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There is a crack in everything;
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Abstract
The onset of earthquakes along crustal faults, the triggering of slab avalanches or the break of a

wine glass are all serious problems driven by the propagation of a dynamic rupture front. Our

physical understanding of this ubiquitous phenomenon is however still far from being well-

established. While Linear Elastic Fracture Mechanics (LEFM) became a successful theoretical

framework to describe the stability and the slow growth of flaws within materials, it still fails

at describing the dynamics of fast and sudden rupture fronts. Several experimental studies

recorded the propagation of dynamic crack fronts and revealed the origin of this discrepancy.

As the rupture speed approaches the one of the elastic waves, the crack stops being the simple

planar object pictured by the theory. Indeed, dynamic instabilities start interfering with the

crack propagation, while the fracture surface roughens and reveals the permanent interplay

between the rupture front and the heterogeneities emerging from the material microstructure.

In this context, the objective of the present Ph.D. work is precisely to bring novel insights in

these complex and unstable dynamics using the great potential of modern computational

methods. The originality of its approach consists in looking at the scale of the intimate

interaction existing between the rupture front and material heterogeneities, where the crack

tip spreads over some distance called the fracture process zone. To this aim, it relies on two

“homemade” implementations of the elastodynamic equations running on modern computing

cluster facilities.

This Ph.D. work consists mainly in two parts. The first one presents a fundamental study of the

interplay between a crack front and microscopic heterogeneities. This work reveals the direct

impact of the heterogeneities on the local speed of the rupture front, which can even exceed

the admissible values predicted for homogeneous conditions. The simulations further allow

to connect the progressive roughening of the fracture surface to the “relativistic” contraction

of the process zone observed when the crack speed approaches the speed of elastic waves. In

the second part of the manuscript, the same formalism is applied to the study of frictional

interfaces, for which the microscopic heterogeneities correspond to the scattered topography

emerging from the contact between two rough surfaces. This study notably proposes a new

estimation of the part of fracture energy entering the seismic energy budget.

In spite of being a rather fundamental study of heterogeneous crack dynamics, this Ph.D. work

finds direct implications in a large range of domains, from earthquake science to the design of

more resilient materials.
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Résumé
L’initiation d’un séisme le long de failles tectoniques, le déclenchement d’une avalanche

de plaque ou la fracture d’un verre à vin sont autant de situations catastrophiques causées

par la propagation dynamique d’un front de rupture. Notre compréhension physique de ce

phénomène omniprésent est cependant loin d’être complètement acquise. Si la Mécanique

Linéaire Élastique de la Rupture (MLER) est devenu un cadre théorique reconnu et unani-

mement appliqué pour étudier la stabilité et la propagation lente de défauts présents dans

les matériaux, elle reste néanmoins insuffisante pour décrire la dynamique des ruptures sou-

daines et rapides. L’origine de cette divergence a été révélée au travers de plusieurs études

expérimentales ayant observé la propagation rapide de fissures dans les matériaux. Lorsque

la vitesse de fissuration se rapproche de celle des ondes élastiques, la pointe de fissure cesse

de correspondre à la représentation simple et planaire supposée dans la théorie. En effet,

des instabilités dynamiques se manifestent à haute vitesse et interfèrent avec l’avancée de la

fissure. Le profil des surfaces ainsi créées par la rupture devient rugueux et trahit l’interaction

permanente entre le front de rupture et les hétérogénéités existantes dans la microstructure

du matériau.

Dans ce contexte, ce travail de doctorat repose sur des approches numériques qui représentent

une alternative prometteuse pour faire la lumière sur ces dynamiques complexes et instables.

L’originalité de l’approche consiste à étudier l’interaction avec les hétérogénéités du matériau

existant au plus près de la pointe de fissure, à une échelle où elle ne correspond plus à un

point singulier, mais s’étale sur une région communément appelée la zone d’endommagement.

A cet effet, ce travail de recherche s’appuie sur deux implémentations numériques de l’élasto-

dynamique déployées sur des supercalculateurs modernes, spécialement taillés pour le calcul

scientifique.

Ce travail de doctorat se divise principalement en deux parties. La première consiste en l’étude

fondamentale de l’interaction entre une fissure dynamique et des hétérogénéités microsco-

piques. Cette étude révèle l’impact direct de ces dernières sur la vitesse locale du front de

rupture qui peut même dépasser les valeurs théoriquement admises par la MLER pour une

interface homogène. De plus, ce travail permet d’associer l’augmentation des rugosités de sur-

faces de rupture à la contraction “relativiste” de la zone d’endommagement lorsque la vitesse

de fissuration se rapproche de celle des ondes élastiques. Dans la deuxième partie du manus-

crit, le même formalisme est appliqué à l’étude d’interfaces de frottement, pour lesquelles les

hétérogénéités microscopiques naissent du profil éparse des points de contact existants entre

deux surfaces rugueuses. Cette étude propose notamment une nouvelle estimation de la part
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Résumé

d’énergie de rupture participant au budget énergétique d’un séisme.

Bien qu’étant une étude plutôt fondamentale de la dynamique de rupture en milieux hété-

rogènes, ce travail de doctorat trouve des applications dans divers domaines, allant de la

dynamique des séismes à la conception de matériaux plus résistants.

Mots clefs : Mécanique Linéaire Élastique de la Rupture, zone d’endommagement, micro-

structure hétérogènes, élasto-dynamique, ondes de choc, frottement, interface multi-contact,

loi de frottement rate-and-state, séisme, méthode des intégrales de frontière, méthode des

éléments finis, lois cohésives, calcul scientifique à haute performance
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1 Introduction

1.1 Motivation

Stephen Hawking (1942-2018) once stated that “one of the basic rules of the universe is that

nothing is perfect. Perfection simply doesn’t exist. Without imperfection, neither you nor I

would exist”. In the context of materials and structures, defects are indeed ubiquitous and

fracture mechanics can hence be understood as the science of dealing with flaws.

About a century ago, Griffith [10] studied how the apparent strength of materials is mediated

by the inherent presence of microscopic flaws. Stresses concentrate around flaws, which start

growing, merging and finally lead to premature material failure, for loadings significantly

lower than the theoretical strength of a perfectly sane material. He further proposed a ther-

modynamic criterion to predict the stability of flaws: a crack grows if the energy released by

its advance is sufficient to balance the cost of the resulting surfaces creation. Later, Irwin [1]

derived a relation for estimating the release of elastic energy for any crack geometry using the

universal asymptotic stress fields existing at the immediate vicinity of a crack tip.

The works of Griffith and Irwin became the keystones of Linear Elastic Fracture Mechanics

(LEFM). The power of LEFM relies on the autonomy principle, according to which the crack

growth is entirely controlled by the linear elastic stress singularity, as long as every nonlinear

dissipative process associated to fracture is confined within a region of negligible size. The

diverse and complex phenomena involved in fracture are hence buried within this so-called

fracture process zone and characterized by a constant value, the fracture energy, which can be

determined through standardized experiments. As a result, LEFM became a well-established

theory, successfully applied to predict the stability of flaws in materials and structures.

Consequently, the LEFM approach was extended to the description of cracks out of equilib-

rium, i.e. to dynamic fracture. While LEFM is used to predict if an existing crack will grow,

the dynamic fracture theory aims at describing how a crack is propagating, at which speed,

with which energy budget. The subsequent dynamic fracture experiments confirmed the

predictions of this dynamic theory for slowly propagating cracks. However, they revealed how

1



Chapter 1. Introduction

the dynamics of fast ruptures (with crack speeds exceeding a few tenths of the material shear

wave speed) diverges from the theoretical predictions.

Figure 1.1 – The fast rupture of a brittle material creates particularly rough fracture surfaces.
Microscope image (millimeter scale) of the fracture surface created by a fast dynamic crack in
PMMA (acrylic glass). (Inset) Zoom (hundreds of micrometers) in the fracture surface using
scanning electron microscopy revealing the onset of an out-of-plane microbranch appearing
in the middle of in-plane conic marks. Courtesy of Alizée Dubois.

The observed divergence between theory and experiments coincides with the onset of micro-

scopic instabilities occurring at the crack tip. Indeed, visualizations of the crack surface after

failure (post-mortem) revealed the appearance of microscopic surface marks as the rupture

speed exceeds a characteristic velocity (cf. Figure 1.1). Therefore, a fast crack propagating

within a nominally brittle material stops having a simple sharp tip but becomes a smeared

rupture front interplaying with material heterogeneities. As the crack speed keeps increasing,

microbranches start to grow out of the rupture plane before a macroscopic branching event

arises and splits the rupture front into two or several sub-branches. In this context, under-

standing the interplay between a dynamic crack front and heterogeneities is paramount to

gain insights on the origin of these dynamic instabilities reported along various brittle materi-

als. In addition, several recent studies revealed how a significant gain in fracture toughness

can be achieved using a heterogeneous microstructure [11]. A fascinating biological exam-

ple of this toughening mechanism was found in the nacre of mollusks shell, whose fracture

energy is 3000 times higher than the raw material it is made of [12]. In the recent context of

micro-architected metamaterials [13, 14], a deeper understanding of the interplay between

cracks and heterogeneous microstructures will open new prospects in the design of materials
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capable of impeding dynamic crack growth.

Crack propagation along a heterogeneous rupture plane is typically studied following Rice’s

perturbation analysis [2]. In this first-order approach, a crack is viewed as an elastic line whose

distortion by asperities locally increases the stress intensity factor up to values sufficiently large

to overpass them. This so-called line tension approach, whose dynamic extension was derived

by Willis and Movchan [15], was built on two restrictive hypotheses: A crack front is described

as a line (i.e. infinitesimal fracture process zone), whose distortions should remain small

(first-order approximation). The dynamic interactions, arising during a fast crack propagation,

occur however at scales, where the fracture process zone is smeared over a finite length. In

this context, modern numerical approaches offer a great alternative to bypass the limitations

of line tension models and bring new insights on the interactions existing at the scale of the

fracture process zone. However, capturing the fine spatio-temporal scales characterizing these

microscopic heterogeneous processes requires an exceptionally fine description of the rupture

plane, unattainable with conventional numerical approaches.

Finally, several mechanical systems are controlled by a similar interplay between the long-

range elastodynamics driving a rupture front and the local heterogeneous microstructure.

Examples of such systems include landslides, snow avalanches or crustal earthquakes. In

the latter, the resistance to shear results from the scattered contact profile emerging when

two rough surfaces are brought into contact. In this context, the computational framework

developed and implemented in the context of dynamic fracture can equivalently be applied

to the problem of frictional interfaces, for which the macro- and microscopic aspects of

friction were typically described in the literature following two distinct and complementary

approaches.

1.2 Objectives

The main objective of this work consists in systematically investigating the effect of hetero-

geneities on dynamic crack propagation, from the macroscopic scale down to the fracture

process zone scale. This thesis particularly aims at probing crack dynamics beyond the as-

sumptions of the standard LEFM solutions. Therefore, this work relies on the implementation

of efficient numerical methods. In light of these global objectives, below is a set of important

questions that this thesis addresses:

• Homogenization/ Which conditions legitimate the homogenization of microscopic

properties? What are the characteristic scales controlling the transition from quasi-

homogeneous to heterogeneous rupture dynamics?

• Elastic radiation/ How does the presence of heterogeneities affect the radiation of

elastic waves by the propagating rupture?

• Rupture speed/ Why do dynamic instabilities/surface marks reported in experiments
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initiate at precise velocities and progressively increase with crack speed? What is the

effect of heterogeneities on the crack propagation speed?

• Large front distortions/ What is the outcome of a large distortion of the crack front in

presence of heterogeneities?

• Multicontact interfaces/ How does the heterogeneous topography existing for two

rough surfaces in contact interplay with the macroscopic propagation of slip fronts

along frictional interfaces?

The leitmotiv of this work is therefore the investigation of systems governed by the permanent

competition between the long-range elastodynamics and the heterogeneous strength profile

existing locally at the microscopic scale.

1.3 Approach

The objectives stated above require an efficient elastodynamic model providing a particularly

fine description of the rupture plane. Therefore, the present work relies on a boundary integral

formulation [16, 17] of elastodynamics, for which the numerical discretization is concentrated

along the interface bonding two semi-infinite half spaces. Moreover, this particular setup

eases the comparison with the standard LEFM solutions derived under the same infinite

boundary conditions. The finite-element method [18, 19] is also occasionally used in this work

to account for finite size boundary conditions.

A non-singular description of fracture is needed in order to study the impact of the fracture

process zone. To this aim, a cohesive zone model [20, 21] is adopted in this work together

with the elastodynamic models. In this well-established approach, the material strength takes

a finite value which progressively drops as the crack opens, which leads to a finite process

zone size. Moreover, the cohesive approach corresponds to a local description of fracture,

easily tunable to account for heterogeneous interface properties. In the final part of this

manuscript, the standard cohesive law will be replaced by rate-and-state formulations [22, 23]

describing the complex frictional response of multicontact interfaces existing between two

rough surfaces.

In this manuscript, the description of different kinds of heterogeneities possibly existing

along rupture planes are systematically investigated. This includes the mismatch of elastic

properties across the rupture plane, the local variations of the fracture toughness and the

pinning of the crack front by a tougher asperity. Finally the impact of a rough contact profile

on the nucleation and propagation of slip fronts at the onset of frictional slip will be studied

using different approaches.

The simulations reported in this manuscript rely on my own parallel implementation of the
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numerical method deployed on the high performance computing infrastructure of EPFL1.

1.4 Outline of chapters

This Ph.D. dissertation is structured in nine different chapters which are briefly presented

below:

• Chapter 2 - State of the art

This chapter introduces the key concepts and derivations of continuum solid mechanics

and dynamic fracture mechanics, which define the theoretical framework supporting

this research. Their implications as well as the open challenges in the context of rapid

failure of brittle materials and of the onset of sliding along frictional interfaces are then

reviewed and discussed.

• Chapter 3 - Numerical framework

This thesis uses two “homemade” implementations solving the elastodynamic fracture

problems, whose main concepts and formulations are introduced in this chapter. The

boundary integral formulation provides an unprecedented level of discretization along

the rupture plane, essential to describe phenomena at the scale of the process zone.

The finite-element method allows to represent the realistic finite-size geometry of the

problem, but at a larger cost. Finally, in these two elastodynamic models, the interface

behavior is represented following a cohesive description of fracture.

• Chapter 4 - Dynamic fracture along bimaterial interfaces

The elastic mismatch across the fracture plane is the first kind of heterogeneity studied in

this thesis. The resulting bimaterial interfaces are frequently encountered in composite

and laminate materials as well as along geological layers. It will be shown that these

inhomogeneous interface conditions lead to dynamic instabilities. In the case of mixed

shear and tensile fracture, these instabilities take the form of large scale contact zones

emerging in the wake of the rupture front. The theoretical range of admissible crack

speeds is extended and generalized to the case of bimaterial interfaces, which is then

directly used to rationalize the origins of these observed instabilities.

• Chapter 5 - Interplay between process zone and material heterogeneities

This chapter studies the impact of heterogeneities in terms of fracture energy. A two-

dimensional plane strain setup is assumed and prevents any crack front distortion.

Local variations of the fracture energy around its mean value are described in the form

of alternate weaker and stronger patches. This study reveals how these local variations

can have a strong impact on rupture dynamics. In the context of shear cracks, these

heterogeneities significantly promote crack front propagation at a speed faster than the

shear waves (supershear rupture fronts), which finds direct implications in the context

1https://scitas.epfl.ch/
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of earthquakes dynamics. This study further emphasizes how the fracture process zone

is the characteristic length scale controlling the transition from quasi-homogeneous

to heterogeneous fracture. Finally, this chapter discusses how the observed relativistic

process zone contraction brings faster crack fronts to interact with smaller details of the

microstructure.

• Chapter 6 - Supershear bursts in the propagation of tensile crack

This chapter investigates the distortion of a rupture front in the presence of a circular

asperity, beyond the small distortions assumed in first-order models. For the first time,

this study reveals how supershear bursts can also arise during tensile failure and how

they are triggered by heterogeneities. These supershear episodes emerge at disconti-

nuities resulting from strong crack front distortions, which are assumed to frequently

occur during dynamic instabilities due to the interaction with the microstructure or

the formation of microbranches. Finally, this work shows how these short-lived events

create persistent shock waves capable of perturbing the front dynamics far from the

asperity site.

• Chapter 7 - Onset of sliding across scales

This chapter investigates the effect of the scattered contact profile existing at the scale of

surface roughness on the onset of frictional sliding. The complex contact topography ex-

isting at smaller scales is explicitly modeled as an idealized array of junctions and valleys.

The resulting microcontact junctions typically break via two distinct mechanisms: the

yielding of the contact junction or via brittle crack-like rupture. This study presents how

a cohesive law representative of the micro-mechanical response of contact junctions is

able to account for these two failure mechanisms and how the observed transition is

controlled by the process zone. Furthermore, this chapter studies the direct impacts of

these different microscopic mechanisms on the macroscopic strength of the interface

measured at the onset of sliding. This work finally discusses the implications of this

transition arising at the scale of the surface roughness in relation with the unexpected

response of some lubricated interfaces presenting a tougher behavior than equivalent

interfaces but dry [24].

• Chapter 8 - On the rupture dynamics of laboratory-derived friction laws

In this second chapter about frictional interfaces, the complex behavior of the underly-

ing microcontacts is implicitly represented by a constitutive friction law derived from

laboratory experiments, also known as a rate-and-state friction law. Grounded on the

formalism of dynamic fracture, this chapter presents the energy balance driving the

rupture fronts nucleating and propagating along interfaces described by rate-and-state

formulations. This work culminates in a discussion of the equivalent fracture energy

and its actual contribution in the energetic budget of earthquakes.

• Chapter 9 - Conclusion

This manuscript concludes with a summary of the main results and a discussion about

the future prospects it opens.
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Materials break as a result of different processes arising across several length scales, from the

rupture of the atomic bonds toward cracks propagation within the macroscopic structures. As

a result, fracture mechanics was studied in the literature using various modeling approaches

grounded on different descriptions of solid matter. This thesis focuses on fracture aspects at

large scales (micro- to macroscale), where the long range elastodynamics is the main carrier

of crack propagation. Other kinds of models exist at much smaller scales (nanoscale) and

account for the discrete nature of matter. These atomistic aspects of fracture will not be

discussed in this manuscript, but the reader is redirected to [25] for a broad presentation of

this topic. The bulk behavior is hence described within the framework of continuum solid

mechanics. After presenting some key concepts of continuum mechanics and elastodynamics,

the LEFM theory and its dynamic extension are introduced. Heterogeneous fracture models

are then discussed in light of the experimental validations of the dynamic fracture theory. The

macroscopic description of solid friction is finally presented and linked to the framework of

the dynamic rupture of heterogeneous interfaces.

2.1 Continuum solid mechanics

Continuum solid mechanics represents a well-established theoretical framework mainly devel-

oped during the 19th century and describing the displacement of a macroscopic deformable

solid under the action of forces. The fundamentals of this broad topic will be introduced in

this chapter, inspired from the detailed description existing in reference textbooks [26–28].

Depending on the problem of interest (small versus large deformations, linear versus nonlinear

material behaviors, etc.), different formulations were proposed in the literature, but rest upon

the same three ingredients:

1. Conservation principles controlling the balance of momentum through the solid.

2. The kinematics describing the geometric changes of a deformable solid.
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Figure 2.1 – Stresses existing at the surfaces of an elementary block of matter of size d x d y d z.
This concept is only valid for a large scale description of solids, far from the discrete nature of
matter existing at the atomistic length scales.

3. The constitutive laws characterizing the material behavior and bridging the two first

work-conjugated ingredients.

2.1.1 Conservation laws

Conservation laws are typically derived on an elementary block of matter studied within a

Cartesian frame of reference as presented in Figure 2.1. The sum of forces P ext acting at its

surfaces should obey Newton’s1 second law:

∑
P ext(t ) = ρü(t ) dx dy dz, (2.1)

with ü being the acceleration vector and ρ the volumetric solid mass density. In this context,

the concepts of stress and traction are introduced and represent the transmitted forces ΔP

across a sufficiently small surface area ΔA:

τ= lim
ΔA→0

ΔP

ΔA
. (2.2)

The term traction is often associated to an external force acting at the solid surface, while stress

refers to the transmission of an inner force. From the action-reaction principle (Newton’s third

law), Cauchy2 stated that the stresses/tractions acting on the two sides of a surface are equal

and opposite. The tractions and stresses acting on a surface defined by the normal vector n

1Isaac Newton (1642-1727)
2Augustin-Louis Cauchy (1789-1857)
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Figure 2.2 – Kinematics of a deformable solid from its original Ω to its deformed Ω configura-
tion.

are related according to

τ=σn. (2.3)

The second-order tensor σ is named Cauchy stress tensor and is defined such that its compo-

nent σi j corresponds to the stress acting in the j direction through a surface normal to the i

direction (cf. Figure 2.1).

In this framework, the conservation of momentum (in absence of body force) of an elementary

block of solid matter is written in the three directions as:

∂σxx

∂x
+ ∂σy x

∂y
+ ∂σzx

∂z
= ρüx

∂σx y

∂x
+ ∂σy y

∂y
+ ∂σz y

∂z
= ρüy

∂σxz

∂x
+ ∂σy z

∂y
+ ∂σzz

∂z
= ρüz .

(2.4)

The relations above, also known as Cauchy’s equations of motion, can be expressed in a

compact form using the divergence operator ∇:

∇·σ(t ) = ρü(t ). (2.5)

2.1.2 Kinematics

The kinematic study of a deformable solid consists in quantifying the deformation of a body

between the current time t and a reference time t 0, as illustrated in Figure 2.2. In this context,

the displacement field u(x , t ) is the function mapping points between the current X (x , t ) and
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the reference configuration x :

X (x , t ) = x +u(x , t ). (2.6)

The length of an infinitesimal segment ds in the original configuration is defined as

d s2 = dx2 +dy2 +dz2 = dx�dx , (2.7)

while its length in the deformed configuration dS is given by:

dS2 = dX 2 +dY 2 +dZ 2 = dX �dX . (2.8)

The differentiation of Equation 2.6 gives

dX = dx + ∂ux

∂x
dx + ∂ux

∂y
dy + ∂ux

∂z
dz

dY = dy + ∂uy

∂x
dx + ∂uy

∂y
dy + ∂uy

∂z
dz

dZ = dy + ∂uz

∂x
dx + ∂uz

∂y
dy + ∂uz

∂z
dz,

(2.9)

which corresponds to

dX = (I +∇u)dx = F dx . (2.10)

In the equation above, I is the identity matrix and F is known as the deformation gradient

tensor and includes both the rigid body translation and its deformations. The former is

removed when expressing the extension of the infinitesimal segment:

dS2 −d s2 = dx�F�F dx −dx�dx = dx�(F�F − I )dx = dx�(2E )dx . (2.11)

E is called the Green3-Lagrange4 strain tensor:

E = 1

2
(F�F − I ) = 1

2

(
(∇u)�+∇u + (∇u)�∇u

)
. (2.12)

This thesis investigates the dynamic rupture of nominally brittle materials, for which strains

during the rupture are very small ∂ui /∂x j � 1. The infinitesimal strain tensor is hence used:

ε= 1

2

(
(∇u)�+∇u

)
, (2.13)

which represents a small-strain approximation of E owning the convenient property of being

a linear operator.

3George Green (1793-1841)
4Joseph-Louis Lagrange (1736-1813)
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2.1.3 Constitutive law

The constitutive law relates the stress and strain tensors defined above and represents the

material behavior. The latter is often characterized through material experiments, rarely from

first-principles, and can be generically written as

σ=C (ε, t ,T,φ, ...). (2.14)

In the relation above, C represents a function of the strains, as well as other variables such as

time t , temperature T , and a collection of internal variables φ accounting for material history.

A linear elastic materials obeying Hooke’s5 law is assumed in the context of this thesis. Similar

to a spring whose force-extension ratio is described by a unique constant (i.e. its stiffness), the

stiffness tensor C relates stresses to strains as

σ=C : ε, (2.15)

where the operator “:” corresponds to the tensor contraction. C is a fourth-order tensor

containing 81 components, which can be reduced to 21 by taking advantage of the symmetries

of σ and ε. For a homogeneous, isotropic, linearly elastic material, the constitutive law further

simplifies into:

σ=λTr(ε)I +2με, (2.16)

with Tr(ε) being the trace of ε and (λ,μ) the Lamé6 coefficients. The latter are directly related

to engineering elastic properties, such as Young’s7 modulus E and Poisson’s 8 ratio ν, which

are respectively the material stiffness and the ratio of lateral to longitudinal strain observed

during uniaxial loading:

λ= νE

(1+ν)(1−2ν)
(2.17)

and

μ= E

2(1+ν)
. (2.18)

Different definitions of stresses and strains, associated to a large variety of constitutive laws

exist in the literature. For a detailed presentation of the different approaches existing in

continuum mechanics, the reader is redirected to [28].

5Robert Hooke (1635-1703)
6Gabriel Lamé (1795-1870)
7Thomas Young (1773-1829)
8Siméon Denis Poisson (1781-1840)
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2.1.4 Elastodynamics

The equation of motion of a continuum solid is obtained by combining the three ingredients

defined above, i.e. the conservation law (Equation 2.5), the kinematics (Equation 2.13) and

the constitutive law (Equation 2.16):

(λ+μ)∇(∇·u)+μ∇2u = ρ
∂2u

∂t 2 . (2.19)

Using the vector identity (∇(∇·u)−∇2u =∇× (∇×u)), the partial differential equation (PDE)

above, also known as Lamé-Navier9 equation of motion, can be rewritten as:

λ+2μ

ρ
∇(∇·u)− μ

ρ
∇× (∇×u) = ∂2u

∂t 2 . (2.20)

Following Helmholtz’s 10 decomposition, any vectorial field can be represented in terms of a

scalar potential Φ and a vector potential Ψ such that:

u =∇Φ+∇×Ψ. (2.21)

Using the properties of the curl and divergence operators (∇×(∇Φ) =∇·(∇×Ψ) = 0), Equation

2.20 can be decomposed into two wave equations:

λ+2μ

ρ
∇2(∇Φ) = ∂2(∇Φ)

∂t 2 , (2.22)

μ

ρ
∇2(∇×Ψ) = ∂2(∇×Ψ)

∂t 2 . (2.23)

Equation 2.20 is hence a second order differential equation describing solid elastodynamics,

which is characterized by the propagation of two types of waves traveling at different speeds:

• The longitudinal component ∇Φ is associated to volumetric strains and propagates at a

speed

cd =
√

λ+2μ

ρ
, (2.24)

referred to as the dilatational wave speed.

• The transverse component ∇×Ψ corresponds to deviatoric strains and moves with a

speed

cs =
√

μ

ρ
, (2.25)

9Claude-Louis Navier (1785-1836)
10Hermann Ludwig Ferdinand von Helmholtz (1821-1894)
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which is known as the shear wave speed.

cd and cs are connected by Poisson’s ratio as

cd =
√

2(1−ν)

1−2ν
cs = ηcs . (2.26)

In addition to these two waves, elastic waves can also travel along the surface of isotropic

linearly elastic solids in the form of Rayleigh waves [29], whose propagation speed can be

estimated as

cR
∼= 0.862+1.14ν

1+ν
cs . (2.27)

For the typical values of Poisson’s ratio, the Rayleigh wave speed corresponds to 0.86 < cR /cs <
0.96.

2.1.5 Boundary and initial value problems

The elastodynamic boundary value problem is defined by associating some constraints existing

at the solid boundaries ∂Ω to the continuum region Ω governed by the PDE. The latter are

referred to as boundary conditions and mainly exist within two forms:

1. Dirichlet11 boundary conditions imposing the value of u = u over the surface ∂Ωu .

2. Neumann12 boundary conditions imposing the value of the surface tractions σn = τ

acting along the surface ∂Ωτ.

These boundary conditions are completed by a set of initial conditions defining the specific

value of the elastic fields at the initial time t = t 0.

In this context, the virtual work principle is an important method to solve boundary value

problems. It states that if the following integral equation is satisfied for any arbitrary kinemati-

cally admissible 13 virtual displacement field û:

∫
Ω
σ : ε̂dV +

∫
Ω
ρü · ûdV −

∫
∂Ωτ

τ · ûdA = 0, (2.28)

then the stress field σ is a solution of the boundary value problem. For a static problem,

11Peter Gustave Lejeune Dirichlet (1805-1859)
12Carl Gottfried Neumann (1832-1925)
13A displacement field is kinematically admissible if it is continuous, differentiable and if it satisfies the Dirichelet

boundary conditions on Ωu .
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Equation 2.28 is equivalently written as

∫
Ω
σ : ε̂dV −

∫
∂Ωτ

τ · ûdA = 0. (2.29)

In particular for û = u, Equation 2.29 states that

∫
Ω
σ : εdV =

∫
∂Ωτ

τ ·udA. (2.30)

From classical mechanics, the potential energy of the system is defined as

Epot = Eel −Wext = 1

2

∫
Ω
σ : εdV −

∫
∂Ωτ

τ ·udA, (2.31)

with Eel and Wext being, respectively, the elastic strain energy and the work of external forces.

Moreover, the kinetic energy of continuum solids can be written as:

Ekin = 1

2

∫
Ω
ρu̇ · u̇dV. (2.32)

In the next section, the description of crack within the continuum mechanics framework will

be presented. Therefore, a crack is introduced within the Cartesian frame of reference x− y−z,

such that its propagation is contained within the plane y = 0 and occurs in the x-direction.

Within this convention, one can define three possible modes of fracture, as illustrated in Figure

2.3:

1. Tensile loading (mode I), where the loading is applied normally to the crack plane (σy y ).

2. In-plane shear loading (mode II), where the loading is applied in the same direction as

the crack propagation (σx y ).

3. Anti-plane shear loading (mode III), where the loading is applied perpendicular to both

the normal of the crack plane and the direction of crack propagation (σy z ).

A particularly convenient setup to simplify the vectorial elastodynamic equation is the z-

invariant ( ∂
∂z = 0) anti-plane displacement field (ux = uy = 0) corresponding to a mode III

fracture problem. In this setup, the elastodynamic Equation 2.20 becomes scalar and involves

a unique characteristic speed:

c2
s ∇2uz = c2

s (uz,xx +uz,y y ) = uz,t t . (2.33)

In the following sections, a few key fracture mechanics results will be demonstrated within

this anti-plane setup to keep their proof concise.
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Figure 2.3 – The typical axes convention used in this thesis and its three associated modes of
fracture.

2.2 Fracture mechanics

Fracture mechanics is a rather young discipline of physical science and engineering, whose

origin coincides with the advent of large-scale modern steel production. In the wake of the In-

dustrial Revolution, many technological innovations relied on the design of lighter and thinner

structural components working in tension. Subsequently, several unexpected, often spectacu-

lar, failures of components and structures caused by brittle fracture were reported between

the 19th and 20th centuries and motivated the advent of a rigorous understanding of fracture

mechanics. For a complete presentation of the historical aspects of fracture mechanics, the

reader is redirected to the reference text books [30, 31], which inspired this chapter.

Griffith [10] was the first to quantitatively describe how the presence of inherent flaws within

materials directly control their tensile strength, which is several order of magnitude lower than

the theoretical strength of their atomic bonds. Relying on the stress concentration predicted

by Inglis [32] at the vicinity of an elliptic flaw, Griffith studied how the stress concentration

caused by the existence of flaws explains the premature rupture of materials. However, the

definition of a stress criterion of fracture was complicated by the “unphysical” infinite stress

concentration predicted at the vicinity of sharp cracks. Hence, Griffith proposed an energy-

based criterion, stating that a crack will expend if and only if the associated change in potential

energy Epot compensates the energy required to create new surfaces. The so-called Grif-

fith energy balance, grounded on the first law of thermodynamics, can be expressed for an

infinitesimal crack advance dA as:

G =−dEpot

dA
= 2γs , (2.34)

with γs being the surface energy and G being defined as the energy release rate. The energy

balance in Equation 2.34 leads to Griffith’s stability criterion for existing flaws: G ≤ 2γs . The

success of this approach was however limited to perfectly brittle materials, e.g. glass. For

other kinds of materials, such as metals, the fracture resistance is significantly underestimated.
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Figure 2.4 – Stress concentration at the vicinity of a sharp crack existing within a semi-infinite
plate and its evolution along y = 0.

Moreover, it was not clear how to compute the energy release rate for any arbitrary crack

geometry.

In 1939, Westergaard [33] published the elastostatic solution of several interface problems

implying singular stress fields. Among them, the evolution of the stress field in the neighbor-

hood of a crack of size 2a located in the middle of an infinite plate loaded by a far-field tensile

loading σ0
y y :

σy y =
⎧⎨
⎩

σ0
y y�

1−(a/x)2
, ||x|| > a,

0, ||x|| ≤ a,
(2.35)

This remarkably compact expression, whose evolution along the mid-plane y = 0 is presented

in Figure 2.4, uncovers the evolution of stresses at the vicinity of cracks and inspired the

subsequent investigations on the stress singularity [1, 34, 35]. Among them, Williams [35, 36]

derived the asymptotic elastic fields existing within any crack configuration, independently

of the boundary conditions. For the sake of simplicity, Williams’ solution is briefly presented

hereafter for the convenient anti-plane shearing geometry.

From Equation 2.33, the equilibrium relation (u,t t = 0) can be expressed within the polar

system of coordinates (r,θ) presented in Figure 2.5:

1

r

∂

∂r

(
r
∂uz

∂r

)
+ 1

r 2

∂2uz

∂θ2 = ∂2uz

∂r 2 + 1

r

∂uz

∂r
+ 1

r 2

∂2uz

∂θ2 = 0. (2.36)

In this new frame of coordinates centered at the crack tip, Williams postulated a solution of

the form:

uz (r,θ) = rλ f (θ,λ). (2.37)
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Figure 2.5 – Comparison between the exact stress field and the singular approximation along
y = 0. The asymptotic stress field is only accurate in the close neighborhood of the crack tip.

Combining Equations 2.36 and 2.37, the following second order ordinary differential equation

(ODE) is obtained:

f ′′(θ,λ)+λ2 f (θ,λ) = 0, (2.38)

leading to a general solution of the form:

uz (r,θ) = rλ(A cosλθ+B sinλθ). (2.39)

The anti-symmetry of the problem implies that A = 0, such that the shear stresses are written

as:

σxz =μ
∂uz

∂x
=μ

[∂uz

∂r

∂r

∂x
+ ∂uz

∂θ

∂θ

∂x

]
=−μλBrλ−1 sin

{
θ(λ−1)

}
, (2.40)

σy z =μ
∂uz

∂y
=μ

[∂uz

∂r

∂r

∂y
+ ∂uz

∂θ

∂θ

∂y

]
=μλBrλ−1 cos

{
θ(λ−1)

}
. (2.41)

A generic crack boundary condition implies that the surface lying at (r,θ =±π) is free of stress:

σy z =μλBrλ−1 cos
{
π(λ−1)

}
= 0, (2.42)

which leads to

λ= n

2
, n =±1,±3,±5, ... (2.43)

Moreover, unbounded displacements as r → 0 are unphysical and, hence, the singular terms
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(λ< 0) can be removed, leading to the following solution:

uz (r,θ) = ∑
n=1,3,5,...

Bnr
n
2 sin

(nθ

2

)
, (2.44)

with its associated shear stresses:

σxz (r,θ) =−μ ∑
n=1,3,5,...

Bn
n

2
r

n
2 −1 sin

(
θ

n −2

2

)
, (2.45)

σy z (r,θ) =μ
∑

n=1,3,5,...
Bn

n

2
r

n
2 −1 cos

(
θ

n −2

2

)
. (2.46)

Equations 2.44, 2.45 and 2.46, are often referred to as Williams series and assume no specific

crack geometry and correspond hence to a very generic description of the elastic fields existing

around a crack tip. In particular, very close from the tip, the stress fields are dominated by a

unique singular contribution (n = 1) and hence follow a universal square root singularity:

lim
r→0

σxz (r,θ) =−μB1

2
r− 1

2 sin
(θ

2

)
, (2.47)

lim
r→0

σy z (r,θ) = μB1

2
r− 1

2 cos
(θ

2

)
. (2.48)

During the same year than Williams’ publication, Irwin [1] reached similar conclusions by

conducting a limit analysis of Westergaard’s solution. He used a slightly different notation,

which introduced the notion of stress intensity factors K , and expressed the asymptotic elastic

fields as

σxz (r,θ) =− KI I I�
2πr

sin
(θ

2

)
, (2.49)

σy z (r,θ) = KI I I�
2πr

cos
(θ

2

)
, (2.50)

uz (r,θ) = 2KI I I

μ

√
r

2π
sin

(θ
2

)
. (2.51)

The subscript of K refers to each fracture mode, for which the associated stress intensity

factors are defined as⎧⎪⎨
⎪⎩

KI

KI I

KI I I

⎫⎪⎬
⎪⎭=χ

�
πa

⎧⎪⎨
⎪⎩

σ0
y y

σ0
x y

σ0
y z

⎫⎪⎬
⎪⎭ , (2.52)

where χ represents a dimensionless scalar accounting for the geometry of the problem and

typically equals to one within an infinite domain. Asymptotic solutions equivalent to Equa-

tions 2.49, 2.50 and 2.51 exist for mode I and mode II and their expressions can be found in the

reference textbooks [31, 37]. Figure 2.5 compares the exact solution derived by Westergaard

with the singular approximation, which is only accurate at the immediate vicinity of the crack

tip.
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Figure 2.6 – The two configurations used by Irwin [1] to compute the change of potential
energy observed as crack grows of Δa. The blue arrows represent the surface tractions required
to close the crack between a and a +Δa.

In this context, Irwin’s major contribution consisted to show that the energy release rate is

entirely mediated by the near-tip field and, therefore, by the asymptotic approximation.

Figure 2.6 presents the two configurations considered by Irwin for his demonstration: a

crack with size a (configuration A) and a crack with size a +Δa (configuration B). Moreover,

the potential energy can be written in terms of the work done at the boundary surfaces by

combining Equations 2.31 and 2.30:

Epot =−1

2

∫
∂Ωτ

τ ·u dA. (2.53)

In an infinite solid, ∂Ωτ corresponds solely to the crack surfaces14, which is growing as the

rupture propagates of Δa. Irwin tackled this problem by assuming an equivalent configuration

A, for which the surface extension Δa already exists but is kept closed by a pair of opposite

tractions acting between a and a +Δa (depicted in blue in Figure 2.6).

Applying the same strategy to the mode III configuration of interest, Equation 2.53 becomes

per a unit crack width:

ΔEpot(Δa) =−1

2

∫Δa

0
σA

y z (x)uB
z (x) dx, (2.54)

where the superscript denotes the configuration considered. If Δa is taken sufficiently small,

σA
y z and uB

z are dominated by the singular contribution for, respectively, a crack of size a and

a crack of size a +Δa. The previous integral can hence be written using Equations 2.50 and

14For finite size systems, this postulate is extended by assuming that the crack is far enough from the solid
boundaries, such that changes in u and τ mostly arise along the crack plane.
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2.51 as:

ΔEpot(Δa) =−1

2

∫Δa

0
σy z (θ = 0,r = x)uz (θ =π,r =Δa −x) dx

=−1

2

∫Δa

0

KI I I (a)�
2πx

2KI I I (a +Δa)

μ

√
Δa −x

2π
dx

=−KI I I (a)KI I I (a +Δa)

μπ

∫Δa

0

√
Δa −x

x
dx

=−ΔaKI I I (a)KI I I (a +Δa)

2μ
.

(2.55)

Finally, using Griffith definition of the energy release rate (Equation 2.34), one obtains:

G =−dEpot

da
= lim

Δa→0

{
− ΔEpot(Δa)

Δa

}
= 1

2μ
K 2

I I I . (2.56)

The equation above can be similarly derived for the three modes of fracture and is generically

written as:

G = 1−ν2

E

(
K 2

I +K 2
I I

)
+ 1

2μ
K 2

I I I . (2.57)

Equation 2.57 remarkably connects Griffith energy criterion to the universal square-root sin-

gular stress fields existing at the tip of a crack in a linearly elastic material.

Finally, Irwin replaced the energy required by surface creation 2γs by a generalized concept of

fracture energy Gc . This new definition allowed to extend the applicability of the energy bal-

ance beyond the scope of perfectly brittle fracture, to materials for which 2γs only represents

a small amount of the total fracture energy. In this context, Equation 2.34 is rewritten as

G =Gc . (2.58)

Griffith energy balance and Irwin asymptotic analysis, embodied in Equations 2.57 and 2.58,

represent the core of our modern understanding of fracture, often referred to as Linear Elastic

Fracture Mechanics (LEFM). Figure 2.7 summarizes the main assumptions and results of LEFM.

The neighborhood of a crack can be decomposed in three different regions:

• (A) Immediately ahead of the tip, stresses reach extremely high magnitudes that no real

material can withstand. A tiny region, often referred to as fracture process zone, develops

over the width lpz containing all the dissipative processes involved within Gc .

• (B) Right behind the process zone, the linear elastic behavior is dominated by the

universal square-root singular contribution.

• (C) Further away from the tip, higher-order terms of Williams series (cf. Equations 2.44,

2.45 and 2.46) are required to describe the elastic fields, which converge toward their

far-field values.
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2.2. Fracture mechanics

Figure 2.7 – Schematic evolution of the stress at the vicinity of a crack and its approximation
following LEFM theoretical framework (dashed black line). See the main text for a detailed
description of the three regions (A-B-C).

LEFM theory applies to predict crack stability as long as a well-defined region (B) dominated

by the singular contribution exists. This implies that the size of the process zone is small

enough compared to other representative length scales (lpz << a) and that the crack stands

at a sufficient distance from the far-field boundary conditions. When these conditions are

verified, the energy release rate is entirely contained in Equation 2.57, a situation which is

often referred to as K-controlled fracture.

In the past fifty years LEFM became a well-established theory applied in many engineering and

physical applications to predict the stability of defects and flaws in materials and structures.

LEFM framework was successfully extended to broader kinds of phenomena; among others

plastic and ductile fracture [38], fatigue of materials [39], landslides [40], snow avalanches [41]

and earthquake science (extensively discussed in Section 2.3).

Because of these successes, it was natural to try extending LEFM concepts to the description

of cracks far from equilibrium, i.e. to dynamic fracture mechanics. In the next section, the

main concepts of the dynamic fracture theory are introduced for the convenient anti-plane

mode III setup. For a complete description of dynamic fracture, the reader is redirected to the

reference textbooks [37, 42, 43].

2.2.1 On the elastodynamics of moving cracks

Let us once more consider the mode III or tearing fracture conditions, for which a z-invariant

( ∂
∂z = ,z = 0) out-of-plane displacement field (ux = uy = 0) is assumed, such that the elastody-

namic wave equation becomes scalar with a unique characteristic wave speed cs (cf. Equation
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2.33):

uz,xx +uz,y y = 1

c2
s

uz,t t . (2.59)

The common strategy behind dynamic fracture theory is to solve the elastodynamic relations

within a moving system of coordinates, whose origin follows the crack tip moving with a steady

velocity vc . Assuming a subsonic rupture speed (vc < cs), this moving system of coordinates

can be conveniently defined in the framework of Lorentz15 transforms:

x1 = x − vc t√
1− v2

c /c2
s

, x2 = y, x3 = z, t ′ = t − (vc x/c2)√
1− v2

c /c2
s

, (2.60)

which has the great advantage of preserving the shape of the wave equation:

u3,11 +u3,22 = 1

c2 u3,t ′t ′ . (2.61)

Under the steady-state postulate ( ∂
∂t ′ = 0), the relation 2.61 becomes a Laplace’s equation

u3,11 +u3,22 = 0, (2.62)

similar to the elastostatic equation written in the mode III setup of interest as

∇σ= 0 ⇔μ(uz,xx +uz,y y ) = 0. (2.63)

Hence, Williams series can be equivalently used to describe the asymptotic stresses at the

vicinity of a crack existing within a continuum governed either by the Laplace’s equation 2.62

or 2.63. Let us recall, the asymptotic elastic field predicted for a static crack ahead of the crack

(x = r ,θ = 0):

σy z =
K s

I I I�
2πx

, (2.64)

and in the wake of the crack (x = r ,θ =π):

uz = 2
K s

I I I

μ

√
x

2π
. (2.65)

By analogy, the asymptotic fields at the tip of a crack existing within a continuum governed by

Equation 2.62 are written as

σ23 = K I I I�
2πx1

(2.66)

15Hendrick Antoon Lorentz (1853-1928)
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ahead of the crack and

u3 = 2
K I I I

μ

√
x1

2π
(2.67)

in the wake of the crack. K s
I I I denotes the stress intensity factor in the case of a static crack,

while K I I I is the stress intensity factor existing in the Lorentz frame of coordinates. Moreover,

Irwin’s analysis presented above (cf. Equation 2.56) similarly applies to compute the crack

energy release rate:

−dEpot

da
=G = K

2
I I I

2μ
. (2.68)

Relations 2.66, 2.67 and 2.68 are derived in the Lorentz frame of coordinates such that K I I I

is different from the stress intensity factor KI I I measured in the lab. Since ∂uz /∂y = ∂u3/∂x2

and r = x − vc t , one can express the stress intensity factor observable from the lab KI I I

σy z =σ23 = K I I I√
2π x−vc t�

1−v2
c /c2

s

= K I I I√
2π r�

1−v2
c /c2

s

= KI I I�
2πr

. (2.69)

KI I I corresponds hence to the stress intensity factor that can be directly measured from the

stress profile observed experimentally or from numerical simulations. It is often referred to as

the dynamic stress intensity factor. Conversely, K I I I is the stress intensity factor measured in

the relativistic space, contracted by the Lorentz transform:

KI I I = K I I I
(
1− v2

c /c2
s

) 1
4 . (2.70)

Similarly, material point velocity can be computed as

u̇z = ∂u3

∂t
= ∂u3

∂x1

∂x1

∂t
=−∂u3

∂x1

vc√
1− v2

c /c2
s

= K I I I

μ

√
2π x−vc t�

1−v2
c /c2

s

vc√
1− v2

c /c2
s

, (2.71)

which becomes, using the definition of the dynamic stress intensity factor,

u̇z = KI I I

μ
�

2πr

vc√
1− v2

c /c2
s

. (2.72)

Moreover, the systems of coordinates (x, y, z) and (x1, x2, x3) are two inertial frames of reference

and therefore the laws of physics are invariant, and in particular the energy balance G =Gc of

Equation 2.58, which becomes in the fixed system of coordinates:

Gc =G = K
2
I I I

2μ
= K 2

I I I

2μ

1√
1− v2

c /c2
s

= K 2
I I I

2μ
AI I I (vc ). (2.73)
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AI I I is a universal function of the crack speed, which allows to generalize the concepts of

LEFM to dynamic crack. In this context, Figure 2.8 presents the asymptotic stress and velocity

profiles, invariant with the rupture speed.

Figure 2.8 – Asymptotic evolution along the crack plane y = 0 of the velocity (left) and shear
stress (right) at the vicinity of a mode III crack moving at any subsonic speed along an interface
characterized by a given fracture energy Gc .

The derivations above can be generalized to any mode of fracture, for which, however, several

characteristic wave speeds (cR ,cs ,cd ) come into play and prevent the direct use of Lorentz

transform. The generalized asymptotic fields are therefore computed following the Galilean

transform (x1 = x −vc t , x2 = y, x3 = z, t ′ = t ), leading to more complex derivations which can

be found for the different modes of fracture in reference textbooks [42, 43]. As example, Figure

2.9 presents the singular profile of the hoop stress predicted at the vicinity of a tensile crack

growing at different speeds along an interface characterized by a constant fracture energy Gc .

The generalization of crack energy balance for any arbitrary dynamic fracture setups is then

written as:

Gc =G = E

(1−ν2)

(
AI K 2

I + AI I K 2
I I

)+ 1

2μ
AI I I K 2

I I I , (2.74)

with

AI (vc ) = αd v2
c

(1−ν)Dc2
s

, (2.75)

and

AI I (vc ) = αs v2
c

(1−ν)Dc2
s

, (2.76)

where α2
s,d = 1− v2/c2

s,d , and D = 4αdαs − (1+α2
s )2.
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The universal function

AI I I (vc ) = 1

αs
(2.77)

is recalled from Equation 2.73.

Figure 2.9 – Asymptotic hoop stress profiles predicted at the vicinity of a tensile crack moving
at different speeds along an interface characterized by Gc and cR = 0.93cs .

2.2.2 Relativistic effects in dynamic fracture

The title of Section 2.2.1 was humbly inspired from Einstein’s paper On the electrodynamics

of moving bodies [44]. Indeed, as particles in an electrodynamic field, the propagation of a

crack within a linearly elastic solid is entirely driven and characterized by the elastodynamics,

for which information travels at characteristic wave speeds. As a result, several relativistic

effects arise as a crack moves with velocities approaching the range of elastic wave speeds.

For example, let us express the evolution of the kinetic energy released by the rupture. Using

the asymptotic fields derived for mode III crack, the elastic strain energy at the vicinity of a

dynamic crack scales as [42]

Eel =
1

2

∫
σy zεy z r dr dθ =

∫
1

2μ
σ2

y z ∼
1

2μ
K 2

I I I , (2.78)

while the kinetic energy is scaling according to

Ekin = 1

2

∫
ρu̇2

z r dr dθ ∼ 1

2

ρ

μ2 K 2
I I I

v2
c

1− v2
c /c2

s
. (2.79)

The ratio of the kinetic energy over the strain energy is therefore expected to evolve with the

propagation speed as

Ekin

Eel
∼ ρ

μ

v2
c

1− v2
c /c2

s
= v2

c

c2
s

A2
I I I =

v2
c

c2
s − v2

c
. (2.80)

Figure 2.10(Left) presents the resulting evolution of Ekin/Eel with the crack propagation speed,

compared to the scaling Ekin/Eel ∼ v2
c /c2

s proposed by Freund [42] under a quasi-static as-

sumption. An interesting analogy can be made by comparing the relativistic kinetic energy of
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a particle with mass me and speed ve [44]

Ekin = me c2√
1− v2

e

c2

−me c2 (2.81)

to its classical expression Ekin = 1/2me v2
e , which is valid at velocities smaller than the light

speed c . The two expressions are normalized by Epot = me c2 and plotted in Figure 2.10(Right).

Similarly to a particle accelerating toward c, the rupture speed of a mode III crack is bounded

by cs as its kinetic energy diverges when vc → cs . Another relativistic effect arising in dynamic

fracture and its impact in the rupture of heterogeneous planes is presented in Chapter 5.

Figure 2.10 – Analogy between the relativistic effects existing for a particle of mass me moving
at speed c (Right) and the one computed for a dynamic crack (Left).

From the evolution of the universal functions AI and AI I defined in Equations 2.75 and 2.76,

the energy release rate becomes negative for rupture speeds between cR and cs . The velocity

range cR < vc < cs is hence a thermodynamically forbidden range of velocity for mode I and

mode II cracks. With intersonic/supershear crack speeds, i.e. cs < vc < cd , the structure of

the partial differential equation changes (i.e. the equation derived from the vectorial shear

potential becomes hyperbolic). In this context, Freund [45] obtained the energy released

rate of a supershear mode II crack, which is precisely zero for every speed except
�

2cs . The

admissibility of intersonic shear cracks was further proven using non-singular approaches,

for which a strictly positive energy release rate is predicted for every cs < v < cd [46–48]. The

energy release rate of an intersonic tensile crack is however predicted to be strictly negative,

forbidding therefore mode I cracks to propagate faster than cR . In a nutshell, the admissible

crack speeds predicted by LEFM are presented in Table 2.1. For a complete review on the topic,

the reader can refer to [49].
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Table 2.1 – Summary of the admissible crack speeds predicted by LEFM.

0 < vc < cR cR ≤ vc < cs cs < vc < cd

Mode I � � �

Mode II � � �

Mode III � � �

2.2.3 Dynamic fracture experiments

Figure 2.11 – Schematic evolution of the post-mortem appearance of the fracture surface as
function of the crack propagation speed.

The experimental validation of this dynamic theory of fracture lead to rather mitigated results.

While a good agreement is observed for slow crack propagation speeds, the dynamics of tensile

ruptures exceeding a few tenths of cs significantly diverge from the theoretical predictions.

In particular, the theory underestimates the dissipated energy and overestimates the crack

propagation speed, which barely exceeds 0.65cR in the experiments. As the rupture speed

increases, the crack experiences three different dynamic phases sketched in Figure 2.11 and

usually referred to as “mirror”, “mist”, and “hackle” in reference to the postmortem appearance

of the fracture surfaces.

• Mirror: For slow crack front speeds, an in-plane crack growth arises and leads to two

very smooth surfaces.

• Mist: As the speed increases, the fracture surfaces roughen and reveal the systematic

interplay between a crack front and the material microstructure.

• Hackle: If the crack speed keeps increasing, microcracks start growing out of the main

rupture plane leading to the so-called microbranching instability.

This three-phase transition, which was reported for different types of brittle materials [50–52]

and at different scales [53, 54], explains how the dynamic fracture theory breaks down as the
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Figure 2.12 – Interaction of a dynamic crack with heterogeneities at two different scales. (Left)
If the process zone size is much smaller than the heterogeneities, the crack is viewed as a
line and studied using Rice’s first-order perturbation analysis [2]. (Right) At the scale of the
fracture process zone, the crack advances through the nucleation, growth and coalescence of
pre-existing microcracks. This dynamics is typically studied using damage models [3].

crack dynamics stops being simple and becomes a heterogeneous dynamic fracture problem.

A complete review of the dynamic fracture experiments and discussions about their inherent

instabilities can be found in [50, 55–59]. Significant advances have been made in the past

years in the description of these complex crack dynamics. However, a clear understanding

of their origin and their evolution intimately mediated by the rupture speed is still missing.

These complex crack patterns are supposedly emerging from the combination of two effects:

the evolution of the elastic asymptotic fields presented in Section 2.2.1 and the presence of

material heterogeneities discussed in the next section.

2.2.4 Heterogeneous fracture mechanics

The heterogeneities discussed in this section correspond to local variations of the fracture

energy. The latter stops being a constant over the rupture plane and is now defined with some

local variations Gc (x, z).

For two-dimensional setups, no distortion of the front is possible and therefore vc is the

only variable of Equation 2.74. Therefore, a crack growing along a heterogeneous interface is

predicted to instantaneously adapt its speed as a function of the value of Gc at the crack tip.

Hence, the dynamic rupture keeps no memory from past events. This observation mostly relies

on the assumption of a singular crack tip. Chapter 5 investigates in details how this predicted

behavior evolves as the fracture process zone approaches the size of the heterogeneities.

In three-dimensional setups, rupture fronts are however distorted by the presence of het-

erogeneities along the fracture plane. vc stops being the unique variable of Equation 2.74

as distortions of the crack front induce local perturbations of the stress intensity factor. For

a semi-infinite crack front, Rice [2] derived the first-order perturbation ΔKI of the stress in-

tensity factor associated to slight distortions of the crack front δa illustrated in Figure 2.12:
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ΔKI (z) = 1

2π
PV

∫∞

−∞

K 0
I δa(z ′)

(z − z ′)2 d z ′ +O(δa2). (2.82)

Under the assumption of small front distortions, this perturbation analysis can be successfully

applied to study the interaction of quasi-static [60] and dynamic [15] crack fronts with material

heterogeneities. In this approach, the crack front is viewed as an elastic line pinned by the

heterogeneities until ΔKI is large enough to rupture them. This first-order approach was

extensively used to describe the statistical morphologies of crack fronts within disordered

materials, both for in-plane [61–63] and out-of-plane roughness [64, 65]. These models shared

LEFM assumptions, i.e. the crack front is described as a line whose process zone is much

smaller than the characteristic size of the heterogeneities. However, the dynamic instabili-

ties observed during fast rupture events arise at much smaller length scales, where fracture

processes develop over a finite length comparable with the size of the heterogeneities.

At smaller scales, close to the size of the fracture process zone, the crack propagation evolves

toward a new mechanism, characterized by the nucleation, the growth and the coalescence of

microcracks ahead of the main rupture front [51, 66]. This transition in the rupture mecha-

nism is also revealed by a significant change in the self-affine properties of the out-of-plane

roughness [67, 68]. This mechanism at smaller scales is typically studied with damage models,

for which the fracture process is modeled as successive ruptures of individual fibers or fuses

with individual random strengths [3]. While these damage models successfully reproduced

the statistical and intermittent properties of fracture, they derive from a simplified description

of the continuum elastodynamics.

The readers interested by the statistical aspects of fracture in heterogeneous materials can

refer to these recent reviews [69, 70].

Figure 2.12 compares the two different dynamics existing at scale larger or comparable to

the size of the process zone. The changes in the rupture dynamics caused by heterogeneities

larger and smaller than the fracture process zone will be specifically investigated in Chapter 5

and 7.

2.2.5 Dynamic rupture of weak interfaces

The dynamic rupture of weak planes received an increasing attention in the recent advent

of composite and laminate materials, which have several preferential weak rupture planes

that localize crack propagation [71]. It also applies to the context of frictional interfaces and

geological layers.

Prescribing a crack growth along a weaker interface allows for the experimental confirmation

of the admissible range of speed theoretically predicted by dynamic fracture theory (cf. Table

2.1) for both mode I [72] and mode II [73]. The weak planes usually consist of bonding two
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plates together, therefore creating a preferential path of lower fracture energy. Hence, the

experiments of Rosakis et al. [73] along two plates of Homalite became the first experimental

evidence of intersonic crack front between similar materials. The so-called supershear crack

fronts received a particular echo in the context of earthquakes, for which supershear rup-

tures have been measured along some portions of crustal faults [74, 75]. Similar to the Mach

cone observed in the wake of supersonic aircrafts, a supershear earthquake creates shock

waves, causing very large ground motion at the surface and, hence, significantly increasing

the seismic hazards for the built environment and population [9, 76–79]. As a result, the

mechanism predicted by Burridge [46] and Andrews [47] (more than twenty years before the

experiments of Rosakis et al. [73]) became a reference to rationalize under which conditions

a crack transitions to the supershear regime. Crustal faults correspond to a highly heteroge-

neous contact region between two tectonic plates. However, the criterion currently used to

predict the supershear transition relies on the assumption of homogeneous fault conditions.

Hence, several numerical works recently studied how the presence of heterogeneous interface

conditions can trigger premature supershear transitions [80–85]. In this context, Chapter 5

presents and studies the evolution of the supershear criterion in the presence of microscopic

heterogeneities.

Finally, rupture along bimaterial interfaces was studied by bonding two plates made of dissim-

ilar material with strong elastic contrast. Several experiments revealed the presence of large

scale contact zones in the wake of the propagating crack despite far-field tensile loading con-

ditions [86–88]. In the context of bimaterial interfaces, Chapter 4 generalizes the admissible

range of ruptures to the case of bimaterial interfaces and rationalizes the origin of these large

scale contact zones observed experimentally.
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2.3 Solid friction of multi-contact interfaces

Understanding how sliding initiates between two nominally flat solids brought into contact

is paramount in the description of various engineering and physical systems including the

seismic cycles. Those systems are typically characterized by (long) silent periods during

which shear stress progressively builds up in the surrounding continua, followed by (short)

periods of slip releasing the accumulated strain energy [89, 90]. Stick-slip dynamics emerges

from processes existing at different scales. At smaller scales, surfaces are rough and contact

only exists between the peaks of the surface forming the microcontacts. This heterogeneous

topography, whose evolution was directly observed in the experiments of Dieterich and

Kilgore [91] and more recently by Weber et al. [92], explains the highly non-linear response

of frictional interfaces. At a larger scale, long-range elasticity mediates the release of the

strain energy accumulated in the surrounding bulks. Slipping motion nucleates somewhere

along the interface and progressively invades the rest of the contact plane. These slip fronts,

whose propagations were experimentally observed through different “laboratory-earthquake”

experiments [76, 77, 93], are driven by a similar release of elastic energy as shear cracks.

Therefore, frictional interfaces were typically studied and described in the literature from these

two perspectives sketched in Figure 2.13; A first approach described the complex interface

response to friction, while a second focused on the elastodynamics of the surrounding solids.

Figure 2.13 – Two interacting scales control the onset of sliding of a frictional interface. (Left)
Bulk elastodynamics driving the propagation of slip fronts. (Right) The complex microme-
chanical response of the rough surfaces in contact.

2.3.1 Laboratory-derived interface models

There are many fascinating evidences that friction has challenged men throughout history,

whose testimonies include Leonardo Da Vinci notebooks [94] or Egyptian wall paintings

depicting the transport of heavy stones or colossus [95]. In this sense, tribology received an
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earlier scientific/engineering interest than fracture mechanics. The reader wishing to learn

more about the history of friction can refer to [96]. Our modern understanding of the physics

of friction arises from the experiments of Amontons [97] and Coulomb [98] who observed

how friction increases proportionally with normal pressure and only weakly depends on other

parameters such as the sliding velocity. At first order, the frictional strength can hence be

written as a function of the normal pressure σ0:

τstr = c f σ
0. (2.83)

The friction between two surfaces is therefore characterized by a unique number c f , the

friction coefficient. As long as the shear traction τs < c f σ
0, the interface is sticking. When this

condition stops being satisfied, sliding initiates and a dynamic motion arises under a constant

frictional shear stress corresponding to:

τs = τstr = c f σ
0. (2.84)

Coulomb already interpreted the origin of c f from the tangential force required to slip two

rigid corrugated surfaces in contact [99, 100]. As illustrated in the left of Figure 2.14, the

friction coefficient can therefore be connected to the surface topography as c f = tanθs , with

θs characterizing the maximum slope of the surface. More than a century after Coulomb’s

experiments, Bowden and Tabor [101] measured the evolution of the electric conductance

across two blocks in contact and drew two landmark conclusions:

1. The real area of contact Ar between two nominally flat surfaces represents a tiny portion

(< 1%) of the apparent area of contact A.

2. Ar is progressively increasing with normal pressure.

In light of these observations, they proposed a novel interpretation of Amontons-Coulomb law:

Two rough surfaces only come in contact at their surface peaks. The entire normal pressure is

carried through these scattered contact points, such that the local normal pressure reaches

very high values sufficient to yield the material. The normal far-field pressure can hence be

written as

σ0 = Ar

A
σY, (2.85)

with σY corresponding to the material yield stress. These microcontacts junctions represent

highly confined regions, where the shear stress will also localize. Similarly, if one defines the

shear strength of the junction τc , the macroscopic shear stress can be written as

τs = Ar

A
τc . (2.86)

Combining Equations 2.85 and 2.86 leads to c f = τc /σY , which explains the independence

of the friction coefficient to the apparent contact area A or the normal pressure. Moreover,
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2.3. Solid friction of multi-contact interfaces

Figure 2.14 – The frictional strength emerges from the micromechanical interlocking of
asperities along the rough surfaces. Three behaviors were suggested in the literature: a)
Coulomb’s geometrical interpretation: Rigid uplifting along the contacting plane forming at
an angle θs . b) Brittle fracture of the contacting apexes predicted by Byerlee [4]. c) Gradual
plastic smoothing of the microcontact junction pictured by Bowden and Tabor [5].

the ratio τc /σY is consistent with the value of the friction coefficient measured for metals

0.6 < c f < 1.2 [5]. The linear dependency between the real contact area and the normal

pressure predicted in Equation 2.85 was later verified using a more rigorous resolution of the

contact problem [102] or realistic self-affine rough surfaces [103, 104]. For brittle materials,

Byerlee [4] revised the Equation 2.86 by assuming that slipping does not occur through the

plastic shearing of junctions but rather by fracturing the microcontacts, which leads to a

smaller value of the friction coefficient (c f ∼ 0.1) in agreement with the ones measured for rock

interfaces. Recently Aghababaei et al. [105,106] defined a characteristic microcontact junction

size d∗ allowing to predict the observed transition between these two mechanisms illustrated

in Figure 2.14. Microcontacts smaller than d∗ rupture following the plastic shearing of the

junction suggested by Bowden and Tabor [5]. Conversely, microcontact junctions larger than

d∗ break through the brittle failure of their apexes according to Byerlee’s picture [4]. Along self-

affine rough surfaces, these two rupture mechanisms co-exist at the onset of sliding [107] but

their respective impact on the slip front dynamics is still overlooked and will be investigated

in Chapter 7.

The Amontons-Coulomb friction model represents a remarkably simple first-order approxima-

tion, widely used in many physical and engineering applications. However it is insufficient to

describe systems, for which friction is the core driving mechanism. In particular, it cannot pre-

dict stick-slip dynamics, which arise from the weakening of friction as the interface transitions
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from static cstat
f to dynamic cdyn

f sliding conditions [90, 108]. Rabinowicz’s experiments [109]

described how frictional interfaces require to slip over a characteristic distance δc for the

friction coefficient to drop from its static to its dynamic value. This behavior inspires the first

slip-weakening models proposed by Ida [110] and later adapted by Andrews [6, 47]. These

friction laws received a significant interest for their direct analogy with cohesive models of

fracture and will be discussed with more details in Section 2.3.2.

However, several frictional experiments [22, 111] reported how c f
d is not a constant value and

depends on the sliding rate v [112] and the contact time [109, 113]. In order to approach this

experimental evolution of c f , Dieterich [22] and later Ruina [23] proposed a generic empirical

law:

c f (v,φ) = c0
f +a ln

( v

v∗
)
+bc0

f ln
(φv∗

D

)
. (2.87)

The relation above introduces then a rate-dependency as well as a dependency to a state

variable φ, which is often interpreted as the average microcontacts lifetime. In Equation 2.87,

c0
f , a, b, v∗, are several empirical parameters derived from laboratory experiments and were

successfully used to reproduce the frictional response universally observed along different

kinds of interfaces (polymer, glass, rock, wood, paper) [91, 114]. Figure 2.15c illustrates the

typical response predicted by rate-and-state formulations to a sudden change in sliding

velocity.

Furthermore, the logarithmic increase of c f with contact time is typically accounted within

rate-and-state formulations by the following evolution law proposed by Dieterich [22]:

φ̇= 1− vφ

D
. (2.88)

Taking advantage of the transmission of light across microcontact junctions and its reflection

in absence of contact, Dieterich and Kilgore [91] directly observed the map of microcontacts

by projecting a beam of light through two transparent blocks of PMMA pressed in contact.

Their experiments allowed to confirm how the real area of contact increases by the creep

of microcontacts. The evolution law further describes the rejuvenation of microcontact

populations during frictional sliding. In particular, for steady-state sliding at vss, the existing

microcontacts are destroyed at the same rate that new ones are created such that φ reaches a

constant value:

φss = D

vss . (2.89)

Hence, D represents a characteristic size of the microcontact junctions, typically in the mi-

crometer range for laboratory experiments. Combining Equations 2.87 and 2.89, this rate-and-

state constitutive law predicts velocity-weakening friction for

dcss
f

d(ln vss)
= a −bc0

f < 0. (2.90)
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2.3. Solid friction of multi-contact interfaces

Figure 2.15 – The different kinds of friction laws existing in the literature. a) Amontons-
Coulomb friction law (Equation 2.84). b) The slip-weakening law (Equation 2.93). c) The
rate-and-state friction law (Equation 2.87).

Velocity-weakening has been widely observed for the ranges of sliding velocity typically studied

in experiments [114] and its origin is associated to a faster renewal of microcontacts with larger

sliding velocities. The intrinsic instability of velocity-weakening friction has been suggested as

a potential mechanism for earthquake nucleation [23, 108, 115–117]. However, several works

discussed how the velocity-weakening regime breaks down at much smaller or much larger

sliding velocities [114, 118, 119].

Following the original works of Dieterich [22] and Ruina [23], many different rate-and-state

formulations have been proposed in the literature and the reader is redirected to [120] for a

detailed review. However, many questions remain open about their physical impact on the

dynamics of rupture events and motivate for physics-based interpretations of rate-and-state

formulations. For example, Baumberger et al. [121] connected them to the microcontacts

picture proposed by Bowden and Tabor [101]. Therefore, they rewrote Equation 2.86 after

assuming that v mainly affects the local strength of the junction, while φ controls the real

contact area:

τs =σ0c f (v,φ) = Ar (φ)

A
τc (v). (2.91)

In particular, they suggested that the real contact area scales as

Ar (φ) ∼ 1+b ln
(φv∗

D

)
. (2.92)

Inspired from this interpretation, Chapter 8 presents an approach to rationalize the dynamics

of slip fronts in the framework of rate-and-state friction laws.
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2.3.2 The elastodynamic approach

In parallel to the laboratory studies of friction presented above, another category of works

focused on the macroscopic behavior of frictional systems at the onset of sliding, using the

elastodynamic wave equation to study the energy budget of slip fronts. In this context, the

propagation of a slip front along a frictional interface or a crustal fault was rationalized as a

dynamic shear crack driven by the release of strain energy accumulated around the fault [122].

This elastodynamic approach of friction is therefore grounded on the same dynamic fracture

concepts introduced previously in Section 2.2. Similarly, cohesive models were developed

to regularize the infinite shear stress theoretically predicted at the tip of a singular shear

crack [47, 110]. These models assumed that the friction coefficient drops from a static cstat
f to a

dynamic cdyn
f , once the frictional slip δs reaches a characteristic distance δc . The resulting

slip-weakening law illustrated in Figure 2.15b is equivalent to the cohesive model of fracture

proposed by Dugdale [20] and Barenblatt [21], such that the frictional strength can be written

as

τstr(x, z, t )/σ0 = cstat
f − (cstat

f −cdyn
f )min

{
δs(x, z, t )/δc ;1

}
. (2.93)

Taking advantage of the linear elasticity of the surrounding bulk, Palmer and Rice [40] demon-

strated how this formulation can be directly mapped on the dynamic fracture mechanics

description after subtracting the residual shear stress τr . Using,once more, the mode III shear

crack solution given in Equation 2.69, such decomposition can be written as

σy z =Δτ+τr = KI I I�
2πx

+σ0cdyn
f , (2.94)

while the integral of the dissipated energy is therefore given by

Gc =
∫δc

0
Δτdδs =

∫δc

0

(
τ(δs)−τr

)
dδs = 1

2
σ0(cstat

f −cdyn
f )δc . (2.95)

Gc corresponds then to an equivalent fracture energy of the frictional interface. The remaining

energy is interpreted as heat dissipation [6]. The slip-weakening laws, for which both τr

and Gc are prescribed, share a direct analogy with the cohesive formulation of fracture (cf.

Section 3) and have therefore been extensively used to study the rupture dynamics of seismic

events including the speed of the front [47,123,124] and its interplay with fault heterogeneities

[80–83, 85, 125] already discussed in the previous section.

Recent frictional experiments [126–129] measured the strains evolution near the interface dur-

ing the onset of slip. Using Palmer and Rice decomposition, they quantitatively demonstrated

how dynamic fracture mechanics perfectly describes the slip fronts propagation and arrest

along dry and lubricated interfaces. However, they revealed how the nucleation of slip fronts

still eludes the classical fracture mechanics models [24]. An illustrative situation arises after

the lubrication of the interface which increases its measured fracture energy, but reduces, at

the same time, the required force to initiate sliding. This “slippery but tough” paradox was
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presumed to emerge from the microscopic nature of contact and will be discussed in Chapter

7.

The estimation of the energy budget/partition of earthquakes also inherits from the slip-

weakening description of friction. Abercombie and Rice [130] proposed a generalization of

Equation 2.95 to integrate the equivalent fracture energy of earthquakes as function of the

post-seismic slip distance δp :

Gc (δp ) =
∫δp

0

(
τ(δs)−τ(δp )

)
dδs . (2.96)

However the estimation of the equivalent fracture energy of large earthquakes systematically

overestimates the value measured experimentally, and shaping a precise partition of the

seismic energy budget, still represents a major challenge in geophysics [131–134]. In this

context, Chapter 8 discusses the equivalent fracture energy predicted from rate-and-state

formulations and its divergences with the predictions from slip-weakening models.

In light of the two approaches presented above, the onset of slip along frictional interfaces is a

fascinating example of a heterogeneous dynamic rupture, as it results from the interplay of

the crack-like elastodynamics with the local heterogeneous topography of frictional interfaces.

For a detailed presentation of this wide topic, the reader is referred to textbooks [90, 122].
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3 Numerical framework

Cracks represent discontinuities existing within solids, at the tip of which stresses are singular.

Their modeling within numerical models is hence particularly challenging. However, no

material is able to withstand the stress singularity theoretically existing at the tips of crack,

which implies the existence of a process zone where material-dependent dissipative processes

are regularizing the singularity (cf. Figure 2.7). In this context, Dugdale [20] and Barenblatt

[21] proposed an elegant way of modeling these nonlinear processes without loosing the

universality of the LEFM theory. In their model, referred to as the cohesive approach of

fracture, the crack tip is smeared over space and time by the progressive reduction of interface

strength τstr (i.e. its ability to transfer tractions across the rupture plane) from τc to zero as

crack is opening:

τstr

τc
=F (δ). (3.1)

δ represents the crack opening displacement vector while τc can be understood as the maximal

material strength. F (δ) is known as the cohesive law and Figure 3.1 gives two examples of

cohesive laws used later in this thesis. Moreover, the value of the fracture energy can be

prescribed locally in cohesive models and corresponds to:

Gc =
∫

τcF (δ)dδ. (3.2)

Apart from regularizing the stress singularity, the other great advantage of cohesive approaches

is to assume that every dissipative process is contained within the fracture plane and described

by the cohesive law. Hence, the rest of the continuum can still be studied within the conven-

tional frameworks of continuum mechanics, and classical constitutive laws such as linear

elasticity. This thesis focuses on perturbations occurring at the scale of the fracture process

zone of dynamic cracks and requires, therefore, a particularly fine discretization of the rupture

plane. The formulation adopted in the major part of this manuscript relies on a boundary inte-

gral formulation of the elastodynamic equation, for which all the numerical effort is invested

along the rupture plane.
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Figure 3.1 – The exponential (Left) and linear-decreasing (Right) cohesive laws adopted in
this manuscript. In the cohesive approaches of fracture, the amplitude of the tractions carried
across the interface progressively drops to zero (i.e. free surface conditions) as a function of
crack opening displacement δ. Consequently, the crack tip is not singular but smeared over a
finite distance, the fracture process zone lpz . Throughout the manuscript, this framework is
equivalently applied to study each fracture mode, as well as mixed mode conditions.

3.1 Spectral boundary integral formulation

The boundary integral formulation solves the tractions and displacements existing at the

surface lying between two semi-infinite continua. Two formulations were proposed in the

literature, the combined formulation [16,135], which solves simultaneously the top and bottom

half-spaces and the independent formulation, which considers the top and bottom solids

separately [17]. This thesis relies on the independent formulation which is more stable and

allows for describing bimaterial interfaces.

To illustrate the derivation of the spectral boundary integral formulation, let us consider only

the bottom half-space with the convenient anti-plane shear setup (Equations 2.33). uz (x, y, t )

is first expressed in spatial Fourier1 U (k, y, t ) and then in the combined Fourier (spatial) and

Laplace2 (temporal) space Ũ (k, y, p). In this k − y −p space, the wave equation becomes

c2
s (−k2Ũ +Ũ,y y ) = p2Ũ −pUt0 −U̇t0 . (3.3)

The solid is assumed to be initially at rest such that (i.e. Ut0 =U (k, y,0) = 0, U̇t0 = U̇ (k, y,0) = 0)

and

c2
s Ũ,y y = (p2 +c2

s k2)Ũ (3.4)

Ũ,y y = k2β2
sŨ , (3.5)

1Joseph Fourier (1768-1830)
2Pierre-Simon Laplace (1749-1827)

40



3.1. Spectral boundary integral formulation

with βs =
√

1+ p2

k2c2
s

. The general solution of this ODE has the form

Ũ (k, y, p) = Ae |k|βs y +Be−|k|βs y . (3.6)

Semi-infinite boundary conditions Ũ (k,∞, p) = 0 and Ũ (k,0, p) = Ũ0(k, p) lead to

Ũ (k, y, p) = Ũ0(k, p)e−|k|βs y . (3.7)

The functional Ũ0(p,k) represents the displacement field at the interface which should be

related to its associated interface tractions τ. The projection of Cauchy stress tensor at the

interface of normal n = (0,1,0)� is a three-component vector τ=σ ·n = (σx y ,σy y ,σy z )�. In

our mode III setup of interest ( ∂
∂z = 0 and ux = uy = 0), the only non-zero component is the

out-of-plane shear stress σy z = τz . The constitutive law writes

τz (x, t ) =μ
∂uz (x, y = 0, t )

∂y
, (3.8)

which becomes in the k − y −p space

T̃ (k, p) =μ
∂Ũ (k, y = 0, p)

∂y
=−μ|k|βsŨ0(k, p). (3.9)

The final step consists in decomposing Ũ0(k, p) in an instantaneous part and a part depending

on the history:

T̃ (k, p) =− μ

cs
pŨ0(k, p)−μ|k|

(
βs − p

|k|cs

)
Ũ0(k, p), (3.10)

whose formulation in the k − y − t space is then

T (k, t ) =− μ

cs

∂

∂t
U0(k, t )+Fz (k, t ). (3.11)

In the equation above, Fz is then expressed as a convolution over the displacement history:

Fz (k, t ) =−μ|k|
∫t

0
K (t − t ′)U0(k, t ′)d t ′, (3.12)

with the convolution kernel K (t ) computed through an inverse Laplace transform L −1
p as

K (t ) =L −1
p

{√
1+ p2

k2c2
s
− p

|k|cs

}
. (3.13)
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Let us define w = |k|cs > 0 and rewrite this kernel

K (t ) =L −1
p

⎧⎨
⎩
√

1+ p2

w2 − p

w

⎫⎬
⎭=L −1

p

{√
w2 +p2 −p

w

}
=L −1

p

{
w2 +p2 −p

√
w2 +p2

w
√

w2 +p2

}

= w

2
L −1

p

{
w2 + (

√
w2 +p2 −p)2

w2
√

w2 +p2

}
= w

2

[
L −1

p

{
1√

w2 +p2

}
+L −1

p

{
(
√

w2 +p2 −p)2

w2
√

w2 +p2

}]

= w

2
[J0(w t )H (t )+ J2(w t )H (t )] = wH (t )

J1(w t )

w t
.

(3.14)

The heaviside function H (t ) = 1 since t > 0 and one obtains therefore

Fz (k, t ) =−μ|k|
∫t

0
Hzz

(
|k|cs(t − t ′)

)
U0(k, t ′)|k|cs d t ′ ; Hzz (γ) = J1(γ)

γ
. (3.15)

After transforming Equation 3.11 back in real space and adding the contribution of the far-field

initial stress τ0
z , the equation of motion at the interface of a semi-infinite solid is then written

as:

τz (x, t ) = τ0
z (x, t )− μ

cs
u̇z (x, t )+ fz (x, t ). (3.16)

The equation above corresponds to the boundary integral formulation of the elastodynamic

problem. The first right hand side (RHS) term corresponds to the far-field initial loading

conditions, the last RHS term fz accounts for the history of displacements along the interface,

while the second RHS term represents the instantaneous stress response to a change in sliding

velocity. This term can be understood as the damping of interface energy caused by elastic

waves leaving in the infinite domain. Hence, it is sometimes referred to as the radiation

damping term. Equation 3.16 can be generalized for the 3D elastodynamics of an interface

bounding two dissimilar solids as:

τ±(x, z, t ) =τ0±(x, z, t )−V ± ∂u±

∂t
(x, z, t )+ f ±

j (x, z, t ), (3.17)

with

V ± = μ±

c±s

⎡
⎢⎣

1 0 0

0 η± 0

0 0 1

⎤
⎥⎦ . (3.18)
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In this three-dimensional problem, the convolution terms become:

⎧⎪⎨
⎪⎩

F±
x (k,m, t )

F±
y (k,m, t )

F±
z (k,m, t )

⎫⎪⎬
⎪⎭=−iμ±(2−η±)

⎛
⎜⎝

0 −k 0

k 0 m

0 −m 0

⎞
⎟⎠
⎧⎪⎨
⎪⎩

U±
x (k,m, t )

U±
y (k,m, t )

U±
z (k,m, t )

⎫⎪⎬
⎪⎭

−μ±q
∫t

0

[
i

H±
x y (qc±s t ′)

|q|

⎛
⎜⎝

0 −k 0

k 0 m

0 −m 0

⎞
⎟⎠±H±

y y (qc±s t ′)

⎛
⎜⎝

0 0 0

0 1 0

0 0 0

⎞
⎟⎠ (3.19)

± H±
xx (qc±s t ′)

q2

⎛
⎜⎝

k2 0 km

0 1 0

km 0 m2

⎞
⎟⎠± H±

zz (qc±s t ′)
q2

⎛
⎜⎝

m2 0 −km

0 1 0

−km 0 k2

⎞
⎟⎠
]⎧⎪⎨
⎪⎩

U±
x (k,m, t − t ′)

U±
y (k,m, t − t ′)

U±
z (k,m, t − t ′)

⎫⎪⎬
⎪⎭ |q|c±s d t ′

These convolutions are connecting in the Fourier domain the displacements u± and associated

tractions f ±:

{
f ±(x, z, t )

u±(x, z, t )

}
= ei (kx+mz)

{
F±(k,m, t )

U±(k,m, t )

}
, (3.20)

with q =
�

k2 +m2. Unlike their mode III counterpart, the convolution kernels H±
xx , H±

x y

and H±
y y do not have closed-form expressions and their inverse Laplace transforms are pre-

computed numerically. Their full expression can be found in [17] and their evolution is

presented in Figure 3.2 for ν= 0.35.
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Figure 3.2 – Convolution kernels entering the spectral formulation Hi j (T ) for ν= 0.35.

At each time t , two unknowns per side exist in Equation 3.17, namely τ± and ∂u±/∂t , which

are solved using interface conditions. Several interface conditions are considered in this thesis

(bimaterial, mode I and II, rate-and-state friction) and will be presented later on a case-to-case
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basis. Finally time is integrated using an explicit time stepping scheme such that

u±(x, z, t +Δt ) = u±(x, z, t )+ ∂u±

∂t
(x, z, t )Δt , (3.21)

with Δt being the time step defined through a Courant-Friedrichs-Lewy (CFL) conditions [136]

of the kind

max(c+s ;c−s )Δt =βΔx, (3.22)

with 0.2 ≤β≤ 0.4 as a function of the studied problem [17]. Due to the spectral nature of the

scheme, the spatial discretization consists in a periodic grid of spacing Δx =Δz.

My own parallel implementation3 of the algorithm is used behind the simulations reported

in this thesis. The convolution operations reported in Equation 3.19 are computed within

a shared-memory parallel framework, while the computational cost is further reduced by

introducing a kernel cut (100 ≥ γ= qc±s t ) as discussed in [137].

3.2 Finite-element method

The finite-element method is one of the most popular numerical approaches existing to

solve boundary value problems in science and engineering. This success is explained by its

great versatility to compute any kinds of geometries at the cost of a full discretization of the

continuum. This section aims at giving a general picture of the method, but for a complete

presentation of the finite-element approach and its application in continuum solid mechanics,

the reader is referred to reference textbooks [18, 19].

3.2.1 Standard bulk element

As illustrated in Figure 3.3, the continuum is divided into smaller units (the elements) over

which the weak formulation of the problem (cf. Equation 2.28) is solved:

∫
Ωe

σ : ε̂dV +
∫
Ωe

ρü · ûdV −
∫
∂Ωe

τ

τ · ûdA = 0 (3.23)

Following the works of Ritz [138] and Galerkin [139], the displacement and virtual displacement

fields are approximated by

u(x , t ) = N u,

û(x , t ) =
n∑

i=1
Ni (x)ûi (t ) = N û,

(3.24)

3cRacklet: https://c4science.ch/project/view/701/
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with Ni being piecewise interpolation functions across the elements also known as shape

functions. i represents discretization points referred to as the nodes of the finite-element mesh.

Defining B as the derivatives of the shape functions, such that B(x)u = ε, Equation 3.23 is

evaluated over the volume of each element Ωe as:

û�
∫
Ωe

B�C B udV + û�
∫
Ωe

N�ρN üdV − û�
∫
∂Ωe

τ

N�τdA = 0. (3.25)

These integrals are then evaluated over each element to build the local matrices

K e =
∫
Ωe

B�C BdV , M e =
∫
Ωe

N�ρN dV , F ext
e =

∫
∂Ωe

τ

N�τdA, (3.26)

which are then assembled into a global system of equations (in absence of any damping term):

∑
e

(
K e

)
u +∑

e

(
M e

)
ü −∑

e

(
F ext

e

)
= K u +Mü −F ext = 0. (3.27)

For the simulations reported in this manuscript, the resulting elastodynamic system is inte-

grated using an explicit time integration scheme based on a Newmark-β method [140], which

is particularly well-suited for transient elastodynamic problems such as dynamic ruptures or

impacts:

⎧⎪⎪⎨
⎪⎪⎩

u(x, y, t +Δt ) = u(x, y, t )+Δt u̇(x, y, t )+ 1

2
(Δt )2ü(x, y, t )

u̇(x, y, t +Δt ) = u̇(x, y, t )+ Δt

2

(
ü(x, y, t )+ ü(x, y, t +Δt )

)
.

(3.28)

The kinematic unknowns u, u̇ and ü are hence solved at the time t +Δt according to the

following scheme:

1. Prediction

u(t +Δt ) = u(t )+Δt u̇(t )+ Δt 2

2
ü(t )

u̇(t +Δt ) = u̇(t )+ Δt

2
ü(t )

(3.29)

2. Assemble and solve

δü = M−1
(
F ext(t )−K u̇(t +Δt )−Mü(t )

)
(3.30)

3. Update

u̇(t +Δt ) = u̇(t +Δt )+ Δt

2
δü,

ü(t +Δt ) = ü(t +Δt )+δü.
(3.31)
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Chapter 3. Numerical framework

Figure 3.3 – Typical elastodynamic boundary value problem solved following a finite-element
method. The continuum contains a crack surface Ωc (in red), whose discretization and
representation using a cohesive element is detailed.

This explicit scheme described by 3.29, 3.30 and 3.31 is however conditionally stable and the

following CFL condition is typically ensured in the simulations reported in this manuscript

Δt = 0.7
Δs

cd
, (3.32)

with Δs being the smallest element size of the finite-element mesh.

Several well-established approaches exist nowadays to integrate crack and their propagation

within finite-element models, such as the phase field [141, 142] or the extended finite-element

approaches [143]. A cohesive approach is adopted, for the problems of interface rupture

studied in this thesis.

3.2.2 Cohesive element

Figure 3.3 presents a finite-element domain containing a crack along the surface Ωc . Following

the hypothesis of the cohesive approach, every dissipative process arises within Ωc such that

the surrounding continuum still follows the linear elastic behavior. More details about the

cohesive approach within finite-element model can be found in [144, 145].

The virtual work contribution of the cracked surface can be written as:∫
Ωc

τ(x, t ) · δ̂dA. (3.33)

A cohesive element is hence introduced along Ωc and bridges nodes from the top and bottom
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3.2. Finite-element method

surfaces as illustrated in Figure 3.3. The interpolation function of the cohesive element P can

hence be constructed using the one of the standard elements according to:

δ= u+−u− =
n∑

i+=1
Ni+(x)ui+(t )−

n∑
i−=1

Ni−(x)ui−(t ) =
2n∑

i=1
Pi (x)ui (t ). (3.34)

From the cohesive formulation (Equations 3.2) together with Equations 3.33 and 3.34, the

vector of external forces in presence of cohesive elements e ′ can then be computed and

assembled as

F ext =∑
e

(
F ext

e

)
+∑

e ′

(∫
∂Ωe

c

P�τdA
)
=∑

e

(
F ext

e

)
+∑

e ′

(∫
∂Ωe

c

P�τcF (δ)dA
)
. (3.35)

To comply with the requirement of a very fine discretization of the rupture plane, the sim-

ulations reported in this thesis rely on a scalable parallel finite-element implementation

developed within our laboratory and capable of computing several millions of nodes on high

performance computing clusters. This open source finite-element library named Akantu is

freely available online4, while its technical description is given in [146, 147].

4https://c4science.ch/project/view/34/
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4 Dynamic fracture along bimaterial
interfaces

This chapter studies a first type of heterogeneous interfaces existing between two solids made

of different elastic properties. Such interfaces became prominent within lightweight composite

materials or along geological layers and represent weak rupture planes channeling the crack

propagation and leading to much faster ruptures than within an isotropic material. Moreover,

the elastic mismatch across the rupture plane makes it an intrinsically mixed mode fracture

problem and leads to little-understood dynamic instabilities visible in tensile experiments as

large scale contact zones traveling in the wake of the crack front. This chapter presents the

simulations and descriptions of the different phenomena observed experimentally (distinct

natures of contact zones, unfavorable velocity range, asymmetric crack propagation). It shows

that different behaviors are observed as a function of the crack propagation direction, i.e., with

respect to the particle displacements of the compliant material. When the crack propagates

in the same direction, the propagation velocities between cR and cs are forbidden and the

subsonic/intersonic transition occurs with the nucleation of a daughter crack in front of the

main rupture. The intersonic stress field at the crack front is compressive due to the material

mismatch and a contact zone appears behind the tip. In the opposite direction, a smooth

subsonic/intersonic transition occurs although a crack face closure (in the normal direction) is

observed for speeds between cs and
�

2cs . In this regime, a Rayleigh disturbance is generated

at the crack surface causing a contact zone which detaches from the tip. Using a contact model

governed by a regularized Coulomb law, this work provides a quantitative evaluation of the

influence of friction on the effective fracture energy. Finally, the applicability of our analysis

to the description of different bimaterial situations as well as the single-material set-up is

demonstrated.

This chapter is a modified version of a scientific article published by Elsevier:

F. Barras, D. S. Kammer, P. H. Geubelle, and J.-F. Molinari, “A study of frictional contact in

dynamic fracture along bimaterial interfaces,” International Journal of Fracture, vol. 189, no. 2,

pp. 149–162, 2014
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Chapter 4. Dynamic fracture along bimaterial interfaces

4.1 Introduction

Intersonic debonding, for which the speed of the front exceeds the shear wave speed of the

material, has received increasing attention over the past two decades. Although intersonic

crack growth was thought to be unattainable for a while, it is now acknowledged that it plays

an important role in interface failure of multi-phase materials, composites or geophysical

layers.

Experiments of crack propagation in homogeneous brittle solids measured crack propagations

always slower than 65 percent of the material’s Rayleigh wave speed cR [49]. Observed cracks

were purely mode-I and their propagation speeds were often limited by branching. Singular

dynamic fracture models (i.e. in which there is a stress singularity at the sharp crack tip)

also showed that super-Rayleigh crack growth is unreachable in homogeneous elastic solids.

For instance, Freund [42] showed that the energy flux into the tip of a remotely loaded crack

decreases as the crack accelerates, and vanishes at a velocity equal to cR .

However, these limitations are removed by reducing the specimen thickness up to plane stress

conditions [149–151] or when crack branching and kinking is prevented by the existence of

a weak plane of propagation where the fracture toughness is lower than in the surrounding

solids [72, 73]. When the crack is trapped into a plane of propagation, it is usually mixed mode,

which allows for a higher propagation speed. Freund [45] studied the dynamic propagation of

sharp mode-II cracks at weak interfaces. His analytical work demonstrates that the energy

release rate is nonzero only at speed
�

2cs or sub-Rayleigh regimes for which the stress field is

square root singular at the crack tip. Other intersonic speeds present a zero energy release

rate which was not a sufficient proof of their existence. However when the rupture is not

considered to be singular but smeared out in space and time within a cohesive zone, both

analytical (Broberg [48]) and numerical (Andrews [47]) models showed that every intersonic

mode-II crack speed is physically admissible.

The first experimental evidence of an intersonic crack propagation in a homogeneous material

was provided by Rosakis et al. [73]. To avoid energetic dissipation by branching or micro-

cracking, a weak plane of propagation was created by bonding two plates of Homalite together.

A pre-notch crack at the edge of the interface was loaded by a lateral impact, while crack

propagation was monitored using high speed photoelasticity. Coker and Rosakis [152] also

studied crack propagation in unidirectional graphite-epoxy composite plates. If under mode-

I loading the recorded speeds were bounded at cR , the authors observed intersonic crack

propagations for mode-II loading conditions. The role of crack velocity on the cohesive

failure along a single-material interface was studied by Kubair et al. [153]. Their analytical

work showed that the cohesive damage is purely shear when the crack is intersonic, even for

mixed-mode loadings. In parallel to steady-state models, numerical simulations provided the

opportunity to study the transition from subsonic to intersonic speeds. Needleman et al. [124]

observed that the crack speed jumps from values close to cR up to a regime between
�

2cs and

the P-wave speed cp .
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4.1. Introduction

Before these observations at single-material interfaces, it was already known that between

dissimilar materials, crack can propagate intersonically with respect to the compliant medium.

Lambros and Rosakis [154] showed the first experimental proof of an intersonic crack propaga-

tion along a straight-line weak interface between PMMA and steel plates. Moreover, between

two dissimilar materials, the presence of large scale contact zones after failure is a new feature

of intersonic crack growth. Liu et al. [155] derived the asymptotic solution for intersonic crack

growth at the interface between an elastic solid and a rigid substrate. The asymptotic model

shows that when the crack speed is between the shear wave speed of the elastic medium

cs and
�

2cs , the normal stress ahead of the crack front has the opposite sign of the normal

displacement behind it, i.e., with a tensile loading, a face closure is predicted behind the crack

tip. The authors concluded that this regime might cause the presence of large scale contact

during intersonic debonding and is unfavorable for stable crack growth.

Beside this theoretical work, several experiments [86–88] were conduced along interfaces

bonding a very stiff body (Steel or Aluminium) to a more compliant material (PMMA or

Homalite) revealing the presence of large scale contact zones behind intersonic ruptures. By

adding a trailing contact zone of finite length to Liu’s asymptotic solution, Huang et al. [156]

were able to reproduce the main experimental observations. Moreover, the presence of

compressive normal stress along part of the interface associated with intersonic crack growth

is also observed in numerical simulations of bimaterial debonding [123, 157, 158]. Even

though these numerical models did not account for real contact conditions between crack

faces, the presence of this compressive stress field confirms the ability of large scale contact

zones to develop along bimaterial interfaces. If the presence of contact is now obvious in

intersonic crack propagation, its effect on the fracture process and the crack propagation is still

overlooked. Subsequent experiments confirmed that the behavior of those large scale contact

zones is little understood. Between a polymer and a very stiff body, Samudrala and Rosakis [88]

observed two distinct contact behaviors. Depending on the applied loading, the contact zone

either trailed the crack tip or detached from the front and had its own leading and trailing

edges. Along composite-Homalite interfaces, Coker et al. [71] showed experimentally and

numerically that the crack speed regime also varies as a function of crack growth direction with

respect to particle displacement. The effect of the propagation direction was also observed

numerically at frictional interfaces [159].

In this context, the purpose of this work is the numerical study of the behavior and the role of

large scale contact zones appearing at intersonic debonding. The effect of the applied loading

and the material mismatch are also analyzed. The spectral method is chosen for its ability to

describe interface phenomenon with a very fine level of discretization. Interpenetration is

prevented at the interface by a contact model with friction being governed by a regularized

Coulomb law. The geometry of our dynamic fracture problem is described in Section 4.2, while

the numerical method is presented in Section 4.3. The failure event is studied in Section 4.4

along an Aluminum-Homalite interface through space-time diagrams, the evolution of dam-

age parameters at discrete positions in the path of the crack, energetic arguments, and the

evolution of the speed of the leading and trailing edges of the cohesive and contact zones. The
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Chapter 4. Dynamic fracture along bimaterial interfaces

influence of the loading conditions in Section 4.5, as well as the material mismatch in Section

4.6, are discussed with the intention to define criteria describing the behavior of different

bimaterial situations.

4.2 Problem description

4.2.1 Geometry and elastodynamics

The problem geometry is described by two semi-infinite bodies bonded together along a

planar interface. Each body is made of a linear isotropic elastic material characterized by the

elastic modulus E , the Poisson’s ratio ν, the shear wave speed cs and the dilatational wave

speed cp . By convention, the top material is defined as the stiffer material. The indices +/−
differentiate respectively the top and bottom materials. The bonds at the interface are defined

by a fracture energy Gc . Let a Cartesian system be defined such as y is the normal to the

fracture plane. The interface is pre-stressed with a load τ0 applied in the x − y plane with an

angle ψ with respect to the y axis. At time t = 0, a crack of initial length L0 is introduced and

starts to propagate along the interface. Figure 4.1 illustrates the geometry of the problem.

Figure 4.1 – Geometry of the dynamic fracture problem.

This fracture problem is described by the elastodynamics wave equations with the two in-plane

components of the displacement field ui defined as

ux (α, t ) =φ,x +ϑ,y , uy (α, t ) =φ,y −ϑ,x , (4.1)

52



4.2. Problem description

where (),κ is defined as ∂/κ. φ and ϑ are potentials satisfying

c2
pφ,αα =φ,t t , c2

s ϑ,αα =ϑ,t t . (4.2)

4.2.2 Interface laws

In addition to the continuum model, the problem is described by two interface laws. First,

the failure of the interface bonds is described by a rate-independent model which couples

normal and shear decohesion. The normal/shear strength of the bonds τstr
n,s is related to the

associated normal/shear opening of the interface δn,s as

τstr
n,s = τc

{
1−

√
(δn/δc )2 + (δs/δc )2

}
, (4.3)

with {κ} =κ if κ> 0 and 0 otherwise and where the opening at the interface is defined by the

displacement discontinuities,

δ j (x, t ) ≡ u j (x,0+, t )−u j (x,0−, t ) . (4.4)

In this study, the shear and normal directions are respectively associated to the x and y com-

ponents, such that δs = δx and δn = δy . In Equation (4.3), τc and δc describe the parameters of

this cohesive model reducing for a pure mode I or mode II failure to a linear law with fracture

energy Gc = 0.5τc δc . In perfect mixed-mode failure, the fracture energy increases to
�

2Gc .

After failure, the faces of the interface may come in contact again with a local compressive

stress at the interface σy y (x,0, t ) < 0. In this case, a shear strength due to friction is observed.

A Coulomb friction law is used hereafter as

τstr
s = c f |σ̃y y | , (4.5)

where σ̃y y corresponds to the regularized contact pressure and c f is the coefficient of friction.

To avoid ill-posedness of the friction problem, a simplified Prakash regularization is considered

[160]. Since the regularizing effect is directly related to the contact pressure, Rubin and

Ampuero [161] suggested to regularize directly the later instead of the shear strength. Similarly

to this approach, we applied the following simplified regularization to the contact pressure:

dσ̃y y

d t
=− 1

t∗
(σ̃y y −σy y ) , (4.6)
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where t∗ is the regularization parameter set as t∗ = 10 ·Δt to satisfy the convergence criteria.

More details about the convergence of regularized friction are given in [162].

4.2.3 Material properties

We study dynamic fracture problems along an interface between two materials with an im-

portant mismatch. The Aluminum-Homalite interface is chosen to match the experiments of

Samudrala and Rosakis [88]. The material properties used in our simulations are presented in

Table 4.1.

Table 4.1 – Material properties.

Aluminum Homalite

Young’s modulus E [GPa] 71 5.3
Poisson’s ratio ν [-] 0.33 0.35
Shear wave speed cs [m/s] 3100 1263

Note that index ’+/-’ can be interchanged hereafter with ’Al’ or ’H’, the two components of

the bimaterial system. The interface is described by τc = 5 [MPa] and δc = 0.02 [mm], which

yields an interface fracture energy of Gc = 50 [J/m2]. After failure, the coefficient of friction of

the interface is set as c f = 0.25.

4.3 Numerical method

The dynamic fracture problem is solved with a spectral formulation of the elastodynamic

equations. A detailed presentation of this boundary integral formulation is given in Section

3.1. For the two-dimensional problem of interest, only one spectral component is examined

such that

[ f ±
j (x, t ),u±

j (x, t )] = ei qx [F±
j (q, t ),U±

j (q, t )], (4.7)
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4.3. Numerical method

while the convolution integrals are expressed for a given time t and spectral mode q as

F±
x (t ; q) =∓μ±|q|

∫t

0
H±

xx (|q|c±s t ′)U±
x (t − t ′; q)|q|c±s d t ′

+ iμ±q
∫t

0
H±

x y (|q|c±s t ′)U±
y (t − t ′; q)|q|c±s d t ′

+ i (2−η±)μ±qU±
y (t ; q) ,

F±
y (t ; q) =∓μ±|q|

∫t

0
H±

y y (|q|c±s t ′)U±
y (t − t ′; q)|q|c±s d t ′

− iμ±q
∫t

0
H±

x y (|q|c±s t ′)U±
x (t − t ′; q)|q|c±s d t ′

− i (2−η±)μ±qU±
x (t ; q) .

(4.8)

An illustration of the different convolution kernels is presented in Figure 3.2 for ν = 0.35.

Finally, the interface relations (cf. Equation 3.17) are completed by the continuity of displace-

ments and tractions through the interface yielding the interface velocities u̇±
j :

(τstr
n,s > τ2,1)

⎧⎪⎨
⎪⎩

u̇+
x = u̇−

x = c+
s

μ+ (
f +

x − f −
x

1+ ξ
ζ

)

u̇+
y = u̇−

y = c+
s

μ+ (
f +

y − f −
y

η++ ξ
ζ
η− )

, (4.9)

(τstr
n,s ≤ τ2,1)

⎧⎨
⎩

u̇±
x = c±s (

τ0
x+ f ±

x −τstr
s

μ± )

u̇±
y = c±s (

τ0
y+ f ±

y −τstr
n

μ±η± )
, (4.10)

where ξ= c+s /c−s and ζ=μ+/μ−.

In the case of possible overlapping of the crack faces, relations (4.10) are adapted to ensure

the vanishing of the normal displacement. The normal motion is modified as

u̇+
y = c+

s

η++ ξη−
ζ

[
τ+y −τ−y
μ+ − ξη−

ζ (
u+

y −u−
y

c+
s Δt )] ,

u̇−
y = u̇+

y + u+
y −u−

y

Δt .
(4.11)

This modification generates a compressive stress at the interface,

σy y = τ+y −η+μ+ u̇+
y

c+s
. (4.12)

The shear motion is still governed by (4.10), with the associated strength τstr
s due to friction at
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the interface given by the chosen friction model (cf. Equations 4.5 and 4.6).

4.4 Reference case (ψ= 75◦)

The dynamic debonding along an Aluminum-Homalite interface obtained for a shear-dominated

loading is described in detail in this section. The material properties of each medium and the

interface were defined in Section 4.2.3. Since it is based on a Fourier series representation

of the solution, the spectral scheme introduces a spatial period X . A X = 1 [m] domain pre-

stressed with an in-plane uniform load of τ0/τc = 0.6 is investigated. The in-plane loading

angle is set at ψ= 75◦.

At time t = 0, an initial crack of size L0/X = 0.05 is introduced at the center of the domain and

starts to propagate in both directions. For simplicity and efficiency of the Fourier transform

between spatial and spectral domains, the number of grid points is usually chosen as a power

of 2. The interface is discretized with 4096 elements, resulting in an element size of Δx = 0.24

[mm]. The time step is set by the parameter β corresponding to the fraction of one grid spacing

traveled by a shear wave in the stiffer material,

Δt =β
Δx

c+s
. (4.13)

Breitenfeld and Geubelle [17] showed that a value of β= 0.4 guarantees a good stability of the

solution. This value is therefore adopted in the simulations presented hereafter. A convergence

study validates the choice of the grid spacing and time step values.

4.4.1 Evolution of cohesive and contact zones

Figure 4.2 shows a space-time representation of the crack propagation. The mismatch between

the top and bottom materials causes different failure behaviors for the two directions of

propagation. Asymmetry in the crack growth was also recorded experimentally for a centered

crack growing under a mixed-mode loading (Xia et al. [163]). On the left side, a contact area

appears and directly trails the crack tip throughout the simulation. On the right side, a friction

zone also trails the crack tip for a while but quickly detaches. As the simulation goes on, the

size of this frictional contact area decreases before the contact zone completely vanishes.

Those two distinct behaviors are in good agreement with the different types of contact zones

assessed in the experimental work of Samudrala and Rosakis [88]. To confirm that the two

behaviors are clearly different, the simulation duration was extended showing that the left

friction area does not detach from the crack tip. The study of the crack and contact zone

velocity profiles (Figure 4.3) also highlights two different regimes.

In the left direction (Figure 4.3a), friction appears at intersonic propagation speed, around

0.75c Al
s � 1.84c H

s . At the end of the simulation, the crack propagation reaches a quasi steady
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Figure 4.2 – Space-time diagram of a dynamic debonding between Aluminum and Homalite for
ψ= 75◦. The black regions correspond to intact portions of the interface, the red areas indicate
the cohesive zones, the yellow regions are traction-free and the white regions correspond to
the contact zones. Squares highlight measurement points for which the propagation speed is
reported in Figure 4.8.

state and the friction zone continues to grow.

On the right side (Figure 4.3b), the contact zone appears when the crack propagates in the

unfavorable speed range as defined by Liu et al. [155], i.e., between c H
s and

�
2c H

s . As the

propagation speed continues to increase and leaves the unstable range, the contact area

decreases in size and eventually vanishes completely. This observation is in agreement with

the asymptotic model derived by Liu et al. [155], which predicts a crack face closure only at

this unfavorable velocity regime.

4.4.2 Failure process

Figure 4.4 compares the history of interface points located in the path of the left-propagating

and right-propagating debonding fronts.

As the crack tip approaches the point of observation, a stress concentration is observed in

the shear and normal directions. On both sides, failure is initiated in shear due to the shear-

dominated nature of the loading. The key difference is the traction behavior in the normal

direction. For the left side, the normal traction is in compression. Thereby, the failure is

in pure shear. The concentration in compression explains that the two faces are in contact

just after failure. Inversely, the concentration of normal stress comes up in tension for the

right side. In this case, the normal stress curve also intercepts the strength curve and the

57



Chapter 4. Dynamic fracture along bimaterial interfaces

Figure 4.3 – Evolution over time of the propagation speed of the cohesive and contact zones
for the left (a) and right (b) debonding path under ψ= 75◦.

Figure 4.4 – Evolution of the cohesive strength, normal and shear tractions and displacement
jumps at x/X = 0.25 (a) and at x/X = 0.75 (b) with ψ= 75◦.

debonding is a mixed-mode failure. Because the interface is under tension, the crack face

opens after failure. However, after a certain amount of time, a closure motion brings both

faces in contact. This delayed contact corresponds to the region with a detached friction area

in Figure 4.2. This particular effect indicates that a closure wave propagating at the Homalite

surface causes this detached friction area. The propagation speed of the trailing end of the

detached contact zone is close to c H
R as shown in Figure 4.3b and sustains the assumption of a

surface-level perturbation. A similar disturbance traveling at the Rayleigh wave velocity of the

more compliant material is described in the experiments of Singh and Shukla (cf. Figure 4.3b

compared to Figure 12 in [164]).

4.4.3 Energetics

Finally, the evolution of the effective fracture energy dE/d A is computed during the simula-

tion, where E denotes the energy and A represents the debonded area. The effective fracture
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energy is then directly related to v , the crack propagation speed as

Γ= dE

d A
= dE

d t

1

v
= Ė

v
. (4.14)

During the failure process, energy is dissipated in the cohesive zone by debonding and in the

contact zone by friction as

Ėn(t ) =
∫

cohesive zone(t )
τstr

n (x, t )δ̇n(x, t )d x ,

Ės(t ) =
∫

cohesivezone(t )
τstr

s (x, t )δ̇s(x, t )d x ,

Ė f (t ) =
∫

contact zone(t )
c f |τ̃y |δ̇x (x, t )d x .

(4.15)

Figure 4.5 presents the evolution of the fracture energy normalized by the reference fracture

energy Gc , which is the energy dissipated in a pure mode (I or II) failure. Shear failure process is

predominant (see Figure 4.5b), as expected for this intersonic crack. With the same numerical

method, Geubelle and Kubair [165] showed that intersonic debonding along a single-material

interface is purely driven by shear. Nevertheless, two additional features are observed with

this bimaterial situation. First, the effective fracture energy is significantly higher than Gc

because of the friction-induced dissipation. Figure 4.5a presents values of Γ f up to 0.4Gc . It

might even exceeds 0.7Gc by increasing the coefficient of friction up to c f = 0.8 . Therefore the

presence of a contact zone along the interface plays an important role in failure energetics.

Second, in bimaterial set-ups, mixed mode failure occurs also for intersonic cracks, which

was shown to be impossible along single-material interfaces [48, 165]. In Figure 4.5b, mode-I

failure process is observed at c Al
s t/X = 0.36 as soon as the contact zone detaches from the

right tip.

4.5 Influence of loading angle ψ

In this section, we investigate the effect of the loading condition by reproducing the reference

set-up with different values of ψ between 0◦ and 90◦.

4.5.1 Evolution of cohesive and contact zones

For a pure far field tensile loading, i.e ψ= 0◦, the crack propagation is perfectly symmetric and

no contact area is observed in both directions of propagation. Each crack tip propagates at

a subsonic speed close to c H
R , as a sufficient amount of shear is needed to allow intersonic

propagations [165]. Adding shear to the far field loading (ψ> 0◦) has two effects. First, the

shear stress becomes more prominent and results in higher crack speeds. Secondly, the

59



Chapter 4. Dynamic fracture along bimaterial interfaces

Figure 4.5 – Evolution of the effective fracture energy and its different components, i.e. the
dissipation by friction Γ f and by tensile Γn and shear Γs debonding, for the left (dashed lines)
and right (full lines) paths with ψ= 75◦.

symmetry is broken and the two propagation paths present different behaviors, as shown in

Figure 4.6 for ψ= 50◦. On the right path, the crack accelerates progressively, while the left tip

stays almost at a constant speed close to c H
R before jumping suddenly to intersonic velocities.

Figure 4.6 – Space-time diagram of dynamic debonding between Aluminum and Homalite
for ψ= 50◦ illustrating subsonic/intersonic transition for both directions. (Colour code as in
Figure 4.2).

This sharp transition is also observable on the velocity profile at about c Al
s t/X = 0.45 in Fig-

ure 4.7a, where the left tip jumps directly from c H
R to a speed above

�
2c H

s . This sharp behavior

causes the singularity observed in Figure 4.7a. At the end of the simulation, a thin contact
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zone appears directly behind the left tip. The right crack tip accelerates continuously up to

the intersonic regime and a contact zone develops as soon as it exceeds c H
s (see Figure 4.7b).

Unlike the ψ = 75◦ configuration (Figure 4.3b), the right tip never exceeds
�

2c H
s and the

contact zone does not detach from the tip.

Figure 4.7 – Evolution of the propagation speed of the cohesive and contact zones for the left
(a) and right (b) debonding path under ψ= 50◦.

We have considered different values of ψ between 0◦ and 90◦. A summary of the velocity

profiles (i.e. the crack speed when contact appears behind the tip, as the contact zone de-

taches and at the end of the simulation) is presented in Figure 4.8. As observed before, with

normal-dominated loading conditions, the crack propagates at sub-Rayleigh speed and no

contact is observed at the interface. As the loading conditions go from pure tensile (ψ= 0◦)

to pure shear (ψ= 90◦), the propagation speed and the asymmetry increase. The difference

between each side of propagation can be characterized in two distinct ways. First, the sub-

sonic/intersonic transition is clearly different. In the left direction, the crack has only two

regimes of propagation: a subsonic steady state close to c H
R for ψ ≤ 40◦ and an intersonic

at about 0.8 c Al
s for higher ψ. Between these velocities, the transition is sharp and sudden.

The unfavorable range is a forbidden region of propagation, as illustrated in Figure 4.9 which

presents the histogram of left crack speeds recorded with ψ = 50◦. Similar behavior were

observed in the experiments of Lambros and Rosakis [154] where the crack stayed at a speed

just below c H
s for a while before accelerating rapidly above

�
2c H

s . On the right side of the

domain, the subsonic/intersonic transition is smooth and progressive.

The behavior of contact is the second clear difference between left and right crack propagation

directions. In the left direction, contact zones appear with intersonic propagation speed,

around 0.75 c Al
s . The emergence of this friction zone coincides with the end of crack accel-

eration. In the right direction, Figure 4.8 confirms that contact areas are directly related to a

propagation at unfavorable speeds. As the crack moves faster than
�

2c H
s , the contact zone

detaches from the crack tip and eventually fully vanishes. Before detaching, the trailing end of

this contact zone is propagating at the Rayleigh wave speed of Homalite (cf Figure 4.3b).
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Chapter 4. Dynamic fracture along bimaterial interfaces

Figure 4.8 – Influence of ψ on the propagation speed v . As illustrated in Figure 4.2, red squares
show the propagation velocities reached at the end of the simulation, blue squares the speeds
when a contact area appears behind the crack tip and green squares the speeds when the
contact zone detaches from the crack tip. The vertical gray bars highlight crack velocities
where the contact zone is trailing the crack tip. The vertical dashed line represents the abscissa
of Figure 4.9.

Figure 4.9 – Histogram of the crack velocities as function of the distance traveled for ψ= 50◦

on the left side showing the existence of a forbidden velocity regime between c H
R and

�
2c H

s .
The abscissa of the histogram corresponds to the dashed line in Figure 4.8.

4.5.2 Impact of ψ on the failure process

A characteristic feature of bimaterial interface failure is the inherent mode mixity of the

failure process, even under pure far-field loading conditions (ψ= 0◦ or ψ= 90◦). Bimaterial
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4.5. Influence of loading angle ψ

conditions break the symmetry at the interface and the direction of principal stresses are not

perpendicular anymore to the interface. The presence of both shear and normal stresses at

crack tips of pure tensile and shear loadings is shown in Figure 4.10.

Figure 4.10 – Normal and shear stress profiles at t = 0.48 c Al
s t/X along the interface for ψ= 0◦

and ψ= 90◦. Along bimaterial interfaces, mixed-mode stress fields at the crack tip are observed
even under pure tensile and shear far-field loadings.

The comparison of failure processes between shear and tensile loading conditions explains

the asymmetric behavior observed in Figure 4.8 between left and right propagating fronts. The

stress field at the right tip has similar patterns under ψ= 0◦ and ψ= 90◦, i.e positive values

for normal and shear stresses. In the left direction, the stress field presents a different pattern

between ψ = 0◦ and ψ = 90◦, with both components changing sign. The sharp transition

observed in Figure 4.8 is therefore explained by the fact that the crack changes its regime of

propagation as the loading condition goes from tensile to shear.

The same analysis explains the subsonic/intersonic transition under a fixed value of ψ. Fig-

ure 4.11 compares the stress profiles measured for a subsonic and an intersonic crack prop-

agation under ψ= 50◦. At subsonic speeds, the normal stress close to the tips is tensile and

contributes to the cohesive failure. At intersonic speeds, the normal stress at the left tip

changes sign and is now compressive. This drastic change in the failure pattern associated to

the sharp jump in the velocity profile corresponds to a subsonic/intersonic transition similar

to the Burridge-Andrews mechanism [46, 47]. This transition, initially described for shear

cracks along frictional interfaces, occurs through the nucleation of an intersonic daughter

crack in front of the main rupture. Coker et al. [71] gave the first experimental observation of

this transition mechanism along a composite-Homalite interface. Geubelle and Kubair [165]

as well as Liu and Lapusta [80] observed similar intersonic daughter cracks with the spectral

boundary integral method. The Figure 4.12 presents the evolution of mode mixity evaluated

through the energy dissipated during bonds failure as function of the propagation speed.

In the left direction (Figure 4.12a), the existence of two distinct regimes of propagation are
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Figure 4.11 – Normal and shear stress profiles along the interface for subsonic (t = 0.07 c Al
s t/X )

and intersonic (t = 0.62 c Al
s t/X ) crack growth under ψ= 50◦.

identified between sub-Rayleigh and intersonic speeds separated by spaced out dots at forbid-

den velocities (also observed at the singularity in Figure 4.7a). While mixed mode failure is

observed in the subsonic regime, intersonic cracks are purely driven by shear and the normal

opening only occurs after complete failure of the interface. In the right direction, the sub-

sonic/intersonic transition is smoother (Figure 4.12b). As crack closure (in normal direction)

is predicted for crack speeds between c H
s and

�
2c H

s [155], the energy dissipation by mode

I failure tends to zero when the right front propagates in this regime where a contact zone

appears directly behind the tip (Figure 4.11b at x/X = 0.75). However, once the propagation

speed exceeds
�

2c H
s , mixed-mode failure is possible in the right direction. Intersonic cracks

driven by both tension and shear are the results of the bimaterial nature of this system and

were not observed along single-material interfaces [48, 165].

Figure 4.12 – Evolution of the ratio of energy dissipated by mode I failure over the total energy
dissipated in cohesive zones as function of the crack velocity for different values of ψ, at the
left (green) and right (red) crack fronts.
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4.6 Effect of material mismatch

The observed mechanisms of the Aluminium-Homalite problem studied before could be

described only by wave speeds of the compliant material (c H
s , c H

R ) since Aluminium wave

speeds are much higher than the crack propagation velocity. In this section, the effect of the

material mismatch on the crack behavior is evaluated. Homalite is kept as bottom material,

with the properties defined in Section 4.1. The top material is only defined by the Young’s

modulus mismatch E+/E H . To simplify the analysis, the Poisson’s ratio and the density of

the top material are always the same as Homalite. Thereby, the shear wave speed of the top

material can directly be computed as

c+s =
√

E+

E H
c H

s . (4.16)

The fracture energy of the interface remains the same as in the previous simulations and refer-

ence case loading conditions are applied (ψ= 75◦). With lower mismatch values, the speeds

of crack fronts are in the range of top material wave speeds (c+s , c+R ) and crack propagation is

described by material properties of both medium. The single-material problem E+/E H = 1

corresponds to an intersonic pure shear failure without contact along the interface. Under

this shear-dominant loading, the crack propagation is characterized by a rapid acceleration

up to the steady state velocity close to v = 1.87c H
s . This behavior is consistent with both

experimental [73] and numerical [165] observations of intersonic crack growth along homo-

geneous interfaces. Similar to the description made on the left region of propagation for the

Aluminium-Homalite system, the crack front needs a sufficient amount of energy to become

intersonic, otherwise it continues propagating at a sub-Rayleigh velocity. For small values of

mismatch, the crack has sufficient energy to accelerate up to intersonic speeds with respect

to both materials as illustrated in Figure 4.13a. As the mismatch increases, the top material

intersonic regime distances itself from the crack velocity range, up to levels unreachable by the

crack front. Figure 4.13b presents this situation for E+/E H = 4 where the right tip velocity is

bonded at v ≤ c+R . It is interesting to note that this behavior related to the left propagation path

during Aluminium-Homalite simulations is observed in the right direction while related to top

material wave speeds. More generally, this behavior is observed in relation with the material

whose particle displacements are in the direction of failure propagation. In their experimental

and numerical work, Coker et al. [71] also showed different crack speed regimes as a function of

the direction of relative sliding. This observation is also verified in the left path of propagation

influenced by top material wave speeds for small mismatches. Indeed, the detached contact

zone, observed exclusively in the right direction with an Aluminium-Homalite interface is

inverted when it is related to top material wave speeds. As the mismatch increases, the left

front propagates through the speed range between c+s and
�

2c+s and a detaching contact zone

appears in addition to the trailing contact zone (cf. Figure 4.14). Thus, a detached contact

zone is caused by a Rayleigh disturbance emerging up at the surface of the material whose
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Chapter 4. Dynamic fracture along bimaterial interfaces

Figure 4.13 – Evolution of the propagation speed of the cohesive and contact zones of the right
front at a bimaterial interface with (a) E+/E H = 1.5 and (b) E+/E H = 4.

particle displacements are in the opposite direction compared to the front propagation. This

statement is confirmed by the propagation speed of the trailing end of the detached contact

zones in Figure 4.14 which are c+R in the left direction and c H
R in the right direction.

4.7 Conclusion

Bimaterial interface fracture has been investigated numerically between two linearly elastic

semi-infinite media. The analysis has been conducted using a spectral scheme, which allows

for a fine spatial and temporal discretization of the failure process. The objective was to study

the subsonic/intersonic transition and to provide a better description of the role of frictional

contact in this process.

Compared to the single-material system, the bimaterial set-up breaks the symmetry at the

interface causing two effects. First, an inherent mode mixity participates in the failure, even

with purely tensile or shear far field loading conditions. Secondly, we observed different crack

behaviors at the left and the right tips as function of compliant material wave speeds . By
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Figure 4.14 – Space-time diagram of dynamic debonding along a E+/E H = 2.5 interface under
ψ= 75◦ showing contact behavior related to the top and bottom wave speeds. (Colour code
as in Figure 4.2).

reducing the material mismatch, we showed that the description of the different crack speed

regimes is also valid when related to the wave speeds of the stiffer material. Therefore, the

crack behavior can be described as function of the front propagation direction with respect

to the slip direction of material particles. If the front has the same direction than the particle

displacements of the material, a forbidden speed range was observed between cR and cs ,

forcing the crack to have two distinct regimes of propagation. Either it moves at a sub-Rayleigh

speed or, when sufficient energy is available, it jumps to an intersonic regime. This sharp jump

and a complete change in the failure stress pattern is caused by the nucleation of a daughter

crack in front of the main rupture, similar to the Burridge-Andrews mechanism [46, 47]. When

the front propagates in a direction opposite to particle displacements of the material, the

subsonic/intersonic acceleration is smooth and any speed is admissible in the transition.

Nevertheless, in the velocity range cs < v <�
2cs , mode I failure is forbidden and the faces

stay in contact after decohesion. This behavior is consistent with the asymptotic solution of

Liu et al. [155] predicting crack face closure when the crack propagates at these unfavorable

velocities.

Particular attention was given to the behavior and the role of frictional contact in bimaterial

failures. For this purpose, contact conditions were implemented in the model associated

with a regularized Coulomb friction law. Similar to the experiments [88], two distinct contact

behaviors were observed along the interface. At the left tip of cracks subjected to a shear-

dominated loading (with stiffer material on top), the material mismatch causes a normal

compressive stress leading to a contact zone trailing the crack front. Another type of contact
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zone was observed as the front propagates with cs < v <�
2cs with respect to the material

whose particle displacements are opposite to the front. Subsequent to face closure behind the

crack tip, a Rayleigh disturbance propagating at the surface of the material causes a contact

zone detached from the propagation front. The energetic study provided a quantitative

description of the effect of friction increasing the effective fracture energy of the interface,

even for small coefficients of friction (c f = 0.25).

To conclude, with a single set-up our study allows for the simulations and the descriptions of

many different behaviors observed experimentally (distinct natures of contact zones, unfavor-

able velocity range, asymmetric crack propagation). Our analysis was verified by changing the

loading conditions as well as the material mismatch at the interface confirming the applicabil-

ity of the proposed criteria to the description of different bimaterial situations as well as the

single-material set-up.
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5 Interplay between process zone and
material heterogeneities

In this chapter, the effects of local variations of the fracture toughness are investigated. The

impact of heterogeneities on dynamic rupture fronts is studied within a 2D in-plane system

preventing any distortion of the front. The effects associated with crack front distortions in

presence of heterogeneities are discussed later in Chapter 6. This study shows how micro-

scopic variations of fracture toughness change the macroscopic rupture dynamics because

of the elastic waves radiated during front accelerations. As a result, this work demonstrates

how small-scale heterogeneities facilitate the supershear transition of a mode II crack. Per-

turbations of dynamic fronts are then systematically studied with different microstructures

and loading conditions. The process zone size is the intrinsic length scale controlling het-

erogeneous dynamic rupture. The ratio of this length scale to asperity size is proposed as an

indicator to transition from quasi-homogeneous to heterogeneous fracture. Moreover, this

chapter discusses how the shortening of the process zone size with increasing crack speed

brings the front to interact with smaller details of the microstructure. This study shines new

light on recent experiments reporting perturbations of dynamic rupture fronts, which intensify

with crack propagation speed.

This chapter is a modified version of a scientific article published by the American Physical

Society (APS):

F. Barras, P. H. Geubelle, and J.-F. Molinari, “Interplay between Process Zone and Material

Heterogeneities for Dynamic Cracks,” Physical Review Letters, vol. 119, no. 14, 2017
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5.1 Introduction

Our modern understanding of fracture arose from Griffith [10] and Irwin [1] who viewed crack

propagation as a thermodynamic process where, at equilibrium, the energetic cost of creating

new surfaces in the material is balanced by the release of strain energy subsequent to crack

advance. This theoretical framework (LEFM) has been successfully used over the last fifty years

to predict the stability of flaws in engineering materials. Consequently LEFM was extended to

cracked bodies far from equilibrium, i.e., to dynamic fracture mechanics [42, 43].

Experiments on brittle solids showed that this dynamic theory of fracture gives good predic-

tion for slow crack propagation, but is unsuitable to describe fast rupture events where the

crack front speed is a significant fraction of material shear wave speed cs and the propagation

dynamics is perturbed by dynamic instabilities. In particular, linear elastic theory overesti-

mates the propagation speed and significantly underestimates the dissipated energy. For a

review of dynamic fracture experiments, the reader is referred to [50, 55–58]. A three-stage

transition is universally observed within brittle materials, usually referred as “mirror”, “mist”

and “hackle” in reference to the post-mortem appearance of fracture surface. At low rupture

velocity, fracture surfaces are planar and smooth (mirror) and crack dynamics is thereby

well predicted by LEFM theory. As crack speed increases, the rupture remains in-plane but

the fracture surface roughens (mist), followed by a stage characterized by the formation of

out-of-plane microbranches (hackle) and finally the onset of macroscopic branching. This

transition observed in various brittle materials [50, 51] and at different scales [53, 54] explains

how linear elasticity fails at describing fast rupture events where the front starts to interplay

with the microstructure and/or dynamic instabilities and becomes a heterogeneous fracture

problem [166–169].

An extension of LEFM to heterogeneous problems was proposed by Rice [2] and Gao and

Rice [60] who gave a first-order estimation of the stress intensity perturbation caused by crack

front distortion in presence of tougher asperities. Recently, Ponson [70] reviewed how this

approach can successfully predict the roughness of slow rupture front in brittle disordered

material as long as crack front can be viewed as a unique elastic line. The complex mecha-

nisms driving fast crack propagation occur however at a smaller scale where fracture develops

along a finite length. In this context, numerical models have a great potential to bring new

insights on the interaction of a dynamic front with material heterogeneities. However, the

small spatio-temporal scales characterizing this process require a very fine discretization of

the fracture plane and explain why dynamic heterogeneous fracture remains overlooked.

This chapter investigates the interaction of a dynamic rupture front with small-scale het-

erogeneities. The objective is to understand how rupture dynamics is perturbed when the

average fracture properties are identical but their statistical distribution changes. The rup-

ture is assumed to propagate along a weak interface under mode II plane strain conditions.

This heterogeneous fracture problem is solved using a boundary integral formulation of the

elastodynamics equation proposed by Breitenfeld and Geubelle [17].
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5.2 Problem Description

5.2.1 Geometry and elastodynamics

Let us consider two semi-infinite linearly elastic solids under plane strain conditions with

the top (y > 0) and bottom (y < 0) displacements fields respectively denoted by u+(x, y, t)

and u−(x, y, t ). Along the interface (y = 0), the two half spaces are initially bounded in static

equilibrium under a uniform in-plane shear (mode II) loading τ0. The initial conditions can

then be summarized as:

u̇+(x, y, t = 0) = u̇−(x, y, t = 0) = 0

σ+
x y (x, y, t = 0) =σ−

x y (x, y, t = 0) = τ0 (5.1)

with u̇ = ∂u
∂t and σ the Cauchy stress tensor. Due to the spectral nature of the numerical

scheme, which is based on a Fourier series representation of the interface quantities, the

domain of interest is periodic with period X , i.e, u(0, y, t) = u(X , y, t). At time t = 0, a crack

of length L is inserted at the left corner of the domain and starts to grow dynamically in the

right direction while left tip propagation is prevented. Crack propagation is studied while

L < 2X /3 to neglect the effect of periodic boundary conditions. Figure 5.1 illustrates the

studied brittle fracture process, which is constrained to the interface (y = 0). Across the

interface, the displacement discontinuity is defined as

δ(x, t ) = u+(x, y = 0+, t )−u−(x, y = 0−, t ). (5.2)

The interface resists crack motion with G H
c , which corresponds to twice the material surface

energy for brittle materials. Far from initiation site (x > Lhom), the fracture energy presents dis-

persion in the idealized form of constant width w stripes alternately weaker (Gweak
c <G H

c ) and

tougher (Gstrong
c >G H

c ). This arrangement of asperities is designed to keep the macroscopic

fracture energy unchanged; 〈Gc〉 = 0.5(Gweak
c +Gstrong

c ) =G H
c . Plane strain conditions prevent

any crack front distortions during failure and the straight crack front successively breaks this

array of asperities.

5.2.2 Numerical scheme

The dynamic fracture problem is solved, once more, with the aid of the spectral scheme [16,17],

a spectral form of the elastodynamic boundary integral relations between the displacements

u± along the fracture plane and the corresponding traction stress τ(x, t). The numerical

method allows for a detailed description of the evolution of the displacements, velocities and

traction stresses along the interface, especially in the failure zone captured with the aid of

a cohesive failure model relating the displacement jump in the slip direction, δx , and the

interface strength

τstr(x, t ) = τc (x) {1−δx (x, t )/δc (x) } . (5.3)
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Figure 5.1 – Geometry of the in-plane heterogeneous fracture problem. A crack of length L is
inserted along an interface with constant macroscopic fracture energy G H

c at rest under an
uniform shear loading τ0. The interface is made of a homogeneous portion Lhom and a region
with a heterogeneous fracture energy Lhet in form of alternately weaker (yellow)/tougher
(orange) stripes of constant width w .

In (5.3), τc and δc respectively denote the failure strength and critical slip, and {ξ} = ξ if ξ> 0

and 0 otherwise. The corresponding value of the fracture energy is Gc (x) = 1
2τc (x)δc (x). The

interface is typically discretized with 65,536 nodes in the simulations presented hereafter.

Details about the numerical method are provided to the reader in Chapter 3 and, for the two-

dimensional formulation, in Chapter 4. For the mode II slip-weakening interface problems

of interest, the interface relations (cf. Equation 3.17) are completed by interface conditions

implying the continuity of tractions and displacements along the interface as long as the shear

traction τx is lower than the interface strength τstr defined in Equation 5.3. Otherwise, the

fracture process breaks the continuity of displacements and the velocity ∂u±
j /∂t of the crack

faces are computed such that τ+x = τ−x = τstr, with the value of the interface strength being

related to the displacement jump δx through the cohesive failure model described by Equation

5.3.

5.2.3 Fracture initiation

The material and failure properties are given to the reader in Section 5.7 for the sake of

reproducibility, but the conclusion drawn in the chapter are independent from this choice and

results are hereafter presented in adimensional scales. Based on the expression of the stress

intensity factor KI I = τ0
�
πL/2 for a static shear-loaded crack in an infinite medium [1, 31], we

compute the critical crack size Lc satisfying Griffith’s failure criterion:

Lc =
2K 2

I I

π(τ0)2 = 2G H
c

π(τ0)2

E

(1−ν2)
= τH

c δc

π(τ0)2

E

(1−ν2)
, (5.4)
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Figure 5.2 – Space-time diagrams of two macroscopically equivalent dynamic fracture events
where the normalized slip velocity δ̇x /cs is shown using the same color scale while the crack
tip position at L1 = 5Lc and L2 = 20Lc is highlighted with cyan stars. In (a) the crack grows on
a perfectly homogeneous interface, while in (b) the rupture front interacts with smaller-scale
heterogeneities.

often referred as Griffith crack length [6]. Rupture is initiated in this work by slowly growing

an infinitesimal crack to its critical length L � Lc and dynamic rupture begins (t = 0) when it

starts to grow spontaneously.

5.3 The effect of heterogeneous microstructure

We start our study with the rupture of a perfectly homogeneous interface (Lhet = 0) initially

at rest with τ0 = 0.22τc . As predicted by the crack tip equation of motion [42], the constant

loading makes the crack continuously accelerate up to the upper limit represented by the

Rayleigh wave speed cR (Figure 5.2a). While keeping the same system on average, we increase

its statistical dispersion after Lhom = 2Lc by introducing stripes of weaker (τweak
c = 1

3τ
H
c ) and

stronger (τstrong
c = 5

3τ
H
c ) heterogeneities of width w = 0.6Lc according to Figure 5.1. This

heterogeneous microstructure leads, however, to a dramatic change in rupture dynamics,

which is presented in Figure 5.2b. After a first propagation phase at a sub-Rayleigh regime

x/Lc < 15, the rupture front is able to exceed the Rayleigh wave speed and cs (see Section

5.7 for additional representations of these rupture events). The supershear transition of

mode II crack is fundamental in the understanding of earthquake dynamics [73, 74, 170]

and several works [6, 9, 46, 82, 171, 172] studied how a propagating front may eventually get

supershear; the time-growing pulse radiated ahead of an accelerating shear crack causes

the nucleation of a secondary supershear front if its maximum amplitude exceeds interface

strength. For a rupture growing from L = Lc , Andrews [6] was the first to report how this

transition occurs at a specific crack size, which depends on the initial ratio between interface

strength and pre-stress, the so-called seismic ratio S = (τH
c − τ0)/τ0. Following the same

formalism, Figure 5.3 summarizes our quantitative study of this supershear criterion for

different loading conditions and toughness distributions. With a plane strain homogeneous

setup, we meet the transition dynamics reported in the literature [6, 7]. The comparison
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Figure 5.3 – Effect of heterogeneities on the supershear transition. Color curves trace the
observed boundary between sub-Rayleigh and supershear regimes for different loading con-
ditions (seismic ratio) and toughness distribution. The dashed arrow draws the trajectory
of ruptures of Fig. 5.2 where the crack is initially in the sub-Rayleigh regime (cyan star at
L1 = 5Lc ) and grows toward a size (cyan star at L2 = 20Lc ) where it either crosses the boundary
toward supershear regime (as in the interface of Fig. 5.2b with w = 0.6Lc ), or not (as in the
homogeneous interface of Fig. 5.2a). The dark blue star shows the maximum seismic ratio
allowing supershear crack in homogeneous plane strains interface [6, 7].

with the heterogeneous set-up reveals how increasing the microscopic toughness dispersion

facilitates the supershear transition by both extending the limiting seismic ratio and reducing

the required transition length. The explanation is found in the increase of elastic radiations

caused by the heterogeneous microstructure. During homogeneous rupture, the slip velocities

profile is smooth and high velocities are concentrated within the process zone. In presence

of heterogeneities, elastic waves are continuously emitted from the propagating tip resulting

in a succession of pulses visible in the slip velocity profile. The inset of Figure 5.2b presents

a collective mechanism where the rupture of tougher asperities creates waves which are

later helping the rupture of the neighboring asperities. Super-shear transition caused by

a favorable heterogeneity has been reported in several works in the context of earthquake

dynamics in the presence of heterogeneous pre-stress or toughness along the slip plane

[80–82, 84] or with off-fault elastic heterogeneity [83, 85]. Following this benchmark problem

of dynamic fracture, our study reveals how a collective mechanism occurring at the smaller

scale of a heterogeneous interface can deeply impact the macroscopic rupture dynamics.

Moreover, Figure 5.3 emphasizes the importance of the details of microscale properties which

are systematically discussed in the next section.
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5.4 Transition from homogeneous to heterogeneous fracture

In the system considered, two parameters characterize the heterogeneity of the interface: the

size w of the asperities and the fracture energy contrast Gstrong
c /Gweak

c . The rupture speed

is another important parameter, which constantly increases in the preceding simulations

because of the load-controlled setup. After an identical smooth initiation, a progressively

decaying loading τ0(L) allows for crack growth at a constant speed along a perfectly homoge-

neous interface (K-controlled set-up). The same loading conditions are further replicated to

rupture fronts meeting a heterogeneous region far from the initiation site (Lhom = Lhet = 5Lc ).

As described in the previous section (see Figure 5.2b), one signature of the interplay of dy-

namic crack front with heterogeneities is the slip pulses emitted during the successive front

accelerations. We measure and compare then the maximum slip velocity max{δ̇x } observed

when the front breaks the heterogeneous region and compare it to the value measured when

the interface is perfectly homogeneous max{δ̇H
x }. The normalized increase in slip velocity

Φ(w,
Gstrong

c

Gweak
c

) = max{δ̇x }−max{δ̇H
x }

max{δ̇H
x }

(5.5)

is then used as an indicator of crack front perturbation for a given heterogeneous microstruc-

ture. A progressive increase of slip velocities is observed when increasing the fracture energy

ratio between weaker and stronger asperities. However, when changing the size of the asperi-

ties, the evolution of Φ is not monotonic and depends on a critical asperity size. The width

of the process zone, lpz , namely the distance over which the interface evolves from intact to

broken, is the characteristic length scale emerging from this K-controlled setup. Figure 5.4a

presents how the increase in slip velocity measured with different asperity sizes and fracture

energy ratios collapses after being normalized by the size of the process zone (data before

normalization are available in Section 5.7). Three characteristic behaviors emerge from this

normalization. When w ∼ lpz (Figure 5.4c), the heterogeneous interface develops a collective

mechanism similar to the one discussed in Figure 5.2b and leads to a significant perturbation

of the rupture dynamics. The effect of heterogeneities quickly decays as w < lpz . When several

weaker and stronger heterogeneities are contained within the process zone (Figure 5.4b), their

fracture properties are averaged and homogenized resulting in a rupture dynamics identical to

the perfectly homogeneous set-up. Finally when w � lpz , the collective interaction between

asperities ceases as the elastic waves have time to dissipate within the bulk between two

depinning events. In this macroscopically heterogeneous interface, lpz stops characterizing

the rupture dynamics which meets the predictions of the singular fracture theory according to

which the crack speed instantaneously adapts to a change in fracture toughness (Figure 5.4d).

These characteristic behaviors controlled by the process zone size are universally observed

with different types of heterogeneity Gstrong
c /Gweak

c (Figure 5.4a) as well as different crack front

speeds (inset of Figure 5.5).
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Figure 5.4 – The process zone size is the length scale controlling crack front interaction
with heterogeneities. For v = 0.5cs and a fracture energy ratio of 3.5, colors in plots (b-d)
divide broken surface (sky-blue), cohesive zone (blue) and intact interface which is either
dark blue (average properties), yellow (weaker properties) or orange (tougher properties).(a)
Normalized increase of slip velocity as function of interface heterogeneity, namely asperity
size and fracture energy ratio for v = 0.5cs . (b) Asperities are much smaller than lpz leading
to quasi-homogeneous dynamics. (c) Collective interaction between depinning events when
w is in the range of lpz leading to a significant impact on rupture dynamics. (d) When the
asperities are much larger than lpz , the material is macroscopically heterogeneous.

5.5 Process zone size in dynamic fracture

At the very vicinity of crack tip, one should admit a region, the process zone, where nonlinear

dissipative processes are regularizing the square root singularity. The nature of these nonlinear

processes is far from being understood and should certainly be highly dependent on the

material. Cohesive models arose from Dugdale [20] and Barenblatt [21] approaches which

propose an elegant way of modeling these processes without losing the universality of LEFM

theory. In this non-singular framework, lpz scales as:

(
KI I

τH
c

)2

∼ l∗coh = G H
c

(τH
c )2

E

(1−ν2)
= 1

2

δc

τH
c

E

(1−ν2)
, (5.6)

for a crack at equilibrium with the linear slip-weakening law of Equation (5.3). Within the

K-controlled set-up, the process zone has then a constant size along the homogeneous portion

of the interface as highlighted in Figures 5.4b, 5.4c and 5.4d. We thereby measured its length

at different rupture speeds in Figure 5.5 and observe a shrinkage of lpz as v increases. This rel-

ativistic process zone contraction as v approaches the information speed is indeed predicted

theoretically [153, 173, 174] and was recently measured in experiments [126]. lpz is even ex-

pected to be infinitely small when v approaches cR . The fine level of discretization provided by

the boundary element model enables us to capture this process zone contraction. Since lpz is

the characteristic length governing the interaction of crack front with material heterogeneities,

its contraction implies that faster cracks are perturbed by smaller heterogeneities/defects

along their path.
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5.6 Discussion

Taking advantage of the fine discretization allowed by the boundary integral formulation [17],

we investigate numerically the interplay of a dynamic crack front with heterogeneities. A

planar straight crack under plane strain conditions interplays with an idealized microstructure

made of equi-spaced stripes of weaker and stronger areas. We reveal a complex mechanism

where the nucleation and coalescence of crack fronts within the heterogeneous microstructure

radiates elastic waves helping the rupture of neighboring asperities. This collective process

occurring at the scale of the heterogeneous microstructure directly changes the macroscopic

dynamics and facilitates the supershear transition. We present then how the size of the

process zone is the length scale characterizing the perturbation of a dynamic front by material

heterogeneities. This observation was confirmed with different sub-Rayleigh front speeds

and heterogeneous microstructures. Moreover, the process zone size decreases with the crack

velocity, shrinking to zero as v approaches cR . As the rupture front accelerates toward cR ,

it interacts therefore with smaller material heterogeneities (asperities, defects). We suggest

that this process zone contraction amplifies thereby the dynamic instabilities and roughens

the fracture surface of an accelerating crack front. This study shines a new light on the

interplay between a dynamic rupture front and the material-heterogeneity length scales.

The observations and conclusions drawn in this manuscript have direct implications in the

understanding of earthquake dynamics [74, 170, 171] (supershear rupture) as well as the

evolution observed in the fracture behavior of materials with increasing rupture speed [51,

166, 169] (interaction of crack with defects/microstructures, dynamic instabilities).

5.7 Supplemental material

5.7.1 Material properties

Elastic material properties of Homalite have been chosen for the simulations reported in

this chapter; Young’s modulus E = 5.3 [GPa], Poisson’s ratio ν= 0.35 and shear wave speed

cs = 1263 [m/s]. In the homogeneous segment, the interface fracture energy G H
c = 90 [J/m2] is

defined by τH
c = 9 [MPa] and δc = 0.02 [mm].

5.7.2 Effect of heterogeneous microstructure

As a complement to Figure 5.2, the two rupture events are also presented in Figure 5.6 using

the same color code as in Figures 5.4b-d to highlight the heterogeneous microstructure as well

as the position of the rupture front. The growing pulse radiated in front of an accelerating

shear crack [6, 9] is also clearly visible in Figure 5.6 as it causes early microcracks nucleation in

the weaker areas.
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Chapter 5. Interplay between process zone and material heterogeneities

5.7.3 Transition from homogeneous to heterogeneous fracture

Figure 5.7 presents the data of Figure 5.4a before normalization. The increase in slip velocity

Φ (cf. Equation 5.4) is used to quantify the interplay of the dynamic front with heterogeneities.

Intuitively, the crack front perturbations associated with the heterogeneous microstructure

increase with the asperity size w and/or the fracture energy contrast. The normalization

by the characteristic length scale lpz (see Figure 5.4a) collapses this data and explains the

non-monotonic behavior observed as w changes.

5.7.4 Process zone size in dynamic fracture

When lpz becomes small compared to other characteristic dimension of the system, the

rupture dynamics predicted by cohesive models is expected to meet the prediction of the

singular LEFM theory based on the dynamic energy release rate expressed as

G = 1−ν2

E
AI I (v)K 2

I I , (5.7)

where AI I (v) is a universal function defined by

AI I (v) = αs v2

(1−ν)Dc2
s

, (5.8)

where α2
s,d = 1−v2/c2

s,d , and D = 4αdαs−(1+α2
s )2. As shown in [42], AI I equals one when v = 0

and grows to infinity as the crack speed approaches the Rayleigh wave speed cR . Rice [173]

showed that the size of the process zone for dynamic mode II crack moving at a speed v is

expected to follow

lpz (v) = lpz (v = 0)/AI I (v). (5.9)

Equation (5.9) thus predicts a process zone contraction with increasing crack speed, as also

captured in our simulations (see Figure 5.5).

80



6 Supershear bursts in the propagation
of tensile crack

This chapter presents dynamic effects arising when a crack front is distorted by the presence

of heterogeneities along the rupture plane. The perturbation of an initially planar rupture

front meeting a tougher circular asperity became an archetype problem of heterogeneous

fracture, which has been extensively studied in the framework of first-order perturbation

analysis. This chapter extends the investigations to strongly distorted crack fronts. For the first

time, this work uncovers the existence of supershear episodes in the tensile (mode I) rupture

of linearly elastic materials beyond the maximum allowable (sub-Rayleigh) speed predicted

by the classical theory of dynamic fracture. While the admissible rupture speeds predicted by

LEFM are verified for smooth crack fronts, we present numerically how a supershear burst

can emerge from a discontinuity in crack front curvature and how these short-lived bursts

create shock waves persisting far from the discontinuity site. This study shines new light on

the dynamic fracture of materials characterized by the roughening of crack fronts where the

rupture dynamics significantly diverges from LEFM predictions.

This chapter is a modified version of a scientific article currently under review:

F. Barras, R. Carpaij, P. H. Geubelle, and J.-F. Molinari, “Supershear bursts in the propagation

of tensile crack in linear elastic material,” Under review, 2018

Further aspects of the 3D dynamics resulting from the distortion of a propagating crack front

by a tougher asperity are studied and reported in two associated publications currently in

preparation. The first one systematically compares the predictions of first-order models

(quasi-static and dynamic) with the full elastodynamic responses computed by the boundary

integral method:

K. Alidoost, F. Barras, A. Dubois, R. Carpaij, D. Bonamy, P. H. Geubelle, and J.-F. Molinari, “Crack

front distorted by heterogeneities: Benchmarking the first-order perturbation models,” In

preparation, 2018

The second work studies the propagation of front waves existing after the perturbation of
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Chapter 6. Supershear bursts in the propagation of tensile crack

dynamic crack fronts under shear and mixed mode loading conditions:

F.-E. Fekak, F. Barras, A. Dubois, D. Spielmann, D. Bonamy, P. H. Geubelle, and J.-F. Molinari,

“Study of front waves: 3D dynamic response to a local perturbation of tensile and shear cracks,”

In preparation, 2018
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6.1. Introduction

6.1 Introduction

How fast cracks can propagate in linearly elastic solids is a long-standing question that has

challenged scientists and engineers for many decades. The classical theory of LEFM [42, 43]

predicts that the Rayleigh wave speed cR of the surrounding bulk material is the limiting

propagation speed of tensile (mode I) cracks, while intersonic crack speeds (i.e., between

the shear wave speed cs and the dilatational wave speed cd ) are allowed for in-plane shear

(mode II) cracks. Using non-singular cohesive-like description of fracture, Burridge [46] and

Andrews [47] proposed a mechanism enabling shear cracks to transition between the subsonic

and intersonic regimes.

Due to crack kinking or branching, experimentally measured crack speeds are substantially

lower, rarely exceeding 0.65 cR [49, 56, 57]. However, constraining crack growth along a weaker

plane allowed for the experimental confirmation of limiting velocities for both tensile [72]

and shear [73] cracks. The latter study, which demonstrated the existence of supershear

crack fronts in linear elastic materials, found direct relevance in the understanding of crustal

earthquakes where slip fronts have been measured to propagate faster than cs along some

portion of the fault [74, 75].

Similarly to supersonic aircraft, elastic waves radiated from supershear cracks gather to form

shock-wave fronts, also referred to as Mach Cone, leading to particularly violent earthquakes

[9, 76–79]. Despite the relative rarity of supershear earthquakes reported in nature, recent

experiments [171] suggest that short-lived supershear events may frequently occur at smaller

scale of crustal fault, out of the resolution of seismic inversion, yet significantly impacting the

rupture dynamics. Several studies described indeed how local variation in toughness or elastic

properties can precisely favor the supershear transition of mode II cracks [80–83, 85, 125, 148] .

In this work, we describe how supershear propagation bursts triggered by the presence of a

tougher heterogeneity distorting the front of a dynamically propagating planar crack can also

exist in the tensile case, beyond the range of crack speeds predicted by the classical LEFM the-

ory. This new result finds direct relevance in the fast tensile rupture of materials characterized

by significant crack front roughening through the interaction with heterogeneities associated

with the microstructure [51, 55, 169] or with microbranching instabilities [166, 178].

6.2 Set-up

We study the in-plane crack front propagation along a weak plane located along y = 0 in

an infinite linearly elastic solid initially at rest under a uniform tensile stress τ0. At time

t = 0, a straight crack front parallel to the z-axis starts to grow dynamically in the positive

x-direction before encountering a row of asperities. This 3D fracture problem is solved using a

boundary integral formulation of the elastodynamic equations [16, 17] relating the normal

displacement jump (or crack opening displacement) δn(x, z, t ) and the normal traction stress

τn(x, z, t ) acting on the fracture plane. For the mode I fracture problem of interest, the spectral
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Chapter 6. Supershear bursts in the propagation of tensile crack

Figure 6.1 – A supershear burst occurs at the cusp located at the center of the crack front line
z = 1.25Lc . a) Evolution of the crack front line (in red) captured at regular time interval. b)
Space-time diagram of the rupture event along z = 1.25Lc . Colors divide broken surface (yel-
low), cohesive zone (red) and intact interface which is either black (homogeneous properties)
or white (tougher asperity). c) Evolution of crack front velocity along z = 1.25Lc . The dashed
black line depicts the Rayleigh wave speed.

formulation (Equation 3.17) is, once more, completed by interface conditions which imply

the continuity of tractions and displacements along the interface as long as the normal

traction τy is lower than the interface strength τstr. Otherwise, the fracture process breaks the

continuity of displacements and the velocity ∂u±
j /∂t of the crack faces are computed such that

τ+y = τ−y = τstr, while the value of the interface strength is related to the opening displacement

jump δn = u+
y −u−

y through the following linear cohesive failure model:

τstr(x, z, t ) = τc (x, z) {1−δn(x, z, t )/δc (x, z) } . (6.1)

In Equation 6.1, τc and δc respectively denote the spatially varying failure strength and critical

crack opening displacement of the weak plane, and {ξ} = ξ if ξ > 0 and 0 otherwise. The

nonlinear dissipative processes associated with the dynamic failure event are thus confined to

the crack plane, with the fracture energy given by Gc (x, z) = 1
2τc (x, z)δc (x, z).

The characteristic length scale for this problem is chosen as the largest stable crack size Lc

given by [31, 125]

Lc =
2G H

c

π
(
τ0
)2

E

(1−ν2)
, (6.2)

where E and ν respectively denote the Young’s modulus and Poisson’s ratio of the elastic solid,
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6.3. Material properties

and G H
c is the fracture energy of the homogeneous portion of the fracture plane. In the initial

phase of the failure event, the crack accelerates with a straight front through a homogeneous

region stretching from x = Lc to x = 2Lc , at which point it encounters a tougher circular

asperity of diameter ø = Lc and fracture energy Gasp
c = ζG H

c , with τ
asp
c /τH

c = δ
asp
c /δH

c =√
ζ.

Due to the spectral nature of the numerical scheme, which is based on a Fourier series

representation of the spatial variation of the interface quantities, the domain of interest is

periodic, with a period chosen as X = 10Lc and Z = 2.5Lc . The simulated fracture event thus

involves the dynamic interaction of an initially straight mode I crack with a row of circular

asperities. The rupture planes studied in this manuscript are typically discretized with 4096 x

1024 points in the x- and z-directions, respectively, providing more than four million sampling

points along the fracture plane. The results discussed hereafter are non-dimensionalized but

the material and failure properties used in the simulations are given hereafter.

6.3 Material properties

Material properties of Homalite have been chosen for the simulations reported in this chapter;

Young’s modulus E = 5.3 [GPa], Poisson’s ratio ν= 0.35, and shear wave speed cs = 1263 [m/s].

The interface fracture energy G H
c = 50 [J/m2] is defined by the two parameters entering the

cohesive failure model (Equation 1) τH
c = 5 [MPa] and δH

c = 0.02 [mm].

6.4 Methodology

A seed crack whose tips are initially parallel to the z-axis is artificially grown in the positive

x-direction from x = 0, while the propagation of the left tip is prevented. In an infinite solid

under uniform tension τ0, the rate of energy released by growing a static through crack of size

L is given by

G(v = 0,L) = (1−ν2)

E
(τ0)2π

L

2
. (6.3)

At t = 0, the crack reaches the critical size Lc (cf. Equation 6.2) where G(v = 0,L = Lc ) exactly

equates the fracture energy G H
c and starts to propagate dynamically at a speed v > 0. In an

infinite homogeneous solid, Freund [42] showed that the energy release rate evolves with

propagation speed as G(v,L) = g (v)G(v = 0,L), with g (v) denoting a function which is unity for

v = 0 and zero for v = cR . Considering Equation 6.2 together with Equation 6.3, the dynamic

energy balance can be expressed as

G(v,L) =G H
c ⇔ L

Lc
= 1

g (v)
. (6.4)

In this framework, Figure 6.2 reports the crack dynamics obtained along a perfectly ho-

mogeneous interface (ζ= 1) compared to Freund’s approximation for a semi-infinite crack

g (v) ≈ (1− v/cR ) [42]. This approximation as well as the assumption of a semi-infinite crack

85



Chapter 6. Supershear bursts in the propagation of tensile crack

explain the slight difference between predicted and simulated dynamics. For the reference

case presented in Figure 6.1, the initially straight crack front starts interacting with the tougher

asperity when L = 2Lc , which corresponds to an incident front speed v = 0.6cs . Different

incident crack front speeds can therefore be investigated by changing the asperity position

according to Figure 6.2.

Figure 6.2 – Typical crack tip dynamics observed along a homogeneous fracture plane. The
dashed line highlights the Rayleigh wave speed.

6.5 Supershear bursts

Rice [2] described how the distortion of a crack front interacting with an asperity may locally

increase the stress intensity factor to a value sufficiently large to rupture the asperity. Following

his first-order perturbation analysis, the interaction of quasi-static [60] and dynamic [15] crack

front with heterogeneities can be precisely described as long as the perturbation to the crack

front is small. Our numerical work thereby aims at widening the investigation toward larger

toughness contrasts where higher-order effects cannot be neglected. In this context, our

study uncovers the existence of short-lived supershear bursts emerging from large front

distortions as presented in Figure 6.1 for ζ = 3. At the center of the domain (along the line

z = Z /2 = 1.25Lc ), Figure 6.1c presents the evolution of crack front speed, which is always

in the x-direction due to symmetry. Right after rupturing the heterogeneity, the crack speed

temporarily exceeds cs , which is visually confirmed in Figure 6.1b. This supershear burst
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6.5. Supershear bursts

Figure 6.3 – The supershear burst arises exclusively at the cusp emerging along the front at
z = Z /2. Evolution of the crack front velocity vx /cs in the x-direction (a) and in the direction
normal to the crack front vn/cs (b) computed along the interface for z < Z /2 and z > Z /2. The
color map is scaled between the minimum and maximum values verifying the supershear
range of the apparent forward velocity vx and the sub-Rayleigh range of the normal crack
speed vn (cR

∼= 0.934cs) predicted by LEFM for smooth crack front.

extends beyond the center line, as illustrated in Figure 6.3a, which presents the distribution of

apparent crack velocity (i.e., the crack velocity vx in the x-direction) over the entire crack plane.

A related study conducted in mode II [82] has shown that asperities can be triggering sites

for supershear propagation of shear cracks. However, unlike its mode II counterpart, super-

Rayleigh propagation of tensile (mode I) cracks in a linear elastic material is energetically

impossible. This fundamental result of the dynamic theory of LEFM is indeed verified in

Figure 6.3b, which presents the spatial distribution of the crack speed vn computed normal

to the front. As apparent there, the crack speed remains sub-Rayleigh as long as the crack

front curvature is continuous. The evolution of the crack front shape presented in Figure

6.1a reveals how the emergence of a cusp along the front line coincides with the episode of

supershear propagation. This can be rationalized with geometric arguments presented in the
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next section.

6.6 Geometrical model

Next, we introduce a geometrical model that explains and predicts how a sub-Rayleigh crack

velocity in the normal direction of the front can yield supershear velocity on the projected

forward direction, when a geometrical cusp is formed.

Let a(z, t) denotes the amplitude of the front distortion, i.e., the advance of the crack front

at location z and time t relative to the front location at the kink (z = Z /2) (Figure 6.4). Let

us assume that the crack front propagates at uniform subsonic speed κcR (with κ < 1) in

the direction of the local normal n to the front. Geometrical arguments readily lead to the

following approximate expression of the forward velocity vx of the front:

vx (z, t )

cR
≈ κ

√
1+

(∂a(z, t )

∂z

)2
. (6.5)

Based on the observed shape of the front immediately past the asperity (see Figure 6.1), let us

Figure 6.4 – Schematic representation of a kinked crack front, with n denoting the unit normal
at (z, t ).

adopt the following expression for the shape of the front between 0 ≤ z ≤ Z /2:

a(z, t ) = a0(t )
(
−8(z/Z )3 +1

)
, (6.6)
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6.6. Geometrical model

Figure 6.5 – Amplitude of the front perturbation required to observe vx > cR at the center point
as function of the incident crack speed v . The dashed lines highlight the required amplitude
for each of the three different crack speeds considered in the parametric study presented in
Figure 6.6.

where a0(t) = a(0, t) = a(Z , t). Equation 6.6 corresponds to the lowest order polynomial

satisfying a(0, t ) = a0(t), a(Z /2, t) = 0 as well as the continuity of tangents and curvatures

across the periodic boundaries, i.e., ∂a
∂z (0, t ) = ∂2a

∂z2 (0, t ) = 0. Combining Equation 6.5 and 6.6,

we obtain the values of the front perturbation at which the center point (z = Z /2) is predicted

to propagate faster than cR :

a0

Z
= 1

6κ

√
1−κ2. (6.7)

This relation is presented in Figure 6.5. As expected, the amplitude of the front perturbation

a0 at which supershear crack motion appears decreases with increasing normal crack speed

(i.e. with increasing value of κ).

For a given amplitude of the perturbation a0/Z , we can also compute the section of the crack

front defined as z∗ ≤ z ≤ (Z − z∗) that has a forward motion faster than the Rayleigh wave

speed.

z∗

Z
=
( �

1−κ2

24κ(a0/Z )

) 1
2

. (6.8)

This relation is shown in Figure 6.7 for different values of the normal crack front speed. For

the reference case of the manuscript (v = 0.6cs), Equation 6.8 predicts therefore that the crack

front, just after being released from the asperity, has an apparent forward velocity vx > cR

along a portion corresponding to 0.37 ≤ z/Z ≤ 0.63 (or equivalently 0.925 ≤ z/Lc ≤ 1.575) in

agreement with the velocity profile presented in Figure 6.3.
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Chapter 6. Supershear bursts in the propagation of tensile crack

Figure 6.6 – Maximum crack front deflection a0 observed for various asperity toughnesses
and three different values of the incident crack speed v/cs . The deflection of the crack front
interacting with the tougher asperity either creates a supershear burst (star symbols) or not
(round symbols). From the geometrical model (cf. Equation 6.7 and Figure 6.5), this observed
transition is predicted to occur at a given crack front deflection, which depends on the incident
crack speed and is depicted by the horizontal dashed lines.

6.7 Parametric study

The supershear bursts studied in this chapter for v = 0.6cs and ζ = 3.0 are also observed

with different incident crack speeds or asperity toughnesses as reported in Figure 6.6. The

dashed lines correspond to the predicted minimum front perturbation required to observe

a supershear burst at the center of the domain according to Equation 6.7. The proposed

model gives therefore a quantitatively good prediction with fast crack front speeds. At slower

crack velocity, the front perturbation becomes larger and stops complying with the model

hypothesis of an uniform speed in the normal direction. This inverse relationship between the

incident rupture speed and the front deflection is obvious in Figure 6.6 and can be understood

from Freund’s crack tip equation of motion [42]:

Gc =G = (1−ν2)

E
AI (v)K 2

I . (6.9)
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6.8. Shock waves

Figure 6.7 – Portion of the crack front moving with a forward velocity vx > cR . The dashed
blue line emphasizes the expected portion for the reference case presented in Figure 6.3, while
the value a0/Z = 0.371 is read from Figure 6.6 (v = 0.6cs and ζ= 3).

In Equation 6.9, KI and AI (v) are respectively the mode I stress intensity factor and universal

function defined by

AI (v) = αd v2

(1−ν)Dc2
s

, (6.10)

where α2
s,d = 1− v2/c2

s,d , and D = 4αdαs − (1+α2
s )2. Front perturbation analyses presented

in [2, 15, 60] describe how the crack front deflection created by the presence of the asperity

leads to an increase of the stress intensity factor ΔKI at the edge of a tougher heterogene-

ity to compensate its associated increase in interface fracture energy ΔGc . In a first-order

approximation, this change in energy release rate can be written as:

Gc +ΔGc = (1−ν2)

E
AI (v)(KI +ΔKI )2. (6.11)

The velocity-dependent coefficient AI (v) monotonically increases with v , which implies that,

the interaction of a faster crack speed with a given heterogeneity characterized by ΔGc leads

to a lower ΔKI , i.e., to a smaller deflection of the crack front. For a more detailed description

of the link between the perturbation amplitude for a dynamically propagating crack front and

the associated effect on the local value of the stress intensity factor, please see [15].
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Chapter 6. Supershear bursts in the propagation of tensile crack

Figure 6.8 – The supershear burst creates shock waves driving energy far from the asperity
site. a) Snapshot of crack opening velocity field δ̇n following the failure of the asperity whose
position is highlighted by the white dashed circle. The colored stars denote the positions at
which the time-evolution of δ̇n is computed and presented in (b) and (c). b) Evolution of δ̇n

observed at the different positions highlighted in (a). The strong surface waves caused by the
rupture of the asperity are visible after the initial peak characteristic of the rupture front. c)
Zoom in δ̇n history (dotted rectangle in (b)) emphasizing first the trace leaved by the persistent
“triangular” shock wave, sharply followed by the decaying “circular” front. The black curves
correspond to additional sampling points located between the red and cyan positions.

6.8 Shock waves

Our study demonstrates how supershear propagation can also exist in the tensile failure of

linear elastic materials. However, supershear events emerge exclusively where the crack front

curvature is discontinuous and occur thereby in the form of localized burst along the crack

front. Nevertheless, these short-lived bursts can have a significant impact on the overall

rupture dynamics through the creation of shock waves associated with these supershear

propagation events. Figure 6.8a presents the profile of the normal opening velocity field δ̇n

just after the rupture of the heterogeneity. Two surface wave fronts can be identified: a circular

front released by the failure of the asperity and growing radially at the Rayleigh wave speed

along the fracture surface, and a triangular front characteristic of the shock wave generated

by the supershear motion of the crack. For several locations along the fracture plane, Figure

6.8b shows how the amplitudes of these wave fronts are comparable to the opening velocities

observed during the rupture. Moreover, as the circular wave front progressively decays as

it expands along the fracture surface, the triangular shock wave front propagates along the

fracture surface with a persistent amplitude [79], as highlighted in Figure 6.8c.
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6.9 Conclusion

Taking advantage of the fine discretization allowed by the numerical scheme based on a spec-

tral boundary integral formulation of the 3D elastodynamic equations, we study the large

distortion of an initially straight dynamically propagating crack front as it interacts with a circu-

lar asperity. Our study uncovers the existence of supershear bursts emerging during the tensile

failure of a linearly elastic material, beyond the range of crack propagation speeds allowed by

the classical theory of dynamic LEFM. The crack front speeds computed in a direction normal

to the propagating front remain sub-Rayleigh as long as the front curvature is continuous, and

the supershear bursts are associated with the emergence of a cusp in the crack front caused by

the heterogeneity. These supershear episodes create shock waves persisting along the fracture

surfaces far from the asperity site. Several experimental studies [51, 56, 57] reported how fast

tensile ruptures (between a few tenths of cs and the branching velocity) diverge from LEFM

predictions. These events are characterized by significant crack front distortions caused by

microscopic heterogeneities [55, 169] and/or the nucleation of microbranches able to form

cusps along the crack front line [178]. In this context, the resulting discontinuities are favorable

site to trigger these short-lived “sonic booms” capable of significantly impacting the overall

rupture dynamics.
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7 Onset of sliding across scales

Along a frictional interface bounding two nominally flat solids, sliding initiates as the propaga-

tion of slip fronts bringing the interface from a sticking to a sliding state. This macroscopic

rupture dynamics can be successfully mapped on the elastodynamics of a moving shear crack.

However, this analogy does not apply to the nucleation process, which mostly develops at the

scale of the microcontacts. In this context, this chapter studies the onset of rupture along a

heterogeneous plane whose shear strength is sparsely distributed at some discrete spots along

the interface. It hence bridges the heterogeneous fracture problem discussed in the previous

chapters to the dynamics of frictional interfaces. This study first presents how a cohesive

approach can be conveniently used to capture the two main failure mechanisms of the micro-

contact junctions (cf. Figure 2.14). Taking advantage of a scalable parallel implementation of

the cohesive element method, this work explores how these different mechanisms arising at

the microscale of frictional interfaces impact the nucleation and propagation of slip fronts

observed macroscopically. These outstanding simulations (70M degrees of freedom) reveal

how the “brittle-to-ductile” transition at the scale of the microcontacts can significantly reduce

the apparent frictional strength of the interface, without any visible change in the macroscopic

fracture energy measured during the slip front propagations. These results are then discussed

and proposed as an explanation of the “slippery but tough” transition experimentally observed

after the lubrication of frictional interfaces.

This chapter is currently being adapted into a scientific publication:

F. Barras, R. Aghababaei, and J.-F. Molinari, “Onset of sliding across scales: How the microcon-

tacts impact frictional strength,” In preparation, 2018
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7.1 Introduction

The onset of sliding along frictional interfaces is driven by a similar dynamics than the one

observed during the rupture of brittle materials. The frictional strength is unevenly distributed

along the contacting plane, shear stresses concentrate at the edges of inherent flaws and

eventually lead to the nucleation of rupture fronts propagating along the contact plane. Just

like a propagating shear crack, the shear stress drops and sliding starts in the wake of a slip

front that is moving along the interface. This analogy particularly suits the observed behaviors

of frictional interfaces at a macroscopic scale and explains that earthquake dynamics has been

studied for many decades as the propagation of shear cracks along crustal faults [43, 180].

In this framework, pioneer cohesive approaches have been developed to study numerically

the propagation of slip fronts, for which the resistance to sliding is modeled as progressively

dropping with interface slip (often referred to as slip-weakening models) [6, 40, 47, 110]. Using

high-speed camera and photo-elasticity, slip fronts were later observed experimentally along

interfaces bounding two blocks of PMMA. These “laboratory-earthquakes” confirmed the

dynamics predicted by the early cohesive models [73, 76, 77].

Recent experiments [126] quantitatively showed how the LEFM theory perfectly describes the

evolution of strains measured at a short distance from the interface during the propagation of

slip fronts. From this fit, a unique parameter emerges, the equivalent fracture energy Gc of

the frictional interface, which was later used to rationalize the observed arrest of slip fronts

in light of the energy balance criterion [128, 129]. The same framework was also successfully

applied to describe the failure of interfaces after lubrication [127]. Despite a reduction in the

force required to initiate sliding, the equivalent fracture energy measured after lubrication

was surprisingly higher than for the dry configuration [24]. This apparent paradox in the

framework of linear elastic fracture mechanics is expected to arise during the nucleation

phase, which is controlled by the microscopic nature of friction and contact. At the microscale,

surfaces are rough and contact only occurs between the surface peaks, resulting in a very

heterogeneous distribution of the sliding resistance [91, 181].

In this context, the objective of this work is to investigate numerically the role of this hetero-

geneous microscopic strength profile at the onset of sliding driven macroscopically. Using a

cohesive approach implemented in a high performance finite-element library, we simulate the

onset of sliding across two scales. At the macroscopic level, we study the dynamic stress fields

and the energy balance at the onset of the rupture, while at the microscopic scale, we observe

how the fracture process zone interplays with the heterogeneous strength profile. This study

reveals how tiny differences in the length of the process zone, only visible at the scale of the

microcontacts, can magnify the heterogeneous microstructure and have a direct impact on

the nucleation phase.
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7.1. Introduction

Figure 7.1 – Geometry of the studied problem. The inset presents the schematic shear stress
σx y profile predicted by LEFM at a distance r from the crack tip. Dissipative zone (I ) at the
immediate vicinity of the tip. Far from the dissipative zone (I I ), σx y is dominated by the square
root singularity. Further away from the tip (I I I ), the non-singular contributions dominate
the profile of σx y which converges toward the far-field stress conditions. Our work aims at
describing how tiny perturbations only visible at the scale of (I) have a direct impact on the
onset of rupture fronts.
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7.2 Problem description

We consider two linearly elastic blocks of height h/2 brought into contact along their longitu-

dinal face of length l . As presented in Figure 7.1, the two blocks are progressively sheared by

displacing the top surface at a constant speed Δ̇x , while the bottom surface is clamped. In a

Cartesian system of coordinates, whose origin stands at the left edge of the contacting plane,

the boundary conditions of this elastodynamic problem correspond to

⎧⎪⎪⎨
⎪⎪⎩

u(x,−h/2, t ) = 0

u̇x (x,h/2, t ) = Δ̇x

uy (0, y, t ) = uy (l , y, t ) = 0

(7.1)

and lead to a state of simple shear, for which the only non-zero components of the Cauchy

stress tensor are σx y = σy x = τ. The elastodynamic solution obtained from the conditions

(7.1) in presence of a perfectly intact interface is given in Figure 7.2. At time t = 0, the two

continua initially at rest start being progressively loaded with a shear wave whose amplitude

corresponds to Δτ=μ/cs Δ̇x , with μ the elastic shear modulus and cs the shear wave speed.

The assumption of an intact interface only holds during an initial stage until the displacement

field across the contacting plane becomes discontinuous δ(x, t ) = u(x,0+, t )−u(x,0−, t ). The

sliding resistance emerges from a little-understood combination of phenomena developing at

different length scales. In this work, the latter and associated dissipative processes are assumed

to be constrained at the interface and entirely described by a slip-dependent cohesive law

deriving from a thermodynamic potential Φ(δx ). As discussed later, the shape of this potential

is chosen to reproduce the mechanical response of the microcontact junctions computed

from atomistic simulations [105, 106, 182].

The real contact area between two deformable solids exists along a restricted fraction of

the total surface area, leading to a very heterogeneous distribution of the sliding resistance,

which highly depends on material and surface properties. The normal pressure and shear

stress concentrate at the contacting peaks of the rough surfaces, while valleys remain free of

stress. The primary objective of this study consists in understanding the effect of this very

heterogeneous microscopic profile on the nucleation process of slip fronts. Nevertheless, the

model could add residual friction at the valleys or in the trail of the fronts with no loss of

generality. From this complex topography, the sliding motion initiates at the edges of a critical

non-contacting region, which is assumed to exist at the very left of our model interface with

a size w0. Moreover, the rough contact distribution sketched in Figure 7.1 is approximated

as a regular pattern of resisting and broken patches characterized by a unique critical length

w < w0.
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7.2. Problem description

Figure 7.2 – Elastodynamic solution under intact interface conditions. The dynamic fields
are mediated by the vertical propagation of a shear wave front. t∗ = h/cs is the time needed
by the front to travel between the top and bottom surfaces and n ∈N is the total number of
reflections observed at the top boundary.

7.2.1 Numerical method

The elastodynamic equation is solved with a finite-element approach using a lumped mass

matrix coupled to an explicit time integration scheme based on a Newmark-β method [140]

according to the presentation given in Section 3.2. The stable time step is defined as function

of the dilatational wave speed cd and the spatial discretization Δs as

Δt = 0.7
Δs

cd
, (7.2)

with Δs being typically set to l
1000 in this work. The virtual work contribution (cf. Equation

3.33) of the frictional plane is written as

Ŵ (t ) =
∫l

0
τ(x, t )δ̂x (x, t )d x, (7.3)

with δ̂x being the virtual interface slip and τ the shear traction acting at the interface, which is

derived from the thermodynamic potential and expressed as

τ= ∂Φ

∂δx
= δx

δc
τc e1− δx

δc , (7.4)

for Φ being an exponential Rose-Ferrante-Smith universal potential [8]. In Equation 7.4, τc and

δc are respectively the maximum strength and critical slip of the interface characterizing the

exponential law sketched in Figure 7.3, for which the equivalent fracture energy corresponds

to

Gc =
∫∞

0
τdδx = eτcδc . (7.5)
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Chapter 7. Onset of sliding across scales

Figure 7.3 – Exponential cohesive law given in Equation 7.4 and derived from a Rose-Ferrante-
Smith [8] type of universal binding potential.

This formulation has the interest of being equivalent to the cohesive slip-weakening law used

in the macroscopic modeling of frictional interfaces [6,9] and, at the same time, representative

of the micromechanical behavior observed during the progressive shearing of microcontact

junctions [105, 106, 183]. Indeed, Aghababaei et al. [105, 106, 182] studied the shear failure of

two interlocking asperities using atomistic simulations and reported how the profile of the

tangential force versus sliding distance follows a similar evolution than the exponential cohe-

sive law (see for example Fig. 1 of [106]). In this context, the chosen cohesive formulation can

be interpreted as a coarse-grained representation of the underlying microcontact junctions.

More details about the finite-element formulation [18, 19, 184] and the implementation of

cohesive element models [144, 145] can be found in the reference papers. Capturing the

multi-scale nature of the problem requires an efficient and scalable parallel implementation,

capable of handling several millions of degrees of freedom on high performance computing

clusters. To this aim, we use our homemade open-source finite-element software, whose

implementation is detailed in [146, 147] and whose sources can be freely accessed from the

c4science platform 1.

7.2.2 Material properties

The results are presented hereafter with adimensional scales but the material properties of

Homalite used in the simulations are given to the reader for the sake of reproducibility: Young’s

modulus E = 5.3 [GPa], Poisson’s ratio ν= 0.35, shear wave speed cs = 1263 [m/s], and typical

interface fracture energy 〈Gc〉 = 23 [J/m2].

1https://c4science.ch/project/view/34/
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7.3 A characteristic length scale controlling the brittle-to-ductile

transition

In this first part, we study the onset of sliding from a single uniform and homogeneous resisting

junction of fracture energy Gc and size (l −w0). Figure 7.4a presents the evolution of energies

observed during a typical rupture event, i.e, the applied external work WΔ, the elastic strain

energy Eel, the fracture energy Efrac, and the kinetic energy Ekin. During an initial phase, the

elastic strain energy builds up in the system following the dynamics described in Figure 7.2 and

depicted by the dashed lines in the energy plots of Figure 7.4a-b. After several back and forth

reflections of the shear wave, a slip front nucleates at x = w0, breaks the interface cohesion

and releases E∗
frac =Gc (l −w0). The asterisk mark simply distinguishes the cumulative value of

energy obtained after interface failure from its transient value, i.e. E∗ = E(t >> t∗). After the

complete failure, an eventual excess of mechanical energy (W ∗
Δ −E∗

frac) remains in the system

and takes the form of elastic vibrations in absence of any other dissipative process.

Figure 7.4b describes the evolution of energies observed during another rupture event, during

which sliding initiates for a significantly lower applied external work, exactly balancing the

interface energy (W ∗
Δ = E∗

frac). Perhaps surprisingly to the reader, these quantitatively different

sliding events share identical elastic properties and fracture energy Gc . The different dynamics

arise solely from the size of the process zone, which represents how sharp stresses concentrate

or the damage diffuses at the vicinity of existing flaws. When the size of the process zone lpz is

comparable to the resisting junction size (l −w0), the sliding motion develops along a damage

band spreading over the entire length of the interface with an energy balance similar to one

observed in Figure 7.4b. Conversely, if lpz � (l −w0), sliding initiates in the form of a crack

front propagating from x = w0 and leading to a more violent rupture as described in Figure

7.4a.

The limit of an infinitesimally small process zone corresponds therefore to a singular shear

(mode II) crack, whose propagation initiates according to LEFM criterion KI I > Kc [31]. Kc is

the interface fracture toughness, which can be computed from the fracture energy as

Kc =
√

Gc
E

(1−ν2)
. (7.6)

KI I is the stress intensity factor, which depends on the far-field shear stress σ∞
x y , the crack size

w0 and a dimensionless factor χ accounting for the geometry:

KI I =χσ∞
x y
�
πw0. (7.7)

For the edge crack configuration of interest, χ can be approximated as 1.12, such that the

rupture is expected to initiate when

σ∞
x y >

1

1.12

√
Gc

πw0

E

(1−ν2)
. (7.8)
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This Griffith-type [1, 10, 31] of criterion explains how the rupture nucleation is constrained by

a thermodynamic criterion whose associated strain energy barrier can be estimated following

Equation 7.8 as

E lefm
el ≈ 1

2μ

∫
Ω

(σ∞
x y )2dΩ= Gc

(1.12)2

hl

πw0(1−ν)
. (7.9)

The resulting quadratic relationship between the far-field stress and the strain energy can be

visualized from the initial build-up of strain energy (black dashed lines in the plots of Figure

7.4a and b).

Finally, linear elastic fracture mechanics predicts that the size of the process zone at the onset

of the rupture scales according to the ratio K 2
c /σ2

c . Using Equations 7.5 and 7.6, the process

zone size at the onset of the rupture can therefore be estimated as

lpz ≈ e
δc

τc

E

(1−ν2)
= Gc

τ2
c

2μ

1−ν
. (7.10)

Along various interface properties and geometries, Figure 7.4c presents how the observed

transition between sharp crack-like events (for lpz /(l −w0) � 1) and smoother plastic-like

decohesions (for lpz � (l −w0)) can be rationalized using the size of the process zone. Note

that the excellent alignment of data points observed in Figure 7.4c only exists between events

triggered at a same loading rate Δτ=μ/cs Δ̇x , which dictates the dynamic overshoot visible

along the vertical axis.

The evolution described in Figure 7.4c is equivalent to the transition from strength-control

fracture (F∗
Δ ∼ τc ·(l −w0)) for large process zone toward toughness-control failure (F∗

Δ ∼σ∞
x y ·l )

with shorter process zone reported in the framework of tensile fracture [185]. F∗
Δ corresponds

to the macroscopic force required to rupture the interface cohesion.

A similar brittle-to-ductile transition exists in the failure of the microcontact junctions (cf.

middle and right plots of Figure 2.14). Aghababaei et al. [105] revealed how a characteristic

junction size d∗ mediates this transition from the brittle rupture of the apexes of junctions

larger than d∗ to the ductile smoothing of junctions smaller than

d∗ =λ
Δγ

σ2
j

μ. (7.11)

In the equation above, Δγ corresponds to the energy associated to newly created surfaces

(equivalent to Gc ), while σ j is the junction adhesive shear strength (equivalent to τc ). λ

is a dimensionless factor accounting for the geometry (typically in the range of unity) and,

therefore, d∗ (Equation 7.11) corresponds to a nano/microscopic physical interpretation of

lpz (Equation 7.10) used in the “coarse-grained” cohesive model. Remarkably, there is a direct

analogy between the brittle-to-ductile transition (controlled by d∗) observed during the failure

of microcontacts [105] and the “coarse-grained” dynamics (controlled by lpz ) presented in

Figure 7.4c with the cohesive model. The latter represents therefore a powerful tool to probe
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7.3. A characteristic length scale controlling the brittle-to-ductile transition

Figure 7.4 – The ratio of the process zone size to the length of the resisting junction mediates
the work required to initiate sliding. (a) and (b) present two typical time evolutions of the
energetic quantities prior to the rupture onsets, which occur, respectively, at t = 92t∗ and
t = 35t∗. The two events shared the same elastic properties and Gc = 4〈Gc〉, but their respective
interface cohesive laws lead to lpz /(l −w0) = 3.5 ·10−2 and lpz /(l −w0) = 3.5. The latter are
highlighted on the associated shear stress profiles presented for the two interfaces before the
onset of sliding (the colors of each stress profile are scaled between zero and the respective
values of τc ). The dashed lines in (a) and (b) describe the theoretical build-up of elastic
strain energy expected for intact interface conditions according to the dynamics presented in
Figure 7.2. (c) Normalized external work required to initiate sliding between the two bodies as
function of the ratio between the process zone size lpz and the resisting junction size (l −w0)
for different types of interface properties and geometries.
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Figure 7.5 – Process zones smaller than w magnify the properties of the heterogeneous
microcontacts, which are averaged in the case of larger process zone sizes. The colored circles
present the results of two types of interfaces characterized by the same average rupture energy
〈Gc〉. Since l A,B

pz << l −w0, the two interfaces require a similar amount of work to start sliding
when the strength is homogeneously distributed along the interface (blue circles). However,
the two values of W ∗

Δ significantly diverge in presence of heterogeneous microcontacts with a
characteristic size w standing in between l A

pz and l B
pz (red circles). The grey circles recall the

data presented in Figure 7.4c.

the impact of the microcontacts’ physics on the macroscopic dynamics of frictional interfaces.

7.4 Effect of lpz at the scale of the heterogeneous microcontacts

As illustrated in Figure 7.1, the contact between two solids occurs along a reduced portion of

the interface, between the peaks of the microscopically rough surfaces. To understand the

effect of this very heterogeneous strength profile, we idealized it as a regular array of intact

and broken microscopic segments of characteristic size w = 0.05w0 = 0.005l and refine the

spatial discretization to Δs < l
5000 . The two orders of magnitude difference between the macro-

and microscales lead to an outstanding computational cost (70M degrees of freedom).

Let us consider two interface cohesive properties leading both to an equal average rupture

energy 〈Gc〉 and to two very small process zones (lpz << l − w0). We later refer to these

two systems as interface A (l A
pz = 10−3(l − w0)) and interface B (l B

pz = 5 · 10−2(l − w0)). For

homogeneous and uniform interface properties, the ruptures of these two interfaces present

very similar crack-like dynamics, in agreement with the results presented in the last section

(see the blue circles in Figures 7.4 and 7.5). However when the calculations are repeated

in presence of a heterogeneous microstructure, a significantly different amount of work is

required to initiate sliding motion along the two interfaces (cf. red circles in Figure 7.5). This

major change emerges from the introduction of a new length scale w in the systems, which

exactly stands between the two process zone sizes l A
pz and l B

pz .

For l B
pz

∼= 5w , stress concentration at the edge of the largest flaw spans several valleys and
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7.4. Effect of lpz at the scale of the heterogeneous microcontacts

Figure 7.6 – Zooms at the tip of the critical junction (x = w0) revealing the shear stress
profile existing just before the onset of sliding for interfaces A and B. An artificial vertical

displacement
(
uy (x, y) = ux (x, y)

)
is applied to help visualizing the slip profile along the

interface. The cohesive strength existing between the top and bottom surfaces is depicted
with a gradation from black (τstr = τc ) to white (τstr = 0). (Left) For interface A, the shear stress
and slip localize at the edge of the critical junction, magnifying its toughness. (Right) Along
interface B, several microcontact junctions start slipping and damaging within the larger
process zone. The sketches located in the top right of the plots associate these two distinct
situations to the typical failure behaviors of microcontact junctions discussed in Figure 2.14.

resisting junctions. Within the process zone, several microcontact junctions start slipping and

damaging during the initial loading phase. Their shearing response is thereby homogenized

within the larger process zone and results in a quasi-homogeneous response. Conversely,

for l A
pz � w , stresses sharply concentrate at the edge of the microcontact patches. Hence,

Griffith criterion applies and predicts that the advance da of the rupture front should release

approximately da ·2〈Gc〉 of available strain energy, which is theoretically twice larger than

in the homogenized situation (da · 〈Gc〉). Hence, this toughening mechanism is expected

to be even stronger with higher interface energy contrasts between the toughness of the

microcontacts and the average macroscopic toughness of the interface.

These different damage mechanisms occur during the rupture nucleation at the scale of

the heterogeneous microcontact clusters, as presented in Figure 7.6. However, no notable

difference exists macroscopically between the rupture dynamics of interface A and B. In Figure

7.7, the stress profiles are measured at a macroscopic distance (� w) from the contacting plane

as it is the case during experiments [126,127,129]. In both situations, the stress profiles presents

the K-dominance predicted by LEFM for dynamic shear cracks and the associated dynamic

energy release rates always equate 〈Gc〉. Therefore, apart from the significant difference in the

force/work required to initiate sliding, the two interfaces present a very similar macroscopic

dynamics mediated by the propagation of a slip front along the interface.

Two tiny differences visible in Figure 7.7 between the macroscopic stress profiles of interfaces

A and B should be discussed. First, the stress amplitudes are larger for interface A. It results

from a slight difference in the rupture speed, which is faster along interface A, since a larger

amount of elastic energy is stored in the continuum before the onset of sliding. Second, elastic

waves are visible in the stress profile of interface A, while they do not appear along interface

105



Chapter 7. Onset of sliding across scales

Figure 7.7 – At a distance from the interface the evolutions of the dynamic stress fields
observed macroscopically during the rupture of the heterogeneous interfaces A (top) and B
(bottom) comply with LEFM predictions for an interface fracture energy corresponding to 〈Gc〉.
On the left panels, shear stress at the vicinity of the propagating slip front is mapped using
the same color scale. To mimic the experimental measurements, the white lines highlight the
position along which the components of the Cauchy stress tensor are presented on the right
panels in red. LEFM stress fields, which are presented in Section 2.2, are plotted in blue for a
fracture energy equal to 〈Gc〉. Note that the “bump” visible in the simulation profiles of σx y is
expected and is caused by a shear wave propagating ahead of accelerating shear cracks. This
phenomenon is discussed in details in [9].

B. These waves, which are studied in details in Chapter 5, arise only during the interplay

of dynamic fronts with heterogeneities larger than lpz . Furthermore, their amplitudes are

expected to decay for microstructures smaller than the two orders of magnitude considered in

these simulations and become out of the resolution of macroscopic experiments.

7.5 Discussion

Two elastic blocks brought into contact resist sliding motion across different scales. From

a structural point of view, slip fronts nucleate at the critical portion of the interface and

expend along the contacting plane, similar to the shear crack dynamics described in the

linear elastic theory of fracture. At a smaller scale, surfaces have a rough profile, where the

resistance to sliding is unevenly distributed between the peaks of the surface roughnesses.

In this work, we demonstrate how this microscopic topography is critical in the nucleation

phase of the rupture front, as it can bring two macroscopically identical interfaces to rupture

at very different external work/force. To this aim, we study the onset of sliding across two

scales using a scalable finite-element implementation coupled to an exponential cohesive law,

which allows to have a closer look within the fracture dissipative zone, beyond the scope of

singular fracture theory.

We first study how a single contact junction starts sliding under shear and show how the ratio
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7.5. Discussion

of the junction length over the process zone size controls the rupture mechanism and the work

required by the nucleation. A junction much larger than lpz breaks through the propagation

of a slip front similar to a shear crack [126,127]. Along a junction of comparable size or smaller

than the process zone, the sliding motion initiates along its entire length, similar to the plastic

flowing of the contact junctions under shear stress pictured by Bowden and Tabor [5]. We

further discuss how to connect this “coarse-grained” process zone size lpz to the characteristic

junction size d∗ mediating the failure mechanisms of microcontact junctions.

Moreover, we present how these two rupture mechanisms can exist at the scale of the heteroge-

neous microcontacts even if the macroscopic rupture still follows the singular crack dynamics

described by LEFM. When the process zone size is larger than the contact junctions, the re-

sponse of several microcontacts and valleys is averaged. Conversely, for a process zone much

smaller than the contact junctions, the sharp stress concentration magnifies the individual

strength of the microcontacts leading to a stronger interface.

Therefore, a change in the size of the process zone visible only at the scale of the heteroge-

neous micostructure can significantly impact the apparent strength of the interface. Likewise,

two interfaces with the same fracture energy and identical macroscopic behaviors can never-

theless required significantly different shear force/applied work to initiate sliding. This new

description emerging from the multi-scale nature of the problem will bring fresh insights in

our understanding of frictional interfaces, particularly during the nucleation phase of sliding

events.

In this context, the brittle-to-ductile transition presented in this work brings an interesting

explanation of the “slippery but tough” behavior of lubricated interfaces. Indeed, coating

the surface with a lubricant reduces the adhesive junction shear strength σ j (cf. Equation

7.11). Moreover, as reported by Bayart et al. [129], the lubricant also significantly increases the

critical slip distance δc . These combined effects can therefore increase, simultaneously, lpz

(or equivalently d∗) at the scale of the microcontacts and the macroscopic fracture energy Gc .

Physically, this means that the shear stresses and damage processes sharply concentrate at

the edges of the microcontacts under dry conditions. After lubrication, they start spreading

several microcontact junctions and leads to a more ductile failure of the junctions, resulting

macroscopically into a more slippery but tougher interface.

Finally, the observations and conclusions presented in this manuscript also have implications

for our understanding of the fracture of heterogeneous materials and particularly in the context

of multi-scale and hierarchical materials [12, 13], for which the microstructure organization

can be tuned to enhance the overall material properties.
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8 The rupture dynamics of interfaces
obeying laboratory-derived friction
laws
The onset of sliding between two solids brought into contact offers us some useful insights on

the earthquake dynamics and the seismic energy released and radiated in the ground. Histori-

cally, scientists described this problem with two distinct approaches. A first category of studies

focused on the elastodynamic description of the surrounding solids and derived the energetics

driving the propagation of the slipping event, inspired by dynamic fracture theory. A second

class of studies focused on the interface and its complex frictional response. From laboratory

experiments, empirical friction laws were proposed, inspired by the microcontact mechanics.

This chapter aims at bridging these two important and complementary approaches. Using an

elastodynamic boundary integral formulation, we simulate the propagation of slip fronts driv-

ing the onset of sliding using laboratory-derived rate-and-state friction laws. Taking advantage

of the fine representation of the dynamic interface fields, the elastodynamic energy balance

driving the slip front propagation is systematically computed. This study suggests then a new

estimation of the equivalent fracture energy for rate-and-state interfaces and demonstrates

the versatility of the proposed framework with different formulations. This work concludes

by showing how the resulting fracture energy only represents a small fraction of the total

breakdown energy associated to interface slip-weakening behavior, with direct implications in

our understanding of the partition of earthquake energy budget.

The work detailed in this chapter will be disseminated as a scientific publication currently in

preparation:

F. Barras, M. Aldam, E. A. Brener, E. Bouchbinder, and J.-F. Molinari, “On the rupture dynamics

of interfaces obeying laboratory-derived friction laws,” In preparation, 2018

Furthermore, the methodology presented in this work was applied to rationalized the nucle-

ation of rupture fronts from quasi-quiescent frictional interface in light of Griffith’s criterion.

These results are detailed in a scientific publication currently under review:

E. A. Brener, M. Aldam, F. Barras, J.-F. Molinari, and E. Bouchbinder, “Unstable slip pulses and

earthquake nucleation as a non-equilibrium first-order phase transition,” Under review, 2018
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Chapter 8. The rupture dynamics of interfaces obeying laboratory-derived friction laws

8.1 Introduction

Two elastic solids come into contact at the scale of their surface roughnesses, leading to

highly non-uniform distributions of pressure and stress, which concentrate at the peaks of

the surface forming the microcontacts [91]. The frictional response of this heterogeneous

topography mediates the onset of sliding and the rupture dynamics arising in many physical

systems, including the earthquake cycle developing along crustal faults. The latter is typically

characterized by silent periods followed by rapid seismic events [90]. In the literature, two

distinct approaches exist to describe the frictional contact mechanics underlying this stick-slip

behavior.

The first class of models is grounded on the elastodynamic equation governing the seismic

energy budget. The propagation of slip front is described as a traveling shear crack and studied

within the dynamic fracture framework [42, 43, 122]. To regularize the infinite shear stress

predicted at the tip of singular cracks, pioneer cohesive models have been developed, for

which the friction coefficient c f is assumed to drop from a static to a dynamic value after

the interface slips a characteristic distance [6, 110]. The so-called slip-weakening models

have then been extensively used to study the rupture dynamics of seismic events including

the speed of the front [47, 123, 124], the impact of fault heterogeneities [80, 82, 83, 85, 125] as

well as the seismic energy budget [75, 134, 188]. By measuring the strain evolution during the

onset of frictional slip, recent experiments quantitatively showed how dynamic fracture theory

perfectly describes the slip front dynamics [126–129]. These experiments further highlight

how the nucleation process still eludes the classical fracture mechanics models [24]. This

discrepency is presumed to arise from the microscopic nature of contact.

The second type of approaches focuses on the frictional contact mechanics of rough mul-

ticontact interfaces (MCI). It emerges from the works of Dieterich [22] and Ruina [23], who

proposed a frictional constitutive law describing the observed evolution of c f with contact

time and sliding velocity. In this laboratory-derived friction law, the friction coefficient is

function of the sliding velocity and a “state” variable φ. The latter has a unit of time and is

interpreted as the average age of the underlying microcontacts. Microcontact lifetime reduces

with increasing sliding velocity, which causes a reduction of c f . This velocity-weakening

behavior is intrinsically unstable and received a significant attention in the literature as a

potential mechanism explaining earthquake nucleation [23, 108, 115–117]. Several variations

of the original Dieterich-Ruina formulation have been proposed in the literature [120], in-

cluding the transition toward velocity-strengthening friction at much lower or larger sliding

velocities [118, 119]. Recent “laboratory-earthquake” experiments [111] discussed how the

evolution of the residual stress observed in the wake of the rupture front goes beyond the

slip-weakening description but complies with the behavior emerging from rate-and-state

formulations. However, the latter are essentially derived from empirical observations, whose

upscaling to the dimensions of crustal faults is still debatable. Consequently, an increas-

ing effort is given to propose quantitative physics-based interpretations of rate-and-state

constitutive equations [118, 119, 121, 189].
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8.2. Geometry and elastodynamic formulation

In this context, our work aims to bridge these two complementary descriptions of frictional

contact by applying the rigorous description of the rupture dynamics underlying the elas-

todynamic models of friction to the realistic frictional response existing in the laboratory-

derived constitutive laws. Using a boundary integral formulation of the elastodynamic equa-

tion [16, 17], we study the dynamic propagation of slip fronts along a rate-and-state frictional

interface. The very fine discretization of the contact plane enabled by the numerical scheme

allows for mapping the asymptotic dynamic crack solution to the shear and velocity fields at

the vicinity of slip fronts. In the first part of this chapter, we present the major concepts of

dynamic fracture mechanics by studying the propagation of a shear crack simulated using

a well-established cohesive approach, for which the fracture energy is a priori known. After

this validation step, we apply the same framework to analyze the energy balance driving the

propagation of slip fronts simulated with a rate-and-state friction law. We then propose a

novel procedure enabling to integrate the equivalent fracture energy of rate-and-state friction

laws by properly splitting the rapid rupturing of the microcontacts to the long term effects

associated to the relaxation of the frictional interface. The suggested procedure, which is

grounded on the physical interpretation of rate-and-state laws, is finally validated with var-

ious kinds of formulations. This work concludes by discussing the implication of this new

framework on our current understanding of the earthquake dynamics and the partition of its

energy budget.

8.2 Geometry and elastodynamic formulation

Let us consider two semi-infinite linearly elastic half-spaces in contact along the plane lying

at y = 0 of a Cartesian system of coordinates. A z-invariant (∂u
∂z = u ,z = 0) out-of-plane dis-

placement field (u = (0,0,uz )) is assumed, such that the Lamé-Navier elastodynamic equation

(λ+μ)∇(∇·u)+μ∇2u = ρ
∂2u

∂t 2 , (8.1)

becomes the following scalar wave equation:

c2
s (uz,xx +uz,y y ) = uz,t t . (8.2)

In Equations 8.1 and 8.2, λ and μ are the Lamé elastic constants, while cs =
√

μ/ρ is the shear

wave speed computed as function of the density of the bulk material ρ and its shear modulus.

The two continua are initially sliding one on top of another, at a relative uniform steady-state

velocity v0 under a homogeneous initial shear pre-stress τ0, such that the initial conditions

correspond to

u̇+
z (x, y, z, t = 0) =−u̇−

z (x, y, z, t = 0) = v0/2

σ+
y z (x, y, z, t = 0) =σ−

y z (x, y, z, t = 0) = τ0.
(8.3)
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Chapter 8. The rupture dynamics of interfaces obeying laboratory-derived friction laws

In the equations above, u̇z and σy z are respectively the non-zero components of the velocity

field and the Cauchy stress tensor, while the superscripts +/− respectively denote the top

(y > 0) and bottom (y < 0) half-spaces. At time t = 0, a perturbation is introduced along the

interface and breaks the homogeneous steady-state sliding conditions. The precise nature of

this initial perturbation is detailed later in the chapter.

8.3 Numerical method

The elastodynamic equation 8.2 is solved, once more, using a spectral boundary integral

formulation relating the traction stresses acting along the interface located between two

linearly elastic half-spaces and the resulting displacements. The derivation of this boundary

integral method is presented in Chapter 3.1. In this chapter, an anti-plane independent

formulation is adopted, for which the shear tractions at the interface τz are related to the

displacements by

τ±z (x, t ) = τ0 − μ

cs

(
u̇±

z (x, t )− v0/2
)
+ f ±

z (x, t ). (8.4)

The first right-hand side (RHS) term τ0 accounts for the pre-existing traction present along the

interface in absence of any perturbation. The second RHS term represents the instantaneous

response to a change in interface velocity u̇±
z (x, t )−v0/2, while the last term, f ±

z (x, t ), accounts

for the history of interface displacements. Both f ±
z and u±

z are expressed in the spectral domain

as convolution integrals

[ f ±
z (x, t ),u±

z (x, t )] = ei kx [F±
z (k, t ),U±

z (k, t )], (8.5)

with

Fz (k, t ) =−μ|k|
∫t

0
Hzz

(
|k|cs(t − t ′)

)
Uz (k, t ′)|k|cs d t ′. (8.6)

The convolution kernel Hzz is computed from the Bessel function of the first kind J1 as

Hzz (γ) = J1(γ)

γ
. (8.7)

Four unknowns, τ±z and u̇±
z , exist for every (x, t ) in Equation 8.4, which is therefore completed

by interface conditions. Two distinct types of interface conditions are compared in this chapter,

a fracture interface modeled with a cohesive approach, equivalent to slip-weakening models,

and a frictional interface described by a rate-and-state formulation.
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8.3. Numerical method

8.3.1 Cohesive formulation

In order to both introduce the main concepts of dynamic fracture and train our approach, we

start by studying the dynamic propagation of a shear crack using a cohesive model of fracture,

which directly prescribes the interface fracture energy. Along a fracture interface, the two

continua are assumed to be initially at rest v0 = 0 under a uniform shear stress smaller than

interface strength τ0 < τstr. Hence, Equation 8.4 is completed by the continuity of tractions

and displacements across the interface, as long as the shear traction τz is lower than τstr.

Otherwise, the fracture process breaks the continuity of uz and the velocities u̇±
z are computed

such that τ+z = τ−z = τstr. The value of interface strength is related to the resulting shear

displacement jump δz = u+
z −u−

z through the cohesive failure model:

τstr(x, t ) = τc {1−δz (x, t )/δc } . (8.8)

τc and δc respectively denote the failure strength and critical crack opening displacement of

the rupture plane, and {ξ} = ξ if ξ> 0 and 0 otherwise. The linear slip-weakening law described

in Equation 8.8 leads to a prescribed value of the fracture energy

Gc =
∫δc

0
τz dδz = 1

2
τcδc . (8.9)

In the context of frictional interfaces, the cohesive law (Equation 8.8) is equivalent to the

slip-weakening approach [6, 110], for which the friction coefficient is assumed to drop from a

static cstat
f to a dynamic cdyn

f value after the interface slips a critical distance δc .

8.3.2 Rate-and-state formulation

In the case of antisymmetric frictional sliding between two identical semi-infinite half-spaces

in contact under a uniform pressure σ0 = −σy y (x, y = 0, t), the shear equation of motion

becomes:

τz (x, t ) = c f

(
v(x, t ),φ(x, t )

)
σ0 = τ0 − μ

2cs

(
v(x, t )− v0

)
+ fz (x, t ), (8.10)

with v(x, t) = u̇+
z (x, t)− u̇−

z (x, t) = 2u̇z (x, t) being the relative sliding velocity between the

top and bottom solids. In this chapter, vc denotes the crack propagation speed in order to

prevent any confusion with the rate variable v(x, t ). In rate-and-state formulations, the friction

coefficient c f depends both on v(x, t ) and a state variable φ(x, t ). The latter can be understood

as a macroscopic average lifetime of the microcontacts existing at smaller scales. During

steady state sliding at velocity vss, the microcontacts lifetime is expected to stay constant,

such that the state variable is expressed as

φss = D

vss , (8.11)
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Chapter 8. The rupture dynamics of interfaces obeying laboratory-derived friction laws

with D being a characteristic length of the microstructure often in the range of μ-meter for the

scale of laboratory experiments [91]. A large diversity of rate-and-state formulations emerged

after the pioneer works of Dieterich [22] and Ruina [23]. These laws are typically characterized

by a logarithmic dependence of the coefficient of friction on both v and θ. In this work, we

rely on the recent formulation proposed in [190]:

c f

(
v(x, t ),φ(x, t )

)
= c0

f +a ln
(
1+ v(x, t )

v∗
)
+bc0

f ln
(
1+ φ(x, t )

φ∗
)
, (8.12)

even if, at the end of the chapter, we present how the results discussed in our work are

independent from the choice of the rate-and-state formulation. c0
f , a, b, v∗ and φ∗ are

essentially empirical quantities measured during friction experiments. In addition to Equation

8.12, an ordinary differential equation describing the time evolution of φ should be defined.

In this work, the original aging law proposed by Dieterich [22] is adopted:

φ̇(x, t ) = 1− v(x, t )φ(x, t )

D
. (8.13)

Equations 8.10, 8.12 and 8.13 form a set of interface equations allowing to compute the time

evolution of τz , v and φ.

Finally, the elastodynamic relations derived both for the cohesive and rate-and-state frame-

works are integrated using an explicit time-stepping scheme

u±
z (x, t +Δt ) = u±

z (x, t )+ u̇±
z (x, t )Δt , (8.14)

φ(x, t +Δt ) =φ(x, t )+ φ̇Δt . (8.15)

In order to guarantee the stability and the convergence of the numerical scheme, Δt is defined

as the time needed by a shear wave to travel a fraction β= 0.2 of one grid spacing: Δt =βΔx/cs .

In this chapter, the contact plane is typically discretized with 215 points along the x-direction.

8.3.3 Bulk and interface properties

The material parameters of PMMA summarized in Table 8.1 have been chosen for the simu-

lations reported in this chapter. As discussed in the last section, the message of this work is

independent from the choice of the material parameters and interface formulations and the

results are therefore presented to the largest extent with adimensional scales.

8.4 Crack tip equation of motion

Our modern understanding of fracture is often associated to the works of Griffith and Irwin,

who respectively rationalized the balance of energy mediating crack growth [10] and derived

the relation between the release of potential energy and the universal stress singularity existing

at the vicinity of a crack tip in a linearly elastic material [1]. This well-established theory,
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8.4. Crack tip equation of motion

Parameter Value Unit

μ 3 [GPa]
ν 0.33 [-]
ρ 1200 [kg/m3]

τc 5 [MPa]
δc 0.02 [mm]
Gc 50 [J/m2]

D 0.5 [μm]
c0

f 0.285 [-]

a 0.005 [-]
b 0.075 [-]

v∗ 10−7 [m/s]
φ∗ 0.00033 [s]

Table 8.1 – Typical PMMA material parameters used in the simulations.

known as linear elastic fracture mechanics (LEFM) was extended to dynamic cracks whose

propagation speed exceeds several tenths of the continuum shear wave speed cs . The main

concepts of this dynamic theory of fracture are briefly summarized hereafter and the interested

readers are redirected to reference textbooks ( [42, 43]) for a more detailed presentation.

Following the setup presented in the previous section, we study the propagation of a shear

(mode III) crack computed using a cohesive slip-weakening law. This non-singular approach,

which arose from the work of Dugdale [20] and Barrenblatt [21], became very popular in the

numerical modeling of dynamic fracture ( [125, 144, 145, 148]). The same approach can be

adapted to model a frictional problem, for which the shear resistance is assumed to drop from

a static to a dynamic value after sliding over a critical distance [6, 84, 85, 110, 191] .

The dynamic rupture is nucleated at the center of an interface initially at rest under a uniform

shear stress τc > τ0 > 0 by artificially growing an infinitesimal seed crack toward a size L = Lc ,

at which point it starts to grow spontaneously. Lc , often referred to as the Griffith critical

length, represents the largest stable crack size, which corresponds for a mode-III shear crack

in an infinite medium to

Lc = 4μGc

πτ2
0

. (8.16)

In this fracture example, no slip exists before rupture and hence v0 = 0. Figure 8.1 presents

the resulting dynamics where the initially stable crack progressively accelerates toward cs , the

maximum admissible rupture speed. During the failure, the instantaneous rate of dissipated
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Chapter 8. The rupture dynamics of interfaces obeying laboratory-derived friction laws

Figure 8.1 – Space-time diagram of the dynamic mode III rupture event whose colors divide
broken surface (yellow), fracture process zone (red) and intact interface (black). The blue line
highlights the instant at which snapshots of the stress and sliding velocity are presented in
Figure 8.2. (Inset) Evolution of the rupture speed as function of the crack size.

energy by fracture can be integrated as [148]:

d

dt
Ediss(t ) =

∫
process zone

τz (x, t )v(x, t )dx. (8.17)

The right-hand-side integral is evaluated over the fracture process zone, which corresponds to

the portion of the interface where both τz and v are non-zero. The fracture energy dissipated

per unit crack advance dL is hence computed as

d

dL
Ediss(t ) = dEdiss

dt

dt

dL
= Ėdiss(t )

vc (t )
. (8.18)

d
dL Ediss corresponds to the fracture energy and is therefore constant for the slip-weakening

law of interest, which prescribed d
dL Ediss =Gc (see the right plot of Figure 8.3).

Moreover LEFM predicts that the fracture energy exactly balances the potential energy released

by unit crack advance in the bulk. The latter can be directly computed from the singular stress

concentration near the crack tip, equivalently to the approach proposed by Irwin [1] and

Williams [35] for a static crack. At the vicinity of a dynamic crack moving at speed vc , the stress

field is dominated by a universal square-root singular contribution of the form:

σi j (r,θ, vc ) ∼ K�
2πr

Σσ
i j (θ, vc ). (8.19)
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8.4. Crack tip equation of motion

Figure 8.2 – Stress and velocity concentration observed in the neighborhood of the left-
propagating crack tip at t = 2cs/Lc (corresponding to the cyan line in Figure 8.1). The red area
highlights the fracture process zone.

Stresses are expressed in a polar system of coordinates r,θ whose origin stands at the tip of

the propagating crack. K is the dynamic stress intensity factor and Σσ
i j are universal functions

depending only on the angular coordinate θ and the crack speed. In the anti-plane shear con-

figuration of interest, the mode III stress intensity factor KI I I together with Σσ
y z are describing

the stress field near the growing crack:

σy z (r,θ, vc ) ∼ KI I I�
2πr

cos 1
2θs�
γs

. (8.20)

θs results from the system of coordinates, which is following the moving crack, such that

tanθs = αs tanθ, with α2
s = 1− v2

c /c2
s and γs =

√
1− (vc sinθ/cs)2. Similarly, the asymptotic

form of particle velocity at the vicinity of a dynamic mode III crack is expressed as

u̇z (r,θ, vc ) ∼ vc KI I I

μ
�

2πr
Σv

i j (θ, vc ) = vc KI I I

μ
�

2πr

sin 1
2θs

αs
�
γs

. (8.21)

Figure 8.2 presents the evolution of the interface fields τz =σy z and v = 2u̇z in the neighbor-

hood of the simulated crack. At the immediate vicinity of the crack, the cohesive description

of fracture regularizes the singularity, smearing the tip of the crack over a finite distance, often

named fracture process zone, which corresponds to the red areas in Figures 8.1 and 8.2. Hence,

the latter complicates the definition of the exact crack tip location. However, no material
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Chapter 8. The rupture dynamics of interfaces obeying laboratory-derived friction laws

is able to withstand the square-root singular stress field theoretically existing at the edge of

cracks and a process zone, where nonlinear dissipations regularize the singularity, should

indeed exist at the tip of any crack. Nevertheless, as long as the process zone size remains

small compare to other length scales of the problem, the predictions of Equations 8.19 and

8.21 hold and the dynamic crack growth is driven by this singular contribution (K -controlled

fracture). In this context, the mechanical energy released by unit crack advance, also named

energy release rate, corresponds to

G(t ) = 1

αs

K 2
I I I

2μ
. (8.22)

The spectral formulation allows for a very-fine description of the interface quantities, such

that the square-root singular contribution can be directly mapped on the evolution of τz and

v in the direct neighborhood of the leftward propagating tip according to,

τz =σy z (r = xτ
tip −x,θ = 0, vc ) ∼ KI I I√

2π(xτ
tip −x)

, (8.23)

and

v = 2u̇z (r = x −xv
tip,θ =π, vc ) ∼ KI I I√

2π(x −xv
tip)

2vc

μαs
. (8.24)

xτ
tip and xv

tip are two extremely close, yet slightly different locations within the fracture process

zone, corresponding to the positions of the theoretical singularities of, respectively, τz and

v . Two unknowns exist for each of the Equations 8.23 and 8.24, namely the crack tip position

and the dynamic stress intensity factor. Their values are obtained through a nonlinear least-

squares regression [192–194] mapping the simulation data on the asymptotic solutions of

Equations 8.23 and 8.24. The computed values of the stress intensity factor are then injected

in Equation 8.22 to obtain the energy release rate Gτ and Gv , which are presented in Figure

8.3 and computed, respectively, from the dynamic evolution of τz and v . While it seems

reasonable that two different singularity positions can exist for v and τz within the fracture

process zone, the value of the energy release rate should be unique. In this context, both the

rescaled velocity field v · μαs

2vc
and shear tractions τz are simultaneously fitted in order to find

xv
tip and xτ

tip, plus a single value of KI I I . The resulting unique value of G is also presented in

Figure 8.3, where it exactly stands between Gτ and Gv . The observed variations between these

three estimations of the energy release rate give useful information about the precision of the

adopted fitting strategy. A fit enforcing a unique value of KI I I and a unique position of the tip

(xτ
tip = xv

tip) has also been tested and yields very similar predictions of the energy release rate,

standing in between G and Gτ. It has then been omitted in Figure 8.3 in order to not overload

the plot.
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8.5. Rupture dynamics with rate-and-state friction laws

Figure 8.3 – (Left) Asymptotic contribution mapping the stress and velocity fields presented
in Figure 8.2. (Right) Dynamic energy balance computed during crack propagation from the
fracture energy Ėdiss/vc (Equation 8.18), whose value Gc is prescribed in the slip-weakening
model, and the energy release rate G (Equation 8.22). See the main text for an explanation of
the differences between G , Gv and Gτ. The dashed gray lines are guide to the eyes highlighting
the ±25% precision.

8.5 Rupture dynamics with rate-and-state friction laws

In the previous section, we precisely described the energy balance driving the propagation of

a shear crack. In this section, we will repeat the same analysis for a frictional interface charac-

terized by a rate-and-state formulation presented in Equation 8.12, for which no prescription

of the interface strength or fracture energy exists. The rate-and-state formulation allows for a

spontaneous nucleation of rupture fronts along an interface initially in steady-state equilib-

rium, instead of the artificial nucleation procedure (growth of a seed crack) described above

with the slip-weakening law. The value of the friction coefficient observed during uniform

steady-state sliding is obtained by combining Equations 8.11 and 8.12:

c f (vss) = c0
f +a ln

(
1+ vss

v∗
)
+bc0

f ln
(
1+ D

vssφ∗
)

(8.25)

and is plotted in Figure 8.4 for the parameters described in Table 8.1.

Let us consider an interface initially at equilibrium under an initial pre-stress τ0 = 0.36σ0.

From Equation 8.25, two homogeneous steady-state sliding velocities exist to equilibrate the

loading conditions τ0/σ0 = 0.36. As illustrated in Figure 8.4, a slow sliding velocity vw exists

on the velocity-weakening branch (dcss
f /d vss < 0), while a fast sliding solution vs exists on the

velocity-strengthening branch (dcss
f /d vss > 0). vw represents an unstable equilibrium state, as

a slight increase (decrease) of the sliding velocity decreases (increases) the friction coefficient,

which sustains even more the disequilibrium of the system. This work mainly focuses on
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Chapter 8. The rupture dynamics of interfaces obeying laboratory-derived friction laws

Figure 8.4 – Evolution of the friction coefficient observed under homogeneous steady-state
sliding conditions. For a given loading ratio τ0/σ0 = 0.36 (dashed black line), two equilibrium
states exist, one at low slip rate on the velocity-weakening branch vw and one at high slip
rate on the velocity-strengthening branch vs . The dashed blue line and its associated green
star highlight the evolution of c f (vss) accounting for inertial effects (see the main text for the
detailed explanation).
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8.5. Rupture dynamics with rate-and-state friction laws

Figure 8.5 – Evolution of the maximum sliding velocity observed during the destabilization of
an interface initially sliding uniformly at vw . t < t1: the perturbation grows following a linear
instability regime (cf. Equation 8.28). t1 < t < t2: two rupture fronts are propagating along
the contact plane. t > t2: rupture fronts have broken the entire interface which progressively
converges toward a new steady-state at vs .

perturbations leading to a progressive slip acceleration and bringing the system to transition

toward the stable equilibrium position on the strengthening branch (at v = vs). It is important

to note how within a semi-infinite half-space, inertia partially impedes the slip acceleration

according to

c f (vss) = c f (vw )− μ

2cs

(
vss − vw

)
, (8.26)

which corresponds to the dashed blue line in Figure 8.4. Therefore, the actual steady state is

reached for a sliding velocity slightly slower than vs along an interface bounding two semi-

infinite solids (or, by extension, along an interface for which this destabilization process occurs

over time scales shorter than the time for waves reflection at the top/bottom boundaries). In

this context, a tiny perturbation ε= 10−6 of the state variable is introduced at t = 0 along the

interface according to

φ(x, t = 0) = D

vw
+εsin(kx), (8.27)

with k = 2π/X , where we recall that X is the horizontal periodic scale, which is typically equal

to X = 10[m]. Figure 8.5 details the progressive destabilization of the interface, which follows

three distinct phases.
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1. The initial stage of the perturbation growth can be studied through a linear stability

analysis, which predicts an exponential evolution of the kind Δv = v −vw =αeλt . The

growth rate λ can be approximated as [186]

λ∼= vw

4Dã

⎛
⎝
√(

2(c0
f b̃ − ã)− Dμk

σ0

)2

−8
Dμkã

σ0 +2(c0
f b̃ − ã)− Dμk

σ0

⎞
⎠ , (8.28)

which corresponds to the the largest positive eigenvalue with ã = avw
v∗+vw

and b̃ = bD
D+vwφ∗ .

Figure 8.5 shows how this linear stability analysis remarkably describes the simulated

dynamics. At the end of this initial stage, perturbation growth accelerates at the position

of the largest slip rate, where it finally leads to the nucleation of two rupture fronts at a

critical time t1.

2. The second phase is characterized by the propagation of two slip fronts bringing the

interface to slide at a faster slip rate in their wake. t1 therefore corresponds to the time

at which two rupture fronts start propagating. However, some extra time is required to

develop a well-defined square-root singularity in the dynamic fields. In consequence,

the analyses presented later in this chapter systematically commence slightly after t1.

3. Finally, once the two rupture fronts have crossed the entire contact plane, a third stage

starts, during which the interface progressively converges toward a new steady-state at

vs .

Figure 8.6 shows the typical profile of stress, velocity and state observed along the interface

during these three-step transition at the onset of sliding.

While the first phase described above received a significant attention in the literature as a

mechanism for earthquakes nucleation [23, 108, 115–117], the dynamics mediating the second

phase is still overlooked, although paramount in the partition of earthquakes energy budget.

Hence, the objective of this work is to systematically analyze the energy balance driving the

propagation of the frictional fronts (during the second stage) in light of the dynamic fracture

concepts presented in the previous section. First, the propagation of the stress and velocity

peaks is tracked along the interface. As presented in Figure 8.7, these maxima of the stress and

velocity fields have extremely close, yet distinct locations, where their respective evolutions are

similar to the ones observed at the vicinity of a shear crack . Moreover, the propagation speed

reported in Figure 8.7 is consistent with the admissible speed range predicted for dynamic

mode III cracks (i.e. 0 < vc < cs). Two notable differences should be addressed in order to draw

a more quantitative picture.

First the shear stress only drops few percents of its magnitude in the wake of the front, whereas

it completely vanishes along the free surfaces created by classical shear crack. Taking advan-

tage of the linearity of the bulk constitutive equation, the residual shear stress τr
z observed far

from the rupture front can be subtracted before mapping the singular shear crack solution
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Figure 8.6 – Typical profiles of interface fields (v ,τz ,φ) observed during the three stages of the
onset of sliding discussed in Figure 8.5, respectively in blue for t < t1, in red for t1 < t < t2 and
in green for t > t2.
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Figure 8.7 – (Left) Zoom into the stress and velocity profiles observed at the vicinity of the
leftward propagating rupture front.(Right) Evolution of the propagation speed.

on a frictional problem [40, 126]. In this context, the shear stress field observed along the

rate-and-state interface of interest can be decomposed as

τz (t ) =Δτz (t )+τr
z (t ) = KI I I (t )√

2π(xτ
tip −x)

+τr
z (t ). (8.29)

Following the derivation presented in the previous section (Equation 8.24), the velocity can be

similarly expressed as

v(t ) =Δv(t )+ vr (t ) = KI I I (t )√
2π(x −xv

tip)

2vc (t )

μαs(t )
+ vr (t ). (8.30)

The far-field residual stress τr
z and velocity vr ∼= 0 are observed at different locations given by

the form of the associated universal functions Σσ(θ, vc ) and Σv (θ, vc ), respectively in the wake

and ahead of the propagating front.

Following the procedure discussed in the previous section, a unique value of KI I I (t ) success-

fully emerges from the mapping of the square-root singular solution on Δv and Δτz , which is

presented in Figure 8.8 with the associated values of the energy release rate. The comparison of

Figure 8.3 and 8.8 strongly supports that the propagation of the rupture fronts observed along

a rate-and-state interface is driven by a similar release of potential energy than a dynamic

shear crack.

The second major difference with the slip-weakening law used in the previous section is the

fracture energy, which is not intrinsically prescribed in the rate-and-state friction law, but

emerges from the rupture dynamics. Along a frictional interface, the equivalent fracture energy

is not the sole dissipation mechanism entering the energy budget as a significant amount of

frictional work is dissipated before, during and after the rupture event, essentially as heat. In
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Figure 8.8 – (Left) Shear stress and velocity drops observed at the vicinity of a slip front
are mapped by the asymptotic contribution described in Equations 8.29 and 8.30. (Right).
The stress intensity factor emerging from this mapping is used to compute the elastic energy
released rate, similarly as in Figure 8.3. However, the vertical axes are conversely displayed with
units to emphasize that no intrinsic value of interface strength τc or energy Gc are prescribed
with the rate-and-state formulation.

the context of slip-weakening models of friction, Ida [110] and Andrews [6] demonstrated how

the equivalent fracture energy can be equivalently computed after subtracting the residual

shear stress τr observed in the wake of slip front:

Gc =
∫δc

0
(τ(δ)−τr )dδ= 1

2
σ0(cstat

f −cdyn
f )δc . (8.31)

The expression above can be understood in light of Equation 8.29, since, for slip-weakening

friction law, no slip occur before the rupture and the residual shear stress takes a prescribed

value of τr = σ0cdyn
f . In the rate-and-state formulation of interest, a significant amount of

interface slip occurs before and after the rupture event and this “aseismic” motion should not

enter the rupture energy budget. Moreover, the residual shear stress is not prescribed in the

friction law. Combining these considerations with the formalism of Equations 8.31 and 8.17,

the equivalent fracture energy can be written as

Gc (t ) = Ėdiss(t )

vc (t )
= 1

vc (t )

∫
process zone(t )

(
τz (t )−τr

z (t )
)
v dx. (8.32)

The above integral is hence evaluated over an equivalent process zone, which represents a

sufficiently narrow region surrounding xτ
tip and xv

tip. In parallel to the asymptotic change in

sliding velocity, the evolution of the state variable also has a direct impact on the rupture dy-

namics of rate-and-state interfaces [195]. Baumberger et al. [121] discussed how the evolution

of the underlying real contact area A can be inferred from φ as

A(φ) = A0

[
1+b ln

(
1+ φ

φ∗
)]

, (8.33)
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Figure 8.9 – (Left) Archetype evolution of the sliding velocity tailored to illustrate the frictional
response of the rate-and-state interface at the vicinity of a rupture front. (Right) Evolution
of the real contact area computed from Equation 8.33 with the evolution law described in
Equations 8.13 and 8.38. The red area corresponds to the direct effect, during which the total
contact area is reduced by the slip acceleration. At the end of this phase, the real contact
area reaches a minimum value and starts to progressively rebuild over a longer time scale
highlighted by the yellow area.

with A0 a constant representing an initial area of contact. To illustrate the interplay between v

and φ occurring at a given location during the rupture process, we tailor a slip acceleration

with an archetype Gaussian shape and integrate the predicted evolution of the contact area

given by Equations 8.13 and 8.33. Figure 8.9 presents the resulting response to this rapid

change in sliding velocity, which occurs in two steps:

1. An instantaneous drop of the contact area responds to sliding acceleration. Microcon-

tacts population is strongly rejuvenated during this initial phase, which is highlighted

by the red area in the right plot of Figure 8.9.

2. After this direct response, a much slower increase of the real contact area starts and

progressively brings the frictional interface toward a new steady-state equilibrium

(identical to the initial state for this simplified example). This second phase, which can

be physically interpreted as the progressive creep relaxation of the microcontacts [114],

develops over much longer time scale than the one associated to the rupture process.

As discussed in the introduction, φ can be understood as the average lifetime of the underlying

microcontacts population. When the interface slides at a steady velocity v ss , the existing

microcontacts are breaking at the same rate than new microcontacts are created. Hence, the

macroscopic average lifetime reaches a constant value corresponding to φss = D/v ss . The

ratio vφ/D is therefore a dimensionless indicator of the interplay between v and φ on interface

conditions.
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Figure 8.10 – (Left) The equivalent process zone described by the red area is outlined by the
evolution of vφ/D which indicates the portion of the interface where the rupture is currently
reducing the real contact area. (Right). Validation of the energy balance resulting from the
mapping of the asymptotic fields presented in Figure 8.8 and the integration of the equivalent
fracture energy from Equation 8.32.

In this context, we define the process zone as the region surrounding the rupture front over

which vφ/D > 1, i.e. the portion of the interface where the propagating rupture is currently

breaking the microcontacts (φ̇< 0) and reducing the contact area (as in the red area of Figure

8.9). The resulting process zone is highlighted in Figure 8.10(Left) and directly used as the

domain of integration for the evaluation of the fracture energy integral of Equation 8.32, which

can be rewritten as

Gc (t ) = Ėdiss(t )

vc (t )
= 1

vc (t )

∫
vφ/D>1

(
τz (t )−τr

z (t )
)
v dx. (8.34)

Figure 8.10(Right) presents the computed energy balance, which remarkably sustains our

definition of the process zone and confirms the crack-like dynamics driving the rupture of

rate-and-state interface. This definition of the equivalent fracture process zone is in agreement

with the detailed study of the slip-weakening behavior of rate-and-state laws given in [195,196].

Our simulations suggest however that a criterion on φ instead of τz is more robust to define

the limits of the process zone, as the shear traction can experience further slip-weakening

long after the rupture.

As presented in Figure 8.11, the suggested procedure is further validated by keeping the friction

parameters constant but changing the bulk properties and far-field loading conditions. The

latter includes in-plane (mode II) shearing, whose formulation is presented and discussed

in the supplementary materials (Section 8.8). The measured energy budget suggests that

the equivalent fracture energy is an intrinsic quantity emerging from the rate-and-state law,

independent from the bulk properties but slightly varying with the front propagation speed.

The effect of the rate-and-state parameters and formulations are investigated in the next

section.
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Chapter 8. The rupture dynamics of interfaces obeying laboratory-derived friction laws

Figure 8.11 – (Left) Equivalent fracture energy measured for slip fronts moving under different
interface conditions. The rate-and-state parameters are unchanged, while we investigate
different bulk properties (dashed lines represent setups with μ being 10 times smaller), var-
ious far-field loadings (τ0), including a mode II setup (τ0 = 1.015τmin). τmin represents the
minimum loading for which a steady-state sliding solution exists (i.e. the minimum of the
steady-state curve of Figure 8.4.) (Right). Verification of the energy balance for the different
setups presented in the left plot using the same color code.

8.6 Application to other rate-and-state formulations

In this section, we demonstrate how the proposed procedure to compute the equivalent

fracture energy driving the propagation of slip front directly applies to the diverse rate-and-

state formulations existing in the literature. For a detailed review of the different rate-and-state

formulations and their history, the reader is redirected to [120]. Figure 8.12 presents three

different forms of rate-and-state formulation considered in this chapter.

8.6.1 The original velocity-weakening formulation

The following formulation was proposed by Ruina [23] based on the observations reported by

Dieterich [22]:

c f

(
v(x, t ),φ(x, t )

)
= c0

f +a ln
(v(x, t )

v∗
)
+bc0

f ln
(φ(x, t )

φ∗
)
. (8.35)

This original formulation, often referred to as the Dieterich-Ruina law, represents the class

of rate-and-state formulation having a monotonic behavior in the steady-state regime (see

the velocity-weakening green curve in Figure 8.12). Equation 8.35 was derived to describe the

evolution of the frictional force with sliding velocities observed during frictional experiments.

For the typical velocity range of these laboratory experiments, the frictional response is

dominated by the aging contribution, for which sliding at a faster velocity reduces the average

microcontacts age φss = D/vss and leads to a velocity-weakening behavior.
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8.6. Application to other rate-and-state formulations

Figure 8.12 – Steady-state evolution of the friction coefficient observed for four different types
of rate-and-state formulations. The blue curve represents the standard formulation used in
this work (Equation 8.12). The same formulation is used with the parameters given in Table
8.2 (yellow curve). The green curve is the original Dieterich-Ruina formulation (Equation 8.35)
and the red curve describes the “N-shaped” formulation given by Equation 8.37.
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However, at much larger, or much smaller sliding velocities, rate-dependent effects prevail

and the frictional response becomes velocity-strengthening. For a detailed mechanistic pre-

sentation of the rate-dependency of friction law, the reader is redirected to [118, 119].

8.6.2 Velocity-strengthening and slow earthquakes

The formulation used in this chapter (Equation 8.12) has the interest of regularizing the

Dieterich-Ruina law at smaller sliding velocities (v → 0) and contacting times (φ → 0). It

received recent attention in the literature for its velocity-strengthening behavior, which also

exists in frictional experiments at larger sliding velocities [114, 119]. Moreover, a large range of

rupture speed can exist with this type of non-monotonic formulation, from inertial ruptures

v ∼ cs toward slow fronts v/cs ∼ 10−3 [190], which can be observed in Figure 8.13 (in yellow)

using the parameters of Table 8.2. The latter is particularly appealing in light of the recent

observations of slow earthquakes, whose precise origins and mechanics are still mysterious

[197–199].

Parameters Value Units

D 0.5 [μm]
c0

f 0.1 [-]

a 0.05 [-]
b 1.2 [-]

v∗ 10−8 [m/s]
φ∗ 0.05 [s]

Table 8.2 – Interface parameters leading to the steady-state behavior depicted by the yellow
curve in Figure 8.12.

8.6.3 Nucleation from sticking conditions

Finally, a velocity-strengthening branch can arise at extremely small sliding velocities, mostly

caused by the creep of the microcontacts. The resulting “N-shaped” frictional curve can be

described by the following “regularized formulation”, proposed in [117]:

c f

(
v(x, t ),φ(x, t )

)
=
(
1+b ln(1+ φ(x, t )

φ∗ )
)( θ√

1+ (vo/v(x, t ))2
+ξ ln(1+ v(x, t )

vo
)
)

(8.36)

associated to the evolution law

φ̇(x, t ) = 1−
φ(x, t )

√
v(x, t )2 + v2

o

D
. (8.37)

The red curve in Figure 8.12 shows the constitutive law used in this chapter and obtained with

the additional empirical variables vo = 10−7[m/s], θ = 0.28[-] and ξ= 0.005[-]. As discussed
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in the introduction, the nucleation from a velocity-weakening branch arises through a linear

instability [23, 108, 115–117]. Conversely, a quasi-quiescent steady-state exists at extremely

small sliding velocities and represents a stable frictional state, from which the nucleation

of rupture front is still overlooked. In a parallel work [187], we precisely describe how the

nucleation of rupture fronts along an initially locked interface is driven by the propagation of

slip pulses, which are intrinsically unstable, i.e. the pulse width either expands or decays, and

serves as an equivalent “critical nuclei” of the sticking-to-sliding phase transition.

Following the procedure proposed in this chapter, we show how these unstable slip pulses are

driven by a similar crack-like energy balance. The equivalent fracture energy of these pulses

nucleating from a quiescent interface is presented in Figure 8.13 (in red) and takes a constant

value almost independent of the slip pulse velocity or the shear pre-stress. From this constant

value of the equivalent fracture energy, we construct a phase diagram rationalizing rupture

nucleation along initially locked frictional interfaces [187].

8.6.4 Aging versus slip law

The ordinary differential equation governing the evolution of φ, referred to as the evolution

law, exists with different forms in the literature. Aside from the aging law of Equation 8.13

(and its regularized form in Equation 8.37), Ruina [23] proposed the following slip law

φ̇(x, t ) =−v(x, t )φ(x, t )

D
ln
(v(x, t )φ(x, t )

D

)
. (8.38)

The two laws have a rather similar behavior (visible in Figure 8.9) characterized by the interplay

of a direct effect followed by a long term relaxation. At the static limit, the friction coefficient

stops evolving with the slip law, while the aging law accounts for the logarithmic strengthening

of c f with time. The equivalent fracture energies (cf. cyan curves in Figure 8.13) obtained with

the procedure suggested in this chapter are however significantly lower for the slip law, in

agreement with the behaviors reported in the literature [116, 196, 200].

8.6.5 Magnitudes of the equivalent fracture energy

Figure 8.13 presents the magnitudes of the equivalent fracture energy resulting for the different

rate-and-state formulations previously described and presented in Figure 8.12. The slight

variations from unity observed in Figures 8.10, 8.11 and 8.13 are expected to arise from

the various uncertainties entering the estimations of both Gc (value of τr , definition of the

equivalent process zone) and G (computation of vc , fit of singular fields). Nevertheless, the

observed variations are contained within the “admissible” precision range estimated with

the cohesive approach (cf. Figure 8.3). The universality of the proposed procedure is hence

verified and validated for several types of rate-and-state formulations found in the literature

as well as rupture velocities scaling from the slow front dynamics at thousandth of cs toward

inertial rupture fronts moving at vc ∼ cs .

131



Chapter 8. The rupture dynamics of interfaces obeying laboratory-derived friction laws

Moreover, the resulting magnitudes of the equivalent fracture energy are in agreement with

the analytical estimations proposed in the literature. For the aging law (Equation 8.13) and

neglecting the “+1” terms within the logarithms of Equation 8.12, Bizzarri and Cocco [196]

defined an equivalent critical slip distance for rate-and-state formulations:

δ
eq
c = D ln(V /Vbg ), (8.39)

from which Ampuero and Rubin [116, 200] derived an estimation of the equivalent fracture

energy under initial conditions near steady-state:

Gc =
Dbc0

f σ
0

2
ln2(V /Vbg ). (8.40)

In the equations above, Vbg corresponds to the steady-state background velocity existing

before the arrival of the rupture front, while V is the sliding velocity existing at the center of

the nucleated crack. In light of the nucleation procedure followed in this chapter, one can

reasonably set Vbg = vw and V = vs . For the reference setup studied in this chapter, Equation

8.40 predicts therefore Gc
∼= 0.07[J/m2] in excellent agreement with the values reported in

Figure 8.8(Right).

Similarly, we compute analytical predictions of Gc for the different configurations studied

and reported in the inset of Figure 8.13(Left). The upside-down triangles indeed depict

the analytical predictions, which are again in good agreement with the measured values.

Nevertheless, few precisions should be given regarding those estimations:

• Equation 8.39 and 8.40 are not valid when a slip law (cf. cyan curves in Figure 8.13

and Equation 8.38) is used instead of the aging law. In this situation, Ampuero and

Rubin [116] proposed the following estimation

Gc = bc0
f σ

0
∫∞

0
ln(V /Vbg )e−δ/D dδ= Dbc0

f σ
0 ln(V /Vbg ). (8.41)

As the integration between 0 and ∞ leads to a slight overestimation of the equivalent

fracture energy (Gc
∼= 0.023[J/m2]), we choose to integrate between 0 and δ

eq
c . The later

was estimated following the observation of Bizzarri and Cocco [196] that the equivalent

critical slip distance with the slip law is three times smaller than with the aging law. We

hence assume δ
eq
c = D ln(V /Vbg )/3, which leads, in combination with Equation 8.41, to

the following estimation of the equivalent fracture energy for the slip law:

Gc = Dbc0
f σ

0 ln(V /Vbg )
(
1− (Vbg /V )

1
3

)
. (8.42)

• The regularized rate-and-state law given in Equation 8.37 has a very similar behavior

than the standard formulation (cf. comparison of the blue and red curves in Figure

8.12) for the sliding velocities observed during the rupture process (v >> vo). Therefore,

the estimated fracture energy is computed from Equation 8.40 using the parameters
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Figure 8.13 – Equivalent fracture energy versus rupture speed (Left) and energy balance (Right)
computed for a large variety of slip fronts, emerging from different rate-and-state formulations,
whose steady-state behaviors can be visualized in Figure 8.12. The standard formulation used
in this manuscript is shown in blue for the aging evolution law and in cyan for the slip law. A
slow rupture front (yellow) is simulated and studied using the set of parameters given in Table
8.2, while the behavior of interfaces following the original Dieterich-Ruina formulation is
depicted in green. Unstable slip pulses nucleated from the N-shaped formulation of Equation
8.37 is plotted in red. The upside-down triangles in the inset of the right plot highlight the
analytical predictions of Gc discussed in the main text. (Note that the vertical coordinate of
these triangles is meaningless and arbitrarily chosen for the visualization.)

D and c0
f of the analogous standard formulation. Moreover, instead of vw , an initial

quasi-quiescent steady-state velocity is considered such that Vbg
∼= vo .

• The procedure described in this chapter to compute the equivalent fracture energy gives

values in good agreement with the analytical predictions proposed in the literature.

The applicability of the later is, however, limited to rupture fronts invading a region

sliding under steady-state background conditions characterized by Vbg . We postulate

that Vbg is equal to the initial steady-state sliding velocity, but the sine perturbation

used to trigger the nucleation (cf. Equation 8.27) also causes slip deceleration in the

left half of the domain before the arrival of the rupture front. If this deceleration brings

the interface to a sliding regime significantly slower than the initial steady-state value

Vbg = vw , the analytical estimation underestimates then the value of Gc (which precisely

explains the divergence observed for the green data points reported in Figure 8.13).

8.7 Conclusion

The rate-and-state friction laws, inherited from the works of Dieterich and Ruina, received

an increasing interest for their ability to describe the subtle variations of frictional strength

with sliding velocity, universally observed along various types of materials including papers,
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polymers and rocks [114]. However, a clear understanding of the physics underlying these

laboratory-derived laws is still missing, and in particular, the energy budget behind the nucle-

ation and propagation of rupture events.

In this work, we propose a framework to analyze the energy balance driving the propagation

of slip fronts along frictional interfaces governed by a rate-and-state constitutive law. To this

aim, we applied the concepts of the dynamic theory of fracture to study the propagation of

slip fronts along a frictional interface between two semi-infinite linearly elastic half-spaces.

Grounded on the physical interpretation of the state variable, we define a criteria to systemati-

cally integrate the equivalent fracture energy dissipated during the front advance and verify

that the latter precisely balance the potential energy released by the rupture. We then suc-

cessfully apply the proposed procedure to study the propagation of slip fronts with different

forms (pulse-like versus crack-like), for a wide range of rupture speeds and using different

rate-and-state formulations. We also demonstrate how the computed equivalent fracture

energy is in excellent agreement with the existing analytical estimations.

The generic procedure proposed in this chapter to integrate the equivalent fracture energy

(cf. Equation 8.34) is robust and suitable to study slip front dynamics under various kinds of

initial conditions. This novel framework opens new prospects in the understanding of the

equivalent fracture energy driving the onset of slip along along frictional interfaces. Unlike

the standard slip-weakening formulation, the magnitude of Gc is not prescribed for the rate-

and-state formulation. As presented in Figure 8.14, the equivalent fracture energy driving

the rupture of the interface can hence represents only a small portion of the total breakdown

energy measured during the onset of sliding. Moreover, the rupture process also arises over

a short fraction ∼ 5 [μm] of the total slip observed during the failure event. This critical slip

distance is about one order of magnitude larger than the characteristic distance D = 0.5 [μm],

in agreement with the observations of [195].

We underline that the equivalent fracture energy discussed in this work is not necessarily

associated to cleavage or fracturing of the interface material. It does not bring information

about the nature of the dissipation mechanisms but rather indicates which portion of the

total energy dissipation is precisely involved in driving the rupture propagation (and controls

its speed, its radiated energy, etc.) The new framework presented in this chapter will bring

fresh insights in our understanding of the seismic energy budget and the large discrepancies

existing between the estimation of the earthquake equivalent fracture energy and the values

measured in laboratory experiments [131–134].
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Figure 8.14 – Traction versus slip evolution observed along the interface at the position
x/X = 0.4 during the rupture event detailed in Figure 8.6. The red area corresponds to the
equivalent fracture energy driving the slip front propagation. (Left inset) Zoom in the traction
versus slip evolution. (Right inset) Evolution of the breakdown and equivalent fracture energy
computed at four different interface locations. The latter is dissipated during shorter time
scales, concurrent to the arrival of the rupture front and, therefore, represents a small portion
of the total breakdown energy.
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8.8 Supplementary materials

The formalism presented above for the anti-plane shear setup can directly be applied to in-

plane shearing. Unlike Equation 8.2, the elastodynamic equation is not scalar in this mode II

fracture setup, which is governed by the following vectorial equation

c2
d∇(∇·u)−c2

s ∇× (∇×u) = ∂2u

∂t 2 , (8.43)

involving also dilatation motion, which propagates at speed cd . An equivalent boundary

integral formulation can be used to solve the mode II elastodynamic. The formulation adopted

in this work is similar to the one detailed in [125].

The asymptotic fields have a similar square-root singular form, such that the shear stress at

the vicinity of a dynamic rupture front is written as [42]:

σx y = KI I�
2πr

1

Dα

{
4αdαs

cos 1
2θd�
γd

− (1+α2
s )2 cos 1

2θs�
γs

}
, (8.44)

with γd ,s =
√

1− (vc sinθ/cd ,s)2, α2
d ,s = 1− v2

c /c2
d ,s and tanθd ,s =αd ,s tanθ. Dα = 4αdαs − (1+

α2
s )2 is a function of the crack speed, which is zero in the limits vc = 0 and vc = cR . Similarly,

the sliding velocity at the vicinity of a dynamic mode II crack is written as

u̇x = vcαsKI I

μDα

�
2πr

{
2

sin 1
2θd�
γd

− (1+α2
s )

sin 1
2θs�
γs

}
. (8.45)

Along the frictional interface, these singular contributions can be mapped ahead of the rupture

front

τx =σx y (r = xτ
tip −x,θ = 0, vc ) ∼ KI I√

2π(xτ
tip −x)

, (8.46)

and behind it

v = 2u̇x (r = x −xv
tip,θ =π, vc ) ∼ KI I√

2π(x −xv
tip)

2vcαs

μDα

{
1−α2

s

}
. (8.47)

A significant difference with the mode III setup is the ability of mode II fronts to propagate

faster than the shear wave speed [6, 73]. Only sub-Rayleigh rupture fronts are discussed in

the scope of this study. Figure 8.15 presents the mode II rupture dynamics observed along a

cohesive interface. Ahead of an accelerating mode II crack, a shear wave advances at cs and

perturbs the mapping of the singular shear stress contribution. The effect of this wave, which

was reported by Burridge [46] and Andrews [47] and extensively studied in [9], is visible in

Figure 8.15 and leads to an overestimation of G and Gτ.
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8.8. Supplementary materials

Figure 8.15 – A shear front traveling ahead of an accelerating mode II crack creates a “bump”
in the shear stress profile, which slightly impacts the mapping of the stress intensity factors
and, therefore, the value of G and Gτ. The plots are the mode II equivalent of Figure 8.10.
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9.1 Summary

This thesis aimed at investigating the impact of heterogeneities on the propagation of dy-

namic rupture fronts within linearly elastic materials. Several types of heterogeneities were

systematically studied.

The mismatch of elastic properties across the fracture plane represents a type of heterogeneous

condition frequently encountered within geological layers as well as various engineering

components since the advent of lightweight composite materials. These bimaterial conditions

create specific surface perturbations arising in the form of large scale contact zones traveling

in the wake of the rupture front, in spite of a tensile far-field loading. Their emergences

are mainly governed by the crack front propagation speed. Hence, this thesis proposed a

generalized description of the admissible rupture speeds depending on the direction of the

rupture front relative to material point displacements. It showed how the combination of the

admissible speeds existing for the top and bottom elastic solids predicts the onset of these

surface instabilities, in agreement with the experimental observations.

The dynamic instabilities observed during the rapid failure of nominally homogeneous ma-

terials are rather emerging from microscopic heterogeneities in terms of fracture energy.

Therefore, the homogeneous distribution of Gc along the fracture plane was replaced by an

equivalent interface (in terms of the average fracture energy) represented by an idealized alter-

nation of weaker and stronger regions. This comparison revealed how the rupture dynamics

can be significantly impacted by the elastic waves radiated from heterogeneous interfaces,

even in absence of any crack front distortion. Therefore, the amplitudes of these radiations

were systematically studied as a function of the heterogeneous patterns (width of the het-

erogeneities, toughness contrast) and showed how the process zone is the characteristic size

mediating the transition from quasi-homogeneous to heterogeneous fracture. Furthermore,

the process zone size changes with the rupture speed and this work presented how its con-

traction as vc approaches cR brings the front to interact with smaller defects/heterogeneities

existing along the interface. This relativistic contraction of the process zone was then proposed
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as a potential explanation of the increase of the surface mark density with the crack speed

reported in the dynamic rupture of brittle materials [169].

This thesis also particularly emphasized the impact of heterogeneities on the regime of rupture

for both tensile and shear cracks. This work demonstrated how the observed increase in

elastic radiations along a heterogeneous interface significantly eases the supershear transition

of mode II cracks. In particular, this study emphasized how supershear propagations can

arise over much shorter distances and under a lower shear pre-stress than in the predictions

of the homogeneous models. These results bring new insights into recent experimental

measurements [171] suggesting that supershear events might frequently occur over shorter

length scales and have a significant impact on the rupture energy budget.

For tensile cracks, the impact of supershear episodes is completely overlooked as rupture

speeds above cR are energetically forbidden by LEFM. For the first time, this work uncovered

how supershear events can also occur for mode I ruptures, and how they are triggered by the

presence of material heterogeneities. While cR is the limiting propagation speed observed

along the smooth portions of the crack front, supershear bursts can arise at the discontinuities

created by large distortions of the front. Such local discontinuities may frequently occur

along the rupture plane in presence of dynamic instabilities (triggered by the creation of a

microbranch [178] or local heterogeneities). This study showed how the persistent shock

waves created by these supershear bursts can significantly impact the rupture dynamics far

from the discontinuity site.

This thesis concluded with two chapters investigating the propagation of slip fronts along

frictional interfaces. The main challenge consisted in understanding the effect of the complex

heterogeneous topography existing at the microscale of two rough surfaces in contact. These

two chapters interestingly illustrated how the theoretical and numerical framework of this

thesis can be applied to diverse types of physical systems driven by the propagation of rupture

fronts.

The onset of sliding along a frictional interface was studied following two types of approaches.

In the first one, the heterogeneous contact map was explicitly modeled as an idealized array

of valleys and microcontact junctions, whose mechanical behaviors were described using

an exponential cohesive law. An interesting connection was established between the coarse-

grained process zone size lpz and the critical junction size d∗ controlling the failure of the

microcontact junctions computed with atomistic simulations [105]. The latter typically arise

via two distinct mechanisms: the brittle rupture of the junctions larger than d∗ or the plastic

smoothing of the junctions smaller than d∗. In this context, this thesis investigated the impacts

of these two mechanisms occurring at the microscale of the interface on its macroscopic

frictional strength. As a result, it showed how two macroscopically identical interfaces can

have significantly different frictional strengths. This effect emerging from the heterogeneous

microcontact topography was finally discussed and proposed as an explanation of the “slippery

but tough” paradox observed with lubricated interfaces [24].
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Figure 9.1 – Simulations snapshots of the propagation of a tensile crack along a heterogeneous
rupture plane made of circular asperities of different radius (blue being weaker and red
tougher heterogeneities). Two regimes exist as a function of the ratio of the asperity radius to
the process zone size. (Left) Asperities much larger than the process zone distort the front line
in agreement with the predictions of line tension models. (Right) At the scale of the fracture
process zone, crack growth occurs through the nucleation and coalescence of microcracks
from the locations of weaker asperities. The front is moving rightward, with colors dividing
broken surface (cyan), cohesive zone (blue), and intact portion of the interface (dark blue).

Finally, the failure dynamics of frictional interfaces was studied in the framework of rate-and-

state laws. In these formulations derived from laboratory experiments, the dynamics of the

underlying microcontact junctions is implicitly incorporated within the friction constitutive

law using a state variable, often interpreted as the average lifetime of the microcontacts.

Grounded on the methodology developed to study the propagation of cohesive cracks, this

thesis studied the energy release rate driving the propagation of slip fronts along rate-and-

state interfaces. To this aim, the definition of an equivalent process zone was proposed and

allowed to integrate an equivalent fracture energy of the interface balancing the energy release

rate. The versatility of this procedure was then demonstrated with several rate-and-state

formulations. This study demonstrated then how the equivalent fracture energy integrated

along rate-and-state interfaces is significantly lower than the total breakdown energy. This

new description of the equivalent fracture energy brings fresh insights on the energy budget

of seismic events.

9.2 Outlook and perspectives

Taking advantage of the extremely fine discretization of the rupture plane enabled by a bound-

ary integral formulation, the simulations reported in this manuscript brought several novel

insights into the interplay between dynamic rupture fronts and heterogeneous interface condi-

tions existing up to the scale of the process zone. This work opens many interesting prospects

to push these analyses further. Three directions are highlighted below.
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This work revealed how the size of the process zone and its contraction play a key role on the

progressive roughening of the crack surfaces with rupture speed. In this context, extending

the study to rupture planes containing a heterogeneous distribution of asperities and defects

will enable to further study the impact of the process zone and its contraction on the three-

dimensional crack dynamics. A proof of concept of such models is proposed in Figure 9.1,

which presents the observed evolution of the crack front dynamics as the asperity radius

approaches the process zone size. Remarkably the dynamics characterizing the crack advance

at different scales (cf. Figure 2.12) are captured with a single cohesive model; At a scale larger

than the fracture process zone, crack propagates as an elastic line distorted by the presence of

heterogeneities, in agreement with the description of line tension models. Conversely, at the

scale of the process zone, the front advances through the nucleation, growth and coalescence

of microcracks located ahead of the main rupture front. Repeating the analysis with different

rupture speeds and heterogeneous microstructures will shine a new light on the microcracking

dynamics and the origin of the brittle to quasi-brittle transition reported in the literature [51].

This thesis showed how the finite size of the fracture process zone is paramount in the under-

standing of heterogeneous dynamic fracture. However, the finite width of the process zone

was solely considered within the rupture plane. In absence of any preferential interface, the

fracture process zone should similarly develop out of the rupture plane and becomes, thereby,

a three-dimensional region evolving with the crack propagation speed. An illustration of its

expected evolution was presented in Figure 2.9. The out-of-plane dimension of the process

zone expands with crack propagation speed, while the in-plane process zone size is shrinking.

The combined effects of these in-plane and out-of-plane evolutions of the fracture process

zone on the rupture front and its interaction with pre-existing flaws is still overlooked. In this

context, the variational phase-field model of fracture is a promising approach to describe

out-of-plane dynamic instabilities [151, 201, 202]. Therefore, the ongoing coupling of the

efficient boundary integral approach with a limited phase-field region (inserted in-between

the top and bottom surfaces of the semi-infinite half-spaces) will enable unprecedented three-

dimensional studies of the dynamic instabilities progressively emerging at the scale of the

fracture process zone.

Finally, an estimation of the equivalent fracture energy for rate-and-state frictional laws

was proposed, grounded on the energy balance of the propagating slip fronts. This new

formulation will allow for a quantitative parametric study of the different rate-and-state

formulations and their respective implications on the dynamics of frictional interfaces. Our

study revealed how the equivalent fracture energy can represent only a small fraction of the

total breakdown energy of frictional interfaces. Probing the framework proposed in this work

with friction experiments should shine a new light on the equivalent fracture energy entering

the energy budget of frictional interfaces and seismic events.

To conclude, the originality of this research work consisted in peeking into the Pandora’s box of

linear elastic fracture mechanics: the fracture process zone and its interplay with material het-

erogeneities. In order to avoid releasing the “evil” nonlinear dissipative processes it contains,
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a cohesive formulation was adopted to model their actions over a finite size, without losing

the universality of LEFM. This work paved the way for further investigations on the permanent

interactions existing between dynamic rupture fronts and the heterogeneous microstructure

of materials and interfaces (flaws, inclusions, surface roughness), with potential implications

ranging from earthquake science toward the design of micro-architected materials resilient to

crack propagation.
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○␣ Supervision of ten semester projects and two master theses

2013-2018 Scientific collaboration project, University of Illinois at Urbana-Champaign, United States
of America
○␣ Prof. Philippe H. Geubelle (numerical group)
○␣ Visiting scholar during the spring 2013
○␣ Implementation of a boundary integral formulation of elastodynamics
○␣ Dynamic fracture of interfaces in presence of tougher asperities or dissimilar elastic properties
○␣ Co-supervision of two master theses on the dynamic fracture of heterogeneous interfaces

2017-2018 Scientific collaboration project, Weizmann Institute of Science, Rehovot, Israel
○␣ Prof. Eran Bouchbinder and Michael Aldam (theoretical group)
○␣ Onset of frictional slip and earthquake nucleation
○␣ Understanding the rupture dynamics of interfaces described by laboratory-derived friction law

2017-2018 Scientific collaboration project, Commissariat à l’énergie atomique et aux énergies alterna-
tives (CEA), Paris-Saclay, France
○␣ Prof. Daniel Bonamy and Alizée Dubois (experimental group)
○␣ Dynamic failure of heterogeneous brittle materials
○␣ Benchmarking the first-order models of heterogeneous fracture

Journal publications

[1] Fabian Barras, David S. Kammer, Philippe H. Geubelle, and Jean-François Molinari. A study
of frictional contact in dynamic fracture along bimaterial interfaces. International Journal of
Fracture, 189(2):149–162, October 2014.

[2] Fabian Barras, Philippe H. Geubelle, and Jean-François Molinari. Interplay between Process
Zone and Material Heterogeneities for Dynamic Cracks. Physical Review Letters, 119(14),
October 2017.

[3] Fabian Barras, René Carpaij, Philippe H. Geubelle, and Jean-François Molinari. Supershear
bursts in the propagation of tensile crack in linear elastic material. Under review, 2018.

[4] Fabian Barras, Ramin Aghababaei, and Jean-François Molinari. Onset of sliding across scales:
How the microcontacts impact frictional strength. In preparation, 2018.

[5] Fabian Barras, Michael Aldam, Efim A. Brener, Eran Bouchbinder, and Jean-François Molinari.
On the rupture dynamics of interfaces obeying laboratory-derived friction laws. In preparation,
2018.

[6] Efim A. Brener, Michael Aldam, Fabian Barras, Jean-François Molinari, and Eran Bouchbinder.
Unstable slip pulses and earthquake nucleation as a non-equilibrium first-order phase transition.
Under review, 2018.



[7] Fatima-Ezzahra Fekak, Fabian Barras, Alizée Dubois, Damien Spielmann, D. Bonamy,
Philippe H. Geubelle, and Jean-François Molinari. Study of front waves: 3D dynamic re-
sponse to a local perturbation of tensile and shear cracks. In preparation, 2018.

[8] Kazem Alidoost, Fabian Barras, Alizée Dubois, René Carpaij, D. Bonamy, Philippe H. Geubelle,
and Jean-François Molinari. Crack front distorted by heterogeneities: Benchmarking the
first-order perturbation models. In preparation, 2018.

Conferences and workshops
2018 13th World Congress in Computational Mechanics (WCCM XIII), Shock waves produced

by the interaction of dynamic crack with heterogeneities, F. Barras, P.H. Geubelle, J.-F. Molinari,
New York, New York, USA

2017 5th International Conference on Computational Modeling of Fracture and Failure of
Materials and Structures (CFRAC), On the dynamic perturbation of crack front by micro-
scale material heterogeneities, F. Barras, P.H. Geubelle, J.-F. Molinari, Nantes,France

2016 European Conference on Fracture (ECF 21), The dynamic rupture of interfaces made of
heterogeneous fracture properties, F. Barras, P.H. Geubelle, J.-F. Molinari, Catania, Italy

2015 Society of Engineering Science (SES), 52nd Annual Technical Meeting, The role of
elastic waves during dynamic rupture of heterogeneous interfaces, F. Barras, P.H. Geubelle,
J.-F. Molinari, College Station, Texas, USA

2015 Colloque national MECAMAT (Groupe Français de Mécanique des Matériaux), Dy-
namic fracture along bimaterial and heterogeneous interfaces, F. Barras, D.S. Kammer, P.H.
Geubelle, J.-F. Molinari, Aussois, France

2014 11th World Congress in Computational Mechanics (WCCM XI), A study of friction in
dynamic fracture along bimaterial interfaces, F. Barras, D.S. Kammer, P.H. Geubelle, J.-F.
Molinari, Barcelona, Spain

Invited seminars
2018 SPHYNX laboratory, CEA, Paris-Saclay, France, Onset of slip along frictional interfaces:

From microcontacts rejuvenation to earthquake dynamics

Teaching experiences
Fall 2016 Selected Topics in Mechanics of Solids and Structures, by Prof. Jean-François Molinari

○␣ Advanced class of fracture mechanics and elastodynamics
○␣ 14 weeks. In charge of 1 hour/week exercise sessions, 20 students

Spring 2016 Numerical modeling of solids and structures, by Prof. Jean-François Molinari
○␣ Introductory class of finite-element modeling
○␣ 14 weeks. In charge of 2 hours/week exercise sessions, 30 students

Fall 2015 Scientific programming for Engineers, by Dr. Guillaume Anciaux
○␣ Doctoral class about scientific programming
○␣ 14 weeks. In charge of 2 hours/week exercise sessions plus mini-projects supervision, 20

students
Spring 2015 Numerical modeling of solids and structures, by Prof. Jean-François Molinari

○␣ Introductory class of finite-element modeling
○␣ 14 weeks. In charge of 2 hours/week exercise sessions, 30 students

Fall 2014 General chemistry, by Prof. Christos Comninellis
○␣ Introductory class of chemistry
○␣ 14 weeks. In charge of 2 hours/week exercise sessions, 50 students



Spring 2014 Geometry, by Prof. Jürgpeter Buser
○␣ Introductory class of geometry
○␣ 14 weeks. In charge of 2 hours/week exercise sessions, 50 students

Advised master theses (with Prof. P.H. Geubelle and Prof. J.-F. Molinari)
2016-2017 René Carpaij

○␣ In-plane fracture in presence of a tougher heterogeneity: Comparison between a quasi-static
and fully dynamic crack propagation method

2014-2015 Damien Spielmann
○␣ Crack front waves under mode-II and mixed-mode loading

Advised semester projects and internships (with Prof. J.-F. Molinari)
Spring 2017 Ismail Honsali

○␣ Crack propagation through heterogeneous media
Spring 2016 Luis Carlos Muñoz Heinen

○␣ Study and calibration of 2D cohesive laws
Fall 2015 Mohamed Ladeb

○␣ On the parallel implementation of the spectral method to simulate 3D dynamic fracture of
materials

Fall 2015 Gabrielle Muller
○␣ Simulation of Double Cantilever Beam fracture experiments

Fall 2015 Erika Lopez, with Mauro Corrado
○␣ Contact between rough surfaces

Fall 2015 Ollie Stephenson
○␣ Dynamic shear rupture front interacting with a circular asperity

Spring 2015 Gabrielle Muller and Gabriele Albertini
○␣ A probabilistic approach to design civil engineering structures

Fall 2014 Grosdidier Guillaume and Grand Charly, with Aurelia Cuba Ramos
○␣ Implementation of Mohr-Coulomb plasticity in a finite-element code

Spring 2014 Damien Spielmann
○␣ Structural shell elements within Akantu

Spring 2014 Sébastien Hartmann
○␣ Implementation of the undamped dynamics of Bernoulli Beam elements within Akantu

Community work
2017-2018 Doctoral school of civil and environmental engineering

○␣ Elected Ph.D. student representative
○␣ Mission: Participation in several school commissions elaborating the regulations of the

doctoral studies (About one meeting per month)
2017-2018 Teaching commission of civil engineering

○␣ Member
○␣ Mission: Elaboration and validation of the study plan for the bachelor/master program in

civil engineering (Quarterly meetings)
2017-2018 Computational Solid Mechanics Laboratory

○␣ Lab sport coach
○␣ Mission: Promote and maintain a healthy working environment




