Because the network is multi-complete, we

expect that Mopt ≤ 3 (Theorem 1); and because the two WiFi networks are connected, we expect

that Mopt ≥ 2 (Theorem 2). Figure 2.14 (left) shows that this is indeed the case.

Next, we connect Nodes 6 to 13 to the same logical PLC network, i.e., the network with K = 3

technologies is multi-connected and multi-complete. We choose randomly 32 different flows

and run the optimal backpressure algorithm. The proportion for each value of Mopt is shown

in Figure 2.14 (center). In more than 90% of the cases, Mopt = 3, as expected. In one case, we

find Mopt = 4; this is because link capacities vary slightly, and the algorithm alternates between

different paths that yield very close rates. In one case, Mopt = 2 because the capacities of two

links of two different technologies are too close for a third path to exist (i.e., Assumption 1 is not

verified).

Finally, we perform an experiment with the whole testbed (Nodes 1 to 22) that is neither multi-

complete nor multi-connected: Nodes 1 to 13 and Nodes 14 to 22 are on two different electrical

panels, i.e., on two different PLC networks, and the two PLC networks do not interfere with each
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Figure 2.14 – Proportion of each value of Mopt in a multi-complete but not multi-connected
network (left) and in a multi-complete and multi-connected network (center). Cumulative
distribution function of Mopt in a general 65×40 m network (right). Testbed experiments.

other; also, WiFi links from one side (e.g., between Node 1 and Node 2) do not interfere with

WiFi links from the other side (e.g., between Node 18 and Node 19). We choose randomly 42

flows. The cumulative distribution function of Mopt is shown in Figure 2.14 (right). Similarly to

the simulations of Section 2.3.3, we see that in most of the cases (about 90%), Mopt ≤ K . In the

remaining cases where Mopt > K , the relative error eK made by using only K paths, as defined in

Section 2.3.3, is always below 0.1 (the maximum relative error is 0.08), and it is below 0.05 in

95.2% of the cases (all cases but two).

2.4 A Multipath Routing Protocol for Improved Throughput

We now present a novel multipath-routing algorithm for hybrid networks. Its purpose is to obtain

an efficient multipath, i.e., a combination of paths that can be simultaneously employed by a given

flow. As explained in Section 2.3.1, computing the optimal multipath is NP-hard, and our protocol

relies on heuristics. As opposed to existing procedures that only focus on finding maximally

disjoint paths [e.g., LG01, THT08, GRS11, DQZ+15], it aims at finding the combination of

paths that yields the highest total throughput in the presence of interference: In our protocol, a

same link can, and it should if useful, be used by several paths. The multipath protocol, described

in Section 2.4.2, relies on an efficient single-path procedure, described in Section 2.4.1. This

single-path procedure is based on an algorithm for multi-channel wireless networks, proposed by

Yang et al. [YWK05].

2.4.1 Single-Path Procedure

The single-path procedure applies an efficient shortest-path algorithm (e.g., Dijkstra’s algorithm)

on the multigraph G(V ,E ). A weight W (l ) is assigned to each link l . In addition, because

contiguous links that use the same technology necessarily interfere for both WiFi and PLC, we

want to favor paths whose contiguous links use different technologies, which mitigates intra-path

interference. Similarly to Yang et al. [YWK05], we add a channel-switching cost (CSC). The

CSC is an extra weight assigned to each node u ∈ V , equal to ws(u) when a path switches
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interface at node u, and to wns(u) when a path does not switch interface. The weight of a path is

the sum of the weights of its links and of the CSCs of its intermediate nodes. For example, in

Figure 1.3 on page 6, Path 1 employs two links with two different technologies (denoted by l PLC
A→B

and l WiFi
B→C ) and hence the total weight of Path 1 is given by

W (Path 1) =W
(
l PLC

A→B

)
+ws(B)+W

(
l WiFi

B→C

)
.

Similarly, because Path 2 uses two WiFi links l WiFi
A→B and l WiFi

B→C , its total weight is

W (Path 2) =W
(
l WiFi

A→B

)
+wns(B)+W

(
l WiFi

B→C

)
.

Requiring ws(u) < wns(u) at each node u favors paths with alternating technologies. To guarantee

that Dijkstra’s algorithm returns the shortest path, the link-metric must be isotone [Sob01]; it is

possible to make the CSC compatible isotone by performing the shortest-path computations on

the virtual graph of the network interfaces [YWK05].

In our multipath-routing protocol, at any link l , we set W (l ) = dl in order to favor the paths of

higher capacities; up to a constant factor, dl is equivalent to the ETT metric [DPZ04], used by

many schemes [e.g., DPZ04, KV06, ECM+08, SZ10]. If the weights wns and ws can be chosen

differently for each path, it is easy to show that, for two-hop paths, the optimal switching cost for

adjacent links is wns = 0 and ws =−min(dli ,dle ), where li is the ingress link and le the egress

link: Take the two-hop topology of Figure 2.15. There are four possible paths from A to C:

• WiFi-WiFi, of capacity CW W = ( 1
clW

1

+ 1
clW

2

)−1 (see Lemma 1 in Section 2.2.1) and of weight

WW W = 1
clW

1

+ 1
clW

2

+wns .

• WiFi-PLC, of capacity CW P = min(clW
1

,cl P
2

) and of weight WW P = 1
clW

1

+ 1
cl P

2

+ws .

• PLC-PLC, of capacity CPP = ( 1
cl1

2

+ 1
cl P

2

)−1 and of weight WPP = 1
cl1

2

+ 1
clP

2

+wns .

• WiFi-PLC, of capacity CPW = min(cl 1
2
,clW

2
) and of weight WPW = 1

cl1
2

+ 1
clW

2

+ws .

By rewriting

CW P =
(

(
1

clW
1

+ 1

cl P
2

−min(
1

clW
1

,
1

cl P
2

)

)−1

,

we see directly (remember that dl = 1/cl ) that by choosing ws =−min(dli ,dle ) and wns = 0, we

have, for any path P , W (P ) =C (P )−1, which guarantees that the shortest path is the path with

maximum throughput.

However, to be able to guarantee that the metric is isotone and that efficient shortest-path

algorithms (such as Dijkstra’s algorithm or Bellman-Ford’s algorithm) converge to the shortest
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Figure 2.15 – Network example with WiFi (dotted lines) and PLC (plain lines).

path, the weights wns and ws need to be chosen globally for a node, and they cannot be chosen

depending on the path. For this reason, due to the above result and because a link is more likely

to be used in a path if it has high capacity (i.e., small dl ), we believe that the best choice under

this constraint is to have, at any node u, wns(u) = 0 and ws(u) =−minl∈L(u) dl , where L(u) is

the set of egress links for node u. It is more efficient to have non-negative weights, because it

enables us to employ Dijkstra’s algorithm rather than Bellman-Ford’s algorithm; for this reason,

we use instead wns(u) = minl∈L(u) dl and ws(u) = 0.

The link-metric W is different from the metric, called IRU, of Yang et al. [YWK05]: Our routing

protocol focuses on intra-flow interference (via the CSC), whereas IRU also accounts for inter-

flow interference. In this dissertation, we propose a multipath congestion-controller (presented in

Section 3.3) for handling inter-flow interference.

This single-path procedure is not necessarily optimal and the shortest path is not always the path

with highest throughput (as illustrated further in Section 2.4.2). We account for this non-optimality

in the multipath procedure presented next.

2.4.2 Finding Efficient Combinations of Paths

We now introduce our novel multipath-routing protocol and describe our procedure for finding an

efficient multipath. To quantify the effect of employing several paths simultaneously, we define a

procedure G̃ =update(P,G) for a multigraph G and a path P . G̃ is a view of the multigraph G

where the capacities of the links have been updated to reflect the consumption of resources when

traffic is sent over P . Let R(P ) be the maximum rate achievable (end-to-end) on path P . Once the

procedure update(P,G) has been applied, the capacities of all the links in the network G̃ are

the available capacities if P is fully loaded, i.e., if traffic is sent on P at rate R(P ). R(P ) is the

maximal rate supported simultaneously by all the links of the path, and can thus be computed

as follows. From Lemma 1, the maximal traffic rate R(l ,P ) on path P supported by a link l ∈ P

is given by
(∑

l ′∈Il∩P dl ′
)−1

. A traffic rate R is supported by P if and only if R ≤ R(l ,P ) for all

l ∈ P , hence R(P ) = minl∈P R(l ,P ), or, equivalently,

R(P ) =
(

max
l∈P

∑
l ′∈Il∩P

dl ′

)−1

. (2.8)
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We use Equation (2.1) to find the airtime of a link l ∈ P when data is sent on P at rate R(P ):

μl = R(P ) ·dl . For each link l of the network, the remaining proportion of idle time when data is

sent on path P at rate R(P ) is

r (l ,P ) =
(

1− ∑
l ′∈Il∩P

R(P ) ·dl ′

)
.

By definition of R(P ), for l ∈ P , we have r (l ,P ) ≥ 0, and there is at least one link l0 of P for

which r (l0,P ) = 0 (namely, the bottleneck link l0 = argminl∈P R(l ,P )). The procedure update

is then defined as follows.

Procedure G̃ =update(P,G)

For each link l ∈⋃
l ′∈P Il ′ , update the capacity by:

CG̃ (l ) ← max{0,CG (l ) · r (l ,P )} ,

where CG (l ) denotes the capacity of link l in multigraph G .

The procedure update assumes that when a path P is used, traffic is sent on it at the maximum

rate R(P ). This choice is optimal for simple topologies like the typical example of Figure 1.3.

For general networks, this assumption makes the computation much faster, which enables the

procedure to be used in practice, while yielding performance very close to optimal-but-impractical

schemes (see the evaluation in Section 3.4).

To compute efficient combinations of paths, we recursively apply the procedure update, along

with the single-path procedure of Section 2.4.1. Observe that the best path is not necessarily part

of the best multipath: Consider for example the network of Figure 2.16. P2 can accommodate

a traffic rate of 11 Mb/s, whereas P1 and P3 can both accommodate only 10 Mb/s: P2 is the

best isolated path. However, the best multipath with two paths is P = (P1,P3): With Lemma 1,

we compute that P can accommodate 5+10 = 15 Mb/s. To avoid being constrained to always

using the best isolated path, we compute in G the n shortest paths of our single-path procedure

described above. We denote this step by n-shortest(G). Considering the n shortest paths

also enables us to account for the potential non-optimality of the single-path procedure.

To obtain the final combination of paths, we build an exploration tree T in which the root

G0 is the initial multigraph. Each edge represents a path, and each vertex a multigraph with

updated link capacities. The exploration tree is built recursively; its construction is illustrated in

Figure 2.17, for the example network of Figure 2.16. To a vertex G of T , we add j ≤ n edges

that are the j non-empty paths (Pi )i≤ j returned by n-shortest(G), and j children vertices

that are the multigraphs update(Pi ,G), for which link capacities have been updated to reflect

the consumption of resources by Pi . After update(P,G), we know that at least one link l0 ∈ P

has a zero capacity, thus the procedure for building T eventually terminates; but the depth of
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Figure 2.16 – Example of a network with five nodes, two technologies (WiFi with blue
dotted lines, PLC with orange plain lines), three PLC links l P

1 , l P
2 , l P

3 and six WiFi links
lW

1 , . . . , lW
6 . In this example, we consider that all links of a same medium interfere with each

other, i.e., I
(
l P

i

)= {
l P

1 , l P
2 , l P

3

}
for all 1 ≤ i ≤ 3 and I

(
lW

i

)= {
lW

1 , . . . , lW
6

}
for all 1 ≤ i ≤ 6.
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Figure 2.17 – Illustration of the tree construction, using the network multigraph of Fig-
ure 2.16, with n = 3. Link capacities are in Mb/s. G1,G2 and G3 are multigraphs with
capacities updated to reflect the consumption of resources by resp. P1, P2 and P3. There is
connectivity between the source and the destination only in G1, therefore, the construction
process continues only from G1, after which all links have 0 capacity.
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T can, in the worst case, be the total number of links existing in the network, in which case the

number of vertices would scale exponentially in the network size. To avoid this problem, the

number of paths can be limited by stopping the update process along a branch of T , once this

branch has reached a certain depth: In Section 2.3, we have shown that limiting the number of

paths M to the number of technologies K barely harm the throughput experienced with multipath

routing. Here, the number of paths is the depth of the tree, and we stop the procedure once the

branch has its depth equal to K . For example, when there are K = 2 technologies, we limit the

depth of the tree T to two, which makes this procedure efficient. In the example of Figure 2.17,

the three shortest paths in the original network G0 are P1, P2 and P3. Therefore, G0 has three

children G1, G2, and G3, whose link capacities reflect the potential consumption of P1, P2 and

P3, respectively. In G2 and G3, there is no path between the source and the destination, and they

do not have children in T . In G1, there are three paths between the source and the destination

and G1 has three children in T .

To each edge P out of a vertex G, we associate a weight equal to the capacity R(P ) of P in G.

Let L be the set of multigraph leafs of the tree T . For each multigraph leaf G ∈L , the set of

edges (i.e., paths of the network) from G0 to G forms a multipath, denoted by PG . Then, C (PG )

defined by

C (PG ) =
∑

P∈PG

R(P ) (2.9)

is the estimated capacity of the multipath PG , i.e., the estimated achievable rate when using

simultaneously all the paths in the multipath PG . The final multipath returned by the whole

routing procedure is P max of maximum associated capacity, i.e., P max =PGmax where

Gmax = argmax
G∈L

C (PG ) .

In the example of Figure 2.17, the best multipath is P max = (P1,P3) with C
(
P max

)= 15 Mb/s.

With this method, the number of paths returned by the routing algorithm depends on the number

of edges (i.e., paths) in the branch of the leaf Gmax. This is a desirable feature, as it means that

the number of paths in the multipath depends on the network topology, and that additional paths

are considered only if they provide additional gain.

If we limit our routing protocol to returning only one path, we do not necessarily find the path

returned by the single-path procedure described in Section 2.4.1. For example, take the network

depicted in Figure 2.18. We assume that all links of a technology interfere with all other links of

this technology (the network is multi-complete). P1 is the path such that Λ(P1) = {
l P

1 , lW
2 , lW

3

}
and P2 is the path such that Λ(P2) = {

lW
1 , l P

2

}
. The weight of P1 for the single-path procedure of

Section 2.4.1 is

W (P1) = 1

30
+ 1

20
= 5

60
.
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Figure 2.18 – Network example with WiFi (dotted lines) and PLC (plain lines) that illus-
trates the sub-optimality of the single-path procedure described in Section 2.4.1. P1 is the
path such that Λ(P1) = {l P
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The weight of P2 is

W (P2) = 1

25
+ 1

50
+wns(c)+ 1

50
= 1

25
+ 3

50
= 1

10
.

Consequently, as W (P1) <W (P2), the single-path procedure will return P1.

In contrast, if we apply the multipath procedure described in this section, we compute the

maximum achievable rate on both paths

R(P1) =
(
max(

1

30
,

1

20
)

)−1

= 20 and R(P2) =
(
max(

1

25
,

1

50
+ 1

50
)

)−1

= 25.

These values are the actual path capacities. Our multipath procedure will correctly return P2,

which has a capacity of 25 Mb/s, higher than the capacity of P1 (20 Mb/s). In fact, the single-path

procedure tends to favor short paths that might sometimes be less efficient.

As explained in Section 2.1, the performance gains obtained with multipath routing are important

only if the rate at which traffic is sent on each path is carefully selected. For this reason, in the

next chapter, we present a novel multipath congestion controller. In the experimental evaluation

of Section 3.5, we show that our multipath-routing protocol performs better than the single-path

procedure and than other multipath-routing protocols. This comes at the cost of an increased

complexity, because we need to build the tree T and to estimate the capacity for each leaf of T .

However, our protocol remains practical: On the routers of our testbed (the routers are described

in Section A in the Appendix), with n = 5, the paths are computed in about 20 ms on average,

with a maximum value of about 40 ms. The routing protocol is not responsible for dealing

with short-term variabilities that are handled by the congestion controller, described in the next

chapter; the paths need to be recomputed only when there is a link failure or a large capacity

variation, which occurs infrequently (order of minutes or hours). Each source can also compute

in advance (before a flow is initiated) the multipath towards each destination, which is linear in

the number of nodes and is reasonable in a local network where there are typically only a few

tens of nodes. Hence this computation time is not an issue in practice.
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2.5 Related Work

Multipath routing has been widely studied in several contexts: mobile ad-hoc networks

(MANETs) [TTAE09], wireless sensor networks (WSNs) [AKK04], mesh networks [TM06]

and traffic engineering [LC02]. In MANETs and WSNs, multipath-routing protocols have been

shown to have several advantages, such as reduced delays and better reliability and throughput,

and protocols have been proposed both with a single wireless channel [GGSE01, LLZ06] and

with multi-channel wireless networks [DQZ+15, GRS11, THT08]. These protocols use heuristics

to build the paths and they are consequently not guaranteed to be optimal. In addition, they mostly

look for maximally disjoint paths, and do not try to optimize throughput as we do in Section 2.4.

Similarly to our protocol, they use heuristics and do not guarantee optimality. Multipath routing

has recently received renewed attention, in particular with the development of multipath TCP

(MPTCP) [FRH+11, FRHB13]. For practical implementations of multipath (e.g., with MPTCP),

the set of paths is chosen in advance and congestion control is then carried on these chosen paths.

Optimal multipath routing and scheduling have also been studied in several works, mostly at a

theoretical level [LS06, NML08, ZWT+10]. These papers do not study the optimal number of

paths; rather, they find the optimal rate provided by doing joint routing and scheduling. To the

best of our knowledge, our work presented in Section 2.3 is the first to address the question of

finding the optimal number of paths when using multipath routing in hybrid mesh networks with

shared-medium technologies.

2.6 Summary

After introducing the problem and describing our network model, we have presented in Section 2.3

analytical results that, for certain classes of mesh networks that include typical home networks,

give bounds on the optimal number of paths when using multipath routing in hybrid networks

with shared-medium technologies. They show that hybrid networks and multipath routing are

intrinsically related and that the optimal number of paths Mopt is tightly linked with the number

K of non-interfering technologies. We have verified these analytical results with simulations and

experiments on a three-technology testbed. We have also presented numerical and experimental

results for more general networks. These results show that for general networks, the optimal

number of paths Mopt remains close to the number of technologies K , and that the rate loss

incurred by using at most K paths is very small. This finding has a practical consequence

of importance: It means that in home or enterprise networks with K distinct shared-medium

technologies (e.g., PLC, WiFi with 2.4 GHz and 5 GHz, LTE), limiting a multipath-routing

protocol to multipaths of at most K paths does not harm significantly the performance of the

protocol. Building on these results, we have introduced in Section 2.4 a novel multipath-routing

algorithm that efficiently computes combinations of paths for simultaneous use. As opposed to

existing work that looks for maximally disjoint paths, our multipath-routing protocol explicitly

aims at maximizing throughput.
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3 A Multipath and Interference-Aware
Congestion Controller

3.1 Introduction

In this chapter,1 we assume that for any flow (source-destination pair), one multipath has

been computed by the source. For example, a multipath is computed by using the practical

multipath-routing protocol described in the previous chapter (Section 2.4). As already mentioned

in Section 2.1, saturating multi-hop paths is inefficient and can lead to congestion collapse

with packet losses and instabilities [GSK04, Sri04]. As we will show in this chapter, it is

particularly true with multipath routing. Consequently, in order to reach the optimal throughput,

the amount of traffic to be sent on each path of the multipath needs to be carefully selected. In

this chapter, we present a distributed multipath congestion-controller that decides the amount

of traffic to inject over each path. Its goal is to maximize aggregate network utility (i.e., a

chosen performance/fairness tradeoff), while avoiding congestion (thus keeping the queues

stable). Because we consider shared-medium technologies, our congestion controller must

take into account the interference generated by neighboring links. We extensively evaluate this

multipath congestion-controller as well as the multipath-routing protocol presented in Section 2.4

by implementing them on a hybrid PLC/WiFi testbed.

We also evaluate with testbed experiments the throughput gains offered by hybrid networks.

We confirm that, as expected, using two technologies instead of one significantly improves

the throughput by aggregating the capacities of the technologies. More interestingly, we also

show that using different technologies such as PLC and WiFi, as opposed to using two WiFi

channels (multi-channel WiFi), has the potential for additional performance improvements. With

multi-channel WiFi, the medium quality is similar in all channels, even if they are orthogonal, as

fading or other channel characteristics have a similar impact in all channels. Thus, link capacities

or link failures in different channels are correlated. Combining PLC and WiFi brings spatial and

temporal diversity, which enables further performance improvements in terms of throughput,

coverage, and reliability.

1This chapter is based on the paper by Henri et al. [HVHT16].
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Outline of the Chapter This chapter is structured as follows. In Section 3.2, we extend the

model described in Section 2.2. In Section 3.3, we present our multipath congestion-controller.

In Section 3.4, we extensively evaluate through simulations this congestion controller, as well

as the multipath-routing protocol presented in Section 2.4. In Section 3.5, we describe the

implementation of our algorithms and present extensive testbed experiments that show that,

compared to using two orthogonal WiFi channels, using hybrid PLC/WiFi yields significant

throughput improvements. We discuss related work in Section 3.6 and close the chapter with a

summary in Section 3.7.

3.2 Model and Notations

We extend the model described in Section 2.2 with the following notations. We define F as the

set of flows, where each flow is a source-destination pair (and can potentially employ several

paths), and P F as the set of all paths (across all flows). The set of paths that go through a link l

is denoted by Π(l ) ⊂P F . We denote by B the binary L×L interference matrix indexed by the

links, such that [B ]li ,l j = [B ]l j ,li = 1 if links li and l j interfere with each other (i.e., li ∈Il j and

l j ∈Ili ), otherwise 0. Let P F be the total number of paths in the network (across all flows). We

define the binary L×P F routing matrix R index by the links and the paths, such that [R]l ,P = 1 if

path P goes through link l , and 0 otherwise. Finally, with each path P ∈P F , we associate xP ,

the traffic rate that the source of P sends over path P . We define the vector x = [xP ]P∈P F . The

congestion controller decides the value of xP for each P .

To avoid congestion, the rate injected on each path should be less than what can be accepted

by each intermediate link (each of which might be subject to interference). We quantify this

constraint in terms of airtime: From Equation (2.1), the airtime μl consumed by an unsaturated

link l is given by

μl = dl

∑
P∈Π(l )

xP .

A sufficient constraint to keep the queues finite is to require that the traffic intensities satisfy∑
l ′∈Il

dl ′
∑

P∈Π(l ′)
xP ≤ 1 ∀l ∈ E . (3.1)

This requires that the airtime demand does not exceed 100% in each interference domain. For

example, consider again the network of Figure 2.16 on page 31 and assume that P2 and P3 carry

some traffic (sent by node A at rates x2 and x3, respectively). Because IlW
2
=IlW

5
=IlW

6
in this

example, the constraints defined by Equation (3.1) for the three WiFi links lW
2 , lW

5 and lW
6 are the

same and are given by x3/20+ x3/20+ x2/11 ≤ 1. For instance, if x2 = 5.5 MB/s, links lW
2 and

lW
6 need to share 50% of the airtime, and Constraint (3.1) specifies that x3 cannot be more than

20/4 = 5 Mb/s.
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In practice, when the airtime approaches 1, the delays increase rapidly; for this reason, we might

want to place a more conservative constraint∑
l ′∈Il

dl ′
∑

P∈Π(l )
xP ≤ 1−δ ∀l ∈ E , (3.2)

with a constraint margin δ in [0,1].

Constraints (3.1) and (3.2) are conservative: The airtime could be reused by some links of an

interference domain if there is no pairwise interference between them. However, Constraints (3.1)

and (3.2) have the crucial advantage of being formulated locally (with respect to each link),

making it possible to use them for distributed load-balancing optimization; this is the key basis

for this formulation of conservative constraints. In Section 3.4, we study the effect of this

conservative policy and compare our scheme with optimal solutions based on perfect centralized

scheduling. Finally, note that Constraint (3.1) can be written in matrix form as(
B ·diag(d ) ·R

)
x � 1, (3.3)

where d = [dl ]l∈E denotes the vector of link transmission delays.

3.3 A Distributed and Interference-Aware Congestion Controller

We first address the single-path case, where there is exactly one path between any source-

destination pair, before moving to the extension to multiple paths.

3.3.1 Congestion Control on a Single Path

We consider in this section that a single path is used by each flow: There is a one-to-one mapping

between paths and flows (|F | = |P F |). To each path P ∈P F we attach an increasing and strictly

concave utility function UP : R+ →R+; it describes the benefit that the source of P gets by sending

traffic at rate xP . We formulate an optimization problem similar to what was proposed for wired

networks [KMT98, LL99]. However, because they focus on wired networks, these works do

not account for interference. To address this issue, we introduce the more general interference

constraint given by Equation (3.1), and we replace the constraints on the link capacities with

constraints on the airtimes of the interference domains. The problem then reads

max
x

∑
P∈P F

UP (xP ) (3.4)

subject to
∑

l ′∈Il

dl ′
∑

P∈Π(l ′)
xP ≤ 1 ∀l ∈ E , (3.5)

xP ≥ 0 ∀P ∈P F . (3.6)
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From Equation (3.3), the constraint given by Equation (3.5) is linear. The problem is thus the

maximization of a strictly concave function over a convex set.

The Lagrange dual is

D(γ) = max
x

∑
P∈P F

UP (xP )− ∑
l∈E

γl

( ∑
l ′∈Il

dl ′
∑

P∈Π(l ′)
xP −1

)
,

where γl is the Lagrange multiplier associated with the interference domain of link l .

Taking the partial derivatives with respect to xP , the first-order condition is

U ′
P (xP ) =

∑
l∈E

γl

∑
l ′∈Il

dl ′Rl ′,P = ∑
l∈P

dl

∑
l ′∈Il

γl ′ ,

where for the second equality we have used the equivalence l ′ ∈Il ⇔ l ∈Il ′ for any two links

l , l ′. Let qP
.=∑

l∈P dl
∑

l ′∈Il
γl ′ be the sum of dual variables over all interference domains along

path P . The first order condition becomes xP =U ′−1
P

(
qP

)
.

The dual problem is given by

min
γ

D(γ). (3.7)

Due to the convex nature of the problem, there is no duality gap and a gradient descent procedure

is guaranteed to find a global optimum in the fluid limit. We define yl
.= ∑

l ′∈Il
dl ′

∑
P∈Π(l ′) xP .

This quantity represents the total airtime demand in the interference domain of link l . After some

computations, we find

∂D

∂γl
= 1− yl .

We assume that time is slotted, and we denote by f (t ) the value of a quantity f at time slot t .

Applying gradient descent, we obtain the following corresponding discrete time controller for the

paths rates and interference domain dual variables:

yl (t ) = ∑
l ′∈Il

dl ′
∑

P∈Π(l ′)
xP (t ), (3.8)

γl (t +1) = [
γl (t )+αt (yl (t )−1)

]+ , (3.9)

qP (t ) = ∑
l∈P

dl

∑
l ′∈Il

γl ′(t ), (3.10)

xP (t +1) =U ′−1
P

(
qP (t )

)
, (3.11)
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with αt > 0 a sequence of step sizes, and [y]+ = y if y > 0 and 0 otherwise. It can be shown [LS04]

that if the step sequence αt is such that

αt → 0 as t →∞, and
∑

t
αt =∞,

then the the sequence qP (t ) converges to q∗
P as t →∞, where q∗

P is an optimizer of Equation (3.7).

Conversely, because the mapping between qP and xP is continuous, the rate allocation vector

[xP (t )]P∈P F converges to the optimal solution of Problem (3.4)–(3.6). In our implementation, we

use a fixed step size αt =α in order to continuously adapt to changes in the network. Again, it can

be shown [LS04] that if α is small enough, the rate allocation converges to small neighborhood

of the optimizer of Problem (3.4)–(3.6).

Although the optimization objective is computed globally over the sum of all users’ utilities, a

practical and lightweight controller can be built in a distributed fashion. Each node in the network

monitors the traffic that it forwards and measures the airtime demand

μl = dl

∑
P∈Π(l )

xP

on each of its egress links l . For each technology k ∈ {1, . . . ,K }, the node computes (i ) the

aggregate airtime demand by summing the airtime demands μl over each egress link l employing

technology k, and (ii ) the sum of the dual variables γl for each egress link l employing tech-

nology k. The node periodically broadcasts over the technology k a packet that contains these

two values. All the nodes in the interference domains of the outgoing links that overhear these

broadcasts compute yl for each of their own outgoing link l of technology k. They do so by

adding (i ) their own airtime demands for their egress links employing technology k, and (ii ) the

airtime demands received by all their neighbors, as described by Equation (3.8). Knowing yl ,

the nodes then update γl using Equation (3.9). Finally, when forwarding a packet on link l , the

nodes add the current value of dl
∑

l ′∈Il
γl ′ to a dedicated field in the packet’s 2.5-layer header

(see Section 3.5 for more details). At the destination of path P , the value of this field is thus

equal to qP as given by Equation (3.10), and the destination can send back qP to the source, via

an acknowledgement. Upon reception of qP , the source updates the rate xP for path P using

Equation (3.11). This mechanism requires only local measurements and collaboration with a

small communication overhead among the nodes. These properties enable us to implement this

algorithm on a real testbed, as described in Section 3.5.

3.3.2 Multipath Congestion Control

In this section, we present the extension of our interference-aware congestion controller to

multiple paths. We now differentiate between flows and paths: Each flow can potentially employ

several paths. To express the availability of path P ∈ P F to flow f ∈ F , we write P ∈ f . The

flow of a path P is denoted by f (P ). The utility obtained by each flow f is now given by U f
(
x f

)
with x f = ∑

P∈ f xP . U f is strictly concave in x f , but the main challenge comes from the fact
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that the objective function is not strictly concave in x = [xP ]P∈P F anymore. To overcome this

problem, we adopt the approach of proximal optimization, introduced by Wang et al. [WPL03]

when no interference is present, and we maximize another objective function, which has the same

optimizer as the original:

max
x ,x̄

∑
f ∈F

(
U f

( ∑
P∈ f

xP

)
− 1

2

∑
P∈ f

(xP − x̄P )2

)
(3.12)

subject to
∑

l ′∈Il

dl ′
∑

P∈Π(l ′)
xP ≤ 1, ∀l ∈ E , (3.13)

xP ≥ 0, ∀P ∈P F ,

where x̄P is an auxiliary variable for path P and x̄ = [x̄P ]P∈P F . Subtracting a quadratic term

strictly convex in x in Equation (3.12) makes the objective function strictly concave in x [WPL03].

The optimization is now performed over the two variables x and x̄ . The new objective function

given by Equation (3.12) has the same optimizer x = x̄ as the original one given by Equation (3.4).

We obtain the following discrete-time multipath congestion controller:

xP (t +1) =
[

(1−α)xP (t )+α

(
x̄P (t )+U ′

f (P )

( ∑
P ′∈ f (P )

xP ′(t )

)
−qP (t )

)]+

x̄P (t +1) = (1−α)x̄P (t )+αxP (t ),

with yl (t ), γl (t +1), and qP (t ) given by respectively Equations (3.8), (3.9), and (3.10).

Accounting for interference does not change the linearity of Equation (3.13), and the convergence

of this controller can be established using similar techniques as Lin and Shroff [LS06]. This

controller employs the same update rules as the single-path controller for γl , yl , and qP . In

addition, the update rule for xP depends only on qP and x̄P . Thus, it can be implemented in a

distributed way, exactly as the single-path controller.

This controller is able to account for external interference (i.e., interference that comes from

nodes that do not use the controller): Nodes can measure traffic from external nodes and add

the corresponding airtimes in Equation (3.8). However, because the controller has no control

over external nodes, it converges to the optimal allocation under this external load, which means

that the clients who do not use our controller are not affected, except during a short transition

phase, by the clients who do. Although this allocation does not affect external nodes, it is not

necessarily fair: For example, if one external node saturates WiFi, the controller converges to an

allocation that never uses WiFi. Extending our controller to support external interference in a fair

way is out of the scope of this dissertation.

The main downside of this controller is that it takes some time to converge (see Sections 3.4

and 3.5). For this reason, it is designed mostly for long-run best-effort flows (e.g., large-file

download or video streaming). Yet, in Section 3.5, we show that it helps also for short flows.
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3.4 Numerical Evaluation

In the next sections of this chapter, we evaluate jointly the multipath-routing protocol described in

Section 2.4 and the controller described in Section 3.3. The joint algorithm is called EMPoWER:

With EMPoWER, the congestion controller is used on the multipath computed with the multipath-

routing protocol.

Before validating the performance gains of EMPoWER via testbed experiments in Section 3.5,

we evaluate its performance via simulations in a controlled environment, over several thousand

instances of randomly generated networks. We compare it with other algorithms, including the

optimal algorithm based on backpressure, proposed by Neely et al. [NML08] and described

in Section 2.3.3. As explained in Section 2.3.3, implementing this optimal algorithm would

be very challenging, because it includes an optimal NP-hard [GNT06] scheduling algorithm,

that (i ) requires solving a centralized optimization problem at each time step, and (ii ) requires

modifying the underlying MAC layer.

3.4.1 Simulation Settings

We write a packet-level simulator in Matlab.2 We simulate three different network topologies.

The first topology is a typical residential network, that we evaluate in two modes, infrastructure

and mesh. In the infrastructure mode, we drop uniformly at random on a 20×10 m rectangle

a single hybrid PLC/WiFi router and two client devices, one PLC/WiFi device (e.g., a desktop

computer, a connected television) and one device with only WiFi (e.g., a mobile phone, a laptop).

In the mesh mode, there are three hybrid PLC/WiFi routers, one PLC/WiFi device and one device

with only WiFi. For both modes, the source is chosen among the two client devices (either a

hybrid device or a WiFi-only device) and the destination is chosen among the hybrid routers (in

the infrastructure mode, there is only one).

The two other topologies are typical enterprise networks (e.g., company, hospital, university).

They are evaluated in the mesh mode. For the first enterprise technology, we drop ten nodes on a

50×30 m rectangle; for the second enterprise technology, we drop ten nodes on a 100×60 m

rectangle. Half of the nodes are PLC/WiFi APs and are randomly located on a 10×10 m grid

(values close to what we observe on the managed WiFi network of our building). The remaining

nodes have only single-channel WiFi and are placed uniformly at random. In the two enterprise

network scenarios, the source of a flow is chosen among all the nodes, and the destination is

chosen among the PLC/WiFi APs, in both cases uniformly at random (we consider that there is

no flow between two WiFi-only nodes). Because EMPoWER focuses on long-run applications,

such as large-file downloads or video streaming, typically not well supported by moving nodes,

we assume all nodes to be static.

2The source code of our simulator and of our Click implementation described in Section 3.5.1 is available at

https://c4science.ch/diffusion/1252/empower.git.
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A link between two nodes A and B exists if the distance between A and B is smaller than a

given connection radius R. Based on measurements from our indoor testbed and reported in

Section A.3 in the Appendix, R is set to 35 m for WiFi, and to 50 m for PLC. Additionally, a

PLC link exists only when two nodes are connected to the same central coordinator [Plc10],

in particular, when two nodes are on the same electrical panel. In our building, we have two

electrical panels that distribute power over two equal parts. We assume that buildings of 100×60 m

typically employ two panels and therefore, for the 100×60 enterprise topology, we divide the

building area in two equal parts; a PLC link exists only if both nodes are in the same part of the

building. The capacities of WiFi and PLC links are then sampled from a distribution close to

the capacity distributions measured on our real testbed, reported in Section A.3 in the Appendix.

As previously noted [VHT15], the capacities for WiFi and PLC with the technologies used,

respectively 802.11n and HPAV 200, are similar. This is illustrated further in Table A.1 in the

Appendix that presents the statistics of the capacities of all the links of our testbed and where we

see that the average capacity is 31 Mb/s for WiFi and 30 Mb/s for PLC. When employing two

non-interfering WiFi channels, we consider for the simulations that the two channels have the

same bandwidth, consequently the same link capacities.

In this section and Section 3.5, we use the proportional fairness utility function, given by

U f (x f ) = log(1+x f ), for each flow f . This metric, extensively used in the literature, quantifies

how well an algorithm tunes the “throughput vs. fairness” tradeoff. The underlying MAC

scheduling is simulated through a simplified version of CSMA/CA, with perfect sensing and no

back-off. Our statistics are computed over 1000 simulation runs with different random seeds, i.e.,

with different topologies each time.

To quantify separately the gains provided by (i ) the use of two different technologies, by (ii ) our

multipath-routing protocol, and by (iii ) the congestion-control algorithm (CC), we evaluate in

this section and Section 3.5 several combinations of algorithms and scenarios:

• EMPoWER Multipath routing, CC, PLC/WiFi,

• SP Single-path routing, CC, PLC/WiFi,

• MP-WiFi Multipath routing, CC, single-channel WiFi,

• SP-WiFi Single-path routing, CC, single-channel WiFi,

• MP-mWiFi Multipath routing, CC, two-channel WiFi,

• MP-w/o-CC Multipath routing, no CC, PLC/WiFi,

• SP-w/o-CC Single-path routing, no CC, PLC/WiFi,

• MP-2bp Naive multipath routing returning two best paths (2-shortest), CC, PLC/WiFi.

• MP-W+P Multipath routing returning the best WiFi-only path and the best PLC-path, CC,

PLC/WiFi.
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WiFi is available in each scenario to provide access to mobile clients. SP and SP-WiFi use the

single-path routing protocol presented in Section 2.4.1.3 When using only WiFi, the CSC is set

to 0. EMPoWER, MP-WiFi, MP-mWiFi, and MP-w/o-CC use the multipath-routing protocol

presented in Section 2.4. We use n = 5 for n-shortest (as described in Section 2.4.2), which

enables path diversity while limiting the number of possible combinations to be explored. MP-2bp

is a naive multipath protocol that returns the two best paths of the single-path procedure described

in Section 2.4.1. MP-W+P is a multipath protocol that returns two paths, the best WiFi-only

path and the best PLC-only path (when it exists); in our hybrid networks with two different

technologies, this corresponds to two maximally disjoint paths.

We then compare EMPoWER with the optimal backpressure algorithm [NML08] that we briefly

described in Section 2.3.3. EMPoWER differs from the optimum for two reasons: (i ) It employs

preselected paths, whereas the optimal scheme finds the optimal paths using backpressure, and

(ii ) it uses the conservative constraint given by Equation (3.1). For this reason, we show results

of this backpressure scheme in two different scenarios

• with an optimal centralized scheduler that yields the best theoretical throughput. But this is

impractical and would not be stably supported by real-world mechanisms such as CSMA/CA.

This scheme is denoted by optimal.

• with a centralized scheduler that gives the optimal result under the condition given by Equa-

tion (3.1) used by our congestion controller. This scheme is denoted by conservative opt.

Comparing conservative opt and EMPoWER enables us to evaluate the performance of the

multipath-routing protocol, as they both use the constraint given by Equation (3.1).

3.4.2 Simulation Results

We first consider scenarios with one flow, and then move to a scenario with several contending

flows.

Mesh vs. Infrastructure Mode

We first compare, for the residential topology, the optimal rate obtained with the mesh and

infrastructure modes. The cumulative distribution of the rates for each mode is presented in

Figure 3.1. We show clearly that using the mesh mode significantly improves throughput,

especially when the rate in the infrastructure mode is low: With this topology, the lowest rate is

5 Mb/s with the infrastructure mode and 40 Mb/s with the mesh mode, i.e., it is 8x higher with

the mesh mode. This shows that, as expected, the mesh mode improves throughput and coverage.

In the following, we only evaluate the topologies in the mesh mode.

3We also implemented other single-path procedures employing different metrics, such as IRU [YWK05],

ETT [DPZ04], and CATT [GS08]; all gave worse results in our experiments.
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Figure 3.1 – Distribution of Toptimal in mesh and infrastructure modes.

Hybrid vs. Single-Technology Networks

We compare the performance of EMPoWER with that of the other schemes. Here, the congestion

controller is always used; the only differences are the technologies employed (WiFi with or

without PLC), and the number of paths returned by the routing protocol (one for SP, two for MP).

The results are presented in Figure 3.2, where we show the empirical cumulative distribution of

the flow throughput TX achieved by each scheme X for residential (left) and enterprise (center

and right) topologies. For the sake of clarity, we do not show the results of MP-WiFi, as they

coincide in all cases with those of SP-WiFi: This confirms that only if there are two or more non-

interfering technologies does multipath improves the throughput, as indicated by the results of

Section 2.3. Hybrid networks and multipath routing both contribute significantly to performance

gains. In the residential topology, the average gain compared to WiFi alone is 88%, and it is

28% compared to hybrid single-path. In the enterprise topologies, the average gains compared to

WiFi alone are 59% (50×30) and 68% (100×60), and they are 39% (50×30) and 31% (100×60)

compared to hybrid single-path.

We now compare PLC/WiFi with multi-channel WiFi (with two non-interfering channels). Be-

cause the two WiFi channels have the same capacities, TMP-mWiFi = 2TSP-WiFi. Figure 3.2 shows

that on average, EMPoWER and MP-mWiFi are very close. However, it also shows that multi-

channel WiFi does better primarily when the throughput is already good (the EMPoWER curve

is above the MP-mWiFi curve for small throughput, and below for large throughput). This

is because WiFi typically has a greater capacity than PLC at short range [VHT15]. In con-

trast, PLC/WiFi performs better on flows with outage or poor connectivity. In fact, PLC/WiFi,

compared to multi-channel WiFi, improves network coverage. In Figure 3.3, we present the

cumulative distribution of the ratio TMP-mWiFi/TEMPoWER for the worst flows: We call worst flows
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Figure 3.2 – Distribution of TX for different schemes X . Residential (left) and enterprise
(center and right) topologies.

Figure 3.3 – Distribution of TMP-mWiFi/TEMPoWER, worst flows. Residential (left) and en-
terprise (center and right) topologies.

the bottom-20% of the flows with respect to the minimal throughput min(TMP-mWiFi,TEMPoWER).

We remove the cases where neither EMPoWER nor MP-mWiFi have connectivity. For the worst

flows, EMPoWER performs better than MP-mWiFi, with about 60% of the flows having higher

throughput, up to 4x; our experiments on a real testbed (see Section 3.5) even show improvements

up to 10x. In some cases (15% to 25%), MP-mWiFi does better, but the maximum through-

put improvement over EMPoWER is only 1.7x. In the enterprise topology, PLC/WiFi even

brings connectivity in some cases where multi-channel WiFi does not (TMP-mWiFi = 0 whereas

TEMPoWER > 0). This is the case of about 6% of the worst flows in the 50×30 topology, and of

19% in the 100×60 topology.

EMPoWER vs. Optimal Schemes

We evaluate the performance of EMPoWER by comparing it with a backpressure scheme,

shown to be optimal [NML08] in two scenarios optimal and conservative opt, as described in

Section 3.4.1. For baselines, we use SP, MP-w/o-CC, MP-2bp, and MP-W+P. In Figure 3.4,

we show the empirical cumulative distribution of the ratio TX /Toptimal for different schemes

X . EMPoWER achieves results very close to conservative opt: In the residential topology, the

45



Chapter 3. A Multipath and Interference-Aware Congestion Controller

Figure 3.4 – Distribution of TX /Toptimal with one flow. Residential (left) and enterprise
(center and right) topologies.

Figure 3.5 – Distribution of convergence time with one flow. Residential (left) and enter-
prise (center and right) topologies.

performance loss of EMPoWER is less than 10% in 99% of the cases. In the enterprise topology,

it is less than 10% in 98% (50× 30) and 85% (100× 60) of the cases. This shows that our

multipath-routing protocol succeeds in finding good multipaths. The performance differences

with SP, MP-2bp, and MP-W+P unveil that multipath routing is beneficial, and that finding the

good multipaths is not trivial; in addition, the performance of multipath routing strongly depends

on the congestion controller. The penalty of using the condition given by Equation (3.1) is

not severe in the vast majority of the cases. In total, in the residential topology, EMPoWER

achieves optimal throughput in 96% of the cases and, in virtually all cases, the performance

loss with respect to optimal is less than 15%. Similar results are observed in the enterprise

50×30 topology: EMPoWER achieves optimal throughput in 88% of the cases and, in 99%

of the cases, the performance loss with respect to optimal is less than 15%. In the enterprise

100×60 topology, the penalty of using the constraint given by Equation (3.1) is a bit higher, but

EMPoWER significantly outperforms SP, MP-2bp, and MP-W+P and still achieves optimality in

60% of the cases. In 83% of the cases, the performance loss with respect to optimal is less than

15%. Furthermore, Figure 3.5, where we present the number of time slots required to reach the

steady-state (“steady” meaning that the throughput is within 1% of the final throughput), shows

that EMPoWER provides drastically faster convergence than optimal (results for conservative

46



3.4. Numerical Evaluation

Figure 3.6 – Queue occupancy over time with one flow. Residential (left) and enterprise
(center and right) topologies. y-axis is in log scale.

Figure 3.7 – Distribution of UX /Uoptimal with several flows. Residential (left, with two flows)
and enterprise (center and right, with three flows) topologies.

opt are similar, and they are not shown for clarity’s sake), both for residential and enterprise

topologies. In fact, optimal and conservative opt suffer from symptoms of backpressure-based

routing; although they are throughput-optimal at steady-state, good paths start being employed

only after the queues on the bad paths start to fill up. This phenomenon is confirmed in Figure 3.6,

where we plot the sum of all queue sizes in the network as a function of time. Both optimal and

EMPoWER are stable, but our congestion controller reduces queue occupancy (and thus delay)

by more than two orders of magnitude compared to backpressure. Not surprisingly, congestion

control is required to keep the queues stable, and the queues grow linearly when it is not employed

(see the curve for MP-w/o-CC with the y-axis in logarithmic scale).

Utility Maximization and Proportional Fairness

We now evaluate how EMPoWER distributes network resources among several competing flows.

In Figure 3.7, we show the distribution of the total network utility when there are F = 2 (for the

residential topology) or F = 3 (for the enterprise topology) different saturated flows between

randomly chosen source-destination pairs, as a proportion of the total utility obtained with

optimal, denoted by Uoptimal. The total utility for a scheme X where each flow 1 ≤ f ≤ F gets a
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Figure 3.8 – Distribution of convergence time with several flows. Residential (left, with two
flows) and enterprise (center and right, with three flows) topologies. x-axis is in log scale.

throughput x f is given by UX =∑
f log(1+x f ). Clearly, the gains of employing multiple paths

are conditioned on using congestion control. Note that even if our multipath-routing protocol

maximizes throughput for a single flow, it also improves performance with respect to to MP-2bp

when several flows are competing. Results for the convergence time are presented in Figure 3.8.

Overall, compared to optimal centralized schemes, EMPoWER brings significant gains in con-

vergence and delays, and offers performance close to optimum.

3.5 Practical Implementation and Experimental Evaluation

In this section, we evaluate EMPoWER on a real testbed, and demonstrate its practical usability.

We first describe some implementation details, then we show an example of how EMPoWER

works. We then evaluate EMPoWER over a large number of random runs, and finally discuss its

interactions with TCP.

3.5.1 Practical Implementation

We implement EMPoWER on the testbed described in Section A in the Appendix, by using

the Click Modular Router [KMC+00] in user space. The main components of EMPoWER are

shown in Figure 3.9. We use two non-interfering 40 MHz WiFi bands, one from 5.785 GHz to

5.825 GHz (not used by any other WiFi device) that we call Channel 1, and one from 2.412 GHz

to 2.452 GHz that we call Channel 2. To evaluate fairly our algorithm, we avoid external

interference: Channel 2 is used by the WiFi network of the university, therefore, we run all

multi-channel WiFi experiments at night and we verify that there is no external traffic. For

PLC/WiFi experiments, PLC and Channel 1 are used.4 Link capacities with WiFi and PLC are

comparable (see Section A.3 in the Appendix), which means that PLC/WiFi and multi-channel

WiFi have comparable aggregate capacities. The maximum link capacity is about 100 Mb/s in

4Experiments with PLC and Channel 2 yielded similar results.
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Figure 3.9 – The main components of EMPoWER at layer 2.5. The source determines the
routes (Multipath Routing) and the rates at which data is sent on each route (Congestion
Control). Congestion control is separated from route selection for the sake of practical
implementation. Using the header of our EMPoWER protocol, intermediate nodes simply
check whether they are the destination (Check Dst) and, if needed, forward packets to
the next hop (Fwd). Finally, the destination reorders the packets based on a sequence
number included in their EMPoWER header. Acknowledgements (ACK) are sent by the
destination every 100 ms.

both cases.

When launched, the program creates a virtual tun/tap interface that, with a local IP address, can

be transparently used by the applications. When a packet is received from the application, our

routing protocol replaces the ARP discovery protocol and selects one or two paths. If several

paths exist, each packet is sent over path P with a probability proportional to the rate xP . We

employ source routing: Path P is set by the source in a layer 2.5 header that is used by the

intermediate nodes to transmit the packets to the next hop. We use short hashes of the MAC

addresses of the network interfaces as identifiers at layer 2.5. In our current implementation, the

header has a fixed size of 20 bytes, among which 12 are reserved for the path (2 bytes are used to

identify each ingress interface along the path, and the total length is limited to 6 hops). 4 bytes

are used to store the variable qP along path P , as described in Section 3.3.1. These values are sent

back to the source via dedicated acknowledgments, which are sent (at most) 10 times per second,

using the best single-path. These acknowledgments use prioritized queues to minimize delays.

The header contains also a 4-byte sequence number, which is used by the destination for reordering

packets that arrive from different paths. We do not use timeouts for missing packets. To identify

a lost packet (because of channel errors or congestion), the destination stores the last sequence

number received from each path: A packet with a sequence number S is lost when it has received

packets with sequence number greater than S on all paths from a certain source.

The capacities of the links are estimated for UDP traffic, using modulation information inherent
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in the frame header: the modulation and coding scheme (MCS) index for 802.11n, and the bit

loading estimate (BLE) for PLC. These two metrics are extremely accurate when traffic is sent at

a high rate [VHT15]. When no flow is active, link capacities can be estimated precisely (although

not perfectly) by sending probes at a low rate (about 1 kB/s) [VHT15], which yields very low

overhead. It reacts to capacity changes in a few seconds. This estimation is sufficient for our

routing protocol, as it does not require high precision. The congestion controller requires higher

precision, because an overestimated link capacity yields congestion. When a flow is active, the

traffic sent on this flow is used for estimating the link capacities. Because traffic is sent at high

rate, this estimation is extremely precise, and it is able to detect capacity changes and link failures

very rapidly (to the order of hundred of milliseconds). To this end, it is possible to use the

acknowledgements described above, sent every 100 ms.

For the value of the congestion controller step size α, we use a simple heuristic based on the

observation that, for short paths and single-paths, the congestion controller can support a higher

α to converge. α is initially set to 0.02. We multiply α by 2 when there is a single-path or when

the longest path is two-hop; and by 4 when the longest path is one-hop. Finally, in order to react

to a too large α, we divide α by 2 whenever we find 6 or more non-decreasing oscillations. This

heuristic works well in our experiments.

3.5.2 An Example

We first give an example of how EMPoWER works in practice. In the following, a flow from

Node A to Node B will be denoted by Flow A-B . We propose an experiment with two flows,

Flow 1-13 and Flow 4-7. The scenario is described and the capacities of the links involved are

depicted in Figure 3.10. Our routing algorithm selects, for Flow 1-13, the two paths shown

on the figure: P1, a two-hop WiFi-PLC path, and P2, a single-hop PLC path. Flow 4-7 has a

single-hop WiFi path, P3. During the first 1950 seconds, we send UDP saturated traffic with

iperf on Flow 1-13. In Figure 3.11, we show the traffic rate injected over each of the two paths

for Flow 1-13, along with their sum, that is, the total rate sent by Node 1, and with the throughput

received at Node 13. We also show the average throughput achievable over the best possible

single path (horizontal line), which is P1. Our congestion controller uses 100% of the capacity of

P1. As this consumes only about 50% of the capacity of P2, it also injects a rate roughly equal to

50% of the available capacity on this path. Using two paths simultaneously provides an important

gain in throughput (about 45% in this example) compared to a single path.

After 1950 seconds, we send UDP saturated traffic on Flow 4-7. Our congestion controller adapts

to the situation by offloading all the traffic of Flow 1-13 onto P2 and by avoiding altogether WiFi

for Flow 1-13 (leaving 100% of the WiFi capacity available to Flow 4-7). After 3950 seconds,

we stop the traffic on Flow 4-7. The situation reverts back to what it was during the first 1950

seconds, with throughput gains due to multipath. Overall, the injected traffic rates match the

admissible capacities of the paths: Observe the difference between the injected rate and the

received throughput; when the injected rate is too large, the variance of the throughput increases
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Figure 3.10 – Scenario with two flows on a subset of the testbed described in Section A in
the Appendix; the numbers on the figure indicate the measured link capacities in Mb/s at
the time of the experiment.
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Figure 3.11 – Time evolution of the injected rates and measured throughput on Flow 1-13
for the scenario of Figure 3.10. Flow 4-7 starts at time 1 950 s and stops at time 3 950 s.

(e.g., see the indicated “peak” on Figure 3.11). Although quite simple, this example shows that

EMPoWER finds efficient paths and dynamically load-balances traffic in a way that explicitly

accounts for interference.

3.5.3 Extensive Performance Evaluation

We now show the performance gains that EMPoWER yields for an isolated flow, by broadly

evaluating it on 50 randomly selected pairs of stations. As opposed to the simulations of

Section 3.4, PHY layer conditions are not ideal: We use a small constraint margin δ= 0.05 in

Equation (3.2). For each experiment, we send UDP saturated traffic with iperf during 1000

seconds.

We compare EMPoWER to four different configurations: SP-WiFi, SP, MP-mWiFi, and MP-2bp.

For baselines, we show the results on the two single-paths (PLC/WiFi and WiFi-only) obtained
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Figure 3.12 – Distribution of TX /TEMPoWER. x-axis is in log scale.

with a brute-force approach, i.e., by sending rates from 0 to the maximum possible rate with

1 Mb/s increments, and keeping the maximum rate received (denoted by SP-bf and SP-WiFi-bf).

We write TX for the final throughput of the flow for each scheme X (averaged over 10 seconds). In

Figure 3.12, we show the empirical cumulative distribution of the throughput ratio TX /TEMPoWER

over the 50 runs.

We make the following observations:

• Hybrid PLC/WiFi logically yields very high throughput gains compared to single-channel WiFi:

SP does much better than SP-WiFi-bf in all cases. This confirms our findings of Section 3.4,

where we see that PLC/WiFi extends coverage by reducing the number of flows with poor

connectivity.

• More interestingly, hybrid PLC/WiFi also yields gains much higher than multi-channel WiFi, de-

spite comparable aggregate capacities. In fact, EMPoWER gives better results than MP-mWiFi

in 75% of the cases and yields throughput improvements up to 10x. In a few cases (about 25%),

MP-mWiFi does better, but the maximum throughput improvement over EMPoWER is only

2.5x. The fundamental reason of the improvement enabled with hybrid PLC/WiFi networks is

the spatial diversity increase that is offered when using two different physical mediums. For

example, in our testbed (shown in Figure A.1 on page 135), there are wide walls (e.g., between

Node 1 and Node 6 and between Node 5 and Node 8) that strongly attenuate the WiFi signal.

This attenuation is strong for all WiFi channels, even when they are in two different bands

(2.4 GHz and 5 GHz). In contrast, the walls have no impact on the PLC signal that uses the

electrical wires. Inversely, there is no PLC connectivity between Node 12 and Node 14 they

are connected to two different electrical panels, but the WiFi signal is strong between these two

nodes. This absence of correlation between the signals of the different technologies increases
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Figure 3.13 – Distribution of TX /TEMPoWER. x-axis is in log scale.

the spatial diversity and the throughput.

• Our multipath-routing algorithm is beneficial: EMPoWER does almost always better than

MP-2bp; and in 60% of the cases, it does better than SP-bf, obtained with a brute force

approach. In 70% of the cases where EMPoWER does better than SP-bf, it uses two paths; in

the remaining 30% cases, our multipath-routing protocol returns only one path, which is better

than the one returned by the single-path procedure. In some cases, SP-bf does better, but the

difference is less than 30%, whereas EMPoWER can yield an improvement up to 2.7x over

SP-bf. EMPoWER does almost always better than SP. SP employs the same path as SP-bf,

which means that the difference between EMPoWER and SP-bf does not come from using

multiple paths, but only from the constraint margin δ or from slight imprecisions in the link

capacity estimations.

We now study the convergence time of EMPoWER. In Figure 3.13, we plot the average through-

put achieved between 10 and 20 s and between 190 and 200 s, as a proportion of the final

throughput TEMPoWER. For a baseline, we plot SP-bf. EMPoWER rapidly reaches a rate close to

the final one: In 80% of the cases, it is within 80% of the final rate after 10 s. This is also what

EMPoWER MP-w/o-CC

Tiny, F. 6-13 (100 kB) 0.128 s ± 0.03 0.159 s ± 0.09

Short, F. 6-13 (5 MB) 9.9 s ± 2.1 13.3 s ± 1.9

Long, F. 6-13 (2 GB) 333.2 s ± 27.7 534.5 s ± 12.6

Conc, F. 6-13 (2 GB) 416.8 s ± 30.3 581.0 s ± 61.4

Conc, F. 12-8 (25 MB) 64.9 s ± 6.5 155.2 s ± 24.3

Table 3.1 – Download times for the four experiments.
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Figure 3.14 – Average rate and standard deviation of throughput measurements during
the last 100 seconds for EMPoWER, MP-mWiFi, and SP.

we observe in our example of Section 3.5.2: The oscillations take some time to dampen, but their

amplitude is small, and the rate is rapidly close to the final value. After only 10 s, EMPoWER

already outperforms the baseline SP-bf. Still, this convergence time is quite long for bursty flows

that last only a few seconds, and these flows do not get optimal rates: EMPoWER is designed

mostly for long-run best-effort flows. Nevertheless, EMPoWER also improves performance

for bursty flows, compared with MP-w/o-CC. To see this, we conduct four experiments: Tiny,

Short and Long, where Flow 6-13 is a download of a file of respectively 100 kB, 5 MB and

2 GB, without concurrent traffic; and Conc, where Flow 6-13 is a download of a 2 GB file, and

Flow 12-8 is a concurrent download of five 5 MB files, with Poisson-distributed starting times

(mean 60 s) for the files. Both flows use two two-hop paths: Flow 6-13, PLC-WiFi and PLC-PLC,

both through Node 7; and Flow 12-8, WiFi-PLC through Node 7 and WiFi-WiFi through Node 10.

Tiny and Short are repeated 40 times, Long and Conc are repeated 10 times; mean value and

standard deviation of the download times are shown in Table 3.1. Clearly, EMPoWER is also

beneficial for short flows (Tiny and Short); but without concurrent traffic, improvement is more

moderate than for long flows (24-34% vs. 60% improvement).

Finally, in Figure 3.14, we show the average throughput after convergence for 10 randomly

selected flows, along with a bar showing the standard deviation of the throughput measurements

during the last 100 seconds (one measurement per second). This enables us to evaluate potential

throughput variations due to packet reordering at the destination when using multiple paths. In

general, multipath does not cause variations larger than single-path (see for example the results

for Flows 20-19 and 7-6). The figure also further confirms our findings of Section 3.4: Compared

to multi-channel WiFi, EMPoWER extends coverage by boosting performance especially for

flows with poor connectivity (e.g., Flows 4-19 and 1-11). It also boosts performance for other

flows in general, but not always (e.g., not for Flow 11-15), and more moderately so.

3.5.4 TCP Friendliness

EMPoWER interacts with TCP on two levels: First, TCP reacts to congestion (in an interference-

agnostic way) and attempts to ensure fairness. This is already achieved by our congestion
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Figure 3.15 – Experiment with TCP for Flow 9-13: SP-w/o-CC from 0 s to 500 s;
EMPoWER from 500 s to 1000 s.

controller that drops packets if the rate sent by the above layers goes above the total rate for

the flow. TCP will naturally adapt to the rate of our congestion control, because it will perceive

the dropped packets as congestion. Because the link capacities are estimated for UDP, and to

avoid being in a congested state with possible packet drops and high delays, it is possible to set

a non-zero value for the constraint margin δ in Equation (3.2); we discuss the impact of δ in

this section. Second, TCP expects packets to be (i ) in order and (ii ) within some time-frame.

Multipath however does not satisfy these conditions, because different delays can occur on the

different paths. Our reordering algorithm addresses issue (i ), but not issue (ii ), and TCP timeouts

might still occur, which would degrade TCP throughput. This takes place typically because one

path has delays much smaller than the other one, and packets sent on the fast path timeout while

waiting for packets sent on the slow path. To improve performance, we add some delay on the

fast path at the destination, so that both paths have approximately the same delays, by using

the following algorithm. When it sends it, the source timestamps each packet p with its current

time ts(p). For each path Pi , the destination keeps an estimate of the skewed one-way delays

d(Pi ), with a weighted moving average algorithm: for a packet p coming from path Pi , d(Pi )

is updated by d(Pi ) = (1−β)d(Pi )+β(td (p)− ts(p)), where td (p) is the arrival time of p and

β some constant. Note that d(Pi ) is not the real one-way delay, because it includes the skew

between the clocks at the source and at the destination. However, this skew is the same for P1 and

P2, it is consequently possible to compute the real average delay difference Δ= d(P2)−d(P1).

Now, the destination can delay packets coming from the path with smallest delays (without loss

of generality, we assume it is P1): if a packet p comes from P1, then the destination looks at the

skewed delay td (p)− ts(p). If it is greater than d(P1)+Δ, then the packet goes through directly;

else it is delayed during a time d(P1)+Δ− (td (p)− ts(p)). The packets are then reordered. This

procedure does not ensure that TCP timeouts do not occur; however, it reduces the number of

such events, thus improving the throughput.

In Figure 3.15, we show how EMPoWER works with TCP for Flow 9-13. P1 is a two-hop

WiFi-WiFi path through Node 12. P2 is a three-hop PLC-PLC-WiFi path through Nodes 6
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Figure 3.16 – Average TCP rate, with standard deviation.

and 12. Traffic is sent during the first 500 s on P2 with TCP alone (SP-w/o-CC); during the

next 500 s, our congestion controller is active and both P1 and P2 are used (EMPoWER). TCP

acknowledgements are always sent on the best reversed path. This example is a “critical” case, as

it uses paths of different lengths causing different delays, and both mediums have contending

links. Despite this, the received throughput matches the traffic sent by our congestion controller,

which means that TCP interacts well with EMPoWER. These results are obtained with δ= 0.3.

Results depend on the value of δ; when δ gets smaller, the performance of EMPoWER rapidly

degrades, because more packets are lost due to contention. We run EMPoWER on 10 randomly

selected flows that use two paths in the multipath case, and compared with single-path TCP,

the value δ= 0.3 is found to improve performance in all the cases, with no variance increase in

general (see Figure 3.16).

In a practical scenario with multiple traffic types, only the nodes in the contention domain of a

TCP flow should use this value of δ. If a node receives TCP messages, it informs its neighbors by

piggybacking this information in the broadcast messages described in Section 3.3.1: TCP and

UDP flows can be handled efficiently at the same time.

3.6 Related Work

Routing and Scheduling

From a theoretical point of view, several works propose joint routing and scheduling, building on

the backpressure idea first proposed by Tassiulas and Ephremides [TE92]. In particular, some

works propose utility maximizing schemes for wireless multi-hop networks [e.g., LS04, CLCD06,

ES06]. However, backpressure scheduling is NP-hard [GNT06] and difficult to implement in

practice. Furthermore, it would require changing the scheduling algorithm of the MAC layer,

which we avoid in order to maintain compatibility with existing devices. These constraints

are the basis for works such as Horizon [RGGK08], an algorithm for balancing the load over

several wireless multi-hop paths. Horizon is based on backpressure, but simplifies the problem

to implement the algorithm on existing 802.11 networks, in particular by separating congestion
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control from routing, an approach that we also choose. Horizon focuses on single-channel wireless

networks and uses queue sizes to identify congestion, which might prove difficult to extend in

practice to different technologies: Because of frame-aggregation amendments in both WiFi and

PLC, the number of Ethernet packets in a PHY layer frame, as well as the MAC overheads,

can vary significantly between technologies and for different links. Using link capacities, we

explicitly account for the different interference patterns occurring in hybrid networks. Neely

et al. [NML08] introduce a combination of flow control, routing and scheduling for hybrid

networks; it also relies on a backpressure component. These schemes require a central controller

and have not been implemented in real networks. Furthermore, converging to efficient (i.e., nearly

utility-optimal) steady states requires large queues and long convergence time.

There is also a large body of work that studies congestion control on pre-defined paths in multi-

hop networks. The congestion controller presented in this chapter borrows concepts from works

that study wired networks [KMT98, LL99, WPL03]. In order to be implemented with shared-

medium technologies, it extends these concepts to consider interference. Other congestion control

algorithms consider interference in multi-channel wireless networks [e.g., MRW06, GSK08], but

they do not consider multiple paths involving different nodes; and they consider joint congestion

control and channel assignment, whereas channel assignment is irrelevant in our hybrid PLC/WiFi

networks. Moreover, these schemes are not implemented on a real testbed. The works that

consider joint multipath-routing and congestion-control [LR07, TT07, ZWT+10, ABL05] are

challenging to implement in practice (in particular, they require centralized decisions and time

sychronization) and studied only through simulations. In contrast, EMPoWER is fully distributed,

which makes it amenable to implementation on a real testbed.

Layer 4 vs. Layer 2.5 Approaches

The most popular multipath-routing approach is MPTCP [FRHB13]. However, this solution

targets end-to-end paths, not home networks, because it operates at layer 4. It requires end-hosts

to be multihomed (i.e., have several network interfaces directly exposing different IP sub-stacks).

This may be a limitation in practice: MPTCP, or any other layer-4 approach, limits the possibility

of using several paths in a home network without multihoming. In contrast, solutions working at

layer 2.5 are transparent to other protocols and do not require any modification of the underlying

MAC layers. Moreover, layer 2.5 solutions can react faster to channel or topology changes,

compared with layer 4, again in a transparent-to-higher-layers fashion. IEEE 1905.1 standardizes

hybrid networks at layer 2.5. For these reasons, EMPoWER operates at layer 2.5. It is confined

to home networks and transparent to other Internet hosts.

3.7 Summary

In this chapter, we have presented a novel multipath congestion-controller that converges to

utility-optimal allocations in a distributed fashion. To fully exploit the gains enabled by the
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multiple technologies, it relies on an interference model that describes how links that employ

the same technology share the available capacity. Along with the multipath routing-protocol

presented in the previous chapter, it forms a complete system for optimizing throughput in hybrid

networks, called EMPoWER. We have evaluated EMPoWER by simulations and on a testbed

implementation, over WiFi and PLC stations. To the best of our knowledge, this is the first

implementation of congestion-control and multipath-routing algorithms in hybrid PLC/WiFi

networks. EMPoWER is practical and distributed, and it offers performance close to that of

optimal-but-impractical algorithms. We have also substantiated the gains of introducing PLC

in local networks. In particular, we have found that due to medium diversity, hybrid PLC/WiFi

improves throughput (up to 10x) and coverage compared to multi-channel WiFi.
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4 Choosing the Best Multipath with
Multi-armed Bandits

4.1 Introduction

In the previous chapter, we have presented an algorithm that optimally controls the congestion on

one multipath fixed in advance. This algorithm is able to react to dynamic conditions by adapting

the rate it sends on each path of this multipath, but it cannot react by switching the multipath it

uses. In this chapter,1 we tackle this issue and present an algorithm that finds the best multipath

in a dynamic hybrid mesh network.

Finding the best multipath and controlling the congestion along the different paths, by sending

traffic at the appropriate rate, is far from trivial because of the following challenges:

Challenge 1: Multiple possible multipaths with unknown optimal rates;

Challenge 2: Dynamic network conditions, with unknown environments in terms of topology,

capacity and interference;

Challenge 3: Shared-medium technologies and different interference graphs when employing

multiple media.

To confront all the aforementioned challenges, we employ a multi-armed-bandit (MAB) strategy.

In the MAB problem, a player can choose one of N actions (in the original problem, the player

chooses which one of N slot machines to play). At each round, each action, also called an arm,

has a reward associated with it (the amount of money the player receives each time a slot machine

is played). The player’s goal is to maximize this reward that is a priori unknown. The strategies

employed address the tradeoff between exploration (play each machine to improve the estimates

of the reward distributions) and exploitation (maximize the long-term reward given the current

estimates). The MAB problem has been widely studied, and strategies ensuring the convergence

to the optimal arm have been proposed, whether the rewards are stationary [ACBF02, BCB12] or

not [ACBFS95, BGZ14]. When applied to multipaths, MAB strategies accommodate Challenge 1.

However, to the best of our knowledge, no existing strategy has actually been implemented in

1This chapter is based on the paper by Henri et al. [HVT18].
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Figure 4.1 – HyMAB in action under dynamic conditions due to capacity drops (top, with a
multipath of two paths) or mobility (bottom, with a single path). Results from two different
flows in our hybrid WiFi/PLC testbed.

the context of routing. Achieving maximal throughput in a mesh network requires solving two

problems: (i ) finding the optimal rate on a multipath, i.e., the rate that yields maximal throughput

at the destination, and (ii ) finding the best multipath, i.e., the multipath for which the rate is

maximal among all multipaths. In hybrid shared-medium networks, computing the best multipath

is extremely challengin, as discussed in Section 2.3.1. Most protocols used in current networks

are based on heuristics and are not guaranteed to be optimal.

In this chapter, we address the above-mentioned problem (i ) and present a measurement-based

method for computing the optimal rate on a multipath. This method accommodates shared-

medium technologies and diverse interference graphs, thus addressing Challenge 3 above. It

gives precise results when the rate is averaged over several measurements. On the one hand, to

address problem (ii ) above, we need to explore several multipaths and estimate their optimal rate

with sufficient precision. This requires sending traffic several times on each of these multipaths,

including the sub-optimal ones, which means that traffic is sent at a sub-optimal rate. On the

other hand, exploiting only the estimated best multipath in order to send traffic at optimal rate

carries the risk of imprecise rate estimations due to insufficient explorations, which can lead

to mistakes in identifying the actual best multipath. MAB is the ideal framework for finding

the best tradeoff between these two conflicting goals, and we use it to develop HyMAB, a new
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algorithm to find the optimal rate in a mesh hybrid network. As a preliminary example, Figure 4.1

presents testbed experiments illustrating two typical use cases for HyMAB in dynamic conditions:

capacity degradation (top, with a multipath of two paths) and user moving from a room to another

(bottom, with a single path). In the top figure, the reported experiments show that when employed

with the Transmission Control Protocol (TCP), HyMAB performs better than multipath TCP

(MPTCP) [FRHB13], the most popular multipath solution today. In the bottom figure, HyMAB

outperforms TCP protocols that have been configured on the best multipath at the beginning of

the experiment. Indeed, HyMAB can adapt to dynamic conditions by switching to the multipath

that is the best in the new conditions.

Outline of the Chapter This chapter is structured as follows. In Section 4.2, we present a

measurement-based method for computing the optimal rate on a multipath. We discuss the

challenges that need to be addressed in designing a MAB algorithm for dynamic networks.

In Section 4.4, we introduce HyMAB and prove that it is optimal under static conditions.

In Section 4.5, we show how HyMAB can also naturally adapt to dynamic conditions, thus

confronting Challenge 2, which poses the tradeoff between optimality and adaptability. To

validate the practicability of our solution, we implement it on a real testbed. We present an

extensive performance evaluation over a network of 22 PLC/WiFi nodes in Section 4.6, showing

the practical usability and performance gains of HyMAB. We discuss related work in Section 4.7

and close the chapter with a summary in Section 4.8.

4.2 Computing the Optimal Rate

We present how the optimal rate on a given multipath can be computed, based on the model

described in Section 2.2.1. The results of this section are valid when a single flow is present; the

extension to multi-flow is described in Section 4.4.3. HyMAB maximizes the rate of the flow.

For this reason, the flow is assumed to be saturated, i.e., the source always has packets to send

(we discuss the case of non-saturated flows in Section 4.4.4).

Remember that we denote by αP ,l the multipath-impact vector of P on l , by AP ∈RLP ×M the

matrix [αT
P ,l ]l∈ΛP

and by μxP
∈RLP the vector of the busy-times [μl ,xP

]l∈ΛP
. The multipath-

impact vector depends only on the network topology and on the paths, and not on the rate vector

xP . If the multipath-impact vectors αP ,l are known for all links l ∈ΛP , it is easy to find an

optimal rate xopt
P

: As we have seen in Section 2.2.1, it is a solution of System (2.4).

But directly computing the multipath-impact vectors αP ,l would require knowing the link

capacity cl and the interference domain Il of all links l ∈ ΛP , which is challenging or im-

practical [PD11], especially in hybrid networks with diverse interference graphs and dynamic

conditions. Instead, to account for interference per collision domain, the nodes can measure

the busy time μl ,xP
when the source sends traffic on P at rate xP : For WiFi, this is achieved

by using information exposed by WiFi drivers; for PLC, by using specific fields in the IEEE

1901 frame headers (more details are provided in Section A.3 of the Appendix). In Section 4.6.1,
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we describe how the source of P gathers the busy-time measurements μl ,xP
for all l ∈ ΛP .

Once the source knows the busy-time measurements, it is easy to get αP ,l . As an example,

consider first the case M = 1: There is one path P on which the source sends traffic at rate xP .

If xP is such that the links l ∈ P are not saturated, αP,l can be computed from Equation (2.2) by

αP,l = μl ,xP
xP

. This result can easily be extended when there are M ≥ 2 paths in the multipath P .

We choose M linearly independent rate vectors x (i )
P

for i ∈ {1, . . . , M }, and for each rate vector x (i )
P

at which traffic is sent on multipath P and each link l ∈ΛP , the corresponding busy time μ(i )
l

is measured. If XP denotes the M ×M matrix of the rate vectors XP = [x (i )T
P

]i∈{1,...,M } and μl

denotes the vector of the busy-time measurements μl = [μ(i )
l ]i∈{1,...,M }, we have XP ·αP ,l =μl .

By construction, the x (i )
P

’s are linearly independent, hence XP is a M ×M full-rank matrix, and

we get αP ,l = X −1
P

·μl for all links l ∈ΛP , i.e., we get the matrix AP . We then solve the linear

system given by Equation (2.4) using standard techniques, which gives the optimal rate xopt
P

achievable on P without having to measure the link capacities or the interference domains.

In Section 2.2.2, we have validated the precision of the busy-time measurements and we have

shown experimental results that confirm that the method described here can be used to compute

the optimal rate of a path. But we have also shown that it requires sending packets by batches of B

packets (B = 100 for WiFi, B = 200 for PLC). Sending packets by batches has two consequences.

First, it might increase the jitter for the application. However, this is true only when traffic is

sent at a rate much lower than the link capacity: When sending at half of the capacity on an

average link, batches do not significantly increase jitter, as evaluated by using iperf; even

when sending at 10% of the capacity, the jitter increases from 4 ms to only 6 ms. Moreover,

sending by batches is needed only during probing phases, and not during exploitation phases (see

next section). Second, as we have shown in Section 2.2.2, sending packets by batches increases

the variability of the busy-time measurements. Therefore, to compute the rate with sufficient

precision, the measurements need to be repeated several times and averaged out. This means that

one measurement is not enough, and this challenge justifies the use of a MAB strategy.

4.3 Towards a Practical MAB Strategy for Dynamic Networks

As explained in Section 2.3.1, finding the best multipath (denoted by P ∗ in the following) is a

difficult problem. For this reason, all existing routing protocols rely on heuristics, and they do not

guarantee the optimality of their result. It would be possible, using the approach of Section 4.2,

to compute the optimal rate of several multipaths, and to keep the best multipath as the one

benefiting from the maximum rate. However, as we have seen in Section 2.2.2, the busy times

(hence, the computation of the optimal rate) require several measurements to be precise, and

one measurement is not sufficient. Consequently, there is a conflict between exploring several

multipaths to estimate the optimal rate of each of them with sufficient precision, and exploiting

the multipath found to be the best so far: The former yields a sub-optimal throughput, whereas the

latter involves the risk of choosing a sub-optimal multipath if the rate estimations are imprecise

due to insufficient explorations.
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MAB strategies have the potential to address this exploration-exploitation tradeoff. In fact,

routing was identified early on as a potential application for MAB [ACBFS95]. Here, we

employ multipath routing, i.e., several paths can be employed simultaneously. Combinatorial

MABs [GKJ12, CWY13] typically study the problem of routing. Gai et al. [GKJ12] find the

shortest path in a graph with varying link capacities. However, with interfering links, finding

the path with highest throughput is NP-hard [JPPQ05], and it cannot be achieved by finding the

shortest path in a graph; it is even more complex when considering multipath routing. Chen

et al. [CWY13] introduce a model where several arms (the paths) are played simultaneously

and grouped in so-called super-arms (the multipaths). However, their solution assumes that the

rewards of each arm are independent of the super-arm that is played. This is not the case here,

because links of different paths might interfere with each other.

Instead, we consider in this work that heuristic-based routing protocols are not perfect (they do

not necessarily return the best multipath), but that they are “not too bad”, in the sense that the

best multipath, although unknown, is among the N multipaths that the protocol finds to be the N

best, with N fixed in advance. In our experimental results of Section 4.6, we show that N can be

set to a small value, e.g., N = 5. Our goal is thus to find the best multipath in a given set S of

N multipaths, which can be solved with more classic MAB approaches: The source of the flow

is the player, and the multipaths are the arms; the reward that the player receives when playing

an arm is the optimal rate at which the source of the flow can send traffic on the corresponding

multipath. However, to the best of our knowledge, existing MAB strategies have never been

actually implemented on a real testbed, for the following reasons.

In existing MAB strategies [BCB12, ACBFS95, BGZ14], the player gets a reward each time an

arm is played. In these strategies, at each trial, the only choice that the player makes is the arm to

play, i.e., either to explore an arm in order to learn its associated reward, or to exploit the arm

that the player estimates to be the best. In contrast, in our problem, the reward of an arm (i.e.,

the optimal rate that can be sent on the multipath) is obtained by carrying out a probing phase

that consists in sending traffic by batches at M different rate vectors x (i ) for i ∈ {1, . . . , M } such

that no link is saturated, and in measuring busy times over the links, as described in Section 4.2.

In practice, a probing phase is costly, in the sense that it prevents from sending at the optimal

rate: To ensure that no link is saturated and because the rate vectors x (i ) must form a linearly

independent family, the x (i ) are all smaller than the optimal rate. Therefore, the source must not

only choose the arm to play, i.e., the multipath to use, but it must also decide to either probe the

arm (send traffic at a sub-optimal rate, which enables to measure the busy times and to compute

the optimal rate), or exploit the estimated best arm (send traffic at the optimal rate).

The ε-greedy strategy [SB98]introduces a clear distinction between exploring an arm or exploiting

the best arm: The source chooses to explore with a fixed probability ε, and chooses the arm it

explores uniformly at random among all arms. In our case, we can similarly choose to explore

with probability ε, and probe one arm randomly chosen. However, the value of ε is difficult to

determine in practice: A large ε makes the algorithm converge far from the optimum, whereas

a small ε makes it too long to converge, because of the noisy measurements. In the εn-greedy
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strategy [ACBF02], this issue is solved by introducing an exploration probability ε(t ) that is a

decreasing function of the time t , equal to

ε(t ) = min

(
1,

cN

d 2t

)
, (4.1)

where d is a lower bound on the difference between the expected reward of the arms, and c a

positive real number. If exploration is chosen, the arm to explore is chosen uniformly at random.

But d needs to be known a priori, which is not the case in practice. Furthermore, even if we

could know d , the performance of the algorithm rapidly deteriorates if c is not appropriately

tuned [ACBF02]. Finally, the εn-greedy strategy is not efficient if two arms yield very similar

rewards (small d), because most of the initial time (small t ) is spent exploring all arms uniformly

at random and because exploration is a costly process. In the context of multipath routing, this is

likely to happen, because the multipaths might share a common bottleneck link, and hence have

optimal rates that are close to each other (see also the experimental results in Section 4.6). The

limitations of ε-greedy and εn-greedy are illustrated through simulations in Section 4.4.2.

Other strategies have been introduced to deal with this inefficiency, in particular Upper Confidence

Bound (UCB) [BCB12]. In UCB strategies, the player chooses the arm to play, based on the

statistical information it has so far, and favors the estimated best arm while ensuring that the

statistical information gathered for all arms is sufficiently precise. In UCB strategies (like in

the vast majority of existing MAB strategies), the reward of an arm is known by the player

each time this arm is played. These strategies cannot be used for our problem, where obtaining

the reward requires probing the arm, which, as explained above, is a costly procedure. For the

aforementioned reasons, we introduce a new algorithm, HyMAB, in Section 4.4.1. It uses UCB

strategies as a subroutine.

HyMAB is proven optimal under static conditions in Section 4.4. Nevertheless (see Sections 4.5

and 4.6), HyMAB is efficient under dynamic conditions. This adaptability stems from the

nature of the MAB framework: Exploration and probing are useful not only to find the best

multipath and optimal rates, but also to continuously adapt to dynamic conditions. There is a

tradeoff between optimality and adaptability: Under static conditions (Section 4.4), the probing

probability needs to go to zero to ensure optimality; under dynamic conditions (Section 4.5), the

probing probability needs to stay away from zero to adapt continuously to dynamic environments.

This tradeoff is studied in Section 4.5.1. Many works study MAB when the rewards vary

dynamically [ACBFS95, BGZ14], but as with UCB strategies, they are valid only when the

player knows the reward each time the arm is played, i.e., when no probing is required to get the

rewards. D-MAB [DFSS08] is one of the few algorithms that could apply in our problem, but the

empirical solution that it offers, evaluated by simulations, assumes that changes in the rewards of

the arms happen simultaneously for all arms, which is usually not the case in our scenario.

Finally, the MAB strategies described above are defined for a single player (in our setting, a single

flow), whereas in practice, several flows with different sources are present. Some papers have

studied the problem of multiple players with dependent [GKJ10] or independent [LZ10, KNJ14]
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arms, but most of them assume that arms are shared by the players (i.e., they play the same arms).

In our setting, arms for different players are not shared because the flows, and thus the multipaths,

are necessarily distinct; but they might be correlated (the multipaths of the distinct flows share

links or have links interfering with one another). Wilhelmi et al. [WCN+17] study the case where

the arms are different and dependent, but their solution requires one arm per possible sending

rate, which explodes the size of the search space for arms (the sending rates are continuous). Our

extension to several flows (presented in Section 4.4.3) reduces the problem with F different flows

to F independent problems with a single flow and N arms.

4.4 An Optimal Algorithm in Static Networks

4.4.1 Optimal Strategy with a Single Flow

Algorithm 1 defines HyMAB, the strategy for finding the best multipath and achieving optimal

throughput. It is divided in two stages: in Stage 1, it decides the multipath, and in Stage 2, it

decides the sending rate. In Stage 1, HyMAB chooses an arm (i.e., a multipath) according to

the UCB1 strategy, introduced by Auer et al. [ACBF02]. We adopt this strategy because it is

easy to implement and, when the reward is obtained each time an arm is played, it is shown

to be optimal (in the sense that the regret, defined as the difference between the rate achieved

and the rate that could have been achieved by always playing the best arm, is asymptotically

optimal). But as we have seen in Section 4.3, a probing phase is required to obtain the reward

of an arm, and therefore UCB strategies alone lead to sub-optimal results. For this reason, in

Stage 2, HyMAB chooses between probing the arm chosen at Stage 1 or exploiting the best

arm found so far. UCB1 assumes that the rewards are in [0,1]; for this reason, the rate vectors

xP are scaled so that for all P and t , ‖xP (t )‖1 ≤ 1. Similarly to the εn-greedy strategy, the

probing probability is a decreasing function of time; to achieve optimality, it must tend to zero

and ensure that each arm is explored an infinite number of times almost surely. However, as

opposed to the εn-greedy strategy that requires knowing a bound d on the reward difference, we

do not want the exploration probability to depend on a quantity that is a priori unknown, and

we set the exploration probability to be εP (t ) = 1/nλ
P

(t −1), with a parameter λ that controls

the rate of convergence. We study the effects of λ in the next paragraph. As opposed to the

εn-greedy strategy, where the parameter c needs to be finely tuned and has a strong impact on

the performance, we show that HyMAB is robust against the choice of λ, as it does not impact

drastically the performance.

Theorem 3. With

εP (t ) = 1

nλ
P

(t −1)
, (4.3)

HyMAB converges to achieving optimal throughput for any λ> 0.

Proof. The proof is given in Section B.2 in the Appendix.
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Algorithm 1 – HyMAB: strategy for optimal throughput.
Input: trial duration D, set of multipaths S with |S | = N .

Initialize: for all P ∈S , nP (0) = 0, TP (0) = 0.

for each trial t do
for all P ∈S do

nP (t ) = nP (t −1), TP (t ) = TP (t −1)
end for
Stage 1 Choose one arm (i.e., one multipath) P t ∈S according to the UCB1 strategy:

� if there are non-explored arms, choose one among them,

� otherwise (t > N , nP > 0), choose the arm that maximizes

VP (t )
.= ∥∥xP ,nP (t−1)

∥∥
1 +

√
2ln(t −1)

nP (t −1)
. (4.2)

� Set TP t (t ) ← TP t (t )+1.

Stage 2 Choose one of the following:

� with probability εP t (t ), probe P t by following the procedure described in Section 4.2, i.e.,

• set nP t (t ) ← nP t (t )+1, and

• choose M rate vectors x (i ), i ∈ {1, . . . , M }, that are admissible and linearly independent, and

• send traffic at rates x (i ) during D/M seconds, in turn for i ∈ {1, . . . , M }, and

• compute the reward xP t ,nP t (t ) and the current rate estimation xP t ,nP t (t ).

� or with probability 1−εP t (t ), exploit the current best arm P ∗
t maximizing

∥∥xP ,nP (t−1)
∥∥

1, i.e.,

send traffic at rates xP ∗
t ,nP ∗

t
(t−1) on P ∗

t during D seconds.

end for

In a real implementation, the trial duration D depends on the number M of paths in a multipath:

For the probing phase to be precise, D/M needs to be one order of magnitude higher than the

round-trip time on the paths. In practice, M is small: As we have seen in Section 2.3, the optimal

number of paths can be limited to the number of technologies K without harming the performance.

In the experiments of Section 4.6, we use K = 2 technologies (WiFi and PLC), hence M = 2.

4.4.2 Evaluation via Simulations in a Static Network

Here we study by simulation the convergence time of HyMAB in a static network. The purpose

of the simulation is merely to capture the performance of the different MAB algorithms; for this

reason, we only choose the rewards (i.e., the optimal rates) and ignore the underlying network

and multipaths. Before running the algorithms, we pick the true optimal rates ‖xopt
P

‖1 for the

multipaths P ∈ S uniformly at random in [0.5,1]. The rates are assumed to be at least 0.5

because the multipaths returned by the routing algorithm are assumed to be good enough, as

mentioned in Section 4.3. When exploring, we assume that the received rate is equal to 1/4 of

the current estimation for the multipath, close to what we observe in our testbed experiments
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Figure 4.2 – Number of trials needed to reach 85% (left) and 95% (right) of the optimal
rate (log scale).

presented in Section 4.6. An estimation xP t ,nP t (t ) is computed by adding to the true value ‖xopt
P

‖1

a random gaussian noise of mean 0 and standard deviation 0.2‖xopt
P ‖1, close to what we observe

in our testbed experiments. We study the number of trials needed for the averaged sending rate to

reach 85% (Figure 4.2, left) and 95% (Figure 4.2, right) of the optimal rate ‖xopt
P ∗‖1, computed by

averaging over 10000 runs with different random seeds. We first evaluate the choices made at

Stage 1 and Stage 2, and then compare HyMAB with other MAB algorithms.

Using an optimal strategy such as UCB1 at Stage 1 is not required to converge to the optimal

throughput. Convergence can be shown for any strategy such that each arm is chosen at Stage 1

an infinite number of times almost surely, for example by choosing uniformly at random an arm

among the others. However, using UCB1 strategy makes the convergence faster. We compare

HyMAB (with UCB1 at Stage 1) with a modified HyMAB with uniform random selection at

Stage 1 (denoted by rand). Figure 4.2 shows that choosing UCB1 strategy in Stage 1 decreases

the convergence time of HyMAB by about 50% over rand (note the logarithmic scale for the

y-axis). By using UCB1, HyMAB spends less time exploring the arms that are less good, making

the overall exploration probability decrease faster than when choosing the arms uniformly at

random. In practice, the faster convergence of HyMAB is very important in dynamic networks

where the optimal multipath changes due to varying conditions (see also Section 4.5.1).

Figure 4.2 also shows the effects of the parameter λ in the exploration probability εP (t ) at

Stage 2: When λ is increased, less time is wasted exploring, and HyMAB and rand converge

faster. However, this is true only up to a certain value: If λ is increased too much, it takes a longer

time to correctly estimate the optimal rate because of the noisy measurements of the busy times,

and the convergence deteriorates. Nevertheless, Figure 4.2 (left) shows that HyMAB is robust

against the choice of λ, as it does not impact drastically the performance: In the first 1 000 trials,

the total amount of data sent varies between 0.896 and 0.906 of the best possible amount when λ

is varied between 1 and 3, i.e., the maximal difference in the amount of data sent is about 1%.

The maximal amount of data sent is found for λ= 2, a value that we use in the remainder of the
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chapter.

Finally, we compare HyMAB with two other algorithms, ε-greedy [SB98] and

εn-greedy [ACBF02], described in Section 4.3. For εn-greedy, we assume the reward

difference d to be known, and we try several values of c and present the results for the best one.

Note that rand is equivalent to a modified version of εn-greedy where the exploration probability

ε(t ) in Equation (4.1) is replaced with εP (t ) defined by Equation (4.3). Figure 4.2 shows that

HyMAB outperforms ε-greedy by an order of magnitude for any ε: With a high ε, the cost of

exploration is too high, and with a low ε, it takes a long time to converge, because of noisy

measurements. HyMAB also outperforms εn-greedy by more than an order of magnitude: When

two arms have very close optimal values, εn-greedy spends most of its time exploring, thus

sending at a sub-optimal rate.

4.4.3 Extension to Several Flows

HyMAB is optimal when a single flow is present, but it should also handle several contending

flows. The goal is to converge to a fair rate-allocation, in a distributed and scalable way: The

only information that the source of a flow needs in our implementation is the feedback from the

destination of this flow (and not from sources or destinations of other flows).

Let F be the set of flows, i.e., of source-destination pairs. Each flow f ∈F employs its own set

of multipaths, denoted by S f . For each link l , the number of interfering flows Fl is the number

of flows that can be overheard by this link, which means that it can be computed by each node

for all its outgoing links l with only local measurements. Formally,

Fl = #{ f ∈F s.t. ∃P ∈S f , l ′ ∈ΛP with l ∈Il ′}. (4.4)

Instead of System (2.4), each source of a flow f solves the system:

max
x

1T · x

subject to AP · x � 1/Fl and x 
 0,
(4.5)

where 1/Fl is the vector whose entries are 1/Fl for each link l . The constraint means that on the

links where several flows contend, each flow gets an equal time-proportion of the resources.

When several flows are present, computing AP is more complex, because the busy times are

now generated by all flows: μl =
∑

f ∈F αT
P t , f ,l · xP t , f where P t , f is the multipath currently used

by flow f . To compute AP , i.e., to compute αP ,l for each link l ∈ΛP , we assume that during

an exploration trial for a flow f0 ∈ F , the rates of all other flows f �= f0 are constant (i.e.,

all other flows are in an exploitation phase). This assumption is discussed in Section 4.5.2.

Before an exploration of multipath P0 ∈ S f0 , the source of f0 does not send traffic during a

short time-slot (silent slot); each link l ∈ΛP0 measures the busy time during this time slot

μ(0)
l , f0

=∑
f ∈F\ f0

αT
P ∗

t , f ,l · xP ∗
t , f

, where P ∗
t , f is the current estimated best multipath for flow f . Then,
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the source of f0 performs a regular exploration by sending traffic at M different rate vectors that

form a full-rank matrix XP0 , as described in Section 4.2; each link measures the busy-time vector

μl . If the media are not saturated during the exploration trial, μl −μ(0)
l , f0

=αT
P0,l · xP0 because for

all f �= f0,P t , f =P ∗
t , f , and AP can be computed by solving αP ,l = X −1

P0
· (μl −μ(0)

l , f0
1): When we

subtract the busy time μ(0)
l , f0

due to all other flows, which we assume to remain constant along

the exploration trial, the linear relationship given by Equation (2.1) ensures that we get the busy

time that f0 would generate in the absence of transmission from other flows. In Section 4.5.2,

we discuss how we guarantee that the media stay unsaturated during an exploration trial in the

presence of multiple flows. System (4.5) is equivalent to System (2.4); this means that each

source can apply HyMAB and converge to the rate allocation that maximizes System (4.5). With

this method, each source runs HyMAB independently from the other sources: it computes the

rate allocation maximizing its own throughput, while ensuring that the media are shared fairly.

4.4.4 Discussion on Non-Saturated Flows

HyMAB maximizes throughput and is therefore designed for saturated flows. A flow that requires

low throughput does not need to use HyMAB. External flows are naturally supported by HyMAB,

because their traffic is included in the busy-time measurements. Nevertheless, non-saturated

flows are supported by HyMAB. During an exploration phase, HyMAB requires traffic to be sent

at a rate that is not too small in order for the optimal rate to be estimated precisely enough; if

the flow does not have enough data packets to send, HyMAB sends dummy packets to reach

half of the estimated optimal-rate. During an exploitation phase, the source can send traffic at a

rate below the optimal rate without any impact on HyMAB. When there are multiple flows, if a

HyMAB flow is not saturated, some resources remain unused. It would be possible to apply a

progressive filling algorithm to converge to a max-min fair allocation. Because low-throughput

flows do not need to use HyMAB, a detailed study for such an algorithm is out of the scope of

this dissertation. With external low-throughput flows, HyMAB converges to an optimal and fair

utilization of the remaining resources, without affecting the external flows.

4.5 Practical Algorithm Under Dynamic Conditions

In Section 4.4, HyMAB is shown to be optimal under static conditions. In reality, network

conditions change: Link capacities are not constant, flows come and go, nodes move. We discuss

how to make HyMAB operational under these practical constraints. For short-term variability,

HyMAB can be used with TCP (see Figure 4.1) that naturally deals with such variations; in

Section 4.6.4, we discuss the interaction of HyMAB with TCP. However, we also want HyMAB

to be able to adapt to longer term dynamics that would require to switch multipath, such as major

capacity-changes (because of mobility or channel-condition changes) or traffic changes (flows

coming or leaving).
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4.5.1 Capacity Changes

In Section 4.4, we assumed static conditions; to ensure optimality, the probing probability of a

multipath P , εP (t ), must go to zero. However, these probing phases also enable HyMAB to adapt

to dynamic conditions. For practical reasons, in order to continuously estimate the optimal rate and

to adapt it to new conditions, we replace εP (t ) in Theorem 3 by εP (t ) = max(εmin,1/nλ
P

(t −1)),

so that εP (t ) never goes below a threshold εmin. This differs from the ε-strategy described in

Section 4.3 because the probing probability is higher at the beginning, which enables a fast

convergence even with a small εmin. In addition, because measurements carried long ago are not

valid if the conditions have changed, we compute the average rate vector xP over the last 10

measurements, instead of averaging over all measurements. Finally, similarly as the D-MAB

algorithm [DFSS08], we reset the indicators nP and xP of an arm P if three consecutive large

variations of xP are observed (if ‖xP (t )‖1 differs from the current average
∥∥xP

∥∥
1 by more than

40% three times consecutively). As opposed to the D-MAB algorithm that resets the indicators

of all arms, only the indicators of P are reset, because a capacity change for P does not yield

that all other multipaths are impacted: For example, if the capacity of a single link is modified,

multipaths that do not use this link are not affected.

With the threshold εmin, HyMAB converges to a proportion 1−εmin of the optimal rate: There is

a tradeoff between converging closer to the optimal rate, or exploring more often. To be more

flexible, it is possible to change dynamically the threshold εmin: When the capacities are stable,

we use a low value, and increase it when the capacities change. Specifically, whenever the total

rate of an estimation ‖xP (t )‖1 differs from the current average
∥∥xP

∥∥
1 by more than 40%, εmin is

set to a maximum value of 0.15. If
∥∥xP (t )−xP

∥∥
1 is within 20% of

∥∥xP

∥∥
1, εmin is divided by 2

(with a minimum value of 0.05). This strategy is called variable εmin. It is robust because when

a false positive occurs, it increases only temporarily the probing probability, which therefore

degrades the throughput only very slightly. Note that the values chosen for the variable εmin

(minimum and maximum, thresholds for deciding when to change) depend on the conditions of

the network (e.g., precision of the busy-time measurements, variability of the link capacities) and

need to be set depending on the goals of the source (e.g., react faster or converge closer to the

optimal).

We evaluate the variable εmin strategy by comparing it through simulations with Rexp3 [BGZ14],

a MAB strategy defined for dynamically changing rewards; Rexp3 works by defining a batch size
ΔT and by resetting the weights it gives to each arm every ΔT trials. As explained in Section 4.3,

and similarly as with UCB1, Rexp3 works only when the player knows the reward each time

the arm is played, which is not the case here. We can however evaluate a strategy where UCB1

is replaced in Stage 1 of Algorithm 1 by the Rexp3 strategy, with a fixed probing-probability

εP (Stage 2 of Algorithm 1). We use the same simulation scenario as in Section 4.4.2, except

that at time t = 25000, the rate of two arms randomly chosen among the N = 5 arms are drawn

again uniformly at random in [0,1] (i.e., the rates of these two arms change). Figure 4.3 shows

the throughput experienced at each trial (averaged over 10 000 random instances) for HyMAB

with the variable εmin strategy and λ= 2, and for Algorithm 1 with Rexp3 (denoted by Rexp3)
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with different fixed probing-probabilities εP . We try several batch sizes ΔT between 5 and 1 000

and always show the results for the best ΔT . HyMAB with variable εmin re-converges faster than

Rexp3 for all probing probabilities.

We also evaluate the different strategies in HyMAB (different fixed εmin and variable εmin) with

testbed experiments. To compare the different values of εmin under a controlled environment,

we repeat the same experiment with M = 2. We send UDP traffic between Nodes 19 and 22

(see Figure A.1 in the Appendix for a map of our testbed) and we force link-capacity changes

by reducing the transmit power of WiFi at t = 250 s. Such long-term capacity changes happen

unpredictably in practice, both for PLC (when appliances are switched on and off [VHT15])

and WiFi (due to varying signals [GC04]). The experiment is repeated five times for each value

of εmin, and we present averaged results. In Figure 4.4, we show the received throughput for

different fixed values of εmin: 0.02, 0.05, and 0.1. Here the best multipath uses WiFi-WiFi and

PLC-WiFi paths, hence the power reduction causes throughput to drop suddenly; HyMAB adapts

by using another multipath, with WiFi-PLC and PLC-PLC paths, which can be observed by the

throughput re-increase. When the conditions are stable, a small value of εmin (0.02, blue line)

achieves a better throughput than a large value (0.1, red line). However, when the capacities

change, it takes longer when εmin is small to reset the indicators of the arms and to converge again.
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Therefore, the smaller εmin is, the larger the convergence time is. The throughput obtained with a

variable εmin, as described above, is shown by the purple line in Figure 4.4. Before the capacities

change, it converges to the same throughput as the fixed value εmin = 0.05 (the minimum value of

the variable εmin). When the capacities change, it adapts faster than all fixed-value strategies do.

Figure 4.4 also shows the benefits of using the UCB1 strategy in HyMAB instead of a uniform

random selection (rand): the received throughput is depicted when both strategies use εmin = 0.05.

Using UCB1 significantly improves the convergence rate of HyMAB, because less time is wasted

probing the least-good arms. Similarly to what was shown in Section 4.4.2, this confirms the

gains provided by employing a MAB strategy such as UCB1, rather than a simpler scheme such

as uniform random selection.

The time needed to converge to the new multipath is of the order of a few tens of seconds. Because

HyMAB does not target short-term variability but focuses instead on the adaptability to long

term variations, this convergence time remains practical. Moreover, the performance after the

capacities change and before HyMAB switches to the new best multipath is the performance on

the multipath that was used before the conditions have changed, i.e., this is the performance that

would have been observed without HyMAB (see also Figure 4.1, where we observe that between

the moment when the capacities change and the moment when HyMAB switches multipath, the

performance of HyMAB is similar to that of TCP and MPTCP without HyMAB).

4.5.2 Traffic Changes

HyMAB must also handle flows that come and go. The strategy for several flows (described in

Section 4.4.3) is optimal for static conditions. Even though the sources do not know the total

number of flows in the network, the nodes know the number of flows locally at each link, which

makes possible to react very rapidly to flow arrivals/departures: Once per trial, nodes along

a multipath P ∈ S f notify the source of flow f of the maximal number of interfering flows

FP = maxl∈P Fl , with Fl given by Equation (4.4), along with a flow hash, a hash value of all the

other flows that the nodes on P overhear. If FP is increased, the flows, which had a share 1/F old
P

of the time-resources, now have only 1/F new
P

: The source immediately reacts by scaling down

the current sending rate vector xP by a factor F old
P

/F new
P

. For example, if there was a unique

flow and if a second flow appears, the rate vector is divided by 2. When the new flow shares a

bottleneck link with the other flows, this scaling yields that the new rate vector is the vector that

maximizes System (4.5). Otherwise, this scaling is overly conservative, but it ensures that the

medium is unsaturated during the probing phases (no flow uses more resources than its share);

the source can then employ the strategy described in Section 4.4.3 and converge to the vector

that maximizes System (4.5). This strategy also requires that two flows never probe at the same

time, which is likely but not certain, as the probing probability εP (t ) is low at steady-state but

non-zero. In practice, when a flow f1 probes a multipath P1, control messages are sent on each

path of P1: Nodes in the interference domain of ΛP1 can overhear these control messages, and

thus know that f1 is probing. If another flow f2 wants to probe a multipath P2, nodes belonging
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to P2 send a message to the source of f2 if they know that f1 is probing (i.e., if they overheard

control messages), and the source of f2 delays the probing phase. If no such message is sent, it

means that no other interfering flow is probing.2 This guarantees that the strategy with several

flows converges to the optimal value.

If FP is decreased, the source can determine, based on the flow hash, if the situation reverses

to conditions seen earlier (same active flows); in which case, it restores the rate vectors it had

computed. Otherwise, it initializes HyMAB again to find the optimal rates in this unknown

configuration. This enables HyMAB to react very fast and to support efficiently short flows

that disappear briefly after having appeared. We present experiments with multiple flows in

Section 4.6.3.

4.6 Experimental Evaluation

We first describe the implementation of HyMAB. We then present the results of its testbed

evaluation, first with a single UDP flow, then with several UDP flows. We then compare MPTCP

to HyMAB and TCP combined.

4.6.1 Implementation Details

We implement HyMAB with the Click Modular Router3 [KMC+00] on the 22-node testbed

described in Section A in the Appendix. We use K = 2 technologies, WiFi and PLC. Our

implementation is meant to run as a Linux module in kernel-space, but due to some incompatibility

between ath9k and Click, our results are obtained in user space. Handling all packets in userspace

incurs significantly more processing delay, and the performance and convergence speed could be

improved further if run in kernel-space.

To compute the set of multipaths S , we use the multipath-routing protocol described in Sec-

tion 2.4 slightly modified to return the set S of N multipaths in decreasing order of the estimated

multipath capacities, i.e., the N multipaths that maximize C (P ) as defined by Equation (2.9).

Note that returning N multipaths instead of only one does not increase the complexity of the

protocol. The multipath-routing protocol requires a complete view of the network: Each node

estimates the capacity of its outgoing links by sending unicast frames at low rates and using

link-quality information present in the packet headers [VHT15]. It broadcasts a list of its neigh-

bors with the link capacities, and uses this information to compute the interference domains.

Because HyMAB employs the N best paths of the routing protocol, this method is robust against

estimation errors in the link capacities or interference domains. Once the multipath set S is

chosen, HyMAB does not require the knowledge of the link capacities nor of the interference

2An architecture such as or similar to software-defined networks would help here, as a centralized controller would

decide which flow probes when.
3The source code is available at c4science.ch/diffusion/6591/hymab.git.
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domains, because it only uses the busy-time measurements to compute the optimal rates of the

multipaths. When a capacity change is detected (see Section 4.5.1), S is computed again.

In Section 2.3, we have shown that the number of paths in the best multipath P ∗ is equal to at

most the number of technologies. Because we use K = 2 technologies, we limit in our experiments

the number of paths per multipath to M = 2. We set the number of multipaths in S to N = 5:

This value is small enough to remain practical, and it is large enough to offer enough multipath

diversity so that it is very likely that P ∗ ∈S , as can be observed in the following experiment:

We randomly choose 50 flows (i.e., source-destination pairs) and for each flow, we compute a

large number of multipaths to ensure that with very high probability, the best multipath is among

them (here, we compute the best 20 multipaths). For each of these 20 multipaths, the optimal

rate is found by a brute-force approach: The source sends traffic on all paths of the multipath at

all possible rates (with a granularity of 1 Mb/s), and keeps the best experienced throughput. For

different values of N , we compute the ratio between the maximal rate among the 20 multipaths

‖xopt
20 ‖1 and the maximal rate among the N best multipaths ‖xopt

N ‖1. The maximum and mean of

this ratio among the 50 flows are reported in Table 4.1 for different values of N .

In the current version, all nodes run HyMAB. It would be possible to modify HyMAB so that the

destination does not need to run HyMAB without impacting the performance: Indeed, because

computations are done by the source of the flow and measurements of the busy-time by the

source of the links, the last-edge routers can replace the destination in particular for sending the

acknowledgements, described later in this section. In a real implementation, this means that for

downlink traffic, user nodes can enjoy the benefits of HyMAB without having to run it. Uplink

traffic is much less likely to require high throughput, hence to need HyMAB. Still, HyMAB can

be used between the last-edge router and the gateway to avoid that the client has to run it.

HyMAB works at layer 2.5, between the IP and MAC layers. Figure 4.5 summarizes the main

components of HyMAB. When launched, the program creates a virtual tun/tap interface that,

with a local IP address, is transparently used by the applications. HyMAB uses source routing,

i.e., the path is fully determined at the source and it is set in a layer-2.5 header that is used by

the intermediate nodes to forward the packets to the next hop. The path is represented as a list

of short hashes (2 bytes) of the MAC addresses of the interfaces along the path. The layer-2.5

header is 17 bytes long: 12 bytes are reserved for the path, limited to 6 hops; 4 bytes are reserved

for a sequence number, used to reorder at destination the packets coming from different paths,

before delivering them to higher layers; the final byte is reserved to indicate in which phase

(probing or exploitation) the packet is sent. Time is split in slots of D = 400 ms. At each slot t ,

the source chooses a multipath P and either to probe P (with probability εP (t )), or to exploit

Table 4.1 – Ratio ‖xopt
20 ‖1/‖xopt

N ‖1 for 50 random flows.

N 1 2 4 5

max ratio 1.62 1.50 1.50 1.02

mean ratio 1.08 1.03 1.02 1.00
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Figure 4.5 – The main components of HyMAB at layer 2.5. Plain-line arrows represent the
data flow, dashed-line arrows represent the acknowledgements, and double arrows repre-
sent actions on the component. The source determines the multipath set S (Multipath
Routing). S is used by Algo. 1 that sets the Rate Shaper to the desired vector rate. Us-
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busy-time measurements (Busy-time Measures).

the best multipath found so far, depending on the outcome of Stage 2 in Algorithm 1.

If the source chooses to exploit at time t , it shapes the traffic to send at the current best rate

xP ∗
t ,t on the estimated best multipath P ∗

t during the entire slot. During an exploitation phase,

the source does not send traffic by batches; the batches are needed only during probing phases.

In practice, delays tend to increase rapidly when the busy time approaches 1: We replace the

constraint AP · x � 1 in System (2.4) by a slightly more conservative constraint AP · x � (1−δ) ·1,

with a small constraint margin 0 ≤ δ� 1. Increasing δ decreases the delays, but also decreases

the throughput.

If instead the source chooses to probe multipath P at time t , it follows the procedure described

in Section 4.2. For the probing phases, the source uses rate vectors x (i )
P

such that all vector

components of x (i )
P

are equal to zero, except the i -th component, equal to 0.75 · xsp
i , where xsp

i is

the current best rate for Pi when used alone (i.e., single-path). xsp
i is computed for free when

computing the optimal rate for the multipath with the busy-time measurements, as described

in Section 4.2. This choice of rate vectors x (i )
P

is justified by an empirical observation that we

made during our experiments: The estimation of the optimal rate is more precise and more robust

against measurement imprecisions due to noise when the matrix XP in Section 4.2) is diagonal,

i.e., when the M measurements are carried out on a single path. This choice also ensures that

traffic is sent at a sufficient rate even during a probing period (close to be the best single-path rate

on each path). The factor 0.75, used only when probing, ensures that no link is close to saturation,

which is required in practice to compute the optimal rate on P . If a rate vector is non-admissible
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(e.g., because of dynamic conditions), i.e., if a μ(i )
l is measured close to 1, the source removes the

measurement and repeats the trial with the rate vector divided by 2. At the beginning of a probing

phase, the source waits for a short time τ (of the order of the delay from source to destination) so

that all packets sent during the previous trial reach destination. Control messages are then sent on

all paths of P . These control messages enable all nodes along the paths to initialize and measure

the busy times μ(i )
l for all links l ∈ΛP , as described in Section 4.2. After the silent slot (described

in Section 4.4.3), the source starts by sending traffic at rate x (1)
P

during D/M , by batches of 100

packets for WiFi, 200 for PLC. The destination then sends an acknowledgement back on all the

paths of the multipath P . Nodes along the paths update this acknowledgement with the measured

busy times: When it reaches the source of the flow, the acknowledgement contains all busy-time

measurements μ(1)
l . When M ≥ 2, the procedure is repeated with all rate vectors x (i )

P
. At the end

of the trial, the source knows all measurements μ(i )
l and can compute all αP ,l , as described in

Section 4.2. Finally, to compute an estimation of the optimal rate, the source reduces AP by

removing all vectors αP ,l such that αP ,l �αP ,l ′ for another link l ′, and solves System (2.4)

with the reduced AP . In our experiments, the number of rows in the reduced AP is always less

than 5, and the computation of the optimal rate, including that of the multipath-impact vectors, is

done in less than 2 ms.

4.6.2 Testbed Results with a Single Flow

To evaluate the performance of HyMAB, we first compute the optimal rate by the brute-force

approach described in Section 4.6.1. This approach is not practical, as it requires sending

traffic at a large number (quadratic in the number of paths) of non-optimal rates and yields long

convergence times. We compare the optimal rate obtained by this brute-force approach to the

rate achieved by HyMAB. In the following, we use a small constraint margin δ= 0.05 (value

that reduces the delays significantly while decreasing only slightly the throughput) and λ= 2. In

Section 4.6.2, where we study the convergence of HyMAB to the optimal value, we use a fixed

εmin = 0.02; in the following sections, we use a variable εmin, as described in Section 4.5.1.

Flow A-B denotes a flow between Node A and Node B . We first show an example of how

HyMAB works for Flow 17-6. The (imperfect) routing protocol returns N = 5 multipaths

P1, . . . ,P5, ordered by decreasing estimated-capacity. The rates obtained by brute-force approach

(P1: 23 Mb/s, P2: 30 Mb/s, P3: 29.5 Mb/s, P4: 20 Mb/s, and P5: 15 Mb/s) indicate that the best

path for the routing protocol, P1, is not the actual best multipath (this is the case for 44% of our

50 experiments presented below), which shows that exploring several multipaths is indeed useful.

Figure 4.6 shows the experiment for Flow 17-6 with HyMAB. P2 consists of two paths, denoted

by P1 and P2. P3 uses P1 and another path, denoted by P3. P1, P4, and P5 use other paths that

are used only during probing phases. The probing probability εP (t ) rapidly decreases, and at the

end, the source spends most of its time exploiting the best multipath. HyMAB converges to the

true best multipath P2; because P2 and P3 are very close, it takes some time to converge: Until

t ≈ 650 s, the estimated best arm P ∗
t is P3. Nevertheless, it sends traffic at a rate very close to

the best one (30 Mb/s) throughout the experiment.
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Figure 4.7 – Comparison of HyMAB with optimal brute-force rate, UDP traffic, for 50
flows.

We now compare HyMAB to the optimal brute-force rate on 50 randomly selected source-

destination pairs. Figure 4.7 shows the rate received as a proportion of the optimal rate obtained

by brute-force, averaged over all 50 runs. The box plot shows the median (red bar), the 25th and

75th percentiles (box), and the standard deviation (whiskers). With δ= 0.05 and εmin = 0.02, we

expect to converge on average to 93% of the optimal throughput (black line). Indeed, it converges

very close to this value; this shows that, in a home hybrid mesh network, HyMAB succeeds in

finding the optimal multipath and the optimal rate at which traffic is sent on this multipath.

4.6.3 Testbed Results with Several Flows

We describe an experiment with two contending flows; all use HyMAB. We first run Flow 9-8;

after 500 s, we run Flow 7-13 that interferes with Flow 9-8; after 1000 s, we shut down Flow 9-8,

and finally run it again after 1500 s. In Figure 4.8, we show the rates sent and received for the

two flows. The flow sources react extremely rapidly (a few hundreds of milliseconds): Following
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Figure 4.8 – Experiment with two flows. HyMAB fairly shares the resources and reacts
very fast, in particular with conditions learned earlier (t = 1500 s).

the strategy described in Section 4.5.2, Node 9 divides the sending rate by 2 as soon as it detects

Flow 7-13. When the flows contend, Nodes 9 and 7 continue to explore, and they converge to

the solution of System (4.5), with fairly shared resources. When Flow 9-8 is shut down, Node 7

initializes HyMAB again for Flow 7-13 in isolation and converges to the optimal solution. When

Flow 9-8 is run again, Nodes 9 and 7 immediately switch back to the rates last computed when

the two flows were present. They continue to explore to adapt to dynamic conditions. This

experiment shows that HyMAB efficiently handles contending flows, with a very fast reaction

and a fair sharing of the resources.

4.6.4 Interaction of HyMAB with TCP

Here, we study the interaction of HyMAB with TCP. In any exploratory multipath protocol, such

as HyMAB, the probing phases cause throughput drops, either because a sub-optimal multipath

is explored, or because probing requires sending traffic at a sub-optimal rate. These drops are

interpreted by TCP as a congestion signal. Consequently TCP decreases the congestion window,

hence the sending rate. After a probing phase, it takes some time (up to a few seconds) for the

current versions of TCP to converge back to the rate supported by an exploitation phase. In

HyMAB, we alleviate this problem by buffering packets at the source during probing phases,

which smoothes the effects of probing. When the source of a TCP flow is in the home network,

(i.e., when we control it), it would be easy to completely solve the issue by implementing a

specific version of TCP that, transparent for the destination, would use different congestion

windows during probing and exploitation phases. Implementing this modified version of TCP is

left for future work, and the results here are obtained with a classic version of TCP; they are only

a lower bound of the performance that can be reached. We compare MPTCP to HyMAB and

simple TCP combined. MPTCP uses the best multipath (that can consist in one or two paths),

i.e., the multipath found optimal by HyMAB. This choice favors MPTCP: In reality, MPTCP

typically uses the multipath returned by a multipath-routing protocol that, as we have seen in

Section 4.6.2, is not necessarily the optimal one.
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Figure 4.9 – Comparison of MPTCP with HyMAB and TCP combined for 20 random flows.
HyMAB achieves performance very close to MPTCP after convergence.

Figure 4.9 shows the rate achieved by HyMAB, as a proportion of the rate achieved by MPTCP,

averaged over 20 randomly selected isolated flows. On average, HyMAB and MPTCP are very

close. The continuous exploration, which enables HyMAB to adapt much better to dynamic

conditions, causes a slight variability increase. But overall, its cost is small compared to its

advantages, among which is the better adaptability to dynamic conditions (see Figure 4.1) but

also the absence of multi-homing requirements (see also Section 4.7). In addition, because of

some incompatibility between ath9k and Click, the current version of HyMAB is implemented

in userspace, which induces high processing delays: The RTT with HyMAB is about 10 times

higher than with MPTCP (for a single-hop flow, it is about 30 ms with HyMAB, and about

3.5 ms with MPTCP). An implementation in kernel-space could improve significantly the per-

formance of HyMAB with TCP by reducing the end-to-end delays, to which TCP is extremely

sensitive [PFTK98].

4.7 Related Work

MAB has been widely studied in many contexts after the seminal works by Thompson [Tho33],

Lai and Robbins [LR85], and Auer et al. [ACBF02]. Routing was identified early on as a potential

application for MAB strategies [ACBFS95]. However, only a few papers specifically investigate

this application; these works address the problem of finding the shortest path [AK04] or the path

with minimal delay [BL94], [AK08], and not the problem of maximizing throughput, or that

of multipath routing. In addition, they are not validated experimentally on a testbed. Quite a

few MAB strategies are proposed [ACBF02], most of them when the rewards of the arms are

stochastic. In this work, we consider the case where exploration is costly. More importantly,

we implement this strategy on a testbed, showing its practical usability. As opposed to other

multipath routing protocols [e.g., GGSE01, LC02, AKK04, LLZ06, TM06, TT07, THT08,

TTAE09, GRS11, DQZ+15] that use heuristics to build a single multipath and consequently do
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not guarantee the optimality of the result, our approach with MAB enables our algorithm to

explore N different multipaths to find the best one. In addition, HyMAB can easily adapt to

dynamic conditions that would require switching multipath.

4.8 Summary

In this chapter, we have proposed HyMAB, an algorithm that finds the best multipath in hybrid

mesh networks with shared-medium technologies. HyMAB exploits the MAB framework to

successfully address the tradeoff between exploitation and exploration, in contrast to current

protocols that typically keep the same multipath as long as it is valid. It also finds the optimal

rate at which traffic is sent on each path without having to measure link capacities or interference

domains. It works efficiently when several flows are present. We have implemented HyMAB

on a testbed of WiFi and PLC nodes, thus showing in practice its optimality and adaptability to

dynamic conditions. To the best of our knowledge, this is the first implementation of a MAB

strategy in the context of routing and congestion control.

The MAB foundations presented in this chapter could be employed for other communication

technologies and contexts, such as IoT or vehicular networks. The specifics of HyMAB design

are technology independent. To tackle dynamic conditions and network intricacies, we have

proposed guidelines on how to adjust our design.
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5 Latency in Hybrid Time-Varying
Networks

5.1 Introduction: Time Variability in Networks

In the first part of this dissertation, we have shown that hybrid networks and multipath can

significantly improve the throughput experienced by users. But throughput is rarely the only

metric that needs to be optimized, and hybrid networks open interesting perspectives in terms

of latency, power consumption, reliability, privacy, etc. In this chapter,1 we focus on latency

in hybrid networks. Latency in today’s networks is paramount and is acknowledged as being

fundamental in tomorrow’s networks, as illustrated by the standardization efforts towards ultra-

reliable low-latency communications (URLLC) in wireless networks [vis15].

The time variability of the service rate has a strong impact on latency: If the service rate of a

link (i.e., the link capacity) decreases, packets accumulate in the queue of the network interface,

which increases the packet delay, i.e., the time interval between the moments when the packet is

sent by the source and received by the destination (in the following, latency and delay are used

interchangeably). Because of varying signals (fading, multi-path effects, etc.), WiFi typically

presents a behavior with time-varying service rates. This is illustrated by Figure 5.1, where we

show the instantaneous physical rate, obtained by the modulation and coding scheme (MCS)

index employed, averaged over ten packets, in a 25 seconds WiFi trace, with no other traffic.

Clearly, the MCS index is not constant; it varies between (mostly) four areas with two dominant

states, a high-rate state (about 80 Mb/s) and a low-rate state (about 60 Mb/s). These service rate

variations with high-rate and low-rate states can be observed in many contexts. They happen for

example when several users employ the same channel and interfere with each other: If Alice is

streaming a video or downloading a file with WiFi or LTE and no other user is active, Alice has

a high throughput: she is in a high-rate state. If another user Bob is active (e.g., he is surfing

the Web), Alice’s throughput decreases: she is in a low-rate state. These variations can also

be observed on WAN paths if one WAN router alternates between high-traffic loads (low-rate

state) and low-traffic loads (high-rate state); or in data-centers where servers typically alternate

between high-rate and low-rate states, that can be caused by a higher load of the server, but

1This chapter is based on the paper by Henri et al. [HST18].
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Figure 5.1 – Physical rate of a WiFi link, averaged over ten packets.

also by many external reasons such as garbage collection, network interrupts, or background

work [GHBSW+17]; or at home with PLC, because switching on and off appliances changes the

electrical impedance and can cause link-capacity drops [VHT15].

To illustrate the effect that variability has on packet delays in hybrid wireless networks, we carry

out the following uncontrolled experiment. We run traffic between two nodes that each have

two WiFi interfaces; the first WiFi interface operates in the 2.4 GHz band, the second interface

operates in the 5 GHz band, with a 20 MHz band for each. Both WiFi interfaces use the 802.11n

protocol and there is a single antenna per interface. The nodes and the WiFi interfaces are

described in details in Section A in the Appendix. The two nodes are approximately 15 meters

apart in two different offices, with two walls between them. Lower frequencies are known to be

less attenuated by walls than higher frequencies, and we observe that the maximum instantaneous

rate between the two nodes is about 35 Mb/s in the 5 GHz band, whereas it is about 45 Mb/s in

the 2.4 GHz band. However, in the building where the experiments take place, the 2.4 GHz band

is also used by the WiFi network of the university, whereas no other node uses the 5 GHz band.

When other nodes use the university WiFi network, the throughput on the 2.4 GHz link decreases.

Consequently, the variability is larger in the 2.4 GHz band.

We run our experiments on a weekday, when the WiFi network of the university is more loaded.

We send UDP traffic during 30 seconds at various rates with iperf, first in the 2.4 GHz band,

then in the 5 GHz band, and we measure the one-way delay of the packets by using tcpdump

on each interface.2 The experiment is repeated five times for each interface and each rate, and

we present averaged results. Figure 5.2 (left) shows the receiving rate; the average throughput

achieved in the 2.4 GHz band (about 38 Mb/s) is slightly higher than that achieved in the 5 GHz

band, but it is below the maximum instantaneous throughput of 45 Mb/s. This shows that the

variability in the 2.4 GHz band is indeed quite large. In contrast, the throughput achieved in the

5 GHz is close to its maximum instantaneous throughput. Figure 5.2 (right) shows the average

packet delay (top) and jitter (bottom). Even though the average throughput is slightly higher in

the 2.4 GHz band, delay and jitter both are smaller in the 5 GHz band (delay is up to 4.5x smaller

when the arrival rate is 24 Mb/s). This illustrates that, as expected, variability has a high impact

on the delays; we study this impact in this chapter.

2The two nodes are synchronized with the Precision Time Protocol (PTP) [PTP08] that offers a precision of a few

microseconds (minimum delays are of the order of the millisecond).
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testbed with 2.4 GHz and 5 GHz WiFi.
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Figure 5.3 – Sample path of the service rate.

Outline of the Chapter This chapter is structured as follows. In Section 5.2, we describe

a model that captures the variability of the service rate and that enables us to study the effect

on delays of this variability, in two different settings: (i ) For a given arrival rate, we want to

choose between two paths (i.e., in the context of hybrid networks, between two technologies).

Increasing the average service rate clearly decreases the average delays; to isolate the effect of

time variability, we assume, in the first setting, that the two technologies have the same average
service rate, but different variances of the service rate, and we want to find which technology

yields the smallest average delays. This first setting is studied in Section 5.3. (ii ) We next study

the second setting where two technologies, potentially with different average service rates, can

be used simultaneously, and traffic be split between them (i.e., we consider multipath routing).

We want to study the effect of the splitting scheme. This second setting is studied in Section 5.4.

We discuss related work in Section 5.5 and close the chapter with a summary in Section 5.6.

5.2 Queueing Model with Time-Varying Service Rates

We model a network interface by a queue with i.i.d. exponentially-distributed arrivals with rate

parameter λ. The server operates in two different regimes: A low-rate state in which the packets

are sent (or the jobs are completed) with exponential service rate μl , and a high-rate state in

which the packets are sent with exponential service rate μh , with 0 <μl <μh . From now on, we

simply write low state and high state for low-rate state and high-rate state. The sojourn times in

low and high states are exponentially distributed, with parameter αl when in low state and αh
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when in high state. The service model is thus a continuous-time Markov chain, with a sample

path illustrated in Figure 5.3. If (Q(t ),S(t )) denotes the number of packets and the state of the

server at time t , and if r ((q1, s1), (q2, s2)) denotes the transition rates from state (q1, s1) to state

(q2, s2), then the only non-zero transition rates are

r ((q, s), (q +1, s)) =λ, for all q ≥ 0, s ∈ {h, l },

r ((q, s), (q −1, s)) =μs , for all q ≥ 1, s ∈ {h, l },

r ((q,h), (q, l )) =αh , for all q ≥ 0,

r ((q, l ), (q,h)) =αl , for all q ≥ 0.

This model with heterogeneous time-varying service rates was studied as early as 1971 by

Yechiali and Naor [YN71]. However, the expression of the average delays is quite complex; it

involves computing the root of a cubic equation (see also in the Appendix). Even though it can

be computed in principle, its explicit expression is very complex (it would take dozens of line

to write it explicitly), and few works give analytical results that can be intuitively understood.

Ross conjectured in 1978 that increased variability leads to increased averaged delays [Ros78].

Variability was expressed by the sole parameter α=αh +αl . A lower α means longer sojourn

times in the “high” and “low” states: It leads to a higher heterogeneity of the service rates, i.e.,

a larger variability. In contrast, with very short sojourn times in each of the states (i.e., very

frequent transitions and large α), the queue with heterogeneous service rates performs close to a

homogeneous M/M/1 queue with an averaged service rate [GHBWY06]. Ross’s conjecture was

proven in 1981 by Rolski [Rol81] in the particular case μh = μl , with different arrival rates in

high and low states: The average delay in this scenario is a decreasing function of α. The general

case, with different service rates (μh �= μl ), was studied in 2006 by Gupta et al. [GHBWY06].

They show that the average queue size is always monotonic in α, but not always decreasing. In

our setting where the arrival rate is the same in both states, the average queue size, hence, the

average delay is a decreasing function of α, as conjectured by Ross.

5.3 Time-Varying Hybrid Networks: Choosing the Best Technology

In this section, we consider a hybrid network with two technologies, and we study the single-

path case, where the client wants to choose the best technology (with respect to delays). We

model the two technologies as two queues that follow the model described in Section 5.2, with

respective parameters μl ,i , μh,i , αl ,i , and αh,i for i = 1,2. The model of this section is illustrated

by Figure 5.4. In the remainder of this chapter, we study only average delay, and sometimes refer

to it simply as delay; the delay of Queue i as a function of the arrival rate λ is denoted by Di (λ).

We want to compare the two queues and to find out which one yields the lowest delay.
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Figure 5.4 – Model with two technologies and single-path.

5.3.1 Analysis

In this section, we are interested in studying how the variability of the service rates, rather

than the average service rate itself, affects the average delays. Indeed, it is obvious that for a

fixed level of variability, an increased average service rate yields lower delays. Intuitively, we

expect that a larger variability should yield larger delays. This is what happens for an M/G/1

queue, where variability is expressed by the variance of the service times: The well-known

Pollaczek–Khinchine formula states indeed that when the two queues have the same average

service rate μ̂ and the same arrival rate λ ∈ [0, μ̂), the queue with the largest delays is always the

queue with the largest variance of the service times. Our model with heterogeneous time-varying

service rates is different: In an M/G/1 queue, the service times are i.i.d., contrary to our model

where they are drawn from two different exponential distributions, depending on the state (low

or high) the system is in. We show in this section that, although this is often the case, larger

variability does not always yield larger delays; we also show that for certain values of μl ,i , μh,i ,

αl ,i , and αh,i , the queue with the largest delays is not the same for all arrival rates λ.

Let Ri denote the random variable for the service rate, taking values in {μl ,i ,μh,i } and distributed

according to the stationary distribution of the process illustrated in Figure 5.3. The average

service rate of Queue i for i ∈ {1,2} is given by

μ̂i = E [Ri ] = μh,i /αh,i +μl ,i /αl ,i

1/αh,i +1/αl ,i
= αl ,iμh,i +αh,iμl ,i

αh,i +αl ,i
,

For Queue i to be stable, we must have λ< μ̂i [YN71]. Because we assume in this section that

the two queues have the same average service rate, we have μ̂1 = μ̂2
.= μ̂. In particular, the two

queues have the same stability region λ ∈ [0, μ̂). Previous work has studied the effect on the

delays of the parameter αi
.=αh,i +αl ,i when μh and μl are fixed [GHBWY06, Rol81, Hey82].

For this reason, we assume in this section that α1 =α2
.=α and our goal is to study the effect of

the other parameters. We express variability by the variance Vi of the service rate of Queue i ,

which can be written as

Vi = Var[Ri ] =
αl ,iμ

2
h,i +αh,iμ

2
l ,i

αh,i +αl ,i
− μ̂2. (5.1)

Note that Vi = 0 if and only if Queue i is homogeneous (μh,i =μl ,i ).
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The delay for Queue i for i ∈ {1,2} is determined by five parameters: μh,i , μl ,i , αh,i , αl ,i , and λ.

When μ̂ and α are fixed, there are still three degrees of freedom, and the delay depends both on

the service rates (μ’s) and on the transition rates (α’s). The first natural question that we want

to answer is what happens when the variance V is fixed (i.e., V1 =V2). Theorem 4 shows that

determining which queue has the largest delays now only depends on the service rates and not

on the transition rates, and that the best queue is the same for all arrival rates. The proofs of the

theorems of this section are given in the Appendix.

Theorem 4. Let us assume that μ̂1 = μ̂2 and α1 =α2. For i ∈ {1,2}, let

πi =μh,iμl ,i . (5.2)

If V1 =V2, then for all arrival rates λ ∈ (0, μ̂), D1(λ) ≥ D2(λ) if and only if π1 ≤π2, with equality
if and only if π1 =π2. Conversely, if π1 =π2, then for all arrival rates λ ∈ (0, μ̂), D1(λ) ≥ D2(λ)

if and only if V1 ≥V2, with equality if and only if V1 =V2.

With μ̂ and α fixed, the delay for Queue i is fully determined by Vi (defined by Equation (5.1)),

πi (defined by Equation (5.2)), and λ. We now want to determine the queue with the lowest

delays when neither the variance V nor the product of the two service rates π are fixed, i.e.,

when V1 �=V2 and π1 �=π2. Theorem 4 shows that for all arrival rates λ, the average delay is an

increasing function of Vi when π1 =π2, and a decreasing function of πi when V1 =V2. For this

reason, we expect that the average delay increases when Vi increases and πi decreases, and that

it decreases when Vi decreases and πi increases. Theorem 5 shows that this is indeed true.

Theorem 5. Let us assume that μ̂1 = μ̂2 and α1 = α2. If V1 >V2 and π1 <π2, then for all
arrival rates λ ∈ (0, μ̂), D1(λ) > D2(λ). Conversely, if V1 <V2 and π1 >π2, then for all arrival
rates λ ∈ (0, μ̂), D1(λ) < D2(λ).

When μh is fixed (μh,1 =μh,2), Vi is a decreasing function of μl ,i and πi is an increasing function

of μl ,i . (Note that because μ̂ and μh are fixed, increasing μl ,i requires increasing the sojourn

times in the low state.) A corollary of Theorem 5 is consequently that if μh,1 =μh,2, the delay is

an increasing function of Vi (and a decreasing function of μl ,i ).

The situation becomes more complex when both Vi and πi decrease, or both Vi and πi increase.

For certain values of Vi and πi , one queue yields lower delays for all arrival rates, and in that

case, we show that this must be the queue with the lowest variance Vi . However, we show that

for certain values of Vi and πi (precise conditions are given in the Appendix), determining which

queue yields lower delays depends on the arrival rate λ. In particular, for certain arrival rates, the

queue with the lowest delays is the queue with the largest variance Vi (Corollary 2).

Theorem 6. Let us assume that μ̂1 = μ̂2 and α1 =α2. There are values of Vi and πi such that
D1(λ)−D2(λ) changes sign in (0, μ̂).

Theorem 7. Let us assume that μ̂1 = μ̂2 and α1 = α2. If for all arrival rates λ ∈ (0, μ̂),
D1(λ) �= D2(λ), then for all λ ∈ (0, μ̂), D1(λ) > D2(λ) if and only if V1 >V2.
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Corollary 2. For certain values of Vi and πi , there is λ0 ∈ (0, μ̂) such that for all arrival rates
λ ∈ (0,λ0), V1 >V2 and D1(λ) < D2(λ), or V1 <V2 and D1(λ) > D2(λ).

In Section 5.3.2, we present numerical and testbed evidences that show that by using the queue

with the largest variance, the delay gain provided can be significant.

The next step is to understand why the queue with the lowest variance can sometimes yield larger

delays. We make the following conjecture, that appears to hold numerically.

Conjecture 1. Let us assume that μ̂1 = μ̂2 and α1 =α2. If V1 >V2 and μl ,1 <μl ,2, then for all
arrival rates λ ∈ (0, μ̂), D1(λ) > D2(λ). Conversely, if V1 <V2 and μl ,1 >μl ,2, then for all arrival
rates λ ∈ (0, μ̂), D1(λ) < D2(λ).

This would mean that a necessary condition for the queue with the largest variance to yield the

smallest delays would be to have its service rate in the low state (μl ,i ) be larger than that of the

queue with the lowest variance. (Note that this is not a sufficient condition.) Therefore, in low

state, the size of the queue with the smallest variance would increase faster than the size of the

queue with the largest variance, which can cause larger average delays despite a smaller variance.

This conjecture has another direct consequence: If αh,1 =αh,2
.=αh and αl ,1 =αl ,2

.=αl , then

for all λ ∈ (0, μ̂), D1(λ) > D2(λ) if and only if V1 >V2: If we fix the transition rates αh and αl ,

then the average delay is an increasing function of the variance. If αh and αl are fixed, we can

already prove that if αlμh,i ≥αhμl ,i , then V1 ≥V2 if and only if π1 ≤π2 (see Lemma 11 in the

Appendix), and it follows therefore from Theorem 5 that for all λ ∈ (0, μ̂) D1(λ) > D2(λ) if and

only if V1 > V2. This is in particular the case if αl ≥ αh , i.e., if the queues spend more time

in the high state.

Note that if α1 �=α2, it is possible to have D1(λ) < D2(λ) with V1 >V2 and μl ,1 <μl ,2 (e.g., when

α1 is large and α2 is small).

5.3.2 Experimental Results

In contrast to the experiments of Section 5.1 (presented in Figure 5.2), where we did not have

control over the sources of variability, we want in the following to be able to control the parameters

μh,i , μl ,i , αh,i , and αl ,i , in order to compare the experimental results with the analytical results.

This is achieved with WiFi by setting the modulation and coding scheme (MCS) used by the

interface. The ath9k driver enables us to set the MCS to the desired value. To avoid external

sources of variability, we run all the experiments of this section in the 5 GHz band, not used

by any other user. The analysis assumes infinite queues. In practice, the queues of the network

interfaces are finite. We run our experiments in two modes: Either packets are queued in an

infinite queue at the application level, by using the Click Modular Router [KMC+00]; or we use

the default finite queues of the network interfaces.
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Figure 5.5 – Delay difference D1 −D2 between Queue 1 (smaller variance) and Queue 2.
Analytical and testbed results.

We use the following values, with the service rates (μ) in packets/s, and the transition rates (α) in

transitions/s: μh,1 = 4196 (MCS 5, about 46 Mb/s), μl ,1 = 1562 (MCS 2, about 17.5 Mb/s),

μh,2 = 4687 (MCS 6, about 52 Mb/s), μl ,2 = 2089 (MCS 3, about 23 Mb/s), αh,1 = 2.92,

αl ,1 = 7.01, αh,2 = 4.84, and αl ,2 = 5.16. These values are chosen randomly among some for

which the smaller delays are achieved by the queue with larger variance for certain arrival rates,

as shown by Corollary 2. More precisely, we choose values such that Equation (B.21) in the

Appendix is verified. We have μ̂1 = μ̂2 = 38.4 Mb/s, V1 = 1.33×106, and V2 = 1.67×106: Queue 1

is the queue with smallest variance. The theoretical delay difference D1 −D2 obtained from

Equation (B.13) in the Appendix is shown in Figure 5.5. For arrival rates lower than about

30 Mb/s, the queue with smallest delays is Queue 2, the queue with largest variance.

We carry experiments with two nodes (described in Section A in the Appendix), located in the

same office. We send UDP traffic during 20 s on each queue and at various rates, and we measure

the packet delays. Sending traffic on Queue i means that the WiFi interface switches between

the MCS that corresponds to μh,i and μl ,i , with exponentially-distributed sojourn times with

respective parameters αh,i and αl ,i . For all the testbed experiments of this chapter (Section 5.3.2

and Section 5.4.2), no assumption is made on the distribution of the service times of the packets,

and only the average service rate is set; as opposed to the analytical part where they were

assumed to be exponentially distributed, the service times depend on the wireless interface and

their distribution is unknown. For the packet arrivals, we set the average arrival rate and we

try exponential and deterministic distributions, but the choice has no effect on the delays. The

results are shown with a deterministic distribution (i.e., the inter-arrival times between packets

are constant). The experiments are repeated five times and we present averaged results. We first

check that the average receiving rate is the same for both queues, which is the case (see Figure 5.6,

left). As expected, it converges to approximately μ̂ = 38.4 Mb/s for the infinite queues. The

experimental average delay-difference is shown in Figure 5.5. It matches very well the analytical

results, which shows that the queue with largest variance can indeed offer the smallest delays for

certain arrival rates. This also shows that the best queue in terms of delays depends on the arrival
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Figure 5.6 – Experimental receiving rate for the two queues on a wireless testbed, with
finite and infinite queues. Left: All arrival rates. Right: Zoom on some arrival rates.

rate λ. We note that the delay difference is, as expected, larger when the queues are infinite, and

is significant for certain arrival rates: When λ= 22.4 Mb/s, the delay is 3x larger when using

Queue 1, the queue with smallest variance (8.7 ms vs. 2.9 ms).

When the queues are finite, some packets are discarded when the queues are too long. In this

case, variability has two consequences: larger delays and lower receiving rate. Delays can be

observed in Figure 5.5: For example, when the arrival rate is around 23 Mb/s, Queue 1, the queue

with the smallest variance, has a larger average delay (7.7 ms vs. 3.1 ms). For low arrival rates,

Queue 1 not only has larger delays, but it also has lower receiving rates. This can be observed in

Figure 5.6 (right), that shows a zoom on some arrival rates of Figure 5.6 (left). When the arrival

rate is around 25 Mb/s, Queue 1 has a receiving rate of 24 Mb/s, vs. 25 Mb/s for Queue 2. When

the arrival rate is around 35 Mb/s, the order gets reversed: Queue 1 has smaller delays and a

higher receiving rate.

5.4 Time-Varying Hybrid Networks and Multipath

We now move to the second setting, where the two technologies, potentially with different average

service rates, can be used simultaneously (i.e., multipath routing). We first describe the model,

then we analyze theoretically the average delay. We present numerical and experimental results

that support our analytical results.

5.4.1 Model and Analysis

Model for Multipath

The model for our multipath scenario is illustrated in Figure 5.7. As described in Section 5.2, the

service rate of Queue i for i ∈ {1,2} is modelled by low and high states, with respective service

rates μl ,i and μh,i (μh,i > μl ,i > 0). Packets arrive in the system as a Poisson process with rate

parameter λ, and are routed to the queues based on a Bernoulli trial: With probability p, a packet
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Figure 5.7 – Model with two technologies and multipath.

goes to Queue 1, with probability 1−p, it goes to Queue 2. As opposed to most works that study

queues in parallel [Hai58, Hyy13, IM14], we assume that the routing decision is made without

knowledge of the current size of the queues. Several reasons justify this choice. First, it might be

impossible to obtain the size of the internal queue of a network interface (e.g., most PLC devices

do not give such an information). Second, even when it is possible, it can be quite complex in

practice. For example, in OpenWrt (the system that we use in our experiments), the networking

stack consists in three different queues [ope]; accessing each of them on a packet-per-packet

basis might cause significant overload. Third, to reduce the overhead due to MAC protocols,

recent technologies employ frame aggregation. This is for example the case in IEEE 802.11n and

802.11ac, the most recent standards for WiFi, and in IEEE 1901, the most recent standard for PLC.

This means that a queue might be non-empty while the channel is idle, which makes the model

where the routing decision is based solely on queue size inadequate. Protocols that send feedback

for (almost) every packet, such as MPTCP, offer the possibility to use indirect information on the

queues, such as the round-trip time. However, this information is delayed, whereas classic models

assume immediate information. In addition, feedback cannot be employed for a protocol such as

UDP, whereas UDP might be preferred for delay-sensitive applications [KR09]. In Section 5.4.2,

we compare experimentally the delays obtained with our model with UDP and those obtained

with TCP/MPTCP.

One purpose of our analysis is to study the effect on delays of the parameter p, i.e., of the traffic

splitting between the two paths. We want to find the value of p, denoted in the following by

p∗, that yields the smallest average delay. When the packets are routed to the queues by using

a Bernoulli trial, the two queues are independent, with respective arrival rates pλ and (1−p)λ.

With Ni (λi ) being the average size of Queue i as a function of the arrival rate λi at Queue i , the

average total delay as a function of the splitting probability p is simply, using Little’s law,

D(p) = Nt (p)

λ
, (5.3)

where Nt (p) is the total average queue length as a function of the splitting probability p ∈ [0,1]

and reads

Nt (p)
.= N1(pλ)+N2((1−p)λ). (5.4)

For a given λ, minimizing the average total size of the queues and minimizing the average delay

is thus equivalent.
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Remember that μ̂i is the average service rate of Queue i (in this section, we can have μ̂1 �= μ̂2).

The natural static splitting probability (i.e., constant for all arrival rates λ) to use is

plim = μ̂1

μ̂1 + μ̂2
. (5.5)

It is easy to show that plim is the optimal static p, as it is the only static value of p that maintains

the two queues stable for all arrival rates λ< μ̂1 + μ̂2. If λ≥ μ̂1 + μ̂2, no p maintains both queues

stable. We now study the optimal splitting probability p∗(λ), potentially different for each arrival

rate λ ∈ (0, μ̂1 + μ̂2).

Analysis of the Optimal Splitting Probability

We start by noting that Ni is a strictly convex function of λi [LS92]. From Equation (5.3), we

know that, for a given λ, working with the average delays D and with the average total queue

size Nt is equivalent, and that the delay is minimized when Nt (p) given by Equation (5.4) is

minimized. When λ is given, Nt is minimized, either when p = 0 or p = 1, or when

N ′
t (p) =λN ′

1(pλ)−λN ′
2((1−p)λ) = 0. (5.6)

Let us assume first that N ′
1(0) < N ′

2(0). Because N1(λ) has a vertical asymptote for λ = μ̂1,

N ′
1(λ) →∞ when λ→ μ̂1, i.e., there is a λ0 ∈ (0, μ̂1) such that N ′

1(λ0) = N ′
2(0). Because N1 is

strictly convex and consequently N ′
1 is strictly increasing, λ0 is unique. Then for all λ≤λ0,

N ′
t (p) ≤ 0 for all p ∈ [0,1], i.e., Nt (p) is decreasing and p∗(λ) = 1. For λ ∈ (λ0, μ̂1 + μ̂2), Equa-

tion (5.6) has a solution in (0,1) because N ′
t (0) =λ(N ′

1(0)−N ′
2(λ)) <λ(N ′

1(0)−N ′
2(0)) < 0 and

N ′
t (1) =λ(N ′

1(λ)−N ′
2(0)) > 0, and because N ′

t (plim) is finite. This solution is unique because N1

and N2, and thus Nt , are strictly convex. For a given λ ∈ [λ0, μ̂1 + μ̂2), p∗(λ) is then the unique

solution of

N ′
1(p∗λ) = N ′

2((1−p∗)λ). (5.7)

The optimal splitting probabiliy p∗(λ) is therefore the function equal to 1 for each λ ∈ (0,λ0],

and that associates to each λ ∈ (λ0, μ̂1 + μ̂2) the solution of Equation (5.7). Note that

limλ→μ̂1+μ̂2 p∗(λ) = plim.

If N ′
2(0) < N ′

1(0), everything is similar, except that p∗(λ) = 0 for λ ∈ (0,λ0]. We have thus shown

the following theorem.

Theorem 8. If N ′
1(0) �= N ′

2(0), there is a λ0 ∈ (0, μ̂1 + μ̂2) such that for all λ ∈ (0,λ0], using a
single queue yields smaller average delays than any traffic splitting between the two queues.

For homogeneous service rates (i.e., when μh,i =μl ,i = μ̂i ), N ′
1(0) = N ′

2(0) if and only if the

queues are identical (μ̂1 = μ̂2). For heterogeneous service rates, we can show with the notations

of Section 5.3.1 that N ′
i (0) = αi μ̂i+πi+Vi

μ̂i (αi μ̂i+πi ) . Although two non-identical queues can in theory have
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same value N ′
i (0), the set of parameters that meet N ′

1(0) = N ′
2(0) has measure zero in the space

of possible parameters for Queues 1 and 2. For this reason, two non-identical queues with

parameters chosen at random are very unlikely to have N ′
1(0) = N ′

2(0).

We first assume homogeneous service rates (μh,i =μl ,i = μ̂i ) for both queues. Without loss of

generality, we assume that Queue 1 is the queue with largest average service rate, i.e., μ̂1 > μ̂2.

In the homogeneous case, we can obtain an explicit expression for p∗(λ). We know that

Ni (λ) =λ/(μi −λ), and a simple computation gives

λ0 = μ̂1 −
√

μ̂1μ̂2. (5.8)

Then, using Equation (5.7), p∗ is given for λ ∈ (0, μ̂1 + μ̂2) by

p∗(λ) = 1 if λ ∈ (0,λ0],

p∗(λ) = μ̂1(λ−2μ̂2)+ (μ̂1 + μ̂2 −λ)
√

μ̂1μ̂2

λ(μ̂1 − μ̂2)
if λ ∈ (λ0, μ̂1 + μ̂2).

When the service rates are heterogeneous (μh,i �=μl ,i ), the expression for Ni is too complex to

provide an explicit expression of p∗. However, we have proven (Theorem 8) that there exists a

λ0 > 0 such that when λ≤λ0, p∗(λ) = 0 or p∗(λ) = 1: For low arrival rates, it is better in terms of

delays to use only one path. In addition, p∗ can be computed numerically using Equation (5.7).

5.4.2 Numerical and Experimental Results

Numerical Results

In this section, we show numerically that in time-varying networks, the choice of p has a

strong impact on the delays. In particular, we compare the delays obtained with p∗(λ) and

with plim. Queue 1 has an average service rate μ̂1 = 30 Mb/s, and Queue 2 an average service

rate μ̂2 = 5 Mb/s. Packets have size 1400 B, so that μ̂1 = 2678 packets/s and μ̂2 = 446 packets/s.

Queue 1 has homogeneous service rates (μh,1 =μl ,1), and we study how the variability of Queue 2

affects delays. We set αh,2 =αl ,2 = 1 transition/s, and we use three different sets of values for μh,2

and μl ,2 with same average service rate μ̂2: μh,2 =μl ,2 = 5 Mb/s; μh,2 = 6 Mb/s and μl ,2 = 4 Mb/s;

μh,2 = 7 Mb/s and μl ,2 = 3 Mb/s.

Figure 5.8 shows the optimal splitting p∗ for the three sets of values for μh,2 and μl ,2. When

μh,2 =μl ,2 = 5 Mb/s, both queues are homogeneous, and, as shown above, it is optimal to send

all the traffic on Queue 1 when λ < λ0 with λ0 ≈ 17.8 Mb/s given by Equation (5.8). We see

on Figure 5.8 that the effect of the variability (μh,2 �= μl ,2) on λ0 is quite small. However, the

impact of the variability on the delays is very large. We show the ratio (Figure 5.9, left) and

difference (Figure 5.9, right) of the packet delays when the traffic is split either with probability

p∗(λ) for an arrival rate λ, or with probability plim ≈ 0.86 for all arrival rates. For example,

when μh,2 = 7 Mb/s and μl ,2 = 3 Mb/s and for an arrival rate λ= 19 Mb/s, p∗ = 1, and the delay
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Figure 5.8 – Optimal splitting p∗ as a function of the arrival rate λ.
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Figure 5.9 – Ratio D(plim)/D(p∗) (left) and difference D(plim)−D(p∗) (right) of the delays
with static (plim) and optimal (p∗) splitting.

obtained by sending everything on Queue 1 is about 1 ms; when traffic is split with probability

plim, the delay is 2.8 ms. For higher arrival rates, the delay ratio can be up to 13: For λ= 29 Mb/s,

the delay with p∗ is 3.9 ms, and the delay obtained with plim is 51 ms. We next present evidence

of this behavior on a wireless testbed.

In our analysis, we do not take reordering into account. A careful study of reordering is out of

the scope of this dissertation, but reordering is likely to further increase the rate λ0 before which

using a single queue is preferable. Indeed, sending at a low rate on the second queue might harm

delays (because an additional delay is required for packets to be ordered) more than the gains it

offers.

Experimental Results

We now study experimentally the impact of the splitting probability p. Our hybrid network

consists in Queue 1, a WiFi interface in the 5 GHz band, and Queue 2, a WiFi interface in the

2.4 GHz band. In this section, to avoid external sources of variability, especially in the 2.4 GHz
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band used by the WiFi network of the university, we run all the experiments at night. We consider

a simple and realistic case where the two queues have different average service rates. Queue 1

has homogeneous service rates: μh,1 =μl ,1 = 5000 packets/s (MCS 7, about 56 Mb/s). Queue 2

has variable service rates: μh,2 = 2053 (MCS 3, about 23 Mb/s) and μl ,2 = 1071 (MCS 1, about

12 Mb/s). The transition rates for Queue 2 are αh,2 =αl ,2 = 3 transitions/s. We send UDP traffic

during 20 seconds for various arrival rates λ and for all probabilities p between 0 and 1, with

0.05 increments. The experiments are repeated three times for each λ and p. Figure 5.10 (left)

shows the theoretical and experimental values for p∗. For the infinite queues, the experimental

p∗ is found for each arrival rate as the p that yields the smallest average delays. For the finite

queues, there might be packet losses as shown in Section 5.3.2, and we measure both the splitting

probability p that yields the smallest average delays and the splitting probability p that yields

the maximal received throughput (we note that the two are equal, except when the arrival rate

is very close to the saturation rate). The experimental values are close to the theoretical ones.

The optimal static p, as defined by Equation (5.5), is plim ≈ 0.75. Figure 5.10 (right) shows the

ratio of the delays obtained with plim over the delays obtained with p∗(λ). For certain arrival

rates, the negative impact of a static splitting probability is quite strong: With infinite queues,

for λ= 64 Mb/s, the delay is 6 ms with p = p∗, whereas it is 25 ms with p = plim. The impact is

strong with finite queues as well: For λ= 48 Mb/s, the delay is 2 ms with p = p∗, whereas it is

9 ms with p = plim.

In contrast, when we set μh,2 =μl ,2 = 1562 (MCS 2, about 17.5 Mb/s), i.e., when the two queues

have homogeneous service rates, using plim instead of p∗ has a small effect on delays: The

maximum delay-ratio is around 1.5x for analytical and experimental results, and the difference is

always less than a millisecond (the results are not shown due to lack of space).

Finally, we compare the results obtained with our model with the results obtained with single-path

TCP and MPTCP. Because TCP and MPTCP are by default designed for favoring throughput,

we do some modifications in order to favor delays, which reduces the delay at low throughput

from about 2 ms to about 0.7 ms. This is the same value as with UDP traffic. We keep using

μh,1 =μl ,1 = 5000, μh,2 = 2053, μl ,2 = 1071, and αh,2 =αl ,2 = 3. TCP is used on Queue 1 only,

the queue with higher average service rate (about 50 Mb/s with TCP). For MPTCP, the default

scheduler is used. For each rate, the experiment is repeated five times and we present averaged

results. Figure 5.11 (left) shows the probability that traffic with MPTCP is sent on Queue 1,

along with p∗ found experimentally with UDP traffic. For low arrival rates, MPTCP sends more

traffic on the second queue when compared to p∗, the optimal splitting in our model. Figure 5.11

(right) shows the delays obtained with the different protocols. UDP is shown for reference, but a

fair comparison with TCP or MPTCP is difficult, because the performance of TCP/MPTCP in

terms of delays is very dependent on the configuration (scheduler, congestion window, slow start,

etc.). Nevertheless, results indicate that MPTCP schedulers can be improved to favor latency. It

is interesting to compare TCP and MPTCP, because they use the same configurations. For low

arrival rates, TCP (i.e., single-path) yields slightly smaller delays, whereas MPTCP reduces the

delays for higher arrival rates. This confirms our analysis and previous experiments: For low

arrival rates, it is better in terms of delays to use a single path.
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5.5 Related Work

Queueing Models

Time-varying queueing models were first studied in 1956 by Clarke [Cla56]. The model described

in Section 5.2 was introduced and solved for the first time by Yechiali and Naor [YN71]. It was

then studied with more general assumptions [HZ04] or solved with different techniques [Neu77,

MG05]. These works give powerful tools to derive numerical results, but only a few give intuitive

insights and fundamental properties of the delays generated by this queue model. The works that

do so study the effect on delays of the transition rates α [GHBWY06, Rol81, Ros78, Hey82].

Other works have studied M/G/1 or MAP/G/1 queues with correlated service times [AK03,

MPB77, LVHB06]; they find recursive equations for the delays and solve them numerically, but

they do not give intuitive insights and fundamental properties of the average delays. To the best of

our knowledge, our work is the first that shows that with the same average service rate, a largest

variance can yield lower average delays.
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A model with two queues in parallel was introduced in 1958 by Haight [Hai58]. A large number of

works study models that assume identical servers with homogeneous service rates (μh =μl ), when

the packets are routed based on the current queue sizes [ARW11, Win77]. These models were

extended to support non-identical servers, still with homogeneous service rates [Lar81, Hyy13].

They show that the optimal decision is threshold-based, i.e., packets are routed to the fastest

queue, unless the queue-size difference is above some threshold. To the best of our knowledge,

ours is the first work that studies queues in parallel with heterogeneous time-varying services

rates. Here, we assume that packets are routed based on a Bernoulli trial. Only a few models

study Bernoulli routing, either with identical servers and homogeneous service rates [CCP90], or

by only looking at the case where the parameter p is the same for all arrival rates [Hyy13].

Delays in Hybrid Networks

With the recent development of hybrid networks, much attention has been recently given on

knowing if multipath, in particular MPTCP, could help reduce delays. When the characteristics of

the two paths are very different, in particular in terms of RTT (e.g., with LTE and WiFi), MPTCP

is found to increase slightly the delays [CLG+13, CT14]. When the characteristics of the two

paths are close, MPTCP can reduce delays significantly [YFD+16]. We find in addition that it

depends on the arrival rates: For low arrival rates, it is usually better to use a single path, whereas

it is better to use two paths for larger arrival rates. Finally, MPTCP can also be used by sending

redundant messages on the two paths [FEB+16]. This reduces the delays, but at the cost of higher

utilization. This model with redundant messages is out of the scope of our dissertation.

5.6 Summary

In this chapter, we have investigated delays in time-varying hybrid networks. The variability of

the service rate severely impacts packet delays, as illustrated by the experiments we carried out

on a wireless testbed. First, we have studied the setting where the user wants to choose between

two technologies with the same average service rate but different service rate variabilities. Using

a queue model with heterogeneous time-varying service rates, we have shown that for a given

average service rate, the technology that offers the smallest delays is not necessarily the same for

all arrival rates, and that the technology with the largest variance sometimes yields the smallest

delays. These results obtained with a time-varying queuing model are supported by experiments

carried out on a wireless testbed with two WiFi channels; they have shown that the delay gain

provided by using the technology with the largest variance can be significant. Then, we have

studied the conditions under which multipath (for example, with two different technologies, e.g.,

WiFi and LTE or PLC, or two WiFi channels), reduces the delays, compared to using a single path.

We have shown through analysis and testbed experiments that the optimal splitting between the

two paths is not easy to find as it depends on the arrival rate, and that for low arrival rates, using

a single path is usually better than using two paths. Numerically and experimentally, we have

shown that the larger the variability, the higher the impact of the splitting decision on the delays.
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6 Improving Privacy with Multipath
and Hybrid Networks

6.1 Introduction

In the first and second parts of this dissertation, we have shown that hybrid networks and multipath

can significantly improve the throughput and latency experienced by users. The recent revelations

about mass surveillance have also shed light on the privacy risks that go with the use of Internet.

In this chapter,1 we hence study the effect of multipath and hybrid networks in terms of privacy.

6.1.1 Website Fingerprinting

The web activity of users, i.e., which websites they visit, is known to be a sensitive data as

it discloses a large amount of information. Such information can be used by repressive states

against citizens who try to go against country-level censorship and by marketers (e.g., it has been

revealed that in the USA, Internet service providers (ISPs) sell the Internet browsing records to

marketers [ISP07]). Consequently, being able to keep a person’s web activity private is of the

utmost importance. Typical solutions include the use of encryption protocols that, such as TLS

(used by HTTPS), hide only the content of the packet; and of anonymous communication tools

that, such as Tor, also hide the destination of the packets from a local adversary (e.g., a curious or

state-controlled ISP, or the curious administrator of a public WiFi access-point). Anonymous

communication tools like Tor, which we study more particularly in this dissertation, are supposed

to make it impossible for a local adversary to detect which website a client visits.

Recent works [CA98, HWF09, PNZE11, WCN+14, PLP+16, HD16, WG16], however, have

shown that traffic analysis techniques, such as website fingerprinting (denoted in this chapter by

WF), enable a local adversary to identify with high accuracy which website is visited (around 90%

accuracy in a list of 100 monitored websites), even if the client uses an anonymous communication

tool (i.e., she hides the final destination and content of the packets from the local adversary).

The adversary can successfully identify the website (carry out a WF attack) by looking at only

1This chapter is based on the paper by Henri et al. [HGAS+18].
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packet metadata such as timestamp, size and direction (incoming or outgoing) of the packets. WF

attacks typically extract features on the observable metadata (such as total number of packets,

timings of packets, ratio between outgoing packets and incoming packets). These attacks are

formulated as a classification problem and rely on supervised machine-learning techniques to

learn associations between features and websites.

A large number of defenses has been proposed to defeat these attacks. With Tor, the packets are

fragmented in so-called Tor cells of fixed size, which means that only the timestamp and direction

of the packets are available to the adversary; but it has been shown to be ineffective [PNZE11,

WCN+14, PLP+16, HD16, WG16]. More complex defenses rely on two main techniques: (i ) link
padding, which takes advantage of the inability of the adversary to see the content of the packets

and inserts dummy packets to the packet flow to confuse the adversary; and (i i ) packet delaying,

which delays packets to modify the trace. Both of these techniques incur a performance overhead:

Link padding causes a traffic overhead, because more packets are sent; and packet delaying

causes a loading-time overhead, because delaying packets makes the website loading time larger.

This yields a tradeoff between privacy and performance.

6.1.2 Multipath and Hybrid Networks

We consider the scenario where a client is multihomed, i.e., (i ) she is connected to the Internet

through multiple networks, and (i i ) an adversary can only observe the traffic sent through one of

these networks — which, as we argue, is very likely in several use cases. Multihoming has been

studied for quite some years as a solution for improving reliability and performance. It has long

been used by enterprises [AMS+03], but rarely by individual clients due to the lack of natively-

multihomed devices and because it relied on multipath solutions, such as SCTP [Ste07, IAS06],

which are difficult to use in today’s Internet. Multihoming has recently gained popularity for two

reasons. First, multihomed devices have become omnipresent in the last few years. This is in

particular due to the emergence of hybrid networks. Today, virtually all smartphones are natively

multihomed and support both WiFi and cellular. All laptops have a WiFi interface and can easily

be made multihomed by the addition of a lightweight and low-cost component (e.g., 3G/4G

USB dongles) or with a smartphone sharing its connection through Bluetooth or USB. Dual-SIM

cellphones have also been launched onto the market and are gaining popularity. Second, multipath

solutions compatible with the protocols dominant in today’s Internet have been recently developed

to exploit hybrid networks. The most popular solution is multipath TCP (MPTCP) [FRH+11,

FRHB13]: it has been shown to bring significant performance gains [RPB+12, CLG+13, LAPJ15,

FEB+16].

The availability of multiple networks makes it possible to choose, for each packet, through which

one of these networks it should be sent, which is referred hereafter as splitting. Splitting traffic

among the networks makes it possible to remove packets from one network by sending them

through another — whereas current defenses can only add and/or delay packets, which creates

performance (traffic and loading-time) overhead, as explained above. This enables us to design a
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defense with no traffic overhead. Inserting dummy packets and/or delaying packets remains of

course possible in multihoming and can be combined with splitting to further improve privacy, as

we also show.

To provide security and privacy guarantees, exploiting the existence of several non-colluding

entities is a standard and successful technique used in other contexts (e.g., secret sharing [Sha79]

or multi-cloud storage [SS13]). However, splitting traffic through multihoming is not straightfor-

ward as it raises several challenges. The first challenge that needs to be addressed is to know how

to split the traffic between the networks to improve the resistance against WF attacks. We show

that this is non-trivial, as deterministic schemes (e.g., round-robin) do not significantly improve

privacy. This makes necessary the development of a specific multipath scheduler for increasing

the resistance against WF. Our first contribution is the design and extensive evaluation against

state-of-the-art WF attacks of HyWF, a novel multipath scheduler for protecting against WF. We

show that HyWF achieves the same level of accuracy as the best existing practical defenses, but

does so without adding any performance overhead. Note that HyWF is compatible with other

defenses that rely on link padding or packet delaying, and combining HyWF with another defense

further improves privacy by combining the gains brought by the two defenses. We demonstrate

this with the description and evaluation of HyWF-AP, an extension of HyWF with adaptive

padding (a state-of-the-art defense that relies on link padding) and our second contribution.

The second challenge comes from the fact that, to achieve significant privacy gains, the defense

needs to be used for both incoming and outgoing traffic. If only the client implements the sched-

uler, privacy is expected to just slightly increase, and we demonstrate this through experiments.

But it would be challenging, if not impossible, to make every server use the defense. As an

alternative, we consider that a Tor proxy is available. This approach has also been employed by

previous work [JIP+16, WG17]. Our third contribution is a proof-of-concept implementation of

HyWF for the client and the proxy. Our implementation does not require modifying Tor or the

application. It enables us to evaluate the performance of our splitting scheme, and we show that

HyWF does not add significant loading-time overhead.

Outline of the Chapter This chapter is structured as follows. In Section 6.2, we discuss

related work. We present our system and adversarial model in Section 6.3 and describe our

methodology in Section 6.4. In Section 6.5, we introduce HyWF, a defense with no traffic

overhead. We evaluate it through extensive simulations in Section 6.6. In Section 6.7, we describe

the implementation of HyWF and show that it does not add significant loading-time overhead. In

Section 6.8, we introduce and evaluate HyWF-AP, an extension of HyWF with adaptive padding.

We conclude in Section 6.9.

6.2 Related Work

We first discuss traffic analysis attacks, in particular, WF. We also present other contexts in which

splitting the data between non-colluding entities is used to improve privacy.
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6.2.1 Traffic Analysis

Traffic analysis has been extensively studied in the last 20 years. In 1996, Wagner and Schneier

were the first to show that valuable information could be extracted from data encrypted with

SSL [WS96]. In 1998, Cheng and Avnur studied WF more specifically and were able to show

that the website accessed by clients could be successfully identified when observing encrypted

data [CA98]. In 2009, Herrmann et al. showed that WF attacks could be successfully applied

to anonymous communication tools [HWF09]. They achieved an accuracy of 20% for the JAP

network, but the accuracy against Tor remained quite low (around 3%). Since then, many WF

attacks and defenses have been proposed for anonymous communication tools. Several attacks

have been shown to be efficient for Tor as well, as detailed below.

Existing Attacks

WF Attacks against Tor After the first work by Herrmann et al., many other attacks were

proposed. The basic idea is the same for all of them. The attacks are formulated as a classification

problem: They first extract meaningful features from the observable metadata; then, to associate

these features to the websites, they train a supervised machine-learning model. The first attack

against Tor proved to be successful was proposed by Panchenko et al. [PNZE11] and relied

on support vector machines (SVM). Since then, many attacks that employ different features

and machine-learning models have been proposed [SM09, CZJJ12, WG13, WCN+14, PLP+16,

HD16, FL16]. In this chapter, we evaluate our defenses against the most relevant attacks:

• k-NN [WCN+14]: Wang et al. use a k-nearest neighbors model with N = 1225 features

(total transmission time, number of packets, ordering and concentration of outgoing packets,

burst length, etc.).

• CUMUL [PLP+16]: Panchenko et al. propose an attack that uses an SVM model with, as

features, the cumulative sum of the packet sizes (negative for outgoing packets, positive

for incoming packets). With Tor, the absolute value of the packet sizes is constant.

• k-fingerprinting [HD16]: Hayes et al. propose an attack that extracts N = 175 features out

of the traces (e.g., total number of packets, number of packets per second, concentration of

incoming/outgoing packets, etc.) and uses a random forest classifier.

These attacks are very general and are not bound to any specific defenses. Recent works [CHJ17,

OJA+17] consider them to be the three most advanced and effective WF attacks. We also evaluate

an attack that combines the three attacks:

• Ensemble [OJA+17]: Overdorf et al. propose to combine k-NN, CUMUL and

k-fingerprinting by using the prediction score computed by the attacks for each web-

site in the set of monitored websites. Each individual attack predicts the best website
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(i.e., the website with highest prediction score); Ensemble predicts the website that has,

among the three attacks, the highest difference between the best website and the second

best website.

We build on the code provided by the authors.2 Hereafter, unless specified otherwise, we present

only the results obtained with the most dangerous attack (i.e., the one reaching the highest

accuracy) among k-NN, CUMUL, k-fingerprinting and Ensemble.

Juarez et al. [JAA+14] and Wang and Goldberg [WG16] study the practicality of WF attacks.

Juarez et al. critically evaluate the typical assumptions made on the adversary (assumptions that

we also make, as explained in Section 6.3), and show a rapid decrease in the accuracy of the

attacks when the data gets older, or when multiple websites are accessed at the same time. Wang

and Goldberg show that by carefully building the datasets on which the attacks train their model,

it is possible to achieve a practical WF attack against Tor.

Other Traffic Analysis Attacks Here, we focus on WF attacks against the Tor network, in

which only the timestamp and direction of packets, and not their size, are available to the adversary.

Other traffic analysis attacks that use also the packet sizes are studied. Danezis [Dan10] and

Miller et al. [MHJT14] study attacks against HTTPS traffic. With HTTPS, the adversary has

information about the website that is accessed (the IP address of the server is sent in clear),

and the authors show that it can with very good accuracy infer which webpage of the website

the client visits. Traffic-analysis attacks also enable an adversary to compromise the privacy of

encrypted voice-over-IP calls [ZF11].

Existing Defenses

In parallel, researchers study mechanisms to protect against these WF attacks. The large majority

relies on link padding (i.e., inserting dummy packets3 to confuse the adversary that is unable

to distinguish them from real packets), and/or on packet delaying. These defenses incur traffic

and/or loading-time overhead.

The most secure defense consists in ensuring that all traces look exactly the same; this is the basis

for constant-rate padding, such as BuFLO proposed by Dyer et al. [DCRS12]. With BuFLO,

real packets are delayed and dummy packets are inserted so that the inter-arrival times (time

interval between two consecutive packets) stay constant. However, this might still leak some

information, because the total loading time might be different for different websites (even with

constant-rate padding, short traces will end before long traces). This enables an adversary to

use this information to infer which website is accessed. For this reason, Cai et al. propose

2The entire code used for the attacks and defenses presented in this chapter is available at https://www.dropbox.

com/s/716j4pvxuyjiu5j/code_final.zip.
3Note that breaking packets in Tor cells also requires some padding so that all cells have the same size. Because

this padding is done with Tor with or without another specific defense against WF attacks, we only consider the

insertion of dummy packets to compute the traffic overhead.
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CS-BuFLO [CNJ14] and Tamaraw [CNW+14] to improve the performance and to reduce the

overhead of BuFLO. With these improved techniques that rely on constant-rate padding, the

traces for different websites look the same, and the adversary is virtually unable to distinguish

between them. However, sending packets at a constant rate requires both inserting dummy packets

and delaying real packets, which causes very high traffic and loading-time overhead. Tamaraw

offers the best performance, but the authors still report a loading-time overhead of 320%. The

loading-time overhead is particularly harmful, as it directly affects the quality of experience for

the client, and we would like to find defenses that do not add significant loading-time overhead.

For this reason, several other defenses are proposed, as detailed below.

One defense is proposed that does not rely on link padding or on packet delaying (i.e., that

does not insert dummy packets nor delay real packets): randomized pipelining (RP) [Per].

It works at the application layer. It enables HTTP pipelining (i.e., sending multiple HTTP

requests in parallel) and it randomizes the number and the order of parallel HTTP requests.

However, this technique is shown to be inefficient in practice by Cai et al. [CZJJ12] and Wang

and Goldberg [WG13]. Cherubin et al. propose LLaMA [CHJ17], a defense that improves RP

by combining link padding and additional delay for some packets, but this incurs traffic and

loading-time overhead. Another defense, which loads a decoy page each time the client wants

to access a website, is proposed [PNZE11], but Hayes et al. [HD16] show that this defense

performs worse than other defenses such as adaptive padding (described below), with smaller

privacy and larger overhead. Other defenses are proposed at the application layer. Cherubin et al.

introduce ALPaCA [CHJ17], a server-side defense that pads the content of a webpage to alter its

characteristics (in particular its size) without modifying how it looks to the client. The authors

show that ALPaCA significantly improves privacy (the accuracy of the attack is reduced to about

15%), but it incurs a traffic overhead of about 90% and a loading-time overhead of more than

50%. In addition, because this defense needs to be implemented at the server side, it might be

difficult to deploy in practice.

Other defenses are proposed: they do not try to make all traces look exactly the same (by sending

packets at constant rate), rather aim at making the traces be statistically similar. Wright et al.

propose traffic morphing [WCM09], a defense that relies on padding and ensures that the packet-

size distribution is similar for all traces. This method is not effective with Tor, which already sends

packets with a fixed size, and it is shown to be inefficient in practice even when the packet sizes

are different [DCRS12, HD16]. Adaptive padding (denoted in this dissertation by AP) [SW06]

employs a similar idea, but it works on the inter-arrival times (i.e., on the time intervals between

two consecutive packets) rather than on the packet sizes: As opposed to constant-rate padding, AP

does not send packets at a constant rate; instead, it tries to make all traces statistically similar and

undistinguishable from each other by ensuring that the distribution of the inter-arrival times is the

same for all traces. The packets are never delayed, i.e., there is no loading-time overhead. Juarez

et al. propose WTF-PAD [JIP+16], an implementation of AP for WF attacks. AP is the defense

that is found to offer the best tradeoff between privacy and performance [HD16]. Importantly,

AP is the defense currently under consideration for addition to the Tor project [Per15]. This is

why we use AP as a benchmark in this chapter. However, traffic overhead remains significant,
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and implementing this scheme requires knowing in advance the statistics on the website traces,

which might prove challenging in practice.

Note that the above-mentioned defenses can be implemented along with HyWF, the defense that

we propose and that does not add overhead. In Section 6.8, we present and evaluate HyWF-AP,

the extension of HyWF with AP, and show that it significantly improves privacy — compared to

AP alone.

6.2.2 Privacy-Protecting Data-Splitting Schemes

Splitting data between several non-colluding entities has been proved to be a successful technique.

Shamir [Sha79] and Blakley [Bla79] first invented secret sharing in 1979, as a way to protect

information by sharing it between several participants. Since then, data-splitting schemes

have been used in many other contexts that include cloud oblivious storage [SS13], privacy-

protecting cloud computing [JLWW13], secure data deduplication [LCL+14], vehicular ad-hoc

networks [RH07], and secure sharing of personal health records [LYZ+13], to name a few.

6.3 System and Adversarial Model

In this section, we describe our system and adversarial model.

6.3.1 System Model

We consider a Tor client who is multihomed, i.e., she has access to multiple networks. In this

chapter, we consider that the client uses two networks, which is by far the most frequent case

in practice; our defense can easily be extended to more networks. Some real-world examples

of a multihomed client are presented in Figure 6.1: A client with a smartphone connected to a

WiFi access-point and to a cellular network (left); a client with a laptop connected to its home

access-point with Ethernet or WiFi and to a cellular network through a smartphone sharing its

connection with Bluetooth or USB (center left); a client with a dual-SIM smartphone connected

to two cellular networks with different ISPs (center right); and a client with a laptop connected to

two WiFi access-points (home and public) in two WiFi bands (right). The client uses multipath,

i.e., she is able to decide on a packet-per-packet basis which network she uses, through a dedicated

scheduler implemented in the client’s phone or laptop.

6.3.2 Adversarial Model

We consider a scenario where the client wants to protect against curious adversaries snooping

on her traffic in order to know which website she accesses. The curious adversaries are local

(between the client and the first Tor node). They can be an ISP, an entity that controls the ISP
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Figure 6.1 – Different real-world examples of a multihomed client. The adversary can be
an ISP (ISP1 and ISP2 in the figure) or the administrator of a public WiFi access point (AP
admin in the figure). Top left: client with a smartphone connected to a WiFi access-point
(home or public) and to a cellular network. Top right: client with a laptop connected to its
home access-point with Ethernet and to a cellular network through a smartphone sharing
its connection with Bluetooth. Bottom left: client with a dual-SIM smartphone connected
to two cellular networks with different ISPs. Bottom right: client with a laptop connected
to two WiFi access-points (home and public) in two WiFi bands (2.4 GHz and 5 GHz).

(e.g., a state), or the curious administrator of a public WiFi access-point. The adversaries are

passive, i.e., they do not modify the transmissions.4 Because the client uses Tor, the adversaries

observe only the timestamp and direction of the packets. The observable metadata for one website

access is called a trace.

The key assumption that we make is that the adversaries are not able to correlate the traffic sent

through one network and the traffic sent at the same time through the other network, i.e., they

cannot reconstruct the original trace. In particular, a single adversary cannot snoop on the two

networks at the same time. This happens when the client uses two technologies and the adversaries

can snoop on a single technology (e.g., when the adversary is the curious administrator of a WiFi

access-point). This also happens when the adversaries are different ISPs, which is an important

use case: For example, it has been revealed that in the USA, ISPs sell the Internet browsing

records to marketers [ISP07], which is cited as one reason for using the Tor network [Tor15].

Browsing records can typically be inferred by WF attacks. To be protected against such attacks,

the client can use two different ISPs; for example, she can use hybrid networks, with two

4The defense that we present relies on multipath solutions, such as MPTCP. MPTCP packets have a special TCP

field set, and a powerful adversary could drop all MPTCP packets to prevent our defense from working. Doing so

would block all MPTCP traffic (sensitive or not) and the adversary would become active, which is out of the scope of

this dissertation.
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technologies (wired or wireless) that have different ISPs. She can also connect to two ISPs with

the same technology. These cases are illustrated in Figure 6.1.

We consequently assume that there is one adversary per network. In most cases, the two

adversaries do not collude and are consequently unable to reconstruct the original trace. Even if

an external entity (e.g., a state or a state-controlled entity) can make the two adversaries (e.g.,

two ISPs) collude, it would also prove difficult and challenging to reconstruct the original trace

from the two different traces, for the following reasons. First, when a device is multihomed, it

has two different identifiers for the two ISPs (different IP and MAC addresses), and it can be

non-trivial to associate the two identifiers with a same device.5 Second, the infrastructures for

the two different ISPs are necessarily different, which means that the paths taken by the packets

are distinct. This means that even if the colluding ISPs are able to associate the two identifiers

of a device, the reconstruction of the original trace cannot be achieved synchronously but is

necessarily asynchronous. Consequently, the traces for each ISP would need to be stored to be

reconstructed later, i.e., the two ISPs would need to store all the per-packet metadata sent through

their network for all users they want to attack, until they can reconstruct the complete traces. This

would incur significant practical difficulties and storage overhead. Third, the two ISPs should be

tightly synchronized in order to reconstruct the trace, which would also be challenging in practice.

In contrast, when the client uses a single ISP, the attack can be performed on-the-fly along the

single path, hence there is no need for storage and synchronization. In repressive countries where

the state is known to spy on the users and can force ISPs to collude, spying on a client who uses

two different ISPs would consequently be much more difficult.

In a direct consequence of our hypothesis, an adversary can only use the partial trace sent through

a single network to infer the website. In the following, we consequently consider a single

adversary that tries to infer the website that a client visits by observing the traffic sent through a

single network.

We also make the following assumptions that are extensively made in the literature [SM09,

CZJJ12, HWF09, PNZE11, WG13, WCN+14] and that all favor the adversary:

Page Load Parsing The adversary is able to detect the beginning and the end of different

website accesses. We discuss further this question in Section 6.7.

No Background Traffic The adversary is able to distinguish one trace for a specific website

access from other packets sent by other applications or for the access of another website. This

can prove challenging in practice, because multiple applications might be used simultaneously.

Replicability The adversary is able to train its machine-learning model under the same condi-

tions as the client. In practice, the trace that an adversary wants to classify is not obtained with

the same method as the traces used for training the machine-learning model (e.g., they do not use

5It is trivial if the client is registered with the two ISPs under the same name, but this is not always the case, e.g., if

she uses a friend’s Internet access.
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the same device, the device is not at the same distance of the WiFi access-point and the cellular

base-station, etc.).

Failing to verify one of these three assumptions has been shown to have negative effect on the

attack [JAA+14]. This means that the reported accuracy of the attacks against the defenses that

we propose, HyWF and HyWF-AP, is a conservative value and that in a practical scenario, it is

very likely that our defenses would achieve better privacy.

6.4 Data and Methodology

In this section, we describe the datasets and methodology used for the experiments of this chapter.

6.4.1 Datasets

Wang The primary dataset are traces gathered in 2014 by Wang et al. [WCN+14]. This dataset,

denoted by Wang, has been extensively used in the literature [WCN+14, PLP+16, HD16, WG16,

AG16]. It contains 90 different traces for each of 100 monitored websites (the total number of

monitored traces is nmon = 9000), and one trace for each of nunmon = 9000 unmonitored websites.

The monitored websites come from a list of websites blocked in China, the United Kingdom,

and Saudi Arabia. The unmonitored websites are drawn from Alexa’s top 10 000 list. There is

no intersection between the monitored and unmonitored websites. 6 000 of the monitored and

6 000 of the unmonitored websites are randomly chosen as the training set, i.e., the set of traces

used by the adversary to train the machine-learning model; the remaining 3 000 monitored and

3 000 unmonitored are used as our testing set, i.e., the set of traces used to test the accuracy of

the attack.

Hayes To verify that our conclusions can be generalized to different datasets, we also use

the dataset gathered in 2016 by Hayes et al. [HD16]. This dataset is denoted by Hayes. It

contains 100 different traces for 85 monitored websites (i.e., nmon = 8500), and one trace for

100 207 unmonitored websites. 55 of the monitored websites are the 55 top Alexa websites

and the remaining 30 monitored websites are 30 popular Tor hidden services. The unmonitored

websites are drawn from Alexa’s top list, excluding the top 55. There is no intersection between

the monitored and unmonitored websites. The training set always contains two-thirds of the

monitored traces, i.e., 5 667 monitored traces, and the testing set contains the remaining third

of the monitored traces. For the unmonitored traces, the Hayes dataset is used in two scenarios:

with nunmon = nmon = 8500 (because we have nunmon = nmon in the Wang dataset), and two-thirds

of them in the training set and one third in the testing set, scenario denoted hereafter by 8500;

and, similarly as what is done by Hayes et al. [HD16], with all the unmonitored websites

(nunmon = 100207), and 5% of them in the training set (i.e., 5 010) and 95% of them in the testing

set, scenario denoted hereafter by all.

The raw traces of these two datasets are hereafter called original traces. When a defense is
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applied on an original trace (i.e., packets are split between the two networks and/or dummy

packets are inserted), the resulting trace is called protected.

6.4.2 Methodology and Experiments

We assume that the adversary knows the defense (i.e., it knows the splitting scheme used by the

client and by the proxy), and that it is able to train a machine learning model on protected traces.

In practice, an adversary does not know whether a specific trace is protected (sent through two

networks) or not (sent through a single network).6 Consequently, we assume that it knows that

the client has the possibility to use two networks, but that it does not know if the client is actually

using one or two networks. We will show that this assumption does not weaken the adversary,

as the performance of the WF attacks remains extremely close to that obtained if the adversary

knows beforehand that the trace is protected (in other words, the adversary is able to train a model

that distinguishes protected traces from original traces).

To evaluate the attacks, we use the true positive rate (TPR) as the main accuracy measure, defined

as the probability that a monitored website is classified as the correct monitored website. The

lower the TPR is, the more secure the scheme is. We do closed-world and open-world experiments.

Closed-World In the closed-world experiments, the adversary tries to predict which website is

visited out of the different monitored websites. Only the monitored websites are used for both

training and testing.

Open-World In the more practical open-world experiments, the adversary tries to predict

whether the client visits a monitored or an unmonitored website, and if it is a monitored website,

which one it is. In the open-world experiments, it is also important to measure if the adversary

makes a prediction error when observing the trace of an unmonitored website: In addition to

using the TPR, we use the false positive rate (FPR) as a second accuracy measure, defined as

the probability that an unmonitored website is incorrectly classified as a monitored website. The

higher the FPR is, the more secure the scheme is.

6.5 Designing HyWF: A Defense Without Traffic Overhead

We first study defenses with no overhead: No packet is added to the trace (i.e., no link padding)

and no packet is delayed by the client. The only choice that the client and the proxy make is about

how packets are split between the two networks. In this section, we evaluate our design decisions

in the closed-world experiment with the primary dataset (Wang). We will evaluate our defense

more broadly in Section 6.6. We want to compare our defense to AP [SW06, JIP+16] because it

is the defense that is found to offer the best tradeoff between privacy and performance [HD16]

6The adversary is able to know if the client uses MPTCP by looking at the specific TCP field, but this is not

enough to characterize the use of the defense, as it is possible to use MPTCP on a single path or only for performance

improvement.
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and that is currently being considered for addition to the Tor project [Per15]. As opposed to AP,

the schemes described in this section do not incur any traffic overhead and do not require statistics

on the traces. With the Wang dataset in the closed-world experiment, AP reduces the TPR of the

attack to around 40% (see Section 6.8 for more details on AP). Our goal is to achieve at least the

same accuracy. We first show that off-the-shelf schedulers do not reach this level of privacy. We

then show that a random splitting scheme can achieve a level of privacy equivalent to that of AP.

6.5.1 Off-the-Shelf Schedulers

Split Outgoing and Incoming Traffic

The first solution, appealing due to the simplicity of its implementation, is to divide outgoing and

incoming traffic, and to send the former through one network, and the latter through the other

network. With the Wang dataset, this means that 90% of the traffic (the incoming traffic) is sent

through one network, and 10% (the outgoing traffic) through the other. Such a scheme reduces to

67% the TPR of the attack against the network through which the incoming traffic is sent, and

to 55% against the network through which the outgoing traffic is sent. Even though the privacy

improvement is significant, this does not achieve our goal to reach the level of privacy offered by

AP. Consequently, we move to schemes where both networks can be used for both incoming and

outgoing traffic.

Round-Robin Scheduler

The simplest multipath scheduler is a round-robin scheduler, i.e., a scheduler that sends packets

alternatively through the two networks. This scheduler is, for example, proposed in the default

Linux kernel MPTCP implementation.7 The number of consecutive packets sent through one

network is denoted by ncons ∈N. We now evaluate whether this scheduler can be used to improve

the resistance against WF attacks.

Figure 6.2 shows the accuracy of the WF attack for various values of the number of consecutive

packets ncons. The TPR of the attack is almost not reduced, compared to the baseline (indicated by

the black horizontal line), going from 91% to 85%. This is because with the round-robin scheduler,

the splitting scheme is deterministic, and the adversary is able to learn the characteristics of the

protected traces. To increase the level of privacy to the desired goal, off-the-shelf deterministic

schedulers are not sufficient. We now study the use of a random splitting strategy.

6.5.2 Fixed Splitting Probability

Here, we assume that the client wants the same level of privacy in the two networks, i.e., she

sends on average the same amount of traffic through both networks. In Section 6.6.5, we discuss

7See https://multipath-tcp.org/pmwiki.php/Users/ConfigureMPTCP.
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Figure 6.2 – Performance of the attack on traces protected with a round-robin scheme, for
different values of the number of consecutive packets ncons. Closed-world, Wang dataset.

the case where she wants to send a smaller fraction of her traffic through one of the networks,

e.g., because this network is more costly (this naturally degrades privacy in the other network).

We first study the simplest random splitting strategy: For each packet, the client and the proxy

randomly send it through Network 1 (with probability p = 0.5) or through Network 2 (with

probability 1−p = 0.5). The accuracy of this very simple strategy depends heavily on the

assumption made for the adversary. If the adversary does not know that the client is using a

second network (i.e., it learns a model only on original traces), the TPR of the attack is reduced to

virtually 0 (around 3%, whereas random guessing gives an accuracy of 1%). But this corresponds

to a very weak adversary, hence is too optimistic. If the adversary knows that a second network is

used (i.e., it learns a model on protected traces), then the TPR of the attack is again high (around

80%). More importantly, if the adversary learns a model with both protected and original traces

(it only knows that the client has the possibility to use two networks, but it does not know if the

client is actually using one or two networks), the accuracy is also around 80% for protected traces

and around 90% for original traces. This means that the adversary is able to learn if the traces are

protected or not. Clearly, this simple random strategy is insufficient.

6.5.3 One Splitting Probability Per Website Access

Alternatively, the client and the proxy can employ the following more complex defense: At the

beginning of a website access, they choose a probability p uniformly at random in [0,1], and for

this website access, they send packets with probability p through Network 1 and with probability

1−p through Network 2. This means that for each access of a website, the splitting probability is

different. In particular, two different accesses of a same website will look different. On average

along all website accesses, 50% of the traffic is sent through each network.

The probability used by the client and by the proxy are different, because they are chosen

independently; they are respectively denoted by pc and pp . The adversary has no access to pc

or pp , chosen locally for each website access. We assume, however, that it knows the strategy
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Figure 6.3 – Performance of the attack on original traces and traces protected with the
splitting scheme described in Section 6.5.3, for different sizes of the training set. Closed-
world, Wang dataset.

(i.e., that p is chosen uniformly in [0,1]) and it is able to train a model on traces protected with

this strategy. With the nor = 6000 traces in the training set of original traces, the adversary can

build a larger training set of npr protected traces by computing several times the protected trace

of any original trace (the protected trace is different each time because pc and pp are different

each time). Because we assume that the adversary does not know if a trace is protected or not,

it must train a model with a training set that consists of both protected and original traces. We

evaluate the effect of the defense when the adversary tries to attack original traces and when it

tries to attack protected traces.

Effect on Original Traces We start by studying the effect of the defense for an attack against

original traces. The results are shown in Figure 6.3 (Orig. traces) for different values of npr; for

every npr, the attack is repeated five times: The results might be different for each attack because

the splitting probability p are different. Consequently, the traces in both the training set and the

testing set are different. We present averaged results with a bar indicating the standard deviation.

Adding more protected traces in the training set and using only the nor = 6000 original traces

tends to decrease the accuracy (plain blue line). However, this comes only from the fact that

adding more protected traces biases the training set towards the protected traces, hence reduces

the accuracy for the original traces. If the training set contains as many original traces as the

number of protected traces (nor = npr, dashed orange line), then the accuracy stays very close to

the baseline. Note that, as opposed to the protected traces for which protecting several times the

same original trace gives different results, adding each original trace several times does not add

any information (as the trace is always the same) but only removes the bias towards protected

traces. Because we assume that the adversary does not know whether a trace is protected or

not and needs to be able to attack both protected and original traces, we use (unless specified

otherwise) nor = npr.
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Effect on Protected Traces We then study the effect of the defense on protected traces. The

results are shown in Figure 6.3 (Prot. traces) in three scenarios: when only protected traces are

used to train the model (nor = 0); when the 6 000 original traces are used once to train the model

along with the protected traces (nor = 6000); and, to remove the bias towards protected traces,

when the number of original traces is the same as the number of protected traces (nor = npr).

As expected, adding several protected traces for each original trace in the training set helps

the adversary: The TPR increases from 37.9%±0.8 when they are not repeated to 45.8%±0.8

when they are repeated seven times. This is because adding several protected traces per original

trace enables the attack to implicitly infer the splitting probability p used for one website access,

because it becomes more likely that a protected trace for the same website exists in the training

set with a splitting probability close to that used for the website access. But the TPR plateaus

once nor reaches 36 000/42 000. We also note again that the TPR of the attack is similar when the

adversary knows beforehand that the trace is protected (nor = 0) and when the adversary does not

know it (nor = npr): The adversary is able to distinguish protected traces from original traces.

6.5.4 Consecutive Packets to One Network

Figure 6.3 also shows that this random splitting scheme does not attain our goal of reaching a TPR

of the attack below 40%. We next show that the number of consecutive packets sent through one

network has an impact on the TPR of the attack. We try two different settings. In the first setting,

a number ncons ∈N is fixed in advance for all traces; when one network is chosen randomly for

sending one packet, the source sends ncons packets through this network, before choosing again

randomly one of the two networks. In the second setting, the average number of consecutive

packets ncons ∈N is fixed in advance for all traces; when one network is chosen randomly, the

source draws randomly a number c ∈N from a geometric distribution with average ncons, and

sends c packets through this network, before choosing again randomly one of the two networks

and drawing a new value c.8 Note that ncons is the average number of consecutive packets sent

each time a network is chosen. The average number of consecutive packets per network for an

entire trace is different and depends on p: If p is close to 1, then the probability that Network 1

is chosen several times in a row will be high, and the average number of consecutive packets in

Network 1 will be larger than in Network 2.9

The results are shown in Figure 6.4. Sending consecutive packets through each network improves

the privacy of the defense scheme (it decreases the TPR of the attack). Choosing randomly the

number of consecutive packets to send (second scheme, with a geometric distribution) further

improves privacy. In Section 6.6.3, we evaluate further the effect of ncons with the Hayes dataset.

8When c is drawn from a geometric distribution, this forms a two-state Markov chain, and it is equivalent to do the

following for each packet: When the last packet was sent through Network 1, the packet is sent through Network 2

with probability (1−p)/ncons and through Network 1 with probability 1− (1−p)/ncons; when the last packet was

sent through Network 2, the packet is sent through Network 1 with probability p/ncons and through Network 2 with

probability 1−p/ncons.
9The average numbers of consecutive packets for an entire trace are ncons/(1−p) in Network 1 and ncons/p in

Network 2.
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Figure 6.4 – Performance of the attack on traces protected with the splitting scheme de-
scribed in Section 6.5.4, for different values of the average number of consecutive packets
ncons. Closed-world, Wang dataset.
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Figure 6.5 – Performance of the attack on original traces and traces protected with HyWF,
for different sizes of the training set. Closed-world, Wang dataset.

Algorithm 2 – Pseudo-code of HyWF.
ncons = 20
for each website access do

Draw p from Unif([0,1]), n ← 0, c ← 0
for each packet do

n ← n +1
if n > c then

Draw c from G0 (1/ncons) and i from Bern
(
p

)
n ← 0

end if
Send packet through Network i

end for
end for

116



6.6. Evaluation of HyWF

6.5.5 Dynamic Splitting Probability

In Sections 6.5.3 and 6.5.4, the splitting probability p remains the same for the duration of a

website access. But p can also be changed along each website access. However, if p is drawn each

time uniformly at random in [0,1], experiments show that the privacy is significantly degraded

(i.e., the TPR of the attack is higher). The reason is that when redrawing each time p in [0,1],

some features (e.g., the total number of packets) are close to those obtained with a fixed splitting

probability p = 0.5, shown to be inefficient (Section 6.5.2).

Hence, we evaluate a strategy where an average splitting probability pd is chosen uniformly at

random in [0,1] at the beginning of the website access. Then, the splitting probability p is changed

along each website access and regularly drawn uniformly at random in an interval such that the

average value is pd .10 We try several strategies: changing the splitting probability p after a fixed

or geometrically-distributed duration, after a fixed or geometrically-distributed number of packets,

with different average values. None of these configurations improves the resistance against the

state-of-the-art attacks considered in this chapter (the TPR stays the same): The variability added

by the scheme described in Section 6.5.4 (switching network after a geometrically-distributed

number of packets) is sufficient against existing attacks. Adding more randomness, by changing

p sufficiently often, could however help against an attack that, targeting specifically HyWF,

would infer the splitting probability used for each website access — with a scheme more efficient

than the one we used (repeating the protected traces several times in the training set). As no such

attack currently exists, this is out of the scope of this dissertation.

6.5.6 Definition of HyWF

The scheme defined in Section 6.5.4 is the simplest scheme that achieves our goal of reaching a

level of privacy equivalent to that of AP. It choses a splitting probability uniformly at random

for each website access and uses a number of consecutive packets drawn from a geometric

distribution with average ncons = 20. The TPR of the attack with npr = 42000 is decreased

to 36.3%±0.6, i.e., it performs even a bit better than AP. We denote this scheme by HyWF.

Algorithm 2 presents the pseudo-code for HyWF, with G0, Unif and Bern denoting, respectively,

the geometric, uniform and Bernoulli distributions. The TPR of the attack against original traces

and traces protected with HyWF as a function of the number of protected traces npr is shown in

Figure 6.5. Similarly as in Section 6.5.3 (Figure 6.3), the TPR clearly plateaus (near 36%).

6.6 Evaluation of HyWF

We now evaluate HyWF with different WF attacks and different datasets, and with open-world

experiments. We also compare HyWF with AP.

10Formally, p is drawn in [0,2pd ] if pd ≤ 0.5 and in [2pd −1,1] if pd ≥ 0.5.
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Figure 6.6 – Running time to perform the attack, for different sizes of the training set.
Experimental values are in blue; the orange dashed line is the linear fit. Closed-world,
k-fingerprinting attack against HyWF with Wang dataset.

6.6.1 Complexity of the Attack against HyWF

To increase the accuracy of the attack against HyWF by implicitly inferring the splitting prob-

ability, the protected traces are repeated several times in the training set. Adding more traces

increases the TPR of the attack, but it also significantly increases the complexity of the learning

phase of the model.

Closed-World In the closed-world experiment, the running time necessary for the attack

increases linearly and reaches more than one hour (see Figure 6.6). In contrast, when attacking

only original traces (npr = 0, i.e., when the client uses a single network), performing the attack

requires only eight minutes. Learning the model against protected traces also incurs significant

costs in terms of memory: When npr > 42000, a machine with 8 GB of RAM cannot learn

the model anymore, because it requires too much memory. We note that using more powerful

machines does not further increase the TPR of the attack: the TPR clearly reaches a plateau (see

Figure 6.3 and Figure 6.5). We also check this by computing the TPR with npr = 60000 (i.e., the

protected traces are repeated ten times), equal to 36.8%±0.8, within the standard deviation of

the TPR with npr = 42000, equal to 36.3%±0.6. Hereafter, for the closed-world experiments,

the attack always uses nor = npr = 42000 (unless specified otherwise). For the closed-world

experiments, this means that each original trace of the training set is protected seven times, and

the seven different protected versions are added to the training set.

Open-World In the open-world experiment, there are twice more original and protected traces,

and the running time of the attack is further increased. It grows linearly from 45 minutes with

npr = 0 to 589 minutes with npr = 60000 (each trace is repeated five times). When npr > 36000,

a machine with 8 GB of RAM cannot learn the model anymore, because it requires too much

memory. Here also, we verify that using more powerful machines does not help the adversary:

The average TPR with the Wang dataset is 14.7%±0.9 with npr = 36000, and it is 14.9%±0.8 with

npr = 60000. In contrast, it is 9.9%±0.4 when the protected traces are not repeated (npr = 12000).

Hereafter, for the open-world experiment, the attack always uses nor = npr = 36000.
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6.6.2 Different WF Attacks

In the results presented above, we show only the highest accuracy among the attacks

k-NN [WCN+14], CUMUL [PLP+16], k-fingerprinting [HD16] and Ensemble [OJA+17]. The

best results against protected traces are always obtained with k-fingerprinting. In Table 6.1, we

also show the results obtained with the three other attacks, k-NN, CUMUL and Ensemble. Each

attack is repeated five times and Table 6.1 also presents the standard deviation. The first line of

the table (Orig. traces) corresponds to the case nor = 6000 and npr = 0 (the model is trained only

on the original traces). We also show the results with a model trained on original and protected

traces for an attack against original traces (second line) and protected traces (third line); we

compute the TPR for different values nor = npr between 6 000 and 42 000 and keep the best result.

For HyWF, k-fingerprinting yields results significantly better than the other three attacks. Note

in particular that with k-NN and CUMUL, the performance of the model that works for both

protected and original traces (an assumption that is necessary for a practical attack) is decreased

even when attacking original traces. Because it uses only the cumulative sum of the packet sizes

as features, CUMUL has already been shown to perform less well than k-fingerprinting (that uses

more diverse features) when attacking protected traces [HD16]. k-NN has already been shown to

perform less good than k-fingerprinting and better than CUMUL against protected traces [HD16],

which is consistent with our results. Because k-fingerprinting performs significantly better than

k-NN and CUMUL, combining the three attacks (Ensemble) does not help. In the remainder of

the chapter, we show results only of k-fingerprinting.11

6.6.3 Open-World Experiment and Different Datasets

HyWF

We obtained the above results with the Wang dataset in the closed-world experiment. We now

study open-world experiments (a scenario that is more practical than closed-world experiments)

with both the Wang and Hayes datasets. The two datasets and the two scenarios with which the

Hayes dataset is used are described in Section 6.4.1. The performance achieved by HyWF is

reported in Table 6.2, where we present the true positive rates (TPR, proportion of monitored sites

11All the attacks presented in this chapter have been performed with the four attacks (k-fingerprinting, k-NN,

CUMUL, and Ensemble); k-fingerprinting always performed significantly better than the others.

Table 6.1 – Performance of different attacks with a model learned on original traces (Orig.
traces), and with a model learned on original traces and traces protected with HyWF.
Closed-world, Wang dataset.

k-fingerprinting k-NN CUMUL Ensemble

Orig. traces 90.7%±0.3 91.0%±0.3 90.2%±0.6 91.4%±0.6

HyWF, orig. traces 90.8%±0.3 82.6%±1.9 75.9%±1.3 90.6%±0.2

HyWF, prot. traces 36.3%±0.6 15.3%±1.7 12.4%±0.4 26.8%±0.4
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correctly classified) and the false positive rates (FPR, proportion of unmonitored sites classified

as monitored). The TPR of the attack is decreased significantly, compared to the closed-world

experiments; and with the Wang dataset, the TPR goes down from 36.3% to 14.7%. Protecting

the traces also increases the FPR. Note that, in practice, the unmonitored websites represent the

vast majority of the visited websites, and even a slight increase of the FPR significantly increases

the number of false positives. In the Hayes dataset, the number of monitored websites is smaller

than in the Wang dataset (85 instead of 100), hence we expect the TPR of the attack to be higher.

This is indeed what we observe, with a TPR around 28% with the Hayes dataset. Nevertheless,

the defense decreases significantly the TPR of the attack, by almost a factor 3. Also, the FPR is

higher with the Hayes dataset than with the Wang dataset.

Impact of ncons

In Section 6.5.4, we evaluated the impact of the average number of consecutive packets ncons

with the Wang dataset in the closed-world experiment. To verify that HyWF generalizes to

other datasets, we evaluate here the impact of ncons with the Hayes dataset in the open-world

experiment. In Figure 6.7, we show the TPR as a function of ncons. Figure 6.4 and Figure 6.7,

obtained with two different datasets, show that the effect of variations of ncons is small as long

as ncons is in the range 15-40. This is an important feature for the generalization of HyWF, as it

means that the parameter ncons does not need to be fine tuned for a specific dataset.

6.6.4 Comparison with AP

In Table 6.2, we also show the TPR and FPR of the attack when the traces are protected with

AP, the favored state-of-the-art option if link padding were to be implemented in practice [HD16,

Per15] (see Section 6.8 for more details on AP). We observe that the TPR with HyWF is similar

or lower to that of AP, and that the FPR is higher with HyWF, i.e., it improves privacy. Note

that, as opposed to AP, HyWF achieves such a performance without adding any traffic overhead.

The traffic overhead of AP is reported in Table 6.2 and denoted by ov. (a traffic overhead of 65%

means that 65 dummy packets are inserted for a trace of 100 real packets). In addition, as opposed

to AP, HyWF does not require any a priori knowledge of the traces statistics (see Section 6.8).

Table 6.2 – Performance of the attack with a model learned on original traces and traces
protected with HyWF, and with a model learned on original traces and traces protected
with AP, for different datasets. Open-world.

datasets Wang Hayes (8 500) Hayes (all)

ov. TPR FPR ov. TPR FPR ov. TPR FPR

HyWF, orig. traces 0% 88.7% 0.2% 0% 81.3% 1.1% 0% 83.1% 1.6%

HyWF, prot. traces 0% 14.7% 1.0% 0% 27.7% 1.8% 0% 28.0% 1.7%

AP 65% 20.6% 0.6% 47% 29.2% 1.1% 47% 27.8% 1.2%
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Figure 6.7 – Performance of the attack on traces protected with the splitting scheme de-
scribed in Section 6.5.4, for different values of the average number of consecutive packets
ncons. Open-world, Hayes dataset.
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Figure 6.8 – Performance of the attack when the client sends a fraction ps of its traffic
through Network 1, for different values of ps . Closed-world, Wang dataset.

6.6.5 Asymmetric Networks

We evaluate the scenario where the client wants to send a smaller fraction ps < 0.5 of her traffic

through one of the networks (denoted by Network 1), for example because this network is more

costly (e.g., WiFi is typically cheaper to use than cellular). We evaluate the same splitting scheme

as HyWF, except that p is chosen uniformly at random in [0,2ps], so that the average value of p

along all traces is ps . Figure 6.8 shows the TPR of the attack against Network 1 and Network 2

as a function of ps . We observe that the relationship between cost (i.e., amount of data sent on

the costly network) and privacy is linear, which makes it simple for a client to decide how to

make the tradeoff between the two.

6.6.6 Deployability of HyWF

It would be very challenging, if not impossible, to make all servers implement HyWF, especially

when the benefit for the server would be inexistent. But if only the client uses HyWF, the privacy

is significantly degraded: If the server uses the off-the-shelf MPTCP round-robin scheduler,

the TPR goes from 36% (when both the client and the proxy use HyWF) up to 72% (when

the client uses HyWF and the server just MPTCP), which is an unacceptable privacy loss. To
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Figure 6.9 – Model where the client is multihomed, with two different curious ISPs, and
connects to a Tor proxy.

protect against WF with an easily deployable solution, we use a proxy-based architecture, as

depicted in Figure 6.9. This approach with a Tor proxy has also been employed by previous

work [JIP+16, WG17]. The key advantage is that it can be easily deployed by installing standard

Tor solutions, along with the modified MPTCP modules that implement HyWF scheduling.

6.7 Implementation of HyWF

We now describe the proof-of-concept implementation of HyWF and evaluate its performance.

6.7.1 Hardware and Software Setup

We prototype a proof-of-concept implementation of HyWF and assess its performance with

the testbed shown in Figure 6.10. It consists of an Intel-based PC equipped with an i7-6700

(3.40GHz) CPU and 16 GB of RAM, running Ubuntu 16.04, and placed in the DMZ of one of

our institutions, to ensure a proper connectivity to the Tor network. This computer acts as a

virtualization server running KVM, and it instantiates two Ubuntu 16.04 machines, one acting as

client, and the other acting as Tor proxy. Each machine is provided with two different interfaces

and IP addresses that are connected with the virtual links represented in Figure 6.10 (denoted as

Link 1 and Link 2). Their delay is artificially controlled throughout our experiments by using the

Linux tc command. To ensure repeatability and ease of scripting, we develop a Python-based

command-line web client that requests .onion resources via a SOCKS5 proxy provided by the

Tor software. Both the client and the server are provided with two additional control interfaces in

order to control the execution of the experiments (not shown in the figure). The proxy runs Tor

v.0.3.3, and both the client and the server run MPTCP v.0.9.1. To implement HyWF, we do not

need to modify the Tor software and we implement only a novel MPTCP scheduler, as described

next.
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Figure 6.10 – Deployment used for the implementation and performance evaluation of
HyWF. (Figure courtesy of Ginés García Avilés.)

6.7.2 HyWF Scheduler

Our HyWF scheduler builds on the round-robin scheduler provided with the MPTCP implementa-

tion and configured with the full-mesh mode of operation. With this mode, MPTCP generates

one subflow for each IP address pair (source, destination). Therefore, we set up some iptables

rules to ensure that only the two subflows that correspond to the two links of Figure 6.10 are

available (this is queried with the mptcp_rr_is_available method). Instead of operating

in “bursts” of segments, i.e., picking one of the paths at random with probabilities p for Link 1

and (1−p) for Link 2, then drawing the consecutive numbers of segments from a geometric

distribution with average ncons, we operate for simplicity on a segment-by-segment basis and use

the equivalent algorithm described in Footnote 8 (Section 6.5.4). We code this algorithm inside

the mptcp_write_xmit method. More specifically, the next_segment method returns a

pointer to the next link to use; the next link is determined based on the last link used (stored in a

*sock pointer inside an mptcp_cb structure) as follows:

• If the last segment was transmitted over Link 1, the next segment is transmitted over the

same link with probability 1− (1−p)/ncons, and over Link 2 with probability (1−p)/ncons

• If the last segment was transmitted over Link 2, the next segment is transmitted over the

same link with probability 1−p/ncons, and over Link 1 with probability p/ncons.

The parameters ncons and p are also stored in the mptcp_cb structure, with p randomly

chosen on a per-download basis.12 Due to the kernel programming constraints (in partic-

ular, the lack of float variables), p is chosen as a random integer in the range [0,255]

using the get_random_bytes() function with an unsigned char. The algorithm is

12Our proof-of-concept implementation chooses a new splitting probability p for each new MPTCP connection. It

has been shown that it is possible to efficiently split different website accesses by using a time-based splitting with a

fixed threshold of 1 second [WG16].
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Figure 6.11 – 90-th percentile of the loading times for different configurations of the link de-
lays: 50 ms for Link 1 and Link 2 (left), 50 ms for Link 1 and 150 ms for Link 2 (center) and
50 ms for Link 1 and 300 ms for Link 2 (right). The different transport mechanisms are
single path TCP (TCP-P1 and TCP-P2, respectively on Link 1 and Link 2), and MPTCP
with default scheduler (def.), round-robin scheduler (RR) and HyWF.

then updated accordingly. Finally, we follow recommendations to improve latency with

MPTCP [CT14, YFD+16], and we disable the idle restart functionality and the Nagle algo-

rithm (tcp_low_latency=1 and tcp_slow_start_after_idle=0).

6.7.3 Performance Evaluation

The effectiveness of HyWF in improving privacy has been thoroughly analyzed in Sections 6.5

and 6.6. Here we analyze if using HyWF results in any costs in terms of user experience. To this

aim, we focus on the loading time of resources over the Tor network when using HyWF, and we

compare it against a number of other transport mechanisms (discussed next). Our methodology is

as follows: Given a configuration of the delays for Link 1 and Link 2 and a transport mechanism,

we download a set of 40 resources from the Tor network (20 being the most popular websites

according to Alexa, and the other 20 selected from the various .onion resources accessible

following our institution’s policies). We compute the 90-percentile of the loading times. For each

configuration, we repeat the experiment 10 times to gain statistical information.

We consider three configurations for the pair of delays for Link 1 and Link 2, namely,

(a) {50,50} ms, (b) {50,150} ms, and (c) {50,300} ms. This enables us to understand the

impact of the link delays on performance. These settings are representative for various cases of

interest: For instance, configuration (a) can represent the case where the client uses two WiFi

links or two cellular links from two different ISPs (Figure 6.1, right and center right), and config-

urations (b) and (c) can represent the case where the client uses WiFi and cellular (Figure 6.1, left

and center left). For each scenario, we compare the performance of HyWF against that obtained

with the following transport mechanisms: (i ) MPTCP with the default configuration (denoted as

def.), (i i ) MPTCP using the round-robin scheduler (denoted as RR), and (i i i ) TCP over a single
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link (denoted as TCP-P1 and TCP-P2 for the case of Link 1 and Link 2, respectively). The results

are shown in Figure 6.11, in which each subplot considers a different configuration of the link

delays, each dot is the 90-percentile of the loading time of the 40 resources, and each transport

alternative is represented with a different color.

From the results, we observe that HyWF provides performance comparable to the other ap-

proaches in terms of loading times. When compared to single-path TCP, the performance of

HyWF stays between TCP on the short path (TCP-P1) and TCP on the long path (TCP-P2),

which is expected given that HyWF employs both paths. When compared to the other MPTCP

approaches that employ both paths, HyWF provides a comparable performance. Thus, we con-

clude that HyWF is able to provide a high level of privacy without paying a significant price in

performance.

6.8 Designing HyWF-AP: A Defense with Adaptive Padding

We now show that HyWF is compatible with other defenses against WF. To improve privacy, the

client can employ link padding, i.e., insert dummy packets to confuse the adversary. Because it

does not see the content of the packets, the adversary is not able to distinguish real packets from

dummy packets. When the client uses a single network and wants to avoid any significant loading-

time overhead, link padding is the only possible defense, because she cannot remove packets

(by sending them through the other network). Consequently, link padding is the method used

by the vast majority of existing defenses (see Section 6.2.1). Here, we use AP [JIP+16, SW06],

because it is the defense that is under consideration for addition to Tor if link padding were

to be implemented [Per15]. Our defense would also be compatible with most of the other

state-of-the-art defenses described in Section 6.2.1.

6.8.1 Adaptive Padding (AP)

We briefly describe the AP defense. As mentioned in Section 6.2.1, AP works on ensuring that

the distribution of the inter-arrival times is the same for all traces. The packets are never delayed,

which means that there is no loading-time overhead. The goal of AP is to disrupt statistically

unlikely delays between packets. In particular, if an unusually large gap between two packets

is found, AP adds dummy packets to hide this large gap and to prevent it from being used as a

distinguishing feature. Because the authors noticed that bursts of packets play an important role

in identifying websites, AP mimicks bursts of packets when filling the gaps. Details on AP can

be found in the related literature [JIP+16, SW06]. Here, we use the implementation of AP for

WF, provided by Juarez et al. [JIP+16].

With AP, both the client and the proxy use as a parameter some probability distribution for the

inter-arrival times; which distribution is used has a strong impact on the performance of AP. Here,

we try several distributions. First of all, as Juarez et al. do, we fit a normal distribution on all the
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inter-arrival times for the entire dataset (training set and testing set). This distribution is denoted

by dataset distribution. This is the most favorable scenario for AP, because the distribution is

computed on the traces that are used for the experiments. But this would be challenging to obtain

in practice, as the client would need to gather in advance a large number of traces to compute the

distribution, and the proxy would need to know this distribution for each client. As explained by

Juarez et al. [JIP+16], this original normal distribution can be tuned to favor shorter inter-arrival

times (denoted by tuned+), which improves privacy but also increases the traffic overhead. It can

also be tuned to favor longer inter-arrival times (denoted by tuned-), which decreases the traffic

overhead and degrades privacy. We also compare with a more practical scenario where a default

distribution (i.e., a distribution that is not computed based on the traces in the dataset) is used,

denoted by default distribution. We use the default normal distribution provided by Juarez et al.

with their code. In Table 6.3, we present the results obtained for the different distributions. We

report the traffic overhead and the TPR of k-fingerprinting.

With HyWF, the defense described in Section 6.5, the TPR of the attack is decreased to a level

similar to that of AP, and it adds no traffic overhead. In addition, as opposed to AP that requires

knowing the distribution of inter-arrival times, HyWF does not require any prior knowledge on

this distribution. We note that when AP is used with a default distribution, the privacy achieved is

much worse than with HyWF.

6.8.2 Designing HyWF-AP

Despite its limitations (traffic overhead, requires knowing the distribution of the inter-arrival

times), AP is able to improve privacy significantly when only one network is available. Therefore,

we study a solution where HyWF, the defense we describe in Section 6.5, is used along with AP.

Splitting Strategy

We use HyWF, the splitting strategy described in Section 6.5.6. We also try the strategy with a

dynamic splitting probability, as defined in Section 6.5.5: An average splitting probability pd is

chosen uniformly at random in [0,1] at the beginning of a website access, and the actual splitting

probability p is drawn again in a uniform distribution with average value pd after a number of

packets drawn from a geometric distribution with average nchp.

Table 6.3 – Performance of AP and HyWF. Closed-world, Wang dataset.

traffic overhead TPR

AP [SW06, JIP+16] (dataset distribution) 65% 39.6%

AP (dataset distribution, tuned+) 105% 34.0%

AP (dataset distribution, tuned-) 37% 47.9%

AP (default distribution) 28% 63.8%

HyWF (Section 6.5) 0% 36.3%
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Figure 6.12 – Performance of the attack on traces protected with AP before, for different
values of the average number of packets nchp after which the splitting probability p is
changed along one website access. Closed-world, Wang dataset.

AP Strategy

As explained above, AP requires setting the distribution of the inter-arrival times. We try the four

distributions described in Section 6.8.1 (dataset, dataset tuned-, dataset tuned+ and default). We

also try two different strategies: Either AP is added to the original trace, then the packets are

split between the two networks (denoted by AP before); or the packets are split between the two

networks, then AP is added (denoted by AP after). When AP is added after splitting the traffic,

we do not want to use the same distribution as when AP is added before, because it would yield

an overhead twice larger (AP is now done independently for both networks). Instead, when traffic

is sent through Network 1 with probability p, each inter-arrival time drawn for the distribution is

multiplied by 1/p. Note that AP and splitting are both done at the same place (either the client or

the proxy), thus AP knows which probability p is used for the splitting.

Impact of nchp and AP Strategy

The results with AP before are shown in Figure 6.12, for different values of the average number

of packets nchp after which the probability is changed along one website access, and for different

distributions (dataset distribution with or without tuning, and default distribution). The traffic

overhead is indicated in the legend. We observe that with AP, changing the number of packets

along one website access significantly decreases the TPR of the attack, whereas it was not the

case without AP (see Section 6.5.5). The best level of privacy is found when nchp = 100. The

Table 6.4 – Comparison of AP before and AP after with nchp = 100. Closed-world, Wang
dataset.

traffic overhead TPR of the attack

HyWF-AP, dataset distribution (AP after) 108% 18.3%

HyWF-AP, dataset distribution (AP before) 65% 15.7%

HyWF-AP, default distribution (AP after) 34% 24.5%

HyWF-AP, default distribution (AP before) 28% 23.4%
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results with AP after are worse than with AP before (larger overhead and degraded privacy),

as shown by the results with nchp = 100 presented in Table 6.4 for the dataset and the default

distributions (it is true as well for the tuned dataset distributions). Hereafter, we always employ

AP before. The strategy with AP before and nchp = 100 is denoted by HyWF-AP.

6.8.3 Evaluation of HyWF-AP

Closed-World

With HyWF-AP and for a traffic overhead of 65%, the TPR of the attack in the closed-world

experiment decreases to 15% when the splitting probability is changed every 100 packets.

Whereas with the same overhead, the TPR of the attack against AP alone is 39.6%, greater

than the TPR of HyWF, where no traffic overhead is added. Compared to AP alone and for the

same traffic overhead, HyWF-AP significantly improves privacy against WF attacks, as shown in

Table 6.5.

Table 6.5 – Performance of AP and HyWF-AP. Closed-world, Wang dataset.

traffic overhead TPR of AP TPR of HyWF-AP

dataset distribution 65% 39.6% 15.7%

dataset distribution, tuned+ 105% 34.0% 12.7%

dataset distribution, tuned- 37% 47.9% 18.4%

default distribution 28% 63.8% 23.4%

Table 6.6 – Performance of the attack with a model learned on original traces (Orig. traces),
with a model learned on original traces and traces protected with HyWF-AP, and with a
model learned on original traces and traces protected with AP, for different datasets and
different AP distributions. Open-world.

datasets Wang Hayes (8 500) Hayes (all)

ov. TPR FPR ov. TPR FPR ov. TPR FPR

Orig. traces 0% 81.9% 0.34% 0% 80.0% 0.94% 0% 82.7% 0.98%

AP, dataset 65% 20.6% 0.60% 47% 28.3% 1.36% 47% 27.8% 1.24%

HyWF-AP, dataset 65% 1.9% 0.93% 47% 10.0% 1.48% 47% 10.2% 1.26%

AP, dataset tuned+ 105% 8.4% 0.20% 69% 28.3% 1.21% 69% 26.7% 1.35%

HyWF-AP, dataset tuned+ 105% 1.2% 0.82% 69% 9.7% 1.28% 69% 10.3% 1.25%

AP, dataset tuned- 37% 23.2% 0.67% 33% 30.4% 1.33% 33% 29.5% 1.22%

HyWF-AP, dataset tuned- 37% 3.4% 1.10% 33% 10.4% 1.26% 33% 10.2% 1.35%

AP, default 28% 29.9% 0.17% 19% 48.1% 1.37% 19% 47.5% 1.61%

HyWF-AP, default 28% 3.9% 0.82% 19% 17.8% 1.74% 19% 17.3% 1.82%
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Open-World

We now compare AP with HyWF-AP in the open-world experiment. In Table 6.6, we report the

results with the Wang and Hayes datasets, described in Section 6.4.1. Even though there are

some differences in the results between the two datasets, we observe the following facts that hold

in all cases.

First, when they use the same distribution, HyWF-AP always performs significantly better than

AP, with a TPR divided by around 3 at least. With the dataset distribution, the TPR drops to

between 1% and 3% with the Wang dataset, and around 10% with the Hayes dataset. This

means that the adversary is practically unable to detect that the client visits a monitored website.

Second, the TPR of the attack against HyWF-AP with the default distribution (that is not computed

based on the statistics of either of the two datasets) is 10% smaller than the TPR of the attack

against AP with the dataset distribution (that requires knowing statistics on the datasets), with a

much smaller traffic overhead. This means that employing HyWF-AP with a default distribution

enables a better privacy than AP with the dataset distribution, is easier to implement in practice

(because it does not require computing in advance statistics on the inter-arrival times) and reduces

the traffic overhead by more than 2x.

Third, it is possible to reach a TPR below 10%, with a reasonable overhead of around 30%. This

is better than all state-of-the-art defenses [HD16, WG17].

6.9 Summary

In this chapter, we have presented HyWF, a novel defense against website fingerprinting attacks.

HyWF exploits multihoming and multipath, enabled in particular by hybrid networks, to split the

traffic between two networks. We have shown that a high level of privacy cannot be reached with

off-the-shelf multipath schedulers. We have designed an algorithm based on random splitting

that achieves a privacy similar to that of state-of-the-art defenses — without any traffic overhead.

We have presented a proof-of-concept implementation of HyWF and showed that it does not add

any significant loading-time overhead. HyWF is compatible with other defenses that rely on link

padding or randomized pipelining. Combining HyWF with another defense further improves

privacy. We have illustrated this by introducing and evaluating HyWF-AP, an extension of HyWF

with adaptive padding. HyWF-AP decreases the accuracy of the website-fingerprinting attacks

below 10% with a reasonable traffic overhead of 30% and no significant loading-time overhead,

which is better than all state-of-the-art defenses.
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7 Conclusion

Mesh networks, hybrid networks and multipath routing are increasingly employed as a means to

improve performance of local networks. But they pose several challenges that we have studied in

this dissertation. We have focused on three performance metrics, throughput, latency and privacy.

In a first part, we have studied throughput in hybrid mesh networks. In Chapter 2, we have

shown that with shared-medium and orthogonal technologies, multipath routing and hybrid

networks are intrinsically related, and that the optimal number of paths is tightly linked with the

number of technologies. We have shown analytically that for certain classes of networks, these

two numbers are equal. We have verified and extended our analytical results through extensive

simulations and testbed experiments. We have then described a heuristic-based interference-

aware multipath-routing protocol that focuses on maximizing throughput. In Chapter 3, we have

described a multipath interference-aware congestion controller that, although entirely distributed,

optimizes a global utility function over all flows of the network. We have evaluated EMPoWER,

the algorithm that combines the multipath-routing protocol and the congestion controller, through

extensive simulations and testbed experiments. This evaluation shows that hybrid PLC/WiFi

networks increase the spatial diversity compared to hybrid multi-channel WiFi networks hence

bring further throughput improvements (up to 10x). In Chapter 4, we have described an algorithm

that finds the best multipath and the optimal throughput in a dynamic hybrid mesh network. This

algorithm is based on the multi-armed bandit framework and is able to switch multipaths when

the network conditions change due to mobility or to link capacity variations.

In a second part, we have studied latency in time-varying hybrid networks. In Chapter 5, we

have applied a queueing model where the service rate varies between two states (a high-rate state

and a low-rate state) to model variations of the link capacities (due for example to variations

of the signal or users contending for a network medium). We have studied the impact of these

variations on latency in hybrid networks with two technologies. We have shown that when the

average service rate is the same for the two technologies, the variance of the service rate plays,

as expected, an important role, but that, surprisingly, the technology with the largest variance

sometimes yields the smallest delays. We have studied the queueing model with multipath routing
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and shown that when the arrival rate is smaller than a certain threshold, it is better to use a

single path (i.e., a single technology). When the arrival rate is above the threshold, it is better to

simultaneously use the two technologies; but the optimal splitting scheme is not easy to find, and

we have shown that using the same splitting probability for all arrival rates has a strong negative

impact on delays when the service rates are varying.

Finally, in a third part, we have studied privacy. In Chapter 6, we have shown that when a user is

connected to two different networks (typically in hybrid networks, in which the user is connected

to two different technologies), she can significantly improve her privacy and successfully defend

against so-called website fingerprinting attacks by adequately splitting the traffic between the two

networks. We have extensively evaluated our splitting scheme and shown that it does not add any

significant performance overhead. We have combined our splitting scheme with state-of-the-art

defenses against website fingerprinting attacks and improved further privacy at the cost of a slight

performance overhead.

Possible Extensions of this Work

In this dissertation, we have validated the performance gains enabled by mesh networks, hybrid

networks and multipath routing, which opens interesting perspectives. We have shown that

there is a tradeoff between reaching the optimal throughput and adapting rapidly to dynamic

conditions. The algorithms for improving throughput, which we propose in the first part of

this dissertation, are shown to be optimal and take seconds to adapt when conditions change.

For certain applications or certain conditions, this adaptation time could be too long, and other

algorithms that would converge faster at the cost of a smaller steady-state throughput would be

required. We have shown that hybrid networks and multipath routing can greatly improve latency,

but also that achieving these gains is not easy, because keeping the same splitting probability for

all arrival rates is significantly sub-optimal in dynamic networks. This calls for the development

of specific multipath schedulers that optimize latency and are practical. Finally, we have proposed

an algorithm for protecting against website fingerprinting attacks with hybrid networks and

multipath routing. It is, to the best of our knowledge, the first defense that exploits these

novel solutions. Other attacks have been shown to impinge upon users’ privacy: By successfully

identifying which webpage of an HTTPS website the user visits, an adversary can expose personal

details such as medical conditions, financial affairs and sexual orientation [MHJT14], or it can

compromise encrypted voice-over-IP calls [ZF11], to name just a few examples. Hybrid networks

and multipath routing can help protect against such attacks, and specific defenses need to be

designed and evaluated.

Hybrid Networks: Perspectives and Future Work

More broadly speaking, there remain further open research questions about hybrid networks.

In this dissertation, we have focused mostly on high-rate networks. With the emergence of

the Internet of things, of smart-home and smart-city solutions, and of solutions for the home

132



automation, to name a few examples, future networks will also include many low-rate and

low-power devices. Several technologies for these applications exist, such as HomePlug Green

PHY for power-line communications, and Bluetooth Low Energy, WiFi 802.11ah HaLow and

Zigbee for wireless communications. All these technologies consume less energy at the cost of a

smaller achievable rate. Hybrid networks have the potential to improve performance (reliability,

coverage, latency, privacy, etc.) for low-rate applications, but this requires specific algorithms

and is one open area of research.

Future networks will consist of a very large number of devices with very different applications

(broadband download, home automation, medical diagnosis, etc.), forming the so-called hetero-

geneous Internet of things (H-IoT). This means that low-rate applications should in addition be

compatible with high-rate applications, which might prove difficult with today’s standards: For

example, home-automation applications might require very low latency, whereas high-rate flows

using the same medium and spectrum would interfere with the home-automation applications and

might cause a latency too high for them. Enabling interoperation between devices with very dif-

ferent requirements and different technologies while enjoying the gains that hybrid networks offer

is a direction of research that could help shape future networks and satisfy stringent performance

demands.
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A Experimental Testbed

To obtain the experimental results presented in this dissertation, we built a hybrid testbed with

PLC and two-channels WiFi. It comprises 22 nodes spread over the second floor of the EPFL BC

building. A map of the testbed is presented in Figure A.1. In this appendix, we provide some

technical details about our testbed.

Figure A.1 – Testbed with PLC and two orthogonal WiFi channels (65×40 m).

A.1 Hardware

The nodes are PCEngines APU.1D boards.1 These boards have AMD G series T40E CPU with

a 1 GHz dual Bobcat core, 2 GB of RAM, and three Ethernet interfaces. All the nodes have

two WiFi interfaces (Atheros AR9280), connected to the boards with miniPCI express. The

first WiFi interface is connected to a channel in the 2.4 GHz band, the second to a channel in

the 5 GHz; consequently, they do not interfere. The nodes have two antennas and support up

to 2×2 MIMO with 802.11n. 2×2 MIMO is supported only when a single WiFi interface is

used; if the two interfaces are used, each interface uses one antenna. When the interface uses

two antennas, it is configured to use a bandwidth of 20 MHz; when it uses one antenna, it is

configured to use a bandwidth of 40 MHz. This enables that the maximal theoretical PHY-layer

data rate is similar in the two configurations, around 150 Mb/s [wif09]. The nodes have one

1https://www.pcengines.ch/apu1d.htm
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HomePlug AV200 PLC interface (QCA 7420) connected to the electrical network of the building,

and connected to the board through gigabit Ethernet, with a Realtek Ethernet driver. The maximal

theoretical PHY-layer data rate is 200 Mb/s. With these configurations, the link capacities of

WiFi and PLC are on average very close to each other (see Table A.1). There are two PLC

subnetworks connected to two different electrical panels: one consists in Nodes 1 to 13, the other

consists in Nodes 14 to 22. One link of one subnetwork does not interfere with one link of the

other subnetwork, and one link of one subnetwork interferes with every other link of the same

subnetwork. The nodes are connected through Ethernet to a central control server. This Ethernet

link is used only for control and for the nodes to receive their kernel from the control server at

boot time, by using PXE.

A.2 Software

The nodes run an OpenWrt Linux distribution with the open-source ath9k wireless drivers. The

OpenWrt distribution is patched for MPTCP.2 We implemented Python scripts to easily control

the nodes (modifying the kernel, running the experiments, gathering the results, etc.). The

algorithms are implemented with the Click Modular Router [KMC+00]. Click can run either

in userspace or as a kernel module. Due to some incompatibility between ath9k and Click, our

implementations are done only in userspace.

A.3 Capacity and Busy-Time Measurements

For the simulations of this dissertation, the link capacities have been chosen from a distribution

based on real measurements conducted on our hybrid testbed. We have fit linearly our real

measurements and have computed the variance of the residuals. The simulated capacity have

then been computed by adding a normally distributed noise with the corresponding variance to

the fitted value. This has been done independently for WiFi and PLC. Estimated capacities for

100 random links are shown as function of the link distance in Figure A.2 for WiFi and PLC,

together with the actual measurements. Table A.1 also presents the statistics of the capacities of

all the links of our testbed. The average capacity of PLC is very close to that of WiFi.

The link capacities and busy-time (as defined in Section 2.2.1) can be measured directly by

the nodes. The physical rate of any link can be obtained by using the modulation and coding

2The distribution is available at https://multipath-tcp.org/pmwiki.php/Users/OpenWRT.

Table A.1 – Statistics of the capacities of all links of the testbed, for WiFi and PLC.

WiFi PLC

max 102 Mb/s 86 Mb/s

mean 31 Mb/s 30 Mb/s

std dev 30 Mbps 20 Mbps
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Figure A.2 – Capacity estimation together with real testbed measurements, for WiFi (left)
and PLC (right).

scheme (MCS) for WiFi and the bit loading estimate (BLE) for PLC. For WiFi, ath9k drivers

expose directly the statistics on the MCS used for each packet that can be accessed using netlink

sockets [Hor04]. For PLC, the node sniffs all packets using faifa [CF08] and uses the BLE

field of every PLC packet to compute the physical rate. The physical rate of the link is directly

proportional to the real link-capacity (i.e., the maximum rate that can be sent on the link), as

shown by Vlachou et al. [VHT15]. The busy time can be measured similarly. For WiFi, ath9k

drivers expose directly the measured busy times that can also be accessed using netlink sockets.

For PLC, the node also sniffs all packets using faifa and uses the duration field of every PLC

packet to compute the busy time.
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B Proofs

B.1 Proofs of Section 2.3.2

Before proving the theorems of Section 2.3.2, we define the following term.

Definition 3. Given a multipath P = (P1, . . . ,PM ), two multipath-impact vectors αP ,l1 ∈RM and
αP ,l2 ∈RM are link-independent if there is no link of the multipath P that interferes with both l1

and l2, i.e., if Il1 ∩Il2 ∩ΛP =�.

Proof of Theorem 1. Given a multipath P with M paths, if two links l and l ′ have same tech-

nology, then in a multi-complete network, αP ,l = αP ,l ′ (all links of the technology interfere

with each other). Consequently, the LP ×M matrix AP given by (2.3) can be reduced to a

K ×M matrix ÃP without changing the solution of System (2.4) (ÃP has one row per technol-

ogy). If M > K , we next show that for each rate vector xP ∈RM , it is possible to build a rate

vector x ′
P

∈RM that uses M −1 paths (i.e., there is an index i such that x ′
i = 0) and such that

1T · xP ≤ 1T · x ′
P

, which proves the claim.

If there is an index i such that xi = 0, then the result is trivially proven with x ′
P

= xP . Let us now

assume that xi > 0 for all 1 ≤ i ≤ M , and let c1, . . . ,cM ∈RK be the columns of ÃP . Then, (2.2)

can be written as

M∑
i=1

xi ci =μxP
. (B.1)

Because M > K and ci ∈RK for 1 ≤ i ≤ M , there is (γ1, . . . ,γM ) �= (0, . . . ,0) such that

M∑
i=1

γi ci = 0. (B.2)

Because the ci only take positive values, some γi are positive and other are negative. Because

for all 1 ≤ i ≤ M , xi > 0, ε+ .= mini s.t. γi>0
xi
γi

> 0 and ε− .= maxi s.t. γi<0
xi
γi

< 0; let i+ and i− be

the indices where the extremum is reached. For all ε ∈ [ε−,ε+] and all 1 ≤ i ≤ M , −xi ≤ εγi ≤ xi ;
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also, xi+ −ε+γi+ = 0 and xi− −ε−γi− = 0. Clearly, due to (B.1) and (B.2), if xP = (x1, . . . , xM )

is an admissible rate vector, then so is x ′
P

(ε) = (x1 + εγ1, . . . , xM + εγM ). Let σγ = γ1 +·· ·+γM .

If σγ ≥ 0, then 1T · xP ≤ 1T · x ′
P

(ε+), whereas if σγ ≤ 0, then 1T · xP ≤ 1T · x ′
P

(ε−). Because

x ′
i+(ε+) = x ′

i−(ε−) = 0, this proves the result with x ′
P

= x ′
P

(ε+) if σγ ≥ 0 and x ′
P

= x ′
P

(ε−) if

σγ ≤ 0.

Proof of Lemma 2. To give an intuition, we begin by the proof for the particular case M = 1 (i.e.,

when the multipath P is a single-path, denoted by P ). If traffic is sent on P at an admissible rate

x that saturates a technology on a link l1, then
∑

l ′∈Il1∩ΛP
x/cl ′ = 1. If l2 is a link using another

technology, then Il1 ∩ΛP �=Il2 ∩ΛP , i.e., from (2.7),
∑

l ′∈Il2∩ΛP
x

cl ′
�=∑

l ′∈Il1∩ΛP
x

cl ′
= 1. Because

the rate x is admissible,
∑

l ′∈Il2∩ΛP
x

cl ′
< 1. This means that l2 is not saturated.

Lemma 2 is trivial if M = K , hence we assume M < K . We move to M ≥ 2. We first show the

following two results.

Lemma 3. If S is a d-dimension affine subspace with 1 ≤ d < M , spanned by d + 1 link-
independent multipath-impact vectors αP ,l1 , . . . ,αP ,ld+1 , then a multipath-impact vector αP ,l0 ,
link-independent with all the others, cannot belong to S, unless all vectors in S have the same
M −d entries that are zero, i.e., there are (at least) M −d paths P1, . . . ,PM−d such that for all i

and j with 0 ≤ i ≤ d +1 and 1 ≤ j ≤ M −d , αP j ,li = 0.

Proof. For 0 ≤ i ≤ d , we denote by α̃i ∈RM the vector α̃i =αP ,li −αP ,ld+1 . The M elements of

α̃i are denoted by α̃i j for 1 ≤ j ≤ M . Because S is of dimension d , we know that the α̃i ’s for

1 ≤ i ≤ d are linearly independent. The vector αP ,l0 belongs to S if and only if α̃0 is a linear

combination of the α̃i ’s for 1 ≤ i ≤ d , i.e., if and only if there is (γ1, . . . ,γd ) such that

α̃0 =
d∑

i=1
γi α̃i . (B.3)

With γ= (γi )i∈{1,...,d} and Ã ∈Rd×M the matrix defined by Ã =
[
α̃1 . . . α̃d

]T
, this equation is

equivalent to ÃT ·γ= α̃0. Let k ∈ {0, . . . , M } be the number of paths such that for all 0 ≤ i ≤ d +1

and all 1 ≤ j ≤ k, αP j ,li = 0 or, equivalently, α̃i j = 0. Without loss of generality, we assume that

these k paths are the first k paths of P . With respectively ÃM−k ∈Rd×M−k and α̃0,M−k ∈RM−k

the restrictions of respectively Ã and α̃0 to their last M −k columns (i.e., the multipath-impact

vectors αP ,li are restricted to the last M −k paths of P ), then (B.3) is equivalent to

ÃT
M−k ·γ= α̃0,M−k . (B.4)

Let us assume that k < M −d , i.e., M −k > d . Then, the rank of ÃT
M−k is d (because α̃i for

1 ≤ i ≤ d are linearly independent), and (γ1, . . . ,γd ) is uniquely defined by d rows of ÃT
M−k .
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Without loss of generality, we assume that these d rows are the first d rows of ÃT
M−k . For (B.3)

to be true, the equality (B.4) also needs to be verified for the last row of ÃT
M−k , i.e.,

α̃0M =
d∑

i=1
γi α̃i M . (B.5)

But we know that there is i ∈ {0, . . . ,d} such that α̃i M �= 0, i.e., Ili ∩ΛPM �= �. Modifying the

capacity of one link of Ili ∩ΛPM by any small ε> 0 changes the value of α̃i M without changing

the capacity of any other α̃i j (because of the link-independence). In particular, it does not change

the γi ’s. This means that under Assumption 1, (B.5) cannot be true. Consequently, for k < M −d ,

there is no (γ1, . . . ,γd ) such that (B.3) is verified, i.e., αP ,0 does not belong to S, which shows

the claim.

Lemma 4. Let P be a multipath with M paths, and xP an admissible rate vector. If k < K

links l1, . . . , lk that use k different technologies are such that the corresponding multipath-impact
vectors αP ,li for 1 ≤ i ≤ k are linearly independent and verify αP ,li · xP = 1 for 1 ≤ i ≤ k

(i.e., the k links are saturated), then the multipath-impact vector αP ,lk+1 of link lk+1 using a
technology different of the k others is either linearly independent with αP ,l1 , . . . ,αP ,lk , or it
verifies αP ,lk+1 · xP �= 1.

Proof. Let us assume that neither of the two is verified, i.e., αP ,lk+1 · xP = 1 and there are

(γ1, . . . ,γk ) such that αP ,lk+1 = ∑k
i=1γiαP ,li . Because for all i ∈ {1, . . . ,k + 1}, αP ,li · xP = 1,

we have that
∑k

i=1γi = 1, i.e., αP ,lk+1 belongs to the affine subspace of dimension d = k −1

spanned by the multipath-impact vectors αP ,li for 1 ≤ i ≤ k. But because they use different

technologies, all the multipath-impact vectors αP ,l1 , . . . ,αP ,lk+1 are necessarily link-independent

which, using Lemma 3, means that all the vectors αP ,l1 , . . . ,αP ,lk must have M −k +1 common

zero-components, i.e., dimker(αP ,l1 , . . . ,αP ,lk ) ≥ M −k +1. Because the dimension of the space

is M , the inequality is in contradiction with the fact that the vectors αP ,l1 , . . . ,αP ,lk are linearly

independent, i.e., rank(αP ,l1 , . . . ,αP ,lk ) = k, which shows the result.

In particular, Lemma 4 shows that if we have k = M links l1, . . . , lM of different technologies (the

αP ,li are thus link-independent) that all are saturated, i.e., if αP ,li ·xP = 1 for 1 ≤ i ≤ M , then they

are necessarily linearly independent, which means that they form a basis of RM . Consequently,

for any other link lM+1 using another technology (αP ,lM+1 is link-independent with the other

multipath-impact vectors αP ,li ), αP ,lM+1 cannot be linearly independent with αP ,l1 , . . . ,αP ,lM ,

thus it must verify αP ,lM+1 · xP �= 1. This proves Lemma 2.

Proof of Theorem 2. Let P be a multipath with M < K paths, i.e., M = K −k for some

k ∈ {1, . . . ,K −1}. From Lemma 2, any rate vector xP saturates at most K − k technologies.

We therefore construct a K -path multipath that is strictly better by adding k paths using each only

one of the (at least) k technologies that are not saturated (these paths exist because the network is

multi-connected). Therefore, Mopt ≥ K .

141



Appendix B. Proofs

B.2 Proof of Section 4.4

Proof of Theorem 3. We need to prove that each arm is probed an infinite number of times almost

surely, which has two consequences. First, the strong law of large numbers then yields that the

estimation of the optimal rate converges to the true value, and thus that HyMAB finds the best

multipath. Second, this means that the probing probability εP (t ) given in Theorem 3 goes to zero

and thus that HyMAB ends up exploiting the best multipath almost surely. Therefore, this shows

that HyMAB converges to achieving optimal throughput. In the following, we show that probing

each arm an infinite number of times is equivalent to having each arm chosen an infinite number

of times at Stage 1, and that this is true almost surely.

For any arm P , let TP (t ) be the number of times P is chosen at Stage 1 of the algorithm

during the first t trials, and nP (t ) be the number of times the arm is probed, i.e., it is chosen

at Stage 1 and probing is chosen at Stage 2. The best arm, i.e., the one maximizing ‖xP ‖opt
1 ,

is denoted by P ∗. First, nP (t ) is unbounded almost surely if and only if TP (t ) is unbounded

almost surely: If nP (t ) is unbounded, TP (t ) is obviously unbounded because TP (t ) ≥ nP (t ). If

TP (t ) is unbounded, a probing phase will happen eventually almost surely because the probing

probability is always strictly positive, which means that nP (t ) is unbounded almost surely.

Let us now assume that there is an arm P0 for which TP0 (t ) is bounded with non-zero probability.

It means that with non-zero probability, P0 is not chosen anymore after some time, which means

that with non-zero probability, at each time t for t large enough, there is an arm P (t ) for which

TP (t )(t ) is unbounded almost surely and such that VP (t )(t ) ≥VP0 (t ). Using (4.2), this means that

with non-zero probability, the following is true for each t for t large enough:

∥∥xP (t ),nP (t )(t−1)
∥∥

1 −
∥∥∥xP0,nP0 (t−1)

∥∥∥
1
≥
�

2ln t −1

(
1√

nP0 (t −1)
− 1√

nP (t )(t −1)

)
.

But because for each estimation xP (t ), ‖xP (t )‖1 ∈ [0,1], the left-hand side is finite; whereas

the right-hand side is positive and goes to infinity: nP0 (t ) is bounded whereas nP (t )(t ) goes

to infinity, i.e., the difference is strictly positive for t large enough. This is a contradiction,

consequently, for any arm P , TP (t ) is unbounded almost surely, and hence, nP (t ) is unbounded

almost surely.

We now denote by xr (t ) the rate vector that is sent after t trials. Because at each trial, the source

sends at most the current best estimate, we have

E
[

xr (t )
]� E

[
xP ∗

t ,nP ∗
t

(t )

]
. (B.6)

Each time exploitation is chosen at Stage 2, whatever the arm P t chosen at Stage 1, the source

sends the current best estimate, we thus have xr (t ) 
 xP ∗
t ,nP ∗

t
(t )1{exploit at t}. The inequality is

because when probing, the source still sends traffic at non-zero rate. The current rate estimation

xP ∗
t ,nP ∗

t
(t ) at time t does not depend on the choice made at Stage 2 at time t , we consequently
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have

E
[

xr (t )
]
 E

[
xP ∗

t ,nP ∗
t

(t )

]
P

[
exploit at t

]
. (B.7)

But we have P
[
exploit at t

]= 1−P
[
explore P t at t

]
. We know that for any P , nP (t ) goes to

infinity almost surely, consequently for any P and any λ> 0, P
[
explore P at t

]= 1/nλ
P

(t ) goes

to 0 almost surely. In particular, P
[
explore P t at t

]
goes to 0, i.e.,

P
[
exploit at t

]−→a.s.
t→∞

1. (B.8)

Using (B.6), (B.7), and (B.8), we have

E
[

xr (t )
]∼ E

[
xP ∗

t ,nP ∗
t

(t )

]
. (B.9)

The almost sure convergence of nP (t ) to infinity and the strong law of large numbers ensures

that for any P ,

xP,nP (t ) −→a.s.
t→∞

xopt
P . (B.10)

In particular,

xP ∗,nP ∗ (t ) −→a.s.
t→∞

xopt
P ∗ . (B.11)

Because P ∗ is defined as the arm maximizing ‖xP ‖opt
1 , Equation (B.10) also means that for t

large enough, P ∗ will be the arm maximizing the rate estimation
∥∥xP ,nP (t )

∥∥
1, which means that

P
[
P ∗

t = P∗]−→a.s.
t→∞

1. (B.12)

Equations (B.9), (B.11), and (B.12) then ensure that

E
[

xr (t )
]−→a.s.

t→∞
xopt

P ∗ ,

which completes the proof.

B.3 Proofs of Section 5.3.1

We study which queue has the largest average delays, i.e., the sign of D1 −D2. From Little’s

law, we know that working with the average delays Di and with the average queue size Ni is

equivalent, because Ni =λDi , hence, D1 −D2 and N1 −N2 have same sign. The average queue

size of a queue with heterogeneous service rates is given by Yechiali and Naor [YN71]. After
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some manipulations, it can be rewritten for Queue i for i ∈ {1,2} and for any λ< μ̂i as

Ni (λ) = λ

μ̂i −λ
+ λ

αi (μ̂i −λ)
fi (λ)Vi , (B.13)

where we use the notations of Section 5.3.1 and where

fi (λ) = 1− zi (λ)

μ̂i −λzi (λ)

with zi (λ) defined as the only root in (0,1) of

gi (z) =αi z(μ̂i −λz)− (1− z)(μh,i −λz)(μl ,i −λz). (B.14)

We also define σi =μh,i +μl ,i and

M = π2 −π1

σ2 −σ1
. (B.15)

We start with useful lemmas. Remember that α1 =α2 =α and μ̂1 = μ̂2 = μ̂.

Lemma 5. zi (λ) is a decreasing function of λ in (0, μ̂).

Proof. zi is the only root of gi (z) in (0,1). We write gi (z,λ) for the function gi , making its

dependency on λ explicit. Let ε > 0. After some manipulations using gi (zi ,λ) = 0, we have

gi (zi ,λ+ε) = εzi ki (z,ε), where

ki (z,ε) =σi − (α+ε+2λ+σi )zi + (ε+2λ)z2
i .

If ki (zi ,0) > 0, then for ε > 0 small enough, ki (zi ,ε) > 0, and gi (zi ,λ+ε) = εzi k(zi ,ε) > 0,

i.e., increasing λ increases gi around zi , and thus increasing λ decreases the root zi ,

because gi is increasing near zi as gi (0) = −πi < 0 and gi (1) = α(μ̂ − λ) > 0. Now,

ki (zi ,0) = (1− zi )(σi −2λzi )−αzi , which for zi ∈ (0,1) has same sign as

Qi
.= k(zi ,0)

1− zi
= (σi −2λzi )− αzi

1− zi

= (σi −2λzi )− (μh,i −λzi )(μl ,i −λzi )

μ̂−λzi
,

where for the last equality we used (B.14) and gi (zi ,λ) = 0. If μh,i =μl ,i , then μh,i = μ̂ and we

have Qi = μ̂−λzi > 0. Otherwise, necessarily μh,i > μ̂ and μl ,i < μ̂. Then

Qi = (μh,i −λzi )+ (μl ,i −λzi )− (μh,i −λzi )(μl ,i −λzi )

μ̂−λzi

= (μh,i −λzi )

(
1− μl ,i −λzi

μ̂−λzi

)
+ (μl ,i −λzi ).
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Using (B.14) again, we know that μl ,i −λzi > 0. Also, μl ,i < μ̂, consequently k(zi ,0) > 0, which

concludes the proof.

Lemma 6. If σ1 = σ2 and π1 = π2, then g1 = g2. If σ1 = σ2 and π1 �= π2, the only root of
g1(z)− g2(z) is 1. If σ1 �=σ2, the only roots of g1(z)− g2(z) are 1 and M/λ.

Proof. This follows directly from (B.14).

Lemma 7. If there is no root of g1(z)− g2(z) in (0,1), then z1 > z2 if and only if either π1 >π2,
or π1 =π2 and σ1 <σ2.

Proof. If g1(z)− g2(z) has no root in (0,1) and because, gi is increasing near zi , we have z1 > z2

if and only if ∀z ∈ (0,1), g1(z) < g2(z). If π1 �=π2, g1(z) < g2(z) if and only if π1 >π2, because

gi (0) =−πi . If π1 = π2, we have g1 − g2 = λz(1− z)(σ1 −σ2), i.e., g1(z) < g2(z) if and only if

σ1 <σ2.

Lemma 8. For all λ ∈ (0, μ̂), f1(λ) < f2(λ) if and only if z1 > z2.

Proof. Easy computation with λ< μ̂ and 0 < zi < 1.

Lemma 9. (V1 −V2)(π1 −π2) < 0 if and only if either σ1 =σ2, or μ̂/M < 1. Also, V1 =V2 if and
only if either M = μ̂, or σ1 =σ2 and π1 =π2.

Proof. After some manipulations, we can rewrite

Vi = μ̂σi −πi − μ̂2, (B.16)

and the cases of equality become clear. It is also clear with simple manipulations that if V1 <V2

and π1 >π2, or V1 >V2 and π1 <π2, then μ̂/M < 1.

Reciprocally, if μ̂/M < 1, then either μ̂< M and M > 0, or μ̂> M and M < 0. In the first case, we

have

μ̂< π2 −π1

σ2 −σ1
. (B.17)

Either σ1 > σ2 and we have π1 > π2 (because M > 0) and V1 < V2 (because of (B.17)) and

thus (V1 −V2)(π1 −π2) < 0; or σ1 < σ2 and we have similarly π1 < π2 and V1 > V2. Similar

manipulations show the result in the second case.

Lemma 10. If V1 �=V2, there exists a λm ∈ [0, μ̂) such that for all λ ∈ (λm , μ̂), N1(λ) > N2(λ) if
and only if V1 >V2.
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Proof. We have

f1(μ̂)

f2(μ̂)
= 1, (B.18)

consequently there is a λm ∈ [0, μ̂) such that for all λ ∈ (λm , μ̂),
∣∣∣1− f1(λ)

f2(λ)

∣∣∣< ∣∣∣V1−V2
2

∣∣∣, which shows

that for λ ∈ (λm , μ̂), N1(λ)−N2(λ) has same sign as V1 −V2.

Lemma 11. Let βi =αl ,i /α. If β1 =β2
.=β and if βαh,i ≥ (1−β)αl ,i , then V1 ≥V2 if and only if

π1 ≤π2.

Proof. Let vi =μh,i −μl ,i . We have after easy computations Vi =β(1−β)v2
i , thus V1 >V2 if and

only if v1 > v2. After computations, we get πi = μ̂2 + (1−2β)μ̂vi −β(1−β)v2
i , hence

π1 −π2 =−(v1 − v2)(β(1−β)(v1 + v2)− (1−2β)μ̂).

If

β(1−β)(v1 + v2) ≥ (1−2β)μ̂, (B.19)

then V1 ≥ V2 if and only if π1 ≤ π2. After simplifications, we see that (B.19) is equivalent to

β(μh,1+μh,2) > μ̂. This is true if, for i ∈ {1,2}, βαh,i ≥ (1−β)αl ,i , which concludes the proof.

Lemma 12. If

(V1 −V2)(π1 −π2) > 0. (B.20)

and ∣∣∣∣1− V2

V1

∣∣∣∣< ∣∣∣∣1− π2 +αμ̂

π1 +αμ̂

∣∣∣∣ .= B0, (B.21)

then N1(λ)−N2(λ) changes sign in (0, μ̂), and there is a λ0 ∈ (0, μ̂) such that for all λ<λ0,
V1 >V2 and N1(λ) < N2(λ), or V1 <V2 and N1(λ) > N2(λ).

Proof. A simple computation using (B.14) with λ= 0 shows that

zi (0) = πi

πi +αμ̂
and

f1(0)

f2(0)
= π2 +αμ̂

π1 +αμ̂
.

So, when λ is close to 0, the difference N1(λ)−N2(λ) has same sign as f1(0)V1 − f2(0)V2, i.e., it

has same sign as

Q
.= f1(0)

f2(0)
− V2

V1
= π2 +αμ̂

π1 +αμ̂
− V2

V1
.
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If (B.20) and (B.21) hold, Q > 0 if and only if V1 < V2: When λ is close to 0, N1(λ) > N2(λ)

if and only if V1 < V2. From Lemma 10, we know that when λ is close to μ̂, N1(λ) > N2(λ) if

and only if V1 > V2, which means that N1 −N2 changes sign in (0, μ̂). In addition, if λ0 is the

first λ ∈ (0, μ̂) where N1 −N2 changes sign, then for all λ ∈ (0,λ0), V1 >V2 and N1(λ) < N2(λ), or

V1 <V2 and N1(λ) > N2(λ).

We can now prove the theorems.

Proof of Theorem 4. From (B.13), we write

N1(λ)−N2(λ) = λ

α(μ̂−λ)

(
f1(λ)V1 − f2(λ)V2

)
, (B.22)

If V1 =V2 then from Lemma 9, M = μ̂, or σ1 =σ2 and π1 =π2. If π1 =π2, then σ1 =σ2 and thus

g1 = g2 and N1 = N2. Otherwise, M = μ̂ and because λ< μ̂, Lemma 6 shows that there is no root

of g1 − g2 in (0,1), and thus Lemma 7 and 8 along with (B.22) show that N1 > N2 if and only if

π1 <π2.

If π1 =π2, then V1 =V2 is equivalent to σ1 =σ2 because of (B.16). If σ1 =σ2, we have proved

N1 = N2. If V1 �= V2, then σ1 �= σ2 and M = 0, consequently there is no root of g1 − g2 in (0,1)

(Lemma 6), and thus from Lemmas 7 and 8, f1(λ) > f2(λ) for all λ ∈ (0, μ̂) if and only if σ1 >σ2,

which happens if and only if V1 >V2. Thus N1 > N2 if and only if V1 >V2.

Proof of Theorem 5. From Lemma 9, (V1−V2)(π1−π2)<0 if and only if σ1 =σ2 or μ̂/M < 1. In

both cases, Lemma 6 shows that there is no root of g1 − g2 in (0,1), and consequently, from

Lemmas 7 and 8, f1(λ) > f2(λ) for all λ ∈ (0, μ̂) if and only if π1 <π2, which happens if and only

if V1 >V2. Thus for all λ ∈ (0, μ̂), N1(λ) > N2(λ) if and only if V1 >V2.

Proof of Theorem 6. Theorem 6 follows directly from Lemma 12.

Proof of Theorem 7. Theorem 7 follows directly from Lemma 10.

B.3.1 Additional Remarks on the Bounds

We can prove the following sufficient condition for having N1(λ) �= N2(λ) for all arrival rate λ,

and consequently (because of Theorem 7), for having N1(λ) > N2(λ) if and only if V1 ≥V2.
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Lemma 13. If (B.20) is verified and

max(V1,V2)

min(V1,V2)
> 1+ max(π1,π2)

αμ̂
, (B.23)

then for all λ ∈ (0, μ̂), N1(λ) �= N2(λ).

Proof. With simple manipulations, it is easy to see that (B.23) is equivalent to the inequality
f1(0)
f2(μ̂) ≤ V2

V1
≤ f1(μ̂)

f2(0) being false. Lemmas 5 and 8 prove that fi is an increasing function of λ, (B.23)

consequently implies that for all λ ∈ (0, μ̂),
∣∣∣1− V2

V1

∣∣∣> ∣∣∣1− f1(λ)
f2(λ)

∣∣∣, i.e., N1(λ)−N2(λ) always has

same sign as V1 −V2.

When (B.20) is verified but neither (B.21) nor (B.23) are verfified, then numerical results show that

both cases can happen: Either for all λ ∈ (0, μ̂), N1(λ) �= N2(λ) (and in that case, N1(λ) > N2(λ) if

and only if V1 ≥V2); or N1(λ)−N2(λ) changes sign. In that case, N1 −N2 changes sign at least

twice in (0, μ̂). One open question is to determine the precise bound B as a function of πi , α, and

μ̂, such that N1(λ) �= N2(λ) for all λ ∈ (0, μ̂) if and only if
∣∣∣1− V2

V1

∣∣∣> B . For that, one needs to find

the extrema of f1(λ)/ f2(λ) in (0, μ̂). We conjecture that B is close to B0 defined in (B.21). In fact,

numerically, it seems that
∣∣∣1− V2

V1

∣∣∣> 2B0 already ensures that for all λ ∈ (0, μ̂), N1(λ) �= N2(λ).
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