
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. A. Lenstra, président du jury
Prof. S. Vaudenay, directeur de thèse

Prof. G. Avoine, rapporteur
Prof. F. D. Garcia, rapporteur

Prof. M. Payer, rapporteur

Implications of Position in Cryptography

THÈSE NO 8981 (2018)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 23 NOVEMBRE 2018

À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE DE SÉCURITÉ ET DE CRYPTOGRAPHIE

PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS

Suisse
2018

PAR

Handan KILINÇ ALPER

To my mother, my father and my brother

iii

Abstract

In our daily lives, people or devices frequently need to learn their location for many

reasons as some services depend on the absolute location or the proximity. The outcomes

of positioning systems can have critical effects e.g., on military, emergency. Thus, the

security of these systems is quite important. In this thesis, we concentrate on many

security aspects of position in cryptography.

The first part of this thesis focuses on the theory of distance bounding. A distance

bounding protocol is a two-party authentication protocol between a prover and a veri-

fier which considers the distance of the prover as a part of his/her credential. It aims

to defeat threats by malicious provers who try to convince that they are closer to the

verifier or adversaries which seek to impersonate a far-away prover. In this direction, we

first study the optimal security bounds that a distance bounding protocol can achieve.

We consider the optimal security bounds when we add some random delays in the dis-

tance computation and let the prover involve distance computation. Then, we focus on

solving the efficiency problem of public-key distance bounding because the public-key

cryptography requires much more computations than the symmetric-key cryptography.

We construct two generic protocols (one without privacy, one with) which require fewer

computations on the prover side compared to the existing protocols while keeping the

highest security level. Then, we describe a new security model involving a tamper-

resistant hardware. This model is called the secure hardware model (SHM). We define

an all-in-one security model which covers all the threats of distance bounding and an

appropriate privacy notion for SHM.

The second part of this thesis is to fill the gap between the distance bounding and

its real-world applications. We first consider contactless access control. We define an

integrated security and privacy model for access control using distance bounding (DB)

to defeat relay attacks. We show how a secure DB protocol can be converted to a se-

cure contactless access control protocol. Regarding privacy (i.e., keeping anonymity in

a strong sense to an active adversary), we show that the conversion does not always

preserve privacy, but it is possible to study it on a case by case basis. Then, we consider

contactless payment systems. We design an adversarial model and define formally the

contactless payment security against malicious cards and malicious terminals. Accord-

ingly, we design a contactless payment protocol and show its security in our security

model.

The last part of this thesis focuses on positioning. We consider two problems related

v

Abstract

to positioning systems: localization and proof of location. In localization, a user aims

to find its position by using a wireless network. In proof of location, a user wants

to prove his/her position e.g., to have access to a system or authorize itself. We first

formally define the problem of localization and construct a formal security model. We

describe algorithms and protocols for localization which are secure in our model. Proof

of location has been considered formally by Chandran et al. in CRYPTO 2009 and it

was proved that achieving security is not possible in the vanilla model. By integrating

the localization and the secure hardware model, we obtain a model where we can achieve

proof of location.

Keywords: Distance Bounding, Localization, Secure Positioning, Access Control, Con-

tactless Payment, Proof of Location, Relay Attack, Position-based cryptography, RFID,

NFC

vi

Résumé

Dans la vie quotidienne, les gens ou les appareils connectés ont souvent besoin de

connâıtre leur position pour de multiples raisons, car certains services dépendent de

l’emplacement absolu ou de la proximité . Les résultats des systèmes de positionnement

peuvent avoir des effets critiques, par exemple, pour l’armée ou les services d’urgence. La

sécurité de ces systèmes est donc importante. Dans cette thèse, nous nous concentrons

sur de nombreux aspects de la sécurité liée à la position en cryptographie.

La première partie de cette thèse se concentre sur la théorie de protocoles délimiteurs

de distance. Un protocole délimiteur de distance est un protocole d’authentification entre

un prouveur et un vérificateur qui considère la distance du prouveur comme faisant

une partie de ses identifiants. Dans ce sens, nous étudions d’abord les limites de la

sécurité optimale qu’un protocole délimiteur de distance peut atteindre. Ensuite, nous

nous concentrons sur la résolution du problème d’efficacité des protocoles délimiteurs de

distance par clé publique car la cryptographie à clé publique nécessite beaucoup plus

de calculs que la cryptographie à clé symétrique. Nous construisons deux protocoles

génériques qui nécessitent moins de calculs du côté du prouveur que dans les protocoles

existants, tout en conservant le plus haut niveau de sécurité. Ensuite, nous décrivons un

nouveau modèle de sécurité impliquant un matériel inviolable. Ce modèle est appelé le

modèle matériel sécurisé. Nous définissons un modèle de sécurité tout-en-un qui couvre

toutes les menaces de délimiteur de distance et une notion de confidentialité appropriée

pour le modèle matériel sécurisé.

La deuxième partie comble le fossé entre le protocole délimiteur de distance et ses

applications dans le monde réel. Nous considérons d’abord le contrôle d’accès sans

contact. Nous définissons un modèle intégré de sécurité et de confidentialité pour le

contrôle d’accès en utilisant le délimiteur de distance pour vaincre les attaques de relais.

Nous montrons comment un protocole délimiteur de distance sécurisé peut être converti

en un protocole sécurisé de contrôle d’accès sans contact. En ce qui concerne la vie

sphère privée, nous montrons que la conversion ne la préserve pas toujours, mais qu’il

est possible de l’étudier au cas par cas. Ensuite, nous considérons les systèmes de

paiement sans contact. Nous concevons un modèle de sécurité pour le paiement sans

contact contre les cartes et les terminaux malveillants. En conséquence, nous concevons

un protocole de paiement sans contact et montrons sa sécurité dans notre modèle.

La dernière partie porte sur le positionnement. Nous considérons deux problèmes liés

aux systèmes de positionnement : la localisation et la preuve de localisation. Pour la

vii

Résumé

localisation, un utilisateur vise à trouver sa position en utilisant un réseau sans fil. Pour

la preuve de localisation, un utilisateur veut prouver sa position, par exemple, avoir accès

à un système ou s’authentifier. Nous définissons d’abord formellement le problème de la

localisation et construisons un modèle de sécurité formel. Nous décrivons des algorithmes

et des protocoles de localisation sécurisés dans notre . La preuve de localisation a été

prouvé que la réalisation de la sécurité n’est pas possible dans le modèle standard. En

intégrant la localisation et le modèle matériel sécurisé, nous obtenons un modèle où nous

pouvons obtenir une preuve de localisation.

viii

Acknowledgments

When I started my PhD studies, I knew that it will be a long and challenging journey.

Now, when I looked back, I see that I was not wrong but these two adjectives are not

enough to describe my journey. My PhD journey was sometimes monotonous, sometimes

pleased, often stressful, rarely disappointed, always informative and more. Although the

difficulties I faced, I feel happy, satisfied and extremely proud in the end.

First, my gratitude and appreciation go to my supervisor Prof. Serge Vaudenay for

accepting me into his lab and allowing me to work with him. Serge, you taught me a

lot during my PhD: how to do a proper research, how to deal with the problems, how

to be critical against my work and others’ work. You were always patient against my

mistakes, my questions, my writing skills. Thanks for all your patience, reading my

papers many times, spending your time to improve my research. In addition, thank you

for your friendly and welcoming approach. Indeed, I feel very lucky to have a supervisor

like you. It was an honor to work with you.

Secondly, I would like to thank the members of my PhD thesis committee. I thank

Prof. Arjen Lenstra my committee president. I also express my gratitude towards Prof.

Gildas Avoine and Prof. Flavio Garcia who accepted to be my external jury exam-

iners. Finally, I wish to thank Prof. Mathias Payer for accepting to be my internal jury

examiner. Thank you all for your valuable comments and remarks.

I would also like to express my gratitude towards Prof. Alptekin Küpçü who was my

supervisor in my master studies. Thanks to his advises and encouragements, I decided

to do PhD. He always showed his trust and motivated me to do research. Thank you

Alptekin, for teaching me cryptography, introducing me the world of research, your

motivational talks and your support.

Having an ideal lab environment is essential when doing a PhD which can be daunting

at times. Therefore, my next thanks go to the present and former LASEC members:

Prof. Serge Vaudenay, Dr Philippe Oechslin, Martine Corval, Dr Petr Sušil, Dr Alexandre

Duc, Dr Sonia Mihaela Bogos, Dr Damian Vizár, Fatih Balli, Gwangbae Choi, Khashayar

Barooti, Dr Subhadeep Banik, Dr Fatma Betül Durak, Dr Iraklis Leontiadis.

I especially would like to thank my ex-officemate Damian Vizár with whom I shared

the office INF 240 almost three years. I was very lucky to have such a smart, kind

ix

and positive person as an oficemate. He was always available to help and give support.

Thank you Damian for all your help, informative and funny chats, the artistic drawing on

my board and all nuts that you shared with me. I also would like to thank Sonia Bogos

who is the former member of LASEC. Thank you Sonia, for your friendly attitude, your

positive energy, your help and support. I would like to kindly thank Martine Corval,

our secretary. Martine was always very helpful and always welcoming us with a smile in

her office. Thank you Martine for all the help to solve our problems.

When I first arrived at EPFL, I had almost no friend in Switzerland. At the end of four

years, luckily, I made so many good friends. I first would like to thank my friends Agata

Mosinska, Konrad Domanski, Elie Najm with whom I shared the stressful fellowship

year. Thank you all for all the funny moments in the middle room and having lunches

with a lot of laughter. Secondly, I would like to thank my Turkish fellows Berker Ağır,

Buğra Tekin, Egeyar Bağcıoğlu, Can Baltacı, Dilan Çelebi, Erhan Gündoğdu, Erkin

Arslan, Merve Gürel, İlke Ilgaz, Tuğba Kılıç, Eray Sabancılar, Işık Sırmatel and Onur

Yürüten. Thank you Buğra, Can, Erhan, Erkin for being such a great lunch team.

Thank you İlke, Dilan, Işık, and Eray for being such an easygoing executive board of

TURQUIA 1912. Thank you Onur for nice dinners at your home and your relaxing talks

when I feel bad. Thank you Egeyar for introducing me EPFL and being such a good

friend. Thank you Merve for your support in my stressful moments, relaxing girls nights,

being such a generous, caring and loving friend, and also thank you for your efforts to

be with me in my wedding.

Berker was my one of the first people that I met when I arrive at EPFL. From this

time to now, he always helped me with every kind of problem that I faced. Thank you

Berker for being a good listener, your motivational talks, being such a good and reliable

friend, made me watch so many good movies which I prejudged.

Dilan is more than a friend for me. She is like a sister. We shared so many mo-

ments together during these years. She is the warmest, the most affectionate and most

sympathetic person that I have ever meet. Thank you Dilan for making our flat like

a home, standing for my stressful moments, your efforts to make me feel better, funny

dish-washings, courageous skiing, and crazy dancings.

I would like to also thank my dear friend Buket Yüksel outside EPFL. Although the

distance, she was always with me during these years. Thank you Buket for relaxing

phone calls, making me laugh with your funny stories, and visiting me here.

My next thanks are for my husband Cem Alper. When I started my PhD, he was

in my life as a friend and then he became my family. There are millions of things to

thank him. I am sure my last four years would be very difficult for me without him.

His support and trust were the biggest motivation for me. Thank you Cem for making

my life easier, calming me every time, finding solutions to my problems, listening to my

research related works with complete attention, and being such a great husband.

x

Acknowledgments

Last but not least, I want to thank my parents and my brother for their love and

unconditional help. My father Süleyman Kılınç and my mother Aynur Kılınç always

supported me for my decisions, believed in me and showed their love. Thank you mom

and dad for being the best parents ever. My brother Orhun Kılınç always helped me

and provided solutions to my problems during my PhD. Thank you Orhun for your

encouragements and being such a supportive brother. These sentences are not enough

to express my gratitude towards my parents and my brother. I am very lucky to have

them.

xi

Table of Contents

Abstract v

Résumé vii

Acknowledgments ix

Table of Content xvi

1 Introduction 1

2 Preliminaries 7

2.1 Notations . 7

2.2 Distance Bounding . 7

2.2.1 Security of Distance Bounding . 9

2.2.2 Privacy in DB . 14

2.3 Other Security Definitions . 15

I Distance Bounding 19

3 Optimal Proximity Proofs Revisited 21

3.1 Our Contribution . 21

3.2 Revised Security Definitions . 22

3.3 Optimal Security Bounds in New Structures 24

3.3.1 Sync Structure . 25

3.3.2 Rand Structure and SyncRand Structure 27

3.4 DBopt in New Structures . 29

3.5 Performance . 34

3.6 Conclusion . 35

xiii

4 Efficient Public-key Distance Bounding 37

4.1 Our Contribution . 39

4.2 Authenticated Key Agreement (AKA) Protocols 40

4.2.1 One-Pass AKA Model . 40

4.2.2 A One-Pass AKA Protocol (Nonce-DH) 42

4.3 More Security Results on OTDB . 45

4.4 Our Constructions . 47

4.4.1 Eff-pkDB . 47

4.4.2 Eff-pkDBp . 50

4.4.3 Another variant of Eff-pkDB: Eff-pkDB+1 52

4.4.4 Simp-pkDB . 53

4.5 Conclusion . 57

5 Formal Analysis of Distance Bounding with Secure Hardware 61

5.1 Our Contribution . 62

5.2 Secure Hardware Model . 64

5.2.1 Definitions . 64

5.2.2 Security Results . 66

5.2.3 Privacy . 68

5.3 Optimal symmetric DB protocol in SHM 69

5.4 Optimal Public-key DB Protocols in SHM 72

5.5 Conclusion . 75

II Integrated Distance Bounding 77

6 Contactless Access Control 79

6.1 Our Contribution . 80

6.2 Security and Privacy Model of AC . 81

6.2.1 Security of AC . 82

6.2.2 Privacy of AC . 84

6.3 Distance Bounding in Access Control . 85

6.3.1 Secure AC with a Secure DB . 86

6.3.2 Private AC with a Private DB . 90

6.4 Conclusion . 92

7 Secure Contactless Payment 95

7.1 Our Contributions: . 96

7.2 Security Model of Contactless Payment 97

7.3 Contactless Payment Protocol . 101

7.3.1 ClessPay . 101

7.3.2 Security . 103

7.4 EMV Analysis . 108

xiv

Table of Contents

7.4.1 Security Against Malicious Terminal in EMV 111

7.4.2 Security Against Malicious Card in EMV 112

7.5 Conclusion . 113

III Positioning 115

8 Formalism on Localization 117

8.1 Our Contribution . 119

8.2 Definitions . 120

8.2.1 Localization . 120

8.2.2 Distance Estimate Protocols . 122

8.3 Localization Protocols . 124

8.3.1 Non-Interactive Localization . 124

8.3.2 Interactive Localization . 130

8.4 Conclusion . 135

9 Proof of Location 137

9.1 Our Contribution . 139

9.2 Definitions . 139

9.3 Proof of Location Protocol . 141

9.4 Conclusion . 142

10 Conclusion and Future Work 145

List of Figures 148

List of Definitions 150

List of Tables 151

List of Algorithms 153

Bibliography 155

A Review of Public-Key DBs 167

A.1 Brands and Chaum Protocol [BC93] . 167

A.2 HPO [HPO13] . 169

A.3 GOR [GOR14a] . 172

A.4 ProProx [Vau15d] . 173

A.5 PrivDB [Vau15c] . 175

A.6 TREAD [ABG+17] . 176

B More results about D-AKA security model 181

xv

C Security implications in SHM and PM 183

D Full EMV 185

E Curriculum Vitae 189

xvi

Chapter 1
Introduction

The importance of position in cryptography shows up out of necessity with the technolo-

gical developments of contactless systems and intelligent systems related to navigation.

The typical objectives related to position can be categorized as: localization which is

determining current location of a device, secure positioning which is proving one’s own

position to an authority, and proximity proofs which is proving an upper bound on the

distance from a device. In this thesis, we define and construct systems that provide

security with respect to each of these objectives.

Proof of Proximity: In the proof of proximity, there exist two parties where one

party (the prover) proves its distance from the other party and the other party (the

verifier) verifies the proof. All contactless authentication protocols such as contactless

payment (e.g. NFC), access control in a building, remote keyless system (e.g. car keys)

require proximity proofs to defeat the relay attack. In the relay attack, a malicious party

intends to impersonate a party (e.g., a smart card) during the authentication process by

extending the transmission range of the signals. In Figure 1.1, we illustrate an example

attack scenario. Using the proof of proximity, the party who verifies this authentication

process (the verifier) can check if the party (the prover) is out of range (i.e., far-away

from the verifier) during the authentication process. Beyond the relay attack, the proof

of proximity is necessary for the following attacks as well:

Mafia Fraud (MiM) [Des88]: A man-in-the-middle (MiM) adversary between a verifier

and a far-away honest prover makes the verifier accept the access of the prover as in

Figure 1.1. In a MiM attack, the adversary can do more than just relaying (e.g., replace

messages).

There are also threats by malicious provers:

Distance Fraud (DF): A malicious far-away prover tries to prove that he is close enough

to the verifier to make the verifier accept.

Distance Hijacking (DH) [CRSČ12]: A far-away malicious prover takes advantage of

some honest and active provers who are close to the verifier to make the verifier grant

privileges to the far-away prover.

1

� �

� �

� �

Doctor Adversaries Database

Figure 1.1 – The adversaries retrieve inform-
ation from a hospital database by relaying
the messages between the database reader
and the doctor’s card. Here, the doctor is
far-away from the database. Arrows show
receiving or sending messages.

� �
� � � � � �

Adversary

Colleagues of the adversary

Company

Home of adversary

Figure 1.2 – The adversary who is an
employee of the company accesses to
the door of the company which shows
that he arrived at work although he is
at home. Here, the adversary can use
one of his colleagues who is just next
to the door. Arrows show receiving or
sending messages.

Terrorist fraud (TF) [Des88]: A far-away malicious prover, with the help of an ad-

versary, tries to make the verifier accept the access of the prover.

Figure 1.2 shows an attack scenario for DH. The same scenario is valid for DF and

TF as well.

The most promising solution for the proof of proximity is distance bounding (DB).

Distance bounding was first introduced by Brands and Chaum [BC93]. It was inspired

from Beth and Desmedt [BD91] who suggested to use time of flight of messages to detect

relay attacks. In DB, the verifier generally verifies if the prover is in a range by computing

the round-trip time of sending a challenge and receiving a response (they are generally

1 or 2 bit(s)) in many rounds. In the end, if too many rounds have too long round trip

times or too many incorrect responses, the verifier rejects because it implies that the

prover is out of range. DB’s security is based on the fact that the communication speed

cannot be faster than the speed of light.

Localization and Secure Positioning: Localization and secure positioning have

the same setup consisting of many bases whose physical location is known and a user.

However, the parties in this setup have completely different objectives. In localization

setup, the user does not know his/her location and wants to obtain his/her physical

location by getting help from bases. The adversarial intention in a localization setup is

to make the user obtain a wrong location. In secure positioning setup, each party knows

his/her own location but the bases want to be convinced there is a party at the claimed

location by the user. The aim of an adversary in secure positioning is proving that there

is a user at a location even though no one is there.

We can see in many real world examples that the security of localization and secure

positioning is important. For example, consider the autonomous cars which can navigate

without human involvement by using their sensors and algorithms. One important issue

regarding the autonomous cars is the security of their systems. What if have these cars

had insecure localization systems that can easily be fooled or mislead? In this case, they

may not arrive where they are supposed to arrive, they may enter an area that they

2

Introduction

A

B

C

d1

d2 d3

Figure 1.3 – Trilateration Method. A, B and C are the known locations, d1,d2 and d3
are the distances from the unknown location (red point) to A, B and C, respectively.

normally should not enter such as a field, a schoolyard, a hospital area and possibly

damage them.

Another example is related to secure positioning. The electronic tagging is used for

people who have been sentenced for electronic monitoring. These systems should be

secure so that they cannot be fooled by the prisoners or their accomplices who want to

change their place.

The notions localization and secure positioning have completely different objectives

but they use the similar algorithms such as triangulation and trilateration. In this

thesis, we propose secure protocols and algorithms for these objectives using trilateration.

One of the reason for choosing this technique is its accuracy as it is not affected by

environmental changes as triangulation [TI10] algorithms. The other reason is that it

requires proof of proximity which is also a part of this thesis. The trilateration algorithm,

as it can be seen in 1.3, outputs the intersection of circles whose radius is the distance

between the known location and unknown one. In general, in the localization setup,

the user computes his/her distances to locations of bases and obtain its location using

the trilateration algorithm and in the secure-positioning setup, the bases computes the

distance of the user from their own location in order to see that the output of the

trilateration algorithm is the same as the claimed one.

We see that the attacks of proof of proximity (MiM, DF, DH and TF) also affect

the security of localization and secure positioning protocols using trilateration method.

For example, consider the localization setup. A MiM adversary can execute a MiM

attack during the distance computation and make the user believe that it is closer to

the location of a base. So, the trilateration algorithm outputs a wrong location. Let’s

also consider the secure positioning problem. The user claims that (s)he is at a location

and execute one of the attacks DF, DH or TF and makes some bases compute wrong

distances so that the trilateration algorithm outputs the claimed location.

Consequently, the implications of position in cryptography can be seen in three no-

tions: localization, secure positioning and proximity proof. Securely realizing them is

3

not possible without secure distance computation. The existing solution for this is dis-

tance bounding. Therefore, in this thesis, we first focus on distance bounding and then

suggest solutions for localization and secure positioning.

Outline of the Thesis

This thesis consists of three parts, where the first part is related to the theory of dis-

tance bounding, the second part is about integration of distance bounding in specific

applications, and the last part is about localization problems. Before starting all these

parts, we first give in Chapter 2 the existing security model for distance bounding and

some other useful security definitions which are used in the following chapters.

Part I gives original contributions to the theory of distance bounding. In Chapter 3,

we study how introducing random delays and having the prover to measure time can

improve optimal protocols. Then, in Chapter 4, we concentrate on constructing efficient

and secure public-key distance bounding protocols. In this direction, we construct the

most efficient public-key DB protocols comparing with the other protocols with the same

level or lower level of security. In Chapter 5, we study a distance bounding protocol based

on secure hardware to make full TF security is achievable.

In Part II, we aim to construct application specific security models and protocols on

top of distance bounding. Therefore, in Chapter 6, we develop a security model for

contactless access control and show how to achieve security and privacy with using only

distance bounding protocols. Similarly, in Chapter 7, we provide a security model for

contactless payment systems. We also analyze the security of the existing contactless

payment protocol that we use in our daily lives.

Part III includes solutions for the problems related to positioning. In Chapter 8, we

formalize the localization problem and provide a security definition. We also propose

localization protocols and prove their security formally. Using the security model of

localization and the distance bounding based on a secure hardware model from Chapter

5, we develop a model called proof of location for secure positioning in Chapter 9.

Personal Bibliography

Below is the list of publications that were published during this thesis. Entries in bold

are included in this thesis.

[1] Handan Kılınç and Alptekin Küpçü. Optimally efficient multi-party fair exchange

and fair secure multi-party computation. In: Nyberg K. (eds) Topics in Cryptology

— CT-RSA 2015. CT-RSA 2015. Lecture Notes in Computer Science, vol 9048.

Springer, Cham

[2] Handan Kılınç and Serge Vaudenay. Optimal Proximity Proofs Re-

visited. In: Malkin T., Kolesnikov V., Lewko A., Polychronakis M.

(eds) Applied Cryptography and Network Security. ACNS 2015. Lec-

ture Notes in Computer Science, vol 9092. Springer, Cham

4

Introduction

[3] Handan Kılınç and Alptekin Küpçü. Efficiently Making Secure Two-Party Com-

putation Fair. In: Grossklags J., Preneel B. (eds) Financial Cryptography and

Data Security. FC 2016. Lecture Notes in Computer Science, vol 9603. Springer,

Berlin, Heidelberg

[4] Handan Kılınç and Serge Vaudenay. Efficient Public-Key Distance

Bounding Protocol. In: Cheon J., Takagi T. (eds) Advances in Crypto-

logy – ASIACRYPT 2016. ASIACRYPT 2016. Lecture Notes in Com-

puter Science, vol 10032. Springer, Berlin, Heidelberg

[5] Handan Kılınç and Serge Vaudenay. Contactless Access Control Based

on Distance Bounding. In: Nguyen P., Zhou J. (eds) Information

Security. ISC 2017. Lecture Notes in Computer Science, vol 10599.

Springer, Cham

[6] Handan Kılınç and Serge Vaudenay. Formal Analysis of Distance

Bounding with Secure Hardware. In: Preneel B., Vercauteren F. (eds)

Applied Cryptography and Network Security. ACNS 2018. Lecture

Notes in Computer Science, vol 10892. Springer, Cham

[7] Handan Kılınç and Serge Vaudenay. Secure Contactless Payment. In:

Susilo W., Yang G. (eds) Information Security and Privacy. ACISP

2018. Lecture Notes in Computer Science, vol 10946. Springer, Cham

5

Chapter 2
Preliminaries

2.1 Notations

We let sk and pk denote a secret key and public key, respectively. We show the owner

by using a subscript: e.g., (skP,pkP) is the secret/public pair of a party P. We denote

by s a symmetric key.

We denote the location of a party I by locI. We use d(I,J) as a metric which gives

the distance between locations locI and locJ. I is called close to J, if d(I,J)≤ B and far

from J, if d(I,J)> B where B is a common distance bound.

An encryption scheme is a tuple (Enc,Dec) where Enc is the encryption algorithm and

Dec is the decryption algorithm. Similarly, a signature scheme is a tuple (Sign,Verify)

where Sign is the signing algorithm and Verify is the verification algorithm. The subscript

used on these algorithm specifies the key: e.g. Encsk(M) is encryption of message M with

the key sk.

We let Γi denote a game and pi denote the probability that an adversary succeeds Γi

where i ∈ {0,1,2, ...}. We also give some special names to some games (e.g., Game(.)).

If the game outputs 1, we say the game is won: e.g. Game(.) = 1. If it is 0, the game is

not won.

Pr[E] is used to define the probability of an event E.
A function negl(x) : N→ R is negligible, if for every positive polynomial poly(.), there

exists a positive integer N such that for all x > N, |negl(x)|< 1
poly(x) .

� is used as a security parameter.

2.2 Distance Bounding

We first define formally a distance-bounding protocol. We have two types of it: public-

key distance bounding [BC93, HPO13, GOR14a, Vau15c, Vau15a, Vau15d, KV16,

ABG+17] and symmetric distance bounding [BMV13a, BMV15, BMV13b, Vau13, FO13,

BV14].

7

Definition 2.1 (Public-key DB Protocol [Vau15c]). A public key distance-bounding pro-

tocol is a two-party probabilistic polynomial-time (PPT) protocol and it consists of a tuple

(KP,KV ,V,P,B). Here, KP and KV are the key generation algorithms of P and V , respect-

ively. The output of KP is a secret/public key pair (skP,pkP) and similarly the output of

KV is a secret/public key pair (skV ,pkV). P is the proving algorithm, V is the verifying

algorithm where the inputs of P and V are from KP and KV . B is the distance bound.

P(skP,pkP,pkV) and V (skV ,pkV) interact with each other. At the end of the protocol,

V (skV ,pkV) outputs a final message OutV ∈ {0,1} and has pkP as a private output. If

OutV = 1, then V accepts. If OutV = 0, then V rejects.

Correctness: A public-key DB protocol is correct if and only if under the honest

execution, whenever a verifier instance V and a close (to V) prover instance P run the

protocol, then V always outputs OutV = 1 and pkP.

Remark that Definition 2.1 combines identification with DB: pkP is not an input of

the algorithm V , but it is an output. So, V learns the identity of P during the protocol.

Now, we give the definition of symmetric DB. It is very similar to the definition of

public-key DB.

Definition 2.2 (Symmetric DB Protocol [BV14]). A symmetric distance-bounding pro-

tocol is a two-party PPT protocol and it consists of a tuple (K ,V,P,B). Here, K is the key

generation algorithm, P is the proving algorithm and V is the verifying algorithm. The

inputs of P and V is the output s of K . B is the distance bound. P(s) and V (s) interact
with each other. At the end of the protocol, V (s) outputs a final message OutV ∈ {0,1}.
If OutV = 1, then V accepts. If OutV = 0, then V rejects.

Correctness: A symmetric DB protocol is correct if and only if under honest execution,

whenever a verifier instance V and a close (to V) prover instance P run the protocol,

then V always outputs OutV = 1.
The DB protocols in this thesis follow the common structure defined by Boureanu and

Vaudenay [BV14]. The DB protocols in common structure have some phases, where one

of them corresponds to the phase of distance computation (challenge phase). Identify-

ing DB protocols based on this structure makes the protocol descriptions, the security

definitions and the security proofs easy to explain.

Definition 2.3 (Common Structure [BV14]). A DB protocol (K ,V,P,B) (or

(KP,KV ,V,P,B)) based on the common structure with parameters (n,numc,numr) con-

sists of three phases which are ‘initialization phase’, ‘verification phase’ and between

them ‘challenge phase’. Here, numc is the cardinality of the challenge set, numr is the

cardinality of the response set and n is the number of rounds in the challenge phase. In

the challenge phase, the verifier sends challenges to the prover and receives responses

from the prover. Here, the verifier measures the elapsed time between sending the chal-

lenge and receiving the response in each round. Time is not used otherwise and provers

do not measure time. If the elapsed time is less than what needed for information to

travel in a distance 2B, the response is called on time.

8

Preliminaries

We now give another structure which is a variation of the common structure.

Definition 2.4 (Canonical Structure [Vau15c]). A symmetric DB protocol (K ,V,P,B)
follows the canonical structure, if there exist an initialization/challenge/verification

phases, P does not use s during the initialization phase, V does not use s at all ex-

cept for computing the final OutV , and the verification phase is not interactive.

In real life, the channel is noisy. So, the challenges or responses do not always arrive

correctly [HK05, CHKM06, KAK+08, KAK+09, SP07], even though no adversary exists.

This means that in a noisy environment, the condition which is the number of correct

responses has to be equal to n can cause false negatives. To overcome this, we give a

definition τ-completeness.

Definition 2.5 (τ-complete [BV14]). A DB protocol (K ,V,P,B) based on the common

structure with parameters (n,τ,numc,numr) is called τ-complete when the algorithm V
outputs OutV = 1 if and only if at least τ-rounds have correct and on-time responses in

the challenge phase.

When we set up τ, we should consider the noise tolerance of the channel. Here,

we assume that each round in a challenge phase is corrupted with probability pnoise.
Therefore, the probability of τ-completeness in the case of a close-by honest prover is

Tail(n,τ,1− pnoise) [BV14, BMV13b, BMV15] where:

Tail(n,τ,ρ) =
n

∑
i=τ

(
n
i

)
ρi(1−ρ)n−i (2.1)

Accordingly, the probability of failure is negligible in terms of n when τ
n < c < 1− pnoise

for some constant c due to the Chernoff-Hoeffding bound [Che52, Hoe63].

We note that we assume τ = n in the next chapters, except Chapter 3, for the sake of

clarity. Depending on pnoise, this assumption can change for all protocols given in this

thesis.

2.2.1 Security of Distance Bounding

The security formalism in DB started by Avoine et al. [ABK+09, ABK+11]. Then, the

first complete model was introduced by Dürholz et al. [DFKO11] where the threat mod-

els are defined according to the number of tainted time critical phase. The SKI model

by Boureanu et al. [BMV13a, BMV13b, BMV15] is another formal model which includes

a clear communication model between parties in DB. The last model BV model [BV14]

by Boureanu and Vaudenay is a more natural multi-party security model. In this

thesis, we use the security and the communication model (BMV model) by Boureanu et

al. [BMV13a, BMV15, BMV13b]. The details of the model are as follows:

9

Adversarial and Communication Model: In the DB model, we have parties called

provers (P), a verifier (V) and other actors. Each party has instances and each instance

I has its own location locI. The communication between two instances I and J takes

time which depends on the distance between I and J. The parties have common notions

of time, time-unit, and measurable distance. The communication follows the laws of

physics, e.g., communication cannot be faster than the speed of light (c). Namely, a

message sent by I at time t can arrive J at time t ′ ≥ t + d(I,J)
c . By abuse of notion, we

thus measure time with a distance unit (t ′ ≥ t +d(I,J)).
The verifier is always honest and its instances always run the specified algorithm.

However, provers can be malicious. An instance of a malicious prover runs an arbitrary

algorithm. The honest instances cannot be run in parallel.

Without loss of generality, we say that the other actors are malicious. They may run

any algorithm. We assume that actors (adversaries) have very special hardware which

can intercept a message and change its destination without any delay. Similarly, they

can update a message and send it to any destination with this hardware without any

delay. So, if an instance I sends a message at time t1, and the adversary reads or updates

the message at time t2 and the adversary sends it to an instance J at time t3, then the

arrival time of the message to J is still lower bounded by t1 + d(I,J). However, the

adversary could send a message to J before seeing the one from I. Then, the adversary

blocks the delivery of the correct message. In this case, the message would arrive to J
before time t1 +d(I,J) but would be independent from the message sent by I as proven

in Fundamental Lemma (Lemma 2.7).

Adversaries can activate honest prover instances with some special signals. The special

signal Activate(P) activates the only activatable instance of P. After receiving this signal,

further activation signals are ignored by this instance. An instance can be terminated

by one of the following signals: Terminate(P) and Move(P, loc′). Terminate(P) terminates

the instance execution, but it remains “active”. The special signal Move(P, loc′) orders to
terminate and move the prover to loc′. It means that the instance becomes inactive and

that only one unused instance of P at location loc′ can be activated. The terminated

instance sends a special signal Go which, when received by this unused instance at

location loc′, will make it activatable (Go signals cannot be sent by malicious parties;

they are here only to enforce that a prover cannot move faster than a signal propagation).

After, it may receive another Activate(P) as a new instance of the same prover at location

loc′. These signals model the provers being at a single location and moving

(as influenced by the adversary) to run other instances. Besides, it models that

instances of the same prover cannot be run concurrently.

Definition 2.6 (DB experiment). An experiment exp for a distance-bounding protocol

with the tuple (K ,P,V,B) or (KP,KV ,P,V,B) is a setting (P,V,A) with several PPT

instances of participants, at some locations.

We denote by exp(V) a distinguished experiment where we fix a verifier instance V
called the distinguished verifier.

10

Preliminaries

Lemma 2.7 (Fundamental Lemma [BV14, Vau15d]). Consider an experiment where a

party V broadcasts a message c at time t to all other parties and waits for a response r.
The parties who are further than B are in a set Far and the others are in a set called

Close. We let E be an event in which V receives r no later than t +2B. We denote the

view of a party I just before seeing c (before t + d(V, I)) by ViewI. A message sent by

U is called independent if it is sent before t + d(V, I). If E happens, then there exists

an algorithm Alg(ViewClose,c,Other) → r. Here, ViewClose is the set of all ViewI where

I ∈ Close and Other is all independent messages from parties I ∈ Far.

The Fundamental Lemma states that a close-party cannot get online help from a

far-away party to respond correctly and on time.

Now, we explain the security definitions for distance fraud (DF), man-in-the-middle

(MiM) and distance hijacking (DH) from [Vau15c].

DF security captures security against a malicious and far away prover which does not

get any help from anyone else.

Definition 2.8 (Distance-Fraud Security in Public-key DB [Vau15c]). The game begins

by running the key setup algorithm KV (1�) which outputs (skV ,pkV). The game includes

instances of the verifier including the distinguished one V and instances of an adversary.

Given pkV , the adversary (malicious prover) generates its key (skP,pkP) with an arbitrary

key setup algorithm K ∗(pkV) (instead of KP). The adversary wins if V outputs OutV = 1,
POutV = pkP, and there is no participant close to V . A public-key DB protocol is DF-

secure, if for any such game, the adversary wins with negligible probability in the security

parameter �.

The symmetric DB version is defined in a very similar way.

Definition 2.9 (Distance-Fraud Security in Symmetric DB [Vau15c]). The game in-

cludes instances of the verifier including the distinguished one V and instances of an

adversary. The adversary (malicious prover) generates its key s with an arbitrary key

setup algorithm K ∗ (instead of K). The adversary wins if V outputs OutV = 1 and there

is no participant close to V . A symmetric DB protocol is DF-secure, if for any such

game, the adversary wins with negligible probability in the security parameter �.

As we can see, a malicious and far-away prover can setup his key maliciously.

The other security definition to protect against malicious prover is distance hijacking.

Here, the malicious and far-away prover can get advantage of an honest prover without

the honest prover being aware of it. We use the DH-definition specified for the distance-

bounding protocol in the common structure (Definition 2.3) as it is easier to have security

proofs.

Definition 2.10 (Distance-Hijacking Security in Public-key DB [Vau15c]). The game

consists of instances of the verifier, instances of a malicious prover P, and also instances

of an honest prover P′. A DB protocol (KP,KV ,V,P,B) having an initialization, a chal-

lenge and a verification phases is DH-secure if for all PPT algorithms K ∗
P and A, the

probability of P to win the following game is negligible in the security parameter �.

11

• The game generates secret/public keys of the honest prover and the verifier:

KV (1�)→ (skV ,pkV), KP(�)→ (skP′ ,pkP′).

• Malicious prover P runs K ∗
P (pkP′ ,pkV) → (skP,pkP) and if pkP = pkP′, the game

aborts. Instances of P run an algorithm A(skP,pkP,pkV ,pkP′).

• P can interact with instances of the honest prover and the verifier during the ini-

tialization phase and verification phases concurrently.

• One instance of the honest prover and one instance of the verifier V continue

interacting with each other in their challenge phase and P remains passive even

though it sees the exchanged messages.

The adversary wins if V outputs OutV = 1 and pkP.

Definition 2.11 (Distance-Hijacking Security in Symmetric DB [Vau15c]). The game

consists of instances of the verifier, instances of a malicious prover P, and also instances

of an honest prover P′. A DB protocol (K ,V,P,B) having an initialization, a challenge

and a verification phases is DH-secure if for all PPT algorithms K ∗ and A, the probability

of P to win the following game is negligible in the security parameter �.

• The game generates the secret key of honest prover P′: K (1�)→ s′.

• Malicious prover P runs K ∗ → s to generate the its secret key. Instances of P runs

A(s).

• P can interact with instances of the honest prover and the verifier during the ini-

tialization phase and verification phases concurrently.

• One instance of the honest prover and one instance of the verifier V continue

interacting with each other in their challenge phase and P remains passive even

though it sees the exchanged messages.

The adversary wins if V outputs OutV = 1.

There exists also a weaker DH-security definition called one-time DH (OT-DH). It

can be defined as in Definition 2.10 and 2.11 by changing the game setting with only

one instance of the verifier and of the honest prover.

Now, we give the security definitions to achieve security against non-prover adversaries.

These definitions also cover impersonation fraud.

Definition 2.12 (MiM Security in Public-key DB [Vau15c]). The game begins by run-

ning the key setup algorithms KV (1�) and KP(1�) which output (skV ,pkV) and (skP,pkP),

respectively. The adversary receives pkV and pkP. The game consists of instances of the

verifier including the distinguished one V , instances of a prover P and instances of the

adversary. The adversary wins if V outputs OutV = 1, pkP, and there exists no instance

of prover P close to V . A public-key DB protocol is MiM-secure if for any such game,

the probability of an adversary to win is negligible in the security parameter �.

12

Preliminaries

V (s) initialization phase P (s)
pick m ∈ {0,1}2n m−−−−−−−−−→ a = s⊕m

challenge phase
for i = 1 to n

pick ci ∈ {0,1}, start timeri
ci−−−−−−−−−→ ri = a2i+ci−1

stop timeri
ri←−−−−−−−−−

verification phase
a = s⊕m,
checktimeri ≤ 2B,ri =
a2i+ci−1

OutV−−−−−−−−−→

Figure 2.1 – OTDB

Definition 2.13 (MiM Security in Symmetric DB [Vau15c]). The game begins by run-

ning the key setup algorithm K (1�) which outputs s. The game consists of instances of

the verifier including the distinguished one V , instances of a prover P and instances of

the adversary. The adversary wins if V outputs OutV = 1 and there exists no instance

of prover P close to V . A symmetric DB protocol is MiM-secure if for any such game,

the probability of an adversary to win is negligible in the security parameter �.

There exists also a weaker MiM-security definition called one-time MiM (OT-MiM).

It can be defined as in Definition 2.12 and 2.13 by changing the game setting with only

one instance of the verifier and of the prover.

In the next chapters, we give our DB protocols which are secure against MiM, DF

and DH adversaries. Some of these protocols are constructed on top of one-time secure

protocols. Therefore, we give an example of one-time secure symmetric DB protocol

OTDB by Vaudenay [Vau15c] which is a symmetric DB adapted from Hancke-Kuhn pro-

tocol [HK05]. The OTDB protocol follows the canonical structure (See Definition 2.4),

only requires one xor operation before the challenge phase on the prover side and it is

DF, OT-MiM and OT-DH secure [Vau15c].

OTDB (Figure 2.1): During the initialization phase, the verifier picks a 2n-bit long
string m, where n is the number of rounds in the challenge phase, and sends it to the

prover. Then, the prover obtains a = s⊕m. In the challenge phase, in each round i, the
verifier picks a challenge ci ∈ {0,1} and sends it to the prover. The prover responds each

challenge ci of the verifier with a2i+ci−1. In each round i, the verifier computes the round

trip time (timeri) of sending the challenge and receiving the response. At the end, the

verifier checks whether all responses are correct (i.e., ci = a2i+ci−1) and all responses are

arrived on time (i.e., timeri ≤ 2B).

13

2.2.2 Privacy in DB

In some applications of distance bounding such as access control, the privacy of the

prover becomes important. There are different levels of privacy for DB depending on

the power of the adversary. Vaudenay [Vau07] identified these levels such as strong,

weak and narrow. We give below the HPVP-privacy game [HPVP11] and then describe

different levels of privacy.

Definition 2.14 (HPVP Privacy Game [HPVP11]). The privacy game for a public-

key distance bounding DB = (KP,KV ,V,P,B) with a bit b ∈ {0,1} is the following: The

game runs the key setup algorithms KP(1�) for a number t of provers and KV (1�) for the

verifier. Then, it lets the adversary A play the game PrivO
b,A(�) with the following oracles

which are in O:

• CreateP(ID)→ Pi : It creates a new prover identity of ID and returns its identifier

Pi.

• Launch()→ π : It launches a new protocol with a verifier instance Vj and returns

the session identifier π.

• Corrupt(Pi) : It returns the current state of Pi. Current state includes all values

in Pi’s current memory. It does not include volatile memory.

• DrawP(Pi,Pj)→ vtag : It draws either Pi (if b = 0) or draws Pj (if b = 1) and returns

the virtual tag reference vtag. If one of the provers had already been an input of

DrawP which outputted vtag′ and vtag′ has not been released yet, then it outputs /0.

• Free(vtag) : It releases vtag which means vtag can no longer be accessed.

• SendP(vtag,m)→ m′ : It sends the message m to the drawn prover and returns the

response m′ of the prover. If vtag was not drawn or was released, nothing happens.

• SendV(π,m) → m′ : It sends the message m to the verifier in the session π and

returns the response m′ of the verifier. If π was not launched, nothing happens.

• Result(π) → b′ : It returns a bit that shows if the session π is accepted by the

verifier (i.e the message OutV).

In the end of the game, the adversary outputs a bit b′′. If b′′ = b, then A wins.

Otherwise, it loses.

A DB protocol is strong private if for all PPT adversaries A, the advantage of winning

the privacy game is negligible in the security parameter �, where the advantage is defined

as follows:

Adv(PrivO
b,A(�)) = |Pr[PrivO

0,A(�) = 1]−Pr[PrivO
1,A(�) = 1]|

We distinguish strong and weak privacy [Vau07]. The weak privacy game does not

include any ‘Corrupt’ oracle. The other kind of classification is wide and narrow private.

14

Preliminaries

Wide privacy game is allowing to use the ‘Result’ oracle while the narrow privacy game

does not. In this thesis, we implicitly consider wide privacy by making OutV a public

message, which means we always obtain this bit without using ‘Result’ oracle.

2.3 Other Security Definitions

In this section, we give known security definitions and assumptions which we use in the

security proofs of our results in this thesis.

Definition 2.15 (Pseudo-Random Function (PRF)). Let fs : {0,1}∗ → {0,1}poly(�) be a

function where s is chosen uniformly at random from �-bit strings and poly is a polyno-

mial and let F be a set of functions from {0,1}∗ to {0,1}poly(�). We say fs is a PRF, if

for all PPT distinguishers D, the advantage as defined below is at most negligible in �:

Adv(PRF) = |Pr[D fs(.)(1�) = 1]−Pr[DF(.)(1�) = 1]|.
where F is chosen uniformly at random from F .

We give another security definition called circular PRF related to PRF. The notion

of circular-keying in pseudorandom functions introduced by Boureanu et al. [BMV15,

BMV13b]. Circular-keying PRF has an extra assumption to the PRF (fs)s∈GF(q)� to

handle reuse of a fixed s outside of a PRF instance fs.

Definition 2.16 (Circular PRF [BV14]). Let be s,n1,n2 and q some parameters. An

oracle Os̃,F is defined as Os̃,F(y,L,A,B) = A ·L(s̃)+B ·F(y), using dot product over GF(q),
given L : {0,1}s → GF(q)n1, F : {0,1}∗ → GF(q)n2, A ∈ GF(q)n1, B ∈ GF(q)n2 and s̃ ∈
GF(q)�. We assume that L is taken from a set of functions with polynomially bounded

representation. Let (fs)s∈GF(q)� be a family of functions from {0,1}∗ to {0,1}n2. The

family f is a circular-PRF, if for all PPT distinguishers D, the advantage as defined

below is at most negligible in �:

Adv(C-PRF) = |Pr[D fs(.)(1�) = 1]−Pr[DOs̃,F (.,.,.,.)(1�) = 1]|
Additionally, we require two conditions on the list of queries:

• for any pair of queries (y,L,A,B) and (y′,L′,A′,B′), if y = y′, then L = L′.

• for any y, if (y,L,Ai,Bi), i = 1,2, ..., t is the list of queries using this value y, then
for all λ1,λ2, ...,λt ∈ GF(q)

t

∑
i=1

λiBi = 0 ⇒
t

∑
i=1

λiAi = 0

over the GF(q)-vector space GF(q)n2 and GF(q)n1.

15

Now, we define the Gap Diffie Hellman (GDH) problem which is basically the Com-

putational Diffie-Helman (CDH) problem with the access of a Decisional Diffie-Hellman

(DDH) oracle.

Definition 2.17 (Gap Diffie-Hellman (GDH) [OP01]). Let G be a cyclic group of order

p ∈ {0,1}� and g ∈G be a generator. We have the following problems:

• CDH: Given g,X ,Y ∈G compute Z = gloggX .loggY .

• DDH: Given g,X ,Y,Z ∈ G, decide if Z = gloggX .loggY or Z = gr where r ∈ Zp is a

random element.

The GDH problem is solving the CDH given (g,X ,Y) with the help of a DDH oracle which

answers whether a given quadruple is a Diffie-Hellman quadruple.

We say that GDH problem is hard in group G, if for all PPT adversaries, the prob-

ability of solving the GDH problem is negligible in �.

We give two security notions related to public-key encryption schemes. The first one

is chosen-ciphertext attack security (IND-CCA) and the other one is the key-privacy

under chosen-plaintext attack (IK-CPA).

Definition 2.18 (IND-CCA). The IND-CCA game with bit b ∈ {0,1} for the public-

key encryption scheme (GenE ,Enc,Dec) as follows: The IND-CCA game generates a

secret/public key (sk,pk) from the key generation algorithm GenE(1�). Then, the game

CCA
Dec(.)
b,A (�) starts:

• A receives pk.

• The adversary has access to the decryption oracle Dec(.) before receiving the chal-

lenge. Dec decrypts given ciphertext with sk.

• The adversary sends two messages m0,m1 and the game sends cb = Encpk(mb) as a

challenge.

• After sending the challenge, the adversary still has an access to the decryption

oracle Dec(.) but it is not allowed to query the challenge ciphertext cb.

• The game ends when A outputs a bit b′. It wins if b = b′.

The public-key encryption scheme (GenE ,Enc,Dec) is IND-CCA secure, if for all PPT

adversaries A, the following advantage is negligible in �.

Adv(CCADec
b,A (�)) = |Pr[CCADec(.)

0,A (�) = 1]−Pr[CCA
Dec(.)
1,A (�) = 1]|

Definition 2.19 (IK-CPA [BBDP01]). The IK-CPA game with bit b ∈ {0,1} for the

public-key encryption scheme (GenE ,Enc,Dec) as follows: The IK-CPA game generates

two secret/public key pairs (sk0,pk0) and (sk1,pk1) from the key generation algorithm

GenE(1�). Then, the game IK-CPAb,A(�) starts:

16

Preliminaries

• A receives pk0 and pk1.

• The adversary sends a message m and the game sends c=Encpkb(m) as a challenge.

• The game ends when A outputs a bit b′. It wins if b = b′.

The public-key encryption scheme (GenE ,Enc,Dec) is IK-CPA secure, if for all PPT

adversaries A, the following advantage is negligible in �.

Adv(IK-CPAb,A(�)) = |Pr[IK-CPA0,A(�) = 1]−Pr[IK-CPA1,A(�) = 1]|

We also define the security of existential-forgery chosen-message attack (EF-CMA)

for a signature scheme (GenS,Sign,Verify).

Definition 2.20 (EF-CMA). The EF-CMA game for the signature scheme

(GenS,Sign,Verify) is as follows: The EF-CMA game generates the secret/public key pair

(sk,pk) from the key generation algorithm GenS(1�). Then, the game EF-CMA
Sign(.)
A (�)

starts:

• A receives pk.

• The adversary has access to the signing oracle Sign(.). Sign signs a given message

with sk and adds the message to a list L.

• The game ends when A outputs a message and a signature pair (m,σ). It wins if

Verifypk(m,σ) outputs valid and m /∈ L.

The signature scheme (GenS,Sign,Verify) is EF-CMA secure, if for all PPT adversaries

A, Pr[EF-CMA
Sign(.)
A (�) = 1] is negligible in �.

17

Part I

Distance Bounding

Chapter 3
Optimal Proximity Proofs Revisited

Boureanu and Vaudenay [BV14] revise the threat models of distance bounding and

define a structure called common structure (Definition 2.3). They further analyze the

optimal security that we can achieve in this structure and proposed DBopt (with concrete

instances DB1, DB2, DB3) which reaches the optimal security bounds.

In this chapter, we define three more new structures: when the prover can register

the time of a challenge (Sync Structure), when the verifier randomizes the sending time

of the challenge (Rand Structure), and the combined structure (SyncRand Structure).

Then, we identify the optimal security bounds against DF and MiM in our new structures

and improve the bounds showed by Boureanu and Vaudenay for the common structure.

Finally, we adapt the DBopt protocol according to our new structures and we get three

new distance bounding protocols. We compare the performance of the adapted protocols

with instances of DBopt and we see that we have a better efficiency in terms of number

of rounds. For instance, we can reduce the number of rounds in DB2 from 123 down to

5 with the same security.

The content of this chapter was published in ACNS15 [KV15].

3.1 Our Contribution

In a nutshell, we list our contributions as follows:

• We define three new structures for distance bounding protocols. The first structure

is Sync Structure where the prover stores each challenge’s arrival time. The second

structure is Rand Structure where the verifier sends each challenge in an arbitrary

time. Finally, the last structure is SyncRand Structure which is the combination

of the first two structures.

• We show the optimal security bounds for each new structure. Compared to the

common structure [BV14], we obtain better security bounds as the additional prop-

erties on these structures decrease the efficiency of adversary’s attack strategies.

21

• We adapt the DBopt protocol [BV14] with our new structures and obtain new

protocols DBoptSync, DBoptSyncRand and DBoptRand. We prove their security

against DF and MiM (DH and TF resistance are unchanged compared to DBopt

in the common structure). We reach the optimal security bounds for DF and MF

for all of them in their respective structure.

• We analyze the performance of adapted DBopt protocols and conclude that we

have a better efficiency than DBopt in the common structure in terms of number

of rounds.

We note that in this chapter, the definitions and results are the same for public-key

DB and symmetric DB but we give our results for symmetric DB.

Structure of the Chapter: In Section 3.2, we revise the optimal-security bounds for

MiM and DF by Boureanu and Vaudenay [BV14]. Then, in Section 3.3, we define our

new structures and show the optimal security bounds in them. In Section 3.4, we adapt

DBopt to these new structures. We conclude this chapter with a performance analysis

in terms of number of rounds in Section 3.5 and with a conclusion in Section 3.6.

3.2 Revised Security Definitions

In this section, we give optimal security bounds in a DB protocol following the common

structure by Boureanu and Vaudenay [BV14].

for i = 1 to n

Initialization Phase

Challenge Phase

Verification Phase

V(K) P(K)

ci r′i

if 1
numc

> 1
numr

:

pick c′i, find its response r′i
else: pick r′i

Figure 3.1 – Early-reply strategy of a DF adversary

Theorem 3.1 ([BV14]). For any PPT adversary playing the DF game in Definition 2.8

or 2.9 with a τ-complete DB protocol (Definition 2.5) following the common structure

(Definition 2.3) with parameters (n,numc,numr), the probability of success is bounded by

Tail(n,τ,max(1
numc

, 1
numr

)).

We recall that Tail is defined in Equation (2.1).

22

Optimal Proximity Proofs Revisited

This is the optimal security bound that a DB protocol can reach against a distance

fraud. DB1 and DB3 protocols [BV14] which are instances of DBopt reach this bound.

The proof of Theorem 3.1 is based on the early-reply strategy (See Figure 3.1). In this

strategy, depending on numc and numr, the malicious prover either guesses the challenge

sent by the verifier before it receives or picks a random response in order to sent the

response earlier in each round i. If the prover guesses the challenge, the probability of

replying correctly at round i is 1
numc

and if it guesses the response the probability of

replying correctly at round i is 1
numr

in each round.

Theorem 3.2 ([BV14]). For any PPT adversary playing the MiM game in Defini-

tion 2.12 or 2.13 with a τ-complete DB protocol (Definition 2.5) following the common

structure (Definition 2.3) with parameters (n,numc,numr), the probability of success is

bounded by Tail(n,τ,max(1
numc

, 1
numr

)).

This is the optimal security bound that a DB protocol can reach against a MiM

adversary. All instances of DBopt protocols [BV14] reach this bound.

pick c′i
Afor i = 1 to n

ri

Initialization Phase

Challenge Phase

Verification Phase

V(K) P(K)

ci
c′i

ri
if c′i = ci

else: abort round i

Figure 3.2 – Pre-ask attack by a MiM-
adversary

pick r′i

Afor i = 1 to n

r′i

Initialization Phase

Challenge Phase

Verification Phase

V(K) P(K)

ci ci

ri

Figure 3.3 – Post-ask attack by a MiM-
adversary

The proof of Theorem 3.2 is based on pre-ask and post-ask strategy (See Figure 3.2

and 3.3).

Both in pre-ask and post-ask (Figure 3.3), the adversary relays the messages between

the prover and the verifier in the initialization and the verification phase. In the challenge

phase, it does the following:

• Pre-ask attack [BV14]: Any malicious actor close to a verifier can do the following

in each round i of the challenge phase: Before receiving a challenge ci from the

verifier, he guesses it and sends the guessed challenge c′i to the far-away prover.

He does it early enough to receive a corresponding response r′i from the prover on

time. Meanwhile, the malicious actor receives the challenge ci from the verifier. If

ci = c′i, then the malicious actor just relays ri = r′i. Otherwise, he may not pass the

round i, especially if P and V authenticate the challenges during the verification

phase. The probability that the adversary passes the round i is 1
numc

. So, he passes

at least τ rounds with probability Tail(n,τ, 1
numc

).

23

• Post-ask attack [BV14]: Any adversary close to a verifier can do the following in

each round i of the challenge phase: He receives a challenge ci from the verifier.

Then, he picks a random response r′i and sends it to the verifier. At the same time,

he forwards ci to the prover. The adversary succeeds to pass the round i with the

probability 1
numr

. So, he passes at least τ-rounds with probability Tail(n,τ, 1
numr

).

3.3 Optimal Security Bounds in New Structures

Before introducing the new structures, we give some useful lemmas which are used in

proving the new versions of DBopt.

Lemma 3.3. Let exp be an experiment, V be a participant and t0 be a time. We consider

a simulation expt0 of the experiment in which each participant U stops just before time

t0 + d(V,U). We denote by Viewexp
t (U) and View

expt0
t (U) the view of participant U at a

time t in exp and expt0, respectively. For any t < t0 +d(V,U),

Viewexp
t (U) = View

expt0
t (U)

Proof. We prove it by induction on t such that for all t < t0 + d(V,U). Clearly,

Viewexp
0 (U) = View

expt0
0 (U) at the beginning (t = 0) of the both experiments. Let us

assume that for all U and for all t ′ < t0 +d(V,U), Viewexp
t ′ (U) = View

expt0
t ′ (U) where t ′ < t.

Now, we show that Viewexp
t (U) = View

expt0
t (U) with this assumption.

Let participant U be such that t < t0 + d(V,U). We know that Viewexp
t ′ (U) =

View
expt0
t ′ (U). Any incoming message m at time t from a participant U ′ which is in a

different location than U was sent at time t ′′ < t −d(U,U ′). We have t ′′ < t0 +d(V,U)−
d(U,U ′)≤ t0+d(V,U ′). Besides, since U ′ is at a different location than U , we have t ′′ < t
so we can apply the induction hypothesis. Therefore, Viewexp

t ′′ (U ′) = View
expt0
t ′′ (U ′) and so

the message m is the same in exp and expt0 . This applies to all instances at the same

location as U , since they locally compute the same messages for each other. Hence,

Viewexp
t (U) = View

expt0
t (U).

Lemma 3.4. Given an experiment, if a message c is randomly selected with fresh coins

by a participant V at time t0, any ĉ received by a participant U at time t1 < t0 +d(U,V)

is statistically independent from c.

Proof. We apply Lemma 3.3. c is not selected at all in expt0 because V stops just before

t0 in expt0 . As t1 < t0+d(U,V), ĉ is the same in exp and expt0 . c is randomly chosen with

fresh coins, so ĉ is statistically independent from c.

Remark that Lemma 3.4 differs from the fundamental lemma (Lemma 2.7) as Lemma

3.4 is related with the independence of c received by other parties while the fundamental

lemma considers the independence of r from c which is received by V .

24

Optimal Proximity Proofs Revisited

3.3.1 Sync Structure

t2

t0

PV

Figure 3.4 – The time check in the com-
mon structure is done by measuring the
time difference between the curly par-
enthesis. t shows the time.

t2

t0

t1 PV

Figure 3.5 – The time check in the
sync structure is done by measuring the
time difference between the curly par-
entheses. t shows the time.

Definition 3.5 (Sync Structure). A DB protocol with the sync structure based on para-

meters (n,τ,numc,numr) has an initialization and a verification phase which do not de-

pend on communication times. There is an n-round challenge phase between the ini-

tialization and the verification phase. The challenge is on time if the elapsed time

between sending the challenge (by the verifier) and receiving the challenge (by the prover)

(corresponds first part in Figure 3.5) is at most B. The response is on time if the

elapsed time between sending the response (by the prover) and receiving the response

(by the verifier) (corresponds second part in Figure 3.5) is at most B. Challenges and

responses are in sets of cardinality numc and numr, respectively.

During the challenge phase, challenges or responses can be corrupted during the trans-

mission. We say that the protocol is τ-complete when the verifier accepts if and only if

at least τ rounds have correct and on-time responses and challenges.

Differently than the common structure, the arrival time of a challenge is part of the

sync structure.

Now, we analyze the optimal security bound of MiM-security in the sync structure.

Theorem 3.6. Assuming the time when V sends his challenge can be predicted by the

adversary and V and P have synchronized clocks, for any PPT adversary playing the

MiM game in Definition 2.12 or 2.13 with a τ-complete DB protocol (Definition 2.5)

following the sync structure with parameters (n,numc,numr), the probability of success is

bounded by Tail(n,τ, 1
numc.numr

).

Remark that this bound is an improvement compared to Theorem 3.2 in the common

structure.

Proof. We consider V , a far-away prover P and a MiM-adversary A with a noiseless

communication. A relays the messages between V and P in the initialization and veri-

fication phases which are time insensitive. As P is far-away, it cannot just relay the

messages. Therefore, it has to guess the challenge and the response before receiving

them. Otherwise, it will be too late to make P receive the challenge on time and make

25

V receive the response on time thanks to Lemma 3.4. Therefore, it cannot follow either

pre-ask or post-ask strategy. We denote that the distance between V and A by d1 and

the distance between A and P by d2. It can best follow this strategy:

No-Ask Strategy: A guesses the challenge and the response, and forwards them before

seeing them so that they arrive on time. Thanks to our assumption, A knows the time

ti
0 that V sends a challenge ci at each round i. In each round i, it picks a challenge c′i and
sends c′i to P at a time less than equal t0+B−d2 so that P receives it at a time t1 ≤ t0+B.
It then picks a response r′i and sends it to V at a time less than equal t0 + 2B− d1. V
receives r′i at a time t2 ≤ t1 +B. Since t1 − t0 ≤ B and t2 − t1 ≤ B, A succeeds to be “on

time” for both the challenge and the response. If r′i and c′i are correctly guessed as well

then A passes round i. Hence, the probability that it passes the challenge/response

verification for one round is 1
numc.numr

and the probability that the V outputs OutV = 1
is Tail(n,τ, 1

numc.numr
).

The Problems in the Sync Structure without Synchronization: Remark that

in Theorem 3.6, we have the assumption of synchronized clocks between the verifier and

the prover. Now, we discuss the reason of this assumption. Let’s say that the time

difference between the clocks of the verifier and prover is |δ| 1. For example, V has time

t on its local clock while P has time T = t +δ on his local clock. V sends the challenge

at t0 according to V ’s local clock and P receives it at T1 ≥ t0 + d + δ according to P’s
local clock where d is the distance of the prover from the verifier. Then, V receives the

response at t2 ≥ t0 + 2d. So, V gets the following result in the verification of timing:

T1 − t0 ≥ δ+d and t2 −T1 ≥ d−δ. If the prover is close, the inequality |δ| ≤ B−d should

be satisfied so that P passes the protocol.

In addition, an unsynchronized honest prover and verifier give an advantage to the

adversary as pre-ask (for δ > 0) and post-ask (for δ < 0) attacks can be done. Indeed, if

the honest prover is far at a distance up to B+ |δ| and at least max(B, |δ|), A passes the

protocol with probability Tail(n,τ,max(1
numc

, 1
numr

)).

Note that t2 −T1 ≤ B and T1 − t0 ≤ B imply that t2 − t0 ≤ 2B which is the verification

in the common structure. So, the security results of the common structure apply to the

sync structure even if the clocks are not synchronized.

In below attacks, we assume d = d1 + d2 such that d1 is the distance between the

verifier and the adversary, and d2 is the distance between the prover and the adversary.

• Pre-Ask: A guesses the challenge before it is released and asks for the response

to P on time so that it can later on answer. If P and V are synchronized, this

strategy never works because A relays the response from P to V where the distance

between them is more than B. However, the following happens if P and V are not

synchronized and δ > 0.

We consider d = d1 + d2 ∈ [max(B, |δ|),B+ |δ|]. V sends the challenge c at t0. A
1If the difference between clocks is not constant it can be still considered as a constant during the

protocol as the distance bounding phase takes very short time (order of nanoseconds).

26

Optimal Proximity Proofs Revisited

guesses the challenge ĉ and sends it to P at tA which is before receiving the challenge

c from V . P receives ĉ at T1 = tA + d2 + δ which is the local time of P. P sends

response r and A relays it to V . V receives r at t2 = tA +2d2 +d1.

T1 − t0 = tA +d2 + δ− t0. By selecting tA = t0 +d1 −2δ, T1 − t0 = d1 +d2 − δ ∈ [0,B].
So the challenge is considered on time.

t2−T1 = tA+2d2+d1−tA−d2−δ= d1+d2−δ∈ [0,B]. So, the response is considered
on time.

Therefore, the pre-ask attack is successful when δ > 0 and the distance between P
and V is in between max(B, |δ|) and B+ |δ|.

• Post-Ask: A guesses the response at the same time that it forwards the challenge

to P. If P and V are synchronized, this strategy never works because A relays the

challenge from V to P where the distance between them is more than B. However,
the following happens if P and V are not synchronized and δ < 0.

We consider d1 + d2 ∈ [−δ,B− δ]. V sends the challenge c, then A relays c. P
receives it at T1 = t0 +d1 +d2 +δ. Without waiting the response from P, A guesses

the response and sends it at time tA to V . At the end, V receives it at t2 = tA +d1.

T1 − t0 = t0 +d1 +d2 +δ− t0 = d1 +d2 +δ ∈ [0,B]. So, the challenge is on time.

By selecting tA = t0 + d1 + 2d2 + 2δ, we have t2 −T1 = d1 + d2 + δ ∈ [0,B]. So, the

response is on time.

Therefore, the post-ask attack is successful when δ < 0 and the distance between

P and V is in between max(B, |δ|) and B+ |δ|.
As a result, we have the security bound of Theorem 3.11 if the distance between P
and V is more than B+ |δ| even though P and V are not synchronized. However, if P
is in the distance between max(B,δ) and B+ |δ|, we have the lower optimal-security

bound as in Theorem 3.2 (Tail(n,τ,max(1
numc

, 1
numr

)).

• The correctness problem: Beyond security, the other problem in the sync

structure with an unsynchronized P and V is correctness as the close-by P cannot

pass the protocol, when d(P,V) ≤ B− |δ|. Therefore, if the verification fails in

the sync structure, V can also do the time verification of the common structure

which is checking if t2 − t0 ≤ 2B, but in this case we have a weaker β-security.
We stress that this does not require to restart the protocol. We rather obtain

a variant of the sync structure which OutV can take 3 possible values: “reject”,

“Common Structure accept”, or “Sync Structure accept”. Applications can decide

if a“Common Structure accept” is enough depending on the required security level.

3.3.2 Rand Structure and SyncRand Structure

We think of new structures which are combined with “Common Structure” or “Sync

Structure”. In the analysis of “Common Structure” and “Sync Structure”, we assume

27

that the sending time ti
0 of the challenge for each round i in challenge phase is known

by the adversary. Now, we suggest a new modification where the verifier randomizes

the sending time ti
0 ∈ [T,T +Δ] where T and Δ are public and [T,T +Δ] is uniformly

distributed (as real numbers) so that the exact ti
0 cannot be accurately known by the

adversary before seeing the challenge.

We note that random delays for the messages (challenges and responses) on both

the verifier and the prover side are frequently used for location privacy, as discussed in

[RČ08, MOV14]. In our following structures, we use random delays (only on the verifier

side) to achieve better security bounds.

Definition 3.7 (Rand Structure). A DB protocol with the rand structure based on para-

meters (n,τ,numc,numr,Δ) has the same properties with the common structure in Defin-

ition 2.3. Additionally, the verifier chooses randomly a sending time in the interval

[T,T +Δ] for each challenge in the challenge phase.

Definition 3.8 (SyncRand Structure). A DB protocol with the rand structure based

on parameters (n,τ,numc,numr,Δ) has the same properties with the sync structure in

Definition 3.5. Additionally, the verifier chooses randomly a sending time in the interval

[T,T +Δ] for each challenge in the challenge phase.

Theorem 3.9. For any PPT adversary playing the DF game in Definition 2.8 or 2.9

with a τ-complete DB protocol (Definition 2.5) following either the “Rand Structure” or

the “SyncRand Structure” with parameters (n,τ,numc,numr,Δ), the probability of success

is bounded by Tail(n,τ,max(1
numc

, 1
numr

).2B
Δ).

Proof. We construct a DF adversary following the early reply strategy: A malicious

prover guesses the challenge ci or the response ri before it is emitted, and then sends the

response at time T i
1 (We use capital T as the prover does not have to be synchronized

with the verifier). However, before sending the response, the prover has to guess a proper

time T i
1 because the verifier checks the inequalities ti

2 − ti
0 ≤ 2B for the “Rand Structure”

and T i
1 − ti

0 ≤ B and ti
2 −T i

1 ≤ B for the “SyncRand Structure”. ti
2 is the time that the

verifier receives the response and it depends on the sending time T i
1 . It means that

0 ≤ ti
2 − ti

0 = T i
1 +d − ti

0 ≤ 2B where d is the distance between the prover and the verifier.

So, we can conclude that if ti
0 ∈ [T i

1 + d − 2B,T i
1 + d] then P passes ith verification. The

probability that it happens is 2B
Δ . Once ci is received, the prover can deduce ti

0 and use

ti
1 =

ti
0+ti

2
2 for the verification in the “SyncRand Structure” as the verifier needs to know

ti
1 to check if the response and challenge are on time. Therefore, the probability that

the prover succeeds the round i is max(1
numc

, 1
numr

).2B
Δ since it also has to guess correctly

ci or ri. We can conclude that P succeeds at least τ rounds with the probability at least

Tail(n,τ,max(1
numc

, 1
numr

).2B
Δ).

Note that there is no change on the optimal MiM-security which is given in The-

orem 3.2 in the “Rand Structure”. As for the “SyncRand Structure”, the new bound is

as follows.

28

Optimal Proximity Proofs Revisited

Theorem 3.10. Assuming V and P have synchronized clocks, for any PPT adversary

playing the MiM game in Definition 2.12 or 2.13 with a τ-complete DB protocol (Defin-

ition 2.5) following the “SyncRand Structure” with parameters (n,numc,numr), the prob-

ability of success is bounded by Tail(n,τ, 1
numc.numr

.B
Δ).

Proof. We consider V , a far away prover P and MiM adversary A with a noiseless

communication. As showed in Theorem 3.6, A can use No-ask strategy to pass the

protocol. Differently, it also needs to guess a proper time ti
A to send the guessed challenge

to P. P receives the challenge from A at time ti
1 where ti

1 = ti
A +d2. If A passes ith round,

the following inequality 0 ≤ ti
1− ti

0 ≤ B should be satisfied. It means that 0 ≤ tA+d2− t0 ≤
B. If tA satisfies this inequality then t0 should be in the interval [tA +d2 −B, tA +d2]. The

probability that it happens is B
Δ . Therefore, the probability that prover succeeds the

round i is 1
numc.numr

.B
Δ since it also has to guess a correct ci and ri. We can conclude that

P succeeds at least τ-rounds with the probability at least Tail(n,τ, 1
numc.numr

.B
Δ).

As a result, among all the structures, “SyncRand Structure” gives the best optimal

security bounds for both MiM security and DF security. See Table 3.1 for the review of

the optimal bounds for all of the structures.

Structure DF MF

Common Tail(n,τ,max(1
numc

, 1
numr

)) Tail(n,τ,max(1
numc

, 1
numr

))

Sync Tail(n,τ,max(1
numc

, 1
numr

)) ∗Tail(n,τ, 1
numc

. 1
numr

)

Rand ∗Tail(n,τ,max(1
numc

, 1
numr

).2B
Δ) Tail(n,τ,max(1

numc
, 1
numr

))

SyncRand ∗Tail(n,τ,max(1
numc

, 1
numr

).2B
Δ) ∗Tail(n,τ, 1

numc
. 1
numr

B
Δ)

Table 3.1 – The review of optimal security bounds in DB structures. The ones with ∗

are different bounds than the bounds in the common structure.

3.4 DBopt in New Structures

We adapt DBopt [BV14] into our new structures ‘Sync Structure’, ‘Rand Structure’

and ‘SyncRand Structure’. We obtain DBoptSync DBoptRand and DBoptSyncRand,

respectively. These versions have some minor differences in the challenge and the veri-

fication phase comparing to DBopt.

DBoptSync DBoptRand and DBoptSyncRand are symmetric DB protocols in which

P and V share a secret s ∈ Z
�
2 where � is a security parameter. The notations are the

following: n is the number of rounds, �tag is the length of the tag, τ is a threshold, T is

the set of all possible time values, q is a prime power.

As in DBopt, we use the function fs which maps different co-domains depending on

the input. fs(NP,NV ,Lμ,b)∈ GF(q)n and fs(NP,NV ,Lμ,T,b,c)∈ GF(q)�tag . Lμ is a mapping

defined from a vector μ ∈ Z
�
2 where Lμ(s) = (μ(s),μ(s), ...,μ(s)) and μ(s) =map(μ.s) such

that map : Z2 → GF(q) is an injection. Here NP,NV ∈ {0,1}�nonce , Lμ ∈ L where L includes

all possible Lμ mappings, b,c ∈ GF(q)n and T ∈ T n.

29

Verifier Prover
secret: s secret: s

initialization
phase

pick Lμ ∈U L ,NV ∈U

{0,1}�nonce
NP←−−−−−−−−− pick NP ∈U {0,1}�nonce

select b ∈ GF(q)n

a = fs(NP,NV ,Lμ,b)
NV ,Lμ,b−−−−−−−−−→ a = fs(NP,NV ,Lμ,b)

s′ = Lμ(s) s′ = Lμ(s)

challenge phase
for i = 1 to n

pick ci ∈U GF(q)
start time ti

0
ci−−−−−−−−−→ receive c′i, save time ti

1

receive ri, stop time ti
2

r′i←−−−−−−−−− r′i = φc′i(ai,s′i,bi)

verification
phase

receive c′′, check tag =
fs(NP,NV ,Lμ,T,b,c′′)

c′,T,tag←−−−−−−−−− tag =
fs(NP,NV ,Lμ,T,b,c′)

check #{i;ci =
c′′i ,ri and ti

2, t
i
1 correct}≥

τ

OutV−−−−−−−−−→

Figure 3.6 – DBoptSync

The initialization phases of DBoptSync DBoptRand and DBoptSyncRand are the

same as in the DBopt protocol [BV14] (See Figure 3.6). The challenge phases are as

follows:

DBoptSync: P saves the time ti
1 of receiving the challenge c′i from V at round i and V

saves the times ti
0 and ti

2 which are the time of sending the challenge ci and receiving the

response r′i
2, respectively.

DBoptRand: It is as the challenge phase of DBopt except that V randomizes the

sending time ti
0 ∈ [T,T +Δ] where T and Δ are public and [T,T +Δ] is uniformly distributed

(as real numbers) for each round i in the challenge phase. V saves the sending time

ti
0 ∈ [T,T +Δ] of the challenge ci and saves the receiving time ti

2 the response r′i from P
in each round i.
DBoptSyncRand: V randomizes the sending time ti

0 ∈ [T,T +Δ] as in DBoptRand.

Then, as in DBoptSync, P saves the time ti
1 of receiving the challenge c′i from V at round

i and V saves the times ti
0 and ti

2 which are the time of sending the challenge ci and

2We use the notations c′i and r′i instead of ci and ri as received messages because when a message
arrives it may change on the way because of the noise.

30

Optimal Proximity Proofs Revisited

receiving the response r′i.
The verification phase of DBoptRand is the same as DBopt. The verification

phase of DBoptSync and DBoptSyncRand is as follows: P sets T = (t1
1 , t

2
1 , ..., t

n
1) and

c′ = (c′1,c
′
2, ...,c

′
n) and calculates the tag fs(NP,NV ,Lμ,T,b,c′). Then, P sends the tag and

V does the following:

• V first checks if the tag and (c′,T) are compatible, which means the tag it received

is equal to fx(NP,NV ,Lμ,T,b,c′). If it is compatible, it continues with the next step.

Otherwise, it rejects P.

• V counts the number of correct rounds. A round is correct if c′i = ci and r′i = ri. If

the number of correct rounds are less then τ, it rejects P and outputs OutV = 0.
Otherwise, it continues with the next step.

• V checks challenges and responses arrived on time for each correct round i. A chal-

lenge and a response is on time if ti
0 ≤ ti

1 ≤ ti
2, ti

1− ti
0 ≤ B and ti

2− ti
1 ≤ B, respectively.

If the number of on time and correct rounds is at least τ, then V accepts P and

outputs OutV = 1. Otherwise, it rejects.

We note that the on time condition of DBoptSync and DBoptSyncRand implies ti
2− ti

0 ≤
2B, which is the only timing verification in DBopt [BV14]. Therefore, the DBoptSync’s

timing condition is more restrictive.

In Section 3.5, we consider Δ = 100B for DBoptRand and DBoptSyncRand. For in-

stance, Δ = 1μs (microseconds) and B = 10ns (this corresponds to 3 m according to speed

of light). n rounds take n μs which is reasonable.

The responses are computed depending on the concrete instance of b and φci . There

are three protocols defined in [BV14] whose instances are given in Table 3.2. Hence,

DBoptSync, DBoptRand and DBoptSyncRand have the same instances as well.

Protocol q map b φci

DB1 q > 2 map(u) �= 0 no b used φci(a,x
′
i,bi) = ai + cix′i

DB2 q = 2 map(u) = u Hamming weight n
2 φci(a,x

′
i,bi) = ai + cix′i + cibi

DB3 q ≥ 2 no map used Hamming weight n φci(a,x
′
i,bi) = ai + cibi

Table 3.2 – Classification of the protocols according the selection of b and φ in DBoptSync
DBoptRand and DBoptSyncRand [BV14]

Theorem 3.11 (MiM Security). Assuming that V and P are synchronized, the DBopt-

Sync protocol with the selection of b and φ as in Table 3.2 is MiM-secure with the success

probabilities

• (DB1 and DB2) Tail(n,τ, 1
q2)+

r2

2 2−�nonce +(r+1)Adv(C-PRF)+ r2−�tag when f is a

circular PRF (Definition 2.16),

• (DB3) Tail(n,τ, 1
q2) +

r2

2 2−�nonce +Adv(PRF) + 2−�tag when f is a PRF (Definition

2.15).

31

Here, r is the number of honest instances.

If Adv(C-PRF), Adv(PRF), 2−�nonce and 2−�tag are negligible, DB1, DB2 and DB3 are

optimal for the security according to Theorem 3.6.

Proof. The proof is the same with [BV14] until Γ3.

Γ0 : We consider a distinguished experiment exp(V) with no close-by prover and V
accepts with probability p0. We consider a game Γ0 where we simulate exp(V). The

success probability of this game is p0. We reduce Γ1,Γ2 and Γ3 as in [BV14].

Γ1 : We reduce Γ0 to Γ1 whose success additionally requires that for every (NP,NV ,Lμ)

triplet, there is no more than one instance P(s) and one instance V (s) using this triplet.

As P(s) is honest and P(s) and V (s) are selecting NP and NV at random, respectively, the

success probability of Γ1 is at least p0 − r2

2 2−�nonce .

The following games are for DB1 and DB2.
Γ2 : We reduce Γ1 to Γ2 where V never accepts forged tag. fx satisfies the circular

PRF assumptions (See Definition 2.16) as shown in [BV14]. It means that the tag can

be forged with probability Adv(C-PRF)+2−�tag . Therefore, the success probability of G2

is at least p0 − r2

2 2−�nonce − rε− r2−�tag (See [BV14] for the full proof of this step).

Γ3 : In Γ3, we replace the oracle fs(.) by Os̃,F and obtain a simplified game Γ3. Γ3’s

requirements for the success is the same with Γ2. So, we have p3 ≥ p0 − r2

2 2−�nonce − (r+
1)Adv(C-PRF)− r2−�tag .

We now detail the analysis of Γ3 which differs from [BV14]. In Γ3, P and V never

repeat the nonces and use a random function F to select a. So, the distinguished V has

a single matching P and these two instances pick a at random. Furthermore, acceptance

implies that both instances have seen the same Lμ,T,b,c. The acceptance message of V
(OutV) also depends on the correct and on time responses and challenges. In the case

that V accepts P, P has to receive the challenge c on time and V has to receive the

corresponding response r on time for at least τ rounds. Let’s denote ti
0 the time when V

sends ci, ti
1 the time when P receives c′i and ti

2 the time when V receives ri. Thanks to

Lemma 3.4, in order to have on time responses and challenges, the challenge that P(s)
receives should be independent from the challenge that is sent by V (s). As the challenge

c is randomly selected by V (s), the message that P(s) received matches with probability
1
q .

Similarly, if we exchange the roles of P and V in Lemma 3.4 and replace t0 with ti
1 and ti

1
with ti

2, we can conclude that r that V (s) receives is independent from the response r′i that
is sent by P(s) as well. The response functions on DB1, DB2 in each round i depends on
challenge, ai and s′i. In Γ3, ai is random in GF(q)n. As φc′i(ai,s′i,bi) = ai+g(c′i,s

′
i,bi) where

g is a function (See Table 3.2 for the details of g) we can assume that ai is randomly

selected in GF(q) just when r′i is computed. Equivalently, ri is uniformly selected in

GF(q) just before being sent. So, ri = r′i with probability 1
q .

As a result, we have p0 ≤Tail(n,τ, 1
q2)+

r2

2 2−�nonce +(r+1)Adv(C-PRF)+r2−�tag for DB1

and DB2 .

32

Optimal Proximity Proofs Revisited

For DB3’s analysis, we use a random oracle for PRF in Γ2 and obtain p0 ≤ r2

2 2−�nonce +

Adv(PRF). Similarly, we define a game Γ3 where the tag is never forged and we obtain

p0 ≤ r2

2 2−�nonce +Adv(PRF)+2−�tag with a reduction from Γ2 to Γ3. Then, we can make

the same analysis as Γ3 above and obtain p3 ≤ Tail(n,τ, 1
q2) because of Lemma 3.3. In

the end, we have p0 ≤ Tail(n,τ, 1
q2)+

r2

2 2−�nonce +Adv(PRF)+2−�tag for DB3.

Theorem 3.12 (MiM security). Assuming that V and P are synchronized, the sending

time of the challenge is randomized and the time interval [T,T +Δ] to send the challenge

is public. Then the DBoptSyncRand protocol is MiM-secure with the success probabilities

• (b and φ as in DB1 and DB2 [BV14]) Tail(n,τ, 1
q2 .

B
Δ) +

r2

2 2−�nonce + (r +

1)Adv(C-PRF)+ r2−�tag when f is a circular PRF [BV14],

• (b and φ as in DB3 [BV14]) Tail(n,τ, 1
q2 .

B
Δ)+

r2

2 2−�nonce +Adv(PRF)+2−�tag when f
is a PRF.

Here, r is the number of honest instances of the prover and K is a complexity bound on

the experiment and φ is response function. β is negligible for τ
n ≥ 1

q2 + cte and r and K
polynomially bounded and ε is negligible.

If Adv(PRF), Adv(C-PRF), 2−�nonce and 2−�tag are negligible, DB1, DB2 and DB3 are

optimal for the security according to Theorem 3.10.

Proof. The proof is the same as Theorem 3.11 until game Γ3. The success of Γ3 depends

on the correct and on time responses and challenges. Lemma 3.4 shows that the challenge

and the response have to be independent in each round so that they arrive on time. These

independent responses and challenges can be correct with probability 1
q2 (See the proof

of Theorem 3.11). Additionally, they can be on time with probability B
Δ as showed in

Theorem 3.10. Therefore, the probability of one successful round is 1
q2 .

B
Δ .

Consequently, success probability Γ0 is at least Tail(n,τ, 1
q2 .

B
Δ) +

r2

2 2−�nonce + (r +

1)Adv(C-PRF) + r2−�tag for DB1 and DB2. For DB3, it is at least Tail(n,τ, 1
q2 .

B
Δ) +

r2

2 2−�nonce +Adv(PRF)+2−�tag .

Theorem 3.13 (DF security). The DBoptSyncRand and DBoptRand protocols are DF

secure with the success probabilities

• (DB1 and DB3) Tail(n,τ, 1
q .

2B
Δ),

• (DB2)
n
∑

i+ j≥τ
i, j≤n/2

(n/2
i

)
(2B

Δ)i(1− 2B
Δ)

n
2−i

(n/2
j

)
(B

Δ)
j(1− B

Δ)
n
2− j

DB1 and and DB3 are optimal for the DF-resistance according to Theorem 3.9, while

DB2 cannot reach the optimal bounds for DF.

33

Proof. We consider distinguished experiment exp(V) with no close-by participant. Due

to the Fundamental Lemma (Lemma 2.7), the response ri is independent from ci. For

DB1 and DB2, ri is correct with probability 1
q . As ri has to be arrived on time, the

proper time has to be chosen. As stated in Theorem 3.9 the sending time is chosen

correctly with probability 2B
Δ . So, the probability of success in one round i is 1

q .
2B
Δ .

In DB2, half of the rounds where x′ = bi are correct because of the hamming weight of

b. Therefore, the only necessity in these rounds is sending the response in a correct time

which can be chosen well with probability 2B
Δ . For the remaining rounds (n

2 rounds),

at least τ− n
2 rounds should pass correctly. The correct response is chosen with the

probability 1
2 and correct time with the probability 2B

Δ .

3.5 Performance

Three adaptations DBoptSync DBoptSyncRand and DBoptRand of DBopt have differ-

ent success probabilities for DF and MiM security. DBoptSync and DBoptSyncRand

have better bound against mafia fraud compared to DBopt while DBoptRand has the

same security bound against MiM adversary with DBopt. In addition, DBoptRand

and DBoptSyncRand have the same and better success probability for distance fraud

compared to DBopt but DBoptSync is the same with DBopt.

Assuming a noise level of pnoise = 0.05 and B
Δ = 0.01, we get results in Table 3.3 and 3.4.

We find τ in terms of rounds n such that Tail(n,τ,1− pnoise) ≈ 99% for τ-completeness.

Table 3.3 shows the required number of rounds for the DF security. Table 3.4 shows the

number of rounds required for the MiM security. We used Theorem 3.11, 3.12, 3.13 and

theorems in [BV14] to compute the required number of rounds to achieve security level.

�= 2−10 �= 2−20

DB1 DB1 DB2 DB3 DB1 DB1 DB2 DB3
(q = 3) (q = 4) (q = 3) (q = 4)

DBoptSync 14 12 69 24 24 20 123 43
DBoptSyncRand 3 3 2 3 6 6 2 6

DBoptRand 3 3 2 3 6 6 2 6
DBopt 14 12 69 24 24 20 123 43

Table 3.3 – Number of required rounds to be secure against a distance fraud where � is
the security level in DB protocols. The bold protocols improve DBopt

As we can see in Table 3.3 and Table 3.4, we can use DB2 with 5 rounds (instead of

123) in DBoptSyncRand and reach a pretty good security. If synchronized clocks are

not realistic, we can see that we have a much better DF-security with DBoptRand with

the same number of rounds.

34

Optimal Proximity Proofs Revisited

�= 2−10 �= 2−20

DB1 DB1 DB2-DB3 DB1 DB1 DB2-DB3
(q = 3) (q = 4) (q = 3) (q = 4)

DBoptSync 7 6 12 12 8 20
DBoptSyncRand 3 1 3 5 5 5

DBoptRand 14 12 24 24 20 43
DBopt 14 12 24 24 20 43

Table 3.4 – Number of required rounds to be secure against a MiM adversary where � is
the security level in DB protocols. The bold protocols improve DBopt

3.6 Conclusion

We define new structures for DB protocols. The first structure is the “Sync Structure”

where the prover measures the time as well as the verifier. We modify the DBopt [BV14]

according to sync structure and we get DBoptSync which has better security against MiM

adversary. Then, we add a new modification which is randomizing the sending challenge

time to both “Common Structure” and “Sync Structure” and obtain the second and

third structures “Rand Structure” and “SyncRand Structure”, respectively. Similarly, we

modify the DBopt and DBoptSync protocols based on these structures and get better

security bounds against distance fraud for the DBoptSyncRand and DBoptRand pro-

tocols and MiM adversary for DBoptSyncRand protocol. We give the optimal security

bounds against distance fraud and MiM adversary for all DB protocols that follows these

new structures.

35

Chapter 4
Efficient Public-key Distance Bounding

In some applications such as payment systems, using public-key distance bounding pro-

tocols is practical as no pre-shared secret is necessary between the payer and the payee.

In general, such applications use powerless devices with RFID and NFC technologies.

Therefore, they may suffer from energy constraints because of very limited computation

resources. On the other hand, the public-key cryptography requires much more com-

putations than symmetric-key cryptography. So, the inefficiency may cause problems

on these powerless devices when they need to do the public-key cryptography related

computations.

In this chapter, we focus on the efficiency problem in public-key distance bounding

protocols and the formal security proofs of them. We construct two protocols Eff-

pkDB and Eff-pkDBp (the former without privacy, the latter with) which require fewer

computations on the prover side compared to the existing protocols, while keeping the

highest security level.

The content of this chapter was published in ASIACRYPT16 [KV16].

Related Works:

Table 4.1 shows the security and the efficiency properties of existing public-key pro-

tocols and our protocols (See Appendix A for the details and analysis of the pro-

cols in Table 4.1). We can see that most of the previous public-key DB protocols

[BC93, BB05, GOR14a, Vau15d, Vau15c, Vau15a, ABG+17] do not concentrate on this

efficiency problem, except HPO [HPO13]. So far, HPO is the most efficient one among

them as it requires only 4 elliptic curve (EC) multiplications on the prover side, but it is

not strong private [Vau15b] and it is not secure against DH (See Appendix A.2, Figure

A.3) and TF. In addition to this, its security is based on several ad-hoc assumptions

[HPO13] which are not so well studied: “OMDL”, “Conjecture 1”, “extended ODH” and

“XL”.

GOR [GOR14a] (Appendix A.3) is constructed to have strong privacy and anonymity

against verifier, but it has been shown [Vau15b] that it is neither strong private nor

37

Protocol MiM DF DH TF Privacy Strong Privacy

Brands-Chaum [BC93] � � × × × ×
HPO [HPO13] � � × × � ×
GOR [GOR14a] � � × × × ×
PaySafe [CGDR+15] �∗ × × × × ×
PrivDB [Vau15c] � � � × � �
ProProx [Vau15d] � � � � × ×
eProProx [Vau15a] � � � � � �
TREAD [ABG+17] � � � × � �
Simp-pkDB [KV16] � � × × × ×
Eff-pkDB [KV16] � � � × × ×
Eff-pkDBp [KV16] � � � × � �

Table 4.1 – The review of the existing public-key DB protocols. � means that it is
secure for corresponding threat model and × means it is not. �∗ means that it is secure
against the adversaries that cannot relay the messages close to the speed of light.

private.

ProProx [Vau15d] (Appendix A.4) provides MiM, DF and DH security and extractor

based TF-security [BV14] but it is not private. Its version eProProx [Vau15a] is a exten-

sion with strong privacy. However, both ProProx and eProProx suffer from heavy cryp-

tographic operations such as zero-knowledge (ZK) proofs in order to achieve extractor

based TF-security [BV14]. These are the only extractor based TF-secure protocols, but

we can see that their cost is unreasonable.

PrivDB [Vau15c] (Appendix A.5) and our new protocol Eff-pkDBp have the same

security properties. However, PrivDB is a bit less efficient on the prover side than

Eff-pkDBp and it has no light privacy-less variant, contrarily to Eff-pkDBp.

TREAD [ABG+17] (Appendix A.6) is a very efficient public-key DB compared to

its security level. It is MiM, DF and DH secure and strong private. It is claimed

that TREAD is simulator based TF-secure [DFKO11] (SimTF) but we realize that the

proof of SimTF security is not correct (See Appendix A.6). Thus, we do not consider

the SimTF security of TREAD in our comparisons. We remark that the TF-security

(extractor based) of and ProProx and eProProx [Vau15a] is stronger than claimed SimTF

security of TREAD. The extractor based TF-security is stronger because it guarantees

that the malicious prover cannot get help from an adversary to pass the protocol without

leaking its secret key. TREAD is very similar to PrivDB [Vau15c]. Differently, it has a

small trick in order to achieve the claimed SimTF-security. In this trick, the information

given to the adversary to pass the protocol lets the adversary replay. The same trick

can be applied to Eff-pkDB and Eff-pkDBp with preserving the efficiency.

PaySafe [CGDR+15] is a very efficient protocol designed for contactless payment, but

we do not compare it with the other protocols because it assumes a weaker adversarial

model. It is only secure against MiM. It is not secure against DF, DH and TF because

38

Efficient Public-key Distance Bounding

the response of the prover in the challenge phase does not depend on any message of the

verifier. It also does not protect the privacy of the prover.

Adding privacy in public-key DB protocols is yet another challenge. Strong privacy

cannot be achieved so easily as shown in Section 4.4.2. HPO and GOR failed in this.

4.1 Our Contribution

Our contributions are as follows:

• We design two public-key DB protocols Eff-pkDB and Eff-pkDBp. The first pro-

tocol is secure against DF, MF and DH but it is not private. It uses only

one public key related operation on the prover side. Basically, this protocol

can be used in applications not requiring privacy in a very efficient way. Then, we

modify this protocol by adding a public-key encryption to make it strong private.

Both protocols are quite efficient compared with the previous protocols.

Our constructions are generic based on a key agreement protocol, a weakly-secure

symmetric DB protocols, and a cryptosystem. We formally prove the security fol-

lowing the BMV model [BMV13a, BMV15, BMV13b] (See Section 2.2.1) which

was adapted to public-key DB in Vaudenay [Vau15c].

• We define a new key agreement (KA) security game (D-AKA). In literature, the

extended Canetti-Krawczyk (eCK) security model [LLM07] is widely accepted for

KA. However, a weaker security model (D-AKA) is sufficient for the security

of our new public-key DB protocols as we care both the efficiency and the security.

Finally, we design a D-AKA secure key agreement protocol (Nonce-DH) based

on the hardness of the GDH problem and a random oracle. The Nonce-DH key

agreement protocol can be used in our DB constructions.

• We construct another reasonable protocol Simp-pkDB which was our first attempt

to construct an efficient and a secure protocol. Although this protocol is quite

efficient and does not require any public-key of a verifier, it fails in DH-

security.

• We compare the efficiency and security level of our protocols and we see that our

lighter protocol Eff-pkDB and our first attempt Simp-pkDB are the most efficient

public-key DB protocols. We give a detailed analysis and comparison between

existing public-key DB protocols in Section 4.5.

Structure of the Chapter: In Section 4.2 and in Section 4.3, we introduce our new

key-agreement security model and more results about one time security of DB [Vau15c]

that we give in Section 2.2.1. The security model and the results are the basis of our

constructions Eff-pkDB and Eff-pkDBp. Then, in Section 4.4, we give our constructions

Eff-pkDB and Eff-pkDBp together with a variant and Simp-pkDB. We conclude this

chapter with Section 4.5.

39

4.2 Authenticated Key Agreement (AKA) Protocols

4.2.1 One-Pass AKA Model

In this section, we show our new KA security model and some preliminaries about the

AKA protocols. The security models in this section are used to construct secure and

private public-key DB protocols Eff-pkDB and Eff-pkDBp in Section 4.4.

We note that Eff-pkDB and Eff-pkDBp in Section 4.4 can employ any eCK-secure

[LLM07] key agreement protocol to have the same security properties. However, eCK-

security is stronger than what we need in our protocols. Therefore, we define a weaker

notion to have simpler, more efficient and secure public-key DB.

Definition 4.1 (Authenticated Key Agreement (AKA) in One-Pass). A one-pass AKA

protocol (See Figure 4.1) is a tuple (GenA, GenB,D,A,B) of PPT algorithms. Let A and

B be the two parties. A and B generate secret/public key pairs (skA,pkA) and (skB,pkB)

with the algorithms GenA(1�) and GenB(1�), respectively where � is the security parameter.

B picks N from the sampling algorithm D and runs B(skB,pkB,pkA,N) which outputs

the session key s. Then, it sends N and finally, A gets the session key s by running

A(skA,pkA,pkB,N). We say that AKA is correct, if A and B obtain the same s at the end

of the protocol for all N and random coins.

A(skA,pkA,pkB) B(skB,pkB,pkA)
N ← D(1�)

A(skA,pkA,pkB,N)→ s N←−−−−−−−−− B(skB,pkB,pkA,N)→ s

Figure 4.1 – The structure of an authenticated key-agreement (AKA) protocols in one
pass.

We now give the security definition of one-pass AKA protocol.

Definition 4.2 (Decisional Authenticated Key-Agreement (D-AKA) Security). We

define set up of two oracles with skA,pkA,skB,pkB.

OAAA(((...,,, ...))) :::
return A(skA,pkA, ., .)

OBBB(((...))) :::
N′ ← D(1�)
s′ ← B(skB,pkB, .,N′)
return s′,N′

Given b ∈ {0,1} and the oracles OA(., .),OB(.), the game KA
OA(.,.),OB(.)
b,A (�) is as follows:

1. Challenger executes GenA(1�) → (skA,pkA),GenB(1�) → (skB,pkB), sets up the or-

acles, calls OB(pkA)→ (s0,N) and randomly picks s1. Then, it sends sb,N,pkA,pkB

to the adversary A.

2. A has access to the oracle OB(.) and OA(., .) under the condition of not querying

the input (pkB,N) to the oracle OA. Eventually, A outputs b′.

40

Efficient Public-key Distance Bounding

We define the advantage of this game as:

Adv(KA
OA(.,.),OB(.)
b,A (�)) = |Pr[KAOA(.,.),OB(.)

0,A (�) = 1]−Pr[KA
OA(.,.),OB(.)
1,A (�) = 1]|.

A one-pass AKA protocol with (GenA(1�),GenB(1�),D,A,B) is D-AKA secure if for all

PPT algorithms A, Adv(KA
OA(.,.),OB(.)
b,A (�)) is negligible.

We show that eCK-security implies D-AKA security in Theorem B.1 in Appendix B.

It means that Eff-pkDB and Eff-pkDBp can employ eCK-secure key agreement protocols

as well.

We show in the following lemma that the probability that the same N is picked by the

oracle B is negligible when we have a D-AKA security.

Lemma 4.3. Assume that we have a key agreement protocol with (GenA,GenB,D,A,B).
We define the random variables (skA,pkA), (skB,pkB) generated with GenA(1�) and

GenB(1�) respectively, and (s,N) and (s′,N′) generated by OB(pkA). If the key agree-

ment protocol is D-AKA secure, then Pr[N = N ′] is negligible in �. Furthermore, for all

values u which could depend on skA,pkA,skB,pkB, Pr[N = u] is negligible.

Proof. We define an adversary A playing the D-AKA game as follows:

A
receive sb,N,pkB,pkA

(s′,N′)← OB(pkA)

if N′ = N
if s′ = sb: output 0
else: output 1

else:

output b′ ← {0,1}
In this strategy, A wins if N = N ′ (except s1 = s0 and b = 1). Otherwise, he wins with

the probability 1
2 .

Pr[A win] =
1
2
(1−Pr[N = N′])+Pr[N = N′]−Pr[N = N′,s1 = s0,b = 1]

=
1
2
+

1
2

Pr[N = N′]−Pr[N = N′,s1 = s0,b = 1]

We know from the D-AKA security that Pr[A win]− 1
2 is negligible. Pr[s1 = s0] = 2−� is

negligible as well. So, Pr[N = N′] is negligible. Now, we need to show that it holds for

all values u in the distribution D.

Let v be the most probable value for N. We have

Pr[N = N′] =∑
w

Pr[N = N ′ = w]

=∑
w

Pr[N = w]2

≥Pr[N = v]2

41

So, we have the following inequality in the end:

Pr[N = u]≤ Pr[N = v]≤
√

Pr[N = N ′]

We know that Pr[N = N ′] is negligible so Pr[N = u] is negligible.

We also give a privacy definition for one-pass AKA. This definition is for the privacy

of the party which runs the algorithm B.

Definition 4.4 (D-AKAp Privacy). Given b ∈ {0,1} and the oracle OA(., .) (as defined

in Definition 4.2), the game pKA
OA(.,.)
b,A (�) is follows:

1. Challenger runs GenA(1�)→ (skA,pkA) and GenB(1�)→ (skB1 ,pkB1
), sets up the or-

acle and gives pkA,pkB1
and skB1 to A.

2. A generates (skB0 ,pkB0
) with GenB(1�) and sends (skB0 ,pkB0

) to the challenger.

3. Challenger runs D(1�)→ N and then B(skBb ,pkBb
,pk

skBb
A ,N)→ s. Then, it sends s

to the adversary A.

4. A has access to the oracle OA without any constraint. Eventually, A outputs b′.
(Remark that A does not know N.)

5. The advantage of the game is

Adv(pKA
OA(.,.)
b,A (�)) = Pr[pKA

OA(.,.)
0,A (�) = 1]−Pr[pKA

OA(.,.)
1,A (�) = 1].

An AKA protocol (GenA(1�),GenB(1�),D,A,B) is D-AKAp private if for all PPT al-

gorithms A, Adv(pKA
OA(.,.)
b,A (�)) is negligible.

Basically, in D-AKAp privacy, we want to make sure that an adversary which may

corrupt a party who runs B cannot easily decide who generated a session key s.

4.2.2 A One-Pass AKA Protocol (Nonce-DH)

A(skA,pkA,pkB) B(skB,pkB,pkA)

pickN ∈ {0,1}n,

H(g,pkB,pkA,pk
skA
B ,N)→ s N←−−−−−−−−− H(g,pkB,pkA,pk

skB
A ,N)→ s

Figure 4.2 – The Nonce-DH key agreement protocol.

We construct a D-AKA secure protocol (Nonce-DH) based on the Diffie-Hellman (DH)

problem [DH76] as in Figure 4.2. Here, g is a generator of cyclic group G of prime order

42

Efficient Public-key Distance Bounding

q. g and q depend on the security parameter �. The parties know each others’ public

keys beforehand, where pkA = gskA and pkB = gskB and skA and skB are the corresponding

secret keys which are uniformly picked in Zq.

The party B has the input (skB,pkB,pkA). He randomly picks N from {0,1}n and

computes B(skB,pkB,pkA,N) = H(g,pkB,pkA,pk
skB
A ,N) to get s. The party A computes

A(skA,pkA,pkB,N) = H(g,pkB,pkA,pk
skA
B ,N) and gets s. Here, H is a deterministic func-

tion.

Clearly, Nonce-DH is correct as H is deterministic.

Theorem 4.5. Assuming that the GDH problem is hard in G (See Definition 2.17) and

n = Ω(�), Nonce-DH is D-AKA secure in the random oracle model.

Proof. Γ0: The game is the D-AKA game. The challenger works as follows: He picks

q and g as described in Nonce-DH. He randomly picks skA,skB ∈ Zq, and computes

pkA = gskA , pkB = gskB . He picks randomly s1 ∈ {0,1}� and then he gets (s0,N) from

OB(pkA) as defined below. Then, he gives g,q,pkA,pkB,N,sb to the adversary A . A has

an access to the random oracle H, OA(., .) (with the restriction not asking for pkB,N)

and OB(.) defined below.

OA(., .)

Input: pk′B,N′

if (pk′B,N′) equals (pkB,N)

return ⊥
else:

H(g,pk′B,pkA,pk
′skA
B ,N′)→ s

return s

OB(.)

Input: pk′A
pick N′ ∈ {0,1}n

H(g,pkB,pk
′
A,pk

′skB
A ,N′)→ s

return (s,N ′)

H(.)

Input: U
if (U, .) ∈ T
return V where (U,V) ∈ T

else:

pick V ∈ {0,1}�
store (U,V) to T
return V

We let ⊥ be a special symbol which is unavailable to A . The success probability of A
in Γ0 is p0.

Γ1 : We reduce Γ0 to Γ1 where the oracle OB never selects again the nonce N (which

is obtained by the first call to OB). As a nonce in Γ0 is equal to N with the probability
1
2n , |p1 − p0| ≤ qB

2n where qB is the number of queries to OB. Due to n = Ω(�), p1 − p0 is

negligible.

Γ2 : We reduce Γ1 to Γ2 where we replace H with H ′. H ′ is defined with an access to

a DDH oracle (as Definition 2.17) as follows:

H ′(.)
Input: U = (w,x,y,z,N ′)
if w = g and DDH(g,x,y,z)→ 1:

z ←⊥
return H(w,x,y,z,N ′)
As there is one-to-one mapping in the transformation of (g,x,y,z,N′) and ⊥ cannot be

used by A in queries to H ′, the success probability of Γ2 remains the same which means

p2 = p1.

Γ3 : We define another game Γ3 where the only difference from Γ2 is that we replace

the oracle OB with the oracle O ′
B.

43

O ′
B(.)

Input: pk′A
pick N′ ∈ {0,1}�
H(g,pkB,pk

′
A,⊥,N′)→ s

send (s,N ′)
Note that O ′

B queries H instead of H ′ and N′ �= N due to the reduction to Γ1. Γ3 is

exactly same with Γ2 so the success probabilities p3 and p2 are the same.

Now in Γ3, skB is used only by the DDH oracle.

Γ4 : We reduce Γ3 to Γ4 where A does not make the query (g,pkB,pkA,z,N) with

z= pkskB
A to H ′. Indeed, any such query can be filtered using the DDH oracle and stopped

to solve the GDH problem. As the GDH problem is hard, A in Γ3 selects z = pkskB
A given

(pkA,pkB) with negligible probability. Therefore, p4 − p3 is negligible.

In Γ4, (g,pkB,pkA,⊥,N) is queried only once to H and this query is only done by the

challenger.

Γ5 : We reduce Γ4 to Γ5 where the challenger picks a random s0 instead of getting s0

from H.

Γ4 and Γ5 are the same because if (g,pkB,pkA,⊥,N) is never being queried again, it is

not necessary that H stores ((g,pkB,pkA,⊥,N),s0) in T . So, p4 = p5.

In Γ5, s0 and s1 play a symmetric role and could be erased with b from the game after

sb is released. So, the state of the game after erasure of b,s0 and s1 are independent from

b. Hence, p5 =
1
2 leading to p0 − 1

2 is negligible.

Theorem 4.6. Assuming that n = Ω(�), Nonce-DH is D-AKAp private in the random

oracle model.

Proof. Γ0 : The game Γ0 is D-AKAp game. The challenger works as follows: He picks

q and g as described in Nonce-DH. He selects skA,skB1 ∈ Zq, and computes pkA = gskA

and pkB1
= gskB1 . Then, he sends pkA,pkB1

and skB1 to A . A selects skB0 and pkB0
and

sends them to the challenger. Next, the challenger picks b ∈ {0,1}, N ∈ {0,1}n, queries

(g,pkBb
,pkA,pk

skBb
A ,N) to H and receives s. He sends s to A . A has an access to the oracle

H and to the oracle OA(., .) as defined in the proof of Theorem 4.5.

Γ1 : We reduce Γ0 to Γ1 where A never selects the nonce N in the query of the oracle

H or OA. The probability that he selects N again is 1
2n so p2 − p1 is negligible.

Γ2 : We reduce Γ1 to Γ2 where OB picks s at random instead of a response from H. As

(g,pkBb
,pkA,pk

skBb
A ,N) is queried only one time by the challenger, we have p1 = p2. Now,

b is never used in Γ2. It means that s is independent from b, so p2 =
1
2 . Therefore, p0− 1

2
is negligible.

Table B.1 in Appendix B shows that Nonce-DH which is secure in our weaker model

is more efficient than the previous KA protocols.

44

Efficient Public-key Distance Bounding

4.3 More Security Results on OTDB

In this section, we define new security notions related to one-time secure DB. We define

them to be able to have the result in Theorem 4.8 which helps us to prove the security

of our constructions.

Definition 4.7 (Multi-verifier OT-MiM:). The OT-MiM game with more than one veri-

fier instance is called as multi-verifier OT-MiM-security.

Remark that in OT-MiM definition (Section 2.2.1), we have only one verifier instance.

Now, we complement the known security results of OTDB.

Theorem 4.8. OTDB [Vau15c] (See Section 2.2) is multi-verifier OT-MiM secure.

Proof. Γ0: In this game, an adversary A plays multi-verifier OT-MiM game. Here, we

have a distinguished verifier instance V with other instances {V1, ...,Vk} and one prover

instance P. The success probability of Γ0 is p0.

Γ1 : We reduce Γ0 to Γ1 where at most one verifier instance outputs 1. Let’s say E is

an event in Γ0 where at least two verifier instances output 1 (OutV = 1). To reduce Γ0

to Γ1, we show that Pr[E] is negligible.
First, we define hybrid games Γi, j’s to analyze Pr[E]. Γi, j is similar to Γ0 except the

game stops right after Vi and Vj have sent their final outputs and all OutV is replaced by

0 except Vi and Vj. The adversary wins the game if OutVi = OutVj = 1.
In Γi, j, we define three arrays for the challenges. The first array CVi includes the

challenges sent by Vi, the second array CVj includes the challenges sent by Vj and the

third array CP includes the challenges seen by P. The bits in CVi and CVj are independent.

We also define a response function respk(c) = a2k+c−1 for each round k. As the bits of

the secret s are independent, the bits of {respk(0)||respk(1)}n
k=1 are independent as well.

If CVi [k] �= CVj [k], then the adversary could have taken CP[k] = c where c is equal either

CVi [k] or CVj [k] and learn respk(c). So, he responds correctly to either Vi or Vj for sure, but

to the other instance with probability 1
2 . We define an event Ei j,k where the responses

are correct for Vi and Vj in round k. Clearly, all events {Ei j,k}n
k=1 are independent. So,

Γi, j = ∏k Pr[Ei j,k]. Hence,

Pr[Ei j,k]≤ Pr[CVi [k] =CVj [k]]+Pr[Ei j,k|CVi [k] �=CVj [k]]×Pr[CVi [k] �=CVj [k]]≤
3
4

So, the adversary wins Γi, j with the probability (3
4)

n which is negligible.

Now, we can analyze E.

Pr[E]≤ ∑
i, j

Pr[Γi, j] = negl(n)

As E happens with the negligible probability, we can reduce Γ0 to Γ1 and conclude

p1 − p0 is negligible. For Γ1 to succeed, only V must produce OutV = 1.

45

Γ2 : We reduce Γ1 to Γ2 where we simulate all verifier instances except V . We can do

this simulation because the messages but OutV sent by a verifier does not depend on the

secret. As OutV = 0 for all verifier instance except V in the winning case (only V can

output 1), p1 ≤ p2.

Now in Γ2, we are in OT-MiM game where there is only one verifier instance V and

one prover instance P. By using the OT-MiM-security result of OTDB [Vau15c], we

deduce p2 is negligible so p0 is negligible.

Definition 4.9 (Multi-verifier Impersonation Fraud (IF)). The game begins by running

the key setup algorithm K of a symmetric DB protocol DB = (K ,P,V,B) which outputs

s. It consists of verifier instances running V (s) and an adversary. The adversary wins

if any verifier instance outputs OutV = 1. A distance bounding protocol is multi-verifier

IF-secure, if for any such game, the probability of an adversary to win is negligible.

Note that MiM-security implies multi-verifier IF-security. In Theorem 4.10, we prove

that OT-MiM-security also implies multi-verifier IF-security for a DB protocol following

the canonical structure (Definition 2.4). This result will be used to prove DH-security

of our constructions.

Theorem 4.10. If a (symmetric) DB protocol following the canonical structure is OT-

MiM secure, then it is multi-verifier IF-secure.

Proof. We take an adversary M playing the multi-verifier IF game. M interacts with

polynomially many verifier instances Vj’s. We define adversaries Ai’s playing the OT-

MiM game. Ai simulates M and takes the verifier instance Vi as V in the OT-MiM game.

Concretely, we number the Vj’s by their order of appearance during the simulation of M .

When M queries V1, ...,Vi−1,Vi+1, ...,Vk (where k is the total number of verifier instances),

Ai just simulates them (this is possible as the protocol follows the canonical structure.

So, no message from the verifier except OutV depends on s). If OutV needs to be returned

to M , Ai returns 0. When M queries Vi, Ai relays it to V and sends the response of V
to M .

Let Ei be the event in the multi-verifier IF game which is OutVi = 1 and all previously

released OutV are equal to 0. Clearly, we have Pr[M wins] = ∑i≥1 Pr[M wins∧Ei]. On the

other hand, Pr[M wins∧Ei]≤ Pr[Aiwins] because for all coins making M win the multi-

verifier IF-game and Ei occur at the same time, we have OutVj = 0 for all j < i and OutVi =

1 so the same coins make Ai win the OT-MiM game. So, Pr[M wins] ≤ ∑i≥1 Pr[Aiwins].

Due to OT-MiM security, Pr[Aiwins] is negligible for every i. So, Pr[M wins] is negligible.

So, we have multi-verifier IF-security.

Thanks to Theorem 4.10, OTDB [Vau15c] in Figure 2.1 is multi-verifier IF-secure.

46

Efficient Public-key Distance Bounding

4.4 Our Constructions

In this section, we first introduce our new protocol Eff-pkDB which is secure against

DF, MF and DH and then Eff-pkDBp which is a variant of it preserving the strong

privacy as well. We also present two new protocols related to Eff-pkDB which have some

advantages and disadvantages against Eff-pkDB and Eff-pkDBp. Finally, we introduce

another efficient public-key DB protocol Simp-pkDB which does not require any key

setup for the verifier.

4.4.1 Eff-pkDB

V (skV ,pkV) P(skP,pkP,pkV)
N ← D(1�)

A(skV ,pkV ,pkP,N)→ s
N,pkP←−−−−−−−−− B(skP,pkP,pkV ,N)→ s

symDB(s)←−−−−−−−−→
OutV−−−−−−−−−→

Figure 4.3 – Eff-pkDB

Eff-pkDB is constructed with a one-pass AKA and a symmetric DB protocol. P and

V first agree on a secret key s using an AKA protocol (GenA,GenB,A,B,D). Then, they

together run a symmetric key DB protocol symDB by using s as a secret key.

Using OTDB in Figure 2.1 as symDB and using Nonce-DH in Section 4.2.2 as an AKA

protocol appear to be enough for its security as shown in the following theorems.

Theorem 4.11. If symDB is DF-secure, then Eff-pkDB is DF-secure.

Proof sketch: The malicious and far away prover with its instances plays the DF

game. We can easily reduce it to a game where a distinguished verifier V and the

malicious prover receive the same s′ from outside (even if maliciously selected). As

symDB is DF-secure, the prover passes the protocol with the negligible probability.

Theorem 4.12. If symDB is multi-verifier OT-MiM-secure and the one-pass AKA

(GenA,GenB,A,B,D) is D-AKA secure, then Eff-pkDB is MiM-secure.

Proof. Γ0 : The adversary plays the MiM game in Eff-pkDB with the distinguished

verifier V , instances of the verifier and instances of the prover. V receives pkP and a

given N. We call “matching instance” the instance who sends this N.

Γ1 : We reduce Γ0 to Γ1 where no nonce produced by any prover instance is duplicated

or equal to any nonce received by any verifier instance before. Thanks to Lemma 4.3

which says that repeating a nonce picked using D is negligible, p1 − p0 is negligible. So,

the matching instance (if any) is unique and sets N before it is sent to V .

47

Γ2 : We simulate the prover instances and V as below in this game. Basically, in Γ2,

the prover and the verifier do not use the secret generated by the oracles OB and OA,

respectively.

P(.) (in Γ2)

run OB(pkV)→ (s0,N′)
send N′,pkP

pick s1

store (N′,s1,pkP) in T
run symDB(s1)

V(.) (in Γ2)

receive N′,pkP

if (N′, .,pkP) ∈ T
retrieve s from T where (N′,s,pkP) ∈ T

else:

OA(pkP,N′)→ s
run symDB(s)

With the reduction from Γ1 to Γ2, we show that the secret generated by A and B are

indistinguishable from the randomly picked secret. The reduction is showed below using

the D-AKA security of AKA:

We define the hybrid games Γ2,t to show p2 − p1 is negligible. Here, t ∈ {0,1,2, ...,k}
and k is the number of prover instances bounded by a polynomial.

Γ2,i : V is simulated as in Γ2. The jth instance of P is simulated as in Γ1 for all j ≤ i
and as in Γ2 for all j > i. Clearly, Γ2,0 = Γ2 and Γ2,k = Γ1.

First, we show that Γ2,i and Γ2,i+1 are indistinguishable. For this, we use an adversary

B that plays the D-AKA game. B receives pkA,pkB,sb,N from the D-AKA challenger and

simulates either Γ2,i or Γ2,i+1 against the adversary A which distinguishes Γ2,i and Γ2,i+1.

B lets pkV = pkA and pkP = pkB in his simulation. B simulates each prover instance Pj

(jth prover instance) as described below.

Pj(.)

if j < i+1
OB(pkV)→ (s′,N′) (Using the D-AKA game)

else if j > i+1
pick s′

store (N′,s′,pkP) to T
else: (j = i+1)

s′ ← sb and N′ ← N (sb and N were received from the D-AKA-game as a challenge)

store (N′,s′,pkP) to T
send N′,pkP

run symDB(s′)
Note that if b = 0 in the D-AKA game which means sb is generated by the oracle OB

then B simulates the game Γ2,i+1. Otherwise, he simulates Γ2,i.

For the verifier simulation, B first checks, if (N′, .,pkP) is stored by himself as V in Γ2.

Otherwise, he sends (pkP,N′) to the oracle OA and receives s′. As (N,sb,pkP) is always

stored in T , (pkP,N) is not queried to OA oracle by B. At the end of the game, A sends

his decision. If A outputs i, then B outputs 1. If A outputs i+ 1, then B outputs 0.
Clearly, the advantage of B is p2,i − p2,i+1. Due to the D-AKA security, we obtain that

p2,i − p2,i+1 is negligible. From the hybrid theorem, we can conclude that p2,0 − p2,k is

negligible where p2,0 = p2 and p2,k = p1.

48

Efficient Public-key Distance Bounding

Γ3 : We simulate the prover instances as below so that they do not run the oracle OB

to have N. The only change in this game is the generation of the nonce. As the prover in

Γ3 picks the nonce from the same distribution that OB picks, p3 = p2. This game shows

that the prover generates N′ (and also s1) independently from OB.

P(.) (in Γ3)

pick N ′ ∈ D(1n)

send N′,pkP

pick s1

store (N′,s1,pkP) to T
run symDB(s1)

Γ4 : We reduce Γ3 to the multi-verifier OT-MiM-security game Γ4 where there is only

matching instance and the other instances are simulated. With this final reduction, we

show that the adversary has to break the multi-verifier OT-MiM-security of symDB in

order to break the MiM-security of Eff-pkDB.

The reduction is the following: A3 plays Γ3. We construct an adversary A4
i in Γ4. A4

i

receives N from the matching prover in Γ4. A4
i takes Pi as a matching prover in Γ3 where

i ∈ {1, ...,k}. A4
i simulates all of the provers except Pi against A3. For Pi, A4

i just sends

(pkP,N). In the end, if Pi is the matching instance in Γ3 and A3 wins then A4
i wins.

Therefore p3 ≤ ∑i p4,i where p4,i is the probability that A4
i wins. Due to multi-verifier

OT-MiM-security, all p4,i’s are negligible. So, p3 is negligible. Hence, p0 is negligible.

Theorem 4.13. If symDB is OT-MiM-secure, OT-DH-secure and follows the canonical

structure, and if the one-pass AKA (GenA,GenB,A,B,D) is D-AKA secure, then Eff-pkDB

is DH-secure.

Proof. Γi is a game and pi denotes the probability that Γi succeeds.

Γ0 : The adversary P with its instances plays the DH-security game in Eff-pkDB with

the distinguished verifier V , other instances of the verifier and an honest prover P′. The
probability that the adversary succeeds in Γ0 is p0.

Γ1 and Γ2 : These games are like in the proof of Theorem 4.12 except that Pj is replaced

by P′
j. The reduction from Γ0 to Γ1 and Γ1 to Γ2 is similar to the proof of Theorem 4.12.

So we can conclude that p2 − p0 is negligible.

We let N be the nonce produced by the instance of P′ and s1 be its key which is playing

a role during the challenge phase of V in the DH game.

Γ3 : We reduce Γ2 to a game Γ3 in which all OutV from a verifier instance who receives

pkP and N is replaced by 0 during the initialization phase. Intuitively, in this case,

OutV cannot be equal 1 because if it is 1, it means P′ impersonates P. The reduction is

as follows: During the initialization game, P′ sends messages which do not depend on

s1 because of the canonical structure, and which can be simulated. So, we can reduce

this phase to the multi-verifier IF game and use Theorem 4.10 to show that p3 − p2 is

negligible. This reduction shows that the DH-adversary P cannot win the game with

sending pkP and N generated by P′.

49

Γ4 : We reduce Γ3 to Γ4 where the game stops after the challenge phase for V . As

the verification phase which is after the challenge phase is non-interactive and OutV is

determined at the end of the challenge phase, p4 = p3.

Γ5 : We reduce Γ4 to Γ5 which is OT-DH game. In Γ4, s1 has never been used so s (the
key of V which is given by the adversary) is independent from s1. In this case, P′ and
V run symDB with independent secrets. So, p5 = p4. Because of the OT-DH security of

symDB, p5 is negligible.

4.4.2 Eff-pkDBp

Eff-pkDB is not strong private as the public key of the prover is sent in clear. Adding

one encryption operation to Eff-pkDB is enough to have strong privacy.

Eff-pkDBp in Figure 4.4 is the following: The prover and the verifier generate their

secret/public key pairs by running the algorithms GenP(1�) and GenV (1�), respectively.
We denote (skP,pkP) for the secret/public key pair of the prover and (skV ,pkV) for the

secret/public key pair of the verifier where skV = (skV1 ,skV2) and pkV = (pkV1
,pkV2

). The

first key of the verifier is used for the encryption and the second key is used for the

AKA protocol. The prover picks N from the sampling algorithm D and generates s with

the algorithm B(skP,pkP,pkV2
,N). Then, he encrypts pkP and N with pkV1

. After, he

sends the ciphertext e to the verifier. The verifier decrypts e with skV1 and learns N
and pkP which helps him to understand who is interacting with him. Next, the verifier

runs A(skV2 ,pkV2
,pkP,N) and gets s. Finally, the prover and verifier run a symmetric DB

protocol symDB protocol with s.

V (skV ,pkV) P(skP,pkP,pkV)

N ← D(1�)
B(skP,pkP,pkV2

,N)→ s
pkP,N = DecskV1

(e) e←−−−−−−−−− e = EncpkV1
(pkP,N)

A(skV2 ,pkV2
,pkP,N)→ s

symDB(s)←−−−−−−−−→
OutV−−−−−−−−−→

Figure 4.4 – Eff-pkDBp: private variant of Eff-pkDB

We can easily show that Eff-pkDBp is DF, MiM, DH-secure from Theorem 4.11, 4.12,

4.13 with the same assumptions, respectively. To prove this, we start from an adversary

playing the DF, MiM or DH-security game against Eff-pkDBp. We construct an ad-

versary playing the same game against Eff-pkDB to whom we give skV1 . The simulation

is straightforward. Now, we show the strong privacy of Eff-pkDBp.

Theorem 4.14. Assuming the one-pass AKA (GenA,GenB,A,B,D) is D-AKAp secure

and the cryptosystem is IND-CCA secure, then Eff-pkDBp is strong private in the HPVP

model (Definition 2.14).

50

Efficient Public-key Distance Bounding

Proof. Γ0 : The adversary A plays the HPVP privacy game.

Γ1 : The verifiers skip the decryption when they receive a ciphertext produced by any

prover and continue with the values encrypted by the prover. Because of the correctness

of the encryption scheme p1 = p0.

Γ2 : This game is the same as Γ1 the except the provers encrypt a random string

instead of pkP,N. The verifier retrieves e and s from the table T so that it does not

decrypt any ciphertext that comes from a prover as in Γ1. Thanks to the IND-CCA

security (Verifiers are simulated using a decryption oracle due to our Γ1 reduction. The

use of this oracle is valid in IND-CCA game), p2 − p1 is negligible. So, provers and the

verifier works as follows:

P(.) (in Γ2)

pick N ∈ D(1�)
B(skP,pkP,pkV2

,N)→ s
pick r
e ← EncpkV1

(r)
store (e,s) to T
send e
run symDB(s)

V(.) (in Γ2)

receive e
if (e, .) ∈ T
retrieve s from T
where (e,s) ∈ T

else:

(pk′,N)← DecskV1
(e)

A(skV2 ,pkV2
,pk′,N)→ s

run symDB(s)
This reduction shows that the adversary cannot retrieve pkP and N from the encryp-

tion.

Γ3 : It is the same as Γ2 except that we simulate the prover as below. In this game, s
is generated independently from skP and pkP.

P(.) (in Γ3)

GenB(1�)→ (sk,pk)

pick N ∈ D(1�)
run B(sk,pk,pkV2

,N)→ s
pick r
e ← EncpkV1

(r)
store (e,s) to T
send e
run symDB(s)
We defined hybrid games Γ3,t to show p3 − p2 is negligible. Here, t ∈ {0,1,2, ...,k} and

k is the number of prover instances bounded by a polynomial.

Γ3,i : V is simulated as in Γ3. The jth instance of P is simulated as in Γ2 if j ≤ i and
as in Γ3 if j > i.

First, we show that Γ3,i and Γ3,i+1 are indistinguishable. For this, we use an adversary

B that plays D-AKAp game. B receives pkA,pkB1
and skB1 from the D-AKAp challenger,

generates (skB0 ,pkB0
) by running GenB(1�) and sends (skB0 ,pkB0

) to the D-AKAp game.

Finally, B receives s. After, he begins simulating either Γ3,i or Γ3,i+1 against the adversary

A that wants to distinguish Γ3,i and Γ3,i+1. In the simulation, B lets pkV = pkA and

pkP = pkB1
. It can simulate the Corrupt oracle called by A since skB1 is available. For all

51

of the prover instances Pj where j �= i+1, it simulates normally and for Pi+1, it simulates

as follows:

Pi+1(.)

pick r
e ← EncpkV (r)
store (e,s) to T
send e
run symDB(s)
Note that if s is generated by running B(skB0 ,pkB0

,pkV ,N) then B simulates Γ3,i and

if it is generated from B(skB1 ,pkB1
,pkV ,N) then B simulates Γ3,i+1.

For the verifier simulation, B first checks if (e, .) is stored by himself as V in Γ3.

Otherwise, he decrypts e and sends (pkPj
,N) to the oracle OA(pkP,N) and receives s. At

the end of the game, A sends his decision. If A outputs i, then B outputs 0. If A outputs

i+ 1, then B outputs 1. Clearly, the advantage of B is p3,i − p3,i+1 which is negligible

because of the D-AKAp assumption. From the hybrid theorem, we can conclude that

p3,0 and p3,k is negligible where p3,0 = p2 and p3,k = p3.

Now, in Γ3, no identity is used by the provers. Hence, A does not have any advantage

to guess the prover which means p3 =
1
2 . As a result of it, p0 − 1

2 is negligible.

Consequently, if we use D-AKA secure and D-AKAp private key agreement protocol in

Eff-pkDBp, then we have DF, MF, DH secure and strong private public-key DB protocol.

For instance, Nonce-DH key agreement protocol is a good candidate for Eff-pkDBp.

Difficulties of having strong privacy: The strong privacy is the hardest privacy

notion to achieve in DB protocols. Sending all messages of provers with an IND-CCA

secure encryption is not always enough to have a strong privacy. We exemplify our

argument as follows: Clearly, Eff-pkDB protocol is still DF-MiM and DH-secure, if we

replace the nonce selection by a counter. So, we can make a new version of Eff-pkDBp

based on the counter version of Eff-pkDB where the prover encrypts his public key

and the counter by an IND-CCA encryption. However, it does not give strong privacy

because when an adversary calls Corrupt oracle, he learns the counter of two drawn

provers. Since the adversary knows the corresponding secret keys for both of them,

he can easily differentiate the drawn provers based on the counter. This attack is not

possible in Eff-pkDBp which uses a nonce instead of a counter because the nonce is in

the volatile memory. So, the adversary does not learn it with the Corrupt oracle.

4.4.3 Another variant of Eff-pkDB: Eff-pkDB+1

In this section, we give a variant of Eff-pkDB (the same can apply for Eff-pkDBp). In

this variant, by adding one more pass to Eff-pkDB, we can replace the assumption of

multi-verifier OT-MiM security in Theorem 4.12 with the assumption OT-MiM-security.

52

Efficient Public-key Distance Bounding

In this way, we require less security on the symmetric DB protocol by having one-more

message exchange.

Eff-pkDB+1 is very similar to Eff-pkDB. Differently, V picks and sends a nonce

NV to P before starting the one-pass AKA protocol. In the AKA phase, V runs

ANV (skV2 ,pkV2
,pkP,N) and P runs BNV (skP,pkP,pkV2

,N) to obtain the secret key s. Here,

ANV and BNV are the algorithms of the AKA protocol but their outputs depend on NV .

The rest is the same as Eff-pkDB.

V (skV ,pkV) P(skP,pkP,pkV)

NV ←{0,1}� NV−−−−−−−−−→ N ← D(1�)

ANV (skV2 ,pkV2
,pkP,N)→ s

pkP,N←−−−−−−−−− BNV (skP,pkP,pkV2
,N)→ s

symDB(s)←−−−−−−−−→
OutV−−−−−−−−−→

Figure 4.5 – Eff-pkDB+1

Theorem 4.15. Assuming the one-pass AKA (GenV ,GenP,ANV ,BNV ,D) is D-AKA secure

for all fixed NV ∈ {0,1}s and symDB is one time MiM-secure then Eff-pkDB+1 is

MiM-secure.

Proof. Γ0 : The adversary plays MiM-game of Eff-pkDB+1 with the prover instances

and the verifier instances where one of them is the distinguished verifier V .

Γ1 : We reduce Γ0 to the game Γ1 where at most one prover instance and V see the

same pair (NP,NV). Because of the D-AKA security, D(1�) guarantees that the repetition
of NP is negligible, and NV is picked randomly. So, p1 − p0 is negligible.

We can reduce Γ1 to the game Γ3 in Theorem 4.12 with using the similar reductions.

Now, we have at most one distinguished pair V and P which see (NV ,NP) and they

share a random secret s. Therefore, we are in OT-MiM game. As symDB is OT-MiM

secure, p1 is negligible.

We deduce that Eff-pkDB+1 is MiM-secure because p0 is negligible.

We give this variant separately because this version have one more round and a com-

putation on the prover side related to NV which depends on the AKA algorithm. On the

other hand, this version can use less secure symmetric DB protocol to have the same

level of security with Eff-pkDB.

4.4.4 Simp-pkDB

We construct another public-key DB protocol Simp-pkDB in Figure 4.6 which is as

efficient as Eff-pkDB and does not require key setup for the verifier algorithm. The key

setup algorithm KP is the key generation algorithm of an encryption scheme (Enc,Dec).

53

In Simp-pkDB, the prover P randomly selects a nonce N ∈ {0,1}� and sends it to the

verifier together with pkP. Then, V selects a secret s ∈ {0,1}�, encrypts it and N with

the public key pkP and sends the encryption e to P. After receiving e, P decrypts it with

its secret key skP and obtains s,N. If N is the nonce of P, then they run a symmetric

DB symDB with using s as a secret key.

V P(pkP,skP)

pick s ∈ {0,1}� N,pkP←−−−−−−−−− pick N ∈ {0,1}�
e = EncpkP(s||N)

e−−−−−−−−−→ s,N = DecskP(e)

Verify(N)
symDB(s)←−−−−−−−−→
OutV−−−−−−−−−→

Figure 4.6 – Simp-pkDB

We show that this protocol is MiM-secure but not DH-secure. P in Simp-pkDB requires

only one operation which is IND-CCA decryption.

Theorem 4.16. If symDB is DF-secure then Simp-pkDB is DF-secure.

We can easily reduce the DF-game of Simp-pkDB to the DF game of symDB.

Theorem 4.17. If symDB is one-time MiM-secure and the encryption scheme is IND-

CCA secure then Simp-pkDB is MiM-secure.

Proof. Γ0 : Adversary plays the MiM game with the verifier instances and the prover

instances. Let’s assume that the number of prover instances is t where t is polynomially

bounded.

Let s,pkP,N and e be the values seen by the distinguished instance V of the verifier.

Here, e = EncpkP(s||N). We group the prover’s instances as follows:

1. The provers seeing N and e,

2. The provers seeing e but another nonce N′.

3. The provers not seeing e (see a ciphertext e′ which is not e).

The probability that an adversary succeeds in Γ0 is p0.

Γ1 : We reduce Γ0 to Γ1 where the first group has up to one prover instance P (matching

prover). The probability that more than one prover picks the same N is bounded by(k
2

)
2−� which is negligible. So, p1 − p0 is negligible.

Γ2 : We reduce Γ1 to Γ2 where the matching P receives e after V has released e. This
means that e which is the encryption of s||N is only sent by the verifier. In Γ1, the

probability that V selects s after P has received e so that Decsk(e) = s,N is 1
2� which

means that p2 − p1 is negligible.

54

Efficient Public-key Distance Bounding

Γ3 : We reduce Γ2 to Γ3 where the prover instances are simulated as below:

The prover instance P, after receiving e, runs symDB(s) without decrypting e. As e
was released before, the value of s is already defined. The prover instances in the second

group, abort the protocol after receiving e. The prover instances in the third group, call

decryption oracle Decsk(.) after receiving e′ and check if the nonce is the same nonce that

was chosen by them. Then, they run symDB(s′) with s′ obtained from the decryption

oracle.

The simulation gives the identical result so the success probabilities in Γ3 and Γ2 are

the same.

Γ4 : We reduce Γ3 to Γ4. We simulate V in Γ4. The simulation of V , after selecting s,
encrypts a random message instead of s||N.

Γ3 and Γ4 are indistinguishable because of the IND-CCA security of the encryption

scheme. We construct an adversary B playing IND-CCA game and simulating MiM

game against the adversary A .

B receives pkP from the IND-CCA game challenger and then B forwards it to A .

Firstly, B picks N,s ∈ {0,1}�×{0,1}� and r ∈ {0,1}2� and lets m0 = s||N,m1 = r. Then,

he sends m0 and m1 to IND-CCA game challenger and receives the response eb where

eb = EncpkP(m0) or EncpkP(m1). If A interacts with V then B sends eb, if A interacts with

P, then B sends N. For the simulation of other prover instances, B sends the encryptions

e′ to IND-CCA game challenger and receives decryption of e′. In the end, if A succeeds

then B outputs 0, otherwise, he outputs 1. If A succeeds given b = 0, then it means

that he succeeds Γ3 and if A succeeds given b = 1 then it means that he succeeds Γ4.

Therefore, we have the following success probability of B.

Adv(B) = Pr[B → 1|b = 0]+Pr[B → 1|b = 1] = p3 − p4

As we know that the advantage of B is negligible, we can deduce that p3 − p4 is

negligible.

Γ5 : In Γ5, we have at most one prover and verifier instance and they both run symDB(s)
with the same and fresh random s. Γ4 and Γ5 work the same. So. p4 = p5. The success

probability p5 of Γ5 is negligible because of the OT-MiM security of symDB. As as result,

we can conclude that p0 is negligible.

DH-Security: Simp-pkDB is not secure against DH because of the attack in Figure

4.7. In this attack, the malicious and far away prover P uses honest and close prover P′

so that in the end V accepts P.

The attack starts after seeing the nonce N that is picked by P′. P sends (pkP,N) to V
where pkP is the public key of P. Then, V encrypts s||N with pkP and sends it to P. P

decrypts e with his own secret key skP and behaves as if he is the verifier and sends the

encryption e′ = EncpkP′ (s||N) where pkP′ is the public key of P′. As e′ is valid encryption

55

for P′, it continues by executing symDB(s) with V . At the end of the protocol, V accepts

P. P′ is used by P only to be able to pass the challenge phase of symDB(s) protocol.

V (pkP) P(pkP,skP) P′(pkP′ ,skP′)

pick s
N,pkP′←−−−−−−− pick N

e = EncpkP(s||N)
N,pkP←−−−−−−−

e−−−−−−−→ s,N = DecskP(e)

e′ = EncpkP′ (s||N)
e′−−−−−−−→ s,N = DecskP′ (e

′)
Verify(N)

symDB(s)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
OutV−−−−−−−→

Figure 4.7 – DH attack on Simp-pkDB.

We can have weak private variant of Simp-pkDB. In this variant (Simp-pkDBp), V
has secret/public key pair (skV ,pkV) which is the key pair of another encryption scheme

(Enc′,Dec′). P sends pkP,N as in Simp-pkDB but differently by encrypting them with

pkV . The rest is the same.

Theorem 4.18 (Weak privacy of Simp-pkDBp). Assuming that the encryption scheme

with (Enc′,Dec′) is IND-CCA secure and the encryption scheme with (Enc,Dec) is IND-

CCA and IK-CPA [BBDP01] secure (Definition 2.19), then Simp-pkDBp is weak private

(Definition 2.14).

Proof. Γ0 : The adversary A plays the weak-privacy game. The success probability of A
is p0.

Γ1 : We reduce Γ0 to Γ1 where the verifiers do not decrypt (with Dec′) any encryptions

sent by the provers and the provers do not decrypt (with Dec) the encryptions generated

by the verifiers. Instead, they directly use the values inside the encryption. Because of

the correctness of both encryption schemes p1 = p0.

Γ2 : We reduce Γ1 to Γ2 where all provers encrypt (with Enc′) a random value instead

of pkP,N and all verifiers encrypt (with Enc) a random value instead of (s||N). Note that

the change on the encryption is indistinguishable by an adversary as it does not know

skP (we prove here weak privacy). Thanks to the IND-CCA security of the encryption

schemes p1 − p2 is negligible.

Γ3 : We reduce Γ2 to Γ3 where the prover does not decrypt (with Dec) the encryptions

e generated by the adversaries and it aborts. As N has never been used, the probability

that A sends a valid encryption of N is negligible. Therefore, p3 − p2 is negligible.

Remark that in Γ3, DecskP has never been used.

Γ4 : We reduce Γ3 to Γ4 where the prover replaces pkP by a freshly generated public-

key. (that V uses if the encryption that P sends is correctly forwarded). The only visible

56

Efficient Public-key Distance Bounding

change from Γ3 is that now e (sent by the verifier) is encrypted using a new key. Because

of IK-CPA security of the encryption scheme (with Enc,Dec), p4 − p3 is negligible.

Now, in Γ4, no identity is used by the verifiers and the provers, so adversary succeeds

Γ4 with 1
2 probability. Therefore, p0 − 1

2 is negligible.

Simp-pkDBp is not strong private due to the following attack: assume that an ad-

versary corrupts a prover P and learns skP. Later, he can decrypt all encryptions (e)
sent by the verifier with skP. If e is sent to P, then it means the adversary learns the

challenges and responses. When these challenges and responses become known during

symDB, the adversary can identify P.
Simp-pkDBp is not as good as Eff-pkDBp, privDB [Vau15c] which have higher security

level. Its only advantage is that it does not require a key setup for the verifier. We give

Simp-pkDBp to show that we can obtain some level of privacy and security which can

be converted into higher privacy and security level in a different model as we discuss in

Chapter 5.

4.5 Conclusion

Our main purpose in this chapter was to design an efficient and a secure public-key DB

protocol. Therefore, we began by designing a new AKA security model which we can use

to construct a public-key DB. The level of security of AKA we defined is less strong than

existing ones [LLM07]. However, as our main purpose is efficiency, we define the least

security level that we want from an AKA protocol to achieve a good security (MiM, DF,

DH- security) on our public-key DB protocols. Finally, we designed a public-key DB

protocol Eff-pkDB which is secure against DF, MiM and DH with using an AKA protocol

and a symmetric-DB protocol. We did not consider privacy in this one because privacy

is not the main concern of some applications. Eff-pkDB is one of the most efficient

public key DB protocols compared to the previous ones (See Table 4.2). Besides, we

added strong privacy to the Eff-pkDB protocol and obtained Eff-pkDBp. We achieved

this by adding one public-key IND-CCA secure encryption. In this case, the protocol is

not as efficient as before but still one of the most efficient ones with the same security

and privacy properties.

We also discussed about a variant of Eff-pkDB and Eff-pkDBp: the one (Eff-pkDB+1)

that requires less security on the symmetric DB. We suggested another public-key DB

protocol Simp-pkDB which is quite efficient and do not require any key setup for verifiers.

It is DF and MiM-secure but not DH-secure.

Now, we prove our claim about the prover efficiency of Eff-pkDB, Eff-pkDB and Simp-

pkDB.

Comparison: In Table 4.2, we give the security properties of existing public-key DB

protocols along with the number of computations done on the prover side. We use

the number of elliptic curve multiplications and hashing as a metric in our efficiency

57

Protocol Security Privacy
PK

operations
Number of Computations

Brands-Chaum
[BC93]

MiM, DF No Privacy
1 commitment,
1 signature

1 EC multiplication, 2
hashings, 1 mapping, 1

modular inversion, 1 random
string selection

HPO [HPO13] MiM, DF Weak Private
4 EC multiplications, 2

random string selections, 2
mappings

PrivDB
[Vau15c]

MiM, DF, DH Strong Private
1 signature, 1
IND-CCA
encryption

3 EC multiplications, 2
hashings, 2 random string

selection, 1 modular inversion,
1 mapping, 1 symmetric key

encryption, 1 MAC

TREAD
[ABG+17]

MiM,DF,DH Strong Private
1 signature, 1
IND-CCA
encryption

3 EC multiplications, 2
hashings, 2 random string

selection, 1 modular inversion,
1 mapping, 1 symmetric key

encryption, 1 MAC

Simp-pkDB MiM, DF No Privacy 1 decryption
1 EC multiplication, 1

hashing, 1 symmetric key
decryption, MAC

Eff-pkDB MiM, DF, DH No privacy
1 D-AKA
secure KA
protocol

1 EC multiplication, 1
hashing, 1 random string

selection

Eff-pkDBp MiM, DF, DH Strong Private

1 IND-CCA
Encryption, 1
D-AKA secure
KA protocol

3 EC multiplications, 2
hashings, 2 random string
selections, 1 symmetric key

encryption, 1 MAC

Table 4.2 – The efficiency and security of existing public-key DB protocols.

analysis. We exclude GOR, ProProx and eProProx (in Appendix A.3 and A.4) as they

clearly require a lot more computation than the other public-key DB protocols.

In our counting for the number of computations in Table 4.2, 1 commitment is coun-

ted as 1 hashing operation. For the signature, we prefer an efficient and existentially

unforgeable under chosen-message attacks resistant signature scheme ECDSA [JMV01].

ECDSA requires 1 EC multiplication, 1 mapping, 1 hashing, 1 modular inversion and 1

random string selection. For the IND-CCA encryption scheme, we use ECIES [Sho01]

which requires 2 EC multiplications, 1 KDF, 1 symmetric key encryption, 1 MAC and 1

random string selection. For the D-AKA secure key agreement protocol, we use Nonce-

DH which requires 1 EC multiplication, 1 hashing and 1 random string selection.

We first compare the protocols considering the security and the efficiency trade-off.

Eff-pkDB and Simp-pkDB are the most efficient ones. However, Simp-pkDB is secure

only against MiM and DF. After Eff-pkDB, the second most efficient protocol is Brands-

Chaum protocol [BC93] (Appendix A.1) but this protocol is only secure against MiM

and DF while Eff-pkDB is secure against DH as well.

Now, we compare the protocols considering security, privacy and efficiency trade-off.

In this case, HPO requires 4 EC multiplications while PrivDB, TREAD and Eff-pkDBp

require 3 EC multiplications and 1 hashing. Hashing is more efficient than elliptic curve

multiplication so it looks like PrivDB and Eff-pkDBp are more efficient. However, HPO

has an advantage in efficiency if it is used in a dedicated hardware allowing only EC

58

Efficient Public-key Distance Bounding

operations. On the other hand, Eff-pkDBp and PrivDB are secure against MiM, DF,

DH and strong private while HPO is only MiM and DF secure and only private.

Eff-pkDBp, TREAD and PrivDB have the same security and privacy properties and

almost the same efficiency level. However, if we analyze the efficiency with more metrics,

we see that PrivDB and TREAD require 1 extra modular inversion and 1 mapping. So,

Eff-pkDBp is slightly more efficient. More importantly, Eff-pkDBp has lighter version

Eff-pkDB which can be used efficiently in the applications which do not need privacy.

59

Chapter 5
Formal Analysis of Distance Bounding

with Secure Hardware

Until this chapter, we mainly covered MiM, DF and DH secure constructions. However,

we did not fully concentrate on TF-security because of the problems on achieving it.

We analyze it in this chapter. Formally, the TF-security prevents against malicious and

far-away provers which try to make the verifier accept the access of himself with the

help of an adversary who may be closer. Clearly, the strongest security notion in the DB

world is the resistance to TF. So, if we can construct a DB protocol that is secure against

TF, then the DB protocol will be secure against MiM, DF and DH. However, it is not

possible to achieve the TF-security because of a trivial attack: the malicious prover gives

his secret (key) to a close adversary, and the adversary authenticates on behalf of the

malicious prover by running the protocol. To achieve the TF-security, the trivial attack

is artificially excluded from the TF model in the literature by assuming that malicious

provers would never share their keys (in this chapter, we call this weaker version “TF’-

security”). Beyond being weak, we cannot adapt TF’-security as an all-in-one security

notion because no connection between TF’-security and MiM, DF or DH security can

be established. Because of this disconnection, all DB protocols require separate security

analysis for each of them.

The content of this chapter was published in ACNS18 [KV18a].

Related Works:

The only public-key DB protocols that are secure against all of them (MiM, DF, DH,

TF’) are ProProx [Vau15d], its variant eProProx [Vau15a] and TREAD [ABG+17].

There are also a few symmetric key DB protocols [BMV13a, BMV15, BMV13b, FO13,

Vau13, BV14] that are secure against all (MiM, DF, DH, TF’). Some important distance

bounding protocols [BC93, BB05, ČBH03, Han05, RNTS07, SP07, KV16] are all vul-

nerable to TF’. The protocol by Bultel et al. [BGG+16] is TF’-secure thanks to a ‘cheat

option’ (as explained below) but it is not DH-secure since it aims for anonymity against

61

verifier.

Moreover, the formal definition of TF’-security is controversial. The TF’-security

definition of Dürholz et al. [DFKO11] allows treatment of the partial disclosure of the

secret key. Essentially, the TF’ security in this definition implies that any information

forwarded to a close-by adversary would allow another adversary to later pass, without

a help of the prover, with the same probability. Fischlin and Onete [FO13] adapted

the Swiss-Knife protocol [KAK+08] to have this definition. However, it was proven

that this technique weakens Swiss-Knife for MiM-security [Vau13]. Clearly, it is not

reasonable to weaken the most relevant security to protect it against the least relevant

one. There are also extractor based TF’-security definitions [BV14, Vau15d, Vau13]

stronger than the definition of Dürholz et al. model [DFKO11]. However, all TF’-

security definitions are constructed with the assumption that the malicious prover do not

reveal any secret key related information. This assumption can be considered weak and

not realistic. Recently, Ahmadi and Safavi-Naini [ASN17] showed that some existing

TF’-secure protocols become insecure when the malicious prover and the verifier use a

directional antenna. In short, none of the models in the literature fully covers TF.

Apparently, there is no way of achieving TF-security without hiding the secret key

from the prover. This intuitive idea has been noticed [SP05, BR04, ABK+09, ABK+11],

but never formally defined. A natural question to ask here is whether this idea really

prevents TF. The answer is “yes and no” because hiding the key is necessary but not

sufficient. We can give an example protocol where the prover never learns the key but

the protocol is still vulnerable to TF-attacks.

In a nutshell, state-of-the-art DB results say that TF-security is not possible in the

existing models of DB and it could be possible by hiding the key but this is not enough.

However, it is still not formally noted how it can be achievable. Therefore, in this chapter,

we define a new formal model where constructing TF-secure protocols is possible.

5.1 Our Contribution

Our formal model for DB, which we call secure hardware model (SHM), provides a

solution to all DB related problems that we mention. We denote the two-algorithm

(Prover and Verifier) DB corresponding to the classical DB in the literature as “plain

model” (PM) [BC93, DFKO11, BMV13a, BV14, Vau15c] that we cover in Section 2.2.1.

In the SHM, we have another entity called “Hardware” that is always honest and only

communicates with its holder (the prover). Mainly, this hardware runs some part of the

prover algorithm honestly and neither a malicious prover nor an adversary can corrupt

it. In the real world, we can realize our new entity as e.g. tamper-resistant modules in

smart-cards. In more detail, our contribution in this chapter is the following:

• We define a new type of DB with three algorithms (V,P,H): verifier, prover, hard-

ware. Then, we design a communication and adversarial model for three-algorithm

DB which we call secure hardware model (SHM). In SHM, it is possible to have

62

Formal Analysis of Distance Bounding with Secure Hardware

TF-secure DB protocols without excluding trivial attacks. We give a new security

definition in SHM for a three-algorithm DB. In this security definition, achiev-

ing TF-security means achieving MiM, DF and DH-security. So, we obtain an

all-in-one definition.

• We obtain a convincing model for TF based on SHM. We show that the TF-

security of (V,P,H) in SHM is equivalent to the MiM-security of (V,H) in PM

where H in PM corresponds to the prover algorithm. This result implies that PPP
plays no role in security but only in the correctness of the protocol to

have TF-security.

• We establish security relations between PM and SHM. We show that the MiM-

security in SHM and the MiM-security in PM are equivalent when we take as a

prover algorithm in PM the union PH of the prover P and the hardware H in SHM.

Additionally, we show that a MiM-secure DB protocol in PM can be converted

into a fully-secure DB protocol in SHM. This result shows that if we have only

a MiM-secure DB protocol in PM, we can easily construct an efficient DB

protocol secure against all threats in SHM.

• We define a strong privacy notion of DB in SHM.

• We construct a symmetric DB protocol MiM-symDB which is the most ef-

ficient optimally secure MiM-secure protocol in PM (in terms of com-

putation and number of rounds) among the protocols with binary chal-

lenges and responses. Then, we convert it into a DB protocol in SHM (Full-

symDBH) and obtain the most efficient symmetric DB protocol secure against all

threats and achieving optimal security bounds.

We underline that the only assumption on the secure hardware is that it is

honest which means that it runs the specified algorithm only. By doing so, we give

a model here where the TF-security is achievable. Avoine et al. [ABK+09, ABK+11]

considered a similar model called “black box model”. In their model, they assume that

the prover cannot observe or tamper with the execution of the algorithm. Differently,

in SHM, we consider two algorithms a prover and a hardware algorithm and only the

hardware algorithm cannot be tampered. The black box model can be seen as a variant

of our model where the prover algorithm is dummy which only relays the messages

between the hardware and the verifier. In addition, in the black box model, Avoine et

al. [ABK+09, ABK+11] only consider TF’-security instead of TF-security.

One may argue that our assumption on secure hardware is too strong for the real world

applications. For example, in the real world, if the secure hardware is implemented using

a tamper-resistant hardware, it is always possible that a side-channel attack will break

our assumption. However, we believe that relying on our assumption is more reason-

able than relying on some adversarial intention (e.g., that the adversary never shares

his secret). We can never prevent a TF-adversary to share his secret-key, but we can

63

construct a strong tamper-resistant hardware which requires very expensive equipments

to be tampered. Besides, MiM-security would be preserved even if the tamper resistance

assumption is broken.

Structure of the Chapter: In Section 5.2, we give the formal definitions of SHM and

its security and privacy definitions. We also prove some security implications in SHM.

In Section 5.3, we introduce the MiM-symDB protocol in PM and adapt it to SHM. In

Section 5.4, we show how we can achieve full security in public-key DB in SHM with

Eff-pkDBp and Simp-pkDBp. We conclude the chapter in Section 5.5.

5.2 Secure Hardware Model

We first give the formal definitions of SHM and security in this model. Then, we provide

some security relations related to PM and SHM.

5.2.1 Definitions

Parties of a DB protocol are a prover and a verifier [BC93] as detailed in previous

chapters. However, we define a new version of it called three-algorithm (symmetric or

public-key) DB where the algorithms are prover, verifier, and hardware.

Definition 5.1 (Three-Algorithm Symmetric DB). Three-algorithm symmetric DB is a

probabilistic polynomial-time (PPT) protocol. It consists of a tuple (K ,V,P,B,H) where

K is the key generation algorithm, P is the proving algorithm, H is the hardware al-

gorithm, V is the verifying algorithm and B is the distance bound. The input of V and H
is K generated by K . P interacts with H(K) and V (K). At the end of the protocol, V (K)

outputs a final message OutV ∈ {0,1}. If OutV = 1, then V accepts. If OutV = 0, then V
rejects.

In symmetric DB, V knows that it needs to use K (possibly resulting from a prior

identification protocol).

Definition 5.2 (Three-Algorithm Public-key DB). Three-algorithm public key distance

bounding is a PPT protocol. It consists of a tuple (KP,KV ,V,P,B,H) where (KP,KV) are

the key generation algorithms of P and V , respectively. The output of KP is a secret/pub-

lic key pair (skP,pkP) and the output of KV is a secret/public key pair (skV ,pkV). V is

the verifying algorithm with the input (skV ,pkV), P is the proving algorithm with the

input (pkP,pkV) and H is the hardware algorithm with the input (skP,pkP). B is the dis-

tance bound. P interacts with H(skP,pkP) and V (skV ,pkV). At the end of the protocol,

V (skV ,pkV) outputs a final message OutV ∈ {0,1} and has pkP as a private output. If

OutV = 1, then V accepts. If OutV = 0, then V rejects.

This definition assumes a priori identification of pkV for P.

64

Formal Analysis of Distance Bounding with Secure Hardware

Definition 5.3 (Correctness of DB). A public-key (resp. symmetric) DB protocol is

correct if and only if under an honest execution, whenever the distance between P and V
is at most B, V always outputs OutV = 1 and pkP (resp. /0).

In all the definitions below, verifiers, provers, and hardware are the parties running

the algorithms V , P and H, respectively. The parties can move and run their algorithms

multiple times. Each new execution of a party’s algorithm is an instance of this party.

Classical DB in literature is very similar to three-algorithm DB with the following

differences: no H algorithm exists and the input of P in public-key and symmetric DB

is (skP,pkP,pkV) and K, respectively. The plain model is the model corresponding to the

classical DB (See Section 2.2.1 for details).

The secure hardware model is the model corresponding to three-algorithm DB: P, V
and H.

Secure Hardware Model (SHM): Parties of SHM are provers, secure hardware,

verifiers and other actors. SHM includes all the characteristics of PM given in Section

2.2.1 and the additional ones:

• Secure hardware are honest parties.

• Each prover possesses its own secure hardware.

• The secure hardware of an honest prover can only communicate with its prover

and they are both at the same location.

In the rest of the chapter, whenever we say “a distance bounding protocol in SHM”,

it refers to the three-algorithm DB.

Remark that as secure hardware are honest parties, they always run their assigned

algorithms even if malicious provers hold them. They should be taken as a subroutine

of a prover algorithm running on a secure enclave where the prover can never change or

interfere it.

Now, we give our security definition for a DB protocol in SHM. The definition covers

distance fraud, mafia fraud (MiM), distance hijacking and terrorist fraud which are the

threat models in PM.

Definition 5.4 (Security in SHM). Consider a public-key DB. The game consists of a

verifier and provers P1,P2, ...,Pt with their corresponding hardware H1,H2, ...,Ht . It begins

by running the key setup algorithm KV outputting (skV ,pkV) for V and KP outputting

(skPi ,pkPi
) for Hi. The game consists of instances of the verifier, provers, hardware and

actors. V is a distinguished instance of the verifier. One prover (let’s denote P) is the

target prover. The winning condition of the game is V outputs OutV = 1 and privately

pkP (public key of P) if no close instance of P’s hardware exists during the execution of

V .

65

• The DB protocol is MiM-secure if the winning probability is always negligible

whenever P is honest1.

• The DB protocol is DF-secure if the winning probability is always negligible

whenever there is no instance of any party close to V .

• The DB protocol is DH-secure if the winning probability is always negligible

whenever all close instances are honest provers other than P and their hardware.

• The DB protocol is TF-secure if the winning probability is always negligible.

The same security definition holds for a symmetric DB where we replace KV and KP

with K and skPi/pkPi
with Ki.

Without loss of generality, we can consider all other actors as adversaries.

It is clear that TF-security implies DF-security, MiM-security, and DH-security. So,

we have an all-in-one security notion in SHM. Hence, we say “secure” instead of

“TF-secure” in SHM.

Security in PM: In PM, there is always a trivial TF-attack in which a malicious

prover can give his secret key to another malicious party so that the party authenticates

the prover while it is far-away. So, TF-security is not possible in PM. Clearly, this trivial

attack is preventable in SHM if we can assure that H never leaks K.

Note that we do not consider the weaker version of TF-security

[DFKO11, KAK+08, Vau13] (TF’-security) which artificially excludes trivial attack.

So, when we refer to TF-security in PM, we indeed refer to an impossible-to-achieve

notion.

Notations:

PPPdum is a dummy prover algorithm in SHM which only relays the messages between

the outside world and H without even using any of its input. Remark that if the prover

who should run Pdum is malicious, then it can still play with its hardware or other parties

maliciously.

PPPH is the algorithm which is constructed from joining P and H in SHM. More precisely,

PH runs P and instead of interacting with H, it executes the same computation that H
would do if P had interacted. Therefore, PPPH

dum is actually the hardware algorithm H.

5.2.2 Security Results

We give some security relations between a DB protocol in PM and SHM.

Theorem 5.5 (MiM in SHM ⇒ MiM in PM). Let DB =(K ,V,P,B,H) be a symmetric-

key DB protocol in SHM. We define a DB protocol DB′ = (K ,V,PH ,B) in PM. If DB is

MiM-secure then DB′ is MiM-secure.

The same holds with public-key DB.

1Recall that it implies that H communicates with P only and that they are at the same location.

66

Formal Analysis of Distance Bounding with Secure Hardware

The proof is trivial by adding a hardware to every honest prover at the same location:

A MiM-game against DB′ becomes a MiM-game against DB.

Theorem 5.6 (MiM-security in PM with PH
dum ⇔ Security in SHM). Let DB =

(K ,V,P,B,H) be a symmetric DB in SHM and and DB′ = (K ,V,PH
dum,B) be a symmetric-

key DB in PM where superscript of PH
dum in DB′ corresponds H of DB. DB′ is MiM secure

in PM if and only if DB is TF-secure in SHM.

Here, the prover algorithm of DB′ is just H because PH
dum ≡ H.

Surprisingly, Theorem 5.6 does not depend on the prover algorithm P of DB. Note that
DB′ in Theorem 5.6 is not a correct DB protocol in general if P �= Pdum as the algorithm

P disappeared. However, we can still consider MiM-security for DB′ without correctness.

Proof. (⇒) Consider a TF-game against DB in SHM. We run this game against DB′

in PM by simulating the secure hardware H of DB with the prover PH
dum of DB′ and

simulating the prover P in SHM with a malicious actor in PM (it is possible because P
in SHM, does not have any secret key as an input). Then, we obtain MiM-game of DB′

with the same probability of success.

(⇐) If A wins the MiM-game of DB′, then a TF adversary runs A and wins the

TF-game for DB.

Remark that it is not possible to prove“MiM-security of DB′ = (K ,V,PH ,B)⇔ security

of DB = (K ,V,P,B,H)” where P in DB′ is not necessarily Pdum because we could not

simulate H and P in “⇒” case of the proof in Theorem 5.6. A counterexample which

elucidates this can be seen in Section 5.3. In this counterexample, we have a MiM-secure

protocol in PM and a conversion of it in SHM without Pdum. Its conversion is not secure

in SHM even though P does not learn any key related information.

Clearly, having a secure hardware running whole algorithm without its prover’s effect

on the security is a trivial solution to have a TF-security. However, we show here that it

does not always work when the prover is active. This result does not mean that

prover should not do any computation to have TF-security. Actually, in our TF-secure

protocols in Section 5.4, the prover algorithm in SHM still executes some part of the

algorithm PH in PM but it does not have any effect on the security of the protocol (as

it can be seen in their security proofs Theorem 5.12 and Theorem 5.14).

Some more results of Theorem 5.6:

• We can conclude if DB′ = (K ,V,PH
dum,B) is MiM-secure and correct DB protocol,

then we can construct a secure DB protocol DB = (K ,V,P,B,H) in SHM for any

algorithm P. DB is further correct when P = Pdum.

• In order to prove security of DB = (K ,V,P,B,H) in SHM, it is enough to prove

MiM-security of DB′ = (K ,V,PH
dum,B) in PM.

67

• MiM security and security of a DB protocol DDDBBB === (((K ,,,VVV ,,,PPP,,,BBB,,,H))) in SHM

are equivalent if PPP === PPPdum due to Theorem 1 and Theorem 2. Note that this

result may not hold without Pdum .

In Figure 5.1, we give the security (non)-implications in SHM and PM. The proof of

these (non)-implications are in Appendix C. In Figure 5.2, we give the same for SHM

when the prover is Pdum. In this case, the full security is equivalent to MiM-

security. The rest of the (non)-implications in Figure 5.2 can be proven as in Appendix

C.

MiM

TF DFDH��

��
��
��

����

��

Figure 5.1 – Security implications of DB pro-
tocols in PM and SHM. TF-security implies
all of them, DH-security implies DF security
and no relation exists between MiM and DH
(also DF).

TF≡MiM DH DF�� ��

Figure 5.2 – Security implications in SHM
with the prover Pdum. TF-security and
MiM security are equivalent in SHM with
Pdum. The relations between DF, DH and
MiM are the same as in Figure 5.1.

5.2.3 Privacy

In strong-privacy definition of PM, the adversary can corrupt the provers and learn the

secrets. However, the hardware in SHM is honest by nature. So, it cannot be corrupted.

Hence, we define semi-strong privacy with no such corruption. Achieving semi-strong

privacy in a DB protocol is good enough assuming that the hardware is tamper-resistant.

Nevertheless, we also allow corruption of hardware in order to define the strong privacy

notion.

Definition 5.7 (Privacy in SHM). The privacy game in SHM for a public-key distance

bounding DB = (KP,KV ,V,P,B,H) with a bit b ∈ {0,1} is the following: The game runs

the key setup algorithms KP(1�) for a number t provers and KV (1�) for the verifier. Then,
it lets the adversary A play the game shm−PrivO

b,A(�) with the oracles in Definition 2.14

with a change in the corrupt oracle and the oracle SendH:

• SendH(vtag,m): It sends the message m to the drawn prover’s hardware and returns

the response m′ of the hardware. If vtag was not drawn or was released, nothing

happens.

• Corrupt(Pi) : It returns the current state of Pi and its hardware Hi. Current state

includes all values in Pi’s and Hi’s current memories. It does not include volatile

memory.

In the end, the adversary outputs b′. If b′ = b, the adversary wins. Otherwise, it loses.

68

Formal Analysis of Distance Bounding with Secure Hardware

We say a DB protocol in SHM is strong private if the advantage of the adversary

in this game is bounded by a negligible probability. We say a DB protocol in SHM is

semi-strong private if the advantage of the adversary in a version of this game, where

the corruption only lets the adversary communicate with the hardware non-anonymously,

is bounded by a negligible probability.

In semi-strong privacy, even though we do not allow corruption of hardware, we let

semi-strong corruption occur by allowing interaction with the secure hardware. In SHM,

we stress that when P interacts with its secure hardware, this interaction remains private.

Hermans et al. [HPVP11] (See Definition 2.14) defined a similar game for the strong

privacy of DB in PM. In that game, no hardware exists, so the definition of semi-strong

privacy is not considered. Instead, the weak privacy notion exists where no corruption

on provers are allowed.

Note that we obtain a notion of strong privacy of DB = (K,V,P,B,H) in SHM which is

fully equivalent to the strong privacy of DB′ = (K,V,PH ,B) in PM.

5.3 Optimal symmetric DB protocol in SHM

In this section, we show our new protocol MiM-symDB in PM which is only MiM-secure

(not DF, DH or TF-secure). We construct a DB at this level of security because having

MiM-security in PM is enough to achieve (full) security in SHM as a result of Theorem

5.6. The security bounds of MiM-symDB is very close to optimal security bounds. Its

conversion into SHM reaches the same bound as well. As we see in Chapter 3, it is

proved [BV14] that an optimal security bound in PM for a MiM-adversary is (1
2)

n given

that challenges and responses are bits and the challenge phase consists of n rounds. The

same bound applies in SHM as well.

We note that using other optimally MiM-secure DB protocols such as DB1, DB2, DB3

(variants of DBopt) [BV14] is reasonable as well to have fully secure DB protocols in

SHM. However, these protocols are also secure against DF or TF’ in PM which is an

overkill as we need only MiM-security. By constructing an optimal MiM-only secure

DB in PM, we can save some computations and rounds to make an optimal protocol in

SHM.

Notation: When we use H as a superscript in the name of a protocol, it shows that

it is in SHM.

MiM-OTDB: First, we describe our MiM-OTDB protocol which is MiM-secure when

it is executed only once. The prover P and the verifier V share a secret key s = C||R.
Here, the bits of C correspond to the challenges and the bits of R correspond to the

responses. In the challenge phase, in each round i, V sends the challenge ci =C[i] to P
and P sends the response ri = R[i] to V . If P receives a challenge which is different from

C[i], then P does not continue to the protocol. In the verification phase, V checks if the

responses are correct and on time. (See Figure 5.3.)

69

V (s) P(s)
s =C||R s =C||R

challenge phase
for i = 0 to n

ci =C[i], start timeri
ci−−−−−−−−−→ if ci �=C[i], abort

stop timeri
ri←−−−−−−−−− otherwise, ri = R[i]

verification phase

check timeri ≤ 2B,ri = R[i] OutV−−−−−−−−−→

Figure 5.3 – MiM-OTDB

MiM-symDB: Now, we describe MiM-symDB which is constructed on top of MiM-

OTDB and optimally MiM secure. The prover P and the verifier V share a secret key

s. They use a pseudo random function (PRF) f returning strings of 2n bits. P and V
exchange the nonces NP,NV ∈ {0,1}�, respectively, where � is a security parameter. Then,

P and V compute fs(NP,NV) which outputs C||R. Finally, V and P run MiM-OTDB with

using C||R as a key. (See Figure 5.4.)

V (s) P(s)

pick NV ∈ {0,1}s NP←−−−−−−−−− pick NP ∈ {0,1}s

C||R = fs(NP,NV)
NV−−−−−−−−−→ C||R = fs(NP,NV)

MiM-OTDB(C||R)←−−−−−−−−−→

Figure 5.4 – MiM-symDB

Theorem 5.8 (MiM-security of MiM-symDB). If f is a secure PRF, then the winning

probability of a probabilistic polynomial time (PPT) adversary in a MiM-game of MiM-

symDB in PM is at most 3
2n+1 +

q2

2�+1 +
q′2

2�+1 +AdvPRF((ε,K)). For a PPT game, this is

negligible.

Proof. Γ0 : It is a MiM-game where P’s instances and V ’s instances with the distinguished

instance V play in PM. The winning probability in Γ0 is p.
Γ1 : We reduce Γ0 to Γ1 where the nonces of the prover instances and the nonces of the

verifier instances do not repeat. The probability that a prover (resp. verifier) instance

selects the same nonce with the one of the other prover (resp. verifier) instances is

bounded by q2

2
1
2� (resp.

q′2
2

1
2�). So, the winning probability of Γ1 is at least p− q2

2s+1 − q′2
2�+1 .

Γ2 : We reduce Γ1 to Γ2 where V and the prover’s instances replace fs(., .) by a random

function. Clearly, the winning probability in Γ2 is at least p− q2

2�+1 − q′2
2�+1 − 1

2� −Adv(PRF).

In Γ2, we have a game where at most one prover instance P seeing (NP,NV) pair with

V and C||R is completely random meaning that it is independent from NP and NV . If P

exists, it has to be far from V because of the winning condition of MiM-game. Assuming

that V and P see the same (NP,NV), we look each round i for the case where ri arrived on

70

Formal Analysis of Distance Bounding with Secure Hardware

time. If ri arrived on time, thanks to Lemma 3.3, the response sent by P is independent

from ri or the challenge that P received is independent from ci sent by V . In any case,

the adversary’s probability to pass each round is 1
2 because the response ri has to be

correct and on time: the adversary guesses either ri or ci (post-ask or pre-ask attack

as shown in Section 3.2). There may also be one round where the pre-ask strategy is

done for a constant number of rounds until it makes P abort. After abort, there is an

additional opportunity (in the last of these rounds) for the adversary to pass the round

by guessing the response. Therefore,

p =
3

2n+1 +
q2

2�+1 +
q′2

2�+1 +
1
2�

+Adv(PRF).

Theorem 5.9 (OT-MiM security of MiM-OTDB). MiM-OTDB is OT-MiM-secure (one

time MiM-secure).

Proof. Using the last game in the proof of Theorem 5.8, we can show that MiM-OTDB

is OT-MiM-secure.

Assuming that q2

2�+1 +
q′2

2�+1 +
1
2� +Adv(PRF) is negligible, the success probability of a

MiM-adversary is 3
2n+1 very close to the optimal security 1

2n .

MiM-symDB is more efficient than the existing optimally MiM-secure pro-

tocols DB1, DB2, DB3 [BV14]. The provers in DB1, DB2, DB3 compute a PRF

function two times and compute some other mappings too. So, with parameter nc = nr = 2
in common structure, for a given target security, we construct a nearly optimal protocol,

both in terms of number of round complexity and computation complexity.

Adaptation of MiM-symDB to SHM (Full-symDBH): We define Full-symDBH

with the tuple (K ,V,Pdum,B,H) where B,V and K are as in MiM-symDB, H is the same

with P in MiM-symDB.

Theorem 5.10 (Security of Full-symDBH). If f is a secure PRF, Full-symDBH is secure

in SHM.

Proof. The conversion of Full-symDBH in PM is (K ,V,PH
dum,B) which is equal to MiM-

symDB. We know that MiM-symDB is MiM-secure as f is a secure PRF. Hence, Full-

symDBH with (K ,V,Pdum,B.H) is secure thanks to Theorem 5.6. The security bound of

Full-symDBH is the same with the MiM-security bound of MiM-symDB.

Full-symDBH is the first protocol that reaches the optimal secure bounds for MiM,

DH, DF and TF secure.

The following counterexample shows why we need more than hiding the key from the

prover to achieve TF-security and why Theorem 5.6 holds with Pdum.

71

Why is not Theorem 5.6 correct without Pdum?: Let us define Full-symDBH ′

with the tuple (K ,V,P′,B,H ′) where B,V and K are the same with those defined in

MiM-symDB. P′ and H ′ are as follows:

P′

pick NP ∈ {0,1}s

send NP to V
receive NV from V
send NV ,NP to H ′

relay between V and H ′

H ′(s)
receive NP,NV

compute C||R = fs(NV ,NP)

run MiM-OTDB(C||R)

Letting P′ pick NP is the only difference between the prover of Full-symDBH and

the prover of Full-symDBH ′
. However, Full-symDBH ′

is not DF-secure because of the

following attack: Malicious and far away P′ sends NP,NV to H ′. After, in MiM-OTDB

execution, P′ sends a guessed challenge c′ to H ′ as if V sends. If H ′ accepts c′, then P′

learns the corresponding response r′. If c′ is not the valid challenge, then P′ restarts
with inputs NP,NV to H ′ again. This time, P′ sends 1− c′ as a challenge and learns the

corresponding response. P′ follows the same strategy until it learns all the challenges

and the responses. For sure, after 2n trials, it determines C||R. After learning C||R, P′

just sends C||R to a close adversary. Finally, the adversary runs MiM-OTDB(C||R) with
V picked NV and passes the protocol.

Clearly, (K ,V,P′H ′
,B) is MiM-symDB which is a conversion of Full-symDBH ′

into PM.

So, the conversion is MiM-secure. However, Full-symDBH ′
is not secure. This shows

that Theorem 5.6 may not hold without PPPdum.

Actually, this insecurity result is not surprising because picking NP has an influence

on the security of the protocol as it can be seen in the proof of Theorem 5.8. We repeat

the result of Theorem 5.6: the prover has to be as passive as Pdum on a security of the

DB protocol in SHM to have the full security.

Remark that in Full-symDBH ′
, even though P′ does not learn any information about s,

it is able to break the security. Therefore, we can see that the intuitive idea [SP05, BR04]

of sealing secret keys in a secure hardware is not enough, in general, to always protect

against TF. This shows the necessity of a formal model.

5.4 Optimal Public-key DB Protocols in SHM

In this section, we give two public key DB protocols in SHM: Simp-pkDBH and Eff-

pkDBH which is correct, private and secure. The first one is derived from Simp-pkDBp

in PM (Section 4.4.4). The second one is derived from the version Eff-pkDBp with OT-

MiM security (Section 4.4.3) in PM. We use these protocols because of their efficiency

in PM.

Simp-pkDBH : This protocol is derived from Simp-pkDBp in Section 4.4.4. It is the

same as Simp-pkDBp except that P and H in Simp-pkDBH shared the computation

done by P in Simp-pkDBp. In Simp-pkDBH , P encrypts the nonce N picked by H along

72

Formal Analysis of Distance Bounding with Secure Hardware

with pkP. H decrypts the encryption sent by V . The algorithm V is unchanged. As a

symmetric DB, V and H runs MiM-OTDB. The protocol is depicted in Figure 5.5.

V (skV ,pkV) P(pkP,pkV) H(skP,pkP)

pkP,N = Dec′skV
(eP) eP←−−−−−−−− eP = Enc′pkV

(pkP,N)
pkP,N⇐==== N ←{0,1}s

pick C||R ∈ {0,1}2n

eV = EncpkP(C||R||N) eV−−−−−−−−→
eV====⇒ C||R||N = DecskP(eV)

Verify N

MiM-OTDB(C||R)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

POutV = pkP

Figure 5.5 – Simp-pkDBH . The double arrow shows the communication between P and
H

Theorem 5.11 (Security of Simp-pkDBH). If the encryption scheme (Enc,Dec) is IND-

CCA secure, Simp-pkDBH is secure in SHM.

Proof. Consider DB = (KV ,KP,V,PH
dum,B) with V and H from Simp-pkDBH . Actually,

DB = Simp-pkDBp. Using Theorem 5.6, Simp-pkDBH is secure because DB = Simp-

pkDBp is MiM-secure (Theorem 4.17) assuming that (Enc,Dec) is IND-CCA secure and

MiM-OTDB is OT-MiM-secure.

Simp-pkDBH achieves almost optimal security bounds because MiM-security of Simp-

pkDB is reduced to MiM-security of MiM-OTDB as shown in the proof of Theorem

4.17.

We see that Simp-pkDBH is still secure without Enc′ (only Enc needs security). Actu-

ally, this encryption is only used for achieving privacy. So, if privacy is not a concern, we

can use Simp-pkDBH without the encryption and decryption. In this case, the verifier

has no secret/public key pair. This can be useful in practical applications.

Now, we prove that Simp-pkDBH is semi-strong private in SHM.

Theorem 5.12 (Semi-strong privacy of Simp-pkDBH). Assuming that the encryption

scheme with (Enc′,Dec′) is IND-CCA secure and the encryption scheme with (Enc,Dec)

is IND-CCA and IK-CCA [BBDP01] secure, then Simp-pkDBH is semi-strong private

in SHM.

Proof. The proof works like in Theorem 4.18. We only let non-anonymous hardware

decrypt eV from the adversary with the right key through a CCA query in the IK-CCA

game.

73

Eff-pkDBH : One of the assumptions in MiM-security of Eff-pkDBp is that the sym-

metric DB is “one-time multi-verifier MiM-secure” defined in Definition 4.7. It is not

possible to use MiM-OTDB on Eff-pkDBp as a symmetric DB because MiM-OTDB

does not fulfill the assumption. Hence, we use Eff-pkDB+1 (Section 4.4.3) when con-

truction Eff-pkDBH . In this way, we are able to use MiM-OTDB as a symmetric DB

which does not require any computation.

Eff-pkDBH is the same as Eff-pkDB+1 (Figure 4.5) except that P and H share some

computations done by P in Eff-pkDBp. P computes the encryption and H selects the

nonce and runs B. As a symmetric DB, V and H runs MiM-OTDB. The protocol is

depicted in Figure 5.6.

V (skV ,pkV) P(pkP,pkV) H(skP,pkP)

NV ←{0,1}s NV−−−−→ NV ,pkV====⇒ NP ← D(1s),

pkP,NP = DecskV1
(e),

e←−−−− e = EncpkV1
(pkP,NP)

NP,pkP⇐====
C||R = C||R =
ANV (skV2 ,pkV2

,pkP,NP) BNV (skP,pkP,pkV2
,NP)

MiM-OTDB(C||R)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

POutV = pkP

Figure 5.6 – Eff-pkDBH . Double arrow shows the communication with H.

Theorem 5.13 (Security of Eff-pkDBH). If the key agreement protocol

(GenV ,GenP,ANV ,BNV ,D) is D-AKA secure (Definition 4.2) for all fixed NV ∈ {0,1}s,

then Eff-pkDBH is secure in SHM.

Proof. Consider that DB = (KV ,KP,V,PH
dum,B) with V and H from Eff-pkDBH is MiM-

secure in PM. Actually, DB is Eff-pkDB+1. Using Theorem 5.6, Eff-pkDBH is secure

because Eff-pkDB+1 is MiM-secure (Theorem 4.15) assuming that the key agreement

protocol (GenV ,GenP,ANV ,BNV ,D) is D-AKA secure for all fixed NV ∈ {0,1}s and MiM-

OTDB is one time MiM-secure.

We see that Eff-pkDBH is secure without encryption. Actually, the encryption is used

for achieving privacy. So, if privacy is not a concern, we can use Eff-pkDBH without the

encryption and decryption.

Theorem 5.14 (Strong privacy of Eff-pkDBH). Assuming that the key-agreement pro-

tocol (GenV ,GenP,ANV ,BNV ,D) is D-AKAp secure (Definition 4.2) for all fixed NV ∈ {0,1}n

and the encryption scheme (Enc,Dec) is IND-CCA secure, Eff-pkDBH is strong private

in SHM.

74

Formal Analysis of Distance Bounding with Secure Hardware

Proof. We first show that the version of Eff-pkDBp with OT-MiM is strong private in

PM. Actually, the strong privacy proof of our variant of Eff-pkDBp is the same with the

proof of Eff-pkDBp (Theorem 4.14) where first it reduces the privacy game to the game

where all the encryptions are random (the reduction showed by using IND-CCA security)

and then reduces to the game where the provers use a random secret and public key pair

with BNV (the reduction showed by using D-AKAp). Because of the equivalence of strong

privacy of a DB in SHM and its conversion in PM, we can conclude that Eff-pkDBH is

strong private.

The prover algorithms of Simp-pkDBH and Eff-pkDBH are not Pdum, but it can be

easily seen from the proofs of Theorem 5.11 and Theorem 5.13 that the computations in

these algorithms do not have any effect on the security (i.e., the security of Simp-pkDBH

and Simp-pkDBH do not need any security assumptions on the encryption scheme with

(Enc′,Dec′) which is used by P.)

5.5 Conclusion

In this chapter, we defined a new DB with three algorithms and designed its adversarial

and communication model of SHM. According to our new model, we propose a new

security definition. We showed that the trivial attack of TF is preventable in our defin-

ition. By showing implications between different threat models, we deduced that if

a DB protocol achieves TF-security in SHM, then it is secure against all other se-

curity notions. This result cannot be applied in PM because TF-security is not pos-

sible. We also gave some security relations between PM and SHM. One of the rela-

tions shows that we can construct a DB protocol that is secure against all the threat

models including TF in SHM if its conversion into PM is MiM-secure. This result

is significant because it shows that many MiM-secure DB protocols in the literature

[BV14, Vau13, BMV13a, BC93, HPO13, KV16, Vau15c] can be used to achieve higher

security level in our model.

We also gave two constructions which are converted from Eff-pkDBp and Simp-pkDBp.

Compared to the previous models [ABK+09, ABK+11, DFKO11, BV14] which do not

have any practical and secure solution against all the threats, SHM lets us construct

more efficient protocols while achieving the highest security.

75

Part II

Integrated Distance Bounding

Chapter 6
Contactless Access Control

Contactless access control (AC) systems are critical for security but often vulnerable to

relay attacks. In this chapter, we define an integrated security and privacy model for

access control using distance bounding (DB) which is the most robust solution to prevent

relay attacks. We show how a secure DB protocol can be converted to a secure contactless

access control protocol. Regarding privacy (i.e., keeping anonymity in strong sense to an

active adversary), we show that the conversion does not always preserve privacy but it

is possible to study it on a case by case basis. Finally, we provide two example protocols

and prove their security and privacy according to our new models.

The content of this chapter is published in ISC17 [KV17].

Related Works

A report from Smart Card Alliance [All03] lists the main components of an access con-

trol system (tags, readers, controllers, database) and their security requirements which

are however informal. Wongsen et al. [WKC+12] proposed an access control protocol

between doors and mobile units (e.g. smartphone), but the protocol lacks any security

proof. Some access control systems such as OPACITY [All13] and PLAIN [gDoHSD10]

mutually authenticate and establish a shared key between the terminal and card. The

security analysis of PLAIN in [gDoHSD10] is far from being formal. OPACITY [All13]

was partly analyzed by Dagdelen et al. [DFG+13] where their security model is based on

the key agreement security model of Bellare and Rogaway [BR93]. Hence, most of the

previous works do not have a comprehensive security analysis. Moreover, none of them

consider relay attacks in their security analysis. Unfortunately, these types of at-

tacks are easily implementable [Han05, Han06, FDČ11, RLS13, FHMM10, MFHM12],

so they violate access control.

The other problem in contactless AC is to address privacy. Informally, if an AC pro-

tocol is private then it is hard for an outside observer to identify or recognize a party who

wants to access a system. Some previous works [gDoHSD10, DFF+14, DFG+13] touched

on privacy. PLAID [gDoHSD10] claims to be private (with an informal definition) but

79

Degabriele et al. [DFF+14] show that it is weaker than what it claims. Dagdelen et al.

[DFG+13] give two privacy related definitions: identity hiding and untraceability. The

problem in their privacy model is that it only considers the interaction between the card

and the reader. In reality, this may not be enough because the other interactions or

outputs of the other components (i.e., controller, database) of an AC system can violate

the privacy.

As a result, a formal security model which covers relay attacks has not been designed

for AC. In addition to this, a formal privacy model which considers whole AC system is

missing.

6.1 Our Contribution

By considering these critical issues, we design the first security and privacy model of

an access control system which encompasses the propagation time of communication.

Intuitively, in our definitions, we mix DB and access control based on a database of

privileges. However, mixing both is not so straightforward when it comes to prove the

security in a generic composition. Current AC protocols [All13, gDoHSD10] do not

consider malicious users in their security models while DB considers malicious users.

Therefore, the natural composition of them does not necessarily achieve the security

level we need for AC protocols1. In addition, we can show that an AC protocol which

is constructed based on a private DB protocol does not achieve privacy in AC. All these

reasons obviously show the need for complete security and privacy models in AC. Our

contributions in this chapter are as follows:

• We first define an integrated security model for AC including identification,

access control, and distance bounding by using the same components as defined in

Smart Card Alliance [All03].

• We define a new privacy model for AC which includes the time of the com-

munication. To the best of our knowledge, the time of the communication has not

been considered for defining a privacy model before. Our new model covers all the

previously defined privacy related definitions for access control such as identity

hiding and untraceability.

• We give a framework that clarifies how to use a secure DB to construct a

secure AC in our new security model. Basically, we show how to transform a man-

in-the-middle (MiM), distance-fraud (DF) and distance-hijacking (DH) secure DB

protocol into a secure AC scheme with proximity check. We also formally prove

the security of this transformation.

• We show that the same framework can be used to achieve privacy in AC with

restrictions on the database of the AC system: The framework achieves privacy if

1A malicious user can behave maliciously in an AC protocol and retrieve some information which
may help him to attack the DB protocol which is composed with this AC protocol.

80

Contactless Access Control

the database is trivial meaning that it is empty, or it includes all possible relations.

We give a counterexample protocol that clearly shows why the framework does not

work for non-trivial databases. This shows that privacy in distance bounding

is not always preserved when transformed into an access control system

which unfolds the need for a new model.

• We construct a specific AC scheme by using Eff-pkDBp [KV16] (Section 4.4) and

prove its security and privacy with any type of database.

Structure of the Chapter: In Section 6.2, we introduce our new security and privacy

model for AC. Then, in Section 6.3, we show how we can achieve secure and private AC

protocols by using secure and private DB protocols. We conclude this chapter with

Section 6.4.

6.2 Security and Privacy Model of AC

We first introduce the components of an access control system. In our definitions, for

simplicity, we do not consider the user who may give a PIN code or a biometric data to

authenticate himself (this would be a parallel protocol). The components of an access

control system are tag, reader, database and controller. Controller and database are in

the secure area of AC system. where it is not possible to tamper or access.

Tags (Access Cards): They hold personalized data which is used for identification

and authentication. In an AC system, each tag T generates a secret/public key pair

(skT ,pkT). They also store the public key of the controllers that are responsible for the

doors2 that T can access.

Reader: A reader is an interface between a tag and a door. We can consider them

as transmitters. They communicate with the tags. Each reader R has a location locR

which is important as the tag can be granted if the tag proves that it is close enough to

the reader.

Database: It contains information about tags and their rights. It stores a list of

(pkT , locR,req) triplets meaning that the tag with pkT is allowed to make the service

request req on a reader which is at location locR. For instance, a service request can be

“opening of a door”. The database is in the secure area.

The database is not necessarily a list of triplets. It can also be a predicate deciding

if a triplet belongs to it or not. A database is trivial if it is empty or if it contains all

possible triplets.

For simplicity, we consider that the content of the database is static in what follows.

2Door is a representation of the system or service that a user desires to access.

81

Controller: It controls access authentication. All controllers can be connected with

multiple readers. Depending on the data which is received from one of the connected

readers and the database, they give the final decision for the authorization.

More generally, the access control is relative to a service (such as opening a door) in a

given location. The tag T of public key pkT requests a service req to a reader at location

locR and its corresponding controller checks if the privilege (pkT , locR,req) exists in the

database. T stores req and it can change req later on. All controllers stay in the secure

area.

Definition 6.1 (Access Control (AC)). AC consists of a distance bound B, a data-

base DataB, a controller C, a reader R, and a tag T , the key generation algorithms:

GenC generating (skC,pkC) for a controller C and GenT generating (skT ,pkT) for a tag T .
C,R, and T run the algorithms C (skC,pkC,DataB,B),R (locR) and T (skT ,pkT ,pkC,req),
respectively. In the end of the protocol, C outputs either OutC = 1 and private output

POutC = (pkT , locR,req) if the authentication succeeds or OutC = 0 if it fails. R also

publicly outputs OutR = OutC.

Definition 6.2 (Correctness of AC). We say that an AC is correct, when for all locR,

req and for all sets of keys generated by GenC and GenT , if

• T requests service req to R at location locR,

• T is within a distance at most B from locR and

• (pkT , locR,req) is in DataB,

then
Pr[OutC = 1∧POutC = (pkT , locR,req)] = 1

The probability is over the randomness in algorithms C , R and T .

6.2.1 Security of AC

In this section, we give the formal security model for an access control system.

Adversarial and Communication Model: Each party (readers, controllers, tags,

adversaries) has polynomially many instances. An instance of a party corresponds to a

protocol execution with this party at a given location and time. Each instance of our

model is as follows:

• We have the communication model of distance bounding as described in Section

2.2.1.

• Readers are all honest. They are connected to their corresponding controllers with

a secure and an authenticated channel.

• Controllers are all honest. They are the only components of the AC which can

access the database.

82

Contactless Access Control

• Tags are all honest. However, they can receive special signals as defined in

Section 2.2.1 by replacing P with tags. We also change the input of Activate as

follows: the special signal Activate(T,req) activates the only activatable instance

of T with a specified input req3.
• Adversaries create the database. So, they can generate fake relations (p̃kT , ., .)

where ˜pkT and its corresponding secret key s̃kT are generated by an adversary.

Instances which could hold some s̃kT are called fake tags.

Except for the communication between readers and controllers, the adversary in-

stances see all communication.

Definition 6.3 (AC-Security). The game begins by setting up the components of the AC

system. The security game is as follows given the security parameter �:

• Run GenC(1�) → (skC,pkC) for the controller and run GenT (1�) → (skTi ,pkTi
) for

each tag Ti and give the public key pkC and pkTi
’s to the adversary.

• The adversary creates instances of Ti at chosen locations. Each instance can start

after activation and run T (skTi ,pkTi
,pkC,req) only once.

• The adversary creates instances of readers at chosen locations locRk . They run

R (locRk) once activated by an incoming message. They communicate with an in-

stance of C over a secure channel 4. There is a distinguished instance of a reader

R. We denote by locR its location.

• The adversary sets DataB.

• The adversary creates instances of himself (fake tags). These instances run inde-

pendently and communicate.

All messages follow our communication model. The game ends when the distinguished

instance R (and its corresponding instance C) outputs some value OutR. An AC protocol

is secure, if for any such game, the adversary wins with a negligible probability. A wins

the game if OutR = 1 and POutC = (pkT , locR,req) for some pkT and req satisfying at

least one of the following conditions:

1. (pkT , locR,req) /∈ DataB,

2. pkT ∈ {pkTi
}t

i=1 and no active instance of the honest tag holding pkT is close to locR

during the execution of the AC protocol with C and R,

3. pkT /∈ {pkTi
}t

i=1 and no fake tag is close to locR during the execution with C and R.

where t is the number of public keys generated by GenT in setup.

3This can also correspond to a user who is the owner of T to input whatever requests he wants into
his tag.

4For simplicity, we assume that the instance C of the controller is at the same location as Rk but the
time of communication between Rk and C should have no influence on the result. The difference between
C and Rk only makes sense for practical reasons.

83

Remarks:

• In the third condition, we need that no fake tag is close to locR to prevent the

trivial attacks where a far away fake tag can give its secret key to a close by fake

tag. Without this condition, the adversary would always win. This would however

exclude all TF-attacks as well.

• The third condition is to prevent DF or DH attacks.

• The second condition is to have security against MiM attacks including imperson-

ation attacks and relay attacks.

In practice, the controllers are connected to multiple readers. So, it is not practical

for them to check if a tag is close. Therefore, readers are the components that can give

this decision.

Before proceeding the next part, we show that the natural composition of access con-

trol and distance bounding does not always achieve the security in Definition 6.3. Assume

that we have a MiM, DF and DH secure symmetric DB protocol DB = (K ,P,V,B). As an

AC protocol, we have an AC protocol OPACITY [All13] 5. In the natural composition,

first, the parties run OPACITY with a minor change and then DB (the reader runs V ,

the tag runs P with the secret key K). The change in OPACITY is as follows: the reader

sends K at the end of the OPACITY protocol. Clearly, the modified version of OPACITY

is still secure AC in the security model of Dagdelen et al. [DFG+13] as K is completely

independent parameter. Unfortunately, this composition is not secure in Definition 6.3

as an adversary can win AC-game with satisfying the second condition. However, when

we look at the modified OPACITY and DB separately in their own security models, they

are secure. Therefore, the generic composition of AC and DB is not straightforward.

6.2.2 Privacy of AC

Privacy is also an important property to be achieved in access control protocols. The

definition of privacy we provide uses the same adversarial and communication model

that we use for security. It also covers the identity hiding and untraceability with the

corruption of tags. Informally, identity hiding means given an execution of a protocol

the adversary should not output the public key of the tag and untraceability means the

adversary should not decide if two executions belong to the same tag or not.

We adapt Definition 2.14 in a setting where the transmission time is important.

Definition 6.4 (AC-Privacy). The privacy game has the same setting as the game in

Definition 6.3. We first decide to play the right r or the left l game. Differently than

the security model, each active tag instance can be paired with an another tag instance

by an adversary. The pairing happens with the signal Draw(Ti,Tj,k) which pairs Ti and

Tj by giving an index k, if the conditions below are satisfied:

5OPACITY is basically a key agreement protocol where the authentication of a tag is done with this
key.

84

Contactless Access Control

• Ti and Tj are at the same location,

• Ti and Tj have the same access privileges,

• neither Ti nor Tj is already paired and

• k is greater than the index of previous Draw signal to both Ti and Tj.

A tag instance can be paired to itself as well. The adversary lets vtag = (Ti,Tj,k) be a

virtual tag. All messages (and special signals) can only have a virtual tag as a destinator.

If we are in game l, then vtag simulates Ti and if we are in game r, vtag simulates Tj.

The signal Free(Ti,Tj,k) breaks the pair if it exists. The adversary can corrupt a tag Ti

(and actually all tags) by receiving skTi during the setup.

In the end, the adversary decides if vtag simulates game r or game l. If the decision

of the adversary is correct, then the adversary wins.

If an AC protocol is private, the advantage of a polynomial time adversary in this

game is bounded by a negligible probability.

The most important distinction of our definition is that we consider “communication

time which leaks the proximity of a party” contrarily of previous work related to privacy

[Vau07, HPVP11]. To the best of our knowledge, it has not been taken into account

before for a privacy model. It is reasonable to consider the location of a user as a privacy

leakage for the protocols where the communication time influences the output such as

DB.

As Mitrokotsa et al. [MOV14] showed that location privacy is nearly impossible to

achieve, we cannot prevent this leakage. So, our privacy game has the condition of being

at the same location which is necessary to avoid the adversary to trivially distinguish

the left or right game by checking the communication time.

Besides, the condition of having the same access privileges is necessary to prevent the

adversary to determine the left or right game by seeing the accepting or the rejecting

message by a controller.

6.3 Distance Bounding in Access Control

In this section, instead of designing a new AC protocol, we give a conceivable framework

that converts a DB protocol into an AC protocol. We prove in Theorem 6.5 that,

after conversion, the AC protocol achieves AC-security (in Definition 6.3) assuming

that the DB protocol is MiM and DH secure. However, we show that we cannot always

achieve AC-Privacy with this framework, even though the DB protocol is (strong) private

according to Definition 2.14. Therefore, we prove in Theorem 6.6 that the AC protocol

which is converted from a private DB achieves privacy, if DataB is trivial. The details

are in the following subsections.

85

C (skV ,pkV ,DataB,B) R (locR) T (skP,pkP,pkV ,req)
req,locR←−−−− req←−−−−

run V (skV ,pkV)
run DB=(KP,KV ,P,V,B)←−−−−−−−−−−−−−−−−−−−−→ run P(skP,pkP,pkV)

output Out and pk
if (pk, locR,req) ∈ DataB

OutC = Out
if Out= 1

POut= (pk, locR,req)
else: OutC = 0

OutC−−−−→ OutC−−−−→

Figure 6.1 – The framework to convert a DB protocol to an AC protocol

6.3.1 Secure AC with a Secure DB

If we have a public-key DB protocol (KP,KV ,P,V,B), we can construct an AC protocol

with (GenC,GenT ,C , T ,DataB,B) with the framework below:

• We match the key generation algorithms: GenC = KV , GenT = KP. So, (skC,pkC) =

(skV ,pkV) and (skT ,pkT) = (skP,pkP).

• We create DataB according to the access privileges of tags using the keys.

• T (skP,pkP,pkV ,req) uses P(skP,pkP,pkV) as a subroutine. T outputs req and then

run P(skP,pkP,pkV).

• Whenever R (locR) is activated with req, it sends req and locR to C .

• C (skV ,pkV ,DataB,B) runs V (skV ,pkV) as a subroutine jointly with R (locR). When

V reaches the part where challenge/response is necessary to determine the distance

to locR, R steps in to check if the responses arrive on time and are correct.

Here, C may give all necessary input(s) to R so that R can check the responses.

Alternatively, C may only give the challenges, and R only determines if the re-

sponses arrive on time. Then, if they arrive on time, R can send the responses to

C so that C can check if the responses are correct. The only restriction is that R
has to decide if the responses arrive on time.

• When V (skV ,pkV) outputs Out and the private output pkP: If (pkP, locR,req) ∈
DataB and Out = 1, it publicly outputs OutC = 1 and privately outputs POutC =

(pkP, locR,req). Otherwise, it outputs OutC = 0. In both cases, R outputs OutR =

OutC. The framework is in Figure 6.1.

An example protocol in Figure 6.2 is constructed using this framework. Before, we

prove that the framework achieves AC security if DB is MiM and DH secure.

86

Contactless Access Control

Theorem 6.5. Assuming that a DB protocol with (KP,KV ,P,V,B) is MiM-secure (Defin-

ition 2.12) and DH-secure (Definition 2.10), then an AC protocol using this DB protocol

with the framework as described in Figure 6.1 is secure according to Definition 6.3.

Proof. Assume that there exists an adversary A which wins the game in Definition 6.3

where the output of the game is OutR = 1 and POutC = (pkTi
, locR,req), then we can

construct an adversary which wins MiM-game or DH-game.

Apparently, A can win the AC-game with either second or third condition because

C outputs OutC = 0 if given (pkTi
, locR,req) /∈ DataB (the first winning condition) which

makes impossible to win with the first condition.

Winning with the second condition: If pkTi
∈ {pkTk

}t
k=1 and no instance of the tag with

pkTi
is close to locR during the execution of the AC protocol with C and R, then we can

construct an adversary B which wins MiM-game (Definition 2.12) of DB protocol with

(KP,KV ,P,V).

B receives pkV and pkP from MiM-game. Then, it randomly picks i ∈ {1, ..., t} where t
is the number of (honest) tags needing to be simulated. The public key pkTi

which will be

used to simulate the ith tag Ti is pkP. Here, Ti will have a role as a prover on MiM-game.

For the rest of the tags, B generates t −1 secret/public key pairs (skTj ,pkTj
) with using

GenT (1n) which are the secret/public keys of Tj’s. Then, it sends pkV as the controller’s

public key and pkT1
, ...,pkTi−1

,pkPPP,pkTi+1
, ...,pkTt

as the tags’ public-keys in AC-game to

A . Remark that pkV and pkP are indistinguishable since they are generated with the

same key generation algorithms of controllers and tags, respectively.

At some moment, B receives DataB from A . If (pkP, ., .) /∈ DataB, then B loses the

MiM-game as in this case, there will be no chance that A wins the AC-game with this

tag. Otherwise, it locates instances of Ti (which corresponds to P’s instances in the

MiM-game) on the locations that A decides. B simulates the instances of AC-game as

follows:• Instances of Tj’s where Tj �= Ti: For the signals Move(Tj, loc) and Terminate(Tj), B
just simulates. When it receives the signal Activate(Tj,req), it simulates by running

the algorithm T (skTj ,pkTj
,pkV ,req). Remark that as B knows each skTj , it can run

T .

• Instances of Ti: For the signals Move(Ti, loc) and Terminate(Ti), B moves the cor-

responding instance of P in the MiM-game to loc and halts the corresponding

instance of P in the MiM-game, respectively. Whenever it receives the signal

Activate(Ti,req), it first outputs req and then runs (activates) the corresponding

instance of P in the MiM-game. Whatever the instance of P in MiM-game outputs,

B outputs the same.

• Instances of controller and reader: Whenever A activates R (via sending req) so

that C , B runs an instance of V .

In the end, if A picks a reader instance R which sees pkTj
= pkP as a distinguished one,

B wins with the success probability below. Otherwise, B loses MiM-game as V has to

output OutV = 1 and pkP in MiM-game.

87

Pr[B wins]≥ Pr[A wins∧Condition 2]× 1
t

Winning with the third condition: If pkT /∈ {pkTi
}t

i=1 and no instance of the adversary

is close to locR during the execution with R, then we can construct an adversary B ′ which
wins DH-game. The reduction is very similar to the previous one except we replace P
with an honest prover P′.

Pr[B ′ wins]≥ Pr[A wins∧Condition 3]× 1
t

In the end, we have

Pr[B wins]+Pr[B ′ wins]≥ Pr[A wins]× 1
t
.

As we know that the success probability of B in MiM and B ′ in DH game is negligible,

then the success probability of A is negligible as well.

Now, we give an example of an AC protocol (Eff-AC) in our framework by converting

the public-key DB protocol Eff-pkDB [KV16] (Section 4.4).

Eff-AC: We use Eff-pkDB with its variant. Its variant uses a key agreement pro-

tocol Nonce-DH [KV16] (Section 4.2) to agree on a secret S and a symmetric-key DB

OTDB [Vau15c] to run with []S. We stress that this is only one example of the gen-

eric construction of Eff-pkDB. In particular, we could replace NonceDH by another key

agreement protocol which is D-AKA secure [KV16] and possibly eliminate the random

oracle assumption.

The public parameters for the key generation algorithms GenC (KV) and GenT (KP)

are a group G of prime order q and its generator g. GenC and GenT pick skC and skT

from Zq, and set pkC = gskC and pkT = gskT , respectively. Eff-AC works as follows:

The tag has the input skT ,pkT ,pkC,req, the controller C has the input skC,pkC,B,DataB
and the reader R has the input locR. T sends req to R and R sends it along with locR to

C. Then, C,R and T run Eff-pkDB. Here, T runs the proving algorithm of Eff-pkDB,

and C and R run the verifying algorithm of Eff-pkDB, jointly. The details of these

algorithms are as follows: First, T picks a random value N from {0,1}n and sends N and

pkT . After C receives them, it computes S = H(g,pkT ,pkC,pk
skC
T ,N). Meanwhile, T also

computes S = H(g,pkT ,pkC,pk
skT
C ,N). After, C gives S and B to R so that R runs the

challenge phase. Until this part corresponds to the Nonce-DH protocol. Then, OTDB

[Vau15c] is run by R and T as follows:

R picks a value NR ∈ {0,1}2n and sends it to T . Then, R and T compute X = NR ⊕S
before the n-round challenge phase begins. In each round i, R picks a challenge Qi and

starts the timer. In response, T sends Wi which is the 2i+Qth
i bit of X . When R receives

it, it stops the timer. After the challenge phase, if all responses are correct and arrive

88

Contactless Access Control

on time (i.e. with in less than 2B), then R sets Out= 1. Then, R sends Out to C . This

is the end of Eff-pkDB.

C sets OutC = Out. If Out= 1, C checks if C has the access privilege by checking if

(pkT , locR,req) ∈ DataB. If it is in DataB, it privately outputs POutC = (pkT , locR,req).
Otherwise, it sets OutC = 0. Finally, C sends OutC to R and R outputs it as OutR.

Ci(skC,pkC,B,DataB)
R (locR) T (skT ,pkT ,pkC,req)

req,locR⇐==== req←−−−− pick N ∈ {0,1}n

S =
H(g,pkT ,pkC,pk

skC
T ,N)

pkT ,N⇐==== pkT ,N←−−−− S =
H(g,pkT ,pkC,pk

skT
C ,N)

S,B
====⇒ pick NR ∈ {0,1}2n NR−−−−→ X = NR ⊕S

X = NR ⊕S
for i = 1 to n

start timeri
Qi−−−−→ Wi = X2i+Qi

stop timeri
Wi←−−−−

if ∀i timeri ≤ 2B
and Wi = X2i+Qi

Out= 1

if Out= 1 Out⇐====
and
(pk, locR,req) ∈
DataB

POut= (pk, locR,req)
OutC = Out

else: OutC = 0 OutC====⇒ OutC−−−−→

Figure 6.2 – Eff-AC. Double arrow shows that the communication is secure and authen-
ticated while sending the message above it. The gray colored parts are Eff-pkDB.

As Eff-pkDB is MiM and DH-secure [KV16], Eff-AC which uses Eff-pkDB with

the framework in Figure 6.1 is AC-secure thanks to Theorem 6.5.

Remark: The security proof of Eff-pkDB [KV16] is also valid for a variant where the

verifier generates an ephemeral (skC,pkC) pair and sends pkC to the prover. So, tags do

not even need to store pkC in this variant of Eff-pkDB. Therefore, a variant of Eff-AC

with an ephemeral key is secure thanks to Theorem 6.5. This variant is very desirable

for practical reasons because we can allow many controllers and the tag does not need

to store all the corresponding keys.

89

6.3.2 Private AC with a Private DB

The difficulty in proving privacy in an AC protocol which uses a private DB protocol

comes from the fact that DataB must discriminate tags. This fact may leak information

about identities. In DB, the output of V does not depend on pkP. Hence, the private

output of the verifier (pkP) plays no role in the DB privacy game of Definition 2.14. We

show here a generic privacy preservation result with our framework, but only for a trivial

DataB. Trivial DataB makes POutC play no role in AC. We cannot prove the same result

for an arbitrary database. Remember, a database is trivial if it is empty or if it contains

all possible triplets.

Theorem 6.6. Assuming that the DB protocol with (KP,KV ,P,V,B) is private according

to Definition 2.14, then an AC protocol with using this DB protocol with the framework

as described in Figure 6.1 is private when DDDaaatttaaaBBB is trivial based on Definition 6.4.

Proof. Assuming that there exists an adversary A breaking the privacy in AC with a

trivial DataB, then we can construct an adversary B that breaks the privacy of DB.

B simulates the communication model of AC for A , except the subroutines P and V
for honest participants. For each message and signal that B receives for tags, it works

as follows:

• Receiving a signal Draw(Ti,Tj,k): It checks the necessary conditions to be paired.

If they are satisfied, it calls the Draw oracle in the privacy game of DB with the

inputs Ti,Tj. In respond, the Draw oracle sends vtag. B stores the information that

vtag corresponds to (Ti,Tj,k).

• Receiving a signal Free(Ti,Tj,k): It retrieves the corresponding vtag to (Ti,Tj,k). If
it exists, it calls the oracle Free with the input vtag in the privacy game of DB.

• Receiving a signal Activate or Move: It simulates them.

• Receiving a message m: It retrieves vtag and calls the oracle SendP in the privacy

game of DB with the input (vtag,m). Then, it receives a respond m′ from the

SendP oracle and sends m′ to A .

To simulate a reader receiving m, B behaves as follows:

• If it is the first time and m= req, B calls the Launch oracle to get a session identifier

π. Then, it calls SendV with π and receives an empty message m′.

• Otherwise, it calls the oracle SendV with the input (π,m) and receives m′.

If m′ is not the final message, it sends m′ to A . Otherwise, m′ = OutV . In this case, B
assigns b = 0 if DataB is empty and b = 1 if it is not empty (meaning that it has all

possible relations). In the end, it sends OutC =OutV ∧b to A . The simulation is perfect.

So, A and B have the same advantage.

90

Contactless Access Control

Why only for trivial DDDaaatttaaaBBB: We can show that Theorem 6.6 does not work for all

DataB with the following counterexample.

Assume that we have a private DB (KP,KV ,P,V,B). From DB, we can construct

another private protocol DB’ (KP,KV ,P′,V ′,B) where P′ and V ′ work as defined below:

P′(skP,pkP,pkV) :
receive f lag
if f lag = 1 and pkP is odd

KP → (sk′P,pk
′
P)

(skP,pkP)← (sk′P,pk
′
P)

run P(skP,pkP,pkC)

V ′(skV ,pkV)

send 0

run V (skV ,pkV)

Clearly, DB’ is still private because the only change is to remove the identity of the

prover by replacing the secret and public keys with some random keys. (We recall that

pkP as a private output of V plays no role in Definition 2.14.)

Now, let’s consider the conversion of DB’ to an AC protocol with the framework. The

adversary can break the privacy of the AC protocol as follows: He first picks two tags

T1 and T2 which have public keys with different parities and moves them at the same

location. It also creates a DataB = {(pkT1
, locR,req),(pkT2

, locR,req)}. Then, it pairs

(T1,T2) with the signal Draw(T1,T2,0) and activates the pair. It sends a message f lag = 1
to vtag = (T1,T2,0) (by replacing the message f lag = 0 which comes from a reader R).
Then, it lets C,R and vtag execute the protocol. In the end, R outputs OutR. Depending

on the parity, the adversary can find out the left or right game with probability 1 (e.g.,

if pkT1
is odd and OutR = 1, it means right game (T2) is simulated).

In addition, even by weakening Definition 2.14 such that the adversary does not create

a database and it is not allowed to pair tags (instead, the game does), we achieve no

privacy. In this case, the advantage of the adversary with this attack would be 1
2 : If the

public keys of paired parties have the same parity, then the attack does not give any

more advantage than the privacy game of DB’ gives. If they have different parity, the

adversary wins with probability 1.

Even though we cannot use our framework to achieve privacy with all private DB

protocols, we can still have private AC using our framework with some DB protocols

where one of them is Eff-pkDBp [KV16]. Now, we describe Eff-ACp which is converted

from Eff-pkDBp.

Eff-ACppp (See Figure 6.3): It is very similar to Eff-AC. Differently here, the

secret/public key pair of C consists of two parts: (skC,pkC) = ((skC1 ,skC2),(pkC1
,pkC2

))

where (skC1 ,pkC1
) is used for the encryption and (skC2 ,pkC2) is used for Nonce-DH (key

agreement protocol). The only change on T is that it sends the encryption of (pkT ,N)

and on C is that it retrieves pkT ,N by decrypting the encryption with skC1 . The rest is

the same with Eff-AC.

Theorem 6.7. Eff-ACp is a private access protocol in the random oracle model according

to Definition 6.4, assuming that the cryptosystem is IND-CCA secure (Definition 2.18)

91

Ci(skC,pkC,B,DataB) R(locR) T (skT ,pkT ,pkC,req)

req,locR⇐===== req←−−−−− pick N ∈ {0,1}n

N,pkT = DecskC1
(e) e⇐===== e←−−−−− e = EncpkC1

(N,pkT)

The same as in Eff-AC←−−−−−−−−−−−−−−−−−−−−→

Figure 6.3 – Eff-ACp

and GDH problem is hard (Definition 2.17).

Note that the same result applies to the generic construction of Eff-pkDBp [KV16],

i.e., not only the one based on GDH and the random oracle. We could indeed replace

Nonce-DH by another key agreement protocol which is D-AKAp secure [KV16].

Proof (sketch): We adapt the proof from the privacy proof of Eff-pkDBp (Theorem

4.14).

We define games Γb
i below and the success probability of an adversary is pb

i .

Γb
0 : It is the same game that we defined in Definition 6.4 where b = l meaning we are

in the left-game or b = r meaning we are in the right-game.

Γb
1 : We reduce Γb

0 to Γb
1 where we simulate the controller instances without decrypting

the ciphertext that is sent by a vtag. Because of the correctness of the cryptosystem,

pb
1 = pb

0.

Γb
2 : We reduce Γb

1 to Γb
2 where vtag is simulated by encrypting a random value instead

of (pkT ,N). We can easily show pb
2 − pb

1 is negligible by using the IND-CCA security of

the cryptosystem.

We reduce Γl
2 to Γr

2 where we replace all secret/public keys (skl,pkl) which are the

keys of the tag in the left-side in vtag by replacing secret/public keys (skr,pkr) of its

paired tag. Using D-AKAp security of Nonce-DH (Theorem 7 in [KV16]), we can show

that pl
2 − pr

2 is negligible.

Remark that if pkl and pkr are kept in a plaintext and used by the controller, the

replacing pkl with pkr make the same OutC result due to our assumption which says the

paired tags have the same access privileges.

So, pl
0 − pr

0 is negligible.

6.4 Conclusion

In this chapter, we designed a security model for AC which considers the whole inter-

action between components. The security model integrates the model of DB since the

distance of the tag is important to detect the relay attacks. In our model, we preserve

the security against adversaries which can be a tag or not. We also let the adversaries

construct the database. We constructed a privacy model for AC which includes time of

communication as well.

92

Contactless Access Control

We gave a simple framework which securely transforms a DB to an AC. We proved a

similar result for privacy assuming that DataB is trivial. We showed why the theorem

does not work for other types of database. Finally, we constructed two AC protocols Eff-

AC and Eff-ACp which are adapted from Eff-pkDB and Eff-pkDBp [KV16], respectively.

We proved their security and privacy in our security and privacy models.

93

Chapter 7
Secure Contactless Payment

A contactless payment (CP) lets a card holder execute payment without any interac-

tion (e.g., entering a PIN code or signing) between the terminal and the card holder.

Even though the security is the first priority in a payment system, the formal security

model of contactless payment does not exist. Therefore, in this chapter, we design an

adversarial model and define formally the contactless-payment security against mali-

cious cards and malicious terminals which also deals with relay attacks. Accordingly, we

design a contactless-payment protocol and show its security in our security model. At

the end, we analyze EMV-contactless which is a commonly used specification by most

of the mobile contactless-payment systems and credit cards in Europe.

The content of this chapter is published in ACISP18 [KV18b].

Related Works

Despite the big developments in CP, we realize that some important functionalities such

as secure processing of payments has not been considered formally. No standard security

model was provided for the contactless payment. Some pre-play attacks were detected

for EMV because of poor random generation [BCM+14, BCM+15]. Roland and Langer

[RL13] discovered a cloning attack for EMV contactless payment cards as the contactless

payment process permits an attacker to learn the necessary credit card data for cloning.

The cloned cards can then be used to perform EMV Mag-Stripe transactions at any

EMV contactless payment terminal. Another type of pre-play attack [BCM+14] was

discovered which relies on the fact that EMV standards do not impose any encryption

between a merchant and an acquirer, or between an acquirer and an issuer.

The most important attack specific for EMV-contactless (and also most of the con-

tactless applications) is relay attack which has shown up for a while ago [MFHM12,

Wei10, FHMM10, DM+07, FDČ11]. Chothia et al. [CGDR+15] remark that the first

version of EMVco is vulnerable to relay attacks and provide a solution for this. The

current EMVco [emvb], therefore, take precaution partly against relay attacks using the

solution proposed by Chothia et al. [CGDR+15]. It is “partly” because the solution they

95

use is software based, where the terminal does not require a specific hardware. So, it

protects against relatively trivial adversaries but does not protect against the adversaries

using a sophisticated hardware [FDČ11, CHKM06]. To defend this level of security that

they provide against relay attacks, Chothia et al. [CGDR+15] say that “Considering

that contactless payments are limited to small amounts, the cost of the hardware would

be a disincentive for criminals”. However, limiting to small amounts does not necessar-

ily mean that the relay attack outcome will be also a small amount. An attacker in a

crowded area (e.g., metro, concert, museum) can execute many numbers of relay attacks

and increase its outcome. In addition, some cards are limited to some small amounts

in their issued country currency, but when they are abroad, this limit is removed be-

cause the conversion from the currency in the issued country to the currency in the

current country cannot be computed. Besides this, the solution provided by Chothia et

al. [CGDR+15] for EMV-contactless does not protect against DF and DH.

7.1 Our Contributions:

Considering all these attacks and the missing formalism, we design a new security model

for contactless-payment protocols and design a secure contactless-payment protocol. In

more detail, our contributions are as follows:

• We formally define contactless payment between parties: an issuer, a terminal, a

card. Then, we give two security definitions for malicious cards and for malicious

terminals in the adversarial and communication model that we define.

• We construct a contactless-payment protocol (ClessPay) which is secure against

malicious cards and malicious terminals. ClessPay uses a distance bounding pro-

tocol to protect against relay attacks by malicious cards and MiM-adversaries. We

proved formally the security of ClessPay in our security model.

• We analyze EMV-contactless protocol in our model. We give some vulnerabilities

of EMV-contactless protocol against malicious cards. We prove the security of

EMV-contactless protocol against malicious terminal formally. This type of formal

cryptographic analysis is the first for EMV-contactless protocol.

Structure of the Chapter: In Section 7.2, we introduce the security model for CP

where we consider security against malicious card and malicious terminal. Then, we

give our new CP construction ClessPay together with its security analysis in Section

7.3. In Section 7.4, we analyze the contactless EMV protocol in our security model. We

conclude this chapter with Section 7.5.

96

Secure Contactless Payment

Figure 7.1 – Payment System [emva]

7.2 Security Model of Contactless Payment

According to the EMV specifications [emva], a (contactless) payment system consists of

the following components:

Card Holder: It obtains the card from the issuer. It is responsible to present the card

to the devices which accept payments.

Merchant: It obtains the payment terminal from the acquirer. It also contacts with

the acquirer to receive reimbursements of the purchases by giving transmission details

of the payments.

Acquirer: It sets up payment terminals when a merchant requests. It is responsible

to pay the transactions to the corresponding merchants. After this, it communicates

with the issuer to transmit the completed transactions.

Issuer: It issues a personalized (chip) card to the card holder. The cryptographic keys

are installed to the cards by the issuer. The cards may contact with the issuer during

the payment process (in online transactions) for the verification of the payment data. It

also gives reimbursements of completed transactions to the acquirer. Each issuer has its

policy function to approve or disapprove a transaction.

97

We assume that the issuer has a database DDDaaatttaaaBBB which stores the card in-

formation. DataB consists of tuples (Public Key, Card Information) of each card. Card

information (CI) may consist of transaction list, the balance or the card limit.

Payment System: It is responsible to certify the issuer’s public key and operate the

online communication between the acquirer and the issuer.

Cards: They have a technology (e.g. NFC, Bluetooth) to communicate with a payment

terminal without any contact. In a contactless payment, cards are the components which

interact with the payment terminal to execute a payment with a certain amount. They

include a unique card number consisting of a Primary Account Number (PAN) and an

Expiration Date (ED). They also store a secret/public key pair in their tamper-resistant

module and the issuer’s public key. In this paper, we exclude card numbers for simplicity

and we identify the cards with their public keys only.

Terminals: In a contactless payment, terminals interact with both cards and issuers

via acquirers. They receive an order of payment from a card and validate the payment

together with the issuer of the card.

Our following definitions include neither the certification process by the payment

system nor the communication between merchant-acquirer and terminal-acquirer. We

assume in the following definitions that the setup between payment components has

been established. For the sake of simplicity, we assume the terminal represents both the

terminal and the acquirer in the payment system and all cards are issued by one issuer.

Definition 7.1 (Contactless Payment). A contactless payment consists of algorithms

for cards, terminals and issuers and a parameter B which is the distance bound. They

respectively run the algorithms C(skC,pkC,pkI), T (pkI,τT) and I(skI,pkI,DataB). Here,

(skC,pkC) and (skI,pkI) are the secret/public key pair of C and I, respectively. They are

generated by the algorithms GC(1�) and GI(1�) where � is a security parameter. DataB
is the database for cards’ information. I includes a subroutine Policy(pkC,CI,τI) where

CI represents the card information of a card with pkC. In the end, I outputs OutI ∈
{0,1} (OutI = 0 means cancel, OutI = 1 means accept the payment) and privately outputs

POutI = (pkC, idI,τI). Similarly, T outputs OutT ∈ {0,1} (OutT = 0 means cancel, OutT =

1 means accept the payment) and private output POutT = (pkC, idT ,τT) and C privately

outputs POutC = (idC,τC). Here, τ is the transaction (τT ,τI and τC are the values seen

by the terminal , the issuer and the card), id is the identifier of the transaction (idT , idI

and idC are similarly defined).

The algorithm Policy depends on the policy of the transaction approval by the issuer.

Therefore, we can consider it as an algorithm which decides if a transaction τI is possible

for the card with pkC and CI.
We note that OutI and Policy(pkC,CI,τI) can be different. OutI (similarly OutT) shows

the result of the contactless payment which can be either accepting the payment or

98

Secure Contactless Payment

canceling the payment. However, Policy(pkC,CI,τI) shows only if the card with pkC is

able to do the payment. For example, even though the payment is canceled (OutI = 0)
by the issuer, the issuer can approve the payment (Policy(pkC,CI,τI) = 1). It means that

the card is able to this payment but the payment process is canceled (e.g., because of

malicious behaviors).

Definition 7.2 (Correctness of Contactless Payment). We say that a contactless pay-

ment is correct for all B, transactions τ, database DataB, CI, and generated key pairs

(skC,pkC) and (skI,pkI) if

• the algorithms C,T and I are run,

• T starts a transaction τ,
• there exists a C whose distance from T is at most B,
• (pkC,CI) is in DataB of an issuer I,

then there exists an id such that

Pr[(OutT =OutI =Policy(pkC,CI,τ))∧(POutT =POutI =(pkC, id,τ))∧(POutC =(id,τ))] = 1.

Note that the output of T has to depend on the output of I because actually I is in

the position to decide if the transaction is possible with the card (in fact an honest card

cannot know if the transaction is possible).

Adversarial and Communication Model: In contactless payment, we consider the

similar adversarial and communication model with the access control (AC) security

model in Section 6.2.1 [KV17]. Remember that the parties in AC: a controller, a reader,

a tag. They correspond to the parties contactless payment: an issuer, a terminal, a

card, respectively. Differently than AC, in the adversarial model of contactless payment,

terminals can be malicious. In a nutshell, the model is as follows:

• The communication between T and I is secure and authenticated. The adversary

cannot attack this part of the communication.

• The communication between the parties is limited by the speed of light.

• All parties have polynomially many instances. An instance of a party is an execu-

tion of its corresponding algorithm at a given location. Instances of honest parties

cannot be run in parallel.

• The adversaries can change the location of honest instances (but they move at a

limited speed) or can activate them (See Section 6.2.1 for details).

• Adversaries create the database.

• Adversaries can change the destination of messages between a terminal and a card.

Definition 7.3 (Security in Contactless Payment with Malicious Cards). The security

game is as follows:

• Run the key generation algorithms GI(1�)→ (skI,pkI) and GC(1�)→ (skCi ,pkCi
) for

the issuer and each card Ci and give the public keys to the adversary.

• The adversary creates instances of cards (Ci’s) and the terminals at some locations

of his choice. There is a distinguished terminal T (T is honest).

99

• The adversary sets a database DataB of the issuer. The issuer instance I which

communicates with T is the distinguished issuer.

• The adversary creates the instances of himself (malicious cards or terminals) which

can run independently and communicate together.

We denote POutI = (pk′C, idI,τI) and POutT = (pk′′C, idT ,τT) the private outputs of I and

T . Following our communication model, the game ends when T outputs OutT . A con-

tactless payment is secure, if the adversary wins this game with negligible probability.

The adversary wins the game if OutT = 1 and at least one of the following conditions are

satisfied:

1. (pk′C, .) /∈ DataB,
2. pk′C ∈ {pkCi

} and the distance between any C holding pk′C and T is more than B
during the execution of the protocol with idT ,

3. pk′C /∈ {pkCi
} and no instance of the adversary is close to T during the execution of

the contactless payment protocol with T and I.
4. (pk′C, idI,τI) �= (pk′′C, idT ,τT),

5. pk′C ∈ {pkCi
} and there exists no card with pk′C which privately outputs (idI,τI).

Remarks: The first winning condition shows that a card which does not belong to

DataB should not authenticate. The second and the third conditions are to protect

against MiM and DH (DF as well), respectively. Finally, the last two conditions are to

be sure that the transaction that I and T approve and complete, and the transaction

that I and an honest C approve and complete are the same.

Definition 7.4 (Security in Contactless Payment with Malicious Terminals). The se-

curity game is as follows:

• Run the key generation algorithms GI(1�)→ (skI,pkI) and GC(1�)→ (skCi ,pkCi
) for

the issuer I and each card Ci and give away public keys.

• The adversary creates instances of Ci and the terminals at some locations of his

choice. There is a distinguished instance I.
• The adversary sets a database DataB.
• The adversary creates the instances of himself which can run independently and

communicate together (as malicious cards or malicious terminals).

At the end of the game I outputs OutI and POutI = (pk′C, idI,τI). A contactless payment

is secure, if the adversary wins this game with negligible probability. The adversary wins

the game:

1. if OutI = 1 and if at least one of the following conditions are satisfied:

(a) (pk′C, .) /∈ DataB,

(b) pk′C ∈ {pkCi
} and there exists no card with pk′C which outputs (idI,τI),

(c) pk′C ∈ {pkCi
} and the instance of this card with pk′C producing the output

(idI,τI) has a distance from the adversary and any honest terminal more than

B.

100

Secure Contactless Payment

2. or if there exists an honest-card instance with pkC ∈ {pkCi
} which privately outputs

POutC = (idC,τC) and there exists an issuer instance which has Policy(pkC,CI,τC) =

0 and idC.

The proximity condition (condition 1c) has not been considered by any of the pay-

ment systems before. Actually, even though we make sure the payment is completed

successfully only when the terminal is close, we still cannot prevent a malicious terminal

to execute a payment unbeknown to a card holder. For example, a malicious terminal

can be moved close to a card while the card is not in the shop. This means the proximity

condition does not prevent the malicious intention of the terminals. If we can be sure

that the terminals can be run in a certain location, then we can guarantee the security

against malicious terminals with the proximity condition. This can be possible by using

proof of location in Chapter 9, but current terminals do not support this. For simpli-

city, we ignore integrating proof of location into our security model. Therefore, in our

protocol, we eliminate 1c. We call almost-secure against malicious terminals if a

protocol is secure without the proximity condition 1c in Definition 7.4.

The condition 2 is to prevent honest cards to make payment even though the issuer

does not approve this payment. For example, this condition prevents attacks where ma-

licious terminals make the honest cards execute payment (maybe without the knowledge

of the honest card) for a big amount of money where normally the issuer would not let

this amount be paid.

7.3 Contactless Payment Protocol

In this section, we construct a secure contactless-payment protocol from a public-key

distance bounding DB=(KP,KV ,V,P,B), an encryption scheme (Enc,Dec) and a signature

scheme (Sign,Verify).

7.3.1 ClessPay

The protocol ClessPay (See Figure 7.2) starts after the terminal T creates a transaction

τ and connects with a card C. We do not give the details of τ since it depends on

the payment system. It may include the transaction details such as date, amount and

currency.

In our protocol, we use signature schemes and an encryption scheme. Therefore,

some secret/public key pairs are generated by using their key generation algorithms.

More specifically, the key generation algorithm GI generates a secret/public key pair

(skI,pkI) = ((skIs ,skIe),(pkIs
,pkIe

)) where (skIs ,pkIs
) is generated by the key generation

algorithm of the signature scheme used by issuers and (skIe ,pkIe
) is generated by the

key generation algorithm of the encryption scheme. The key generation algorithm GC

generates a secret/public key pair (skC,pkC) using the key generation algorithm of the

signature scheme used by cards. ClessPay consists of the following phases:

101

I(skI ,pkI ,DataB) T (pkI ,τ) C(skC,pkC,pkI)

Initialization pick r

KV (1�)→ (skV ,pkV)
τ,pkV−−−−−→ KP(1�;r)→ (skP,pkP)

id,pkC←−−−−− pick id

V (skV ,pkV)→OutV ,pkP
DB←−−−−→ P(skP,pkP,pkV)

if OutV = 0: cancel
Approval

φ = ∃(pkC,CI) ∈ DataB
pkC ,pkP,id,τ←−−−−−−−

s.t. Policy(pkC,CI,τ)→ 1
if φ = False: cancel

SI = signskIs
(id,τ,pkC)

SI−−−−−→ SI−−−−−→ if ¬VerifypkIs
(SI , id,τ,pkC):

cancel
Completion

SC = signskC
(id,τ,r)

SC,r =DecskIe
(EC)

EC←−−−−− EC←−−−−− EC = EncpkIe
(SC,r)

KP(1�;r)→ (sk,pk) POutC = (id,τ)
if ¬VerifypkC

(SC, id,τ,r)
∨pkP �= pk:cancel

OutI = 1 OutI−−−−−→ OutT =OutI

if OutT = 0: cancel
POutI = (pkC, id,τ) POutT = (pkC, id,τ)

Figure 7.2 – The ClessPay Protocol.

1. Initialization Phase: This phase is executed by T and C. If this phase cannot

be completed successfully, then T cancels the transaction.

T and C generate ephemeral secret/public key pairs for the distance bounding

protocol DB = (KP,KV ,V,P,B). For this, C first picks the random coins r and runs

the deterministic algorithm KP(1�;r) to generate (skP,pkP). Here, what C does

is equivalent to running KP(1�). C needs to generate the random coins used in

KP(1�) because they will be needed in the last phase as a one-time proof for having

generated pkP. Then T runs KV (1�) to obtain (skV ,pkV) used for distance bounding.

T sends τ and pkV to C. After receiving them, C picks an identifier id and replies

with id and pkC to introduce itself.

T and C start the distance bounding protocol so that T determines the distance

of C. Therefore, T runs the verifier algorithm V (skV ,pkV) of DB and C runs the

prover algorithm P(skP,pkP,pkV) of DB. At the end, V outputs OutV which shows

if C is close or not and private output POutP = pkP. If OutV = 0, then T cancels

the transaction. Otherwise, they continue with the next phase. Remark that, T
does not know yet if the card whose distance is determined is an authorized card

because C has not authenticated itself with its (static) public key pkC yet.

2. Approval Phase: This phase aims to check with the issuer whether the card can

102

Secure Contactless Payment

execute the transaction. T first sends pkC,pkP, id,τ to I. I checks if the card with

pkC is in DataB. If it is in DataB, it retrieves the card information of the card

(CI) and runs the algorithm Policy(pkC,CI,τ) which outputs 1 if the card has the

privilege to execute τ1. If this algorithm returns 0, the transaction is canceled.

Otherwise, I approves the transaction.

If it is approved, I signs with skIs the message (id,τ,pkC). This signature is necessary

for cards to be sure that they are approved for the payment. Then, it sends this

signature SI to T and T relays it to C. C runs the verification algorithm of the

signature scheme VerifypkIs
(SI, id,τ,pkC) to be sure that C and I have the same

(id,τ,pkC). If C verifies SI, then the next phase begins. Otherwise, C cancels the

transaction.

3. Completion Phase: In this phase, the execution of the transaction τ with id is

completed by I, T and C. First, C signs the message (id,τ,r) with skC as a proof of

execution of the payment. The reason of signing r is showing that C took part in

the distance bounding protocol. Then, it encrypts the signature SC and r by using

the key pkIe
. The reason of the encryption is to hide r. At the end, C sends the

encryption (EC) to T . T relays it to I. At this point, the transaction is completed

for C and it privately outputs (id,τ).

In order to obtain SC and r, I first decrypts EC with skIe . I verifies that r generates

pkP by running KP(1�;r). If it is verified, it also verifies SC with VerifypkC
(SC, id,τ,r).

If the signature is valid, then it sends OutI = 1 to T and privately outputs

(pkC, id,τ). Otherwise, I cancels the transaction.

Cancel the transaction: As it can be seen in the protocol, the cancellation can be done

by I, T or C. In the case of a timeout, parties cancel as well. When I cancels, it sets

OutI = 0 and sends OutI to T . Then, T cancels as well. When T cancels, it sets OutT = 0
and terminates. When C cancels, it sends a cancel message to T and terminates with

POutC =⊥.

7.3.2 Security

Theorem 7.5. Assuming that DB = (KP,KV ,V,P,B) is DF secure (Definition 2.8), DH-

secure and MiM-secure, the encryption scheme is IND-CCA secure and the signature

scheme used by cards is secure against existential-forgery, key-only message attacks (EF-

MA) secure, ClessPay is secure against malicious cards (Definition 7.3).

Proof. We assume that we have honest cards {C1,C2, ...,Ck} and their public keys are in

a set {pkCi}.
Γ0 : The instances of the issuer, terminals and cards play the game in Definition

7.3. There is a distinguished terminal instance T which privately outputs POutT =

1The Policy checks the execution right of a card depending on the bank policy. So, we do not discuss
how this verification happens.

103

(pk′′C, idT ,τT) and POutV = pk′P, and a distinguished issuer I which communicates with

T and privately outputs POutI = (pk′C, idI,τI). Clearly, in Γ0, the adversary cannot win

with the first condition in Definition 7.3 ((pk′C, .) /∈DataB) because the issuer algorithm
always cancels the transaction if (pk′′C, .) /∈ DataB.

Γ1 : It is the same game as Γ0 except that (pk′C, idI,τI) is always equal to (pk′′C, idT ,τT).

Because of our secure and authenticated channel assumption between T and I and be-

cause of the honesty of T , they have the same public key, the identifier and the trans-

action. Besides, T outputs 1, if I outputs 1. So, p1 = p0. In Γ1, the adversary cannot

win with the fourth condition in Definition 7.3 ((pk′C, idI,τI) �= (pk′′C, idT ,τT)).

Γ2 : It is the same game as in Γ1 except that instances of honest cards do not sign and

they encrypt a random message. Basically, each stores the ciphertext together with the

identifier, transaction and static/ephemeral public keys to a table. I does not decrypt

such random ciphertexts and retrieves their data from the table. More specifically, we

simulate them as follows:

C(skC,pkC,pkI)

same as in the protocol until signa-

ture generation

pick R

EC = EncpkIe
(R)

store (EC, id,τ,pk,pkP) in TableEnc

send EC

POutC = (id,τ)

I (skI,pkI,DataB)
the same as in the protocol

receive EC

if (EC, id,τ,pkC, .) ∈ TableEnc:

retrieve pk where (EC, id,τ,pkC,pk)∈ TableEnc

if pk �= pkP:

cancel

OutI = 1,POutI = (pkC, id,τ)
else: as in the protocol after receiving EC

We can show Γ1 and Γ2 are indistinguishable by using the IND-CCA security of the

encryption scheme. For this, we first define a game Γ2,Cj where we simulate only the

instances of an honest card Cj’s encryption as in Γ2. Then, we define another game Γi
2,Cj

where the first i instances of Cj which we denote {C1
j , ...,C

i
j} is simulated as in Γ1 and the

rest as in Γ2,Cj . The reason of defining these games is to show that ∀ j ∈ {1,2, ...,k} Γi
2,Cj

and Γi+1
2,Cj

are indistinguishable implying that Γ1 and Γ2,Cj are indistinguishable implying

that Γ1 and Γ2 are indistinguishable.

To show the indistinguishability of Γi
2,Cj

and Γi+1
2,Cj

, we use an adversary B which

plays IND-CCA game and simulates either Γi
2,Cj

or Γi+1
2,Cj

against an adversary A which

distinguishes Γi
2,Cj

and Γi+1
2,Cj

. B gives the public key that it received from IND-CCA

game to A as a public key of I. B simulates the first i instance of Cj and other honest

cards’ instances as in Γ1 and the rest of Cj’s instances as in Γ2,Cj except Ci+1
j . It decrypts

ciphertexts with using IND-CCA game. When B needs to simulate Ci+1
j , it generates

the signature and gives one message which is the signature and the random coin (the

message that it needs to be encrypted in Γ1) and another message which is a random

R to IND-CCA game. Then, B uses the challenge ciphertext received from IND-CCA

game as an encryption generated by Ci+1
j . If IND-CCA game encrypts the first message

B simulates Γi
2,Cj

and if it encrypts the random message, B simulates Γi+1
2,Cj

. So, if A
succeeds to indistinguish the games, then B breaks the IND-CCA security. So, Γi

2,Cj

104

Secure Contactless Payment

and Γi+1
2,Cj

is indistinguishable. Using the hybrid argument, we can say that Γ1 and Γ2,Cj

are indistinguishable. Since ∀ j ∈ {1,2, ...,k} Γ1 and Γ2,Cj are indistinguishable, we can

conclude that Γ1 and Γ2 are also indistinguishable. The reason of this conclusion comes

from the fact that distinguishing Γ1 and Γ2 implies distinguishing Γ1 and either one of

Γ2,Cj . So, |p2 − p1| is negligible.
Remark that the random coins of the honest cards are not used in Γ2.

Γ3 : It is the same game as Γ2 except that OutV = 0 after the execution of V (skV ,pkV)

if one of the situations happens:

1. no party is close to T ,

2. pkP is generated by the adversary and there is no adversary close to T ,

3. pkP belongs to an honest card instance but it has no instance close to T .

Γ3 and Γ2 are indistinguishable because the probability that OutV = 1 if one of the

situations above happens is negligible. OutV = 1 when the 1st situation happens with

negligible probability due to the DF-security of DB. OutV = 1 when the 2nd situation

happens with negligible probability due to the DH-security of DB. OutV = 1 when the 3rd

situation happens with negligible probability due to the MiM-security of DB. Note that

we can simulate an honest card instance in Γ3 by using a prover instance in MiM-game

because the random coins are not used by honest card instances. Therefore, |p3 − p2| is
negligible.

Γ4 : It is the same game as in Γ3 except that I cancels after decrypting and obtaining

the random coins r where KP(1�;r)→ (skP,pkP) and (skP,pkP) is generated by an honest

card instance.

I (skI,pkI,DataB)
the same as in the protocol

receive EC

if (EC, id,τ,pkC, .) ∈ TableEnc:

retrieve pk where (EC, id,τ,pkC,pk)∈ TableEnc

if pk �= pkP: cancel

OutI = 1,POutI = (pkC, idT ,τT)

else:

SC,r = DecskI (EC)

KP(1�;r)→ (sk,pk)

if (sk,pk) is generated by an honest instance:

cancel

else: the same as in protocol after running KP
We can easily prove that if there exists an adversary with pkC in Γ3 which obtains

a randomness r generating the secret/public key pair used by an honest instance, then

we can construct another adversary which breaks the MiM-security of DB. Clearly,

during the simulation of Γ3, if I gets r, then it generates the corresponding secret key

of the prover in MiM-game and breaks the MiM-security. Because receiving such r in

Γ4 happens with negligible probability, Γ3 and Γ4 are indistinguishable. So, |p4 − p3| is
negligible.

105

Now, we show that the adversary cannot win with the third condition in Γ4. If the

adversary wins with the third condition in Γ4, then it means that pk′C /∈ {pkCi
} and no

instance of the adversary is close to T during the execution of the contactless payment

protocol with T and I . Due to the condition 2 in the reduction of Γ3, pkP must be

generated by an honest card (otherwise, T cancels) . However, in Γ4, it is not possible

to have OutI = 1 while pkC /∈ {pkCi
} and pkP is generated by an honest card instance

(check the dashed underlined parts in the simulation of I in Γ4). So, it is not possible

that OutI = 1, if the game is in the third condition of Definition 7.3.

As conditions 2 and 5 of Definition 7.3 only remained to win in the game, we can

assume that pkC ∈ {pkCi
}.

Γ5 : It is the same game as Γ4 except we simulate Verify algorithm with Verify′ such
that it only accepts the signature of malicious cards. It does not accept the signatures

of honest cards’ instances as they never sign any message in this game.

Verify′pkC
(((SSS,,, iiidddIII ,,,τττIII ,,,rrr)))

if pkC ∈ {pkCi
}: return 0

else: return VerifypkC
(SC, idI,τI,r)

The only difference in Verify and Verify′ is in the case of pkC ∈ {pkCi
}. In this case,

while Verify returns the output of the verification of the signature, Verify′ returns 0. In Γ5

and Γ4, no honest cards’ instances generate a signature. So, the only difference between

Γ4 and Γ5 happens when I obtains a forged signature of an honest card instance.

Now, we show that forging a signature of any honest cards’ instances happens with a

negligible probability to prove that Γ5 and Γ4 are indistinguishable: We use an adversary

B playing EF-MA game and simulating Γ5 against the adversary A . EF-MA game gives

a public key pkC. B picks one of the card Ci. In B’s simulation, pkC corresponds to the

public key of Ci which will be seen by the distinguished issuer instance I . Therefore, in
key generation of cards, B generates secret/public keys (skCj ,pkCj

) for all honest cards

except Ci. It gives {pkCj
} and pkC to A . Remark that Ci never signs a message so we can

simulate it perfectly. If the distinguished instance I does not receive pkC, then B loses

EF-MA game. Otherwise, at some point, if B receives a valid signature S, it first checks
if S is verified with pkC. If it is verified with pkC, B outputs S to EF-MA game and wins.

Otherwise, it loses. Clearly, the success probability of B is probability that A forges a

signature divided by poly(k) where poly is a polynomial. Because of the EF-MA security

of the signature scheme, the success probability of B is negligible. So, probability that

A forges a signature is negligible, and Γ5 and Γ4 are indistinguishable meaning that

|p5 − p4| is negligible.
Remark that in Γ5, I have OutI = 1, if and only if (EC, idT ,τT ,pk

′
C,pk

′
P) is in TableEnc.

So, we can assume that (EC, idT ,τT ,pk
′
C,pk

′
P) ∈ TableEnc.

If the adversary wins with the second condition in Γ5, it means that pk′C ∈ {pkCi
} and

the distance between any C holding pk′C and T is more than B during the execution of

the protocol with idT . Due to condition 3 in Γ3, pk
′
P should not been generated by this

honest card. Then, (EC, idT ,τT ,pk
′
C,pk

′
P, .) cannot be in TableEnc which contradicts with

our assumption. Hence, the adversary cannot win with the second condition.

106

Secure Contactless Payment

If the adversary wins with the fifth condition, then it means that pk′C ∈ {pkCi
} and

there exists no card with pk′C which privately outputs idI,τI. Then, it means that

(EC, idT ,τT ,pk
′
C,pk

′
P, .) /∈ TableEnc as no honest card instance has (idT ,τT). This con-

tradicts with our assumption. Therefore, the adversary cannot win with the fifth

condition.

Remark that in Γ5, the adversary cannot win the game So, p5 is negligible meaning

that p0 is negligible.

Theorem 7.6. Assuming that the signature schemes used are existential forgery chosen

message attack (EF-CMA) secure then ClessPay is almost-secure against malicious

terminal (Definition 7.4).

Proof. We recall that in almost-security, we do not need to consider condition 1c of

Definition 7.4 .

Γ0 : The instances of the issuer, terminals and cards play the game in Definition 7.4.

We have a distinguished issuer instance I which outputs (pk′C, idI,τI). Remark that in

Γ0, the adversary cannot win with condition 111aaa ((pk′C, .) /∈ DataB) because I rejects

the cards which are not in DataB.
Γ1 : It is the same game as Γ2 except that no id selected by an honest card instance

repeats. Clearly, |p1 − p0| is negligible.
Γ2 : It is the same game as Γ1 except that we simulate I and its instances while

generating the signature and honest cards’ instances in the verification of this signature

as follows:

III(((skIII ,,,pkIII ,,,DDDaaatttaaaBBB)))
SI = signskIs

(id,τ,pkC)

store (SI, id,τ,pkC) in Table1

send SI

Verify′pkIs
(((SSS,,, iiiddd,,,τττ,,,pkCCC)))

if (S,pkI, id,τ,pkC) in Table1

return 1

else: return 0
|p2 − p1| is negligible.
The output of issuer instance is the same as issuer instances in Γ1. Therefore, we have

a perfect simulation for it. The only difference happens when honest cards’ instances in

Γ1 receive a valid signature verified by pkIs
and not in Table1. In this case, honest cards

in Γ1 verify the signature but they do not in Γ2. Otherwise, the simulations of them are

perfect. We can easily show that the probability of generating a valid signature which is

not in the Table1 is negligible in Γ2 thanks to EF-CMA security of the signature scheme.

We can use the public key received from the signing game as a public key of the issuer

and simulate signatures of issuer instances by using the signing game. Note that skIs is

not used in the simulation but the signature generation, so we can simulate the rest of

the protocol perfectly. Therefore, |p2 − p1| is negligible.
The adversary cannot win the game with condition 2 in Definition 7.4 (there exists

an honest card instance with pkC ∈ {pkCi
} which privately outputs POutC = (idC,τC) and

there exists an issuer instance which has Policy(pkC,CI,τC) = 0 and idC). Assume that

107

the adversary wins with condition 2. It implies that (., idC,τC,pkC) /∈ Table1 as idC is

unique. So, no honest card instance outputs (idC,τC) in this case.

Γ3 : It is the same game as Γ2 except that we simulate honest cards’ instances while

generating the signature and I in the verification of this signature as follows:

CCC(((skCCC,,,pkCCC,,,DDDaaatttaaaBBB)))
SC = signskC

(id,τ,r)
store (SC,pkC, id,τ,r) in Table2

EC = EncpkIe
(SC,r)

send EC

Verify′′pkC
(((SSS,,, iiidddIII ,,,τττIII ,,,pkCCC,,,rrr)))

if (S,pkC, id,τ,r) in Table2

return 1

else: return 0

The only difference is the output of Verify′′ and Verify when a forged signature received.

To show the indistinguishability of Γ2 and Γ3, we can use the similar reduction in the

reduction of Γ4 to Γ5 in the proof of Theorem 7.5. The only difference in this reduction is

using EF-CMA game and simulate the signature generation by using the signing oracle

in EF-CMA game. We need a signing oracle here because we do not encrypt a random

message instead of the signature as in Γ5 in the proof of Theorem 7.5.

Remark that in this game, the adversary cannot win with the condition 111bbb (pk′C ∈
{pkCi

} and there exists no card with pk′C which outputs (idI,τI)). If I outputs (pk′C, idI,τI),

it means that an honest card instance with pk′C added (S,pk′C, idI,τI, .) in Table2 and

outputted (idI,τI).

Hence, in Γ3, the adversary cannot win. So, p0 is negligible.

We recommend using Eff-pkDB [KV16] as a public-key distance bounding in ClessPay

as we see in Chapter 4, it is the most efficient public-key distance bounding protocol hav-

ing the necessary security requirements for ClessPay. It only requires one exponentiation

and hashing.

The assumption on the signature scheme used by cards differ in Theorem 7.5 (EF-MA)

and Theorem 7.6 (EF-CMA). Hence, it looks like to have security against both terminals

and cards we need DF, DH, MiM-secure DB protocol, IND-CCA secure encryption

scheme, and EF-CMA secure signature schemes. However, we could have the almost

security against malicious terminal if we have the following assumptions in Theorem

7.6: the encryption scheme is IND-CCA secure and the signature scheme used by cards

is EF-MA secure. In this case, the proof of Theorem 7.6 would need the same games

Γ2 and Γ5 in the proof of Theorem 7.5 instead of Γ3 in the proof of Theorem 7.6. So,

actually, to have full security in ClessPay, we need DF, DH, MiM-secure DB protocol,

IND-CCA secure encryption scheme, EF-CMA secure signature for issuers, and EF-MA

secure signature for cards.

7.4 EMV Analysis

EMV key setting is different than our contactless-payment key setting because it has a

symmetric key shared between the card and its issuer as well as asymmetric keys.

108

Secure Contactless Payment

I(SI ,PI ,MKAC) T (PIC) C(PIC,SIC,PI ,MKAC)

Initialization

retrieve τ τ−−−−−→
{ED,PAN,PIC}←−−−−−−−−

Relay Resistance protocol

pick R1
R1−−−−−→ pick R2

check RTT
R2,timings←−−−−−−

Data Authentication and Transaction

pick UNT
UNT−−−−−→ ATC ← ATC++

SKAC ← Gen(MK,ATC)
SKAC ←
Gen(MK,ATC)

EARQC←−−−−− ARQC←−−−−− ARQC =
MACSKAC (lblARQC,UNT ,ATC,τ)

if
Verify(ARQC,SKAC)

ARC = 1
else: ARC = 0
ARPC =
MACSKAC (ARQC,ARC)

ARPC−−−−−→ ARPC−−−−−→ if ARC = 1 and
Verify(ARPC,SKAC):

TC =MACSKAC (lblTC,UNT ,ATC,τ)
else:

AAC =MACSKAC (lblAAC,UNT ,ATC,τ)
pick UNC

if
Verify(PIC,SDAD):

SDAD,TC←−−−−−− SDAD =
signSIC

(TC,UNC,UNT ,R1,R2, timings)
Perform approval

else: Perform
decline

Figure 7.3 – The Simplified EMV protocol

An issuer I has a secret/public key pair SI/PI. It also has a master symmetric key

MKAC. A card C shares MKAC with its issuer I. It has a secret/public key pair PIC and

SIC. PIC is signed by I’s private key SI. C stores certified PI. We assume that the terminal

T knows the public key of the certificate authority (CA) to verify PI and so PIC. We also

assume that the channel between I and T is authenticated.

For the sake of simplicity, in Figure 7.3 and in our description, we assume that C
knows all terminal related information such as TCC, authentication method and also

terminal knows the card related information such as AID, PDOL and the elements in

CDOL1 and CDOL2 (See Appendix D for EMV abbreviations). The full protocol is in

Figure D.1 in Appendix D.

EMV contactless session consists of four phases without card holder (user) verification

method (i.e., Online PIN, Signature):

• Contact Establishment with NFC card: T detects C.

• Transaction Initialization: T sends the transaction τ to C. Then, C responds with

109

its public key PIC and card information such as PAN and expiration date (ED). If

T verifies PIC, it continues to the next phase.

• Relay Resistance Protocol [emvb]: This protocol is executed if C and T support it.

Here, we assume that they support this feature. T picks a random number R1 and

sends this to C. C responds with another random number R2. It also sends timing

estimates (timings): Min Time For Processing Relay Resistance Protocol, Max

Time For Processing Relay Resistance Protocol, Device Estimated Transmission

Time For Relay Resistance Protocol. Then, T checks if the total time passed after

sending R1 exceeds the limit (let’s call it B). If the total time does not exceed B,
then the next phase begins. Otherwise, the transaction is canceled.

• Data Authentication: There are three type of authentication methods in EMV:

Static Data Authentication (SDA), Dynamic Data Authentication (DDA) and

Combined Data Authentication (CDA). Because of some weaknesses in SDA and

DDA (replay attacks and wedge attacks), we consider CDA which is combined

with the next phase.

• Transaction: T sends a random number UNT to request a cryptogram generation

from C. In EMV, there are three type of cryptograms: Transaction Certificate

(TC), Authorization Request Cryptogram (ARQC), Application Authentication

Cryptogram (AAC). Here, we consider the online verification where T requests

ARQC for an online verification by the issuer. TC is used for the offline verification

by the issuer and AAC is used to cancel the transaction.

– Online Verification: C increases its counter ATC and generates a secret key

SKAC by using ATC and the master secret key MKAC. Then, it generates the

cryptogram ARQC: a MAC of UNT ,ATC,τ (list of objects in CDOL1) with

using the secret key SKAC. C sends the cryptogram AC to T and T relays it to

I along with the card information. I verifies the MAC and possibly validate

the information of C. If the cryptogram passes verification and the card is

validated for the transaction, then I makes ARC = 1 and generates a MAC

of ARQC and ARC with the secret key SKAC. This MAC is called as ARPC.

After, it sends ARPC with its message to T and T relays it to C if ARC = 1.
Otherwise, it cancels the transaction.

C verifies ARPC. If the verification and ARC is true then C generates the

second cryptogram which is TC. TC is a MAC of CDOL2’s objects with SKAC

(See [emvc], Table 26)2 in order to show transaction is complete. Additionally,

it picks a random number UNC and generates a signature of UNC,UNT , ATC,

TC, timings,R1,R2. C signs it with SIC and sends the signature SDAD and the

signed message to T .

2Even if CDOL1 and CDOL2 list the same objects, some terminal related objects change because the
payment process continues (e.g., TVR) [Rad03].

110

Secure Contactless Payment

– Terminal checks if the signature and the data signed are valid. Later, the

terminal contacts with the issuer to receive the reimbursement and gives TC
as a proof of transaction completion by the card. In this case, the issuer

verifies TC to execute the reimbursement.

EMV in Our Model: We use the following maps to match the EMV protocol with

Definition 7.1:

(skC,pkC) = ((MKAC,SIC),PIC), (skI,pkI) = ((MKAC,SI),PI), id = ATC,

Policy(pkC,CI, id,τ) = ARC, OutT = approval/ decline, OutI = Verify(TC,UNT ,ATC,τ),
POutI = (PIC,ATC,τ), POutT = (PIC,ATC,τ) and POutC = (ATC,τ).

7.4.1 Security Against Malicious Terminal in EMV

Clearly, the EMV protocol is not secure according to Definition 7.4 as the terminal can

approve relay resistance protocol however close C is. However, it is almost-secure against

malicious terminals. We prove it this in the following theorem. This proof is the first

security proof for the EMV payment system.

Theorem 7.7. Assuming that MAC is EF-CMA secure and Gen is a pseudo-random

permutation, then EMV protocol is almost-secure against malicious terminals (Definition

7.4).

Proof. Γ0 : The instances of the issuer, terminals and cards play the game in Definition

7.4. We have a distinguished issuer instance I which outputs (PIC,ATC,τI).

In Γ0, there exists at most one card instance with PIC having ATC because ATC is a

counter and incremented by each new card instance. Let’s call this instance as C .

Γ1 : It is the same game with Γ0 except that the honest card instances picks a random

SK′
AC instead of generating it with Gen(MK′,ATC) and stores the random SK′

AC in Table1

as (MK′,ATC′,SK′
AC). If an issuer instance receives a card information belongs to an

honest card then it retrieves SK′
AC from Table1. As Gen is a pseudo-random permutation,

|p1 − p0| is negligible.
Γ2 : It is the same game with Γ1 except that we simulate MAC generation of honest

cards and verification of MACs of honest cards’ instances by the issuer as follows:

111

III(((PPP′′′
IC,,,SSS

′′′
IC,,,PPP

′′′
III ,,,MMMKKK′′′

AC)))

ATC′ = ATC′+1
pick SK′

AC
store (MK′

AC,ATC′,SK′
AC)

ARQC =MACSK′
AC
(lblARQC,UNT ,ATC′,τ)

store (SK′
AC,UN′

T ,ATC′,τ′,ARQC) in TableARQC

rest is the same until TC/AAC generation

if ARC = 1 and Verify(ARPC′,SK′
AC):

TC =MACSK′
AC
(lblTC,UNT ,ATC′,τ)

store (SK′
AC,UN′

T ,ATC′,τ′,TC) in TableTC

else:

AAC =MACSK′
AC
(lblAAC,UNT ,ATC′,τ)

store (SK′
AC,UN′

T ,ATC′,τ′,AAC) in TableAAC

Verify′(((AAACCC,,,SSSKKKAC)))

if (SKAC,UNT ,ATC,τ,AC) in TableAC

return 1

else: return 0

Γ2 is indistinguishable from Γ1 thanks to the security of MAC. The similar reduction

in the proof of Theorem 7.5 from Γ4 to Γ5 can be used to prove the indistinguishably.

So, |p2 − p1| is negligible.
Γ3 : It is the same game with Γ2 except that I generates ARPC and then stores it to

TableARPC (similar storing as in Γ2). Then, the honest cards verify ARPC by checking if

it is in the TableARPC. Γ3 is indistinguishable from Γ2 because of the security of MAC.

So, |p3 − p2| is negligible.
Clearly, in Γ3, the adversary cannot win with the condition 1b because I privately

outputs (PIC,ATC,τ) if and only if the card with PIC outputs ATC,τ.
In addition, it cannot win with the condition 2 because if ARC �= 1, then no honest

card outputs ATC,τ and if an honest card receives a valid ARPC having ARC = 1, then
it means that ARPC is in TableARPC. So, I has (PIC,ATC,τ).
Since the adversary cannot win in Γ3, p0 is negligible.

However, there exists another problem in EMV related to ATC which we do not

consider in our security definition. It can be explained as follows: ATC is 16-bit number

and incremented at the beginning of each session. If ATC reaches the limit which 65535,

then the card is not valid anymore because EMV specification does not let rotating the

counter due to the security reasons. According to EMV specification [emvc] if cards

are used normally, it will approach the limit (65,535) transaction limit not so fast (60

per day every day for a 3-year card). However, an attacker who does not aim to make

a payment but aims to invalidate the card can trigger the card at most 65,535 times.

Then, the card cannot be used anymore.

7.4.2 Security Against Malicious Card in EMV

Unfortunately, EMV is not secure against malicious cards. In the following, we show

that an adversary can win with the second, third and fourth condition in Definition 7.3.

112

Secure Contactless Payment

Fake Transaction Attack: This attack comes from the fact that T cannot validate

TC in the signature SDAD because it does not have SKAC. Therefore, a malicious card

can generate an invalid TC′ in the last cryptogram generation process and use this

cryptogram while generating this signature. Then, the terminal will approve the payment

because the signature is correct. However, TC′ is not valid. So, when T contacts with I,
I cannot validate TC′. In this case, the malicious card succeeds to break the security of

EMV with breaking the fourth condition in Definition 7.3 because I cancels while T
does not.

Distance Fraud Attack: A malicious card can initiate a payment process with T ,
while it is not close T . In this case, it can send R2 before seeing R1 in order to reply early

enough. In this case, T thinks that the card is close. Here, the malicious card succeed to

break the security of EMV with breaking the third condition in Definition 7.3. This

type of attack is dangerous for an EMV payment because the malicious card can claim

later that it does not do the payment by showing that it was in somewhere else.

MiM Attack: The relay resistance protocol in EMV constructed to prevent relay at-

tacks by a MiM-adversary. In this attack scenario, a MiM-adversary relays the messages

between the card and the terminal to do the payment without the card’s consent. Re-

lay resistance protocol aims to prevent it by checking the distance of the card. The

assumption on its security based on the fact that the adversary cannot relay the mes-

sages faster than the speed of light. Therefore, the adversary cannot succeed to pass

the relay resistance protocol because it cannot guess R2 before R2 is picked by the card.

However, it has been shown that with guessing attacks [CHKM06] the security against

relay attacks is breakable for the protocols with single challenge/response exchanges. In

addition, Chothia et al. [CGDR+15] have already explained this vulnerability.

7.5 Conclusion

In this chapter, we concentrated on the formalism of contactless-payment system.

In this direction, we first analyzed the components (issuers, terminals and cards)

of a contactless-payment system from EMV specification [emva] which majority of

contactless-payment systems follow. Then, we formally defined contactless payment

by defining the inputs and outputs of the algorithms of issuers, terminals and cards.

Based on this definition, we gave two security definitions against malicious cards and

malicious terminals. We also considered relay attacks in our security definitions which

are very common attacks in contactless payment.

We constructed a contactless-payment protocol ClessPay in our model. In this pro-

tocol, the terminal determines the distance of the card by using a secure public-key

distance bounding protocol to prevent the relay attack and then the rest of the protocol

continues with the authentication of the card and the issuer. We proved the security of

ClessPay against malicious cards and malicious terminals formally.

113

Finally, we analyzed current EMV-contactless protocol [emvd] in our model. We

realized that it is not secure against malicious cards because MiM-attack and DF-attack

which are based on relay attacks. In addition to this, we formally proved that EMV-

contactless protocol is secure against malicious terminals. Our analysis is the first formal

cryptographic analysis of EMV-contactless protocol.

If we compare ClessPay and EMV contactless in regard to cryptographic computations

executed by the cards, we see that EMV contactless is slightly more efficient since public-

key operations are less in EMV contactless. A card in EMV contactless has to compute

two MAC, verify one MAC and generate one signature. While a card in ClessPay has

to compute one public-key encryption, generate one signature and verify one signature.

However, to have the highest level of the security, it is the price to pay and with a

dedicated hardware on smart cards, this price is not so high. As a future work, assuming

that changing completely EMV specification is very hard, we can recommend some

adaptations on EMV contactless to have full security without changing too much the

basic structure of the protocol.

114

Part III

Positioning

Chapter 8
Formalism on Localization

A positioning system is used to help in determining the location of an object. Positioning

systems are widely used in our world. Global Positioning System (GPS) is the most

popular one among existing ones. Some applications of positioning systems such as

military, emergency (e.g, medical), and prison are very critical because any inconsistent

result may be very harmful. Therefore, the security of these systems becomes more of

an issue because they are run in a malicious environment. In this chapter, we consider

one of the problems related to positioning systems which is localization. In localization,

a user aims to find its position by using a wireless network. We formally define the

problem of localization and construct a formal security model. We describe algorithms

and protocols for localization which are secure in our model.

Related Works Global Positioning System (GPS) [ME06] is a widely used positioning

system consisting of satellites above earth. A GPS receiver on earth receives signals

from at least four satellites and computes its distances from these satellites in order to

locate itself. GPS is vulnerable to spoofing attacks [Sco01, NLD+12, TPRČ11, PJ08]

by impersonating the signals or delaying the signals. Kuhn [Kuh04] proposed to use

asymmetric cryptography to have the integrity on signals of navigation systems (e.g.,

GPS). However, the problem related to delay of signals is not considered. Ranganathan

et al. [RÓČ16] introduced SPREE which is a spoof resistant GPS receiver.

Some other positioning systems are based on wireless networks which work locally

(e.g., indoor areas). Therefore, this type of positioning mechanisms is called localization

in the literature. A localization system consists of multiple bases which help a user to

locate itself. These bases know their own location and a user computes its own location

by referencing the locations of bases. Bases are called beacon nodes, locators or anchors

in the literature but we call as bases in this chapter. In such a system, the aim of an

adversary is to make a user output a wrong location.

There are some techniques used to determine a location. We can divide them into

two categories: range-dependent [LPČ05, NN03a, ČH05a, LND05b, SHS01] and range-

independent [RL+02, NN03b, SPS02, LP04, LP06] techniques. Range-dependent al-

117

gorithms require measurement of distances by using the time of arrival as used in GPS,

the time difference of signal arrival or the angle of arrival. In general, distance bounding

(DB) [BC93] is the main method to measure distances in range-dependent algorithms.

Range-independent algorithms do not require distance measurement. They estimate the

location using properties of the networks such as hop counts, a topology of the network.

Compared to range-dependent ones, their accuracy is low but they do not require a

special hardware.

There exist many localization algorithms based on different assumptions. We mention

here some important ones. For more details about previous works, there exist surveys

by Srinivasan and Wu [SW07] and Zeng et al. [ZCH+13]. Lazos and Poovendran con-

structed a range-independent localization protocol SeRLoc [LP04] and HiRLoc [LP06]

without malicious base assumption and with malicious base assumption, respectively.

They have an analysis against wormhole attacks [ZCH+13] and sybil attacks [NSSP04].

In order to protect SeRLoc and HiRLoc against wormhole attack, they assume that the

adversary cannot jam the communication which weakens their security model. Lazos et

al. [LPČ05] constructed a protocol called ROPE by combining SeRLoc with a method

called verifiable multilateration by Čapkun and Hubaux [ČH05a]. Verifiable multilatera-

tion uses distance bounding [BC93] in order to verify the computed location. Differently

than SeRLoc, this protocol is not affected by communication jamming but still has a

weaker security model because of the honest base assumption.

Liu et al. [LND05a] proposed a localization algorithm with using a detection mech-

anism to detect the cheating bases. They assume that there are some honest detecting

bases which are indistinguishable from users. Liu et al. [LND05b] constructed a location-

estimation scheme based on filtering the malicious bases. Zhang et al. [ZLFW06] pro-

posed a method where bases execute multiple times distance bounding with a user to

detect delays in signals by analyzing inaccurate changes in the distance bounding phase.

So, they rely on some mistakes and malfunctioning on the adversary’s side which is an

underestimation of the adversary. In addition, they assume that the bases are honest.

Čapkun et al. [ČČS06] introduced a model in which part of the bases are either hidden

from users or mobile. This is meant to avoid the generic attack by preventing attackers

to position properly for a localization attack to work. The model is relatively simple but

Chandran et al. [CGMO09] showed that the locations of hidden bases can be discovered

if a user is allowed multiple executions of the protocol and gets feedback on whether its

position claim was accepted or not.

Differently, Zhong et al. [ZJUQ08] analyzed the tolerance of a robust localization

algorithm against the maximum number of malicious bases. They proved that it is not

always possible to accurately output a location if half of the bases or more than half of the

bases are malicious. They proposed two localization algorithms. Both of them have cubic

polynomial complexity in a two-dimensional space, but one of them has better average

complexity. However, in their complexity analysis, they do not consider the complexity

of testing collinearity although they have an assumption related to this. Comparing to

Zhong et al. [ZJUQ08], we do not let our algorithms output a location if some malicious

118

Formalism on Localization

behaviors are detected. Instead, they can be rerun after filtering the malicious nodes for

robustness. We have this approach because outputting a wrong location can have some

bad consequences depending on the application. In addition, thanks to this difference,

we have more tolerant localization algorithms against malicious bases.

Although there exists a lot of research on this topic, the security analyses are informal,

or a specific attack-based (e.g., wormhole attack, sybil attack) or has no precise formal

security model. For example, none of the mentioned protocols (except Zhong et al.

[ZJUQ08]) take into account the collinearity of locations. Collinear locations of bases,

as we discuss in Section 8.3.1, give a very good advantage to an adversary and even

affect the correctness of the algorithm. The protocols [ČČS06, LPČ05, ZLFW06] using

distance bounding do not discuss about the security requirement on DB. The distance

bounding protocol suggested to use the verifiable multilateration method [ČH05a] is not

secure against distance hijacking so it lets a malicious base shorten the actual distance.

Therefore, the localization algorithms [LPČ05, ČČS06] using this method is not secure

if this level of DB used since their security analysis is based on the assumption that the

attacker cannot shorten the distance.

8.1 Our Contribution

In this chapter, we contribute to the formalism of localization. We define a security

model and construct protocols. In more detail, our contributions can be enumerated as

follows:

• We define two notions, non-interactive and interactive localization, with precise

inputs and outputs. The former is given to have a concrete definition of a local-

ization algorithm which outputs a location given some inputs. The latter is given

to describe an interactive protocol between bases and a user who wants to learn

its location. Our localization definitions based on trilateration method which uses

distances to output a location.

• We integrate the adversarial and communication model of distance bounding with

interactive localization. As we see in Part I, distance bounding is a well studied

problem in cryptography [ABK+11, DFKO11, BMV13a, BMV13b, BMV15, BV14].

Therefore, instead of defining a new model, we benefit from the DB model

[BMV13a] that we give in Section 2.2.1. Accordingly, we define the security of

non-interactive and interactive localization considering malicious bases. We have

a stronger security model compared to previous work because we give more power

to adversaries such as replacing honest bases and users to any place that they want

and running them polynomially many times. This is a realistic power to be given

to the adversary because an adversary can change the place of honest bases in the

real life even though it cannot corrupt them.

• We analyze the circumstances under which we are guaranteed to find the correct

119

locations of the users. Consequently, we prove that if at least half of the bases are

honest then we can always output a correct location of a user.

• We construct three non-interactive localization algorithms with different levels of

resistance against malicious bases. We give a general protocol for an interactive

localization protocol which uses a secure non-interactive localization algorithm.

We show that an instance of this generic protocol is secure against delays on

communication for certain regions.

Structure of the chapter: In Section 8.2.1, we give formal definitions for localization

and its security. In pursuit of this, we introduce distance estimate protocols in Section

8.2.2 which is used to output a distance of a party. In Section 8.3.1, we give three non-

interactive localization algorithms and analyze their security. Then, in Section 8.3.2, we

describe the framework for an interactive positioning with a security proof and show an

instance of it with one of our non-interactive localization algorithms. We conclude this

chapter with Section 8.4.

8.2 Definitions

Notations: We useM as an affine space of dimension t and d as the Euclidean distance.

Given locx ∈M, S(locx,dx) is called t-sphere and defined as follows:

S(locx,dx) = {loc ∈M : d(locx, loc) = dx}

We use Conv(loc1, loc2, ..., locm) to describe the convex hull constructed by

loc1, loc2, ..., locm ∈M.

Independent locations: A set of locations are independent if and only if their com-

binations span the entire space M. For this, we use a function dep : Mm →{0,1} to check

if given m locations are dependent or not. If they are dependent it outputs 1. Otherwise,

it outputs 0.

The function dep can be computed as follows: Let’s take loc1 as an origin and−−−−−→
loc1loc2,

−−−−−→
loc1loc3, ...,

−−−−−→
loc1locm as vectors. The m locations are dependent if and only if

these vectors are linearly dependent. For this, dep function can check if the rank of a

matrix whose columns or rows are these vectors is less than or equal to m−1.

8.2.1 Localization

Localization aims at allowing a user to compute its location with the help of a number of

bases. We define two variants: Non-Interactive Localization and Interactive Localization.

We call a location and distance pair (locBi ,di) is correct if the distance between the

location of a user and locBi is di.

120

Formalism on Localization

Definition 8.1 (Non-Interactive Localization (NIL)). An NIL consists of a parameter n,
a metric space M and one probabilistic polynomial time (PPT) algorithm NIL. n corres-

ponds to the number of bases B1,B2, ...,Bn with respective locations locB1 , locB2 , ..., locBn ∈
M. NIL uses the locations of bases locB1 , locB2 , ..., locBn and the distance of these loca-

tions to the user’s location d1, . . . ,dn, respectively, as an input. At the end, NIL outputs

a location locU ∈M or ⊥.

Correctness: NIL is correct for all M, locations and distances, if all location/distance

pairs are correct and there exists no t + 1 dependent locations, NIL always outputs a

correct location of the user.

Definition 8.2 (Interactive Localization (IL)). An IL consists of a tuple

(KB,KU ,B,U,n,M) where KB and KU are key generation algorithms, U is a user al-

gorithm, B is a base algorithm, n is the number of bases and M is a metric space.

KB outputs a secret/public pair (skB,pkB) for the base algorithm B and KU outputs a

secret/public key pair (skU ,pkU) for the user algorithm U . Each base Bi runs B inter-

actively with the input (skBi ,pkBi
,pkU , locBi) where locBi ∈M is the location of a base Bi.

A user runs U interactively with the input (skU ,pkU ,pkB1
,pkB2

, ...,pkBn
). At the end, U

outputs locU ∈M or ⊥.

Correctness: An IL is correct for all secret/public key pairs, locBi ’s of which no t +1
are dependent, n and M if under honest execution of B and U , U always outputs a

location locU which is the location of the user in M.

NIL/IL and robust localizations differ with the outputs. Robust localization al-

gorithms always output a location while the output of NIL/IL may be an abort message

⊥. Zhong et al. [ZJUQ08] analyzes the maximum number of malicious bases which can

offer resistance. By allowing the ⊥ output, we obtain tolerance to a larger number of

malicious bases. Indeed, we give an algorithm (NIL2 in Section 8.3.1) which securely

works even if the number of malicious inputs is more than the half of the bases.

We first give the security of an NIL algorithm. In this definition, we cover that a

secure NIL algorithm never outputs wrong location if at most k location/distance pairs

are wrong.

Definition 8.3 (k-secure NIL). We define the security of NIL by a game. In this game,

the adversary generates n-pairs (locBi ,di) and locU where each locBi ∈M and locU ∈M

and each number of t + 1-locations are independent. Up to k pairs (locBi ,di) can be

incorrect. The adversary wins if the NIL algorithm outputs loc′U such that loc′U �=⊥ and

locU �= loc′U . An NIL protocol is k-secure if for any such game an adversary cannot win.

Remark that in k-security of NIL, we consider an NIL algorithm secure even if the

algorithm outputs ⊥. With the following definition, the adversary wins if it also achieves

to make a NIL algorithm output ⊥.

121

Definition 8.4 (k-full-secure IL). The game is defined as in k-secure IL. The adversary

wins if the NIL algorithm outputs loc′U such that locU �= loc′U . An NIL protocol is k-full-
secure if for any such game an adversary cannot win.

Now, we give the adversarial and communication model that we consider for IL pro-

tocols.

Adversarial and Communication Model: We adopt the adversarial and commu-

nication model for distance bounding [BMV13a] described in Section 2.2.1. The provers

in the DB model corresponds to bases in the localization model and the verifiers in

the DB model corresponds correspond to the users in the localization model. Differ-

ently than DB, we have the following assumption in our model. Bases can retrieve their

location correctly to input the algorithm B.

Definition 8.5 (k-secure IL). We define the security of IL by a game. The game consists

of a number of n-bases. In the game, the adversary chooses the corrupted bases. Let us

denote the set of bases by B and the set of corrupted bases by C ⊂ B with |C | ≤ k.
Next, we generate secret/public key pairs of honest bases {(skB,pkB)}B∈B\C with KB and

secret/public key of user (skU ,pkU). The adversary generates the secret/public key of

corrupted bases {pkB}B∈C by using {pkB}B∈B\C and pkU as an input. The adversary can

create multiple instances of U and bases and it can move them any location in M. At the

end of the game, one instance of U outputs loc′U . The adversary wins if loc′U �= ⊥ and

locU �= loc′U . IL protocol is k-secure if for any such game the probability of the adversary

to win is negligible.

In k-security game of IL, we let the adversary run user and base algorithms at any

location multiple times by corrupting at most k-malicious bases. If one of the instances

of U outputs a wrong location, then the adversary breaks the k-security. None of the

previous work considers such security model. Differently, we give to the adversary the

power of replacing honest instances as it wishes.

We note that we can also define k-full-secure IL, by replacing the winning condition

loc′U �=⊥ and locU �= loc′U with loc′U �= locU only.

8.2.2 Distance Estimate Protocols

In range dependent localizations, a user algorithm U needs to know its distance relative

to some known locations. Therefore, we need a protocol which outputs the distance

between two locations. The idea is to use distance bounding protocols to provide U with

the distance estimates. DB protocols [BC93] only output an accept/reject bit. Here, we

define a slight variant of DB that we call distance estimate (DE) protocols. DE protocols

output d, an upper-bound on the distance between V and the prover. We also adapt

the MiM-security of DB to DE which will be used to prove the security of IL protocols

based on distance estimate protocols.

122

Formalism on Localization

Definition 8.6 (Public-key DE Protocol). A distance estimate protocol is a two-party

probabilistic polynomial-time (PPT) protocol and it consists of a tuple (KP,KV ,V,P).
(KP,KV) are the key generation algorithms of P and V , respectively. Their outputs are

KP(1�)→ (skP, pkP) and KV (1�)→ (skV , pkV). P is the proving algorithm, V is the veri-

fying algorithm where the inputs of P and V are (skP, pkP) and (skV , pkV) as described.

P(skP, pkP, pkV) and V (skV , pkV) interact with each other. At the end of the protocol,

V (skV , pkV) outputs a final message OutV which is either a distance or ⊥ and a private

output POutV = pkP.

A DE protocol is correct if and only if under honest execution, whenever a verifier V
and a prover P lie at a distance D from each other, V always outputs OutV = D.

To define the security of DE protocols we, adapt the man-in-the-middle (MiM) security

of DB to the security of DE.

Definition 8.7 (Modified MiM Security (mMiM-security)). The game begins by running

the key setup algorithms KV and KP, which output (skV , pkV) and (skP, pkP) respectively.

The adversary receives pkP and pkV . The game consists of several verifier instances

including a distinguished one V , an honest prover P and an adversary. The adversary

wins if OutV �= ⊥ and there is no prover instance at distance OutV or less from V . A

DE protocol is mMiM-secure if for any such game, the adversary wins with negligible

probability.

We can easily derive a DB protocol from a DE protocol with the following transform-

ation.

Definition 8.8 (T transformation). Let pDE = DE(KP,KV ,P,V) be a DE protocol. In

the end, V outputs d: a distance estimate or abort message. We transform pDE into a

DB protocol pDB = DB(KP,KV ,P,V ′,B) with the following verifier algorithm V ′:
V ′(skV ,pkV)

run V (skV ,pkV)→ OutV ,POutV
if OutV �=⊥ and OutV ≤ B:

output OutV = 1
else:

output OutV = 0
We use the notation T (pDE,B) = pDB to show this transformation.

It may not be always possible to have a transformation from a DB protocol to a DE

protocol. However, we can show that the MiM-security of the transformed DB protocol

and the mMiM-security of DE protocol is equivalent.

Theorem 8.9 (MiM-security ⇔ mMiM-security). A DE protocol pDE =

DE(KV ,KP,V,P,B) is mMiM-secure according to Definition 8.7 if and only if for

any B, T (pDE,B) is MiM-secure (Definition 2.12).

Proof. mMiM-secure ⇒ MiM-secure: Consider a MiM game Γ for pDB= T (pDE,B).
We define the mMiM-game Γ′ for pDE by simulating Γ. Whenever Γ succeeds, we have

123

OutV < B and no honest prover instance at a distance up to B. So, Γ′ succeeds as well and
Pr[Γ succeeds] ≤ Pr[Γ′ succeeds]. If pDE is mMiM-secure, Pr[Γ′ succeeds] is negligible.

So, Pr[Γ succeeds] is negligible.

mMiM-secure ⇐ MiM-secure: Consider an mMiM game Γ′ for pDE. Let B be the

distance from V to the closest instance. Consider the same game Γ for pDB = T (pDE,B).
Whenever Γ′ succeeds, we have OutV < B so Γ succeeds as well. Thus, Pr[Γ′ succeeds]≤
Pr[Γ succeeds]. If pDB is MiM-secure, those probabilities are negligible.

8.3 Localization Protocols

8.3.1 Non-Interactive Localization

In a t-dimensional M, given number of t+1 independent locations locB1 , locB2 , ..., locBt+1 ∈
M and their corresponding distances d1,d2, ...,dt+1 to a certain location locU ∈M, we can

compute locU as

I = {locU}= S(locB1 ,d1)∩S(locB2 ,d2)∩ ...∩S(locBt+1 ,dt+1).

We can see that for all i ∈ {1,2, ..., t +1}, locU ∈ S(locBi ,di). Therefore, it is clear that

we can find locU by intersecting spheres. Now, we show why we need at least t + 1
spheres.

Lemma 8.10. In a t-dimensional Euclidean space M, the intersection of t + 1 spheres

with independent centers has a cardinality at most 1.

Proof. Let’s take locB1 as an origin and let x=
−−−−−−−→
locB1 loclocU be a vector which is equivalent

to locU . We have the following equation:

d2
i −d2

1 = d(locU , locBi)
2 −d(locU , locB1)

2

= ||−−−−−−→locU locBi ||2 −||−−−−−−→locU locB1 ||2

= ||−−−−−−→locB1 locU −−−−−−−→
locB1 locBi ||− x · x

= (x−−−−−−−→
locB1 locBi) · (x−

−−−−−−→
locB1 locBi)− x · x

=
−−−−−−→
locB1 locBi · (

−−−−−−→
locB1 locBi −2x) (8.1)

So, x is a solution of system of equations as in Equation (8.1) for all i ∈ {2,3, ..., t +
1}. All −−−−−−→locB1 locBi ’s are linearly independent vectors since locB1 , locB2 , locB3 , ..., locBt+1 are

independent. Therefore, this system of equations can have at most one solution x.

Note that for the intersection of t spheres, the linear system gives a line. The intersec-

tion between a line and a sphere has cardinality limited to two. Thus, the intersection

of t-spheres with independent centers gives at most two points.

124

Formalism on Localization

�

�

�

�

locBu

locU

locBv

locBw

Figure 8.1 – Dependent locations locBu , locBv and locBw in 2-dimensional metric space.
The spheres intersect on two points so it is not possible to decide which one is locU .

The NIL algorithm is essentially finding the intersection of t + 1 spheres. However,

the crucial point of an NIL algorithm is to see if we can find the correct location locU

with an NIL algorithm, which takes n-location/distance pairs as input, given that k of

those are wrong. Clearly, if n = t +1 and k > 0, it is not possible to have a correct NIL

algorithm. Therefore, n > t + 1 is a necessary requirement. However, we need to know

what is the requirement on k in order to obtain locU with a correct NIL algorithm.

The following lemma shows under which circumstances we can be sure that we obtain

locU from the possible intersection points.

Lemma 8.11. Given number of n spheres {S(locB j ,d j)}n
i=1 where at least n− k of them

include a location locU ∈M (equivalently, the distance between locB j and locU is d j), let

us define the following score for all locx ∈M:

#i(locx) = |{i ∈ {1, . . . ,n}|locx ∈ S(locBi ,di)}|.
Given that any number of t +1 of locBi’s are independent and n ≥ 2k+ t, then for any

locx ∈M, we have the following results:

• if locx = locU , then #i(locx)≥ n+t
2 and

• if #i(locx)>
n+t

2 , then locx = locU .

Proof. Let’s analyze the cardinality of #i(locx) for locx �= locU and locx = locU .

If locx = locU , from the assumption, #i(locU)≥ n− k.
If locx �= locU , locx ∈ S(B j,d j) for at most number of t spheres which also include locU

due to Lemma 8.10. Besides, if locx �= locU , locx ∈ S(B j,d j) for at most number of k
spheres which do not include locU . Thus, if locx �= locU , #i(locx)≤ k+ t.

• We prove that if locx = locU then #i(locx)≥ n+t
2 :

If locx = locU , we know that #i(locU)≥ n− k. Since n ≥ 2k+ t implies that n− k ≥
n+t

2 , we can conclude that #i(locU)≥ n− k ≥ n+t
2 .

125

• We prove that if locx �= locU , then #i(locx) ≤ n+t
2 : Since n ≥ 2k + t implies that

k+ t ≤ n+t
2 , #i(locx)≤ k+ t ≤ n+t

2 .

Lemma 8.11 implies that locx = locU is equivalent to #i(locx)>
n+t

2 when any number

of t +1 locBi ’s are independent and n > 2k+ t. If n+ t is odd locx = locU is equivalent to

#i(locx)>
n+t

2 when any number of t +1 locBi ’s are independent and n ≥ 2k+ t
Using the result of Lemma 8.11, we construct an NIL-1 algorithm.

NIL-1: We describe NIL-1 in Algorithm 1. Here is an overview of it.

Let L= {locB j}n
j=1 be the set of different positions in M and let {d j}n

j=1 be the distance

between locB j and a location locU ∈M, n > t, n ≥ 2k+ t if n+t
2 is odd and n > 2k+ t if n+2

2
is even.

With each location/distance pairs (locBu ,du), NIL-1 outputs either locU or abort mes-

sage ⊥ by trilateration using spheres.

In order to guarantee a certain security level, NIL-1 has to check independence of each

number of t +1-locations. Therefore, it first runs a dependency test function dep. If dep

outputs 1 for a t + 1 location tuple, the NIL-1 aborts and outputs ⊥. As the security

can be corrupted with dependent locations, the algorithm does not continue.

If there exists no dependent t + 1 locations, it continues as follows: To avoid

enumerating every sphere, it starts by first picking t different locations of bases

locBu1 , locBu2 , ..., locBut ∈ L at random such that the intersection of the spheres

{S(locBui ,dui)}t
i=1 is not empty. At this point, the intersection I includes at most two

locations. Then, NIL-1 keeps track of the number of spheres which are different than

{S(locBui ,dui)}t
i=1 and which include the location(s) in I. Whenever it finds a location

which is on more than n+t
2 spheres, then it outputs this location as locU .

Correctness: If all inputs are correct and there exists no t + 1 dependent locations,

then locU ∈ I at the first iteration of the for all loop. So, count[locU] = t at this point.

Then, the algorithm continues to intersect I with the rest of spheres. As all location/dis-

tance pairs are correct and locations are independent, the rest of the intersections include

only locU . Therefore, count[locU] = n. Since, we have n> n+t
2 , NIL-1 always outputs locU .

Complexity: We consider the dependency test and the intersection computation in

our complexity analysis. Dependency test and intersection are counted as O(t3) which

is the complexity of classical Gaussian Elimination. Therefore, the best, worst and

expected complexity is O(nt+1t3) which is a polynomial. In real life cases, dimension two

or three is used so the complexity is O(n3) and O(n4), respectively.

Theorem 8.12 (k-security of NIL-1). If n ≥ 2k + t, NIL-1 is k-secure (as defined in

Definition 8.3).

126

Formalism on Localization

Algorithm 1 NIL-1(locB1 , . . . , locBn ,d1, . . . ,dn)

1: for all possible t +1-tuple (locBu1 , locBu2 , ..., locBut+1) do
2: if dep(locBu1 , locBu2 , ..., locBut+1)→ 1 then
3: return ⊥
4: end if
5: end for
6: for all possible t-tuple (locBu1 , locBu2 , ..., locBut) do
7: I ←∩t

i=1S(locBui ,dui) (comment: |I| ≤ 2)
8: if I �= /0 then
9: for locx ∈ I do

10: count[locx] = t
11: end for
12: for locBut+1 ∈ L\{locBu1 , locBu2 , ..., locBut} do
13: {locx}← I ∩S(locBut+1 ,dut+1) (comment: |{locx}| ≤ 1)
14: if {locx} �= /0 then
15: count[locx]← count[locx]+1
16: if count[locx]>

n+t
2 then

17: return locx

18: end if
19: end if
20: end for
21: end if
22: end for
23: return ⊥

Proof. Assume that there exists locx �= locU such that count[locx] >
n+t

2 (which is the

only case that an adversary wins). Remark that n+t
2 < count[locx] ≤ #i(locx). From

Lemma 8.11, we know that given n ≥ 2k+ t and independence of every t +1 location, if

#i(locx)>
n+t

2 , then locx = locU which contradicts our assumption.

Theorem 8.13 (k-full-security of NIL-1). If n ≥ 2k + t and n+t
2 is odd, NIL-1 is k-

full-secure (as defined in Definition 8.4) and if n > 2k + t and n+t
2 is even, NIL-1 is

k-full-secure (as defined in Definition 8.4).

Proof. We need to prove that NIL-1 always outputs locU . We prove in Theorem 8.12

that if NIL-1 outputs a location locx �=⊥ then locx = locU .

Now, we show that NIL-1 never outputs ⊥. Let’s assume that NIL-1 outputs ⊥. It

means that for all locx ∈⋃
I, #i(locx) = count[locx]≤ n+t

2 .

• If n ≥ 2k+ t and n+t
2 is odd, n− k ≥ n+t

2 . Since n+t
2 is an odd number, actually,

n−k > n+t
2 because n−k is a positive integer. We also know from Lemma 8.11 that

#i(locU)≥ n− k > n+t
2 which contradicts with our assumption.

• If n > 2k+ t and n+t
2 is even, n− k > n+t

2 . We also know from Lemma 8.11 that

#i(locU)≥ n− k > n+t
2 which contradicts our assumption.

127

NIL-1 is secure and always returns the right location (if there are no dependent t +1
locations) as long as n> 2k+t and n+t

2 is even or n≥ 2k+t and n+t
2 is odd. We now propose

another algorithm whose resistance to corrupted pairs is higher but which returns ⊥ as

soon as malicious inputs are detected.

NIL-2: We give NIL-2 in Algorithm 2. NIL-2 first has to check the independence of

each t +1-locations as NIL-1. Therefore, it first runs a dependency test function dep. If

dep outputs 1 for a t + 1-location tuple, NIL-2 aborts and outputs ⊥. As the security

can be corrupted with dependent locations, the algorithm does not continue.

If there exists no dependent t +1 locations, it picks a t +1-location tuple at random

and intersects the spheres constructed from these location. Note that the intersection

has at most one location. Then, NIL-2 checks if the rest of the spheres includes the

location in this intersection. If one sphere does not include it, it outputs ⊥. Otherwise,

it outputs the location in the intersection.

Algorithm 2 NIL-2(locB1 , . . . , locBn ,d1, . . . ,dn)

1: for all possible t +1-tuple (locBu1 , locBu2 , ..., locBut+1) do
2: if dep(locBu1 , locBu2 , ..., locBut+1)→ 1 then
3: return ⊥
4: end if
5: end for
6: pick a tuple (locBw1 , locBw2 , ..., locBwt+1)
7: {locx}← ∩t+1

i=1S(locBwi ,dwi) (remark that |{locx}|= 1 or I = /0)
8: if {locx}= /0 then
9: return ⊥

10: end if
11: for all locBi ∈ L\ tuple do
12: if locx /∈ S(locBi ,dI) then
13: return ⊥
14: end if
15: end for
16: return locx

Correctness: If all inputs are correct and there exists no t + 1 dependent locations,

clearly, the algorithm always outputs locU .

Complexity: The worst case and the best case complexity of NIL-2 is O(nt+1t3). Here,

we consider dependency test, intersection computation and checking if a sphere contains

location in our complexity analysis. In real life cases, dimension two or three is used so

the complexity is O(n3) and O(n4), respectively.

128

Formalism on Localization

Theorem 8.14 (k-security of NIL-2). If n > k + t, NIL-2 is k-secure (as defined in

Definition 8.3).

Proof. Assume that NIL-2 is not k-secure when n > k + t. So, the adversary wins k-
security game for NIL-2. In line 7 of Algorithm 2, if I = {locU}, then the adversary

cannot win. So, we can assume that NIL-2 computes I = {loc′U} where locU �= loc′U when

the adversary wins.

NIL-2 outputs loc′U if all spheres include it. From Lemma 8.11, we know that we can

have at most t correct spheres which include loc′U . So, if n > k+ t, there exists a sphere

which does not include loc′U and NIL-2 outputs ⊥. Therefore, the adversary cannot win

k-security game when n > k+ t. This contradicts our assumption. So, NIL-2 is k-secure
when n > k+ t.

NIL-2 is not k-full-secure because if there exists an incorrect location whose sphere

does not intersect with any other spheres, then NIL-2 outputs ⊥.

We give a variant of NIL-2 which has lower computational complexity and have the

same security level with an extra assumption.

NIL-3: We give NIL-3 in Algorithm 3 with the assumption that n > k+t and any t+1-
locations which have correct distances are independent. NIL-3 first picks t +1-locations.
If they are dependent, then it outputs ⊥. Otherwise, it intersects the spheres constructed

from t +1-independent location-distance pairs. If the intersection is not empty, then it

checks if the spheres constructed from other location-distance pairs includes the location

in the intersection. If all spheres include, NIL-3 outputs this location. Otherwise, it

outputs ⊥.

Algorithm 3 NIL-3(locB1 , . . . , locBn ,d1, . . . ,dn)

1: pick a tuple locBu1 , locBu2 , ..., locBut+1 ∈ L

2: if dep(locBu1 , locBu2 , ..., locBut+1)→ 1 then
3: return ⊥
4: end if
5: {locx}←⋂

locBui∈tuple S(locBui ,dui) (remark that |{locx}|= 1 or I = /0)
6: if {locx}= /0 then
7: return ⊥
8: end if
9: for all locBi ∈ L\ tuple do

10: if locx /∈ S(locBi ,dI) then
11: return ⊥
12: end if
13: end for
14: return locx

129

Theorem 8.15 (k-security of NIL-3). Assuming that any t + 1-locations which have

correct distances are independent and n > k+ t , NIL-3 is k-secure (as defined in Defin-

ition 8.3).

Proof. The proof is very similar to the proof of Theorem 8.14. The only case that

the adversary can win the k-security game is when tuple = {locx} �= {locU}. Therefore,

assume that NIL-3 is in this case. NIL-3 outputs locx if all spheres includes it. From

Lemma 8.11, we know that we can have at most t correct spheres which include locx as

any t +1-locations which have correct distances are independent. So, if n > k+ t, there
exists a sphere which does not include locx and NIL-3 outputs ⊥.

Correctness: If all inputs are correct and there exists at least one t +1 independent

locations, clearly, the algorithm always outputs locU .

Complexity: In our complexity analysis, we take into account the dependency test,

the intersection computation and checking if a sphere includes a location. The complexity

of NIL-3 is O(t3+nt) because it does one dependency check and checks whether number

of n-spheres include locx.

Remarks: NIL-3 is the most efficient algorithm comparing to NIL-1 and NIL-2 as long

as there exists at least one correct t + 1-independent location/distance. NIL-3 can be

useful if location of bases are designated considering their independency. However, if it

is not the case, NIL-2 and NIL-1 are better options. NIL-1 is k-full secure algorithm

while NIL-2 is secure (not full) with more incorrect pairs. However, it does not correct

bad inputs as much as NIL-1 does. It rather outputs ⊥ instead of trying to correct.

Therefore, differently than robust localization [ZJUQ08], with our localization definition

(Definition 8.1), we can achieve higher security. By using NIL-2, we give an IL protocol

which is secure in a given area with unlimited delay attack.

8.3.2 Interactive Localization

A user algorithm in an IL protocol does not have locations of bases and distances between

bases’ locations and the user’s location as an input. However, they can be deduced during

the protocol. Once U obtains locations and distances, it can use a k-(full)-secure NIL

algorithm (e.g., Algorithm 1, 2 and 3) which outputs the location of the user.

Apparently, a secure DE protocol can be used to learn the distances once U learns the

locations of bases. However, if some locations are not correctly obtained (due to dragging

attacks) or if some precise delays are introduced during the DE protocol execution (by

delay attacks), then security problems occur. In more details, these attacks which cause

problems on security are as follows:

Delay Attack on DE (See Figure 8.2 and 8.3): It is not possible to prevent

delays on arrival of messages in a DE protocol. If a distance computation is based

130

Formalism on Localization

U MU MM
locA

B
4

Figure 8.2 – No adversary delays. Points
without label are honest bases. B4 is honest.

U MU M
locA

B
4

AA

delay

Figure 8.3 – Points without label are
honest bases, B4 is honest. B4 is
delayed.

on communication time in a DE protocol, delays cause incorrectness. For example,

consider an adversary which actively involve in m-rounds challenge/response phase and

delays the communication time. More specifically, in each round i, the adversary delays

the exchange of challenge/response in total by 2ΔA amount of time so that the response

arrives V at 2dP + 2ΔA instead of 2dp. At the end, V outputs the distance as dP +ΔA
where there is no prover at this distance. If the adversary executes the delay attack to

a DE protocol between the user and the base, then the pair (locBi ,di) will be corrupted

as di is not correct.

Dragging Attack (See Figure 8.4):

Our adversarial model lets a malicious base run an arbitrary algorithm B∗. So, B∗ may

use an arbitrary location loc′B as if loc′B is its location instead of its real location locB

(e.g., d(locU , locB) < d(locU , loc′B)). If U obtains the correct distance di = d(locU , loc′B)
with an incorrect location loc′B, this effectively shortens the perceived distance to locBi .

We call this attack dragging attack, as it seems as if Bi moved away while dragging U
behind. This is illustrated in Figure 8.4.

131

U U ′ M1
M′

1

B1

B3

B2

δ δ

Figure 8.4 – Dragging Attack. M1 convinces U that it is closer to locM1 than it really is
by pretending to be at loc′M1

.

Generic Construction: We propose a generic construction for an IL protocol in

Figure 8.5. First, U generates a random nonce N and broadcasts it. After receiving N,

each base Bi generates a signature SBi of the message (N, locBi) with their secret key skBi

and sends the signature to U . U verifies the signature to be sure that the locations are

sent by the bases. If all signatures are valid, then U starts a DE protocol with each base

Bi sequentially in order to obtain its distance to each bases’ locations. U runs the verifier

algorithm of the DE protocol and Bi runs the prover algorithm of the DE protocol. At

the end, U has all (locBi ,di) pairs and obtains its location by running an NIL algorithm

(e.g., NIL-1, NIL-2, NIL-3).

U(skU ,pkU ,{pkBi
}) Bi(skBi ,pkBi

,pkU , locBi)

pick N ∈ I
N

=========⇒
if VerifypkBi

(SBi ,N, locBi)→ False
SBi ,locBi←−−−−−−−−− SBi = SignskBi

(N, locBi)

cancel

run V (skU ,pkU)→ di
DE←−−−−−−−−→ run P(skBi ,pkBi

,pkU)

run NIL({locBi},{di})→ locU

output locU

Figure 8.5 – The generic construction of an IL protocol. Double arrow represents broad-
casting (i.e., all bases receive N).

Theorem 8.16 (k′-security). Assume that number of k bases out of n bases are malicious

and number of � honest bases have their communications delayed (but not modified) by

the adversary during the execution of IL, and k′ ≥ k+ �. If the signature scheme is EF-

CMA secure, the underlying DE protocol is mMiM-secure and NIL is k′-secure then IL

in Figure 8.5 is k′-secure (as in Definition 8.5).

Proof. Γ0: Instances of bases and instances of the user play the game in Definition 8.5

with our assumptions.

132

Formalism on Localization

Γ1: We reduce Γ0 to Γ1 where (locBi ,N) pairs do not repeat. With u queries, the

probability that (locBi ,N) repeats in Γ0 is at most u
|I| , which is negligible if I is large

enough. Therefore, |p1 − p0| is negligible.
Γ2: We reduce Γ1 to Γ2 where we simulate honest bases’ instances and the verification

algorithm Verify with Verify′ as follows:
BBBiii(((skBi ,,,pkBi

,,,pkUUU ,,, lllooocccBi)))

receive N

SBi = signskBi
(locBiN,τ,r)

store (SBi ,pkBi
,N, locBi) in Table

send SC, locBi

run P(skBi,pkBi
,pkU)

Verify′pkBi
(((SSSBi ,,,NNN,,, lllooocccBi)))

if (SBi ,pkBi
,N, locBi) in Table

return 1

else: return 0

The difference occurs between Γ1 and Γ2 when U receives a valid and forged signature.

In this case, U in Γ2 outputs ⊥ while U in Γ1 continues. Therefore, to prove that the

difference between Γ1 and Γ2 is negligible, we assume the existence of an adversary A that

makes U receive a forged signature in Γ1 with probability p. We can then build B that

simulates the k′-security game (Γ1) to win the EF-CMA game for a given public key pk

as follows. B first sets up keys for the honest bases and generates n−k−1 secret/public

key pairs. It selects a base Bi among the honest bases at random and assigns pk as its

public key. Then, it gives all public keys. It then simulates the k′-security game for A .

The simulation of U is as in IL protocol and the simulation of the bases is as follows: If A
sends Ni to Bi, B sends (locBi ,Ni) to the EF-CMA signature oracle, and replies with the

signature from the oracle. Otherwise, B simulates each honest B j �= Bi as in IL protocol.

Whenever U receives a signature σ for a loc′B j
�= locB j that was not asked in previous

queries, B uses it as a forgery attempt. The probability that the forged signature was

produced using pk is 1
n−k′ and A produces a valid signature with probability p. Thus,

B wins the EF-CMA game with probability p
n−k′ . As the signatures scheme is EF-CMA

secure, p
n−k′ is negligible. So, |p1 − p2| is negligible.

Remark that in Γ2, the location of honest bases are always correct.

Γ3: We reduce Γ2 to Γ3 where the algorithm V run by a user instance cancels if

the estimated distance di of an honest base from U is such that di < d(locBi , locU). To

prove that the difference between Γ2 and Γ3 is negligible, we assume the existence of

an adversary A that makes U output a distance di < d(locBi , locU) with probability p′

in Γ2. Then, we can build B, an mMiM adversary, with the advantage p′
n . Let V be

the distinguished verifier instance for B’s mMiM-security game. B simulates U using

verifier instances and the bases using prover instances. B picks a base Bi and executes

the DE protocol with V . The rest of the DE protocols are executed with other verifier

instances. With probability 1
n , the protocol executed with V is the one targeted by A

and V outputs di < d(locBi , locV) with probability p′. Thus, B wins with probability p′
n .

As the DE protocol is mMiM-secure, this probability and |p3 − p4| are negligible.

In Γ3, number of n− k− �= n− k′ honest bases’s location/distance pair is correct and

U obtains locU using the NIL algorithm. So, Γ3’s security is equivalent to k′-security of

NIL algorithm. As we know that the NIL algorithm is k′-secure, Γ3 is k′-secure as well.

133

The main problem in the IL protocol is that the number of honest bases whose com-

munication is delayed is independent from the number of malicious bases. Even if there

exists no malicious base, all honest bases’ communication can be delayed. So, it is im-

possible to achieve secure IL in Theorem 8.16 if we do not limit the number of delays.

Remark that in Theorem 8.16, we have the assumption that k′ ≥ k+ � to limit the num-

ber of delays. Therefore, we give another theorem in which we do not need to limit the

number of delays. We start with some preliminary lemmas:

Lemma 8.17 ([ČH05a]). For any two points locU and loc′U (locU �= loc′U) located within

a Conv(locBi , locB j , locBk), at least one, but not more than two, of the following inequalities

hold:

di > d′
i ;d j > d′

j;dk > d′
k

where di represents the distance between locU and locBi and d′
i the distance between loc′U

and locBi.

Lemma 8.18. (Lemma 8.17’s extension) For all B1, . . . ,Bh and for all locU , loc′U ∈
Conv(B1, . . . ,Bh), there exists Bi such that d(locBi , loc′U)< d(locBi , locU).

Proof. Let B1, . . . ,Bh be arbitrary, locU ∈ Conv(B1, . . . ,Bh) and loc′U �= locU such that

∀i,d(locBi , loc′U) ≥ d(locBi , locU). We will prove loc′U /∈ Conv(B1, . . . ,Bh). Let Π be the

half space of all P’s such that d(locP, loc′U) ≥ d(locP, locU). We have ∀i,Bi ∈ Π, so

Conv(B1, . . . ,Bh)⊆ Π. Since loc′U /∈ Π we have loc′U /∈Conv(B1, . . . ,Bh).

Let us call the IL protocol which uses NIL-2 as IL-2 protocol. In the following theorem,

we prove that IL-2 is k-secure in a specific area.

Theorem 8.19 (k′-security of IL-2). Let H be the set of honest bases. Let O=Conv(H)

be the convex hull of honest bases.

Assuming that a user located at locU ∈O, if the signature scheme is EF-CMA secure,

the underlying DE protocol is mMiM-secure and NIL-2 is k′-secure then U of IL-2 outputs

loc′U in the security game in Definition 8.2 such that:

Pr[loc′U ∈O∧ locU �= loc′U]< δ

where δ is negligible.

Proof. Let �= |{Bi ∈ H |d(locBi , loc′U)≥ d(locBi , locU)
}|.

Γ0: The adversary plays a very similar game to the k-security game from Definition 8.5

with the following change: the adversary wins this game if U outputs loc′U ∈O, locU �=
loc′U .

We use the reductions from Theorem 8.16 to produce a game Γ3 such that |p0 − p3| is
negligible.

134

Formalism on Localization

In Γ3, all di’s are such that di ≥ d(locBi , locU) and at most number of k′ location/dis-
tance pairs are incorrect.

Now, we are in k′-security game for NIL-2. We know from Lemma 8.18, there exists B j

such that d j = d(locB j , loc′U)< d(locB j , locU)≤ di. NIL-2 outputs loc′U ∈O if and only if

all spheres including S(locB j ,d j) has loc′U . In Γ3, all di’s are such that di ≥ d(locBi , locU).

So, NIL-2 never outputs loc′U .

8.4 Conclusion

In this chapter, we developed formal model for the security of localization. We first

defined the security of a localization algorithm and a localization protocol by integrating

the communication and adversarial model of distance bounding. Then, we analyzed the

number of corruption on bases in order to guarantee outputting the correct location of the

user. Thanks to this result, we constructed a secure localization algorithm NIL-1 which

does not need to enumerate all t-tuples after checking the independence of locations.

Then, we described another algorithm NIL-2 which works securely with more number

of incorrect locations. We also constructed NIL-3 which is more efficient comparing

to NIL-1 and NIL-2 with an extra assumption of having at at least t + 1-independent
correct location/distance pairs. However, NIL-2 and NIL-3 are not full-secure as they

directly aborts if they find some inconsistency. On the other hand, NIL-1 is secure with

less numbers of incorrect locations but it is also full secure. Then, we constructed an

interactive localization protocol between bases and a user. This protocol consists of a

secure distance estimate protocol, a secure signature scheme and a secure localization

protocol. We first analyzed its security in case of limited delay attack executed by

adversaries. Second, we showed that our protocol is secure in certain areas without

limitation on delay attacks.

135

Chapter 9
Proof of Location

Chandran et al. [CGMO09] bring a novel approach to cryptography which is using the

position of a person as a credential because the location of a person may also define

the identity of this person (e.g., we trust a bank teller behind the window without

checking her identity because of her location). One of the fundamentals of position-based

cryptography is secure positioning, where a party convinces multiple verifiers that (s)he

is at a certain location. Unfortunately, it is not possible to achieve secure positioning in

Vanilla model as shown in [CGMO09]. Because of this, we propose a different model.

We build our new model that we call proof of location (PoL). PoL is constructed on top

of secure hardware model (SHM) for distance bounding as described in Chapter 5, and

our localization model given in Chapter 8. In this integrated model, we assume that

the secure hardware is the part of the prover but it is always honest while the prover

can be malicious. We do not have any key set up for the prover. It only authenticates

himself with its location by using his hardware. Our model can fit in real life situations.

For instance, consider that only people in an office can access printers and the prover

who wants to print has to show that he is at the office. In this case, the prover using

his hardware can prove his position. Consider a pizza company which has a delivery

service. This pizza company can produce its hardware to be distributed to people who

use the delivery service. Later on, whenever a person orders a pizza, this person can also

prove his location to be verified with a given address. Thus, the company can prevent

fraudulent people who order pizza just for the denial of service.

Related Works Secure positioning is a well-studied problem in wireless security.

Sastry et al. [SSW03] give a secure positioning protocol which uses an echo distance

bounding. The verifiers aim to understand if the prover is in a claimed area. They as-

sume that the verifiers are always honest but this assumption weakens the security model

comparing to other works. There are other secure positioning protocols [ZLFW06, SP05]

in this weaker model as well.

Čapkun and Hubaux [ČH05b] introduce a mechanism called Verifiable Multilateration

(VM) consisting of at least three verifiers (in two-dimensional space) which have constant

137

location, an authority and a prover. The verifiers determine the proximity of the prover

by using a distance bounding protocol. Then, the authority runs a test protocol between

them to validate the distances learned. If any delay attack is detected, the validation

fails. The validation detects delays due to the fact that a prover inside the triangle

which is consisted of three verifiers cannot prove different position without delaying.

The adversarial model of VM is consisting of an external attacker and compromised

nodes. The main drawback of VM is informal security analysis. For example, their

security analyzes are based on that the attacker cannot shorten its distance but the DB

protocol used in VM actually lets a compromised node shorten its distance with distance

hijacking attacks. Perazzo and Dini [PD15] discuss about the negative effect of non-ideal

distance bounding against VM as implementing an ideal DB is hard.

Čapkun et al. [ČČS06] also introduced a model in which part of the infrastructure

bases are either hidden from users or mobile. This is meant to avoid the generic attack

by preventing attackers to position properly for the attack to work. The model is rel-

atively simple but Chandran et al. [CGMO09] show that hidden bases’ positions can be

discovered if a user is allowed multiple executions of the protocol and gets feedback on

its position claim was accepted or not (both reasonable assumptions). Another attack

with constant probability of success is described to defeat the protocol based on mobile

stations.

Delaët et al. [DMRT11] consider stronger adversarial model than previous works,

where each node in a wireless sensor network does not have any information about the

other nodes. This means that a node can cheat on its location. They give an algorithm

which detects faking nodes and analyze their algorithm in which cases the algorithm

works correctly. In the similar adversarial model, Hwang et al. [HHK07] propose a

faking node detection algorithm which works probabilistically.

Secure positioning is a problem of vehicular ad hoc network (VANET). Song et al.

[SWL08] propose a method to detect and prevent spoofing attack by using an honest

neighbor node. So, the adversarial model is rather limited.

Chandran et al. [CGMO09] brings a novel cryptographic approach to the secure

positioning and introduce position-based cryptography. They also propose to use the

position for cryptographic protocols such as a secure key exchange. They prove that

secure positioning is impossible in the Vanilla model. Therefore, they provide a new

model for secure positioning with a bounded storage. However, this model is limited

because its security is based on the adversary has a limited storage. There are also

quantum approaches [CFG+10, BK11, BCF+14, LL11] for position-based cryptography.

Lastly, Akand and Safavi-Naini [ASN18] introduced region authentication. Here, a

prover proves that it is in a region instead of in a specific location. In their setup,

prover has a secret key and identified with this so it cannot apply to position-based

cryptography.

138

Proof of Location

9.1 Our Contribution

• We define the problem of secure positioning in a different way in order to obtain

an achievable security. We consider a model which integrates localizations and

tamper-proof devices for proof of location. Our model for the proof of location is

based on the secure hardware model [KV18a] and localization model.

• In our model, the prover does not have any credential than its location as suggested

by Chandran et al. [CGMO09].

• We propose a protocol which is constructed on top of a weak variant of distance

bounding and localization algorithm. We formally prove its security according to

our security model.

Structure of the Chapter: In Section 9.2, we give the definition of proof of knowledge

(PoL) and its security model. Then, we propose a PoL protocol and prove its security

in Section 9.3. We conclude this chapter with Section 9.4.

9.2 Definitions

We first give the definition of a proof of location and then show the security model.

Definition 9.1 (Proof of Location (PoL)). A proof of location protocol PoL consists of a

tuple (KH ,Vl,Pl,Hl) and an IL tuple (KB,KU ,B,U,n,M) as defined in Definition 8.2. KH
is the key generation algorithm outputting (skHl ,pkHl

). Vl is the algorithm of a location

verifier with the input pkHl
, Pl is the algorithm of a location prover with no input and Hl

is the algorithm of the prover’s hardware with the input (skHl ,pkHl
,{pkBi

}). At the end

of the interactions between these algorithms, Vl outputs a location loc ∈M or ⊥.

Correctness: A proof of location protocol with secure hardware is correct for all

locBi ’s, secret/public key pairs, n and M if Vl,Pl,Hl and B run correctly, Vl always outputs

the location of Pl.

Remark that in our model for PoL, we do not require a key setup for the prover. The

verifier identifies the prover according to his location and the key of the hardware is not

related with the prover’s credential.

Adversarial and Communication Model: Our adversarial and communication

model for PoL is integrated from localization model in Section 8.3.1 and the secure

hardware model (SHM) for DB in Section 5.2. In PoL model, we add the following as-

sumptions related to the SHM in addition to those from the localization model explained

in the previous sections.

• Hardware are always honest.

139

• Provers can be corrupted by an adversary and corrupted provers can run an arbit-

rary algorithm P∗
l .

• Each prover possesses a secure hardware.

We note that we do not have the assumption ‘the secure hardware of an honest prover

can only communicate with its prover and they are both at the same location’ of the SHM

in our PoL model. We do not want a location prover to have any other credential or

identity other than its location. If we had this assumption, then the hardware would be

the part of the location prover’s credential, which is equivalent to having a key setup for

the location prover. So, our model can be imagined as there are some hardware which

help any party to prove its location as verifiers in secure positioning.

Definition 9.2 ((k,ε)-PoL Security). The game is played with an IL protocol. It begins

with the same game set up as in Definition 8.2. It also runs the key generation algorithm

KH . The adversary can create polynomially many instances of the location prover Pl, the

hardware Hl and the location verifier Vl. If one of the location-verifier instances outputs

loc ∈ M message while d(loc, locP) > ε for all locations of Pl’s instances locP, then the

adversary wins the game. We say PoL is secure if for any such game the probability of

an adversary to win is negligible.

We now give a different DB definition than the one we see until now. We remove the

key setup of DB and obtain Keyless DB. This type of DB lets us construct PoL without

any key setup on the location-prover side.

Definition 9.3 (Keyless DB). A keyless distance bounding protocol is a two-party prob-

abilistic polynomial-time (PPT) protocol and it consists of a tuple (V,P,ε). P is the

proving algorithm with no input, V (1�) is the verifying algorithm where � is the security

parameter. At the end of the protocol, V (1�) outputs a final message OutV ∈ {0,1}.
A Kless DB protocol is correct if and only if under honest execution, whenever a

verifier V and a prover P lie at most a distance ε from each other, V always outputs

OutV = 1.

Definition 9.4 (Security of Keyless DB). In keyless DB game, the adversary can run

multiple instances of V and P. If one of the instances of V outputs 1 while there exists

no instance close to V , then the adversary wins. A keyless DB is secure, if the success

probability of an adversary in this game is negligible.

We give an example of a keyless DB protocol in Figure 9.1. In the protocol, V first picks

randomly a bit string C whose each bit corresponds to challenges. Then, in the challenge

phase, V sends the challenge ci (ith bit of C). P responds with the same challenge. At

the end, V checks if all responses ri are equal to ci and if all arrived on time.

Theorem 9.5. Echo is a secure keyless DB.

Proof. Lemma 3.4 implies that the echo protocol is secure. So, the success probability

of the adversary is at most 1
2� .

140

Proof of Location

V (1�) P
pick C ∈ {0,1}�

challenge phase
for i = 1 to �

ci =C[i], start timeri
ci−−−−−−−−−−−−−→ receive ci

stop timeri
ri←−−−−−−−−−−−−− ri = ci

verification phase

check timeri ≤ 2ε,ri =C[i]
OutV−−−−−−−−−−−−−→

Figure 9.1 – Echo Protocol for Keyless DB

9.3 Proof of Location Protocol

We can achieve PoL with secure hardware by the following protocol PoLH (See Figure

9.2). It is straightforward due to our hardware assumption. First, the hardware checks

if a party is around it, learns its own location and executes the proof by sending the

signature of its location. The details are below.

Hl(skHl ,pkHl
,{pkBi

}) Pl Vl(pkHl
)

Distance Bounding
N ← N

N←−−−−− N←−−−−− start timer

run V (1�)→OutV
KlessDB←−−−−→ run P

if OutV = 0:
cancel Localization

with all Bi

run U(skU ,pkU{pkBi
})→ loc IL←−−−−−−−−−−−−−−−−−−−−−→ run B(skBi ,pkBi

,pkU , locBi)

Proof
Vl(pkHl

)

σ = signskS(locH ||N)
σ,loc−−−−−→ σ,loc−−−−−→ stop timer

if VerifypkS
(σ,N, loc)→ 0
or timer > T :

output ⊥
else:

output loc

Figure 9.2 – PoLH

PoLH : In the key setup of PoLH , KH first generates a secret/public key pair (skU ,pkU)

by running KU of an IL protocol and generates another pair (skS,pkS) by using the

key generation algorithm of a signature scheme. At the end, it outputs (skH ,pkH) =

((skU ,skS),(pkU ,pkS)). Here, we assume that there exits n bases which have secret/public

key pairs {(skBi ,pkBi
)} generated by KB of an IL algorithm.

In the first stage of the protocol, V picks a nonce N and sends it to the location prover

Pl. It also starts the timer. Then, Pl sends the nonce N to H. After receiving N, the

hardware and the location prover start to run a keyless DB protocol so that the hardware

makes sure that there exists a party in ε-neighborhood of it. Here, the hardware runs

141

V (1�) of KlessDB and the location prover runs P. If the location prover proves that it

is in ε-neighborhood, then the hardware starts to learn its own location. To do so, it

starts an IL protocol with n bases. During localization, it runs U(skU ,pkU ,{pkBi
}) and

obtains a location loc ∈ M. Then, the proving phase begins. The hardware generates

the signature of the message N||loc by skS. Then, it sends loc and the signature σ to the

verifier via the location prover. The verifier stops the timer and verifies both the nonce

and the signature. If the signature passes the verification and if timer is not more than

expected (timer < T)1, the verifier outputs loc. Otherwise, it outputs ⊥.

Theorem 9.6. If the signature scheme is EF-CMA secure and IL protocol is k-secure
and KlessDB is secure (Definition 9.4), then PoLH in Figure 9.2 is secure with the

presence of at most k malicious bases.

Proof. Γ0: This is the PoL’s security game with the protocol PoLH .

Γ1: We reduce Γ0 to Γ1 where (locU ,N) pairs do not repeat. With r queries, the

probability that (loc,N) repeats in Γ0 is at most r
|N | , which is negligible if N is large

enough. Therefore, |p0 − p1| is negligible.
Γ2: We reduce Γ1 to Γ2 where the location verifier always rejects if the signature

received is not generated by Hl. We can easily show that the case which differs Γ2 and

Γ3 happens with negligible probability by using the EF-CMA security of the signature

scheme. So, |p2 − p1| is negligible.
Γ3 : We reduce Γ2 to Γ3 where the location that Hl learns cannot be wrong. We can

show that if H obtains a wrong location, we can construct an adversary which breaks

the security of IL by simulating the bases in IL. Therefore, |p3 − p2| is negligible.
In Γ3, locations received by all verifier instances are correct.

Γ4 : We reduce Γ3 to Γ4 where we simulate the hardware instance by canceling the

protocol if there exists no close party which has a distance at most ε.
We show that if there exists an instance Pl which is further than ε and its matching

instance Hl do not cancel, then we can construct a keyless DB adversary A . A simulates

the hardware against Pl by V in keyless DB security game. A behaves same Pl against

keyless DB security game. If Pl succeeds, then A succeeds. Therefore, |p4 − p3| is

negligible.

So, in Γ4, the hardware continues if there exists a party in ε-neighborhood of loc which

is the location of the hardware. In this case, the adversary cannot win Γ4.

9.4 Conclusion

In this chapter, we described a security model for the proof of location problem. In our

model, we considered the existence of honest hardware which are possessed by provers

who want to prove their location. There exists no key setup for the prover. The PoL

1T can be considered as the maximum time given to H in order to execute the Keyless DB and
localization protocols.

142

Proof of Location

model is the combination of localization and secure hardware DB models. We construc-

ted a protocol where the hardware obtains the location of the prover and prove this

location to a verifier. We proved that this protocol is secure in our model. Our PoL

model is achievable and so far the only alternative to the bounded memory assumption

which is used in [CGMO09].

143

Chapter 10
Conclusion and Future Work

In this thesis, we focused on the role of position in cryptography. So, we solved some

existing problems related to distance bounding, we provided security models for specific

applications of proof of proximity with distance bounding, and we constructed localiza-

tion algorithms and secure positioning protocols.

First, we concentrated on the theory of distance bounding. We considered different

structures for DB and analyzed the optimal security bounds for it. In one of the struc-

tures called sync structure, we included the prover in time computation of the challenge

phase. We obtained better optimal security bounds for MiM-security with the prover’s

involvement. In the other structure, we randomized the time of sending challenges by

the verifier. We added this change to the verifier in the common structure and the sync

structure and obtained better security bounds for MiM and DF security. Then, we con-

structed the most efficient public-key distance bounding protocol in its security level.

Our efficient protocol Eff-pkDB and its private variant Eff-pkDBp is a generic construc-

tion which consists of a D-AKA secure key agreement protocol and a one-time secure

symmetric DB protocol. We also provided a variant of it which requires less security

from the symmetric DB. In the end, we compared the efficiency and the security of our

protocols and we saw that our protocols are better in terms of efficiency and security.

Moreover, we constructed a model called the secure hardware model by considering the

problem of defining the terrorist-fraud security. With this model, we showed that the

terrorist-fraud security is possible. We also showed some relations between SHM and

plain model.

Second, we integrated distance bounding with contactless access control and contact-

less payment. These applications need a proof of proximity for their security. So, our

integration provided full security. For contactless access control, we constructed a secur-

ity and a privacy model. In the AC-security model, we used the same adversarial and

communication model as distance bounding and provided a security definition which

covers MiM-attacks, DH-attacks, and impersonation attacks. In the privacy model, we

considered the same adversarial and communication model and we provided a privacy

definition which takes into account timing as the AC security model. We showed how

145

to convert a distance bounding protocol into an AC protocol securely. However, this

conversion does not preserve privacy so we suggested analyzing privacy before using the

conversion. For contactless payment, we provided a security model considering the ma-

licious terminal and malicious card. We constructed a new secure contacless payment

protocol ClessPay. Besides, we proved the security of the contactless EMV-protocol

against malicious terminals in our model. We show some vulnerabilities of contactless

EMV against malicious cards.

Third, we focused on localization and secure positioning. We considered the secur-

ity of localization algorithms and the security of interactive-localization protocols. We

designed three secure localization algorithms. We constructed a generic protocol for

interactive localization which consists of a distance estimate protocol (equivalent to dis-

tance bounding), a signature scheme and a localization algorithm. Then, we considered

secure positioning. Instead of using the structure of the existing secure positioning pro-

tocols, we defined the new one and called proof of location. The security model of proof

of location consists of the combination of the secure hardware model and the localization

model. In the end, we constructed a proof of location protocol and proved its security.

Future Work: Privacy in symmetric DB has not been considered formally. It can

be an interesting issue to work because the prover who runs a symmetric DB may

need privacy as much as the prover who runs a public-key DB. Beyond the theory

of DB, there are still issues for implementing distance bounding even though we have

some developments on it [CHKM06, SLČ17, HK05, RČ10, HK08]. This is an important

problem to solve.

In IL, we consider a perfect environment in which the user always obtains the correct

distance from distance estimate protocols in an honest environment. However, in real

life, this is not always the case. The messages may arrive later than they are supposed

to arrive owing to some communication traffic. In such environments, our protocols

do not work because they always output ⊥. As a future direction, the IL security can

be defined considering an imperfect environment and an error margin can be suggested

considering the security of IL protocols.

Another future work can be about how to adapt PoL in position-based cryptography

introduced by Chandran et al. [CGMO09]. For example, PoL can be considered for the

position-based secure communication or the position-based decryption.

146

List of Figures

1.1 MiM-attack Scenario . 2

1.2 DH-attack Scenario . 2

1.3 Trilateration Method . 3

2.1 OTDB . 13

3.1 Early-reply strategy of a DF adversary . 22

3.2 Pre-ask attack by a MiM-adversary . 23

3.3 Post-ask attack by a MiM-adversary . 23

3.4 Timing in the Common Structure . 25

3.5 Timing in the Sync Structure . 25

3.6 DBoptSync . 30

4.1 One-pass Authenticated Key Agreement 40

4.2 The Nonce-DH key agreement protocol. 42

4.3 Eff-pkDB . 47

4.4 Eff-pkDBp . 50

4.5 Eff-pkDB+1 . 53

4.6 Simp-pkDB . 54

4.7 DH attack on Simp-pkDB. 56

5.1 Security implications of DB protocols in PM and SHM 68

5.2 Security implications in SHM with the prover Pdum 68

5.3 MiM-OTDB . 70

5.4 MiM-symDB . 70

5.5 Simp-pkDBH . 73

5.6 Eff-pkDBH . 74

6.1 The framework to convert a DB protocol to an AC protocol 86

6.2 Eff-AC . 89

6.3 Eff-ACp . 92

147

7.1 Payment System [emva] . 97

7.2 ClessPay . 102

7.3 The Simplified EMV protocol . 109

8.1 Dependent Locations . 125

8.2 Delay Attack-1 . 131

8.3 Delay Attack-2 . 131

8.4 Dragging Attack. 132

8.5 The generic construction of an IL protocol 132

9.1 Echo Protocol for Keyless DB . 141

9.2 PoLH . 141

A.1 The Brands-Chaum Protocol [BC93]. 168

A.2 The Hermans-Peeters-Onete (HPO) Protocol [HPO13]. 170

A.3 The DH-attack to the HPO Protocol [HPO13]. 171

A.4 The Gambs-Onete-Robert protocol (GOR) [GOR14a]. 172

A.5 ProProx: a Sound and Secure PoPoK. [Vau15d] 174

A.6 ZKP(z : ζ): a Sound and Zero-Knowledge Proof for z Being a Square. . . . 174

A.7 eProProx [Vau15a] . 175

A.8 privDB: Private Public-Key DB [Vau15c]. 175

A.9 TREAD [ABG+17] . 177

A.10 A counterexample TF-attack for the Sim-TF-security of TREAD 180

C.1 An example DB protocol in PM which is DH-secure but not MiM-secure . 184

D.1 The Full EMV protocol . 188

148

List of Definitions

2.1 Public-key DB Protocol [Vau15c] . 8

2.2 Symmetric DB Protocol [BV14] . 8

2.3 Common Structure [BV14] . 8

2.4 Canonical Structure [Vau15c] . 9

2.5 τ-complete [BV14] . 9

2.6 DB experiment . 10

2.8 Distance-Fraud Security in Public-key DB [Vau15c] 11

2.9 Distance-Fraud Security in Symmetric DB [Vau15c] 11

2.10 Distance-Hijacking Security in Public-key DB [Vau15c] 11

2.11 Distance-Hijacking Security in Symmetric DB [Vau15c] 12

2.12 MiM Security in Public-key DB [Vau15c] 12

2.13 MiM Security in Symmetric DB [Vau15c] 13

2.14 HPVP Privacy Game [HPVP11] . 14

2.15 Pseudo-Random Function (PRF) . 15

2.16 Circular PRF [BV14] . 15

2.17 Gap Diffie-Hellman (GDH) [OP01] . 16

2.18 IND-CCA . 16

2.19 IK-CPA [BBDP01] . 16

2.20 EF-CMA . 17

3.5 Sync Structure . 25

3.7 Rand Structure . 28

3.8 SyncRand Structure . 28

4.1 Authenticated Key Agreement (AKA) in One-Pass 40

4.2 Decisional Authenticated Key-Agreement (D-AKA) Security 40

4.4 D-AKAp Privacy . 42

4.7 Multi-verifier OT-MiM: . 45

4.9 Multi-verifier Impersonation Fraud (IF) 46

149

5.1 Three-Algorithm Symmetric DB . 64

5.2 Three-Algorithm Public-key DB . 64

5.3 Correctness of DB . 65

5.4 Security in SHM . 65

5.7 Privacy in SHM . 68

6.1 Access Control (AC) . 82

6.2 Correctness of AC . 82

6.3 AC-Security . 83

6.4 AC-Privacy . 84

7.1 Contactless Payment . 98

7.2 Correctness of Contactless Payment . 99

7.3 Security in Contactless Payment with Malicious Cards 99

7.4 Security in Contactless Payment with Malicious Terminals 100

8.1 Non-Interactive Localization (NIL) . 121

8.2 Interactive Localization (IL) . 121

8.3 k-secure NIL . 121

8.4 k-full-secure IL . 121

8.5 k-secure IL . 122

8.6 Public-key DE Protocol . 123

8.7 Modified MiM Security (mMiM-security) 123

8.8 T transformation . 123

9.1 Proof of Location (PoL) . 139

9.2 (k,ε)-PoL Security . 140

9.3 Keyless DB . 140

9.4 Security of Keyless DB . 140

A.3 SimTF Security [ABG+17] . 177

150

List of Tables

3.1 The review of optimal security bounds in DB structures 29

3.2 Clasifications of DBopt . 31

3.3 Number of rounds for variants of DBopt to achieve DF security 34

3.4 Number of rounds for variants of DBopt to achieve MiM security 35

4.1 The security and privacy review of the existing public-key DB protocols . 38

4.2 The efficiency and security of the existing public-key DB protocols. 58

B.1 Existing KA protocols with their security and efficiency. 181

151

List of Algorithms

1 NIL-1(locB1 , . . . , locBn ,d1, . . . ,dn) . 127

2 NIL-2(locB1 , . . . , locBn ,d1, . . . ,dn) . 128

3 NIL-3(locB1 , . . . , locBn ,d1, . . . ,dn) . 129

153

Bibliography

[ABG+17] Gildas Avoine, Xavier Bultel, Sébastien Gambs, David Gérault, Pascal

Lafourcade, Cristina Onete, and Jean-Marc Robert. A terrorist-fraud res-

istant and extractor-free anonymous distance-bounding protocol. In Pro-

ceedings of the 2017 ACM on Asia Conference on Computer and Commu-

nications Security, pages 800–814. ACM, 2017. Cited on pages: xv, 7, 37,

38, 58, 61, 148, 150, 176, 177, 178, and 179.

[ABK+09] Gildas Avoine, Muhammed Ali Bingöl, Süleyman Kardas, Cédric

Lauradoux, and Benjamin Martin. A formal framework for cryptanalyz-

ing RFID distance bounding protocols. IACR Cryptology ePrint Archive,

2009:543, 2009. Cited on pages: 9, 62, 63, and 75.

[ABK+11] Gildas Avoine, Muhammed Ali Bingöl, Süleyman Kardaş, Cédric

Lauradoux, and Benjamin Martin. A framework for analyzing RFID dis-

tance bounding protocols. Journal of Computer Security, 19(2):289–317,

2011. Cited on pages: 9, 62, 63, 75, and 119.

[All03] Smart Card Alliance. Using smart cards for secure physical access. Smart

Card Alliance Report, 54, 2003. Cited on pages: 79 and 80.

[All13] Smart Card Alliance. Industry technical contributions: Opacity, 2013.

Cited on pages: 79, 80, and 84.

[ASN17] Ahmad Ahmadi and Reihaneh Safavi-Naini. Directional distance-bounding

identification. In International Conference on Information Systems Secur-

ity and Privacy, pages 197–221. Springer, 2017. Cited on page: 62.

[ASN18] Mamunur Rashid Akand and Reihaneh Safavi-Naini. In-region authentic-

ation. In International Conference on Applied Cryptography and Network

Security, pages 557–578. Springer, 2018. Cited on page: 138.

[BB05] Laurent Bussard and Walid Bagga. Distance-bounding proof of knowledge

to avoid real-time attacks. In Security and Privacy in the Age of Ubiquitous

155

Computing, IFIP Advances in Information and Communication Technology

Volume 181, pages 223–238. Springer, 2005. Cited on pages: 37 and 61.

[BBDP01] Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval.

Key-privacy in public-key encryption. In ASIACRYPT 2001, pages 566–

582. Springer, 2001. Cited on pages: 16, 56, 73, and 149.

[BC93] Stefan Brands and David Chaum. Distance-bounding protocols (extended

abstract). In EUROCRYPT, LNCS 765, pages 344–359. Springer-Verlag,

1993. Cited on pages: xv, 2, 7, 37, 38, 58, 61, 62, 64, 75, 118, 122, 148,

167, and 168.

[BCF+14] Harry Buhrman, Nishanth Chandran, Serge Fehr, Ran Gelles, Vipul Goyal,

Rafail Ostrovsky, and Christian Schaffner. Position-based quantum cryp-

tography: Impossibility and constructions. SIAM Journal on Computing,

43(1):150–178, 2014. Cited on page: 138.

[BCM+14] Mike Bond, Omar Choudary, Steven J Murdoch, Sergei Skorobogatov, and

Ross Anderson. Chip and skim: cloning EMV cards with the pre-play

attack. In Security and Privacy (SP), 2014 IEEE Symposium on, pages

49–64. IEEE, 2014. Cited on page: 95.

[BCM+15] Mike Bond, Marios O Choudary, Steven J Murdoch, Sergei Skorobogatov,

and Ross Anderson. Be prepared: The EMV preplay attack. IEEE Security

& Privacy, 13(2):56–64, 2015. Cited on page: 95.

[BD91] Thomas Beth and Yvo Desmedt. Identification tokens-or: Solving the chess

grandmaster problem. LNCS 537. Springer, 1991. Cited on page: 2.

[BG07] Daniel RL Brown and Kristian Gjøsteen. A security analysis of the NIST

SP 800-90 elliptic curve random number generator. In CRYPTO 2007,

pages 466–481. Springer, 2007. Cited on page: 170.

[BGG+16] Xavier Bultel, Sébastien Gambs, David Gérault, Pascal Lafourcade,

Cristina Onete, and Jean-Marc Robert. A prover-anonymous and terrorist-

fraud resistant distance-bounding protocol. In Proceedings of the 9th ACM

Conference on Security & Privacy in Wireless and Mobile Networks, pages

121–133. ACM, 2016. Cited on page: 61.

[BK11] Salman Beigi and Robert König. Simplified instantaneous non-local

quantum computation with applications to position-based cryptography.

New Journal of Physics, 13(9):093036, 2011. Cited on page: 138.

[BMV13a] Ioana Boureanu, Aikaterini Mitrokotsa, and Serge Vaudenay. Secure and

lightweight distance-bounding. In Lightweight Cryptography for Security

and Privacy, LNCS 8162, pages 97–113. Springer, 2013. Cited on pages:

7, 9, 39, 61, 62, 75, 119, and 122.

156

[BMV13b] Ioana Boureanu, Aikaterini Mitrokotsa, and Serge Vaudenay. Towards

secure distance bounding. In Fast Software Encryption, LNCS 8424, pages

55–67. Springer, 2013. Cited on pages: 7, 9, 15, 39, 61, and 119.

[BMV15] Ioana Boureanu, Aikaterini Mitrokotsa, and Serge Vaudenay. Practical

and provably secure distance-bounding. Journal of Computer Security,

23(2):229–257, 2015. Cited on pages: 7, 9, 15, 39, 61, and 119.

[BNPS03] M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko. The one-

more-RSA-inversion problems and the security of chaum’s blind signature

scheme. Journal of Cryptology, 16:185–215, 2003. Cited on page: 170.

[BR93] Mihir Bellare and Phillip Rogaway. Entity authentication and key distri-

bution. In Annual International Cryptology Conference, LNCS 773, pages

232–249. Springer, 1993. Cited on page: 79.

[BR04] Laurent Bussard and Yves Roudier. Embedding distance-bounding pro-

tocols within intuitive interactions. In Security in Pervasive Computing,

pages 143–156. Springer, 2004. Cited on pages: 62 and 72.

[BV14] Ioana Boureanu and Serge Vaudenay. Optimal proximity proofs. In In-

scrypt, LNCS 8957, pages 170–190. Springer, 2014. Cited on pages: 7, 8,

9, 11, 15, 21, 22, 23, 24, 29, 30, 31, 32, 33, 34, 35, 38, 61, 62, 69, 71, 75,

119, 149, and 173.

[ČBH03] Srdjan Čapkun, Levente Buttyan, and Jean-Pierre Hubaux. SECTOR: se-

cure tracking of node encounters in multi-hop wireless networks. In In ACM

Workshop on Security of Ad Hoc and Sensor Networks (SASN), pages 21–

32, 2003. Cited on page: 61.

[ČČS06] Srdjan Čapkun, Mario Čagalj, and Mani Srivastava. Secure localization

with hidden and mobile base stations. In in Proceedings of IEEE IN-

FOCOM. Citeseer, 2006. Cited on pages: 118, 119, and 138.

[CFG+10] Nishanth Chandran, Serge Fehr, Ran Gelles, Vipul Goyal, and Ra-

fail Ostrovsky. Position-based quantum cryptography. arXiv preprint

arXiv:1005.1750, 2010. Cited on page: 138.

[CGDR+15] Tom Chothia, Flavio D Garcia, Joeri De Ruiter, Jordi Van Den Breekel,

and Matthew Thompson. Relay cost bounding for contactless EMV pay-

ments. In International Conference on Financial Cryptography and Data

Security, pages 189–206. Springer, 2015. Cited on pages: 38, 95, 96,

and 113.

[CGMO09] Nishanth Chandran, Vipul Goyal, Ryan Moriarty, and Rafail Ostrovsky.

Position based cryptography. In Advances in Cryptology-CRYPTO 2009,

157

pages 391–407. Springer, 2009. Cited on pages: 118, 137, 138, 139, 143,

146, and 171.

[ČH05a] Srdjan Čapkun and J-P Hubaux. Secure positioning of wireless devices

with application to sensor networks. In INFOCOM 2005. 24th Annual

Joint Conference of the IEEE Computer and Communications Societies.

Proceedings IEEE, volume 3, pages 1917–1928. IEEE, 2005. Cited on pages:

117, 118, 119, and 134.

[ČH05b] Srdjan Čapkun and J-P Hubaux. Secure positioning of wireless devices

with application to sensor networks. In INFOCOM 2005. 24th Annual

Joint Conference of the IEEE Computer and Communications Societies.

Proceedings IEEE, volume 3, pages 1917–1928. IEEE, 2005. Cited on page:

137.

[Che52] Herman Chernoff. A measure of asymptotic efficiency for tests of a hy-

pothesis based on the sum of observations. The Annals of Mathematical

Statistics, pages 493–507, 1952. Cited on page: 9.

[CHKM06] Jolyon Clulow, Gerhard Hancke, Markus Kuhn, and Tyler Moore. So near

and yet so far: Distance-bounding attacks in wireless networks. Security

and Privacy in Ad-hoc and Sensor Networks, pages 83–97, 2006. Cited on

pages: 9, 96, 113, and 146.

[CRSČ12] Cas Cremers, Kasper Bonne Rasmussen, Benedikt Schmidt, and Srdjan

Čapkun. Distance hijacking attacks on distance bounding protocols. In

Security and Privacy (SP), 2012 IEEE Symposium on, pages 113–127.

IEEE, 2012. Cited on pages: 1 and 167.

[Des88] Yvo Desmedt. Major security problems with the “unforgeable” (Feige-)

Fiat-Shamir proofs of identity and how to overcome them. In Congress on

Computer and Communication Security and Protection Securicom, pages

147–159. SEDEP Paris France, 1988. Cited on pages: 1 and 2.

[DFF+14] Jean Paul Degabriele, Victoria Fehr, Marc Fischlin, Tommaso Gagliardoni,

Felix Günther, Giorgia Azzurra Marson, Arno Mittelbach, and Kenneth G

Paterson. Unpicking PLAID. In International Conference on Research in

Security Standardisation, LNCS 8893, pages 1–25. Springer, 2014. Cited

on pages: 79 and 80.

[DFG+13] Özgür Dagdelen, Marc Fischlin, Tommaso Gagliardoni, Giorgia Azzurra

Marson, Arno Mittelbach, and Cristina Onete. A cryptographic analysis of

opacity. In European Symposium on Research in Computer Security, LNCS

8134, pages 345–362. Springer, 2013. Cited on pages: 79, 80, and 84.

158

[DFKO11] Ulrich Dürholz, Marc Fischlin, Michael Kasper, and Cristina Onete. A

formal approach to distance-bounding RFID protocols. In Information

Security, LNCS 7001, pages 47–62. Springer, 2011. Cited on pages: 9, 38,

62, 66, 75, 119, 170, and 176.

[DH76] Whitfield Diffie and Martin E Hellman. New directions in cryptography.

Information Theory, IEEE Transactions on, 22(6):644–654, 1976. Cited

on page: 42.

[DM+07] Saar Drimer, Steven J Murdoch, et al. Keep your enemies close: Distance

bounding against smartcard relay attacks. In USENIX security symposium,

volume 312, 2007. Cited on page: 95.

[DMRT11] Sylvie Delaët, Partha Sarathi Mandal, Mariusz A Rokicki, and Sébastien

Tixeuil. Deterministic secure positioning in wireless sensor networks. The-

oretical Computer Science, 412(35):4471–4481, 2011. Cited on page: 138.

[emva] EMV acquirer and terminal security guidelines. Cited on pages: 97, 113,

and 148.

[emvb] EMV contactless specifications for payment systems, Book C-2: Kernel 2

specification. Cited on pages: 95, 110, and 186.

[emvc] EMV integrated circuit card specifications for payment systems, Book 2:

Security and key management. Cited on pages: 110, 112, 186, and 187.

[emvd] EMVCo: EMV contactless specifications for payment systems, version 2.4

(2014). Cited on page: 114.

[FDČ11] Aurélien Francillon, Boris Danev, and Srdjan Čapkun. Relay attacks on

passive keyless entry and start systems in modern cars. In NDSS, 2011.

Cited on pages: 79, 95, and 96.

[FHMM10] Lishoy Francis, Gerhard Hancke, Keith Mayes, and Konstantinos Markan-

tonakis. Practical NFC peer-to-peer relay attack using mobile phones. In

International Workshop on Radio Frequency Identification: Security and

Privacy Issues, LNCS 6370, pages 35–49. Springer, 2010. Cited on pages:

79 and 95.

[FO13] Marc Fischlin and Cristina Onete. Terrorism in distance bounding: mod-

eling terrorist-fraud resistance. In Applied Cryptography and Network Se-

curity, LNCS 7954, pages 414–431. Springer, 2013. Cited on pages: 7, 61,

and 62.

[gDoHSD10] Centrelink: Australian government’s Department of Human Ser-

vices (DHS). Protocol for lightweight authentication of identity (PLAID),

2010. Cited on pages: 79 and 80.

159

[GOR14a] Sébastien Gambs, Cristina Onete, and Jean-Marc Robert. Prover anonym-

ous and deniable distance-bounding authentication. In ASIA CCS, Pro-

ceedings of the 9th ACM Symposium on Information, Computer and Com-

munications Security, pages 501–506, 2014. Cited on pages: xv, 7, 37, 38,

148, 172, and 173.

[GOR14b] Sebastien Gambs, Cristina Onete, and Jean-Marc Robert. Prover anonym-

ous and deniable distance-bounding authentication. Cryptology ePrint

Archive, Report 2014/114, 2014. http://eprint.iacr.org/. Cited on

page: 173.

[Han05] Gerhard P Hancke. A practical relay attack on ISO 14443 proximity cards.

Technical report, University of Cambridge Computer Laboratory, 59:382–

385, 2005. Cited on pages: 61 and 79.

[Han06] Gerhard P Hancke. Practical attacks on proximity identification systems.

In Security and Privacy, 2006 IEEE Symposium on, pages 6–pp. IEEE,

2006. Cited on page: 79.

[HHK07] Joengmin Hwang, Tian He, and Yongdae Kim. Detecting phantom nodes

in wireless sensor networks. In INFOCOM 2007. 26th IEEE International

Conference on Computer Communications. IEEE, pages 2391–2395. IEEE,

2007. Cited on page: 138.

[HK05] Gerhard P Hancke and Markus G Kuhn. An RFID distance bounding

protocol. In SecureComm 2005, pages 67–73. IEEE, 2005. Cited on pages:

9, 13, and 146.

[HK08] Gerhard P Hancke and Markus G Kuhn. Attacks on time-of-flight distance

bounding channels. In Proceedings of the first ACM conference on Wireless

network security, pages 194–202. ACM, 2008. Cited on page: 146.

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded random

variables. Journal of the American statistical association, 58(301):13–30,

1963. Cited on page: 9.

[HPO13] Jens Hermans, Roel Peeters, and Cristina Onete. Efficient, secure, private

distance bounding without key updates. In WiSec, Proceedings of the

Sixth ACM Conference on Security and Privacy in Wireless and Mobile

Networks, pages 207–218, 2013. Cited on pages: xv, 7, 37, 38, 58, 75, 148,

169, 170, and 171.

[HPVP11] Jens Hermans, Andreas Pashalidis, Frederik Vercauteren, and Bart Pren-

eel. A new RFID privacy model. In ESORICS, LNCS 6879, pages 568–587.

Springer, 2011. Cited on pages: 14, 69, 85, and 149.

160

[JMV01] Don Johnson, Alfred Menezes, and Scott Vanstone. The elliptic curve di-

gital signature algorithm (ECDSA). International Journal of Information

Security, 1(1):36–63, 2001. Cited on page: 58.

[KAK+08] Chong Hee Kim, Gildas Avoine, François Koeune, François-Xavier

Standaert, and Olivier Pereira. The swiss-knife RFID distance bound-

ing protocol. In Information Security and Cryptology–ICISC 2008, pages

98–115. Springer, 2008. Cited on pages: 9, 62, and 66.

[KAK+09] Chong Hee Kim, Gildas Avoine, François Koeune, François-Xavier

Standaert, and Olivier Pereira. The swiss-knife RFID distance bounding

protocol. In ICISC, pages 98–115. Springer, 2009. Cited on page: 9.

[Kra05] Hugo Krawczyk. Hmqv: A high-performance secure Diffie-Hellman pro-

tocol. In CRYPTO, pages 546–566. Springer, 2005. Cited on page: 181.

[Kuh04] Markus G Kuhn. An asymmetric security mechanism for navigation sig-

nals. In International Workshop on Information Hiding, pages 239–252.

Springer, 2004. Cited on page: 117.

[KV15] Handan Kılınç and Serge Vaudenay. Optimal proximity proofs revisited.

In ACNS, LNCS 9092, pages 478–494. Springer, 2015. Cited on page: 21.

[KV16] Handan Kılınç and Serge Vaudenay. Efficient public-key distance bounding

protocol. In ASIACRYPT, LNCS 10032, pages 873–901, 2016. Cited on

pages: 7, 37, 38, 61, 75, 81, 88, 89, 91, 92, 93, 108, and 184.

[KV17] Handan Kılınç and Serge Vaudenay. Contactless access control based on

distance bounding. In International Conference on Information Security,

LNCS 10599, pages 195–213. Springer, 2017. Cited on pages: 79 and 99.

[KV18a] Handan Kılınç and Serge Vaudenay. Formal analysis of distance bounding

with secure hardware. In International Conference on Applied Crypto-

graphy and Network Security, LNCS 10892, pages 579–597. Springer, 2018.

Cited on pages: 61 and 139.

[KV18b] Handan Kılınç and Serge Vaudenay. Secure contactless payment. In Aus-

tralasian Conference on Information Security and Privacy, LNCS 10946,

pages 579–597. Springer, 2018. Cited on page: 95.

[LL11] Hoi-Kwan Lau and Hoi-Kwong Lo. Insecurity of position-based quantum-

cryptography protocols against entanglement attacks. Physical review a,

83(1):012322, 2011. Cited on page: 138.

[LLM07] Brian LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger security

of authenticated key exchange. In Provable Security, pages 1–16. Springer,

2007. Cited on pages: 39, 40, 57, 181, and 182.

161

[LM06] Kristin Lauter and Anton Mityagin. Security analysis of KEA authentic-

ated key exchange protocol. In Public Key Cryptography-PKC 2006, pages

378–394. Springer, 2006. Cited on page: 181.

[LMQ+03] Laurie Law, Alfred Menezes, Minghua Qu, Jerry Solinas, and Scott Van-

stone. An efficient protocol for authenticated key agreement. Designs,

Codes and Cryptography, 28(2):119–134, 2003. Cited on page: 181.

[LND05a] Donggang Liu, Peng Ning, and Wenliang Du. Detecting malicious beacon

nodes for secure location discovery in wireless sensor networks. In Dis-

tributed Computing Systems, 2005. ICDCS 2005. Proceedings. 25th IEEE

International Conference on, pages 609–619. IEEE, 2005. Cited on page:

118.

[LND05b] Donggang Liu, Peng Ning, and Wenliang Kevin Du. Attack-resistant loca-

tion estimation in sensor networks. In Proceedings of the 4th international

symposium on Information processing in sensor networks, page 13. IEEE

Press, 2005. Cited on pages: 117 and 118.

[LP04] Loukas Lazos and Radha Poovendran. Serloc: Secure range-independent

localization for wireless sensor networks. In Proceedings of the 3rd ACM

workshop on Wireless security, pages 21–30. ACM, 2004. Cited on pages:

117 and 118.

[LP06] Loukas Lazos and Radha Poovendran. HiRLoc: High-resolution robust

localization for wireless sensor networks. IEEE Journal on selected areas

in communications, 24(2):233–246, 2006. Cited on pages: 117 and 118.

[LPČ05] Loukas Lazos, Radha Poovendran, and Srdjan Čapkun. ROPE: Robust

position estimation in wireless sensor networks. In Proceedings of the 4th

international symposium on Information processing in sensor networks,

page 43. IEEE Press, 2005. Cited on pages: 117, 118, and 119.

[ME06] Pratap Misra and Per Enge. Global positioning system: Signals, meas-

urements and performance second edition. Massachusetts: Ganga-Jamuna

Press, 2006. Cited on page: 117.

[MFHM12] Konstantinos Markantonakis, Lishoy Francis, Gerhard Hancke, and Keith

Mayes. Practical relay attack on contactless transactions by using NFC

mobile phones. Radio Frequency Identification System Security: RFIDsec,

12:21, 2012. Cited on pages: 79 and 95.

[MOV14] Aikaterini Mitrokotsa, Cristina Onete, and Serge Vaudenay. Location leak-

age in distance bounding: Why location privacy does not work. Computers

& Security, 45:199–209, 2014. Cited on pages: 28 and 85.

162

[NLD+12] Tyler Nighswander, Brent Ledvina, Jonathan Diamond, Robert Brumley,

and David Brumley. GPS software attacks. In Proceedings of the 2012

ACM conference on Computer and communications security, pages 450–

461. ACM, 2012. Cited on page: 117.

[NN03a] Dragos Niculescu and Badri Nath. Ad hoc positioning system (APS) using

AOA. In INFOCOM 2003. Twenty-Second Annual Joint Conference of the

IEEE Computer and Communications. IEEE Societies, volume 3, pages

1734–1743. Ieee, 2003. Cited on page: 117.

[NN03b] Dragoş Niculescu and Badri Nath. DV based positioning in ad hoc net-

works. Telecommunication Systems, 22(1-4):267–280, 2003. Cited on page:

117.

[NSSP04] James Newsome, Elaine Shi, Dawn Song, and Adrian Perrig. The sybil

attack in sensor networks: analysis & defenses. In Proceedings of the 3rd

international symposium on Information processing in sensor networks,

pages 259–268. ACM, 2004. Cited on page: 118.

[OP01] Tatsuaki Okamoto and David Pointcheval. The gap-problems: A new

class of problems for the security of cryptographic schemes. In Public Key

Cryptography, pages 104–118. Springer, 2001. Cited on pages: 16 and 149.

[PD15] Pericle Perazzo and Gianluca Dini. Secure positioning with non-ideal dis-

tance bounding protocols. In Computers and Communication (ISCC), 2015

IEEE Symposium on, pages 907–912. IEEE, 2015. Cited on page: 138.

[PJ08] Panagiotis Papadimitratos and Aleksandar Jovanovic. GNSS-based posi-

tioning: Attacks and countermeasures. In Military Communications Con-

ference, 2008. MILCOM 2008. IEEE, pages 1–7. IEEE, 2008. Cited on

page: 117.

[Rad03] Cristian Radu. Implementing electronic card payment systems. Artech

House, 2003. Cited on pages: 110 and 187.

[RČ08] Kasper Bonne Rasmussen and Srdjan Čapkun. Location privacy of dis-

tance bounding protocols. In Proceedings of the 15th ACM conference on

Computer and communications security, pages 149–160. ACM, 2008. Cited

on page: 28.

[RČ10] Kasper Bonne Rasmussen and Srdjan Čapkun. Realization of RF distance

bounding. In USENIX Security Symposium, pages 389–402, 2010. Cited

on page: 146.

[RL+02] C Savarese J Rabaey, Koen Langendoen, et al. Robust positioning al-

gorithms for distributed ad-hoc wireless sensor networks. In USENIX tech-

nical annual conference, pages 317–327, 2002. Cited on page: 117.

163

[RL13] Michael Roland and Josef Langer. Cloning credit cards: A combined pre-

play and downgrade attack on EMV contactless. In WOOT, 2013. Cited

on page: 95.

[RLS13] Michael Roland, Josef Langer, and Josef Scharinger. Applying relay at-

tacks to Google Wallet. In Near Field Communication (NFC), 2013 5th

International Workshop on, pages 1–6. IEEE, 2013. Cited on page: 79.

[RNTS07] Jason Reid, Juan M Gonzalez Nieto, Tee Tang, and Bouchra Senadji. De-

tecting relay attacks with timing-based protocols. In Proceedings of the 2nd

ACM symposium on Information, computer and communications security,

pages 204–213. ACM, 2007. Cited on page: 61.

[RÓČ16] Aanjhan Ranganathan, Hildur Ólafsdóttir, and Srdjan Čapkun. SPREE: A

spoofing resistant GPS receiver. In Proceedings of the 22nd Annual Inter-

national Conference on Mobile Computing and Networking, pages 348–360.

ACM, 2016. Cited on page: 117.

[Sco01] Logan Scott. Anti-spoofing & authenticated signal architectures for civil

navigation systems. In Proceedings of the 16th International Technical

Meeting of the Satellite Division of The Institute of Navigation (ION

GPS/GNSS 2003), pages 1543–1552, 2001. Cited on page: 117.

[Sho01] Victor Shoup. A proposal for an ISO standard for public key encryption

(version 2.0), 2001. Cited on page: 58.

[SHS01] Andreas Savvides, Chih-Chieh Han, and Mani B Strivastava. Dynamic fine-

grained localization in ad-hoc networks of sensors. In Proceedings of the

7th annual international conference on Mobile computing and networking,

pages 166–179. ACM, 2001. Cited on page: 117.

[SLČ17] Mridula Singh, Patrick Leu, and Srdjan Čapkun. UWB with pulse reorder-

ing: Securing ranging against relay and physical layer attacks. 2017. Cited

on page: 146.

[SP05] Dave Singelee and Bart Preneel. Location verification using secure distance

bounding protocols. In Mobile Adhoc and Sensor Systems Conference,

2005. IEEE International Conference on, pages 7–pp. IEEE, 2005. Cited

on pages: 62, 72, and 137.

[SP07] Dave Singelée and Bart Preneel. Distance bounding in noisy environments.

In Security and Privacy in Ad-hoc and Sensor Networks, LNCS 4572, pages

101–115. Springer, 2007. Cited on pages: 9, 61, and 180.

[SPS02] Andreas Savvides, Heemin Park, and Mani B Srivastava. The bits and

flops of the multilateration primitive for node localization problems. In

164

Proceedings of the 1st ACM international workshop on Wireless sensor

networks and applications, pages 112–121. ACM, 2002. Cited on page:

117.

[SSW03] Naveen Sastry, Umesh Shankar, and David Wagner. Secure verification

of location claims. In Proceedings of the 2nd ACM workshop on Wireless

security, pages 1–10. ACM, 2003. Cited on page: 137.

[SW07] Avinash Srinivasan and Jie Wu. A survey on secure localization in wireless

sensor networks. Encyclopedia of Wireless and Mobile communications,

page 126, 2007. Cited on page: 118.

[SWL08] Joo-Han Song, Vincent WS Wong, and Victor CM Leung. Secure location

verification for vehicular ad-hoc networks. In Global Telecommunications

Conference, 2008. IEEE GLOBECOM 2008. IEEE, pages 1–5. IEEE, 2008.

Cited on page: 138.

[TI10] Onur Tekdas and Volkan Isler. Sensor placement for triangulation-based

localization. IEEE transactions on Automation Science and Engineering,

7(3):681–685, 2010. Cited on page: 3.

[TPRČ11] Nils Ole Tippenhauer, Christina Pöpper, Kasper Bonne Rasmussen, and

Srdjan Čapkun. On the requirements for successful GPS spoofing attacks.

In Proceedings of the 18th ACM conference on Computer and communica-

tions security, pages 75–86. ACM, 2011. Cited on page: 117.

[Ust08] Berkant Ustaoglu. Obtaining a secure and efficient key agreement protocol

from (H)MQV and NAXOS. Designs, Codes and Cryptography, 46(3):329–

342, 2008. Cited on page: 181.

[Vau07] Serge Vaudenay. On privacy models for RFID. In ASIACRYPT, LNCS

4833, pages 68–87. Springer, 2007. Cited on pages: 14 and 85.

[Vau13] Serge Vaudenay. On modeling terrorist frauds. In Provable Security, LNCS

8209, pages 1–20. Springer, 2013. Cited on pages: 7, 61, 62, 66, and 75.

[Vau15a] Serge Vaudenay. On privacy for RFID. In Provable Security, pages 3–20.

Springer, 2015. Cited on pages: 7, 37, 38, 61, 148, 174, and 175.

[Vau15b] Serge Vaudenay. Privacy failure in the public-key distance-bounding pro-

tocol. IET Information Security, 2015. Cited on pages: 37, 170, and 173.

[Vau15c] Serge Vaudenay. Private and secure public-key distance bounding applic-

ation to NFC payment. In Financial Cryptography, LNCS 8975, pages

207–216, 2015. Cited on pages: xv, 7, 8, 9, 11, 12, 13, 37, 38, 39, 45, 46,

57, 58, 62, 75, 88, 148, 149, 175, 176, and 184.

165

[Vau15d] Serge Vaudenay. Sound proof of proximity of knowledge. In Provable

Security, LNCS 9451, pages 105–126. Springer, 2015. Cited on pages: xv,

7, 11, 37, 38, 61, 62, 148, 173, and 174.

[Wei10] Michael Weiß. Performing relay attacks on ISO 14443 contactless smart

cards using NFC mobile equipment. Master’s Thesis in Computer Science,

University of Munich, 2010. Cited on page: 95.

[WKC+12] Erik Ramsgaard Wognsen, Henrik Søndberg Karlsen, Marcus Calverley,

Mikkel Normann Follin, Bent Thomsen, and H Huttel. A secure relay pro-

tocol for door access control. In Proceedings of the Xii Brazilian Symposium

on Information and Computer System Security. SBC-Sociedade Brasileira

de Computação, 2012. Cited on page: 79.

[ZCH+13] Yingpei Zeng, Jiannong Cao, Jue Hong, Shigeng Zhang, and Li Xie. Secure

localization and location verification in wireless sensor networks: a survey.

The Journal of Supercomputing, 64(3):685–701, 2013. Cited on page: 118.

[ZJUQ08] Sheng Zhong, Murtuza Jadliwala, Shambhu Upadhyaya, and Chunming

Qiao. Towards a theory of robust localization against malicious beacon

nodes. In INFOCOM 2008. The 27th Conference on Computer Commu-

nications. IEEE, pages 1391–1399. IEEE, 2008. Cited on pages: 118, 119,

121, and 130.

[ZLFW06] Yanchao Zhang, Wei Liu, Yuguang Fang, and Dapeng Wu. Secure localiza-

tion and authentication in ultra-wideband sensor networks. IEEE Journal

on Selected areas in communications, 24(4):829–835, 2006. Cited on pages:

118, 119, and 137.

166

Appendix A
Review of Public-Key DBs

A.1 Brands and Chaum Protocol [BC93]

Brands and Chaum [BC93] introduced the first DB protocol in Figure A.1.

The verifier V knows the public key (pk) of the prover, and the prover P has the

corresponding secret key (sk). P picks a random n-bits message a and commits on it

(let’s denote the commitment by A). V picks an n-bits challenge c as well. P sends the

commitment A to V . Then, the challenge phase begins which consists of n rounds. V
sends a challenge ci in each round i which is the ith bit of c. P sends the response ri

which is ai⊕ci where ai is the ith bit of a. In the verification phase, P signs the transcript

c1|r1|...|cn|rn with sk. Finally, P sends the decommitment of A which is a,ρ and the

signature σ. Then, V accepts P if the following conditions hold:

• σ is valid which means that c1|r1|...|cn|rn is signed by P.

• a,ρ is correct which means A = Commit(a;ρ).

• Each response ri is correct which means that mi = ri ⊕ ci for all i ∈ {1, ...,n}.
• Each response ri is received on time (for a round trip at distance B).

Security: The protocol in Figure A.1 is DF-secure and MiM-secure [BC93]. The

security proofs are based on the secure signature and commitment schemes. It is not

TF-secure [BC93] and not DH-secure [CRSČ12]. Clearly, this protocol does not cover

privacy because the signature makes the identity of the prover clear.

A probabilistic polynomial time (PPT) adversary breaks DF-security and MiM-

security of the Brands-Chaum protocol with the probability (1
2)

n.

We prove the DF and MiM security of the Brands-Chaum protocol in the model

defined in Chapter 2.

Theorem A.1. If Commit is computationally binding, then the Brands-Chaum protocol

is DF-resistant. More precisely, any DF attack has a probability of success bounded by√
2−n +negl.

167

Verifier Prover
input: pk (sk,pk)

initialization phase
pick a ∈ Z

n
2

A←−−−−−−−−−−−−− A = Commit(a;ρ)

challenge phase
for i = 1 to n

pick ci ∈ Z2

start timeri
ci−−−−−−−−−−−−−→ receive ci

receive ri, stop timeri
ri←−−−−−−−−−−−−− ri = ai ⊕ ci

verification phase

Verifypk(σ,transcript), verify A = Commit(a;ρ) a,ρ,σ,c,r←−−−−−−−−−−−−− σ = Signsk(transcript)

check timeri ≤ 2B,ri = ai ⊕ ci
OutV−−−−−−−−−−−−−→

Figure A.1 – The Brands-Chaum Protocol [BC93].

Proof. We consider a DF attack. The prover picks some random tape t then succeeds in

the attack with probability p(t) over the distribution of ci’s. We simulate the attack by

picking r then running the attack twice with the same r and thus the same commitment

A = Commit(a;ρ). In the first attack, the challenges seen are c. In the second run, if one

ci changes, then the challenges seen is c′ �= c. For the first ci changed, the view of the

prover is unchanged at the time the prover must release ri, so ri �= r′i. In this case, the

value on which to open the commitment must change as well. If the two runs succeed

and if the verifier did not select the same set of challenges, then a′ = r′ ⊕ c′ �= r⊕ c = a
is changed so we break the binding property. This happens with probability at least

E(p(t)2)− 2−n. Hence, by assumption, we must have E(p(t)2) = 2−n + negl. The DF

attack succeeds with probability E(p(t)). Due to the Jensen inequality, we have

E(p(t)) = E(
√

p(t)2)≤
√

E(p(t)2)≤
√

2−n +negl

Theorem A.2. If Commit is computationally hiding and the signature scheme resists

to existential forgery under chosen message attacks, then the Brands-Chaum protocol is

MiM-secure.

Proof. We consider a MiM game with winning probability p. First, we reduce to a game

in which no two prover instances select the same a value. The winning probability is

at least p− poly · 2−n where poly is some polynomial. Second, we reduce to a game in

which the signature accepted by V is not a forgery. The winning probability is at least

p−poly ·2−n − pforge. We have pforge = negl thanks to the security of the signature.

For each i, we define a gamei in which winning implies that a verifier instance receives

the signature produced by the ith instance of the prover. Let pi be the winning probability

of gamei. We have p ≤ poly · 2−n + pforge+∑i pi. The number of i’s is polynomial. To

168

bound pi, we remark that the ith instance of the prover and the matching verifier instance

must see the same c and r because otherwise, the signature will not be valid and so the

verifier instance will reject the prover (gamei fails). This defines a = c⊕ r. We can then

reduce gamei to a game in which the adversary is given the signing key to simulate all

other prover instances except the ith one. For the ith one, the adversary cannot use the

signing key because the winning condition is that the signature has to come from ith

prover instance. So, the ith instance commits to a random value a′ and the adversary

runs a man-in-the-middle attack between this instance and V which succeeds only if

he gets the right a = a′. We let m be the number of c′i that the adversary sends to

this prover instance before receiving the corresponding ci from V . Remark that the

adversary should send c′i before receiving the ci to be able to receive the response from

the prover on time. For the attack to succeed, the adversary must guess ci = c′i. So, this
works with probability 2−m. For the remaining n−m rounds, the adversary must guess

the ai from the commit value only to compute ri correctly. Guessing ai is easier than

guessing ci from an information theoretic view point as the adversary has a clue A on

a. So, we could assume m = 0 without loss of generality. The game reduces to guessing

a completely which is impossible due to the computationally binding property. So pi is

negligible. Hence, pi ≤ 2−n +negl.

Performance: The prover commits on n-bits message and signs 2n-bits message. In

return, the verifier checks the commitment and the signature.

A.2 HPO [HPO13]

Hermans et al. [HPO13] constructed a public-key DB protocol (Figure A.2).

The verifier V and the prover P use elliptic curve cryptography in this protocol. There-

fore, the domain parameters of the protocol are an elliptic curve E defined over the field

Zp and its subgroup G� which has prime order �, a generator G ∈G�.

V and P have secret-public key pairs (skV ,pkV = skV G), (skP,pkP = skPG), respectively.

In the initialization phase, V and P agree on a secret key. For this, P selects two

ephemeral secret keys r1,r2 ∈Z
∗
� and sends the ephemeral public keys R1 = r1G,R2 = r2G.

Similarly, V selects his ephemeral secret key r3 ∈Z
∗
� and sends R3 = r3G. In the end, both

agree on the secret key a0|a1 = a′0|a′1 = [xcoord(r1R3)]2� = [xcoord(r3R1)]2� which is the

first 2� bits of xcoord function. xcoord function maps a point U = (Ux,Uy) to Uxmod�.

Then, V selects an element e ∈ Z
∗
� and the first n bits of e represent the challenge bits ci.

Next, the challenge phase which consists of n rounds begins. In each round i, P
computes the response fi = a′ci,i when he receives challenge ci from V . Here, a′ci,i is the

ith bit of aci .

In the verification phase, V verifies if the responses arrived on time and whether they

are correct. If so, V sends e and P checks if it is consistent with c. Then, P computes

a blinding factor (for privacy) xcoord(r2pkV) and s = skP +er1 + r2 +xcoord(r2pkV) and

169

Verifier Prover
(skV ,pkV) (skP,pkP)

input: pkV

initialization phase
pick r1,r2 ∈ Z∗

�

pick r3,e ∈ Z∗
�

R1 ,R2 ,pkP←−−−−−−−−−−−−− R1 = r1G, R2 = r2G

R3 = r3G
R3−−−−−−−−−−−−−→

a0‖a1 = xcoord2n(r3R1) a′0‖a′1 = xcoord2n(r1R3)

challenge phase
for i = 1 to n

ci = biti(e)
start timeri

ci−−−−−−−−−−−−−→
stop timeri

fi←−−−−−−−−−−−−− fi = a′ci ,i

verification phase

check timeri ≤ 2B, fi = aci ,i
e−−−−−−−−−−−−−→ check biti(e) = ci
s←−−−−−−−−−−−−− s = skP + er1 + r2 +xcoord(r2pkV)

pkP = (s−xcoord(skV R2))G− eR1 −R2
OutV−−−−−−−−−−−−−→

private output: pkP

Figure A.2 – The Hermans-Peeters-Onete (HPO) Protocol [HPO13].

sends s. After receiving s, V computes pkP = (s− xcoord(skV R2))G− eR1 −R2. In the

end, pkP is the private output of V and V outputs OutV .

Security: The HPO protocol is DF-secure, MiM-secure and weak-private (proofs are

in [HPO13]) in the security model of Dürholz et al. [DFKO11] (which is different than

the model in Section 2.2). It is not strong private [Vau15b] and not TF-secure [HPO13]

and not DH-secure because of the attack explained below.

The assumptions on the security and privacy of HPO are “One More Discrete Logar-

ithm (OMDL) [BNPS03]”,“x-Logarithm (XL) [BG07]”,“Diffie Hellman (DH)”,“extended

Oracle Diffie Hellman (eODH) [HPO13]” and “Conjecture 1 [HPO13]”. Some are ad-hoc

assumptions.

A PPT adversary breaks the DF-security of HPO with the probability (3
4)

n and MiM-

security of HPO with the probability (1
2)

n.

DH-attack to HPO: Our DH-attack is shown in Figure A.3. The malicious prover

P knows the public key pkP′ of an honest and close prover P′. So, he picks his public

key pkP as pkP′ −K where K = kG and k is selected from Z
∗
� . P does not involve into the

interaction between V and P′ in the initialization phase and the challenge phase and sees

all transcripts between them. After the challenge phase, P replaces s generated by P′

with s′ = s−k. When V receives s′, he computes (s′ −xcoord(skV R2))G−eR1 −R2 which

170

Verifier Honest Prover Malicious Prover
(skV ,pkV) (skP′ ,pkP′) pkP = pkP′ − kG,G

input: pkV

initialization phase
pick r1,r2 ∈ Z∗

�

R1 = r1G, R2 = r2G
R1 ,R2−−−−−−−−→

pick r3,e ∈ Z∗
�

R1 ,R2←−−−
R3 = r3G

R3−−−→
R3←−−−−−−−−

a0‖a1 = xcoord2n(r3R1) a′0‖a′1 = xcoord2n(r1R3)

challenge phase
for i = 1 to n

ci = biti(e)
start timeri

ci−−−−−−−−→
stop timeri

fi←−−−−−−−− fi = a′ci ,i

verification phase

check timeri ≤ 2B, fi = aci ,i
e−−−→

check biti(e) = ci
e←−−−−−−−−

s = skP + er1 + r2 +
xcoord(r2pkV)

s−−−−−−−−→ s′ = s− k

s′←−−−
pkP = (s′ −

xcoord(skV R2))G− eR1 −R2

OutV−−−→
private output: pkP

Figure A.3 – The DH-attack to the HPO Protocol [HPO13].
[CGMO09]

equals pkP and accepts P due to the following equation:

(s′ −xcoord(skV R2))G− eR1 −R2 = (s− k−xcoord(skV R2))G− eR1 −R2

= sG− kG−xcoord(skV R2)G− eR1 −R2

= (skP′ + er1 + r2 + xcoord(r2pkV))G

− kG−xcoord(skV R2)G− eR1 −R2

= pkP′ − kG = pkP

One drawback of this attack is that the malicious prover does not hold any secret key

corresponding to his pkP. Depending on how the protocol infrastructure is implemented

in practice, key registration may thus fail. However, our general definition for DH allows

considering this type of attack in which a malicious prover succeeds to register any public

key, as long as it differs from the public key of P′.

Performance: The HPO protocol requires 4 EC multiplications both in the prover and

the verifier side. Multiplication on EC group corresponds to exponentiation operation

171

in modular arithmetic and it is more efficient.

A.3 GOR [GOR14a]

Verifier Prover
secret key: skV secret key: skP

public key: pkV = skV G public key: pkP = 1
skP

Q
input: Q input: pkV

initialization phase
pick r1,r2 ∈ Z∗

� , R1 = r1G, R2 = r2G,
pick HEnc,HDec

pick r3,e ∈ Z∗
� , R3 = r3G

R1 ,R2 ,HEnc,h,π←−−−−−−−−−−−−− h =HEnc(pkP),π =NIZK(h)

check π, h′ = r ∗h
R3 ,h′−−−−−−−−−−−−−→

a0‖a1 = xcoord2n(r3R1) a′0‖a′1 = xcoord2n(r1R3)

challenge phase
for i = 1 to n

ci = biti(e)
start timeri

ci−−−−−−−−−−−−−→
stop timeri

fi←−−−−−−−−−−−−− fi = a′ci ,i

verification phase
e−−−−−−−−−−−−−→ check biti(e) = ci

check timeri ≤ 2B, fi = aci ,i
S←−−−−−−−−−−−−− S = skPHDec(h′)+ eR1 +R2 + r2pkV

check rQ = S− skV R2 − eR1 −R2
OutV−−−−−−−−−−−−−→

Figure A.4 – The Gambs-Onete-Robert protocol (GOR) [GOR14a].

The GOR protocol [GOR14a] in Figure A.4 is similar to HPO, but adapted to provide

anonymous authentication: the verifier does not identify the prover but rather checks

that he belongs to a given group. The secret/public key (skV ,pkV) setup of the verifier

(V) and secret key skP of the prover (P) is the same, only difference is in the public key

pkP of the prover which is 1
skP

Q . Here, Q = skP ∏k−1
i=1 skPi and each skPi is the secret key

of a prover Pi and k is the number of provers in the system.

The other differences are in the initialization and the verification phases. In the

initialization phase, the prover computes R1,R2 as in HPO and additionally uses a ho-

momorphic encryption algorithm HEnc and its decryption algorithm HDec. He encrypts

his public key pkP with the key pkV and obtains h. In the end of the initialization phase,

he sends R1,R2,h and π which is a non-interactive zero knowledge (NIZK) that h is well

formed. After receiving all values, V computes R3 as in HPO. Additionally, he checks

if π is valid. If everything is valid, V sends R3 and h′ = r ∗ h where r ∈ Z
∗
� . The rest

of the GOR is the same with HPO until the verification phase. Here, P computes and

sends S = skPHDec(h′)+eR1+R2 + r2pkV . V accepts if S− skV R2−eR1−R2 equals rQ, all

responses are correct and on time.

172

Security: GOR is DF-secure and MiM-secure [GOR14a] but it is not TF-secure. As it

is constructed to be anonymous to the verifier, it is not DH-secure but this is purposely

done. It is constructed to have strong-privacy but unfortunately, it is shown in [Vau15b]

by an attack that it is neither strong-private nor weak-private. Subsequently to this

attack, GOR was modified. The modified version of GOR [GOR14b] is resistant the

attack in [Vau15b]. Some attacks following the DF game work with probability
(3

4

)n
.

Some attacks following the MiM game work with probability
(1

2

)n
.

The assumptions for DF-security are the DDH assumption, sound NIZK proof and the

discrete logarithm assumption. The assumptions for privacy Replayable CCA security

(IND-RCCA) and Indistinguishability of Keys against CCA (IK-CCA) security.

Performance: The prover in GOR does 4 EC multiplications, 1 encryption and 1

NIZK. The verifier verifies the NIZK and does 4 EC multiplications. The EC operations

do not require a lot of computations, but NIZK is expensive for a DB protocol.

What is proven in NIZK in GOR is not explained in a clear statement in both versions.

However, it is critical as it may cause an authentication problem. The prover has to prove

that he constructed the encryption correctly and also the public key in the encryption

belongs to {pk1, ...,pkk}. If this proof is not considered in GOR in this case any arbitrary

participant can authenticate himself without knowing any ski. Otherwise, it is very costly

because the prover needs to do k times OR-proof (e.g. the public key in HEnc includes

pk1 or pk2 or ... or pkk).

A.4 ProProx [Vau15d]

Vaudenay [Vau15d] constructed a public-key protocol in Figure A.5. The protocol spe-

cifications are the following:

The verifier (V) has the public key pk = ComH(sk) of the prover. ComH is a set

commitments. Each commitment commits the hash of each bit of the input sk where H
is a hash function. sk is the secret key of the prover P. P first picks {ai, j ∈Z2}n,s

i=1, j=1 and a

corresponding random value ρi, j. Then, he commits all ai, j’s and gets Ai, j =Com(ai, j;ρi, j).

After, he sends all Ai, j’s.

The challenge phase consists of ns rounds. In each round (i, j) ∈ {1, ...,n}×{1, ...,s},
V sends ci, j ∈ Z2. As a response, P sends ri, j = ai, j ⊕ ci, jbi, j ⊕ ci, jsk j. where sk j is the jth

bit of sk.

In the verification phase, V first checks if all responses arrived on time. If everything

goes well, P and V run zero-knowledge proof (ZKP) to show that the responses are

consistent with Ai, j and pk j for each (i, j) where pk j is the jth bit of pk. The details of

ZKP is showed in Figure A.6.

Security: ProProx is DF-secure, MiM-secure, extractor based TF-secure [BV14] and

DH-secure as shown in [Vau15d]. However, it is not strong private or weak private. Some

attacks following the DF game work with probability
(

1√
2

)ns
. Some attacks following the

173

Verifier Prover
input: pk pk= ComH(sk) (sk,pk)

initialization phase
for i = 1 to n and j = 1 to s

pick ai, j ∈ Z2, ρi, j
Ai, j←−−−−−−−−−−−−−−−−−−− Ai, j = Com(ai, j;ρi, j)

challenge phase
for i = 1 to n and j = 1 to s

pick ci, j ∈ Z2

start timeri, j
ci, j−−−−−−−−−−−−−−−−−−−→ receive ci, j

receive ri, j, stop timeri, j
ri, j←−−−−−−−−−−−−−−−−−−− ri, j = ai, j ⊕ ci, jbi, j ⊕ ci, jsk j

verification phase
check timeri, j ≤ 2B

zi, j = Ai, j
(
θbi, jpk j

)ci, j θ−ri, j
ZKPκ(zi, j :ζi, j ;i∈I j , j=1,...,s)←−−−−−−−−−−−−−−−−−−→ ζi, j = ρi, jH(sk, j)c′i, j

OutV−−−−−−−−−−−−−−−−−−−→

Figure A.5 – ProProx: a Sound and Secure PoPoK. [Vau15d]

Verifier Prover
input: z z = ζ2 (ζ,z)

pk←−−−−−−−−−−−−− generate sk, pk= Gen(sk)

pick e ∈ Z2, pick r
Commitpk(e;r)−−−−−−−−−−−−−→

h←−−−−−−−−−−−−− pick g ∈ G, h = g2

e,r−−−−−−−−−−−−−→ open commitment

check ze = �2h−1, pk= Gen(sk)
�,sk←−−−−−−−−−−−−− �= gζe

OutV−−−−−−−−−−−−−→

Figure A.6 – ZKP(z : ζ): a Sound and Zero-Knowledge Proof for z Being a Square.

MiM game work with probability
(1

2

)ns
. Some attacks following the DH game work with

probability
(1

2

)ns
. Some attacks following the TF game work with probability

(
1√
2

)ns
.

ProProx is secure under the assumptions that Com is a homomorphic bit commitment,

Com is a perfectly binding and computationally hiding, ZKP is sound and computation-

ally zero-knowledge proof of membership.

Performance: ProProx has heavy computations both on the prover and the verifier

side. The prover computes ns commitments, ns exponentiations for ZKP. Similarly, the

verifier computes n(s+1) exponentiations and ns inversions.

Now, we explain a version of ProProx which is called as eProProx [Vau15a].

Variant: eProProx [Vau15a] is a variant of ProProx. It has an extra phase showed

in Figure A.7 for privacy before the initialization phase of ProProx. In this phase, the

174

Verifier Prover
(skV ,pkV) (skP,pkP)

input: pkV

pick δ = (δ1, . . . ,δs)

δ‖pk=DecskV (B)
B←−−−−−−−−−−−−−−−−−−− B = EncpkV (δ‖pkP)

pk′j = pk jCom(0;δ j) H ′(., j) = H(., j)δ j
ProProxH′ (pk′)←−−−−−−−−−−−−−−−−−−→

private output: pk

Figure A.7 – eProProx: a Privacy Extension for ProProx.

Verifier Prover
(skV ,pkV) (skP,pkP)

input: pkV

pick N N−−−−−−−−−−−−−→ pick s, σ = SignskT
(N)

s‖pk‖σ =DecskP (e)
e←−−−−−−−−−−−−− e = EncpkV (s‖pkP‖σ)

Verifypk(σ,N)
OTDB(s)←−−−−−−−−−−−→

private output: pk

Figure A.8 – privDB: Private Public-Key DB [Vau15c].

prover first picks δ1, ...,δs and encrypts all δi’s concatenated with pkP all with pkV . Then,

sends the encryption B to V . V decrypts B and gets δi’s and pk= pkP. Then, he commits

each bit of pk and gets pk′j = pk jCom(0;δ j). Meanwhile, P computes H ′(., j) = H(., j)δ j.

In the end, they run ProProxH ′(pk′).

Security: eProProx preserves the security of ProProx and additionally it is strong

private as shown in [Vau15a].

Performance: eProProx does not improve the performance of the ProProx. Con-

versely, it adds extra s commitments and 1 encryption on the prover side. It also adds

extra s commitments and 1 decryption on the verifier side.

A.5 PrivDB [Vau15c]

PrivDB is introduced by Vaudenay [Vau15c]. The verifier (V) and the prover (P) have
their own private/public key pairs (skV ,pkV) and (skP,pkP), respectively. First, V picks

N and sends it to P. P picks a secret s and signs N with skP. Then, he encrypts s||pkP||σ
with pkV where σ is the signature. After, he sends the encryption e to V . V first decrypts

e and learns s, pk= pkP and σ. He verifies the signature and if the verification is ok then

V and P run the OTDB protocol which is shown in Chapter 2, in Figure 2.1 with s.

175

Security: PrivDB is DF-secure, MiM-secure, DH-secure as shown in [Vau15c]. Addi-

tionally, PrivDB is strong private [Vau15c]. However, it is not TF-secure.

The assumptions on the security of PrivDB are EF-CMA secure signature scheme and

IND-CCA secure encryption scheme.

A PPT adversary breaks DF-security of PrivDB with the probability (3
4)

n and MiM-

security and DH-security of PrivDB with the probability (1
2)

n.

Performance: PrivDB requires computation of a signature and an encryption on the

prover’s side. It requires a decryption and a verification of the signature on the verifier’s

side.

A.6 TREAD [ABG+17]

The protocol TREAD is constructed by Avoine et al. [ABG+17]. It has symmetric and

public-key variants but we explain the protocol with the public-key variant.

The initialization phase of TREAD is very similar to PrivDB [Vau15c]. The prover

P picks a bit string α||β from {0,1}2n and signs it with its secret-key skP. Then, he

encrypts the signature σP, his identity idP and α||β with the public key of the verifier

pkV and sends the encryption to the verifier V together with idP. The verifier decrypts

the encryption and then verifies if the signature is valid. If it is not valid, he aborts.

Otherwise, he picks a message m from {0,1}2n and sends it to P. Then, the challenge

phase begins. In each round i, V sends a challenge bit ci. If ci = 0, P replies with a

response ri = αi. Otherwise, it replies with ri = βi ⊕mi. Here, αi and βi are the ith bits

of α and β, respectively. In the verification phase, V checks if all responses arrived on

time and correctly.

Security: TREAD is DF, DH and MiM secure. It is also claimed to be simulator based

TF (SimTF) secure in the DFKO model [DFKO11]. However, we find problems in its

SimTF proof. Therefore, their claim is not correct until the correct proof is provided.

We give more details about it below.

It is strong private and if the signature scheme is a group signature and idP is the

identifier of a group then it is anonymous as well.

The assumptions are IND-CCA security on the encryption scheme and EF-CMA se-

curity on the signature scheme.

The security and privacy proofs are in [ABG+17]. A PPT adversary can break the

MiM, DH and DF security with the probability (3
4)

n.

Performance: Its performance is the same with PrivDB [Vau15c].

Problems in the SimTF-security Proof of TREAD: We first define a tainted

session which is used in the definition of SimTF-security. Each session of a distance-

bounding protocol is associated with a unique identifier sid. The sessions can be between

176

Verifier Prover
(skV ,pkV) (skP,pkP)

input: pkV
Initialization Phase

α||β ∈ {0,1}2n

σP = SignskP
(α||β||idP)

α||β||idP||σP = DecskV (e)
e,idP←−−−−−−−−− e = EncpkV (α||β||idP||σP)

if VerifypkP
(σP)→ 0: abort

pick m ∈ {0,1}2n m−−−−−−−−−→
Challenge Phase

for i = 1 to n
pick ci

start timeri
ci−−−−→ if ci = 0,ri = αi

stop timeri
ri←−−−− else ri = βi ⊕mi

store timeri

Verification Phase
if |{i : ri and timeri correct}|= n

OutV = 1 OutV−−−−−−−−−→

Figure A.9 – TREAD [ABG+17]

the prover and the verifier, the prover and the adversary, and the adversary and the

verifier. Let us define a function clock(., .) where it has inputs session id and a message

and where it outputs the arrival time of the message to the receiver party in the session.

Consider a verifier and adversary session sid and consider consecutive messages mk,mk+1

for k ≥ 1 with mk is received by the adversary in challenge phase of sid. sid is called

tainted, if there exists a prover-adversary session sid′ such that for any mi

clock(sid,mk)< clock(sid′,mi)< clock(sid,mk+1)

Basically, a session is tainted if the adversary communicates with the prover after

receiving a challenge.

Now, we give the exact definition of SimTF that the authors used in [ABG+17].:

Definition A.3 (SimTF Security [ABG+17]). “For a DB authentication scheme DB,

a (t,qV ,qP,qobs)-terrorist fraud adversary pair (A ,P) and a simulator S running in time

tS, the malicious prover P and his accomplice A win against DB if A authenticates in at

least one of qV adversary-verifier sessions without tainting it with probability pA , and if S
authenticates in one of qV sessions with the view of A with probability pS, then pA ≤ pS.”

Note that the missing quantifiers in SimTF-definition makes hard to analyze the

SimTF-security proof. So, we assume that for all (t,qV ,qP,qobs)-terrorist fraud adversary

pair (A ,P), there exists a simulator S running in time tS as defined in the definition. There

are two theorems related to SimTF-security of TREAD in [ABG+17].

177

• The proof of Theorem 4 in [ABG+17] is not correct. Theorem 4 states that “if

the challenges are drawn uniformly at random by the verifier, TREAD is SimTF-

resistant’ and prove that for any (A ,P), they can construct a simulator where

pS = pA . We show that for the following attack by (A ,P) in Figure A.10, pS �= pA .

In the attack, the malicious prover sends e, idP as in the protocol to A . Then,

P receives m sent by the verifier. At this point, P guesses the first k challenges

c̃1, c̃2, ..., c̃k and sends their corresponding responses r̃1, r̃2, ..., r̃k to A . Then, the

challenge phase begins. The adversary replies the first k challenges with the given

responses. Note that, if the guessed challenge by P is not the same with the

challenge sent by the verifier, the response may not be correct. Before receiving

k+ 1st challenge, A sends all the challenges received from the verifier c1,c2, ...,ck

to P. P checks if c1,c2, ...,ck is equal to guessed challenges c̃1, c̃2, ..., c̃k. If they are

equal, then P gives correct responses R0 = r0
k+1, ...,r

0
n and R1 = r1

k+1, ...,r
1
n where rb

i
is the response for the challenge ci = b. Otherwise, it aborts and A may continue

the next n− k rounds by guessing the responses.

Let us analyze the success probability of (A ,P) when qV = 1:

pA =
k

∑
i=0

Pr[(A ,P) wins∧ i challenges out of the first k chalenges guessed]

=
k−1

∑
i=0

(1
2

)n
(

k
i

)(1
2

)k−i
+
(1

2

)k

=
(1

2

)n((3
2

)k
−1

)
+
(1

2

)k

=
(3

4

)k(1
2

)n−k
−
(1

2

)n
+
(1

2

)k

Remark that pA is equivalent to
(

1
2

)k
for k ≈ λn where λ ≤ log2

log3 .

We consider the simulator described in the proof of Theorem 4 in [ABG+17].

The simulator’s view differs according to the abort by the prover. The view of the

simulator from the adversary-prover session where the prover aborts is e,m and the

responses of the adversary r̄1, r̄2, ..., r̄k, r̃k+1, ..., r̃n. The view of the simulator from

the adversary-prover session which the prover does not abort e,m, r̄1, r̄2, ..., r̄k,R0,R1.

The simulator runs number of qS session with the verifier. In each session, it sends

e to the verifier and receives m′ from the verifier. In the challenge phase, the

simulator responds to each first k-challenge as follows: if ci = 0, it responds with

r̃i, otherwise, it responds with r̃i ⊕mi ⊕m′. For the rest of the n− k-challenges,
the simulator having the view of the adversary where the prover aborts replies

randomly. The simulator having the view of the adversary where the prover did

not abort responds with R0[i] if ci = 0 and R1[i]⊕mi⊕m′
i if ci = 1. Below, we upper

bound pS for any simulator using qS sessions.

Let’s analyze pS. We denote Pr[S wins one of qS-sessions|P aborts] by pS1 and

178

Pr[S wins one of qS-sessions|¬P aborts] by pS2 . So, pS is as follows:

pS = pS1Pr[P aborts]+ pS2Pr[¬P aborts])

For any S, we have pS1 ≤ qS

(
1
2

)n−k
as the simulator having the view from the

aborted adversary does not have any information about the last n− k-responses.
We take λ = 1

3 , so k ≈ n
3 , hence pS1 is negligible against pA .

The simulator having the view of the non-aborted adversary replies the last n− k
rounds correctly. However, it still needs to reply correctly to the first k-challenges
since it only knows how to answer the challenges c̃1, c̃2, ..., c̃k. After j-sessions with
the verifier, we let i denote the number of challenges which are different from the

one known. Let d,e be a constant between 0 and 1. As j is polynomially bounded,

we assume that n is large enough so that e2dn > j. If i ≤ d.n, the probability of

success is bounded by 1. If i > dn, the simulator has tried up to j combinations

of out of 2i, so the probability of success is bounded by 1
2i− j , thus by 1

(1−e).2i .

Therefore, the success probability of the simulator after j attempts can be bounded

as follows:

p j ≤ ∑
i>dn

(
k
i

)(1
2

)k 1
2i(1− e)

+ ∑
i≤dn

(
k
i

)(1
2

)k

≤ ∑
i

(
k
i

)(1
2

)k 1
2i(1− e)

+Pr[i ≤ dn]

=
(3

4

)k
(1− e)−1 +Pr[i ≤ dn]

We take d such that d < 1
2 . So, p j is negligible. As pS2 ≤ ∑ j≤qS p j, pS2 is negligible

too. Now, we have

pS = pS1Pr[P aborts]+ pS2Pr[¬P aborts])≤ pS1 + pS2

(1
2

)k

Since pA is equivalent to
(

1
2

)k
, pS1 is negligible against pA, and pS2 is negligible,

pS is negligible against pA. This contradicts with Theorem 4 in [ABG+17].

• The proof of Theorem 5 in [ABG+17] is not correct. Theorem 5 states this: “For

any adversary A authenticating with the help of a prover with non-negligible prob-

ability, there is an algorithm amplify using the internal view of A and oracle access

to a verifier such that after polynomial number of steps, Pr[amplify authenticates] =

1, almost surely. ”.

179

Verifier Adversary Malicious Prover
(skV ,pkV)

input: pkV

α||β ∈ {0,1}2n

σP = SignskP
(α||β||idP)

α||β||idP||σP =DecskV (e)
e,idP←−−−−−−−−− e,idP←−−−−−−− e = EncpkV (α||β||idP||σP)

if VerifypkP
(σP)→ 0: abort

pick m ∈ {0,1}2n m−−−−−−−→ m−−−−−−−→ pick c̄1, c̄2, ..., c̄k

r̄1 ,r̄2 ,...,r̄k←−−−−−−− compute responses
r̄1, r̄2, ..., r̄k

Challenge Phase
for i = 1 to k

pick ci

start timeri
ci−−−−−−−→

stop timeri
r̄i←−−−−−−−

store timeri
c1 ,c2 ,...,ck−−−−−−−→ if c̄i = ci for i = 1,2, ...,k

for i = k+1 to n
R0 ,R1

←−−−−−−−
pick ci

start timeri
ci−−−−−−−→

stop timeri
ri←−−−−−−− deduce ri from R0,R1

store timeri
for i = k+1 to n else:abort

pick ci

start timeri
ci−−−−−−−→

stop timeri
ri←−−−−−−− pick r′i

store timeri

Figure A.10 – A TF-attack that contradicts with the Sim-TF-security of TREAD.

Consider another TF attack where the malicious prover gives all responses R0,R1

to A when n is even and gives no response when n is odd. In this case, pA is 1 when

n is even and 1
2k when n is odd. So, pA is not negligible as assumed in Theorem 5.

However, we cannot construct an amplifier as described in the proof of Theorem

which makes the success probability of the an algorithm amplify 1 for every n. The
problem in the proof of Theorem 5 comes from the fact that two quantifiers have

been exchanged when dealing with the “non-negligible” notion.

Remark: All of the protocols reviewed above are considered in a noiseless channel

which means that the prover always receives the challenge sent by the verifier and the

verifier always receives the response sent by the prover in the challenge phase. However,

in real world, a noiseless channel is hard to achieve. This problem in DB protocols was

introduced by Singelée and Preneel [SP07]. All of the public-key DB protocols can be

adapted to noisy channels by changing number of correct response from n to τ to be

accepted by the verifier. τ can be determined based on the noise probability.

180

Appendix B
More results about D-AKA security

model

The Extended Canetti-Krawczyk (eCK) Security Model [LLM07]

The eCK security model consists of t parties with their certificated public keys. The

key exchange protocol is executed between two parties A and B. When A starts a key

exchange protocol with B, it is called as a session and A is the owner of the session

and B is the peer. A (initiator) starts the protocol by sending a message MA, then B
(responder) responds with a message MB. The session id sid corresponds to an instance

of A or B.
There is a probabilistic polynomial time (PPT) adversary A controlling all commu-

nication and some instances. The activation of the parties starts by Send(A,B,message)

(or Send(B,A,message)). Besides Send, A can do following queries:

• Long-Term Key Reveal(A): Outputs the long term public-key of A.

• Ephemeral Key Reveal(sid) Outputs an ephemeral key of a session sid.

• Reveal(sid): Outputs the session key of a completed session sid.

KA Protocol Efficiency Security

MQV [LMQ+03] 2.5 unproven

HMQV [Kra05] 2.5 CK

KEA+ [LM06] 3 CK

NAXOS [LLM07] 4 eCK

CMQV [Ust08] 3 eCK

Nonce-DH 1 D-AKA

Table B.1 – Existing KA protocols with their security and efficiency. Efficiency column
shows the number of exponentiation done by per party.

181

• Test(sid): If sid is clean then outputs s by running the query Reveal(sid). If

b = 1, outputs s ←{0,1}λ if b = 0 (λ is the size of the session key).

The advantage is the difference of the probability that A gives 1 for b = 0 and

b = 1.

A clean session is basically a session where winning the game for A is not trivial. See

[LLM07] for more details.

Theorem B.1. If a key agreement protocol is eCK secure [LLM07], then it is D-AKA

secure.

Proof. Let’s assume that there is an adversary A playing D-AKA game. We construct

an adversary B simulating the D-AKA game and playing the eCK game. B receives all

the public keys in the eCK game. B first picks two parties A and B. Then, he creates a

session sid between them by sending the query Send(A,B, message) and he assigns the

ephemeral public key of B as a nonce N. Then, he sends the query Test(sid) and receives

sb. Finally, he sends sb,N,pkB,pkA to A . Whenever A calls the oracle OB(pkA′), B creates

a new session sid′ with A′ on behalf of B as explained above. Similarly, he assigns the

ephemeral public key of B as a nonce N′. After, he sends the query Reveal(sid′) and

receives the session key s′. As a response of OB(pkA′), he sends s′,N′ to A . In addition,

whenever A calls the oracle OA(pkB′ ,N′′), first, B checks if (pkB′ ,N′′) equals (pkB,N). If it

is not equal, he creates a new session sid′′ on behalf of B′ with the ephemeral public key

N′′ and calls the oracle Reveal(sid′′) to receive the session key s′′. Then, he responds to

A with s′′. In the end, B outputs whatever A outputs. The simulation of D-AKA game

is perfect. So the advantage of B equals to the advantage of A . Therefore, because the

advantage of B is negligible, the advantage of A is negligible as well.

As a result of Theorem B.1, we can conclude any eCK secure key agreement protocol

can be used in Eff-pkDB. However, we suggest using D-AKA secure key agreement

protocols as they may require less public-key operations.

182

Appendix C
Security implications in SHM and PM

First, let us define “Null conversion”. It is a transformation of a protocol DB’ with

(K ,V,P′,B) in PM into another protocol DB with (K ,V,P,B,H) in SHM where P and H
are described below1:

P
ask key

receive K
run P′(K)

H(K)

send K

This conversion shows that, if we have a counterexample protocol in PM which is X-

secure but not Y-secure (X,Y ∈ {DF, DH, MiM, TF}), then the same counterexample

applies for its null conversion. Hence, any non-implication in PM is correct for

SHM as well.

We have already explained that TF-security implies DF, DH and MiM security in

SHM and PM. Now, we show the other relations between these security notions. We

give our counterexamples in PM for simplicity.

DH → DF: It is clear that DH-security implies DF-security in SHM and also in PM.

But, there is no such relation between DF/DH-security and MiM-security as explained

below.

DF � DH and DF � MiM: A simple counterexample for a DF-secure protocol

which is neither MiM nor DH-secure is an ‘echo’ protocol.

In an ‘echo’ protocol, the prover authenticates itself and then the challenge phase

begins. P receives a challenge(s) from V and P responds with the challenge(s) itself. If

P replies with the same challenge(s), V computes the elapsed time between the sending

the challenge and receiving the response. Thus, V can decide if the proximity of P is

less than B. Clearly, this is DF-secure because P cannot correctly reply before seeing

the challenge. So, P cannot show itself closer than its proximity. But, echo protocol is

not DH and MiM-secure. It is not DH-secure because a far-away and malicious prover

1Remark that H leaks the key in Null conversion because its algorithm is designed like this. This
exemplifies that in our model we do not have any restriction (e.g., no leakage of a key) about H’s
algorithm.

183

V (skV ,pkV) P(skP,pkP,pkV)
initialization phase

N ← D(1n)

A(skV ,pkV ,pkP,N)→ s
N,pkP←−−−−−−−−− B(skP,pkP,pkV ,N)→ s

pick m ∈ {0,1}2n m−−−−−−−−−→ a = s⊕m
a⇐=========

challenge phase
for i = 1 to n

pick ci ∈ {0,1}, start timeri
ci−−−−−−−−−→ ri = a2i+ci−1

stop timeri
ri←−−−−−−−−−

verification phase
a = s⊕m,

checktimeri ≤ 2B,ri = a2i+ci−1
OutV−−−−−−−−−→

output pkP

Figure C.1 – An example DB protocol in PM which is DH-secure but not MiM-secure

can authenticate itself and let the close and honest prover respond to the challenge(s).

So, V decides that the malicious prover is close. It is not MiM-secure, because a MiM-

adversary responds the challenge(s) itself in the challenge phase and, in the rest, he

relays the messages between the (far-away) prover and the verifier.

MiM � DF and MiM � DH: MiM-symDB in Chapter 5 (Figure 5.4) is MiM-

secure but not DF-secure. So, it is not DH-secure either.

DH � MiM: We show a DB protocol which is DH secure in PM but not MiM-secure

in PM in Figure C.1 below.

MiM � TF and DH � TF: Eff-pkDB [KV16], PrivDB [Vau15c] are MiM and DH

secure. However, they are not TF-secure (they are not even TF’-secure in PM).

DH-secure but not MiM-secure DB protocol: We modify the Eff-pkDB protocol

[KV16] as in Figure C.1. We let the prover send the secret a before challenge phase.

The rest is the same.

This protocol is still DH-secure because of the following proof sketch: Eff-pkDB is DH

secure as shown in [KV16]. In the proof, it has been shown that the secret s1 generated

by P′ (close and honest) is independent from s generated by malicious P. It shows that
P does not know anything about s1 just after it is generated before a1 is released. When

we consider modified Eff-pkDB, we observe that even if P sends m himself, a that P has

and a1 that P′ has will be independent. Therefore, with the same arguments of DH-proof

of Eff-pkDB, we can show that modified Eff-pkDB is DH secure.

On the other hand, it is not MiM secure because an adversary knows the responses

beforehand. When we convert it to SHM where P behaves as Pdum, we have the same

security properties as well.

184

Appendix D
Full EMV

Here are some abbreviations used in the protocol:

• AID: Application Identifier. It defines each new execution of EMV protocol.

• AFL: Application File Locator. It is a list of files used in transaction. Application

Expiry Date, PAN, CDOL1, CDOL2 are mandatory files.

• AIP: Application Interchange Profile. It indicates the supported features of the

card (i.e., terminal risk management and authentication methods: SDA, DDA,

CDA, card holder verification, issuer authentication, relay resistance protocol)

• ATC: Application Transaction Counter

• CDA: Combined Application Data. It is an authentication method combined in

transaction phase.

• CDOL: Card Risk Management Object List. CDOL1 and CDOL2 lists the objects

that the card needs to generate the first cryptogram and the second cryptogram,

respectively.

• CidD: Cryptogram Information Data.

• DDA: Dynamic Application Data. It is a sign of dynamic data.

• SDA: Static Application Data. It is a sign of static data.

• PDOL: Processing Data Object List. It specify which information the card wants

from the terminal.(e.g. terminal country code (TCC), amount (τ))

EMV contactless session consists of four phases without card holder (user) verific-

ation method (i.e., Online PIN, Signature):

– Contact Establishment with NFC card: T detects C.

185

– Transaction Initialization: C picks an application identifier AID and sends it

to T . Then, they exchange their data to continue to the next phase. C asks

for some information of the terminal (PDOL). Then, T sends its PDOL data

with a command (GET-PROCESSING-OPTIONS). C responds with its all

supported features (AIP) and the card information needed for the transaction

(AFL).

– Transaction Initialization: C picks an application identifier AID and sends it

to T . Then, they exchange their data to continue to the next phase. C asks

for some information of the terminal (PDOL). Then, T sends its PDOL data

with a command (GET-PROCESSING-OPTIONS). C responds with its all

supported features (AIP) and the card information needed for the transaction

(AFL).

– Relay Resistance Protocol [emvb]: This protocol is executed if the card and

the terminal supports it. Here, we assume that they support this feature. The

terminal picks a random number R1 and sends this to the card with a com-

mand EXCHANGE-RELAY-RESISTANCE-DATA. The card responses with

another random number R2. It also sends timing estimates (timings): Min

Time For Processing Relay Resistance Protocol, Max Time For Processing

Relay Resistance Protocol, Device Estimated Transmission Time For Relay

Resistance Protocol. Then, the terminal checks if the total time passed after

sending R1 exceeds the limit. If the limit does not exceeds, then the next

phase begins. Otherwise, the transaction is canceled.

– Data Authentication: There are three type of authentication methods in

EMV: Static Data Authentication (SDA), Dynamic Data Authentication

(DDA) and Combined Data Authentication (CDA). Because of some weak-

nesses in SDA and DDA (replay attacks and wedge attacks), in this paper,

we consider CDA which is combined with the next phase.

– Transaction: T sends a command (GENERATE-AC) to C for the application

cryptogram. This command includes: the type of cryptogram T requires, a

CDA request, a list of values in CDOL1 that C needs from T to compute AC

and a random number UNT picked by T .

In EMV, there are three type of cryptograms: Transaction Certificate (TC),

Authorization Request Cryptogram (ARQC), Application Authentication

Cryptogram (AAC). Here, we consider the online verification where T re-

quests ARQC for online verification by the issuer. TC is used for the offline

verification by the issuer and AAC is used to cancel the transaction.

∗ Online Verification: C increases its counter ATC and generates a secret

key SKAC by using the counter and the master secret key MKAC. Then,

it generates the cryptogram: a MAC of UNT ,AIP,ATC,τ,TCC and some

details of the transaction (See [emvc], Table 26) with using the secret key

SKAC. C sends the cryptogram ARQC to T and T relays it to I along

186

with card information. I verifies the MAC and possibly validate the

information of C. If the cryptogram passes verification, then I generates

a MAC of ARQC and ARC with the secret key SKAC. This MAC is

called as ARPC. After, it sends ARPC to T and T relays it to C with the

second GENERATE-AC command for the generation of TC if ARC is

true. Otherwise, it sends GENERATE-AC command for the generation

of AAC to cancel the transaction.

C verifies ARPC. If the verification and ARC is true then C generates the

second cryptogram which is TC. TC is a MAC of CDOL2’s objects with

SKAC (See [emvc], Table 26)1 in order to show transaction is complete.

Additionally, it generates a signature of unpredictable numbers, ATC,

TC,timings,R1,R2 and CDOL-PDOL data. C signs it with SIC.

∗ Terminal checks if the sign and the data signed are valid. Later, the ter-

minal contacts with the issuer to receive to reimbursement. In this case,

the issuer verifies the signature and TC to execute the reimbursement.

1Even if CDOL1 and CDOL2 list the same objects, some terminal related objects change because the
payment process continues (e.g., TVR) [Rad03].

187

I(S
I ,P

I ,M
K

AC
)

T
C
(P

IC
,S

IC
,P

I ,M
K

AC
)

In
itia

liz
a
tio

n

S
E
L
E
C
T
(A

ID
)

−−−−−−−−−−−−−→
A

ID
←

aid
A

ID
,[P

D
O

L
]

←−−−−−−−−−−−−−
d
o
a
list

P
D

O
L

retriev
e
d
a
ta

in
P

D
O

L
(i.e.,

T
C

C
,τ)

G
E
T
-P

R
O
C
E
S
S
IN

G
-O

P
T
IO

N
S
(T

C
C
,τ)

−−−−−−−−−−−−−−−−−−−−−−−−−−−→
A

IP←
C

D
A
,

A
IP,A

F
L

←−−−−−−−−−−−−−
A

F
L←

{PA
N
,E

D
,

C
D

O
L1

,C
D

O
L2}

R
e
la
y

R
e
sista

n
c
e
p
r
o
to

c
o
l

p
ick

R
1

E
X
C
H
A
N
G
E
-R

E
L
A
Y
-R

E
S
IS

T
A
N
C
E
(R

1
)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
p
ick

R
2

ch
eck

R
T
T

R
2 ,tim

ings
←−−−−−−−−−−−−−

D
a
ta

A
u
th

e
n
tic

a
tio

n
a
n
d

T
r
a
n
sa

c
tio

n

p
ick

U
N

lstT
=
{req

A
R

Q
C
,req

C
D

A
,U

N
T }

G
E
N
E
R
A
T
E
-A

C
(lstT

)
−−−−−−−−−−−−−−−→

AT
C
←

AT
C
+
+

SK
AC ←

G
en(M

K
,AT

C
)

if
b
a
la
n
ce

a
n
d

AC
o
k

C
id
,A

R
Q

C
←−−−−−−−−−−−−−

C
id

=
{E

D
,PA

N}
A

R
Q

C
←−−−−−−−−−−−−−

A
R

Q
C
=

M
A
C

SK
AC
(U

N
,A

IP,AT
C
,τ,T

C
C
)

M
K

AC ←
SK

AC
X
=

A
RC||6×

“00”
Y
=

AC⊕
X

A
R

PC
=
D
E
S3

SK
A C
(Y

)
A

R
PC

,A
RC

−−−−−−−−−−−−−→
If

A
RC

=
T

rue

lst2
T
=
{req

T
C
,req

C
D

O
L2 ,A

R
PC}

G
E
N
-A

C
(lst2

T
)

−−−−−−−−−−−−−→
b←

V
e
r
i
f
y
(A

R
PC

)

if
b
=

T
rue

T
C
=
M
A
C

SK
AC
()

if
V
=

true
V

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2874

G
E
N
-A

C
(T

C
,C

D
A
,d
a
ta

in
C

D
O

L2)
−−−−−−−−−−−−−−−−−−−−−−−−−→

T
D

H
C
=

H
(P

D
O

L
,C

D
O

L1
,C

D
O

L2d
a
ta
,C

idD
,AT

C
,AC

)

V
erify

SD
A

D
C

idD
,AT

C
,SD

A
D

←−−−−−−−−−−−−−−−−−−−−−−−−−
SD

A
D
=

sig
n

S
IC
(U

N
C
,C

idD
,AC

,T
D

H
C
,U

N
T
)

F
ig
u
re

D
.1

–
T
h
e
F
u
ll
E
M
V

p
roto

co
l

188

Appendix E
Curriculum Vitae

Name: Handan Kılınç Alper

E-mail: handankilinc1@gmail.com

Citizenship: Turkish

Education

2014 - 2018 PhD in Computer, Communication and Information

Sciences

Area: Cryptography

Supervised by Prof. Serge Vaudenay

Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzer-

land

2012 - 2014 Master in Computer Science and Engineering

Area: Cryptography

Supervised by Asst Prof. Alptekin Küpçü

Koç University, Turkey

2006 - 2011 Bachelor in Mathematics

TOBB University of Economics and Technology (TOBB

ETU), Turkey

2006 - 2012 Bachelor in Computer Science (Double Major)

189

TOBB University of Economics and Technology (TOBB

ETU), Turkey

March 2012 -

July 2012

Erasmus student

AGH University of Science and Technology, Poland

Experience

Apr 2018 Invited Talk at FutureDB workshop

Apr 2018 Invited Talk at Training School on Cryptanalysis of

Ubiquitous Computing Systems

Apr 2016 Invited talk at CryptoAction Symposium

2014 - 2018 Teaching Assitant at EPFL (courses: ‘Cryptography and

Security’, ‘Student Seminar: Security Protocols and Applic-

ations’, ‘Mathematical Analyzes’)

2015 - 2018 Supervised 5 Master and Bachelor semester projects

and co-supervised one Master thesis

2012 - 2014 Research Assitant at Koç University (research on

achieving fairness in multi/two party computation resulted

with 2 conference papers and 1 journal submission)

2012 - 2014 Teaching Assitant at Koç University (courses: ‘Dis-

crete Mathematics and Applications’, ‘Algorithms’, ‘Empir-

ical and Quantitative Reasoning’)

Sep 2011 - Feb

2012

Part time software developer in SimTek Simulation

and Information Technologies (project: designing simu-

lation of an educational device set in the military. Program-

ming Language: Java and C++)

190

Academic Honors

2014 One year fellowship from EDIC (Computer and

Communication Sciences in EPFL) for the doctoral

study.

EPFL, Switzerland

2012 - 2014 Full scholarship from Koç University for the master

study.

Koç University, Turkey

2011 Ranked 2nd in GPA among the class of 2011 Math-

ematics majors.

TOBB ETU, Turkey

2006 - 2012 Full scholarship from TOBB ETU for the bachelor

study.

TOBB ETU, Turkey

191

Projects

2016 - 2018 SNF project on ‘The Implication of Time and Posi-

tion in Cryptography’

2014 - 2018 ICT COST Action IC1403 Cryptacus in the EU

Framework Horizon 2020

2012 - 2014 Fair and Secure Computation

Languages

Turkish (native), English (fluent), French (basic), Spanish (beginner)

Technical Skills

• Programming Languages: Python, C++, Java

• Development Environments: Eclipse, Visual Studio, MATLAB, Linux,

MySQL

192

Extracurricular Activities

In TURQUIA 1912 – Turkish Students Association in Switzerland:

• President (2017-2018), Secretary (2016-2017), Vise President (2015-2016)

• Conducted meetings to introduce the association to new people and attracted

members.

• Organized and found sponsors for the traditional annual reception each year from

2016 to 2018 for about 70-100 attendants including Turkish representatives in

Switzerland.

193

