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Abstract

The thesis is dedicated to two groups of questions arising in modern particle

physics and cosmology. The first group concerns with the problem of stability of

the electroweak (EW) vacuum in different environments. Due to its phenomeno-

logical significance, the problem attracts high attention in recent research. We

contribute to this research in two directions.

First, we study decay rate of the EW vacuum at the inflationary stage of the

universe. While in a low density, low temperature environment characteristic of

the present-day universe the Standard Model EW vacuum is safely long-lived,

the situation may be different during inflation. We estimate tunneling transition

via Coleman-De Luccia instanton in this case and confirm that it is exponentially

suppressed, contrary to the claims made in the literature.

Second, we compute the lifetime of the EW vacuum in a scale-invariant extension

of the Standard Model and gravity, known as the Higgs-Dilaton theory. The the-

ory passes phenomenological tests and provides us with a plausible cosmological

scenario. To confirm its viability, it is necessary to check if the EW vacuum in

this theory is sufficiently safe. We perform this check and find that features of

the Higgs-Dilaton theory yield additional stabilization of the low-energy vacuum,

compared to the Standard Model case.

Another group of questions addressed in the thesis is related to the hierarchy

problem. Combining quantum scale invariance with the absence of new degrees

of freedom above the EW scale leads to stability of the latter against pertur-

bative quantum corrections. Nevertheless, the hierarchy between the weak and

the Planck scales remains unexplained. We suggest that this hierarchy can be a

manifestation of a non-perturbative effect relating low-energy and strong-gravity

domains of the theory. To support this suggestion, we construct instanton con-

figurations and investigate their contribution to the vacuum expectation value

of the Higgs field.
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The effect we find relies on properties of the theory in the ultraviolet regime.

Non-minimal coupling of the Higgs field to the Ricci scalar and an approximate

Weyl invariance of the theory in this regime are important ingredients of the

mechanism. Dynamical gravity plays a crucial role in the effect as it leads to

existence of instanton solutions suitable for generating the EW scale.

Keywords: electroweak vacuum, electroweak scale, vacuum stability, vacuum

expectation value, inflation, gravity, instantons, scale invariance, hierarchy prob-

lem



Résumé

Cette thèse est consacrée aux deux groupes de questions qui se posent en physique

des particules et cosmologie. Le premier groupe concerne le problème de la sta-

bilité du vide électrofaible dans différents environnements. Grâce à son impor-

tance phénoménologique, ce problème attire l’attention de recherches actuelles.

Nous contribuons à ces recherches dans deux directions.

D’une part, nous étudions le taux de décroissance du vide électrofaible pendant

l’inflation cosmique. Tandis que le vide dans le modèle standard est assez sûr

à basses densités et températures qui sont caractéristiques de l’univers actuel,

la situation pourrait être différente lors de l’inflation. Nous estimons le taux de

transition du vide via instanton de Coleman-De Luccia dans ce cas et confirmons

qu’il est supprimé exponentiellement, contrairement aux déclarations faites dans

la littérature.

D’autre part, nous calculons la durée de vie moyenne du vide électrofaible dans

une extension du modèle standard et de la gravitation, connue sous le nom de

théorie de Higgs-Dilaton. La théorie passe des tests phénoménologiques et nous

fournit un scénario cosmologique plausible. Pour confirmer sa viabilité, il est

nécessaire de vérifier que le vide à basse énergie est suffisamment sûr dans cette

théorie. Nous effectuons cette vérification et constatons que les caractéristiques

de la théorie de Higgs-Dilaton permettent une stabilisation supplémentaire du

vide, par rapport au cas du modèle standard.

Un autre groupe des questions abordées dans la thèse est lié au problème de la

hiérarchie. La combinaison de l’invariance par changements d’échelle et l’absence

de degrés de liberté nouveaux au-dessus de l’échelle électrofaible améliore la sta-

bilité de cette dernière contre les corrections quantiques perturbatives. Cepen-

dant, la hiérarchie entre l’échelle faible et l’échelle de Planck reste inexpliquée.

Nous suggérons que cette hiérarchie peut être une manifestation d’un effet non-

perturbatif qui relie les domaines d’énergies faibles et de gravitation forte de la
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théorie. Pour soutenir cette suggestion, nous construisons des configurations eu-

clidiennes classiques d’un certain type et étudions leurs contributions à la valeur

moyenne dans le vide du champ de Higgs.

L’effet que nous trouvons dépend des propriétés de la théorie dans le régime

ultraviolet. Le couplage non-minimal du champ de Higgs au scalaire de Ricci

et une invariance de Weyl approximative de la théorie dans ce régime sont les

ingrédients importants du méchanisme. La gravitation dynamique joue un rôle

fondamentale dans l’effet car elle conduit à l’existence de solutions instantanées

adaptées à la génération de l’échelle électrofaible.

Mots clés: vide électrofaible, échelle électrofaible, stabilité du vide, valeur

moyenne dans le vide, inflation, gravitation, instanton, invariance par change-

ments d’échelle, problème de la hiérarchie
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Chapter 1

Introduction

1.1 General remarks

It is intrinsic for human mind to search for principles organizing the world around

us. Among different ways of building causal chains out of events we witness, the

scientific method proved in centuries to be the most useful in providing us with

the means of knowledge about our universe. Here, physics and, in particular,

particle physics and cosmology are intended to uncover the rules governing Na-

ture at very small as well as very large length scales. It is very interesting to note

in this regard that the laws of microscopic physics have direct imprint on the

structure of the world at cosmological distances, and by observing remote patches

of the universe, one can judge about elementary particles, their properties and

interactions.

There has to be an irresistible attraction in the idea of a final theory unifying

all known forms of matter and interaction. The 20th century saw the impressive

progress towards implementing this idea. The Standard Model (SM) of particle

physics, which unifies three out of four fundamental forces, shows a great success

of theoretical physics in explaining phenomena that occur at distances as small as

10−16 cm (or, equivalently, at energies as large as ∼ 100 GeV). However, despite

of its great predictive power, we cannot treat the SM as the final theory. The

list of experimental and observational data that require a step out of the Model

includes neutrino oscillations, dark matter, dark energy, baryon asymmetry of

the universe. This is why a significant amount of efforts today are focused on

searches for new physics. The latter is often placed at energy scales at the frontier

of what we can access with the current experimental facilities, or much above

that frontier.
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A reasonable strategy to probe new physics at high energy scales, to which

we have no direct access, is to ask what kind of high-energy behaviour can

possibly explain a given fact about low-energy observables, which otherwise lacks

a complete explanation. One way to address such questions is to do it with non-

perturbative tools. The latter imply the use of classical aspects of a theory at

hand and, in particular, of solutions of classical equations of motion — solitons

and instantons. This thesis is dedicated to several problems in particle physics

and cosmology, which seem to be well suited for being treated in this way.

Although the current understanding of fundamental laws of Nature is based on

principles of quantum theory, it is true that a lot of information can be obtained

by studying classical configurations arising in a theory and, in particular, solu-

tions of classical equations of motion [1]. Often these solutions represent localized

lumps of fields that exhibit a particle-like behavior, although the standard def-

inition of a particle in quantum field theory refers to second quantization [2].

Existing thanks to nonlinear effects, such lumps are of non-perturbative nature.

Hence, they do not show up within the perturbation theory built on top of a ho-

mogeneous classical vacuum. In turn, perturbation theory must be built above

a classical solution, and the latter is a valid leading-order approximation in the

semiclassical expansion provided that the corresponding semiclassical parameter

is small (see, e.g., [3, 4]).

Localized particle-like or extended configurations of finite energy or energy den-

sity, which live in a spacetime with lorentzian signature, are referred to as soli-

tons [5] (see also [6]). Often they are absolutely stable due to their topological

properties or conservation laws and can propagate with maintaining their shape

[7, 8].1 The notion of soliton is crucial in many branches of modern physics.

Their significance is due to numerous applications in nonlinear optics [9], con-

densed matter physics [10], particle physics and cosmology [11, 12]. Solitons are

predicted in theories beyond the SM [13] and in gravity [14], hence they are of

large phenomenological interest.

Another class of nonlinear classical objects are finite-action configurations arising

in a theory continued to euclidean space. These objects are similar to solitons in

their mathematical structure; however, unlike solitons, they are localized in time,

albeit euclidean time [3]. Because of this, they are referred to as instantons or

1One also speaks of these objects as solitary waves, while reserving the name soliton for
configurations that maintain their form when interacting with each other.
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pseudoparticles [15].2 At the classical level, one often has a correspondence be-

tween static soliton solutions of a theory in d dimensions and instanton solutions

of the same theory in d+1 dimensions [1]. However, the effects engendered by in-

stantons in quantum field theory are very different from those caused by solitons.

Instantons are responsible for many non-perturbative phenomena which are im-

portant for the current understanding of Nature. Among them are violation of

quantum numbers, false vacuum decay and phase transitions [17]. Instantons

are ample in modern theories including the SM and its extensions and gravity

[13, 18]. The non-perturbative nature of instantons allows them to link physics

at different energy domains of a theory.

In this thesis,3 we use semiclassical method to obtain and study euclidean classi-

cal configurations of certain types arising in theories of scalar fields and gravity.

Despite the fact that the large part of the thesis is devoted to theoretical dis-

course, our goal is to address actual problems standing in particle physics and

cosmology. It is these problems that help us navigate through the vastness of

opportunities and select particulars for close analysis. They also limit the depth

of the analysis, although many features of the objects we will study are of in-

terest on their own. This particularly refers to instantons in theories of gravity,

which are allowable for analytical treatment.

One type of classical configurations we are interested in is a regular bounce deter-

mining the semiclassical decay of false vacuum [16, 23]. In euclidean space, this

solution describes a motion from a false vacuum to a region of true vacuum and

back, hence the name. Our purpose here is to clarify some questions regarding

metastability of the electroweak (EW) vacuum in different environments. This

is the topic of the first part of the thesis, which comprises chapters 2 and 3.

The second part of the thesis includes chapters 4—9. There we study specific

singular configurations in theories of one or two scalar fields and dynamical

gravity. Our focus is on scale-invariant models and on the models where global

scale symmetry is broken explicitly in the gravitational sector. Our goal is to use

singular solutions to address the so-called hierarchy problem — a long-standing

challenge of particle physics that concerns with the smallness of the ratio of the

observed values of the EW and the Planck energy scales.4

2A regular solution of euclidean equations of motion with exactly one negative mode is also
called a bounce [16].

3The content of the thesis is based on [19–22].
4Speaking more strictly, the problem is seen whenever an energy scale much above the EW

scale appears, associated with particles that are coupled to the Higgs field; see chapter 4 and
references therein.



Introduction 4

Below we outline more specifically the questions addressed in the thesis. For

convenience, the rest of this chapter is divided in two sections corresponding to

the two parts of the thesis.

1.2 Introduction to part I

Part I of the thesis is dedicated to analyzing the lifetime of the EW vacuum

in different settings. In the SM, the tree-level Higgs potential has an absolute

minimum corresponding to this vacuum. It is known that quantum corrections

modify the potential drastically through the Renormalization Group (RG) run-

ning of the Higgs quartic coupling λ [24–31], and a new minimum can develop

at large energy scales, making the EW vacuum unstable.

The shape of the Higgs potential at large energy scales is very sensitive to the

SM parameters and, in particular, to the Higgs mass mH and the top quark

mass mt. At the moment, the largest uncertainty in the parameters of the

potential is due to the uncertainties in top mass measurements [32]. The value

of mt is extracted from the Monte-Carlo analysis of decay products of the top

quark, and it depends on the decay channels taken into account [33, 34]. Further

uncertainties to the value of mt come from theoretical analysis where they are

related to the difference between the Monte-Carlo and the pole masses of the

quark. These uncertainties leave the possibility for λ to stay positive all the way

up to the Planck scale, in which case no second minimum appears [32]. However,

for the current best-fit values of the SM parameters, λ crosses zero at the scale

∼ 1011 GeV, and reaches its negative minimum at the scale ∼ 1017 GeV [35, 36].

Hence, the possible metastability of the EW vacuum must be properly taken

care of, and the question of whether its lifetime exceeds significantly the current

age of the universe deserves a special attention.

The issue of stability of the EW vacuum attracts significant attention in recent

studies. These include the investigation of the lifetime assuming no gravity and

no physics beyond the SM [30, 31, 37], of gravitational and thermal corrections to

the decay rate [38–41], investigation of vacuum stability in the different cosmo-

logical epochs [42–45] and in the presence of local inhomogeneities such as black

holes [46–49]. In chapters 2 and 3 we contribute to this research by addressing

two questions. Namely, in chapter 2, which follows [19], we study the EW vac-

uum stability during the inflationary period of the universe, and in chapter 3,

based on [20], our concern is with the lifetime of the EW vacuum in a particular
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theory extending the SM and General Relativity, known as the Higgs-Dilaton

theory [50, 51].

1.3 Introduction to part II

In the second part of the thesis we suggest a fresh look at the hierarchy problem

between the Fermi and the Planck scales. We ask if the observed smallness

of the Higgs vacuum expectation value (vev), as compared to MP , can be a

manifestation of some non-perturbative effect relating the low-energy and the

Planck-scale physics. This is a step out of the currently accepted paradigm

which asserts that at low energies the theory must be organized so that the value

of the EW scale is stable against modifications of the theory in the ultraviolet

regime. This paradigm implies the necessity for new physics right above the EW

scale [52], which goes in tension with the absence of its signatures at the LHC

[53]. Confronted with this fact and with the success of the SM in describing the

low-energy phenomena, we adopt the conjecture that no new physics interferes

between the weak and the Planck scales and that the former is generated from

the latter due to instanton effects.

In addressing the hierarhcy problem, it is tempting to make use of the conformal

symmetry [54]. Indeed, since at the classical level the SM Lagrangian acquires

the conformal invariance (CI) once mH is put to zero, one can imagine to start

from the conformally-invariant classical SM which has no EW symmetry breaking

and generate the Higgs mass due to the CI violation.

One of the possible ways to generate the Higgs mass within the CI setting is

associated with quantum conformal anomaly (see, e.g., [55]). Indeed, the UV

regularisation of renormalizable field theories necessarily introduces a parameter

with the dimension of mass, which violates CI at the quantum level and thus

makes it to be anomalous. As a result, the effective potential for the Higgs

field, accounting for higher-order radiative corrections, may develop a minimum

displaced from the origin, potentially leading to the vev of the Higgs field v small

compared with MP or the GUT scale [24, 56].

The Coleman-Weinberg (CW) scenario [24] in the SM can indeed be realised

[26, 57, 58], but it leads to the Higgs and the top quark masses mH ' 7 GeV

and mt . 80 GeV being far from those observed experimentally. If we take the

physical values of dimensionless Higgs quartic coupling λ and top quark Yukawa
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coupling yt, the effective potential of the conformally-symmetric SM has a min-

imum around the QCD scale ΛQCD ∼ 100 MeV, associated with confinement

and quark condensates [59], which is too far from the one realised in Nature. If

the value of the top quark Yukawa coupling is smaller than some critical value,

yt < ycrit, this minimum is unique. For yt > ycrit yet another minimum is gen-

erated by the CW mechanism [60], with the vev v & MP , now many orders of

magnitude larger that the EW scale. Due to the uncertainties discussed above,

it is not known yet whether yt is larger or smaller than ycrit, but in any event

the predictions of the conformally-invariant SM are in sharp contrast with ex-

periment.

In spite of this failure, the no-scale theories look very attractive and motivated

many authors to search for different extensions of the SM, in which the mecha-

nism may work and be phenomenologically acceptable. We mention just a few.

The extended scalar sector was discussed on general grounds in [61], more recent

works deal with the SM extended by right-handed neutrinos and a real scalar

field [62], by an Abelian B − L gauge field [63–65], or by non-abelian gauge

groups [66, 67].

All considerations of the theories with CI up to date were carried out without

gravity. There is a clear rationale for this, based on (nearly scale-invariant)

perturbation theory [68]: any perturbative corrections to the effective potential

of the Higgs field coming from gravity are suppressed by the Planck mass [69],

and in the absence of heavy particles they are numerically small. In the SM, the

largest contribution is of order y6
t h

6/M2
P , which is negligible at the weak scale.

We argue that, in fact, gravity is capable of generating a new mass scale of the

order of v, but in a non-perturbative way. Non-perturbative effects can manifest

themselves in various ways. As one example, they can be associated with a

strong-coupling scale around which the content of a theory is reorganized and, in

particular, the physical degrees of freedom are rearranged.5 Another possibility

is provided by instantons that contribute to correlation functions of the theory

and may eventually result in drastic changes in the low-energy observables.6

After all, it is not difficult to come to an idea that instantons or, more precisely,

their large actions may somehow be involved in generating the hierarchy. To

motivate this kind of reasoning, note that one can write

v ∼MP e
−W̄ , (1.1)

5For discussion of this possibility in context with the hierarchy problem see, e.g., [70].
6Perhaps, the most instructive example here is a discrete symmetry restoration in quantum

mechanics of one dimension [71].
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where, in order to match with experiment, one should take W̄ ≈ 37. Eq. (1.1)

gives a hint that the non-zero value of v could result from an exponentially

strong suppression of the Planck scale via instanton effects. In turn, the Planck

mass may stand explicitly in the gravitational Lagrangian or else appear, say,

due to spontaneous breaking of global scale symmetry. The latter option points

towards an interesting scenario in which one starts with the classically scale-

invariant theory, generates classically the Planck scale, and then semiclassically

— the EW scale in a natural way. In this thesis, we discuss the both scenarios.

The quantity W̄ can be viewed as resulting from a saddle-point approximation

of some functional integral. At this point euclidean classical configurations come

into play. As was mentioned before, part II of the thesis, which is based on

[21, 22], is mostly devoted to analyzing these configurations in particular models

and to the extent that allows to use them in deriving Eq. (1.1).

The plan of part II is the following. In chapter 4 more motivation to address the

hierarchy problem with non-perturbative tools is given. There we also specify

the framework in which the semiclassical analysis will be performed. Chapter 5

outlines a method that allows to endow Eq. (1.1) with the physical meaning. In

chapter 6 we study instantons of a special type in a simple model that allows

for analytical treatment of classical configurations. The results of these studies

are used in chapters 7 and 8, where more realistic theories are considered and

an implication for the hierarchy problem is provided. Chapter 9 contains a

general discussion of the results and outlines future prospects. Finally, chapter

10 concludes the thesis.



Part I

On electroweak vacuum

stability



Chapter 2

Electroweak vacuum stability

during inflation

As was pointed out in introduction, in the SM framework and for the current

best-fit values of the parameters, the Higgs field self-coupling λ changes sign

at large RG scale µ0 ∼ 1011 GeV and reaches a negative minimum at µ∗ ∼
1016 ÷ 1018 GeV, see Fig. 2.1 for illustration. It is worth stressing that this RG

evolution is obtained under the assumption of no new physics interfering with

the running of λ. As a result, the effective Higgs potential1

Vh =
λ(h)h4

4
(2.1)

goes much below the EW vacuum at large values of the field, as shown schemat-

ically in Fig. 2.2. This makes the EW vacuum metastable.

While in a low density, low temperature environment characteristic of the present-

day universe the SM vacuum is safely long-lived (see, e.g., [37]), the situation

may be different during primordial inflation. Indeed, most inflationary models

predict the Hubble expansion rate during inflation Hinf to be much higher than

the measured Higgs mass. Thus, if the Higgs does not have any other couplings

besides those present in SM, it behaves at inflation as an essentially massless

field and develops fluctuations of order Hinf . Denote by hmax the value of h

corresponding to the top of the barrier separating the EW vacuum from the run-

away region. Then, even if h is originally placed close to the origin, it will roll

beyond the barrier with order-one probability for Hinf > hmax [42, 43, 73–76].

1We neglect the SM mass term which is tiny compared to all contributions appearing below.
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Figure 2.1: Running of the Higgs quartic coupling in the Standard Model at
NNLO in the MS scheme. The RG equations are solved using the code based
on [29, 72]. Blue solid line corresponds to the best-fit values of the Standard
Model parameters [35, 36]. Blue dashed lines correspond to 2σ experimental
uncertainty in the measurement of the top-quark mass [36] and red dotted lines

— to the theoretical uncertainty discussed in [32].

A simple cure to the problem is to endow the Higgs with an effective mass

meff & Hinf during the inflationary stage. This can be due, for example, to a

non-minimal coupling to gravity2, VhR = ξRh2/2 [42, 77], or a coupling between

h and the inflaton field3 φ of the form Vhφ = f(φ)h2/2 [43, 74]. This raises the

potential barrier and suppresses the over-barrier transitions. In this situation

the EW vacuum is still able to decay via quantum tunneling.

Tunneling from a false vacuum in (quasi-) de Sitter spacetime can proceed in

two distinct regimes: via the Hawking-Moss (HM) instanton [79] which describes

quantum jumps on top of the potential barrier, or via Coleman-De Luccia (CDL)

bounce [23] corresponding to genuinely under-barrier penetration. While HM

transitions have been extensively discussed in connection with the Higgs behav-

ior during inflation (see e.g. [42, 73, 75, 76]), the CDL tunneling is usually

discarded with the common lore that it is sufficiently suppressed. However, the

verification of this assertion was missing in the literature.4 Moreover, Ref. [73]

which explicitly addressed this question had reported an opposite result that

the CDL decay of the EW vacuum is enhanced, instead of being exponentially

suppressed.

2We work in the signature (−,+,+,+), so that the curvature of de Sitter space is positive,
R = 12H2

inf .
3We assume that the inflaton is distinct from the Higgs, unlike the case of Higgs inflation

[78].
4Note that the thin-wall approximation, which is often invoked in the analysis of the CDL

tunneling and which makes the exponential suppression manifest, is not applicable in the case
of the Higgs field.
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Figure 2.2: Schematic form of the effective Higgs potential (not to scale).

In this chapter we clarify the above issue. We will estimate the CDL tunneling

rate and confirm that it is exponentially suppressed. The suppression expo-

nent will be found to be essentially the same as in flat spacetime, up to small

corrections which are estimated analytically.

2.1 Bounces in de Sitter space

In this section we assume that the energy density of the universe is dominated by

the inflaton with negligible back-reaction of the Higgs field on the metric. The

validity of this assumption will be discussed later. Then, neglecting the slow-roll

corrections, we arrive to the problem of a false vacuum decay in external de

Sitter spacetime. This process is described by the Euclidean version of the Higgs

action

SE =

∫
d4x
√
gE

(
1

2
gµνE ∂µh∂νh+ Vh(h)

)
, (2.2)

where gE µν is the metric of a 4-dimensional sphere, which is the analytic con-

tinuation of the de Sitter metric [23] (see also [80]),

ds2
E = dχ2 + ρ2(χ)dΩ2

3 , ρ =
1

Hinf
sin(Hinfχ) , 0 ≤ χ ≤ π

Hinf
. (2.3)

Here dΩ3 is the line element on a unit 3-sphere. We search for a smooth solution

of the Higgs equations of motion following from Eq. (2.2). Assuming O(4)

symmetry, one reduces the action to

SE = 2π2

∫ π/Hinf

0
dχ ρ3

(
h′2

2
+ Vh

)
, (2.4)
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which yields the equation for the bounce hb(χ),

h′′b + 3Hinf ctg(Hinfχ)h′b =
dVh
dh

. (2.5a)

To be regular, the solution must obey the boundary conditions,

h′b(0) = h′b(π/Hinf ) = 0 . (2.5b)

The probability of false vacuum decay per unit time per unit volume scales as

dP

dtdV
∝ exp(−SE) , (2.6)

where the action is evaluated on the solution hb(χ).

2.1.1 Hawking-Moss instanton

Equations (2.5) always have a constant solution with the Higgs field sitting on

top of the potential barrier, hb = hmax (see Fig. 2.2). This instanton can be

interpreted as describing the over-barrier jumps of the Higgs field due to non-

zero de Sitter temperature, TdS = Hinf/(2π) [81]. The rate of such transitions

is given by Eq. (2.6) with the action

S
(HM)
E =

8π2

3

Vmax
H4
inf

. (2.7)

The transition rate is exponentially suppressed if Hinf . V
1/4
max. In the pure

SM V
1/4
max is of order 109 GeV [30] implying that the EW vacuum is stable with

respect to HM transitions whenever Hinf < 109 GeV and unstable otherwise.

In the latter case new contributions into the Higgs potential that raise Vmax are

required to stabilize the SM vacuum. A simple option is to endow h with an

effective mass meff during inflation. The potential becomes

Vh =
λ(h)h4

4
+
m2
effh

2

2
. (2.8)

For Hinf & 1010 GeV the qualitative picture is captured by neglecting the slow

logarithmic dependence of the coupling on the field and normalizing it at a fixed

scale above µ0, so that λ is negative and is of order 0.01 in the absolute value.

This gives for the position and height of the potential barrier,

hmax =
meff√
|λ|

, Vmax =
m4
eff

4|λ|
(2.9)
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leading to the instanton action,

S
(HM)
E =

8π2

3|λ|

(
meff

Hinf

)4

. (2.10)

As expected, the transitions are strongly suppressed provided the mass is bigger

than |λ|1/4Hinf . Note that for these values of the mass hmax lies above µ0, which

justifies our approximation of constant negative λ. For the case when the Higgs

mass is due to non-minimal coupling to gravity one has m2
eff = 12ξH2

inf , so that

the suppression (2.10) does not depend on the Hubble parameter and is large

already for ξ & 0.1 [42, 77, 82].

2.1.2 Coleman-De Luccia bounce

Another decay channel is described by inhomogeneous solutions of Eq. (2.5)

which interpolate between the false vacuum and a value h∗ in the run-away

region. These correspond to genuinely under-barrier tunneling. To understand

their properties, let us first neglect the running of λ normalizing it at a high

enough scale, so that λ < 0. If we further neglect the mass and spacetime

curvature, we obtain the setup of tunneling from the top of an inverted quartic

potential in flat space. This is described by a family of bounces,

hχ̄(χ) =

√
8

|λ|
χ̄

χ2 + χ̄2
, (2.11)

parameterized by their size χ̄. The action of these solutions is independent of χ̄

due to the classical scale invariance of the setup,

SE =
8π2

3|λ|
. (2.12)

The mass and finite Hubble rate break the degeneracy. Assuming that the size

of the instanton is small compared to the length

l = min(m−1
eff , H

−1
inf ) (2.13)

characterizing the breaking of scale symmetry, one can estimate the corrections

to the bounce action perturbatively. Substituting Eq. (2.11) into Eq. (2.4) and

expanding to the order O((l/χ̄)2) we obtain,

S
(CDL)
E (χ̄) =

8π2

3|λ|
[
1 + 3(m2

eff − 2H2
inf )χ̄2 log(l/χ̄)

]
, (2.14)
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where we have kept only the log-enhanced contributions. The tunneling rate is

given by the configuration minimizing the action. If the minimal suppression is

reached at the configuration of zero size5, χ̄ = 0, and coincides with the flat-space

result (2.12). One observes that in this case the assumption χ̄ � l is justified.

In the opposite case, m2
eff < 2H2

inf , the correction due to the expansion of the

universe dominates and makes the solution spread over the whole 4-sphere. We

have checked numerically that the only solution in this case is the HM instanton.

We now restore the running of couplings which provides additional source of the

scale invariance breaking. This enters into the calculations through the loop

corrections in the instanton background. For instantons of the size smaller than

l these corrections can be evaluated neglecting both the mass meff and the

Hubble Hinf . Thus, they are the same as in the flat space [84] and roughly

amount to substituting in Eq. (2.14) the coupling constant evaluated at the

scale of inverse instanton size, µ = χ̄−1. Numerically, for the best-fit values

of the SM parameters, this dependence on χ̄ turns out to be much stronger

than the one introduced by the effective mass and the Hubble expansion. This

freezes the size of the instanton at the value corresponding to the minimum of

the running coupling constant, χ̄−1
∗ ≈ µ∗ ∼ 1016 ÷ 1018 GeV. The total answer

for the suppression is then given by Eq. (2.14) evaluated at χ̄∗. The corrections

due to meff and Hinf are small as long as6 meff , Hinf . 1015 ÷ 1017 GeV.

2.2 Discussion of approximations

We have obtained Eq. (2.14) under the assumption that the transition happens

in an external de Sitter spacetime. Let us check its validity. First, the Hubble

rate during inflation is not exactly constant, but slowly varies. We have seen

that the size of the bounce is much smaller that the horizon size. This implies

that the formation of the bubble of the new phase inside the false vacuum occurs

very fast7. Thus neglecting the change in the Hubble rate during the formation

of the bubble is justified.

Second, in the case when the effective Higgs mass is given by the coupling to the

inflaton, the Higgs exerts a force on the inflaton during tunneling. This force

5A proper interpretation of this singular bounce is given within the formalism of constrained
instantons [83].

6The bound on the primordial tensor perturbations [85] constrains Hinf . 1014 GeV during
last ∼ 60 e-folds of inflation.

7The time of the bubble formation should not be confused with the vacuum decay time,
which is exponentially long.
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should not lead to large displacements of φ that could change its energy density.

One estimates the shift of φ due to the Higgs force as

�δφ =
h2

2

dm2
eff

dφ
=⇒ δφ ∼ h2

∗
H2

dm2
eff

dφ
, (2.15)

where box stands for the Laplacian on the 4-sphere and h∗ =
√

8/|λ(χ̄−1
∗ )| χ̄−1

∗

is the value of the Higgs in the center of the instanton. Requiring V ′infδφ� Vinf

we obtain the condition
dm2

eff

dφ
�

V ′inf
6εh2
∗
, (2.16)

where ε = (MpV
′
inf )2/(16πV 2

inf ) is the slow-roll parameter. This condition is

satisfied if the dependence of meff on the inflaton is weak enough.

Last, but not least, one should check if the energy density of the Higgs field is

smaller than that of the inflaton. This requirement turns out to be violated in

the center of the CDL bounce for realistic values of Hinf . What saves the day

is the fact that the size of the region where this violation occurs is of order χ̄∗.

On the other hand, the log-enhanced corrections in Eq. (2.14) come from the

region of order ∼ l, which is much larger. Thus they are not modified by the

back-reaction of the Higgs field on the geometry.

The effects of the back-reaction can be taken into account neglecting completely

the inflaton energy density, i.e. in the same way as in the case of the false vacuum

decay in the flat space [38, 40, 41]. They give an additional contribution to the

bounce action8,

∆S
(CDL)
E =

256π3(1− 6ξ)2

45(Mpχ̄λ)2
. (2.17)

For moderate values of ξ these corrections are small as long as χ̄−1
∗ < 5 · 1016

GeV. Finally, further corrections to the bounce action can come from Planck-

suppressed higher-order operators in the Higgs action. The analysis of these

corrections is the same as in flat spacetime. Note that they can be quite signifi-

cant due to the fact that the size of the instanton is close to Planckian [86].

8Here we assume that gravity is described by Einstein’s general relativity at least up to the
scale χ̄−1.



Chapter 3

Bounce in the Higgs-Dilaton

theory

The Higgs-Dilaton theory was introduced in [87] and studied in detail in [50, 51].

It is an effective field theory whose properties allow to account for many issues

in particle physics and cosmology, which still lack of the complete explanation.

For example, it makes a step towards the solution of the hierarchy problem by

reformulating the latter in terms of dimensionless quantities. This is achieved

by demanding the theory to be scale-invariant both at classical and perturbative

quantum levels.1 All scales are hence generated dynamically. Next, it is able

to provide us with a plausible cosmological scenario, including inflation, dark

matter and dark energy domination epochs of the universe. Hence, the theory

is phenomenologicallly acceptable in a wide range of scales.

Further tests of viability of the Higgs-Dilaton theory include the question of

whether the EW vacuum in this setting is sufficiently safe compared to the case

of SM. In this chapter, we answer the question by considering the decay rate of

the EW vacuum in the present-day universe,2

Γ = Ae−B , B = SE(bounce)− SE(FV ) . (3.1)

In this formula SE(bounce) is an euclidean action of the theory computed on

a bounce solution interpolating between the EW vacuum and the true vacuum

region, SE(FV ) is an euclidean action of the EW vacuum, and A is a prefactor.

Below we will mainly focus on computing the exponential coefficient B. The SM

1Such scale-invariant scalar-tensor theories are discussed in detail in chapter 8.
2Unlike the situation considered in chapter 2, in the Higgs-Dilaton theory the Higgs field

is responsible for inflation and there appears no question with vacuum stability during that
period; see also [88].
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vacuum decay rate prefactor was computed in flat space [37, 89], and we take

this result as an approximation of the prefactor in the Higgs-Dilaton theory; see

also section 3.3. We will find that in a wide range of parameters of the theory,

the tunneling probability is safely small. Moreover, the decay rate is suppressed

significantly compared to the SM case. The conclusion is that the features of the

Higgs-Dilaton theory lead to additional stabilization of the false vacuum.

We start in section 3.1 with a brief overview of the Higgs-Dilaton theory, aiming

to fix the notation and to introduce a particular set of field coordinates in which it

is convenient to perform the analysis of classical solutions of euclidean equations

of motion. In section 3.2 we first study the bounce analytically, and then find

it numerically and compute B at different values of the parameters. We discuss

our findings and some properties of the bounce in section 3.3. Finally, in section

3.4 the results are summarized.

3.1 Review of the Higgs-Dilaton theory

The Higgs-Dilaton theory is a moderate extension of the SM and General Rel-

ativity that possesses no dimensional parameters at the classical level. The

attractiveness of the theory is due to its ability to explain certain cosmological

observations as well as to provide some input into theoretical puzzles of particle

physics. In particular, as we will see shortly, scale symmetry allows to refor-

mulate the hierarchy problem in terms of dimensionless quantities. The theory

naturally incorporates the Higgs inflation scenario [90–92], hence it predicts a

successful inflationary period followed by a graceful exit to the hot Big Bang

theory.

The theory contains Higgs φ and dilaton χ fields coupled to gravity in a non-

minimal way and the rest of the SM content unchanged. The presence of the

massless dilaton is necessary for the model to match observational data [50].

The fields φ and χ are allowed to interact in the way that preserves the scale

symmetry. The Higgs-Dilaton sector of the theory is written as 3

Lχ,φ√
−g

=
1

2
(ξχχ

2 + 2ξhφ
†φ)R− 1

2
(∂χ)2 − 1

2
(∂φ)2 + V (χ, φ†φ) , (3.2)

3We do not take into account possible boundary terms, since they do not affect the action
of the bounce solution [93] (see also [94]).



Bounce in the Higgs-Dilaton theory 18

where (∂φ)2 ≡ ∇µφ∇µφ∗ and the potential is given by

V (χ, φ†φ) = λ
(
φ†φ− α

2λ
χ2
)2

+ βχ4 . (3.3)

The full Lagrangian of the theory is obtained from Eq. (3.2) by supplementing

the latter with the rest of the SM fields. As we will see, the bounce solution is

built from the metric and the two scalars; hence, one can ignore the presence

of other degrees of freedom when computing the decay rate in the leading-order

semiclassical approximation.

Matching predictions of the theory with observations constrains possible values

of its parameters. In particular, the non-minimal couplings ξχ and ξh are re-

stricted by inflationary data. Specifically, they are bounded from measurements

of the amplitude and the tilt of the primordial scalar spectrum. In Fig. 3.1

the allowable region for ξχ and ξh is shown, according to [50]. The precise form

of this region depends on details of post-inflationary processes; however, in any

case

ξχ � 1� ξh . (3.4)

The parameters α, β and λ in the potential (3.3) determine the low-energy

physics around the ground state of the theory. The latter is specified by con-

stant values of the dilaton and Higgs fields, (χ0, h0)T , where χ0 can be chosen

arbitrarily and

h2
0 =

α

λ
χ2

0 +
ξh
λ
R , R =

4βλχ2
0

λξχ + αξh
. (3.5)

The values of α and β are converted into the ratios between different scales

present in the SM and gravity. For example, exploiting the ratio between the

Higgs and Planck masses, one obtains4

m2
H ∼

αM2
P

ξχ
⇒ α ∼ 10−34ξχ , (3.6)

where the Planck mass is defined as

M2
P ≡ ξχχ2

0 + ξhh
2
0 . (3.7)

4In this and the following estimates we take λ equal its low-energy value, λ ∼ 10−1, and
assume the cosmological constant to be sufficiently small.
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Figure 3.1: The parameter region for which the amplitude and the tilt of the
scalar spectrum lie in the observationally allowed region, see [50] for details.

For the hierarchy between the Planck scale and the observed value of the cos-

mological constant Λ, we have

Λ ∼
βM4

P

ξ2
χ

⇒ β ∼ 10−56α2 . (3.8)

We see that the constraints (3.6) and (3.8) both involve big numbers. They are

nothing but reformulations in the Higgs-Dilaton setting of the hierarchy problem

and the cosmological constant problem accordingly.

For our purposes, one can safely neglect contributions from the terms ∝ χ2φ2

and ∝ χ4 and set α = β = 0. Indeed, such approximation is clearly applicable

as long as λ|ϕ|2 � αM2
P . However, as will be shown later, the contribution to

the decay exponent from the region of |ϕ| where this condition violates is itself

negligible if Eqs. (3.4), (3.6) and (3.8) are satisfied. Hence, the approximation

is justified for all values of |ϕ|. Choosing the unitary gauge for the Higgs field,

ϕT = (0, h/
√

2), we rewrite the potential (3.3) as follows,

V (h) =
λ

4
h4 . (3.9)

Finally, the euclidean form of the Lagrangian (3.2) is written as

Lχ,h,E√
g

= −1

2
(ξχχ

2 + ξhh
2)R+

1

2
(∂h)2 +

1

2
(∂χ)2 + V (h) . (3.10)

Whenever non-minimal couplings of scalar fields to gravity are non-zero, one can

perform the metric redefinition

g̃µν = Ω2gµν (3.11)
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to rewrite a theory in the form in which such couplings are absent. This form is

referred to as the Einstein (E-)frame, while the original Lagrangian (3.2) is said

to be written in the Jordan (J)-frame.5 To arrive at the E-frame, the conformal

factor Ω2 has to be chosen as

Ω2 = M−2
P (ξhh

2 + ξχχ
2) . (3.12)

Making use of the standard relations between the J- and E-frames [96],

√
g = Ω−4

√
g̃ , R = Ω2(R̃+ 6�̃ log Ω− 6g̃µν∂µ log Ω∂ν log Ω) , (3.13)

one obtains the following Lagrangian,

LE√
g̃

= −
M2
P

2
R̃+

1

2
K̃(h, χ) + Ṽ (h, χ) . (3.14)

The kinetic term K̃ has a non-canonical form,

K̃(h, χ) = γij g̃
µν∂µφ

i∂νφ
j , (3.15)

where we have introduced the notation (φ1, φ2) ≡ (h, χ). The quantity γij can

be interpreted as a metric in the two-dimensional field space spanned by h and

χ, in the E-frame. It is given by

γij =
1

Ω2

(
δij +

3

2
M2
P

∂iΩ
2∂jΩ

2

Ω2

)
. (3.16)

Finally, the transformed potential is written as

Ṽ (h, χ) =
V (h)

Ω4
. (3.17)

We now look for further redefinition of the fields of the theory, aiming to recast

the field space metric (3.16) into a diagonal form. To this end, we exploit the

scale symmetry of the model. Consider the infinitesimal scale transformation of

the fields in the E-frame,

g̃µν → g̃µν , φi → φi + σ∆φi , (3.18)

5The scalar-tensor theories, related to each other by a transformation of the form (3.11), are
classically equivalent. For discussion of their equivalence at the quantum level see, e.g, [95].
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where σ is a small constant. The current corresponding to this transformation

reads as follows,

J̃µ =
1√
g̃

∂LE
∂∂µφi

∆φi = g̃µν
M2
P

2(ξχχ2 + ξhh2)
∂ν((1 + 6ξχ)χ2 + (1 + 6ξh)h2) . (3.19)

Following [50], we introduce a new set of variables (φ′1, φ′2) ≡ (ρ, θ) that trans-

form under the scale transformations as

ρ→ ρ+ σMP , θ → θ . (3.20)

Due to the scale symmetry, the field ρ can only enter the Lagrangian through

its derivatives. Requiring the metric γ′ij corresponding to the fields (ρ, θ) to be

diagonal, we have

J̃µ = MP g̃
µνγ′ρρ∂νρ . (3.21)

Comparing the currents (3.19) and (3.21), we deduce the following expression

for ρ,

ρ =
MP

2
log

(
(1 + 6ξχ)χ2 + (1 + 6ξh)h2

M2
P

)
. (3.22)

One observes that ρ can be viewed as a radial coordinate in the field space

spanned by the vectors
√

1 + 6ξχχ and
√

1 + 6ξhh. We can choose θ to be an

angular coordinate in this space, that is

θ = arctan

(√
1 + 6ξh
1 + 6ξχ

h

χ

)
. (3.23)

By construction, θ does not transform under the scale transformations, in agree-

ment with Eq. (3.20). In terms of θ and ρ, the Lagrangian (3.14) is written

as
LE√
g

= −
M2
P

2
R̃+

a(θ)

2
(∂ρ)2 +

b(θ)

2
(∂θ)2 + Ṽ (θ) , (3.24)

with the potential

Ṽ (θ) =
λ

4ξ2
h

M4
P

(
1

1 + ς cot2 θ

)2

, (3.25)

where

a(θ) =
1 + 6ξh
ξh

1

sin2 θ + ς cos2 θ
, b(θ) =

M2
P ς

ξχ

tan2 θ + ξχ/ξh
cos2 θ(tan2 θ + ς)2

, (3.26)

and

ς =
(1 + 6ξh)ξχ
(1 + 6ξχ)ξh

. (3.27)
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We see that the fields ρ and θ are almost decoupled, and, what is more important,

the potential Ṽ depends on θ only. This simplifies significantly the study of

euclidean classical solutions in the theory.

3.2 Bounce in the Higgs-Dilaton theory

3.2.1 Equations of motion and boundary conditions

Since we study vacuum decay in the homogeneous and isotropic environment,

one can assume the bounce to be O(4)-symmetric.6 Hence, the following ansatz

for the metric can be chosen,

ds̃2 = f2(r)dr2 + r2dΩ2
3 , (3.28)

where r is a radial coordinate, and dΩ2
3 denotes the line element of a unit 3-

sphere. As we will see shortly, this somewhat nonstandard form of the ansatz

results in a particular simple form of the Einstein equations.

In what follows, we neglect spacetime curvature arising due to non-zero cosmo-

logical constant Λ0 and assume that the false vacuum geometry is flat. As will

be shown later, this is a reasonable approximation as long as mH � Λ
1/4
0 . In

this case, the function f is required to approach the flat space limit at infinity

and the euclidean anti-de Sitter limit at the origin. The scalar fields ρ and θ are

required to have a good behavior at infinity, in order to ensure the finiteness of

the action, and to be regular at the origin.

Applying the ansatz (3.28) to the equations of motion following from the La-

grangian (3.24), one finds,

ρ′ = C · f

a(θ)r3
, (3.29)

with C some constant. It is easy to make sure that the requirement for θ to

approach a finite true vacuum value θ0 at the origin is not satisfied whenever

C 6= 0. Hence, the tunneling solution must obey ρ = ρ0 = const, and the value

of ρ0 is fixed by the false vacuum state, hFV = 0, χFV = MP /
√
ξχ [50].7 From

Eq. (3.22) we have

ρ0 =
MP

2
log

(
1 + 6ξχ
ξχ

)
. (3.30)

6Although it was proven that the solution of maximal symmetry dominates the transition
amplitude in flat space background [97, 98], no such proof is known in the case when gravity
dynamics is included.

7We neglect corrections due to non-zero α and β.
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Under the conditions (3.28) and (3.30), the equations of motion become

2rf3Ṽ ′(θ) + 2rb(θ)f ′θ′ − f(rb′(θ)θ′2 + 2b(θ)(3θ′ + rθ′′)) = 0 , (3.31)

2f2(3M2
P − r2Ṽ (θ)) = 6M2

P − r2b(θ)θ′2 . (3.32)

As a consequence of the choice of ansatz (3.28), the 00-component of the Einstein

equations is reduced to Eq. (3.32) which is algebraic with respect to f .

The system (3.31), (3.32) is to be solved numerically. However, before plunging

into numerics, it is useful to understand analytically qualitative behavior and

asymptotic properties of the bounce. We proceed to this below.

3.2.2 Running couplings

Let us pause here and discuss quantum corrections to the Higgs-Dilaton La-

grangian (3.2). We choose to regularize the theory in the way that makes all

loop diagrams finite and all symmetries of the classical action intact. Note that

the Higgs-Dilaton theory is not renormalizable [51] (see also [99]), hence an in-

finite number of counter-terms with the structure different from that appearing

in Eq. (3.2) is required to be added at the quantum level. Non-renormalizability

of the theory does not pose a principal obstacle to its quantization, but its UV

behavior cannot be uniquely fixed by the initial classical Lagrangian. The am-

biguity in the choice of a set of subtraction rules is not fully removable, since it

reflects our ignorance about the proper set of rules established by the unknown

UV completion of the theory. Nevertheless, the underlying assumptions about

the full theory, including the symmetry arguments, can constrain significantly

the set of possible renormalization prescriptions.

With the aim to preserve explicitly the scale symmetry of the theory (3.2) at

the perturbative quantum level, a scale-invariant renormalization procedure was

developed in [100] (see also [101] for the original suggestion and [102–104] for

further developments). It is based on dimensional regularization. The use of

the latter is motivated by the well-known fact that loop corrections computed

within this scheme are polynomial in masses and coupling constants [105]. This

means, in particular, that in the absence of heavy particle’s mass thresholds no

large corrections to the Higgs mass are generated.



Bounce in the Higgs-Dilaton theory 24

As an example, consider the renormalization of the Higgs quartic coupling λ. In

d dimensions, one has

λ = µ2ε

(
λ̃+

∞∑
n=1

an
εn

)
, d = 4− 2ε , (3.33)

where by λ̃ we denote the dimensionless finite coupling, µ is a ’t Hooft-Veltman

normalization point [68] with the dimension of energy, and the series in ε cor-

responds to counter-terms. We now replace the scale µ by a field-dependent

normalization point,

µ2 = F (χ, h)µ̂2 . (3.34)

The function F reflects the particular choice of the renormalization prescription

and leads to different physical results, while the dimensionless parameter µ̂ plays

the role of the usual choice of momentum scale in the RG equations and should

disappear in the final result. The scheme (3.34) is manifestly scale-invariant, as

soon as µ depends only on the fields h, χ. A change of the choice of the function

F can be compensated by the change of the classical Lagrangian by adding a

specific set of higher-dimensional operators.

One of the most natural possibilities in choosing F is to identify µ with the

gravitational cutoff in the J-frame,

µI ∼ ξχχ2 + ξhh
2 . (3.35)

Another option is to choose the scale-invariant direction along the dilaton field,

i.e.,

µII ∼ ξχχ2 . (3.36)

To test the ability of the Higgs-Dilaton model to describe correctly the inflation-

ary physics, the careful analysis of the quantum corrections to the potential (3.9)

during inflation is needed. Such analysis was performed in [51]. It was shown

that at one-loop level the leading contribution to the potential is given by

∆V = − 3m4
t

16π2

(
log

m2
t

µ2
− 3

2

)
, (3.37)

where m2
t = y2

t h
2/2 stands for the effective top quark mass in the J-frame. It

is convenient to fix the value of µ̂ such that the logarithmic contribution (3.37)

is minimized for each value of h, µ̂2 ' y2
t
2

h2

F (h,χ)/M2
P

. Depending on the choice of
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the normalization point µI,II , this gives,

µ̂2
I(h, χ) =

y2
t

2

M2
Ph

2

ξhh2 + ξχχ2
, µ̂2

II(h, χ) =
y2
t

2

M2
Ph

2

ξχχ2
. (3.38)

Finally, we rewrite the expressions above in terms of the “polar” variables ρ and

θ to obtain

µ̂2
I(θ) =

y2
tM

2
P

2ξh

1

1 + ζ cot2 θ
, µ̂2

II(θ) =
y2
tM

2
P

2ξhς
cot2 θ (3.39)

with ς given in Eq. (3.27). In accordance with the chosen regularization scheme,

the momentum scale depends only on the scale-invariant quantity θ. The RG

enhanced potential for the field θ is given by Eq. (3.25) with λ replaced by the

running coupling λ(µ̂I,II(θ)).
8

3.2.3 Effective potential

To get an insight into qualitative properties of the bounce, it is useful to rewrite

the solution ρ = ρ0, θ = θb(r) in terms of the original variables h and χ. From

Eq. (3.22) we obtain the relation between hb and χb,

(1 + 6ξχ)χ2
b + (1 + 6ξh)h2

b = M∗2P , M∗P = MP

√
1 + 6ξχ
ξχ

. (3.40)

One observes that the bounce trajectory draws a circle in the field space spanned

by the vectors
√

1 + 6ξχχ and
√

1 + 6ξhh, as shown in Fig. 3.2. The relation

(3.40) allows us to study the bounce using a single variable which is chosen to

be hb. Using Eqs. (3.40) and (3.23), one finds the relation between hb and θb,

hb =
M∗P√

1 + 6ξh
sin θb . (3.41)

By definition (3.23), θb is confined in the interval 0 6 θb 6
π
2 . This condition,

seeming obscuring in the polar field variables, becomes clear if we write it in

terms of hb,

0 6 hb 6
M∗P√

1 + 6ξh
, (3.42)

where it is seen to be the consequence of Eq. (3.40). The inequality (3.42)

imposes a nontrivial constraint on the magnitude h0 of the bounce. We will say

more about this below.

8It what follows, we neglect the running of the non-minimal couplings ξh, ξχ. Such approx-
imation is fair provided that the values of the couplings are far from the conformal limit.
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Using Eqs. (3.25) and (3.40), one obtains the effective potential for the bounce,

Veff =
λ(µ̂(hb))

4

(
1

M2
P

ξh − ξχ
1 + 6ξχ

+
1

h2
b

)−2

. (3.43)

One minimum of this potential is achieved at hb = 0, in accordance with the false

vacuum solution θFV = 0 of the equation of motion (3.31).9 Another, deeper

minimum develops whenever λ(µ̂I,II(hb)) crosses zero at some energy scale h∗.

Note also that, as long as the conditions (3.4) are fulfilled, the potential (3.43)

possesses no singular points.

λ < 0

λ > 0

MP
* h 6 ξh + 1

MP
*

χ 6 ξχ + 1

Figure 3.2: The bounce configuration in terms of the Higgs (h) and dilaton
(χ) fields. The arrow points the direction in which r grows.

Now we would like to investigate how variations of different couplings, that are

present in the potential (3.43), affect the decay rate (3.1). Presumably, the

strongest effect on the bounce is caused by the variation of the Higgs quartic

coupling λ(µ̂). For this reason, below we choose different values of the top quark

mass mt — the ones lying in the 1σ experimental uncertainty region according

to [36]. However, the effect caused by the variation of mt is well-known in the

SM case, and we do not expect it to change much in the Higgs-Dilaton theory.

Next, we turn to the non-minimal couplings ξh and ξχ. We ask what the signs

of variations δB
δξh

and δB
δξχ

are in the cases when the normalization prescriptions

(3.39) are implemented.

Prescription I. As will be seen later from numerics, under the conditions (3.4)

the magnitude of the bounce satisfies

h2
0ξh
M2
P

� 1 . (3.44)

9We neglect corrections due to the non-zero vacuum expectation value of the Higgs field.
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Then, using Eq. (3.41), one expresses the normalization point µ̂I through hb as

follows,

µ̂2
I(hb) =

y2
t h

2
b

2

(
1− ξh − ξχ

1 + 6ξχ

h2
b

M2
P

+O

(
h4
bξ

2
h

M4
P

))
. (3.45)

If h∗ � h0, one expects the dominant contribution to the bounce action coming

from the region of r at which the bounce solution is determined mainly by the

behavior of the effective potential Veff at large hb. Hence, the variation of B is

determined by the variation of the asymptotics of Veff. From Eqs. (3.43) and

(3.45) we have,
δ|Veff|
δξh

< 0 ,
δ|Veff|
δξχ

> 0 , (3.46)

from which it follows that

δB

δξh
> 0 ,

δB

δξχ
< 0 . (3.47)

h*
hb

Veff

Figure 3.3: Possible forms of the effective potential for the field hb.

Prescription II. Under the condition (3.44), the dependence of the normaliza-

tion scale µ̂II on the variable hb can be written as

µ̂2
II(hb) =

y2
t h

2
b

2

(
1 +

ξχ(1 + 6ξh)

1 + 6ξχ

h2
b

M2
P

+O

(
h4
bξ

2
hξ

2
χ

M4
P

))
. (3.48)

Using Eqs. (3.43) and (3.48), we arrive again at the result (3.46), from which the

inequalities (3.47) follow. Thus, we expect that for both normalization prescrip-

tions the exponential coefficient B grows when ξh increases or when ξχ decreases,

making the tunneling less probable. These expectations are confirmed by numer-

ical results.
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3.2.4 Decay rate

Making use of the Einstein equations, one brings the euclidean action of the

bounce to the form

SE(bounce) ' −2π2

∫ m−1
H

0
dr r3gb(r)Ṽ (θb(r)) , (3.49)

where gb and θb are the bounce solution of Eqs. (3.31), (3.32). The integral

is truncated from above by the non-zero Higgs mass. Indeed, as long as r �
m−1
H , the Higgs field is effectively massless, and the bounce exhibits a power-like

asymptotics, θb ∼ r−2, that contributes to the integral (3.49). At r & m−1
H , the

bounce becomes decaying exponentially fast, and the contribution to the action

from that region of r is negligible. This allows us to justify the approximation

that we made for the potential V (h, χ). Namely, as long as m2
H � αM2

P /λ, the

corrections to the bounce coming from the non-zero α and β can be neglected.

It was shown in [50] that under the conditions (3.4) and (3.6), (3.8), the Higgs

mass is given by

m2
H ∼

αM2
P

λξχ
, (3.50)

hence the required inequality is fulfilled. We can also justify the flat space

approximation for the false vacuum state that we made when discussing the

boundary conditions for the bounce solution. Indeed, as long as mH � Λ
1/4
0 , the

integral (3.49) is insensitive to the nontrivial space geometry, and the flat space

asymptotics can be used.

Now we turn to the calculation of the decay rate (3.1) and focus on the expo-

nential coefficient B. In our case SE(FV ) = 0 and B is given by the r.h.s. of Eq.

(3.49). We are interested in the ratio B/B0, where B0 is the SM bounce action

in flat space and for the same values of the SM parameters. We take the Higgs

mass mH = 125.09 GeV [35], and the top quark mass mt = 172.25 GeV [36]. To

see the effect from variation of mt, we also compute B/B0 for mt = 172.25±0.63

GeV corresponding to the 1σ experimental uncertainty region.10 The results for

the normalization points µ̂ = µ̂I,II , with µ̂I,II given in Eq. (3.39), are presented

in Fig. 3.4.

We observe that the difference between the results obtained within different

normalization prescriptions is small. The behavior of B as a function of the

non-minimal couplings ξh and ξχ confirms the predictions (3.47) based on the

qualitative analysis of the effective potential for the bounce solution. We also see

10Within this region, λ changes sign at some scale h∗ �MP , and the tunneling is possible.
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(pr.I, m−t ) (pr.II, m−t )

(pr.I, mt) (pr.II, mt)

(pr.I, m+
t ) (pr.II, m+

t )

Figure 3.4: (see the text above) The ratio B/B0 for the two choices of the
normalization point (pr.I,II). We take the Higgs mass mH = 125.09 GeV and

the top quark masses mt = 172.25 GeV and m±
t = 172.25± 0.63 GeV.
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that necessarily B > B0. This is to be expected, since the bounce interpolates

between (approximately) flat space and anti-de Sitter space, and the gravita-

tional effects are known to make the transition from Minkowski geometry to

anti-de Sitter geometry less probable compared to the flat space limit [23].

3.2.5 EW vacuum stability in the Higgs-inflation scenario

Before we have discussed how the quantum corrections affect the shape of the

effective potential for the bounce solution at the relevant energy scales. Let us

now discuss the possibility that these corrections change the potential in the

way that makes the possible metastability of the EW vacuum compatible with

the Higgs-infation scenario [92]. Renormalization effects due to the non-minimal

coupling of the Higgs field can bring the Higgs self-coupling to positive values at

inflationary scales, as shown schematically in Fig. 3.5. A typical energy at which

these effects take over is of order hinf ∼MP /ξh. As long as this scale exceeds the

magnitude of the bounce h0, the corrections do not affect the decay rate. On the

other hand, if h0 & hinf, we expect that the bounce changes significantly, yielding

the further suppression of the tunneling probability. Somewhat surprisingly,

numerical calculations show that for the values of ξh and ξχ that we consider

here, h0 never approaches hinf. We illustrate this point in Fig. 3.6, where we

choose, as an example, mt = 173.34 GeV and µ̂ = µ̂I . The conclusion is that

inflationary physics produces no effect on stability of the EW vacuum in the

current low temperature background.

h* hinf
hb

Veff

Figure 3.5: Schematic form of the effective potential in the Higgs-inflation
scenario.
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Figure 3.6: Magnitude of the bounce relative to the scale of the Higgs infla-
tion. Here we take mt = 173.34 GeV and µ̂ = µ̂I .

3.3 Discussion

Let us first make a general comment about the bounce solution in the Higgs-

Dilaton theory. We would like to emphasize the fact that, according to the

inequality (3.42), the theory restricts the largest energy scale the tunneling so-

lution can hit by the value

hmax = MP

√
1 + 6ξχ

ξχ(1 + 6ξh)
. (3.51)

This threshold is well below the Planck scale, provided that

ξχξh � 1 . (3.52)

Moreover, as is seen from the numerical findings, for the values of parameters

of the theory that we discuss here, including the range of them acceptable for

phenomenology, the magnitude of the bounce satisfies the much stronger condi-

tion, h0 � MP /ξh. Note that the bound hmax is determined solely by ξh and

ξχ and is independent of any other couplings of the theory. Being an effective

theory, the Higgs-Dilaton model possesses a UV cutoff scale given by the effec-

tive Planck mass [51]. When approaching that scale, the theory is required to be

supplemented by a sequence of higher-dimensional operators suppressed by the

cutoff. If the inequality (3.52) holds, introduction of these operators produces

no effect on the decay rate of the EW vacuum as long as they do not spoil the

condition ρ′b = 0. This observation reveals the difference between the tunneling
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processes in the Higgs-Dilaton theory and in the SM. Indeed, it is known that the

SM bounce can probe sub-Planckian energies, and that the Planck-suppressed

operators, added to the theory, can change drastically the predictions for the

EW vacuum decay rate [106]. We conclude that the tunneling probability in the

Higgs-Dilaton theory at the range of parameters specified by Eq. (3.52) is less

sensitive to new physics coming about at the Planck scale.

Let us now discuss the lifetime of the universe in the Higgs-Dilaton theory.

Whenever the EW vacuum is not absolutely stable, there remains possibility

for a transition towards another minimum of the Higgs potential. We would like

to make sure that the calculations we have performed for the exponential factor

B guarantee the expected lifetime to exceed the present age of the universe by

many orders of magnitude. To this end, one needs to estimate the prefactor A

introduced in Eq. (3.1). In flat spacetime, the good estimation for A is [84]

A ∼ R−4 , (3.53)

where R is the full-width-half-maximum of the bounce. We assume that Eq.

(3.53) remains valid after gravitational corrections are taken into account. To the

best of our knowledge, the computation of the prefactor has not been performed

yet in the SM with gravity included. Our assumption about the validity of

Eq. (3.53) is based on the observation that the Higgs-Dilaton bounce does not

approach the Planck scale where quantum gravity effects come into play. Hence,

one can expect the gravitational corrections to the prefactor to be suppressed by

the ratio h0/MP . Then, the lifetime is given by [106]

τ =
R4

T 3
U

eB , (3.54)

where TU is the age of the universe. For example, taking mH = 125.09 GeV and

mt = 173.34 GeV, we have for the SM [107]

τ0 ∼ 10600TU . (3.55)

One can estimate the additional suppression of the decay rate in the Higgs-

Dilaton model by computing the ratio τ/τ0 for different values of ξh and ξχ.

As an example, Fig. 3.7 shows the ratio with the choice mt = 173.34 GeV

and µ̂ = µ̂I . In particular, we observe that for the values of ξh acceptable for

inflation, the lifetime of the EW vacuum is enhanced by at least 130 orders of

magnitude compared to the SM. Thus, the Higgs-Dilaton low-energy vacuum is

much safer than the SM vacuum.
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Figure 3.7: The ratio of the lifetime of the universe in the Higgs-Dilaton
theory (τ) to that in the SM (τ0). Here we choose mt = 173.34 GeV and

µ̂ = µ̂I .

3.4 Summary

Let us summarize our findings. In this chapter we computed the EW vacuum

decay rate in the Higgs-Dilaton theory. We addressed the question of vacuum

stability for the wide range of parameters of the theory. The stability of the

EW vacuum against transitions towards another minimum of the Higgs poten-

tial is one of the necessary ingredients that make the theory phenomenologically

acceptable. Our analysis showed that the transition probability is suppressed sig-

nificantly compared to the SM case, yielding further stabilization of the vacuum.

We also pointed out that possible corrections to the Higgs potential, coming from

inflationary physics, do not change the lifetime of the vacuum. Furthermore, the

decay rate in the Higgs-Dilaton theory is less sensitive to higher-dimensional

Planck-suppressed operators than in the SM, provided that ξhξχ � 1.
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Chapter 4

Motivation and setup

As suggested by the long quest for unification of fundamental interactions, it is

natural to search for principles relating phenomena that occur at very different

energy scales. To an underlying theory unifying diverse physical processes we

assign a task to explain possible large differences in the measured fundamental

quantities. One of the most striking differences, which has been a source of

new ideas in particle physics for decades, is manifested in the ratio of the Fermi

constant GF , that sets the weak interaction scale, to the Newton constant GN

determining the gravitational force strength,1

GF~2

GNc2
∼ 1033 . (4.1)

It is tempting to speculate that some deep reason for the big number to appear in

this relation may be hidden in a yet unknown theory encompassing the Standard

Model (SM) and General Relativity.

At the classical level, the ratio (4.1) represents one face of the problem. Another

aspect of it appears when we adopt the quantum field theory framework. It

originates from the properties of the Higgs field through the vacuum expectation

value (vev) of which the Fermi constant is defined. As it was realized long ago

in studies of Grand Unified Theories, whenever new physics comes about with

heavy degrees of freedom (dof) activating at some mass scale MX , the heavy

particle’s loops are expected to produce an additive correction to the Higgs mass

mH [56, 108–111],2

δm2
H,X ∼M2

X . (4.2)

1For illustrative purposes, here we write explicitly the Planck constant ~ and the speed of
light c. Everywhere further we work in natural units ~ = c = 1.

2We assume that the new particles are coupled sufficiently strongly to the Higgs field.
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As soon as MX , if exists, is much larger than the observed value of mH , Eq. (4.2)

implies either a fine-tuning between various contributions to the Higgs mass or a

mechanism of systematic suppression of those contributions. This puzzling fact

about the SM Higgs field is known as the (electroweak) hierarchy problem. If

one now treats the EW and gravitational forces within the quantum field theory

framework, then one must include quantum gravity loop corrections to the Higgs

mass. The naive power counting argument suggests these corrections to be of

the order of the Planck mass,

δm2
H, grav. ∼M2

P . (4.3)

The validity of this estimation can be doubted by the observation that, unlike

MX , the Planck mass defines an interaction scale rather than a new particle’s

mass scale (see, e.g., [112]).3 Moreover, at the energies close to MP gravity enters

the strong-coupling regime where estimations based on perturbation theory loose

the predictive power. Nevertheless, if we admit Eq. (4.3), then the observed

difference in the interaction strengths (4.1) either requires a remarkable balance

between the EW and the Planck scale physics, or it is an indication of specific

properties of quantum gravity at strong coupling that result in the absence of

the quadratic corrections to mH , see [52, 53] for reviews of the problem.

The hierarchy problem was addressed in the literature many times and from var-

ious perspectives. The list of proposals dealing with the problem by introducing

a new physics close to the EW scale includes supersymmetry, composite Higgs

theories (for reviews see [115, 116] correspondingly), extra dimensions [117, 118].

The parameter spaces of the models extending the SM at the TeV scale are

subject to constraints provided, in particular, by the LHC data. These con-

straints force such theories to be fine-tuned in order to remain compatible with

experiment [53, 115, 119, 120]. More recent proposals attempt to overcome this

issue [121–124]. Some of them suggest mechanisms of generation of exponen-

tially small couplings to the Higgs field [114], or rely on a specific dynamics of

the latter during the cosmological evolution [125] (see also [126, 127]).

Regardless the particular content of a model extending the SM at high energies,

a common approach to the hierarchy problem lies within the effective field the-

ory framework. The latter implies that the low-energy description of Nature,

provided by the SM, can be affected by unknown UV physics only through a

finite set of parameters. Two of them – the mass of the Higgs boson and the

3In fact, this observation can well be applied to the case of new physics much below the
Planck scale. For example, in [113] an interpretation of the gauge coupling unification scale
was proposed, which is not related to any new particle threshold; see also [114].
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cosmological constant – are most sensitive to the scale and to the dynamics of

physics beyond the SM, being quadratically and quartically divergent. In “nat-

ural” theories the quadratically divergent UV contributions to the Higgs mass

are eliminated by introducing new physics right above the Fermi scale. It is this

naturalness principle that is seriously questioned now in light of the absence of

signatures of new physics at the TeV scale [53]. While some parameter regions

of the theories with MX ∼ 1 TeV still survive at the price of a moderate fine-

tuning, a relatively radical step would be to suggest that the UV physics can

affect the low-energy behavior in a way that is not captured by the perturba-

tion theory. Going back to the ratio (4.1), this would imply the existence of a

non-perturbative effect linking the scales separated by 17 orders of magnitude.

Non-perturbative physics provides natural tools to establish links between the

low-energy and the high-energy regimes of a theory. Perhaps, the most striking

example of such a link, which strongly interferes phenomenology, is revealed

in studying the EW vacuum decay. Indeed, as was discussed in section 3.3,

depending on the structure of UV operators added to the SM at large energy

scales, the decay rate of the EW vacuum can be changed drastically compared

to the pure SM case [106]. Hence, having observed the sufficiently long-lived

universe, one can make certain predictions about the physics complementing the

SM at high energies (for a review see [32] and references therein).

The idea of some principle that can shape the behavior of a theory at very dif-

ferent energy scales is not novel to particle physics. For example, it is tempting

to use such kind of reasoning when investigating a probable (near-)degeneracy

of the minima of the SM Higgs potential, which is supported by the recent mea-

surements of the Higgs and the top quark masses [29, 31]. A possible mechanism

that makes the form of the potential special and, hence, predicts the values of the

low-energy parameters, can manifest itself in a number of ways. For example,

in [60] bounds on the Higgs and the top quark masses were put based on the

principle of multiple point criticality [128], while in [129] the prediction of mH

was made, guiding by an asymptotic safety of gravity [130]. Inspired by these

ideas, below we make an attempt to resolve the problem (4.1) by looking for an

inherently non-perturbative effect relating the weak and the Planck scales.

The formulation of the hierarchy problem necessarily implies at least two scales

in game. Considered isolated, the SM does not possess the problem due to the

absence of thresholds with the energies above the EW scale, with which the

Higgs mass is to be compared [54].4 But as soon as gravity is embedded into

4Here we leave aside an issue with the Landau pole in the scalar self-coupling.
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the quantum field theory framework, one high-energy scale appears inevitably,

raising the question about the origin of the big number in the r.h.s. of Eq. (4.1).

Nonetheless, the no-scale scenario looks attractive [131–135], and motivates to

search for the models which, alongside with incorporating the SM and gravity,

do not contain dimensional parameters at the classical level [50, 51, 87, 136–143].

The advantage of this approach is that scale invariance and the absence of new

heavy particles can protect the Higgs mass from large radiative corrections, thus

making its value natural according to the ’t Hooft definition [144]. This is a

step forward in a solution of the hierarchy problem, although the big difference

between the Fermi and the Planck scales remains unexplained.5 To study non-

perturbative phenomena that can possibly affect the Higgs mass, it would be

useful to have a theory in which the corrections coming at the perturbative level

are suppressed, and one can achieve this by the means of scale symmetry and by

requiring that no heavy dof appear beyond the SM.

In the scale-invariant framework, the Planck mass appears as a result of spon-

taneous breaking of the scale symmetry. In the subsequent chapters we argue

that gravitational effects can generate non-perturbatively a new scale, associated

with the classically zero vev of a scalar field. Dynamical gravity and global scale

symmetry are important ingredients of a theory admitting this non-perturbative

mechanism. The former ensures the existence of euclidean classical configura-

tions of a special type — singular instantons — that contribute to the vev of the

scalar field. The latter can protect the vev from large radiative corrections, pro-

vided that the scalar sector of a theory is additionally invariant under constant

shifts of the field responsible for generating the Planck scale [100]. Our goal is

to find if it is possible, in particular classes of theories, to make the new scale

much smaller than MP , in which case the hierarchy of scales emerges.

The existence of the desired instanton configuration relies on a specific struc-

ture of the theory in high-energy and large-field limits. In what follows, we will

investigate this structure by the means of simple models containing the gravita-

tional and scalar dof that mimic the Higgs-gravity sector of the theory we are

eventually interested in. To apply the results of the non-perturbative analysis

to the actual hierarchy problem (4.1), it is necessary to have a theory which is

compatible with the models on which the mechanism is tested and is consistent

with observations and experiment. Good candidates are the models of Higgs in-

flation studied in [90–92], or the Higgs-Dilaton model [50, 51, 131, 135, 145]. In

5As was discussed in section 1.3, the possibility to generate mH via radiative correction to
the Higgs field potential in the SM is not compatible with experiment.



Motivation and setup 39

chapters 7 and 8 we will show how Eq. (4.1) is reproduced in certain high-energy

modifications of these theories.

Of course, the absence of an explicit UV completion of gravity engenders irremov-

able ambiguities in our analysis. The scale-invariant framework and the require-

ment of having a phenomenologically viable low-energy limit reduce partially this

ambiguity. The resulting amount of possibilities for choosing a particular model

for the analysis is, however, still quite large. For example, the Higgs-gravity sec-

tor of a theory under investigation can be governed by the Horndeski Lagrangian

or its extensions [146–148]. We will focus on some possible examples in which the

suggested mechanism of the exponential suppression of the Planck scale due to

instantons exists. We do not intend to perform an extensive survey of all possible

examples. Nor do we intend to argue that a toy model chosen to illustrate the

mechanism can indeed be consistently embedded into the UV complete theory of

gravity. Note, however, that Eq. (4.1) can be viewed as an argument in favor of

those properties of the UV theory, that support the existence of the suppression

mechanism.



Chapter 5

Outline of the idea

In this chapter, we provide a general idea of the method that allows to capture

non-perturbative gravitational contributions to a one-point correlation function

of a scalar field. We will use this method in chapters 7 and 8 where corrections

coming from instantons to the vev of a scalar field are computed.

Consider the theory containing a real scalar field ϕ of a unit mass dimension,

the metric field gµν and, possibly, other dof which we denote collectively by A.

In the euclidean signature, the (time-independent, spatially homogeneous) vev

of ϕ is evaluated as1

〈ϕ〉 = Z−1

∫
DϕDgµνDA ϕ(0)e−S , (5.1)

where Z denotes the partition function,

Z =

∫
DϕDgµνDA e−S , (5.2)

and S is the euclidean action of the theory. If the theory admits the classical

ground state of the form ϕ = 0, gµν = δµν , the numerator in Eq. (5.1) can

be computed by the means of the standard perturbation theory. Let us instead

attempt to reorganize it by exponentiating the scalar field variable in the region

of large magnitudes of the latter,

ϕ→ ϕ0e
ϕ̄ , ϕ & ϕ0 , (5.3)

1Here and below we work with euclidean formulation of theories, without indicating this
explicitly. We will comment on this later in this chapter.
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where by ϕ0 we understand an appropriate scale of the theory. The corresponding

part of the path integral in Eq. (5.1) becomes∫
ϕ&ϕ0

Dϕ ϕ(0)e−S → ϕ0

∫
ϕ̄&0
Dϕ̄Je−W , (5.4)

where

W = −ϕ̄(0) + S (5.5)

and J is a Jacobian of the transformation (5.3).

Next, we want to evaluate the vev (5.1) in the saddle-point approximation (SPA).

The partition function is evaluated via a ground state configuration. Suppose

that the functional W admits appropriate saddle points through which the mod-

ified path integral can be evaluated as well. Then,

〈ϕ〉 ∼ ϕ0e
−W̄+S0 . (5.6)

In this expression, W̄ is the value of W at a saddle and S0 is the value of S at

the ground state.

Clearly, the possible saddles of the functional W solve equations of motion for

the field ϕ̄ everywhere except the origin. At the origin, they satisfy the equation

provided that the latter is supplemented with an instantaneous source of ϕ̄,

ϕ̄(0) =

∫
d4xj(x)ϕ̄(x) , j(x) = δ(4)(x) . (5.7)

The solutions of the equation with the source are expected to be singular at the

point where the source acts. Despite this, they are valid saddle points of W (but

not S).

Let us discuss the conditions under which the transition from Eq. (5.1) to Eq.

(5.6) is possible. First, the theory must admit the singular configurations of the

type described above, which approach the classical ground state away from the

singular point. Second, the SPA must be justified by the presence in the theory

of a suitable semiclassical parameter. The appearance of such parameter would

ensure that W̄ � 1. If a particular calculation reveals W̄ to be of the order of

one or negative, one concludes that Eq. (5.6) is not valid. Last, but not least,

a physical argumentation is necessary in order to justify the change of the field

variable made in Eq. (5.3).

In chapters 7 and 8 we will see in detail how the first two requirements mentioned

above are satisfied in particular classes of models comprising gravity and scalar
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fields. Here we just note that these conditions are, in fact, quire restrictive. It is

easy to make sure that neither theories of a scalar field with no back-reaction on

gravity nor theories with dynamical gravity and a minimal coupling of it to the

scalar field possess classical configurations which would allow to arrive at Eq.

(5.6).

The third requirement represents a more serious issue. Indeed, one would nor-

mally expect the value of 〈ϕ〉 to be independent of any transformations of the

variables used in the intermediate computations. In the examples below we will

see that what appears to be the canonical scalar field dof in the low-energy (or

low-field) limit may not be so in the limit of large fields and energies. One may

notice here an analogy with gauge theories, the valid description of the confine-

ment phase of which is performed in terms of Wilson loops, not the gauge field

itself [149]. One may also suggest that although the full calculation will indeed

produce the same answer regardless the choice of variables, the partial answer

that includes a finite amount of loops is sensitive to the background configura-

tion upon which we build the perturbation theory. Hence, Eq. (5.6) may result

from a certain resummation procedure. We leave any further discussion of this

appealing possibility for future work.

Note that, because of the presence of gravity, the euclidean path integral in Eq.

(5.1) must be taken with caution. Indeed, it is known that the action of the

euclidean quantum gravity is unbounded below; in particular, it suffers from the

so-called conformal factor problem [150] (see also the discussion in [151]). We

assume that the properties of the theory in the UV regime result in a resolution

of this problem in one or another way.

Eqs. (5.1)—(5.6) admit a straightforward generalization to the case when the

vacuum geometry is not flat. In this case, the action of the theory must be

supplemented by an appropriate boundary term, and the exponent in Eq. (5.6)

will include the difference of the boundary terms taken at the ground state

and at the configuration extremizing W . It is clear that the presence of the

cosmological constant is not relevant for the analysis of classical configurations

whose characteristic scale ϕ0 is associated with the Planck scale. Note also that

the non-zero vacuum energy can be realized in a scale-invariant theory without

an explicit breaking of the scale symmetry [87, 152, 153].

The prefactor in Eq. (5.6) includes a parameter ϕ0 with the dimension of mass.

In scale-invariant theories a dimensionful parameter can arise due to a sponta-

neous symmetry breaking. If a theory possesses only one such parameter at the

classical level, the vev of the field will inevitably be proportional to it. In this
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case, the quantity W̄ can be viewed as a rate of suppression of the classical scale.

Hence, Eq. (5.6) indicates the emergence of the hierarchy of scales, one of which

is generated classically, and the other — non-perturbatively.

In evaluating the vev 〈ϕ〉 in the leading-order SPA, the fields of the theory, which

do not participate in building the instanton configuration, are kept classically at

their vacuum values. Fluctuations of the fields on top of the instanton are the

source of perturbative corrections to the prefactor in Eq. (5.6). Evaluation of

the prefactor with the accuracy beyond the naive dimensional analysis is difficult

and is left for future work. However, the applicability of the SPA enables us to

believe that the corrections coming with the fluctuation factor do not spoil the

hierarchy of scales observed in the leading-order analysis. Moreover, as we will

see later, the instanton value of W varies depending on the parameters of the

theory, and this can compensate possible deviations of the value of the vev,

caused by subleading contributions.



Chapter 6

Singular instanton in the

Dilaton model

In this chapter, we consider a simple scale-invariant model admitting exactly

solvable classical euclidean equations of motion. We will refer to it as the Dilaton

model. We focus on the configurations solving these equations provided that the

latter are accompanied with a scalar field source. These configurations share

many important properties with their counterparts arising in more complicated

theories which we study in chapters 7 and 8. The results obtained here will

provide us with an intuition about certain properties a theory must possess in

order to permit the mechanism of generating the hierarchy of scales, which was

outlined in the previous chapter.

6.1 The Dilaton model

Consider the simplest scale-invariant model of one real scalar field coupled to

gravity in a non-minimal way. The euclidean Lagrangian of the model is

L
√
g

= −1

2
ξϕ2R+

1

2
(∂ϕ)2 +

λ

4
ϕ4 , (6.1)

where (∂ϕ)2 ≡ gµν∇µϕ∇νϕ, and the non-minimal coupling constant ξ is taken

to be positive. The euclidean action of the model,

S =

∫
d4xL , (6.2)
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must be supplemented with an appropriate boundary term (see, e.g., [154]). As

we will see shortly, the latter should be taken in the form

I = −
∫
d3x
√
γKξϕ2 , (6.3)

where K denotes the external curvature of the space boundary and γ the deter-

minant of the metric induced on the boundary.

The model is invariant under the global scale transformations1

gµν(x) 7→ gµν(qx) , ϕ(x) 7→ qϕ(qx) (6.4)

with q a constant. Further, it admits the classical ground state of the form

ϕ = ϕ0 , R =
λϕ2

0

ξ
. (6.5)

The latter breaks scale invariance spontaneously by introducing a classical scale

ϕ0.

To simplify the analysis of classical configurations, it is convenient to rewrite the

model in the form in which the non-minimal coupling is absent. To this end, we

perform a Weyl transformation of the metric field. We have already encountered

this type of transformation during the study of the bounce in the Higgs-Dilaton

theory. To keep the kinetic term of the scalar field canonical (up to a constant

multiplier) in the new coordinates, we also redefine the scalar field variable:2

ϕ = ϕ0Ω , g̃µν = Ω2gµν , Ω = e
ϕ̄√
ξϕ0 . (6.6)

The action becomes (see Eq. (3.13))

S =

∫
d4xL̃ − 3

∫
d4x
√
g̃ξϕ2

0�̃ log Ω , (6.7)

where �̃ ≡ g̃−1/2∂µg̃
µν∂ν . The exterior curvature transforms as

K = ΩK̃ + 3ñµ∂µΩ , (6.8)

where ñµ is a unit normal to the boundary in the coordinate frame provided

by g̃µν . After using Gauss’s theorem, the second contribution in Eq. (6.8)

1The symmetry associated with the absence of dimensionful parameters can equivalently be
written as an internal transformation, gµν(x) 7→ q−2gµν(x), ϕ(x) 7→ qϕ(x).

2The condition ϕ > 0 implied by Eq. (6.6) is not restrictive. In what follows, we will discuss
the classical configurations which are monotonically-decreasing functions of a radial coordinate
with the large-distance asymptotics ϕ→ ϕ0.
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cancels the total derivative term in Eq. (6.7). The transformed Lagrangian and

boundary term are written as3

L̃√
g̃

= −1

2
ξϕ2

0R̃+
1

2a
(∂̃ϕ̄)2 +

λ

4
ϕ4

0 , a =
1

6 + 1/ξ
, (6.9)

IGH = −ξϕ2
0

∫
d3x
√
γ̃K̃ , (6.10)

where we denoted (∂̃ϕ̄)2 ≡ g̃µν∇µϕ̄∇νϕ̄. In the first term of the Lagrangian we

recognize the Planck mass,

MP ≡
√
ξϕ0 , (6.11)

and Eq. (6.10) represents the usual Gibbons-Hawking term [93], which justifies

Eq. (6.3).4 In the new coordinates, the scale transformations act as

ϕ̄(x) 7→ ϕ̄(x) + q , g̃µν(x) 7→ g̃µν(x) . (6.12)

Note that the scalar field variable ϕ is related to the canonical variable ϕ̄ via the

exponential mapping, according to Eq. (6.6). Hence, the non-minimal coupling

to gravity leads naturally to the appearance of the source term for ϕ̄ in the

process of evaluation of the vev 〈ϕ〉. Later, this observation will enable us to

write Eq. (5.6) for a classically zero vev of the scalar field.

6.2 Classical configurations and Instanton action

In studying classical configurations arising in the Dilaton model, we restrict our-

selves to the spherically-symmetric case. This is motivated by the fact that

introducing the instantaneous source of the scalar field does not break the O(4)-

symmetry present in the theory. Should the less symmetric configurations suit-

able for our purposes exist, we assume that their contribution to the path integral

is suppressed (see also footnote 6 in chapter 3). Furthermore, below we neglect

the curvature of the background solution (6.5) by assuming that it has no impact

on relevant properties of classical configurations whose characteristic energy scale

exceeds significantly the scale of the background. This expectation is justified in

appendix A where the case of non-zero R is considered.

3Note that without the boundary term taken into account, the Lagrangian (6.9) would
contain the total derviative term, according to eq. (6.7), and this term would contribute to the
action of a singular configuration, thus leading to an incorrect result.

4Of course, one can check directly that the boundary term (6.3) cancels the surface terms
arising from the variation of the metric in the action (6.2).
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We adopt the ansatz (3.28) for the metric field, which we quote here again for

convenience:

ds̃2 = f2dr2 + r2dΩ2
3 . (6.13)

Here f is a function of the radial coordinate r and dΩ3 is the line element on

a unit 3-sphere. The scalar field equation of motion and 00-component of the

Einstein equations read as follows,

∂r

(
r3ϕ̄′

af

)
= 0 ,

1

f2
= 1 +

r2ϕ̄′2

6aM2
P

. (6.14)

Equations of motion admit a solution of the form

ϕ̄ = 0 , f = 1 , (6.15)

which represents the classical ground state (6.5) of the model with R = 0. To

find other configurations, we replace the first of Eqs. (6.14) by

r3ϕ̄′

af
= C (6.16)

with C some non-zero constant. We require the classical configuration obeying

Eq. (6.16) to approach the vacuum solution (6.15) at large distances. With

this boundary condition, we obtain a one-parameter family of configurations

distinguished by the value of C. Near the origin, the scalar field and the curvature

behave as

ϕ̄ ∼ −γMP log(MP r) , R̃ ∼ aM−4
P r−6 , γ =

√
6a , r → 0 . (6.17)

One observes that the physical singularity forms at the center of the configura-

tions. Therefore, they are not valid solutions of Eqs. (6.14) at r = 0. In what

follows we will refer to such configurations as “singular shots”.5

The divergence of a classical field configuration can be associated with a source

of the field acting at the points of divergence. Therefore, such configuration

can be regarded as a solution of equations of motion following from varying the

action supplemented by a source term,

W = S −
∫
d4xj(x)ϕ̄(x) . (6.18)

5Configurations of this type were studied before in context with the cosmological initial
value problem [155–158]. In those works, they are referred to as (singular) instantons. Here we
would like to reserve the name “instanton” for a unique configuration of the family, for which
Eq. (6.20) holds. The name “shot” was inspired by [159].
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To reproduce the asymptotics (6.17), the source j(x) must be instantaneous,

j(x) = M−1
P δ(4)(x) , (6.19)

where we normalize the delta-function on the Planck scale as the latter is the

only classical scale of the model. One of the singular configurations found above

is obtained as a saddle point of the functional W . It is specified by

C = −M−1
P . (6.20)

This can be viewed as an additional boundary condition fixing the position of

the center of the singular configuration and the strength of the source producing

it. In what follows, we will call the solution of Eqs. (6.16), (6.20) the singular

instanton. It is explicitly given by

ϕ̄(r) =

√
3a

8
MP log


√

1 + 6a−1M4
P r

4 + 1√
1 + 6a−1M4

P r
4 − 1

 ,
1

f2(r)
= 1 +

a

6M4
P r

4
. (6.21)

As is seen from this equation, the singular instanton has a characteristic length

scale a1/4M−1
P determining the size of its core. In the core region, the gravita-

tional field is affected strongly by the dynamics of the scalar field. In turn, the

short-distance behavior of the scalar field is affected by gravity, see Fig. 6.1 for

illustration.

We would like to note that the short-distance logarithmic divergence of the scalar

field, expressed in Eqs. (6.17), reveals a nontrivial interplay between the scalar

and gravitational sectors of the model. Indeed, in the flat space limit, the field ϕ̄

in four dimensions exhibits the usual power-like massless asymptotics ϕ̄ ∼ r−2.

We observe that gravity cures partially this divergence. This seems to be a

promising sign of a general non-perturbative effect caused by gravity on the

correlation functions in the scalar sector.6

Finally, we compute the euclidean action S̄ and the boundary term ĪGH of the

singular instanton in the limit λ = 0, relative to the action S0 and the boundary

term IGH,0 of the background solution. This gives

ĪGH − IGH,0 ∼ a−1M−2
P r−2

s → 0 , rs →∞ , λ = 0 , (6.22)

6Note that the solution of Eq. (6.20) can be viewed as an euclidean Green function of
the massless scalar field propagating in the external gravitational background specified by the
second of Eqs. (6.21).
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Figure 6.1: The profile of the singular instanton for the different values of
a. The top panel demonstrates the logarithmic divergence of the scalar field ϕ̄
in the core region of the instanton. The bottom panel shows the behavior of
the metric function f in the same region. The dashed lines represent the static

gravity limit.

where rs is the radius of a 3-sphere, and

S̄ = S0 = 0 . (6.23)

Hence, there is no contribution of order 1 from the instanton to the net euclidean

action, neither to the net boundary term. Switching on the coupling λ does

not change this result, once the instanton and the cosmological scales are well

separated, see appendix A for details.

To summarize, the singular instanton found above is a legitimate solution of

the variational problem δW/δϕ̄ = 0 with W given in Eq. (6.18). This goes in

accordance with the logic presented in chapter 5. However, in the Dilaton model,

the classical scale is defined by the vev of the scalar field, and there is no room

for the second scale to be generated via the singular instanton. Moreover, as we

just saw, the model is not capable of providing the large instanton action. To

fix these drawbacks, one should change the structure of the model in the region
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of large ϕ̄ and supplement it with the second scalar field whose vev is classically

zero. We will proceed to this case in chapter 8.



Chapter 7

“Higgs+gravity” models

In this chapter we demonstrate how singular instantons of the type studied before

can contribute to the vev of the scalar field via the mechanism outlined in chapter

5, in the models of one scalar dof coupled to gravity in a non-minimal way.

Let us remind the framework which we will follow. According to the discussion

in chapter 4, we would like to exclude from consideration possible quantum

(perturbative) corrections to the Higgs field vev, coming with the heavy mass

thresholds associated with new physics. To this end, we require no dof with

the mass scales above the EW scale appear in the theory. That is, we demand

the only classical dimensional parameter in the theory be the Planck mass. The

vastness of possible models to consider is further restricted by the requirement

to reproduce the SM Higgs sector and General Relativity at low energies and

by the assumption that among higher-dimensional operators activating at high

energies those are present that we find useful for the purpose of generating the

hierarchy of scales.1 Let us stress again that our goal here is to find a mere

example of a model in which the mechanism of the exponential suppression of

the Planck mass due to instantons exists.

We will find that the crucial ingredient of the theory admitting the instantons

with the desired properties is the non-minimal coupling of the Higgs field to

the Ricci scalar. This confirms the expectation coming from the analysis of

the Dilaton theory. We will also find that the instantons generating the large

hierarchy of scales favor the (approximate) Weyl invariance of the theory for

large values of the scalar field.

1The structure of theories at high energies can also be subject to constraints, e.g., by the
requirement of asymptotic safety [130].
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The plan of this chapter is as follows. In section 7.1 we introduce a simple

model describing the dynamics of the gravitational and the classically massless

scalar fields. The large-field limit of the model matches the Dilaton theory. We

analyze euclidean classical configurations arising in this model, and discuss their

possible influence on the vev of the scalar field. The results of the analysis

motivate us to introduce certain modifications into the model. In section 7.2

we incorporate these modifications step by step. We find that contribution of

the singular instanton to the scalar field vev can actually make the latter non-

zero and, at the same time, many orders of magnitude smaller than the Planck

scale. In section 7.3 we apply our findings to the actual hierarchy problem by

identifying the scalar field with the Higgs field dof, and discuss the inclusion of

other SM dof. Finally, section 7.4 summarizes our results.

7.1 The warm-up model

As a warm-up, in this section we study a simple model containing the real scalar

field ϕ coupled to dynamical gravity. The purpose is to elucidate important

properties of the singular instanton and to make connection with the results

obtained within the Dilaton theory. We take the following Lagrangian,

Lϕ,g√
g

= −1

2
(M2

P + ξϕ2)R+
1

2
(∂ϕ)2 + V (ϕ) (7.1)

with

V (ϕ) =
λ

4
ϕ4 (7.2)

and ξ > 0. The Lagrangian (7.1) must be supplemented with the suitable bound-

ary term. However, as we saw in section 6.2, the latter is not relevant for the

analysis of classical configurations, and from now we will omit it.

The scalar sector of the model, represented by the last two terms in Eq. (7.1),

exhibits global conformal invariance. Addition of gravity and the scalar-gravity

interaction (the first two terms) breaks this symmetry explicitly. In the limit

|ϕ| � MP /
√
ξ, the global scale symmetry is acquired. Overall, the model (7.1)

serves is a good prototype of the Higgs-gravity sector of a theory we are eventually

interested in. Of course, in a more realistic setting operators of higher dimensions

suppressed by a proper cutoff must be added to the Lagrangian. We will proceed

with the study of particular types of such operators in section 7.2. Finally, the

non-minimal coupling constant ξ and the quartic self-coupling constant λ can
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Figure 7.1: The regions of magnitudes of the scalar field of the model (7.1)
with the condition (8.9) implemented.

be taken as functions of ϕ. The ϕ-dependence would mimic their RG-evolution

once extra dof are included into the theory, that are coupled to the scalar field.

For the sake of simplicity, we require

√
ξ � 1 , (7.3)

which provides us with a good separation of the Planck and the scale symmetry

restoration scales. In what follows, we will refer to the range of magnitudes

|ϕ| �MP /
√
ξ as the (classically) scale-invariant (SI) regime of the model, while

the sub-range |ϕ| �MP will be referred to as the large-ϕ regime (see Fig. 7.1).

Note that in the SI regime, the model (7.1) reduces to the Dilaton model studied

above. Hence, one can expect that the properties of the singular instanton in

the core region are the same in both theories.

Following the standard procedure, we rewrite the Lagrangian in the form in

which the non-minimal coupling of the scalar fields to the Ricci scalar is absent.

The corresponding Weyl transformation reads as follows,

g̃µν = Ω2gµν , Ω2 =
M2
P + ξϕ2

M2
P

, (7.4)

and the E-frame Lagrangian is

Lϕ,g√
g̃

= −1

2
M2
P R̃+

1

2a(ϕ)
(∂̃ϕ)2 + Ṽ (ϕ) , (7.5)

where

a(ϕ) =
Ω4

Ω2 + 6ξ2ϕ2/M2
P

, Ṽ (ϕ) = V (ϕ)Ω−4 , (7.6)

and by (∂̃ϕ)2 we understand the kinetic term in which the partial derivatives are

contracted with the transformed metric g̃µν .

As before, we restrict the analysis to the O(4)-symmetric configurations and

apply the metric ansatz (6.13). We further require the configuration to obey

the vacuum boundary conditions at infinity. To stay close to the actual Higgs

physics, we allow the quartic coupling λ as a function of ϕ to develop a domain
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of negative values at some magnitudes of ϕ. In this case, the asymptotics

f2(r)→ 1 , ϕ(r)→ 0 , r →∞ (7.7)

do not represent the true vacuum state of the theory. The model (7.5) then

admits the bounce interpolating between the regions of the true and false vacua.

Due to its regularity at the origin, the bounce is not an euclidean configuration

suitable for our purposes. However, as we will see, some of the singular shots

exhibit properties resemble to those of the bounce; hence it is instructive to

compare these types of configurations.

Apart from the possible bounce, the model (7.5) admits a family of singular shots

that also satisfy the boundary conditions (7.7). To find their large-ϕ asymptotics,

we write the equations of motion following from the Lagrangian (7.5) in the SI

regime and with the ansatz (6.13) applied,

∂r

(
r3ϕ′

ϕf

)
= 0 , f2 = 1− r2ϕ′2

6aSIϕ2
, (7.8)

where

aSI =
1

1/ξ + 6
. (7.9)

From this we deduce the behavior of the singular shots near the origin

ϕ ∼ r−γ , R̃ ∼ r−6 , γ =
√

6aSI , r → 0 . (7.10)

This coincides with Eq. (6.17) upon the exponential change ϕ→ eϕ̄ of the scalar

field variable.

7.2 Implementation of the mechanism

7.2.1 Making the instantaneous scalar field source

Let us see how one of the singular shots obtained above becomes a valid singular

instanton contributing to the vev of the scalar field. According to the discussion

in chapter 5, we make the change of variable

ϕ→MP e
ϕ̄/MP . (7.11)
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Figure 7.2: Two featured singular configurations of the model (7.5). The shot
painted blue matches the scalar field source in the r.h.s. of Eq. (7.18), hence
it is a valid singular instanton. The shot painted green is the one with the
large euclidean action; for illustration, we choose for it S̄E = 40. We take the
potential for the scalar field coinciding with the (RG-improved) Higgs potential
in the SM with the central values of the top quark mass mt = 172.25 GeV [36],
the Higgs mass mH = 125.09 GeV [35], and the field-dependent normalization
point µ = ϕ̄. The top panel shows the short-distance asymptotics of the rel-
evant combination of the fields, the dashed line marks the value (6 + 1/ξ)−1.
The bottom panel shows the behavior of ϕ̄ as the singularity is approached.

For illustrative purposes, the bounce is also plotted in red.

From Eq. (7.5) we see that ϕ̄ is, in fact, a canonical variable for the scalar field in

the limit ϕ � MP /
√
ξ.2 Therefore, we can endow Eq. (7.11) with the physical

meaning by saying that it is ϕ̄ that carries the valid dof of the scalar field at

the large magnitudes of the latter. The field redefinition (7.11) results in the

appearance of the desired source term in the process of evaluation of the vev

〈ϕ〉.

Introducing the source term as in Eqs. (6.18), (6.20), we find the modification

of Eqs. (7.8) in the large-ϕ (or, equivalently, large-ϕ̄) regime,

∂ρ

(
ρ3ϕ̄′

faSI

)
= − 1

MP
δ(ρ) , f2 = 1− ρ2ϕ̄′2

6aSIM2
P

, (7.12)

2Up to a coefficient of the order of one, according to Eq. (8.9).
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where aSI is given in Eq. (7.9), and the asymptotic behavior of the scalar field

is now (cf. Eq. (6.21))

ϕ̄ = −MP

√
6aSI log rMP + C , r → 0 (7.13)

with C a constant used to match with the asymptotics (7.7) at large r. We

observe that the exponentiation of the ϕ-variable leads to the fixation of the

position of the center of the singular shots and makes one of them the legitimate

solution of the variational problem δW/δϕ̄ = 0 with the boundary condition

(7.7). To simplify the consideration, in the rest of the chapter we will work

with the ϕ̄-variable in the entire range of magnitudes, bearing in mind that, by

construction, it carries the valid dof only at ϕ̄ &MP log(1/
√
ξ). We would like to

use the singular instanton as a saddle point of the functional W , that contributes

to the vev 〈ϕ〉. In the SPA, this amounts to saying that

〈ϕ〉 ≈MP e
−W̄ , (7.14)

where W̄ is the value of W computed on the instanton.

Formula (7.14) manifests the appearance of a new scale in the model (7.5). We

are interested in the case when this scale is much smaller than the original scale

MP (or MP /
√
ξ). For this to happen, one should require

W̄ � 1 . (7.15)

As was mentioned in chapter 5, the SPA is not applicable in the situation when

W̄ is nearly zero or negative. The possible interpretation of this case is that

the non-perturbative effects of quantum gravity are strong, and, hence, no new

scale appears. If, on the other hand, Eq. (8.49) is fulfilled, these effects are

suppressed, and the hierarchy of scales is generated. Our goal for the rest of this

section is to find when it is possible to satisfy Eq. (8.49) in the model (7.5) or

its modifications.

7.2.2 Attempting to compute the vev in the simple model

In trying to compute W̄ in the model (7.5), one immediately encounters mul-

tiple issues. We describe them here, and in section 7.2.3 and 7.2.4 the large-ϕ̄

modifications of the model are studied with the aim to cure them.

(i) It is immediately seen from Eq. (7.13) that ϕ̄(0) = ∞, hence W̄ is diver-

gent. In order to extract a meaningful information about the contribution of the
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Figure 7.3: The family of singular configurations of the model (7.5),
parametrized by their fall-off at infinity, ϕ = cr−2, r →∞. We take the same
potential for the scalar field as in Fig. 7.2. The colored circles correspond to
the shots shown in Fig. 7.2. The top panel shows the euclidean action of the
shot plotted against the parameter c, the dashed line corresponds to S̄E = 40.
The bottom panel shows the value of the scalar field source necessary to match
with the short-distance asymptotics of the solution, the dashed line corresponds
to the value (6 + 1/ξ)−1 (see Eq. (7.18)). The black circle indicates another
singular instanton with the correct asymptotic behavior; contrary to other con-
figurations, this instanton lies close to the bounce everywhere except the core,
and its euclidean action is nearly the same as the one of the bounce. In the
SPA, one should exclude this instanton from consideration in favour of the one

with the small euclidean action.

singular instanton to the vev 〈ϕ〉, an accurate treatment of this divergence is

required.

(ii) We did not present the semiclassical parameter that would justify the SPA

made in arriving at Eq. (7.14). However, such justification can be made a

posteriori provided that we have an explicit solution.

(iii) Let us compute the euclidean action of the singular instanton S̄E in the

model (7.5). Making use of the Einstein equations, one obtains

S̄E = −
∫
d4x
√
g̃Ṽ (ϕ̄) . (7.16)

If one leaves aside for the moment the issue with the singular term in W , then

S̄E is to provide the desired suppression of the Planck scale in Eq. (7.14). This
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would imply

S̄E � 1 . (7.17)

For S̄E to be positive, the field-dependent coupling constant λ must be negative

at some values of ϕ̄, thus admitting the bounce solution alongside with the in-

stanton solution. Bearing in mind phenomenological applications of our analysis,

we require the euclidean action of the bounce to be large enough in order to en-

sure the sufficiently large lifetime of the false vacuum. With this condition and

the condition (8.9) implemented, we investigate numerically the singular shots

obeying the asymptotics (7.7) and, in particular, the singular instanton for which

1

aSI

r3ϕ̄′

f
→ − 1

MP
, r → 0 . (7.18)

The results of the analysis are presented in Fig. (7.2) and (7.3). We take ξ = 103,

and the ϕ̄-dependence of λ as if it underwent the RG-running in the SM with the

central values of the parameters of the latter.3 We observe that the requirement

of the correct asymptotic behavior in the large-ϕ̄ limit is in a sharp contrast

with the requirement to have the large value of S̄E . In fact, the incompatibility

of the two conditions cannot be overcome regardless the shape of the potential

for the scalar field. The reason is that the singular instanton turns out to be

insensitive to the details of the potential at low magnitudes of ϕ̄, since it shoots

too fast through this region of magnitudes, and no substantial contribution to

the euclidean action can be produced. This forces us to conclude that in the

model (7.5) it is impossible to make the singular shot with the conditions (7.17)

and (7.18) both satisfied. The euclidean action of the singular instanton turns

out to be nearly zero, the SPA is not applicable, and the non-perturbative effects

are expected to drive the value of 〈ϕ〉 close to the Planck scale.

Problems (i)− (iii) pose serious obstacles to our analysis. The possible way out

is to modify the model (7.5) in the large-ϕ̄ regime. The necessity for such modi-

fication comes naturally once we notice that at ξϕ2 �M2
P the Lagrangian (7.5),

in fact, describes the low-energy limit of the theory we are ultimately interested

in. Hence, considering different higher-dimensional operators supplementing the

model (7.5) at large values of ϕ̄ and its derivative is in agreement with the strat-

egy of probing different possible UV properties of the theory reducing to the

conformally-invariant SM and General Relativity at low energy scales, of which

3Here and below we assume that the RG-running of the non-minimal coupling ξ in the theory
can be neglected. This is justified by noticing that ξ evolves rather slowly with the energy scale
increasing, provided that it is always far from the conformal limit. Moreover, the results of our
analysis will eventually be insensitive to the particular value of ξ.
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proper UV completion we are not aware. The applicability limit of the low-

energy description is determined by considering unitarity bounds of n-particles

scattering amplitudes on top of the background vacuum configuration. The UV

cutoff Λ of the model (7.5), determined in this way, is found to be [160–162]

Λ ∼MP /ξ . (7.19)

This justifies the usage of the Planck-suppressed in the low-ϕ̄ limit operators

which are composed of the scalar and the metric fields. Below we consider

some particular classes of such operators in an attempt to improve the large-ϕ̄

properties of the singular instanton and, eventually, to cure problems (i)− (iii).

7.2.3 Shaping the large-field limit with derivative operators

We would like to study how the short-distance behavior of the singular shots

of the model of section 7.1 is changed when new operators are added into the

model. We start by introducing an operator containing the higher degree of the

derivative of the scalar field,

On =
√
g δn

(∂ϕ)2n

(MPΩ)4n−4
(7.20)

with Ω given in Eq. (7.4) and δn a dimensionless constant. The operator (7.20) is

suppressed by M4n−4
P /δn in the low-energy low-ϕ limit and becomes independent

of MP in the large-ϕ limit. For simplicity, here we limit the consideration to a

single (n = 2)-operator. The general case will be commented on in section 7.4.

Making the Weyl rescaling of the metric (7.4) and changing the variable according

to Eq. (7.11), we obtain the modification of the model in the SI regime by the

operator

Õ2 =
√
g̃ δ

(∂̃ϕ̄)4

M4
P

, δ = δ2/ξ
2 , (7.21)

and we assume δ . 1. Note that the variation of the operator (7.21) with respect

to ϕ̄ is a total derivative; this simplifies significantly the analytical treatment of

the singular shots in the model (7.5)+(7.21). Applying the ansatz (6.13), we

obtain the modified equation of motion for the scalar field in the SI regime,

1

aSI

r3ϕ̄′

f
+

4δ

M4
P

r3ϕ̄′3

f3
= − 1

MP
. (7.22)

Denote by r̄ the size of the region in which the second term in the l.h.s. of Eq.

(7.22) is dominant. The asymptotic behavior of the singular instanton in this
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region is given by

ϕ̄′ ∼M2
P δ
−1/6 , f ∼ rMP δ

1/6 , r . r̄ . (7.23)

First of all, we observe that ϕ̄ is not divergent at the origin any more. Hence, the

magnitude of the scalar field at the center of the instanton becomes finite. This

cures problem (i) of section 7.2.2. Note that, despite being finite, the instanton

remains to be singular; in particular, the scalar curvature in the E-frame behaves

as

R̃ ∼ r−2 , r → 0 , δ 6= 0 . (7.24)

Hence, the instantaneous source of the field ϕ̄ is still necessary in obtaining the

solution. Next, we notice that the core region r . r̄ of the instanton provides a

finite contribution to the euclidean action. Indeed, the latter becomes

S̄E =

∫
dr L̄ , L̄ = 2π2r3f

[
δ
ϕ̄′4

f4M4
P

− Ṽ (ϕ̄)

]
, (7.25)

where L̄ is the Lagrangian of the model (7.5)+(7.21), computed at the singular

instanton. In the large-ϕ̄ regime, it is given by

L̄
∣∣
r.r̄ = 2−4/3MP δ

−1/6 . (7.26)

Finally, the total-derivative form of the scalar field equation of motion, given in

Eq. (7.22), implies that the short-distance asymptotics of the solution (7.18),

achieved in the SI sub-region well below MP , remains unchanged once the op-

erator (7.21) becomes important. Hence, according to the discussion in section

7.2.2, the low-ϕ̄ part of the instanton cannot provide a suitable contribution to

the euclidean action. As for the large-ϕ̄ part, one would expect its contribution

to be tunable by the parameter δ. However, from Eqs. (7.13), (7.22) and (7.23)

it follows that

r̄ ∼M−1
P δ1/6a

1/2
SI . (7.27)

From this and Eq. (7.26) one now sees that S̄E does not experience any power-

like dependence on δ. Note that this fact remains true for any operator of the

form (7.20) inserted into Lagrangian (7.1), as well as for any analytic function

summable from the series of such operators. Hence, for the model (7.5)+(7.21)

one expects again 〈ϕ〉 to lie close to the Planck scale, and the question of how

to generate the large value of W persists.
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Figure 7.4: The l.h.s. of Eq. (7.22) in the units of M−1
P and with aSI given

in Eq. (7.33). The solid line represents the sum of the two terms; it approaches
M−1
P but does not coincide with it unless aSI freezes. The colored dashed lines

show the contributions from each of the terms. The potential for the scalar
field and the value of ξ are the same as in Fig. 7.2.

7.2.4 Making the hierarchy of scales with polynomial operators

Knowing the asymptotics of the scalar field in the large-ϕ̄ and low-ϕ̄ regions of

the instanton, one can make a rude estimation of its magnitude at the center of

the instanton. In the model (7.5)+(7.21) it is found to be

ϕ̄(0)/MP ∼ a1/2
SI (log δ − 3 log aSI +O(1)) . (7.28)

From this and Eqs. (7.26), (7.27), we deduce the power-like dependence of W̄

on aSI ,

W̄ ∼ a1/2
SI , (7.29)

where we have made use of the fact that the contribution of the singular instanton

to W outside the large-ϕ̄ region is negligible.4 Hence, one can expect that the

large values of W can be achieved by tuning the value of aSI . However, from

Eq. (7.9) we see that aSI is confined in the region

0 < aSI < 1/6 , (7.30)

which makes it impossible to fulfill relation (8.49). Hence, no hierarchy is gen-

erated in the model (7.5)+(7.21). The possible resolution of this issue is to look

for further modifications of the model in the large-ϕ̄ regime, that would lead to

the modification of the allowable range of values of aSI . To this end, consider

4In what follows, this will remain true.
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Figure 7.5: The family of singular instantons in the model specified by
Eqs. (7.31), (7.32), to which the Weyl rescaling (7.4) is applied. The top
panel demonstrates the finite short-distance asymptotics of the instantons, the
dashed line shows the case δ = 0. The bottom panel shows the correspond-
ing Lagrangians. We observe an agreement with Eqs. (7.26) and (7.27). One
also sees that the sizeable contribution to the euclidean action comes from the
large-ϕ̄ region. The potential for the scalar field and the value of ξ are the

same as in Fig. 7.2.

the following Lagrangian,

Lϕ,g√
g

= −
M2
P

2
F (ϕ/MP )R+

1

2
G(ϕ/MP )(∂ϕ)2

+ δξ2 (∂ϕ)4

(MPΩ)4
+
λ

4
ϕ4 , (7.31)

where F and G are rational functions of ϕ/MP taken so as to reproduce the

Lagrangian (7.1) in the low-ϕ limit, and Ω is given in Eq. (7.4). The simplest,

but not unique, possibility leading to the desired change of the range of aSI , is

to choose

F = 1 + ξϕ2/M2
P , G =

1 + κϕ2/M2
P

1 + ϕ2/M2
P

(7.32)

with κ some constant. Then, one can show that the coefficient aSI becomes

field-dependent,

aSI =
1

α/ξ + 6
, (7.33)
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where, in terms of the field variable ϕ̄,

α =
1

2
(1− tanh(ϕ̄/MP )) +

κ

2
(1 + tanh(ϕ̄/MP )) . (7.34)

Hence, the asymptotic value of aSI in the large-ϕ̄ regime modifies to

aSI → aHE =
1

κ/ξ + 6
, r → 0 , h̄ &MP , (7.35)

as compared with Eq. (7.9). By tuning κ, one can make aHE as large as nec-

essary, thus “enhancing” the strength of the scalar field source by a suitable

amount. Finally, Eq. (8.51) becomes

W̄ ∼ a1/2
HE . (7.36)

Let us now study the singular instantons arising in the model specified by Eqs.

(7.31), (7.32), to which the Weyl rescaling (7.4) is applied. For simplicity, we

assume that the transition between the low-ϕ̄ and the large-ϕ̄ values of aSI

occurs before the asymptotics of the instanton becomes dominated by the quartic

derivative term (7.21). This provides us with a separation of regions at which

the quartic derivative operator and the polynomial operators start affecting the

behavior of the solution. According to Eq. (7.27), the requirement of such

separation puts an upper bound on δ,

a
1/2
HEδ

1/6 � 1 , (7.37)

which can easily be satisfied in our analysis. Overall, we look for a classical

configuration obeying the asymptotics (7.7) at large distances, and Eq. (7.22)

with aSI replaced by aHE according to Eq. (7.35) — at short distances.

Bearing in mind the insensitivity of the singular shot to the details of the model

below the large-ϕ̄ regime, which was discussed in section 7.2.2, we focus on the

variation of the large-ϕ̄ parameters aHE and δ. Then, numerics shows that it is

possible for a fixed value of δ to choose aHE so that relation (8.49) is satisfied. An

example of the solution is presented in Fig. 7.4. As expected from the discussion

in section 7.2.3, the variation of δ does not change the picture qualitatively. Fig.

7.5 exemplifies the difference in the large-ϕ̄ behavior of the singular instanton

and in the shape of the Lagrangian computed on it, as δ varies.

It is important to note that the euclidean action in the functional W is saturated

in the large-ϕ̄ domain, ϕ̄ & MP , and the contribution from the region of lower

magnitudes of the scalar field is completely negligible. This is clearly seen from
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Figure 7.6: The instanton value of the functional W plotted against the
coefficient aHE and with the different choices of the parameter δ. One observes
the ambiguity in the choice of aHE , δ leading to a given W̄ . The red frame
marks the solutions studied in Fig. 7.5. The small deviations from the power-
law behavior (7.36) are due to a sub-dominant dependence on aSI and an
imperfect separation of the region where aSI varies from the region where the

quartic derivative term dominates (see Eq. (7.37)).

the bottom side of Fig. 7.5, which shows the Lagrangian of the model as a

function of the distance from the core of the instanton and at different values

of δ. We conclude that the power-like estimation for the suppression exponent

(7.36) is valid for our solutions; this is checked explicitly in Fig. 7.6, where W̄ is

plotted against aHE . Furthermore, a
−1/2
HE can be seen as a small parameter whose

appearance as a common multiplier in W̄ justifies the SPA made in obtaining

Eq. (7.14). This observation resolves issue (ii) of section 7.2.2, thus completing

the analysis.

7.3 Implications for the hierarchy problem

The results of the previous section are applied directly to the EW hierarchy prob-

lem. We consider the Lagrangian of section 7.2.4 as describing the Higgs-gravity

sector of the theory under consideration. The real scalar field ϕ is identified with

the Higgs field degree of freedom in the unitary gauge,

φ = 1/
√

2 (0, ϕ)T . (7.38)

The Higgs-gravity Lagrangian is supplemented with the rest of the low energy

content of the theory. One can choose the latter to be that of the SM. All extra

fields entering the theory are taken at their vacuum values. The fluctuations of

the fields affect the prefactor which in Eq. (7.14) is chosen to be approximately

equal to MP . The validity of the SPA enables us to believe that the higher-order

corrections to Eq. (7.14) do not change drastically the leading-order calculation.
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Furthermore, Fig. 7.6 assures that any corrections coming from the prefactor can

be compensated by readjusting the parameters of the theory. According to Eq.

(7.14), the observed ratio of the Fermi scale to the Planck scale is reproduced

when

W̄ = log(MP /v) ≈ 37 . (7.39)

The singular instanton with this value of W is studied in Fig. 7.4.

One may wonder how the modifications brought to the Higgs-gravity sector by

the derivative and polynomial operators affect the dynamics of the SM fields

coupled to the Higgs field. The worrisome observation here is that the coefficient

α in Eq. (7.33) appears in the Higgs field kinetic term of the lowest order after

the Weyl rescaling of the metric is performed. If aHE is demanded to be large

enough for the mechanism to work, α becomes negative. When supplementing

the Higgs-gravity Lagrangian with the rest of the SM fields, one replaces in the

Higgs kinetic term

∂µ → Dµ . (7.40)

This endangers the dynamics of the gauge fields, as the latter become tachyonic

as soon as they interact with the Higgs field through the SM coupling terms only.

This problem can be overcome by modifying suitably the coupling to the gauge

fields at high energies. For example, adding the following operator

(φ
↔
Dµφ†)(φ†

↔
Dµφ)

2ξφ2 +M2
P

(7.41)

does the required job.

7.4 Summary

The model of section 7.2.4 is the one in which we have found the singular in-

stanton with the large value of W . The reason we have provided the detailed

exposition of other models is that we wanted to make clear the essential ingre-

dients of the mechanism. It is their step-by-step implementation that guided

us from the basic model (7.1) to the one described by Eqs. (7.31), (7.32). We

list these ingredients in this short summary, while postponing a more general

discussion to chapter 9.

• The non-minimal coupling of the scalar field to gravity, regulated by the

parameter ξ. This coupling allowed us to change the variable according to
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Eq. (7.11) and, eventually, to introduce the point source of the scalar field.

In turn, the source provided us with an additional boundary condition

selecting a unique solution from the family of singular configurations.

• The higher-dimensional operators of the form (7.20), which regularize the

otherwise divergent solution. Adding such operators allowed us to avoid

dealing with the divergence of the instanton at the source point.

• The source enhancement in the large field limit, performed by using the

polynomial operators of the form (7.32). They enabled us to make a large

value of W .

Regarding the last point, it is interesting to note that in the limit aHE → ∞,

δ → 0 the model of section 7.2.4 acquires the Weyl symmetry in the large field

region. To see this, we rewrite the Lagrangian of the model in the SI regime as

follows,
Lϕ,g,SI√

g
=

1

2

1

6− a−1
HE

ϕ2R+
1

2
(∂ϕ)2 + δ

(∂ϕ)4

ϕ4
. (7.42)

As aHE grows and δ decreases, the Lagrangian approaches a Weyl-invariant

point. Thus, in generating the hierarchy of scales, one can make use of the (ap-

proximate) asymptotic Weyl symmetry of the theory. As Fig. 7.6 demonstrates,

the rate of suppression of the original scale MP can, in fact, be arbitrarily large.

By construction, this mechanism does not require a fine-tuning among the cou-

pling constants of the theory. In the model considered in section 7.2.4, the value

of the ratio 〈ϕ〉/MP is mainly controlled by two parameters, aHE and δ. Yet,

already in this case, this value is degenerate in the parameter space, as Fig.

7.6 demonstrates. We would like to note that, because δ appears in Eq. (7.27)

with the small fractional power, the small values of it are required to satisfy

Eq. (7.37). This fact is not related to the original hierarchy problem, and the

smallness of δ does not bring about new interactions scales much below MP .

Let us stress again that the non-minimal coupling of the scalar field to gravity

is one of the crucial parts of the mechanism. With this coupling preserved, one

can expect instantons of a similar kind to exist in other scalar-tensor theories

of gravity. In particular, being inspired by the idea of scale symmetry as a

fundamental symmetry of Nature, it is tempting to study SI scalar-tensor theories

that are reduced to the SM and General Relativity in the process of spontaneous

breaking of the scale invariance. A notable example is the Higgs-Dilaton theory

which we outlined in chapter 3. It is interesting to see if it also allows for

non-perturbative generation of the parameter determining the Higgs field vev,
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provided that the latter is classically zero. We proceed to this question in the

next chapter.



Chapter 8

“Higgs+dilaton+gravity”

models

In this chapter, we study the class of models containing two scalar fields coupled

to gravity in a non-minimal way. For convenience, the scalar fields are arranged

into a two-component vector ~ϕ = (ϕ1, ϕ2)T . We are interested in the case when

the vev of one of the fields is classically non-zero and can be associated with the

Planck scale. By studying singular instantons similar to those of the Dilaton

model or the models of chapter 7, we will show how they can contribute to the

vev of the second scalar field. These results will then be applied to the hierarchy

problem within the setting of the Higgs-Dilaton theory.

Bearing in mind phenomenological applications of our analysis, we require for the

models considered here to be convertable into a viable theory upon identifying

one of its scalar field with the Higgs field dof and supplementing them with the

rest of the SM content. We also require a model to enjoy global scale symmetry.

As was mentioned in section 1.3, this can ensure the stability of the scalar fields

vev against perturbative quantum corrections. Finally, the results of the previous

studies give us the hints about the desirable structure of the model in the regime

probed by the core of the singular instanton.

The chapter is organized as follows. The next section is dedicated to the analysis

of singular solutions in a particular class of SI models of gravity. In section 8.2

we apply these solutions to compute the (classically zero) vev of one of the

scalar fields. Section 8.3 contains an implication for the hierarchy problem.

This chapter follows directly from chapter 6 and is essentially independent from

chapter 7.
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8.1 Instantons in scale-invariant gravity with two scalar

fields

8.1.1 Model setup

Consider the following Lagrangian,

L
√
g

= −1

2
G(~ϕ)R+

1

2
γ

(2)
ij (~ϕ)gµν∂µϕ

i∂νϕ
j (8.1)

+

∞∑
n=2

γ
(2n)
i1,...,i2n

(~ϕ)gµν∂µϕ
i1∂νϕ

i2 ...gρσ∂ρϕ
i2n−1∂σϕ

i2n + V (~ϕ) .

It must be supplemented with the boundary term

I = −
∫
d3x
√
γKG(~ϕ) , (8.2)

which is, however, unimportant for our purposes, according to the discussion

in section 6.2, and we will omit it from now on. The model is required to be

invariant under the global scale transformations

gµν(x) 7→ gµν(qx) , ~ϕ(x) 7→ q~ϕ(qx) , (8.3)

and for the sake of simplicity we choose scaling dimensions of the scalar fields to

be equal 1. Next, we require the model to admit the classical ground state with

the constant value of the Ricci scalar and

~ϕvac. =

(
ϕ0

0

)
. (8.4)

Finally, the derivative part of the Lagrangian must be organized so that to avoid

the appearance of ghosts. We will specify the latter condition quantitatively

when we rewrite the model in the form which is more suitable for analytical

analysis.
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The functions introduced in the Lagrangian are taken as follows,1

G = ξ1ϕ
2
1 + ξ2ϕ

2
2 ,

γ
(2)
ij = δij + κGFJ −4(1 + 6ξi)(1 + 6ξj)ϕiϕj ,

γ
(4)
ijkl = δJ −8(1 + 6ξi)(1 + 6ξj)(1 + 6ξk)(1 + 6ξl)ϕiϕjϕkϕl , (8.5)

γ
(2n)
i1...i2n

= 0 , n > 2 .

Here

J 2 = (1 + 6ξ1)ϕ2
1 + (1 + 6ξ2)ϕ2

2 , (8.6)

F =
(1 + 6ξ1)ϕ2

2

(1 + 6ξ2)ϕ2
1 + (1 + 6ξ1)ϕ2

2

, (8.7)

and ξ1, ξ2, κ and δ are constants. The potential for the scalar fields is chosen as

V =
λ

4
ϕ4

2 . (8.8)

The comments are in order on this choice of the ingredients of the model. The

first of Eqs. (8.5) represents the simplest compatible with the symmetries non-

minimal coupling of the scalar fields to gravity. It is of the same form as in the

Dilaton model, in which it was shown to lead naturally to the appearance of the

scalar field source when evaluating its vev.

The second of Eqs. (8.5) specifies the quadratic in derivatives part of the scalar

sector of the model. The parameter κ controls its deviation from the canonical

form. For the sake of simplicity, in sections 8.1.2—8.1.4 we consider the case

κ = 0, while the general case is postponed until section 8.1.5. There, we will

see that κ serves to regulate certain properties of the singular instanton and

instanton action near the source, much in the same way as its counterpart in

Eqs. (7.32).

The third of Eqs. (8.5) determines the quartic in derivatives kinetic term of the

model. It is absent in the Dilaton model, and, similarly to the theories with one

scalar field studied above, it plays a crucial role in controlling the short-distance

behavior of the instanton. The derivative terms of higher degrees are set to zero,

because the effect they produce is analogous to the one of the quartic term. We

address this question in some detail in appendix B.

Finally, the scalar field potential (8.8) is chosen so as to be in accordance with a

real-world theory in which ϕ2 is to be identified with the Higgs field dof. For the

1The indices of the components of the vector ~ϕ are raised and lowered with the euclidean
metric δij in the field space.
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same reason, the coupling constant λ may be chosen to be field-dependent in a

way that does not spoil the scale symmetry of the model. This dependence would

mimic the RG evolution of the Higgs self-coupling in a realistic setting.2 Note

that we do not introduce the interaction terms ∝ ϕ2
1ϕ

2
2 and ∝ ϕ4

1 into the classical

potential, although their presence is allowed by scale symmetry. In other words,

we require the scalar sector of the model to respect the “shift symmetry” of the

dilaton field ϕ1. As will be discussed in section 8.3.1 on a concrete example, the

shift symmetry protects the mass of ϕ2 from radiative corrections.

Evidently, with the choice of the operators given above, the model is invariant

under the scale transformations (8.3). Requiring the quadratic part of the kinetic

terms for ~ϕ to be positive-definite puts a constraint on κ, which will be speci-

fied below. The positive-definiteness of the derivative sector at high energies is

ensured by setting δ > 0. We also require

ξ2 > ξ1 > 0 . (8.9)

Last but not least, it is straightforward to see that Eq. (8.4) defines the classical

ground state of the model, in which

G(~ϕvac.) = ξ1ϕ
2
0 ≡M2

P . (8.10)

8.1.2 Polar field variables

Let us rewrite the Lagrangian of the model in the form convenient for the analysis

of classical configurations. As usual, we perform the Weyl rescaling of the metric,

g̃µν = Ω2gµν , Ω2 =
G(~ϕ)

G(~ϕvac.)
. (8.11)

and obtain the E-frame Lagrangian in the form

L̃√
g̃

= −1

2
M2
P R̃+

1

2
γ̃

(2)
ij (~ϕ)g̃µν∂µϕ

i∂νϕ
j

+ γ
(4)
ijkl(~ϕ)g̃µν g̃ρσ∂µϕ

i∂νϕ
j∂ρϕ

k∂σϕ
l + Ṽ (~ϕ) , (8.12)

2Recall that the field-dependence of a normalization point in RG equations is essential in
maintaining the scale invariance of the theory at the perturbative quantum level, see section
3.2.2. Also, in what follows we neglect the running of other constants, since it does not change
the results qualitatively.
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where

γ̃
(2)
ij = Ω−2

(
δij +

3

2
M2
P∂i log Ω2∂j log Ω2

)
, Ṽ (~ϕ) = V (~ϕ)Ω−4 , (8.13)

and we made use of Eqs. (8.5) with κ = 0.

Following the exposition of section 3.1, we now look for a suitable redefinition of

the scalar field variables. To trace the actual scalar dof in the Lagrangian (8.12),

we would like to bring the quadratic in derivatives part of the kinetic term to a

diagonal form. In the new variables ~χ = ~χ(~ϕ), let the latter take the form

1

2
γ̄(2)
nm(~χ(~ϕ))g̃µν∂µχ

n∂νχ
m . (8.14)

Then, one demands that

γ̄
(2)
12 (~χ(~ϕ)) = 0 , (8.15)

which provides us with a first-order differential equation on the two components

of the vector ~χ, thus leaving some freedom in the choice of new variables. It

proves to be useful to choose χ1, χ2 in such a way that the scale transformations

(8.3) leave one of the fields intact, while shifting another by a constant,

χ1 7→ χ1 + q , χ2 7→ χ2 . (8.16)

From Eqs. (8.16) one sees that χ1, χ2 are reminiscent of polar coordinates on a

plane on which the scale transformations act by an isotropic dilation by a factor

q. To find an equation ~χ(~ϕ) must satisfy in this case, we make use of the Noether

current associated with the scale invariance of the model. In view of Eq. (8.3),

the latter is given by √
g̃Jµ =

∂L̃
∂∂µϕi

ϕi . (8.17)

For simplicity, let us put δ = 0 for the moment. Then, on the one hand,

√
g̃Jµ = g̃µνϕiγ̃

(2)
ij (~ϕ)∂νϕ

j

= M2
P g̃

µν ∂νJ 2

G
(8.18)

with J 2 given in Eq. (8.6). On the other hand, when expressed in terms of the

variables ~χ satisfying Eq. (8.16), the current becomes

√
g̃Jµ = MP g̃

µν γ̄
(2)
11 (~χ(~ϕ))∂νχ

1 . (8.19)

Equating (8.18) and (8.19), we obtain two more equations on ~χ. One can show
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that they are compatible and, combined with Eq. (8.15), can be simultaneously

solved. Denote this solution by χ1 = ρ, χ2 = θ. Then, its explicit form is (cf.

Eq. (3.22), (3.23))

ρ =
MP

2
log
J 2

M2
P

, θ = arctan

(√
1 + 6ξ1

1 + 6ξ2

ϕ2

ϕ1

)
. (8.20)

It is now straightforward to derive the form of the Lagrangian in the new vari-

ables. It is given by

L̃√
g̃

= −1

2
M2
P R̃+

1

2a(θ)
(∂̃ρ)2 +

b(θ)

2
(∂̃θ)2 (8.21)

+ δ
(∂̃ρ)4

M4
P

+ Ṽ (θ)

with

a(θ) = a0(sin2 θ + ζ cos2 θ) , b(θ) =
M2
P ζ

ξ1

tan2 θ + ξ1/ξ2

cos2 θ(tan2 θ + ζ)2
, (8.22)

Ṽ (θ) =
λM4

P

4ξ2
2

1

(1 + ζ cot2 θ)2
, (8.23)

and

ζ =
(1 + 6ξ2)ξ1

(1 + 6ξ1)ξ2
, a0 =

1

6 + 1/ξ2
. (8.24)

First, we note that, due to the invariance of the model under the scale transfor-

mations (8.16), the field ρ enters the Lagrangian only through derivatives. As we

will see, this makes its role analogous to that of the field ϕ̄ in the Dilaton model.

Second, the form of the quartic derivative term becomes strikingly simple in the

new variables. Its suppression by MP is due to the classical vev which is now

given by

ρvac. =
MP

2
log

1 + 6ξ1

ξ1
, θvac. = 0 . (8.25)

Hence, the higher-dimensional derivative term determines the structure of the

theory at high energies. Regarding the classical analysis, this term starts to be

important in the limit of large derivatives of the ρ-component of the instanton

and, hence, is expected to change the behavior of the latter in this limit.

As was already mentioned, the fields ρ and θ can be thought of as polar coordi-

nates on the plane spanned by
√

1 + 6ξ1ϕ1 and
√

1 + 6ξ2ϕ2. In particular, θ is

analogous to the angle on that plane, and ρ — to the logarithm of the radius.
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Because of this, in what follows we will refer to ρ as the radial and to θ as the

angular field variables.

Let us finally quote the inverse formulas,

ϕ1 =
MP cos θ√

1 + 6ξ1
eρ/MP , ϕ2 =

MP sin θ√
1 + 6ξ2

eρ/MP . (8.26)

One observes that the original scalar fields are expressed through the exponent

of the field ρ. Hence, according to the discussion in chapter 5, the source of the

radial field naturally appears in the course of evaluation of the vev of ϕ2.3 This

points again at the similarity between ρ and the field ϕ̄ of the Dilaton model.

Note also that from Eq. (8.1) and the first of Eqs. (8.5) it follows that in the

limit when ϕ1 and ϕ2 vanish simultaneously the model is not well-defined. The

classical configurations we study below avoid this point; in fact, for them

ρ > ρvac. . (8.27)

8.1.3 Instanton in a model without higher-dimensional terms

We begin to study classical configurations arising in the model specified by Eqs.

(8.21)—(8.24). As in the previous chapters, we restrict ourselves to the anal-

ysis of O(4)-symmetric configurations and choose the metric ansatz as in Eq.

(6.13). The configuration must approach the classical ground state (8.25) at

infinity. Since the quartic derivative term affects only the short-distance part of

the instanton, it is convenient to study first the case when δ = 0.

From Eq. (8.21) we obtain the equation of motion for the radial field ρ,

∂r

(
ρ′r3

a(θ)f

)
= 0 , (8.28)

which is fully analogous to Eq. (6.14). Thanks to the form of the metric ansatz

and the fact that ρ enters the Lagrangian derivatively, both ρ′ and f can be

expressed explicitly through the angular field θ and its derivatives. Therefore,

finding a solution reduces to solving a single second-order differential equation

on θ. Switching on the source of ρ selects a unique solution from the family of

singular shots obeying Eq. (8.28). In view of Eqs. (8.26), we specify the source

3Although the change of variables (8.26) is applicable for all ~ϕ 6= ~0, one can think of ρ, θ as
replacing the original scalar dof in the regime where the latter are not canonical, |ϕ1−ϕ0| & ϕ0,
|ϕ2| & ϕ0.
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as follows,

W = S −
∫
d4xδ(4)(x)ρ(x)/MP . (8.29)

Equation of motion becomes

ρ′r3

f
= −a(θ)

MP
. (8.30)

Let us focus on the classical configurations satisfying Eq. (8.30) and approach-

ing the ground state (8.25) at infinity. The large-distance asymptotics of these

solutions are inferred directly from equations of motion, they coincide with the

ones of the massless fields,4

ρ− ρ0 ∼ r−2 , θ ∼ r−2 , r →∞ . (8.31)

We now turn to the short-distance behavior of the solutions. We require the fields

constituting the instanton to behave monotonically with the distance. Then, the

angular field must have a definite limit θ → θ0 at r → 0. Inspecting Eq. (8.30)

and 00-component of the Einstein equations reveals that

ρ ∼ −γMP logMP r , R̃ ∼ r−6 , r → 0 , (8.32)

where R̃ is the Ricci scalar in the E-frame and

γ =
√

6a0 . (8.33)

We conclude that ρ carries the same properties as the scalar field ϕ̄ in the Dilaton

model.

In looking for allowable values of θ0, we made use of the analysis of the bounce

performed in chapter 3. There, it was shown that the finite values of θ0, different

from πk/2, k = 0, 1, 2, ..., are possible only if one requires

ρ′ = 0 . (8.34)

The singular instanton we are interested in here violates this condition, hence

it differs qualitatively from the possible bounce. One can show that the only

admissible values of θ0 for this solution are

θ0 =
π

2
+ πk , k = 1, 2, ... (8.35)

4Note that self-consistency dictates the fields to approach the values corresponding to the
actual vev of ϕ1, ϕ2. The difference can be neglected on practice provided that the characteristic
size of the configuration contributing to the vev is much smaller than 〈ϕ2〉−1.
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We focus on the case k = 0, since, as will be seen shortly, this is the only case

when the configuration approaching the ground state at infinity exists. Then,

one has

a(θ0) = a0 . (8.36)

Recall that a(θ0) regulates the strength of the source felt by the radial field. The

short-distance asymptotics of θ is found to be

π

2
− θ ∼ rη , r → 0 (8.37)

with

η =
√

6a0(1− ξ1/ξ2) , (8.38)

provided that inequality (8.9) holds. The exponents (8.33) and (8.38) demon-

strate essential non-analyticity of the configuration in the core region, caused

by the presence of the source. The solution satisfying Eqs. (8.31), (8.32) and

(8.37) is the singular instanton of the theory specified by Eqs. (8.21)—(8.24)

with δ = κ = 0.

To understand better the properties of the singular instanton near the source,

we write its asymptotics in terms of the original field variables,

ϕ1 ∼ r−γ+η , ϕ2 ∼ r−γ . (8.39)

Since η < γ, we conclude that both fields diverge at the center of the instanton.

It is important to note that the divergence of ϕ1, ϕ2 originates fully from the

divergence of the radial field. Hence, Eqs. (8.26) provide a splitting of the scalar

fields on the singular exponential part and the finite angular prefactor. The core

region of the instanton is determined by the relation |ϕ2| � |ϕ1| or, equivalently,

|∂ϕ2| � |∂ϕ1|.

As an example, Fig. 8.1 shows the singular instanton for a particular choice of

parameters of the model. The solution is found by solving numerically equation

for θ, by the means of shooting. For illustrative purposes, the configurations

with no limit of θ at r → 0 are also shown. One can see that only for θ0 = π/2

does the solution have the appropriate large-distance behavior.

The singular instanton of the type found above exists regardless the shape of the

potential for the field θ, encoded in the function λ = λ(θ). It is so because the

potential does not affect neither long-distance nor short-distance asymptotics of

the solution. Note also that Fig. 8.1 demonstrates the difference of the singular

instanton from the possible bounce, which is noticeable even in the limit r →∞.
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Figure 8.1: The classical configurations of the model (8.21)—(8.24), satisfy-
ing the vacuum boundary conditions, Eq. (8.31), at infinity. The solid blue
line represents the singular instanton obeying Eqs. (8.32), (8.37). It is the only
configuration with the finite asymptotics of θ. The dashed lines are examples
of other singular shots. All solutions are distinguished by their fall-off at in-
finity, θ ∼ cr−2, r → ∞. The parameter c is used as a shooting parameter in
numerical calculations. The parameters of the model are ξ1 = 1, ξ2 = 1.1 and

δ = λ = 0.

Indeed, from Eqs. (8.26) and (8.34) we see that for the bounce in this limit

dϕ2/dϕ1 →∞, while for the instanton the ratio remains finite.

8.1.4 Regularization of the instanton by a higher-dimensional

term

Let us now switch on the Planck-suppressed quartic derivative operator in the

Lagrangian (8.21). As compared to the Dilaton model, it gives us a new ingredi-

ent, analogous to the operator (7.21) of the one-scalar field theory. Importantly,

the variation of this operator with respect to ρ is a total derivative, hence, equa-

tion of motion for ρ following from varying the functional (8.29) takes the form

4δ

M4
P

ρ′3r3

f3
+

ρ′r3

a(θ)f
= − 1

MP
. (8.40)

This is again an exact equation. Denote by r̄ the size of the region where the

first term in Eq. (8.40) is dominant. In what follows, we will choose δ to be such

that the length r̄ is well within the region where a(θ) does not differ noticeably

from its asymptotic value a0. This will allow us to neglect the dynamics of the

angular field when discussing the effects of the higher-dimensional operator on

the behavior of the instanton. Note also that the interpretation of a0 as the

parameter regulating the strength of the source is preserved, since the short-

distance asymptotics defined by Eq. (8.30) develops before the first term in Eq.

(8.40) comes into play.
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Figure 8.2: The family of singular instantons of the model (8.21)—(8.24),
corresponding to different values of the parameter δ in the higher-dimensional
derivative term. One observes that this derivative term regularizes the loga-
rithmic divergence of the radial field and makes the latter finite at the center
of the instanton. The parameters of the model are ξ1 = 1, ξ2 = 1.1 and λ = 0.

At r . r̄, the behavior of the singular instanton is

ρ′ ∼ −M2
P δ
−1/6 , f ∼MP rδ

1/6 . (8.41)

From this and Eqs. (8.40) and (8.32) one can infer the value of r̄,

r̄ ∼M−1
P δ1/6a

1/2
0 . (8.42)

The crucial observation is that, thanks to the first of Eqs. (8.41), the radial field

is not divergent any more, and its magnitude at the center of the instanton is

finite. It can be estimated from Eqs. (8.32), (8.41) and (8.42) that (cf. Eq.

(7.28))

ρ(0)/MP ∼ a1/2
0 (log δ − 3 log a0 +O(1)) . (8.43)

Despite the finiteness, the instanton remains to be singular. In particular, the

scalar curvature in the E-frame behaves as

R̃ ∼ r−2 , r → 0 , δ 6= 0 . (8.44)

Therefore, introducing the source of the radial field is still a necessary step in

obtaining the solution.

An example of how the higher-dimensional term regularizes the divergence of

the instanton is presented in Fig. 8.2. Because of Eqs. (8.41), the small values

of δ are required to ensure the separation of the region where a(θ) varies from

the region where the regularization acts. Note, however, that the smallness of δ

does not bring in the model any new interaction scales below the Planck scale.
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Figure 8.3: The singular instantons of the model (8.21)—(8.24) with a(θ)
replaced by ã(θ) according to Eq. (8.46), and with κ varied. The left panel
shows the function ã(θ). In the limit κ = 0, the original model is reproduced.
The critical value, κ = κcrit., corresponds to the case when η = γ in Eqs.
(8.39), see appendix C for details. The value below the critical, κ < κcrit., is
chosen so that ã(θ0) ≡ ã0 = 100. This value lies close to the positivity bound
in Eq. (8.47). The right panel shows the corresponding instanton solutions. At
κ = 0, the instanton studied in Fig. 8.1 and 8.2 is reproduced. The parameters

of the model are ξ1 = 1, ξ2 = 1.1 and λ = 0.

8.1.5 Source enhancement

From Eq. (8.43) one sees that the parameter a0 = a(θ0), alongside with δ, con-

trols the large-ρ properties of the singular instanton. In the model (8.21)—(8.24),

the value of a0 is determined by the non-minimal coupling ξ2 and, according to

Eq. (8.24), is confined in the region

0 < a0 < 1/6 . (8.45)

Since a0 is associated with the strength of the source of the radial field, it is

important to investigate the possibility that it can take values other than those

prescribed by inequality (8.45). In particular, we are interested in making the

upper bound in this inequality arbitrarily large. This can be achieved by switch-

ing on the parameter κ in Eqs. (8.5), which was set to zero in the previous

analysis. Starting from the Lagrangian in the form (8.1), we follow the steps

performed in section 8.1.2 to obtain the description of the modified model in

terms of the polar field variables. It is straightforward to see that the modified

Lagrangian is still given by Eq. (8.21), but with the function a(θ) replaced by a

new function ã(θ) so that

1

ã(θ)
=

1

a(θ)
+ κ sin2 θ . (8.46)

As θ approaches the vacuum value, ã(θ) becomes indistinguishable from a(θ),

hence the properties of the model near the ground state remain unchanged. In
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particular, the large-distance properties of the singular instanton are independent

of κ.

Let us focus on the short-distance behavior of the instanton solution. One can

make sure that the asymptotic value of θ obeys Eq. (8.35) with k = 0 regardless

the presence of κ. Requiring the quadratic in derivatives part of the Lagrangian

to be positive-definite yields

κ > − 1

a0
. (8.47)

Varying κ within this region, one can achieve any positive strength of the radial

field source ã0 ≡ ã(θ0).

In Fig. 8.3 some particular values of κ are considered. One observes that the

properties of the singular instanton at short distances depend significantly on the

choice of κ. The dependence is encoded in the exponents γ and η whose form

for κ 6= 0 is not given by Eqs. (8.32), (8.37) any more. Leaving the quantitative

analysis to appendix C, here we just note that η exceeds γ for κ lying close to

the bound specified by Eq. (8.47). From Eq. (8.39) we see that in this case the

field ϕ1 tends to zero as the source is approached even without the regularization

provided by the quartic derivative term. The latter, however, is still necessary

to remove the divergence of the field ϕ2.

We would like to stress that the explicit form of the function ã(θ) resulting in a

particular source strength ã0 is, in fact, a matter of convenience, provided that

the properties of the model near the ground state are respected. We choose this

function according to Eq. (8.46) because of the simple form it takes in the polar

field variables and because it will fit well into the phenomenological analysis of

section 8.3. Finally, the effect produced by the quartic derivative term remains

unchanged as long as ã(θ) approaches the asymptotic value before this term takes

over.

To summarize, in sections 8.1.3—8.1.5 we have constructed and studied the

singular instantons arising in the class of SI models specified by Eqs. (8.1) and

(8.5)—(8.8). The principal difference of these models from the one-field Dilaton

theory of chapter 6 is the presence of two parameters, κ and δ, associated with

the structure of the theory at high energies, which determine its properties in the

regime when |ϕ2| � |ϕ1| and |∂ϕ2| � |∂ϕ1|. Their roles are quite analogous to

those in the theories of chapter 7. Namely, the parameter δ serves to regularize

the logarithmic divergence of the radial field and to make ρ(0)/MP finite. We

will now see how the parameter κ affects the properties of the instanton at short

distances in the models under investigation.
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8.2 New scale via the instanton

As was already discussed, the ground state (8.4) provides us with a single mass

parameter ϕ0 ≈ MP at the classical level, at least when the non-minimal cou-

plings ξ1, ξ2 are of the order of one. We would like to see if the singular instantons

obtained before can generate a new scale, by contributing non-perturbatively to

the vev of ϕ2. We are interested in the case when the contribution is such that

the hierarchy

〈ϕ2〉/〈ϕ1〉 � 1 (8.48)

emerges.

Following the reasoning of chapter 5, we attempt to evaluate the vev of ϕ2

with the new functional W . The latter is defined in Eq. (8.29). The appropriate

saddle points of W are the singular instantons studied above. We will investigate

if it is possible to adjust the parameters of the model to yield

W̄ � 1 , (8.49)

where W̄ is the instanton value of W . Applying the SPA, one arrives at

〈ϕ2〉 ∼MP e
−W̄ . (8.50)

If for a particular choice of the parameters the condition (8.49) is violated, one

concludes that the SPA is not applicable and Eq. (8.50) is not valid. In this case

one can conclude that non-perturbative quantum gravity effects are strong and

drive the value of 〈ϕ2〉 close to MP so that no new scale appears. If, on the other

hand, Eq. (8.49) is satisfied, these effects are suppressed, and the hierarchy of

scales (8.48) is generated. Note that the Planck mass appears as a prefactor in

Eq. (8.50), as it is the only classical scale of the model.

Let us proceed to computation of W̄ . Since the potential Ṽ , given in Eq. (8.23),

tends to zero when θ approaches its vacuum value, the geometry of the solution is

asymptotically flat and the ground state action is zero. Contributions to W̄ come

from the source term and the instanton action S̄. Making use of the Einstein

equations and applying the ansatz (6.13), we have

W̄ = −ρ(0)

MP
+

∫ ∞
0

dr(L̄δ − L̄V ) , (8.51)

where

L̄δ = 2π2r3f

(
ρ′

MP f

)4

, L̄V = 2π2r3fṼ (θ) . (8.52)
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Figure 8.4: Top left: the SM Higgs self-coupling λ(µ̂) at NNLO with the θ-
dependent momentum scale µ̂ given in Eq. (8.53). The RG equations are solved
using the code based on [29, 72]. The solid lines represent the 2σ-uncertainty
region of the top quark mass, the dashed line corresponds to the central value
mt = 172.25 GeV [36]. The Higgs mass is taken to be mH = 125.09 GeV [35].
Top right: the singular instanton in the potential (8.23) with λ plotted on the
left side. The dashed lines encompass the regions of negative λ. One observes
no difference between the solutions corresponding to the different choices of
λ. Bottom: the potential part of the instanton Lagrangian, see Eq. (8.52).
One sees the contribution from L̄V to the instanton action S̄ to be negligible
compared to the overall contribution which is supposed to give S̄ � 1. The

parameters of the model are ξ1 = 1, ξ2 = 1.1.

We will study separately the contributions from the long-distance and short-

distance parts of the instanton. The dominant term in the long-distance region

is the one provided by the potential, L̄V . According to Eq. (8.23), it is mainly

determined by the quartic coupling λ. Bearing in mind phenomenological appli-

cations of our analysis, we consider λ as a function of θ in order to mimic the

RG evolution of the Higgs self-coupling in the SM setting.5 Specifically, we take

the running of λ corresponding to the 2σ-uncertainty region around the central

value of the top quark mass mt = 172.25 GeV [36], and to the central value of

the Higgs mass mH = 125.09 GeV [35]. The field-dependent momentum scale

µ̂ = µ̂(θ) is chosen according to the prescription (see section 3.2.2)

µ̂2 =
y2
tM

2
P

2ξ2

1

1 + ζ cot2 θ
, (8.53)

5The dependence of the self-coupling on the radial field would be inconsistent with the
(quantum perturbative) scale invariance of the theory.



“Higgs+dilaton+gravity” models 83

where yt is the top quark Yukawa coupling and ζ is given in Eq. (8.24). With

the potential specified in this way, we find the singular instanton numerically

and compute its contribution to the potential part of the Lagrangian L̄V . The

results of the computation are shown in Fig. 8.4. The main observation is that

the potential term contributes negligibly to the instanton action. The reason

lies in the fact that the instanton shoots too fast through the region where the

action can be saturated by L̄V . Hence, provided that we are interested in the

total contribution to satisfy inequality (8.49), one can safely ignore the potential

term in Eq. (8.51). Note that this result points again at the qualitative difference

between the singular instanton and the bounce for which the overall contribution

comes exclusively from the potential.

Figure 8.5: The singular term ρ(0)/MP and the instanton action S̄ =
∫
drL̄,

contributing to W̄ according to Eq. (8.51). Here we take κ = 0 and ξ1 = 1,
ξ2 = 1.1. The left panel shows the two contributions depending on the choice
of δ. One sees that, although W̄ is positive for δ & 10−10, it is impossible to

achieve the regime when W̄ � 1.

Figure 8.6: Instanton Lagrangian L̄ as a function of the radial coordinate
and for different values of δ. The parameters are the same as in Fig. 8.5. An

agreement with Eqs. (8.42) and (8.54) is observed.

The net contribution of the short-distance part of the instanton is determined by

a balance between the source term coming with the negative sign in Eq. (8.51)

and the positive quartic derivative term. As Fig. 8.5 demonstrates, the difference

between the two terms can be of either sign. Having confined ourselves in the

region of parameters for which this difference is positive, one can try to amplify
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W̄ by the means of some small constant justifying the SPA. An obvious candidate

for such a constant is the parameter δ appearing in the quartic derivative term.

However, from Eqs. (8.41) and (8.52) it follows that (see Fig. 8.6)

L̄δ
∣∣
r.r̄ ∼MP δ

−1/6 . (8.54)

From this and Eqs. (8.42) and (8.43) one now sees that W̄ , in fact, does not

contain any power-like dependence on δ. This can also be inferred from Fig. 8.5,

where the dependencies of the instanton action S̄ and of the maximum value of

the radial field ρ(0)/MP on δ are shown.

It turns out that the suitable semiclassical parameter can be provided by the

asymptotics ã0 of ã(θ). Indeed, from Eqs. (8.42), (8.43) and (8.52) one obtains

that

W̄ ∼
√
ã0 , (8.55)

where we have made use of the fact that the contribution of the singular instanton

to W outside the large-ρ region is negligible. As was discussed in section 8.1.5,

in the models under consideration the large ã0 can be achieved by choosing the

parameter κ to lie close to the bound in Eq. (8.47). In this case, ã−1
0 is the desired

small parameter arising when computing the instanton value of W . In Fig. 8.7

and 8.8 we study the behavior of W̄ as δ and ã0 vary. While the dependence

on δ is seen to be logarithmic, in accordance with Eq. (8.43), the dependence

on ã0 is power-like and matches the analytical estimation (8.55). Note also that

Eq. (8.55) is valid assuming that the length scale r ∼ r̄ at which the quartic

derivative operator becomes dominant is smaller than the characteristic length

at which the function ã(θ) changes, and it is this fact that enabled us to replace

the latter by the asymptotic value ã0 in Eq. (8.42).

Figure 8.7: The suppression rate W̄ as a function of δ and for several choices
of ã0. One observes the logarithmic dependence, which excludes the possibility

to treat δ as a semiclassical parameter.
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Figure 8.8: The suppression rate W̄ as a function of ã0 and for several choices
of δ. One observes the power-like behavior, in agreement with Eq. (8.55). The
small deviations from the power law are due to a sub-dominant dependence on
ã0 and an imperfect separation of the region where ã(θ) varies from the region

where the quartic derivative term dominates.

8.3 Implications for the hierarchy problem

In this section, we apply the results of our analysis to the Higgs-Dilaton theory

described in section 3.1. The part of the theory, comprising the metric, the

dilaton and the Higgs fields matches the models of section 8.1 after the higher-

dimensional operators containing the parameters κ and δ are introduced. As we

will see, these operators do not spoil any phenomenological consequences of the

theory. Within the Higgs-Dilaton model modified in this way, we demonstrate

how the hierarchy between the Fermi and the Planck scales can emerge from the

non-perturbative gravitational effects.

8.3.1 On quantum corrections in the Higgs-Dilaton theory

In section 3.2.2 we outlined the application of SI regularization procedure to

the Higgs-Dilaton theory. Let us now discuss quantum corrections to the Higgs

mass produced within this prodecure. It can be shown that potentially dangerous

corrections from the dilaton field of the form λnχ2
0 cannot be generated in any

order of perturbation theory [100]. In particular, at one-loop level the dilaton

contribution is of the form δm2
H ∼ α2χ2

0 and can be neglected in view of the

constraint (3.6) and Eq. (3.7). We conclude that scale symmetry makes the

Higgs mass stable against radiative corrections produced by the dilaton field.

Note also that in the limit α = 0 the dilaton decouples from the SM sector and

provides no contribution to mH .
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The corrections to the Higgs potential from the various SM fields are well-known

and were discussed in section 3.2.2. As it was done there, we choose the mo-

mentum scale µ̂ to minimize those corrections. This leads to the normaliza-

tion prescriptions (3.39), depending on the choice of the renormalization scheme

(3.34).

Finally, graviton loops do not destabilize the Higgs mass as well. Indeed, the

graviton mass m2
g in the uniform χ0 and h0 background (leading to the vacuum

energy ∝ λh4
0) is m2

g ∼ λh4
0/(ξχχ

2
0 + ξhh

2
0), and the graviton contribution to the

effective potential is ∝ m4
g.

Let us now comment on the requirement of the absence of dof with the mass scales

exceeding the EW scale. Being non-renormalizable, the Higgs-Dilaton model

experiences an infinite series of counter-terms to be added to the Lagrangian

(3.2) in a process of renormalization. If one works at energies well below the

scale at which the perturbation theory breaks down, these terms do not bring

about new dof, since the particle spectrum is read from the original expression

(3.2).6 Then, the assumption about the absence of heavy particles amounts to

the hypothesis that, as one approaches the tree-level unitarity breaking scale,

the theory reorganizes itself in such a way that no undesired singularities appear

in its propagators.

8.3.2 Higgs vev generation in the Higgs-Dilaton setting

Let us put α = 0 in the potential (3.3). Then, mH = 0 at the classical level,

according to Eq. (3.6), and, in view of the discussion in section 8.3.1, one can

be sure that the radiative corrections to the Higgs mass do not shift it towards

the observed value.7 In particular, thanks to the shift symmetry, the interaction

term ∝ h2χ2 is not generated in any order of perturbation theory. Another way

to see this is to notice that the RG flow of the couplings α and β in the potential

(3.3) is governed by

µ
d

dµ
α = Fα(α, β, ...) , µ

d

dµ
β = Fβ(α, β, ...) , (8.56)

where Fα, Fβ are functions of α, β and other couplings present in the theory,

such that Fα,β → 0 if both α, β → 0.8 Thus, the Higgs-Dilaton theory provides a

suitable framework to tackle the hierarchy problem with non-perturbative tools.

6See, e.g., chapter 16 in [163].
7We neglect the corrections to mH coming from non-zero β at the classical level.
8 For an equivalent discussion in terms of second-order phase transitions see [164].



“Higgs+dilaton+gravity” models 87

The results of sections 8.1 and 8.2 are applied straightforwardly to the Higgs-

Dilaton theory. In order for the mechanism to work, one must modify the theory

in the limit of large magnitudes and momenta of the Higgs field. This is done

by introducing the higher-dimensional operators of the form given in Eqs. (8.5).

Because of their suppression by MP , the vev of the Higgs field is stable against

perturbative corrections coming from these operators [69].

Following the steps performed in section 8.1.2, we apply the Weyl rescaling to

the theory (3.2) to disentangle the dilaton and the Higgs fields from the Ricci

scalar. We then introduce the polar field variables ρ and θ, and rewrite the

Higgs-dilaton sector of the theory as in Eq. (8.21), with a(θ) replaced by ã(θ)

given in Eq. (8.46). Our goal is to find numerically the singular instanton and

compute its contribution to the suppression rate W̄ .

From the results of section 8.2 it follows that the form of the potential for the

Higgs field is irrelevant for the analysis of the singular instanton. In numerical

calculations we choose the potential to coincide with the RG-improved SM Higgs

potential corresponding to the central values of the top quark and Higgs masses,

mt = 172.25 GeV [36], mH = 125.09 GeV [35]. We choose the first normalization

prescription for the Higgs self-coupling λ in Eqs. (3.39). We also expect the

suppression rate W̄ to be insensitive to the precise shape of the function ã(θ)

outside the vicinity of the point θ = π/2, and, hence, to the values of the non-

minimal couplings ξχ, ξh.

Calculations confirm that, varying the parameters δ and κ, one can adjust W̄

to be equal

W̄ = logMP /v ≈ 37 , (8.57)

in which case the hierarchy between the Fermi and the Planck scales is repro-

duced in the leading-order SPA. This is demonstrated in Fig. 8.9. One observes

an ambiguity in the choice of the parameters leading to a given value of W .

it is interesting to note that the conditions imposed on the coefficients δ and ã0

of the higher-dimensional operators point at a near Weyl-invariance of the theory

in the limit θ → π/2. Indeed, when recast in terms of the original variables, the

Lagrangian (8.21) in this limit can be written as

Lθ→π/2√
g
∼ −1

2

1

ã−1
0 − 6

ϕ2
2R+

1

2
(∂ϕ2)2 +

δ

1 + 6ξ2

(∂ϕ2)4

ϕ4
2

. (8.58)
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Figure 8.9: The set of parameters (ã0, δ), for which Eq. (8.57) is satisfied.
Here we choose ξχ = 5 ·10−3, ξh = 5 ·103 and λ coinciding with the SM running
Higgs self-coupling at NNLO with the central values of the top quark and Higgs

masses (see Fig. 8.4).

Figure 8.10: The function ã(θ) in the original Higgs-Dilaton theory (the lower
curve) and in the modified theory with κ chosen so that ã0 = 200 (the upper
curve). The angle θ∗ corresponds to the scale of inflation ∼MP /ξh. ξχ, ξh and

λ are the same as in Fig. 8.9.

Hence, for large ã0 and small δ, the theory acquires an approximate Weyl sym-

metry. Note again that the small coupling δ, required for the mechanism to

work, does not bring about new interaction scales much below MP .

The modification of the Higgs-Dilaton theory by the higher-dimensional oper-

ators does not affect the properties which are important for phenomenology.

Indeed, as Fig. 8.10 demonstrates, the function ã(θ) is indistinguishable from its

counterpart in the original theory at least up to the inflationary scales.

Let us finally comment on the dynamics of the SM dof coupled to the Higgs

field. The same observation as in section 7.3 holds here. Namely, the coefficient

κ appears in the quadratic part of the Higgs field kinetic term, according to the

second of Eqs. (8.5). The successful implementation of the non-perturbative

mechanism requires large values of ã0, which yields κ to be negative. This en-

dangers the dynamics of the gauge fields, as the latter become tachyonic as soon
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as they interact with the Higgs field through the SM coupling terms. This draw-

back can be fixed by modifying suitably the coupling of the gauge fields at high

energies. For example, introducing the operator (7.41) with an appropriate cou-

pling constant compensates the negative mass terms coming from the quadratic

in derivatives operator in Eq. (8.1).



Chapter 9

Discussion and outlook

Let us summarize the results obtained in chapters 7 and 8. We attempted to look

at the vev of the Higgs field as arising due to some non-perturbative effect that

relates low-energy phenomena with physics at the Planck scale. We proposed

that the small ratio between the Fermi and the Planck scales could be generated

via the instanton configuration of a special type. It was argued that in this case

the Fermi scale appears as a result of the exponentially strong suppression of the

Planck scale by the instanton. This effect relies strongly on a structure of the

theory in the strong-gravity regime, of which explicit form we are not aware. To

make the quantitative analysis possible, several conjectures about the properties

of the theory in this regime were adopted. Namely, the global scale invariance was

assumed to be a fundamental symmetry in the high-energy domain, while being

broken explicitly or spontaneously in the gravitational sector at low energies. We

also assumed the absence of heavy dof associated with new physics above the EW

scale. Within these conjectures, we studied several toy models comprising the

gravitational and scalar fields. We constructed singular instanton configurations

and investigated their contribution to the vev of the scalar field. The results of

the studies were then applied to the actual hierarchy problem. It was shown that

the hierarchy between the Fermi and the Planck scales can indeed be generated

with a particular structure of higher-dimensional operators added to the theory.

The power-like dependence of the instanton action on the parameter aHE (in

chapter 7) or ã0 (in chapter 8) and its degeneracy in the parameter space im-

ply that the value of W̄ reproducing the hierarchy (4.1) in the leading-order

SPA is not featured among other possible values. Thus, although the suggested

mechanism allows to generate an exponentially small ratio of scales without a
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fine-tuning among the parameters of the theory, it does not explain a particular

value of this ratio.

Speaking more generally, the mechanism is not specific to the scalar-tensor mod-

els studied in the previous chapters. For example, replacing the quartic derivative

operator in Eqs. (8.5)—(8.8) by an operator with the derivatives of the scalar

fields of higher degrees or by a linear combination thereof results in the same

picture. The reason is that the impact of any such operator on the short-distance

behavior of the instanton is qualitatively the same. Further, due to the fact that

the instanton action is saturated in the core region of the instanton, the precise

shape of the function regulating the strength of the radial field source is inessen-

tial, as soon as it interpolates between the fixed low-field and large-field values.

Finally, including higher-dimensional operators of the types different from those

considered here does not spoil the mechanism provided that they do not affect

the properties of the solution near the source. As it is not so in general, we

would like to stress again that, instead of performing a barely possible analysis

of euclidean classical configurations arising in a general SI scalar-tensor theory

of gravity, we preferred to focus on particular examples at which we demonstrate

the mere possibility of the existence of the desired non-perturbative effect.

The singular instantons found above turn out to be insensitive to the properties

of the theory at low energies and low magnitudes of the Higgs field. In fact,

these properties are irrelevant for the mechanism of generating the hierarchy of

scales, since the latter operates essentially in the Planck region. It follows that

from the perspective of a low-energy theory, the vev of the Higgs field appears

as a classical quantity. For example, the leading-order instanton contribution to

the n-point correlation function of the Higgs field is given by

〈φ(x1)...φ(xn)〉 ∼ vn , (9.1)

provided that the points x1,...,xn are farther from each other than the character-

istic size of the instanton, |xi−xj | &M−1
P , so that the dilute-gas approximation

is applicable. Eq. (9.1) points at the classical interpretation of the Higgs field

vev, as long as the physics at the energies much below M−1
P is concerned. Still,

there are no a priori reasons for the instanton action to be saturated exclusively

in the core region of the instanton. Nevertheless, we find it intriguing that the

observed hierarchy between the Fermi and the Planck scales could actually result

purely from the features of quantum gravity above the Planck scale. We leave

the further investigation of this question for future.
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It is natural to ask if singular instantons of a similar kind can be of use in re-

solving another great puzzle of theoretical physics — the cosmological constant

problem. Leaving the discussion of this question aside, here we just note that a

straightforward attempt to implement the mechanism of chapter 5 to compute

the non-perturbative correction to the curvature vev 〈R〉 fails. Moreover, the

scale symmetry used to make the Higgs field vev stable against radiative correc-

tions is, in general, not suitable to protect the cosmological constant, as one can

make sure using the Higgs-Dilaton theory as an example.

A systematic treatment of fluctuations correcting the leading-order estimation

(8.50) is not easy. Some progress in a related problem of finding cosmological

perturbations above a configuration with the singularity of the type (7.13) was

made in [151]. We find this task important, since knowing the determinant in

Eq. (8.50) may clarify whether the exponential change of the field variable is

indeed the preferred way to describe the dynamics at high energies. We leave

to future work the investigation of different modes arising on top of the singular

instanton, and their possible physical implications.

In the language of the Higgs-Dilaton theory, our motivation in searching for

a non-perturbative mechanism of generating the Higgs vev was an unnatural

smallness of the coefficient α in the potential (3.3). One more parameter of the

theory which is required to be small in order to match phenomenological data is

the non-minimal dilaton coupling ξχ. In the limit ξχ = 0, the Lagrangian (3.2)

without the potential term acquires an additional invariance under the constant

shifts of the dilaton field. It would be interesting to see whether the interaction

∝ χ2R can be induced by some non-perturbative effect similar to the one studied,

e.g., in [165–167], provided that the shift symmetry is exact at the classical level.

One more interesting question regarding the singular instantons is whether they

can be responsible for generating the masses of right-handed neutrinos, say, in

the νMSM setting [168, 169].1

1 One idea of how gravity can be responsible for neutrino mass generation was elaborated
in [170].



Chapter 10

Conclusion

Let us conclude. In this thesis, two groups of questions were studied. The

first of them concerns with the stability of the electroweak vacuum in different

settings. As was stated in introduction, this topic attracts significant attention in

the recent literature, partly because the lifetime of the low-energy vacuum is, in

general, sensitive to the the structure of the theory at high energy scales. Having

observed the sufficiently long-lived universe, we can, therefore, put constraints on

new physics in the domain that we cannot probe directly in experiment. Given

below is the summary of our results in this direction of research.

In chapter 2 we studied Coleman-De Luccia tunneling of the Standard Model

Higgs field during inflation in the case when the electroweak vacuum is metastable.

We verified that the tunneling rate is exponentially suppressed. The main con-

tribution to the suppression is the same as in flat space-time. We analytically

estimated the corrections due to the expansion of the universe and an effective

mass term in the Higgs potential that can be present at inflation.

In chapter 3 we investigated stability of the electroweak vacuum in the Higgs-

Dilaton theory — a scale-invariant extension of the Standard Model and General

Relativity. The safety of the low-energy vacuum against possible transition to-

wards another minimum of the Higgs potential is a necessary condition for the

model to be phenomenologically acceptable. We found that, within a wide range

of parameters of the theory, the decay rate is significantly suppressed compared

to that of the Standard Model. We also discussed properties of the tunneling

solutions that are specific to the Higgs-Dilaton theory.

The second group of questions addressed in the thesis is dedicated to one puz-

zling fact arising when one treats gravity on equal footing with other fundamental
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interactions. Suppose we are given two theories equally well explaining experi-

mental and observational data. Let one theory possess the input parameter of

order 10−17 ∼ v/MP , while another theory contains a dynamical mechanism of

generating such parameter. If, based on this difference, one would take the sec-

ond theory as the “better” one, then the ratio of the electroweak to gravitational

forces is a challenge one must deal with. We attempted to look for the resolution

of this challenge in the high-energy domain of the theory and suggested that the

weak scale is a manifestation of the non-perturbative gravitational effect whose

existence relies on the structure of the theory in the strong-gravity regime.

The summary of the results of the second part of the thesis is as follows. In

chapter 4 we provided arguments in favor of the non-perturbative perspective on

the problem of hierarchy between the Fermi and the Planck scales. In chapter

5 the main idea behind all subsequent calculations was given and the challenges

standing on the way of its justification were described. In chapter 6 we considered

the simple scale-invariant model of one scalar field coupled to gravity in a non-

minimal way. We studied analytically singular euclidean solutions of equations of

motion supplemented by an instantaneous source of the scalar field. The results

of these studies were then used in chapters 7 and 8, where we analyzed similar

configurations in several toy models and in phenomenologically viable theories

encompassing the Standard Model and gravity. We chose the Planck scale to

start with, as it is the only scale appearing inevitably in any theory comprising

the Standard Model and General Relativity. We then showed that, under specific

assumptions about the high-energy behavior of a theory, it is possible to generate

the electroweak scale via the instanton effect that suppresses the Planck scale by

a necessary amount.

Needless to say, the suggested mechanism of generating the hierarchy of scales

calls for further investigation. It opens many interesting questions, some of

which were mentioned in chapter 9. Speaking more globally, on this example we

tried to learn how certain conjectures about UV behaviour can help in resolving

apparently low-energy issues. As is seen from this perspective, presented in the

thesis are just few steps on this way to approach the yet unknown final theory.



Appendix A

Singular instanton in curved

space

Let us switch on the quartic coupling λ in the Lagrangian (6.1) of the Dilaton

model. Then, the second of Eqs. (6.14) becomes

1

f2
= 1 +

a

6M4
P r

4
± b2r2 , b2 =

|λ|M2
P

12ξ2
, (A.1)

where the plus (minus) sign in the second expression holds for negative (positive)

λ. The classical ground state (6.5) of the Dilaton model is given by

ϕ̄ = 0 , f2 =
1

1± b2r2
, (A.2)

Repeating the steps leading to Eq. (6.21), we obtain the expression for the

singular instanton in the space of constant curvature,

ϕ̄(r) = −
∫ r

rb

f(r′)

r′3MP
dr′ ,

1

f(r)2
= 1 +

a

6M4
P r

4
± b2r2 , (A.3)

where rb is sent to infinity for λ < 0 or is equal to a positive root of the inverse

of the metric function f−2 for λ > 0. Eq. (A.3) contains two scales. The first

of them is defined by the combination a1/4M−1
P and determines the size of the

instanton, as explained in section 6.2. The second is the cosmological scale b

determined by the classical ground state. We require the vacuum energy of the

ground state to be well below M4
P ,

bM−1
P � 1 . (A.4)
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From this and the fact that a is confined in the region

0 < a < 1/6 (A.5)

the separation of the instanton and cosmological sizes follows. Eq. (A.4) imposes

an upper bound on the absolute value of λ, which can always be satisfied provided

that ξ 6= 0.

It is worth to note that when the vacuum geometry is the de Sitter one, λ > 0,

the instanton is not regular at the boundary point r = rb. However, computation

of the metric invariants yields, in notations of [171],1

R̃ = 12b2(1 +O(ab4M−4
P )) , Ẽ = b4 · O(a2b8M−8

P ) , (A.6)

F̃ = b8 · O(a4b16M−16
P ) , G̃ = b12 · O(a6b24M−24

P ) .

To the leading order in a1/4bM−1
P , they coincide with those of the euclidean de

Sitter space. Hence, one can expect that the singularity of the metric at r = rb

does not contribute to the instanton action.

As the last step, we evaluate the euclidean action and the boundary term of the

instanton in curved background. With the ansatz (6.13) applied, the exterior

curvature of a surface defined by the equation r = rs is seen to be

K̃ =
3

f(rs)rs
. (A.7)

For λ positive, the boundary term is absent both for the vacuum solution and

the singular instanton. In the case λ < 0, the boundary is determined by sending

rs to infinity and we have (cf. Eq. (6.22))

ĪGH − IGH,0 ∼ a−1b−1M−2
P r−3

s → 0 , rs →∞ , λ < 0 . (A.8)

To find the euclidean action, we make use of the Einstein equations. The differ-

ence in the actions between the instanton and the vacuum for λ 6= 0 is evaluated

as

S̄ − S0 ∼ ab2M−2
P � 1 (A.9)

given Eqs. (A.4) and (A.5).

We conclude that the nontrivial background geometry does not lead to a signifi-

cant contribution to the net instanton action, neither to the net boundary term.

1Among the fourteen metric invariants, ten are expressed using the Weyl tensor which is
zero in our case [171].
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Hence, in proceeding with the classical analysis in more complicated theories,

one can focus solely on the core region of the instanton. Moreover, as was men-

tioned in section 6.2, in order to make the instanton action large, the structure

of the theory in this region must be different from that of the Dilaton model.



Appendix B

Derivative operators of higher

degrees

Here we discuss the generalization of the models of section 8.1, which amounts

to replacing the quartic derivative term for the radial field by a more general

operator of the form

Õ = δM4
P p(z) , p(z) =

N∑
n=1

αnz
n , z =

(∂̃ρ)4

M8
P

. (B.1)

The original operator is reproduced when p(z) = z, α1 = 1. The coefficients αn

are chosen to be less or of the order of one, the overall coupling δ is adjusted

to provide the separation of the region where the angular field varies from the

region where the operator Õ dominates the dynamics of the instanton. Each of

the terms in p(z) can be easily traced back to the original field variables, invoking

non-zero coefficients γ̃i1,...i2k up to k = N/2 in the Lagrangian (8.1).

Making use of the Einstein equations, one finds the instanton action

S̄ =

∫
d4x
√
g̃δM4

P (2zp′(z)− p(z)) , (B.2)

where the potential term is neglected. We would like to study how this action

depends on the coupling δ for different choices of the function p(z). Applying

the ansatz (6.13), we arrive at equations of motion in the high-energy regime,

4r3δM2
P z

3
4 p′(z) = − 1

MP
, (B.3)

M2
P

2

3− 3f2

r2f2
= δM4

P (2zp′(z)− p(z)/2) . (B.4)
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Let us take

p(z) = zk , k > 1 . (B.5)

From Eqs. (B.3) the high-energy asymptotics of the radial and metric fields are

deduced,

ρ′ ∼ −M2
P δ

1
2−8k (MP r)

2k−2
4k−1 , (B.6)

f ∼ δ
1

8k−2 (MP r)
2k+1
4k−1 ,

where we keep track of the dependence on δ and ã0. These asymptotics prevail

at the distances r . r̄, where

r̄ ∼ δ
1

6(2k−1)M−1
P ã

4k−1
6(2k−1)

0 . (B.7)

Setting k = 1, one reproduces Eqs. (8.41), (8.42). The instanton action becomes,

S̄ ∼
∫ ∞

0
drr3fδM4

P

(
ρ′4

f4M8
P

)k
. (B.8)

We now use Eqs. (B.6) and (B.7) to compute the high-energy part of the action.

Remarkably, it shows no power-like dependence on δ:

S̄ ∼ ã
1
2
0 . (B.9)

The same is true for the value of the radial field at the center of the instanton,

ρ(0)/MP ∼ ã
1
2
0 (log δ +O(1)) . (B.10)

It is clear that using the more general form of the function f(z), given in Eq.

(B.1), reveals the same behavior of S̄ and ρ(0)/MP . We conclude that the

reasoning of section 8.1.5 applies universally regardless the particular derivative

operator chosen to regularize the instanton.

From Eqs. (B.6) it also follows that the high energy asymptotics of the fields are

confined as

|ρ′| & r
1
2 , r

1
2 & f & r . (B.11)

Hence, the non-analyticity invoked by the source of the radial field cannot be

completely removed by the operators of the form (B.1).



Appendix C

More on short-distance

behavior of the instanton

Following the discussion in section 8.1.5, here we study the exponents γ, η in

the asymptotics of the scalar fields at r → 0 and for different values of κ. Recall

that

ã0 ≡ ã(π/2) , (C.1)

where ã(θ) is a function defined in Eq. (8.46). From equations of motion for the

radial and angular fields it follows that

ρ ∼ −MPγ log(MP r) ,
π

2
− θ ∼ rη (C.2)

with

γ =
√

6ã0 , η =

√
ã0(1 + 6ξ2)(2ξ2(1 + 3ξ1)− ξ1)− ξ2

2(1 + 6ξ1)

ξ1(ξ1 + 1/6)
. (C.3)

Figure C.1: The exponents of the short-distance asymptotics of the fields
ρ and θ with no higher-dimensional derivative terms included. Here we take
ξ1 = 1, ξ2 = 1.1. The critical value of the source of the radial field, acrit., is

indicated according to Eq. (C.5).



More on short-distance behavior of the instanton 101

This reduces to Eqs. (8.33) and (8.38) for ã0 = a0 ≡ (6 + 1/ξ2)−1.

Fig. C.1 demonstrates the relative values of γ and η for different possible values

of the coefficient ã0 = (κ + a−1
0 )−1. We observe two featured values of ã0. The

first one represents the minimal possible strength of the source for which the

singular instanton of the type studied here exists. It is given by

amin. = a0
ξ2(1 + 6ξ1)

ξ2(2 + 6ξ1)− ξ1
. (C.4)

If κ = 0, the requirement ã0 > amin. gives ξ2 > ξ1, in agreement with Eq. (8.38).

The second featured value of ã0 is the one at which η = γ. It is given by

acrit. = a0
ξ2(1 + 6ξ1)

ξ2(1 + 6ξ1)− ξ1
(C.5)

and is always larger than a0. For ã0 > acrit. we have, according to Eq. (8.39),

ϕ1 → 0 , r → 0 . (C.6)

Thus, the large sources make the dilaton field associated with ϕ1 convergent at

the center of the instanton. Note, however, that the behavior of the dilaton is still

non-analytic in r, which is justified by the presence of the source. Furthermore,

the Higgs field associated with ϕ2 diverges the stronger, the larger the value of

ã0, hence the regularization provided, for example, by the higher-dimensional

derivative operator is still needed.
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