
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. P. Thiran, président du jury
Prof. A. Argyraki, directrice de thèse

Prof. A. Perrig, rapporteur
Prof. D. Shah, rapporteur

Prof. M. Grossglauser, rapporteur

Traffic receipts for network transparency

THÈSE NO 8904 (2018)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 30 NOVEMBRE 2018

À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE D'ARCHITECTURE DES RÉSEAUX

PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS

Suisse
2018

PAR

Pavlos NIKOLOPOULOS

If I have seen further, it is by standing

on the shoulders of giants.

— Isaac Newton

To the girls of my life, Nathalie and Danae.

To my parents and my sister.

Abstract
Today’s Internet is not transparent: when packets get lost or delayed, there is typically no infor-

mation about where the problem occurred, hence no information about who is responsible.

This results in Internet service providers (ISPs) offering service level agreements (SLAs) that

cannot be verified, and governments enacting neutrality regulations that cannot be enforced.

To remedy this, we propose a “transparency system,” where each participating network emits

receipts for traffic it receives and delivers; an independent monitor collects these receipts and

makes decisions regarding the network’s performance and neutrality (or lack thereof). The

main challenge we face is misbehavior: On the one hand, a network that participates in such

a system has a clear incentive to game the system and influence the monitor’s decisions to

its advantage, by manipulating either the receipts it emits or the corresponding traffic. On

the other hand, the monitor (or, more precisely, an adversary who has access to the same

information as the monitor, e.g., a government that has subpoenaed the monitor’s records)

may have an incentive to use the receipts emitted by a network in order to infer information

that is otherwise private to the network, in particular, its internal topology. We make three

contributions, each one to prevent a different type of misbehavior: (1) Incentive-compatible

reporting, which ensures that networks have no incentive to manipulate the receipts they emit

in order to claim better performance or fake neutrality. The key to our solution is a trade-off

that we discover between network performance and neutrality: we design our system such

that the more a network tries to exaggerate its estimated performance the more likely it is to

be perceived to violate neutrality (and vice versa). (2) Unbiased reporting, which ensures that

networks cannot manipulate the traffic for which they emit receipts in order to claim better

performance. The key to our solution is delayed disclosure: we design receipt generation

such that, by the time a network has all the information it needs to emit a correct receipt, the

network has already forwarded the traffic that this receipt concerns, hence cannot manipulate

it. (3) Topology-obfuscation reporting, which enables networks to emit the information that is

necessary for the monitor to make correct decisions without leaking any information about

internal network topology. The key to our solution is the observation that topology inference

exploits the diversity of pairwise similarities between the delay vectors of different network

paths; hence, we design receipt generation such that any delay vectors that the monitor might

compute have almost 0 pairwise similarities. We conclude that it is possible to design a trans-

parency system that enables networks to report on their own performance such that networks

have no incentive to game the system and no fear of leaking information about their private

topology.

v

Keywords: Network transparency, consistent sampling, delayed disclosure, secure perfor-

mance reports, mechanism design, network topology inference.

vi

Résumé
Aujourd’hui Internet n’est pas transparent : lorsque des paquets sont perdus ou retardés, il

n’y a typiquement aucune information concernant la cause du problème et par conséquent

nulle indication quand à qui en est responsable. Ceci entraine une entente entre Fournisseurs

de Service Internet sur des Accords de Niveau de Services qui ne peuvent pas être vérifiés, et

des gouvernements promulguant des lois dictant la neutralité qui ne peuvent pas être appli-

quées. Pour remédier à cela nous proposons un "système de transparence" où chaque réseau

participant émet des reçus pour le trafique qu’il reçoit et fournit. Un moniteur indépendant

collecte ces reçus et décide du niveau de performance et de neutralité du réseau. La difficulté

principale à laquelle nous faisons face sont les comportements frauduleux : D’une part, un

réseau appartenant à un tel système a clairement un intérêt à fausser les données et influencer

la décision du moniteur pour améliorer le résultat en son avantage, en manipulant les reçus

émis ou le trafique correspondant. D’autre part, le moniteur (ou plutôt un adversaire qui a

accès aux mêmes informations que le moniteur, par exemple un gouvernement qui requière

par mandat l’accès aux données du moniteur) peut avoir un intérêt à utiliser les reçus émis par

un réseau afin de déduire des informations normalement privées et en particulier sa topologie.

Nous réalisons trois contributions, chacune pour prévenir un type de comportement fraudu-

leux différent : Le rapport compatible à la motivation, qui assure que les réseaux n’ont pas

d’intérêt à manipuler les reçus qu’il émettent afin de justifier une meilleure performance ou

une fausse neutralité. La clé de notre solution est un compromis que nous découvrons entre

la performance du réseau et la neutralité : nous concevons notre système de manière à ce que

plus un réseau amplifie sa performance estimée, plus il sera passible d’être reconnu comme

transgressant la neutralité (et vice versa). Le rapport impartial, qui garantie que les réseaux

ne peuvent pas manipuler le trafique pour lequel ils émettent des reçus afin de déclarer une

meilleure performance. La clé de notre solution est la divulgation retardée : nous concevons

la création de reçus de telle manière que le temps que le réseau reçoive toute l’information

dont il a besoin pour émettre un bon reçu, le réseau a déjà traité le trafique correspondant à

ce reçu et donc ne peut plus le fausser. Le rapport opaque de topologie, qui permet au réseau

d’émettre les informations nécessaires au moniteur pour prendre les bonnes décisions sans

révéler aucune information concernant la topologie interne du réseau. La clé de notre solution

est le constat que la déduction de topologie utilise la diversité des similarités de toute paire

de vecteurs de retard entre différents chemins de réseaux. Par conséquent, nous créons le

système afin que les vecteurs de retard que le moniteur pourrait calculer présentent presque

0-similarités de paire.

vii

Mots-clés: Transparence du réseau, échantillonnage consistant, divulgation différée, rapports

de performance fiables, théorie des mécanismes d’incitation, inférence de topologie du réseau.

viii

Acknowledgments
My PhD journey required the feedback and support of many people; without their help, my

thesis could not be the same. To all of them, I owe my deepest gratitude.

First and foremost, I am incredibly grateful to my wonderful adviser, Katerina Argyraki, for her

guidance, unwavering support, and positive reinforcement in the past six years. Katerina is a

great researcher and undoubtedly a role model for her students. She was the main reason why

I got accepted to the EPFL doctoral school, and she has been there for me ever since, to help

me in both my research and personal life. Katerina taught me how to think about the practical

implications of my project, abstract away uninteresting details, and improve my paper writing

and presentation skills. Her sharp intellect, her ability to find the right course of action in all

situations, and her being supportive of one’s progress in a heartfelt way, constitute an art form

of mentoring that will always be an inspiration to me. I will cherish her genuine kindness,

her patience, and her infectious enthusiasm. Katerina is the best adviser and hard-working

collaborator I could ever ask for. It just can’t get any better than this.

I am also thankful to the other members of my thesis committee—Professor Patrick Thiran,

Professor Matthias Grossglauser, Professor Adrian Perrig, and Professor Devavrat Shah—for

their feedback and for dedicating time to review and improve my thesis. Their excellent work

has been of invaluable help and high influence during the entire period of my doctoral studies.

The main contribution of this thesis would not be possible without my co-authors: Christos

Pappas, Adrian Perrig, Katerina Argyraki. I am really thankful to you and I appreciate your

indispensable collaboration help.

I am fortunate to have worked with wonderful colleagues from the Network Architecture Lab.

Special thanks to Iris Safaka, Dimitri Melissovas, Mihai Dobrescu, and Georgia Fragkouli for

being valuable friends, for sharing their knowledge and expertise, and for having spent much

of their time to give me feedback. I feel indebted to my lab fellow, Ovidiu Mara, for his precious

help with producing input data for my project during the first years of my PhD. I will always

remember beautiful moments with all other lab members: George Ioannidis, Jonas Fietz,

Arseniy Zaostrovnykh, Zhiyong Zhang, Luis Pedrosa, Marie-Jeanne Lagarde and Isabelle Coke.

I thank you all for making my everyday life at EPFL such a pleasant experience.

During this journey, the Greek “gang” from EPFL and Lausanne has been a home and a family

for me. I would like to specially thank my closest friends from the “maestros” group—Manos,

Christos, Alexandros, Stefanos and Natassa—for the beautiful discussions we had about

ix

Acknowledgments

research and various other topics, and for always being in good mood, happy and supportive.

I feel grateful to Matt, for being not only a very close friend, but also my technical support

before paper submission deadlines. I want to thank Eleni, for her being an infinite source of

laugh and optimism, and also Stella, Panayiotis, Kyveli, Chrysa, Vassiliki, Stela, Marios, Vivi,

Kostas, Eleni, Sofia, Anna-Maria, Giannis, Katerina, Loukia, Giannis, Christos, Dimitris, Simos,

Maya, Apostolis, Eirini, Thodoris, Giannis, Evi, Myrsini, Maria, Kyriaki, Ariadni, Kalliopi, Eleni,

Odysseas, Leonidas, Iro, Polydefkis, Onur, Jean, Arash, George (all of you), and many more, for

the charming discussions we had, our common birthday parties (with Iro and Giannis), our

skiing activities, our trips and Sunday coffees, and all the happy moments we shared together.

The Ph.D. can be a rough journey sometimes, and I was fortunate to have had all these friends

around to ensure that it was a swift and smooth ride for me. Folks, I really thank you. You

made Lausanne feel like home.

From the bottom of my heart, I would like to thank my family for their boundless love and

support. I am grateful to my parents, George and Fouli, and my sister, Asteria, for always being

there for me and encouraging me to work hard and follow my dreams. They have been the

best listeners in difficult cases, and they have always managed to relieve my stress and help

me make the correct decisions—thank you, I am extremely fortunate to have you in my life!

Also, I would like to thank the new members of our extended family, Aliki and George, Nikos

and Sabine, for their smile, kindness and encouragement.

Last but certainly not least, I would like to thank my wife, Nathalie, who has been extremely

patient and supportive throughout this endeavor and has helped me the most during my PhD

years (by also writing the French version of the abstract); and our daughter, Danae, for the

ultimate joy and happiness she brings to our family. Thank you for your unconditional love

and support, and for having endured living with a PhD candidate. This thesis is for you.

Lausanne, 18 October 2018 P. N.

x

Contents

Abstract (English/Français) v

Acknowledgments ix

List of figures xiii

List of tables xv

1 Introduction 1

1.1 The need for transparency . 1

1.2 Definitions . 2

1.3 Problem and Goals . 3

1.4 Contributions . 5

1.5 Assumptions . 6

2 Sampling-based Transparency 7

2.1 Basic Transparency System . 7

2.2 Why sampling? . 8

2.3 Why consistency? . 9

3 Incentive-compatible reporting 11

3.1 Notation . 11

3.2 Trust model and sub-problem . 12

3.3 Approach . 14

3.3.1 Rationale . 14

3.3.2 Examples . 14

3.4 Analysis and Solution . 16

3.4.1 Rating penalties . 17

3.4.2 Disputes and externalization . 17

3.4.3 Discrimination and internalization . 19

3.4.4 The mechanism . 22

3.5 Proofs . 23

xi

Contents

4 Unbiased reporting 25

4.1 Trust model and sub-problem . 25

4.2 Solution . 26

4.2.1 Basic Delayed Disclosure . 26

4.2.2 Late Disclosure . 28

4.2.3 Quiet Periods and Adaptive Disclosure . 28

4.2.4 Rationale . 29

4.3 Sketch of a Hardware Design . 30

4.4 Misbehavior Analysis . 31

4.4.1 Attack Model . 31

4.4.2 Conditions for Resistance . 34

4.5 Accuracy Analysis . 35

4.6 Parametrization and Resource Analysis . 37

4.6.1 Optimal Sample Size . 38

4.6.2 Minimization of buffer size β . 39

4.6.3 Operational Regime . 41

4.6.4 Resource Requirements . 43

4.7 Experimental Evaluation . 44

4.7.1 Methodology . 44

4.7.2 Use Cases . 45

4.7.3 Basic Operation . 47

4.7.4 Resistance to Prioritization . 48

4.7.5 Proof of lemma 4.4.1 . 51

4.7.6 Proof of lemma 4.4.2 . 55

4.7.7 Proof of lemma 4.5.1 . 61

5 Topology-obfuscation reporting 65

5.1 Trust model and problem statement . 65

5.2 Approach . 66

5.2.1 Topology inference . 66

5.2.2 Topology Obfuscation . 67

5.2.3 Rationale . 68

5.3 Solution . 69

5.3.1 Obfuscate1(): Assignment to Fourier orthogonal basis 70

5.3.2 Obfuscate2(): Assignment to extended-path delays 71

5.4 Experimental evaluation . 71

6 Related Work 77

7 Conclusions 85

xii

Contents

A Appendix 87

A.1 Basic Delayed Disclosure Algorithm . 87

A.2 Monitor Algorithm . 87

Bibliography 94

Curriculum Vitae 95

xiii

List of Figures
1.1 Example network transparency model . 2

3.1 An aggregate’s path . 15

3.2 Traffic-discrimination detectionn . 21

4.1 Retro-active sampling . 29

4.2 Prioritization attack . 32

4.3 Minimum buffer size . 40

4.4 Example operational regime . 42

4.5 Data-path memory . 44

4.6 Loss estimates after T = 10min. 46

4.7 Topology emulated in §4.7.3. 48

4.8 Consistent sample size after T = 10min. 49

4.9 Relative delay benefit of a prioritization attack as a function of attack parameters

t and g. 50

4.10 Actual sampling probability. 62

5.1 Topology inference idea . 66

5.2 Results of Obfuscate1() in scenario I. 74

5.3 Results of Obfuscate2() in scenario I. 74

5.4 Results of Obfuscate1() in scenario II. 75

5.5 Results of Obfuscate2() in scenario II. 75

xv

List of Tables
4.1 Retro-active sampling: parameters and symbols 26

4.2 Prioritizaation attack: parameters and symbols 32

xvii

1 Introduction

1.1 The need for transparency

Today’s Internet offers no transparency on the fate of forwarded traffic. When packets get lost

or delayed, there is typically no information about where the problem occurred, hence no

information about who is responsible.

The lack of transparency results in service level agreements (SLAs) and neutrality regulations

that cannot be enforced: First, Internet service providers (ISPs) guarantee that their network

will honor a minimum delivery rate (equivalently, a maximum loss rate) and a maximum

latency [11, 3, 8], even though there exists no systematic way to estimate their loss rate or

delay distribution. Second, governments require that ISPs should not (de)prioritize certain

traffic classes, even though there exists no systematic way to detect traffic (de)prioritization;

42 governments have already adopted such neutrality regulations or laws, while 6 more are

considering them [9, 50, 21, 7]. However, due to the lack of verifiable evidence, ISPs can deny

any accusation of following anti-competitive practices, such as blocking or degrading the

performance of competing services on their networks [5, 2, 4].

We argue that the requisition for a transparency framework is now necessary. If network users

and governments care enough for SLAs and neutrality regulations to exist, then there should be

a systematic way to enforce them in practice. A verifiable measurement system that provides

trustworthy loss and latency information would reveal to consumers and regulators how

ISPs manage traffic, and it would lead to better-informed legal and policy decisions [52, 44].

Moreover, it would offer a quantitative economic incentive to the ISPs to innovate [41].

We support the idea of a “network-layer transparency system” [12, 13, 15, 60, 14, 62, 61, 52, 45],

where each participating network emits receipts for traffic it receives and delivers. The receipts

are crafted such that an independent monitor can process them and estimate each network’s

mean loss rate and delay distribution quantiles with respect to various traffic aggregates,

enabling the verification of both SLAs and neutrality regulations. Networks participate either

because they are expected to by their governments, or (our preferred scenario) by their own

1

Chapter 1. Introduction

Domain Y Domain Z

Domain X Domain W

Monitor

R R R R

Figure 1.1 – Example network model. The black dashed lines denote the intra-domain routes between
an ingress and an egress node of a domain; and the black solid lines denote the inter-domain links. The
blue dotted lines show the receipts that are emitted to the monitor. The red line shows an example
end-to-end packet flow from a source to a destination domain.

choice, because producing verifiable evidence of honoring SLAs and network neutrality is

good for their reputation. Today, even if an ISP wants to produce such verifiable evidence,

e.g., to defend itself against wrongful suspicion of SLA or neutrality violation, it has no way of

doing it.

A critical challenge is resistance to misbehavior: a network that reports on its own performance

has a clear incentive to try to game the estimation to its advantage. Transparency, however,

demands a truthful performance evaluation that is resilient against any effort of unscrupulous

domains to abuse it and exaggerate their performance. Any misbehavior has to be either

avoided or detected and extracted from the measurement process. In this dissertation, we

address this challenge without trusted hardware.

1.2 Definitions

A “domain” is a contiguous network area managed by a single administrative entity, e.g., an

ISP, an Autonomous System (AS), an Internet eXchange Point (IXP), an enterprise or campus

network, the data-center network of a content provider.

Each domain that participates in our system deploys a special “node” at each point where

it exchanges traffic with another domain (Fig. 1.1). Each node runs an algorithm that takes

as input a set of configuration parameters and the sequence of packets arriving at the node,

and outputs a sequence of receipts that it sends to the monitor. The nodes are co-located

with the border routers of the domains, and we use the terms "node" and "border router"

interchangeably.

A “monitor” is a logically centralized entity that collects the receipts emitted by the partici-

pating domains and uses them to answer performance and neutrality questions about the

2

1.3. Problem and Goals

domains. The monitor could be owned and managed by the participating domains themselves

(in which case it would be implemented as a decentralized system), or it could be owned and

managed by a single authority (like those that manage the root DNS servers). In the latter case,

anyone interested in the receipts (e.g., the participating domains or their customers) would

gain access to them through the owning authority.

We define two kinds of traffic units: “flows” and “aggregates”:

• A flow is the set of all packets observed by a node that have the same source and

destination IP prefix.

• An aggregate is a set of packets with some common observable characteristic, e.g., the

set of packets from a given source to a given destination domain, or all BitTorrent packets

from a given source domain; so, an aggregate may be a flow’s subset or contain one or

multiple flows.

A flow/aggregate’s “path” is the sequence of all nodes that observe its traffic; a flow/aggregate’s

“source node” is the first node on its path.

Nodes can classify packets per flow, but are not aware of aggregates.

The monitor, on the other hand, defines and answers questions with respect to aggregates,

based on loss and/or delay “estimates”, e.g. the average loss rate or delay between two nodes,

the delay variance or some important percentile of it, etc. When we talk about the "accuracy"

of an estimate computed by the monitor, we mean (γ,ε)-accuracy, where γ is the lower bound

of the probability (or confidence level) that the relative estimation error is ε. This is a standard

accuracy metric for loss estimates and was recently defined for delay estimates as well [55, 42].

To determine which receipts are relevant to a given aggregate (hence should be taken into

account to answer questions w.r.t. that aggregate), the monitor may need help from the

aggregate’s source node. For example, if the monitor defines an aggregate as all the BitTorrent

packets from a given source domain, then it needs help from that source domain to determine

which are the relevant receipts. By design (and for reasons we explain later), the nodes that

produce the receipts are not aware of aggregates, hence cannot tag receipts with aggregate-

related information.

1.3 Problem and Goals

We describe our problem and goals in two parts. This is because, in our context, there are two

kinds of entities, the domains and the monitor(s), which play distinct roles.

[Part I – Domains]: Given the traffic they observe, the domains should emit receipts in a way

that guarantees:

• Low resource usage.

3

Chapter 1. Introduction

• Topology privacy.

The first objective comes from the fact that the receipts are produced at border routers, which

are already burdened with supporting line rates of tens of Gbps and increasing numbers of

protocol suites.

The second objective comes from the fact that receipts may leak information about a domain

that is otherwise private: it has been shown that an entity with access to network-path measure-

ments can infer network topology through network tomography [30, 29, 56, 19, 28, 26, 27, 57].

Hence, from the point of view of a domain, the monitor (or any entity that has access to the

monitor’s data) may misbehave and try to use the domain’s receipts to infer the domain’s

internal topology.

To address this part of the problem, we set two goals for our design:

G1: The algorithm running on each node should be lightweight: it should not increase the

node’s data-to-control-path bandwidth and data-path memory by more than a few per-

centage points.

G2: The receipts emitted by a domain should be privacy preserving: they should not reveal

information about the domain’s internal topology that is otherwise secret.

[Part II – Monitor]: Given the emitted receipts, the monitor should be able to answer perfor-

mance and neutrality questions about the domains. We distinguish two steps in this process:

• Statistical estimation, i.e., the computation of statistics that summarize each domain’s

packet loss and delay distributions (e.g. mean, variance, or distribution percentiles).

• Decision making, i.e., the way in which the estimates are used to characterize domain

performance and neutrality.

Consider, for example, Fig. 1.1. Based on the receipts emitted by the nodes, the monitor first

computes loss and delay statistics about the domains. Then, based on these statistics, the

monitor tries to answer the following questions: How does Y’s loss and delay performance

compare to W’s with respect to X-to-Z traffic? Are Y and W treating all X-to-Z traffic the same,

or are they discriminating against video traffic?

From the point of view of the monitor, nodes (and the domains that own them) may strate-

gically misbehave: a node may try to manipulate the contents of the receipts, or the way it

forwards traffic to which the receipts refer, so that the decisions made by the monitor are in

favor of a domain. Such manipulation may be practiced either independently or in collusion

with another node, which may or may not belong to the same domain.

To address such misbehavior, we set another two goals for our design:

4

1.4. Contributions

G3: The monitor’s statistical estimation should be unbiased: given an aggregate G , the monitor

should be able to estimate a domain’s loss/delay with respect to G with a desired (γ,ε)-

accuracy in a desired measurement interval T ; and no domain that observes G should be

able to bias the estimation by preferentially forwarding G or any part of it.

G4: The monitor’s decision making should be incentive-compatible: given an aggregate G ,

no domain that observes G should have the incentive to strategically manipulate the

contents of its receipts in order to exaggerate its reported performance or hide neutrality

violations. This should be resistant both to independent manipulation and collusion.

1.4 Contributions

We present a transparency system that is based on sampling. Participating networks emit

receipts for a small sample of the packets that they receive and deliver; based on these receipts,

the monitor produces point estimates about loss and delay that enable domain-performance

comparison and traffic-discrimination (or non-neutrality) detection.

We start from consistent hash-based sampling [65, 25], for reasons that we explain in Chapter 2,

and we enhance it with three mechanisms to meet our goals G2–G4:

1. Incentive-compatible reporting (Chapter. 3), which incentivizes the domains not to

falsify the contents of the receipts in order to claim lower loss/latency or fewer neutrality

violations—instead, the domains maximize their estimated performance only if they

report it truthfully.

2. Unbiased reporting (Chapter. 4), which is a lightweight sampling algorithm that incen-

tivizes the domains not to treat sampled traffic preferentially to claim lower loss/latency—

instead, the domains maximize their estimated performance only if they forward traffic

legitimately.

3. Topology-obfuscation reporting (Chapter. 5), which enables the domains to emit all the

information that is necessary for the monitor to make correct decisions, without leaking

any information about its internal topology.

The resulting system also meets goal G1: Running our sampling algorithm requires modest

functionality that can be afforded by modern networks. The data-to-control-path bandwidth

is not increased by more than 1%, which is equal to the sampling probability and hence

configurable. Also, the data-path memory is not increased by more than a few percentage

points, e.g., it is less than 10MB for measuring traffic volumes that exceed 600Mbps with

(0.95,±10%)-accuracy within 5 minutes, and it can be even less for larger time intervals.

5

Chapter 1. Introduction

1.5 Assumptions

We make the following assumptions:

1. Domains may drop or delay traffic, they may also misbehave in order to exaggerate their

reported performance or hide possible neutrality violations, but they do not undertake

other malicious actions like modifying, injecting, or replaying traffic. These types of

attacks have been addressed in prior work [60, 61].

2. Domains know the true loss and delay of their own inter-domain links. For any given

aggregate G and any given domain z on G’s path, the neighbor domains of z know the

true loss/delay performance of their inter-domain link with z with respect to G ’s packets.

We believe that this is a reasonable assumption, because the domains that are adjacent

to an inter-domain link can always directly debug that link and measure the loss and

queuing delay it is experiencing. This assumption is used in Chapters 3 and 5.

3. The monitor employs standard statistical techniques to compute the accuracy of each

loss or delay estimate; to provide confidence intervals, these techniques must assume

something about the nature of the loss/delay that is being estimated, and the typical

assumption is that loss/delay is either i.i.d. (independent identically distributed) across

all packets, or follows the Gilbert model [36]. This assumption is used in Chapter 3 to

design the neutrality detector (Section §3.4), and in Chapter 4 for the parametrization of

our system (Section §4.6).

4. The packet arrivals of each flow form a stationary and ergodic process with a high

enough rate (e.g. at the order of OC-12 or higher) that ergodic convergence is achieved

in less than 100msec. The limitation resulting from this assumption is that we can-

not reason about aggregates that consist of relatively few packets/sec. We think that

this is acceptable given our motivation to enable the comparison of domain perfor-

mance and the verification of neutrality regulations, which typically apply to relatively

large aggregates. This assumption is used in Chapter 4 for the proofs of Lemmas 4.4.1

and 4.5.1.

6

2 Sampling-based Transparency

In this chapter we describe and justify the starting point of our design: each node emits

receipts only for a small sample of the packets it observes. By using packet sampling, we take

an initial step toward meeting our goals: we enable a lightweight implementation (goal G1); we

enable the use of statistical estimation with well-established accuracy guarantees (goal G3); we

enable the monitor to define aggregates of interest without having to pre-inform the domains

about them (also related to goal G3). More specifically, we use pseudo-random hash-based

sampling [65, 25], because of its “consistency” feature, which leads to lower estimation errors

than classic random sampling and enables incentive-compatible reporting on packet-loss

events (goal G4).

We first describe a very basic transparency system that is based on consistent sampling (§2.1),

and then explain why we chose it as our starting design point (§2).

2.1 Basic Transparency System

Each node emits a receipt for a small sample of packets, drawn from all the packets it observes.

Each receipt carries: a digest that uniquely identifies the packet with high probability; a

timestamp that specifies when the packet was observed at the node; and a flow ID that

specifies the packet’s source and destination prefix.

Instead of using classic random sampling, which lets the nodes independently pick their

samples over the observed packets, we use consistent hash-based sampling, in which all

nodes along a path sample consistently the same set of packets modulo loss: Each packet is

either sampled by all the nodes that observe it or by none of them [65, 25].

Consistent sampling relies on hashing the non-mutable contents of each observed packet and

sampling the packet if the outcome falls within a predetermined range. A hash function with

strong randomization properties results in almost uniform (pseudo-random) sampling, where

the sampling probability is determined by the range of the hash function. Alg. 1 shows a basic

hash-based sampling algorithm: When a packet p arrives at a node, the node first applies a

7

Chapter 2. Sampling-based Transparency

Algorithm 1 OnPacketArrival (p)

p̂ non-mutable content of packet p
Receipt() constructs a receipt
Hash() hash function with strong randomization properties
Range subset of Hash’s range

1: if Hash
(
p̂
) ∈ Range then

2: rec ← Receipt(p,currentTime)
3: Emit receipt rec.
4: end if

hash function on a part of p’s non-mutable content (the non-mutable fields of the IP header

and a small part of the payload). If the outcome falls within a given range (line 1), then the

packet is considered as a sample and a receipt is constructed (line 2), using information from

p for computing the digest and the flow ID, and the current time1 for the timestamp.

After having received all the receipts from the nodes, the monitor runs statistical-estimation

and decision-making processes. It estimates each domain’s performance with respect to an ag-

gregate G by identifying and comparing the sample receipts that the entry and exit nodes of the

domain emit for G’s packets. Obviously, the monitor may also estimate performance between

any two nodes that observe G . Assuming that the receipts correspond to a random sample

of G’s packets, the monitor uses well-established unbiased and efficient point estimators to

estimate summarizing statistics of the loss/delay distributions [42, 55].

2.2 Why sampling?

Sampling enables a lightweight implementation (goal G1) and provides a good starting point

towards unbiasability (goal G3):

First, a node is not required to emit receipts per packet or maintain per-aggregate or per-flow

state on the data-path, as in other solutions [12, 35, 15, 32, 62, 46]. Thus, it has a significantly

reduced equipment cost, as required by goal G1.

Second, assuming a random and representative sample, the monitor can estimate any sum-

marizing statistic about loss and delay distributions. This is because statistics provide us with

a variety of unbiased and efficient point estimators about unknown population parameters

(such as the population mean, variance, or percentiles) and a well-established theory on their

accuracy (or confidence level) [55, 42].

Third, sampling enables tuning the resource cost and accuracy with only one knob, the

sampling probability. The sampling probability determines the rate at which each node emits

receipts, hence the fraction of the node’s network bandwidth that is consumed by emitted

receipts. At the same time, the rate at which a domain z’s nodes emit receipts for an aggregate

1Clock synchronization can be achieved by NTP[47] or GPS.

8

2.3. Why consistency?

G determines the (γ,ε)-accuracy with which the monitor estimates z’s performance w.r.t. G in

a desired time interval—or, equivalently, the time interval in which the monitor estimates z’s

performance w.r.t. G with a desired (γ,ε)-accuracy. In our context, the sampling probabilities

that make sense are 1% or below, which are typically supported by modern routers [10].

Fourth, the monitor can define a traffic aggregate without the consent of the domains that

carry the aggregate and without even pre-informing these domains what the aggregate is. This

is related to unbiasability (goal G3): Each node reports on a sample of packets drawn from all

the packets it observes, as opposed to reporting only on packets that belong to few specific

aggregates of interest. If we reactively configured the network to emit receipts only for an

aggregate G , e.g., in reaction to user suspicions that G is being throttled, then a dishonest

domain could change how it treats G the moment it starts reporting on it. In fact, sampling

is the only approach we could think of where each domain reports on a small fraction of the

packets it observes, yet the monitor estimates the domain’s loss and delay with respect to an

aggregate without pre-informing the domain what the aggregate is. In contrast, approaches

based on "aggregation" and "sketching" [13, 32, 62] require consent from the involved domains

before the collection of statistics can start.

2.3 Why consistency?

Compared to random sampling, consistent sampling leads to lower estimation error and

provides a good starting point toward incentive-compatible reporting (goal G4):

First, for a given sample size, consistent sampling leads to lower estimation error than in-

dependent random sampling (in the weak sense). This happens because random samples

are not always “useful” for estimating performance; for example, suppose the extreme case

where the sample sets collected by the two consecutive nodes on a flow’s path are distinct, i.e.

they refer to different packets, then there is no packet for which delay can be computed, and

the sample set for estimating statistics is empty. Instead, all consistent samples are useful,

because each sample offers information about the loss or delay that is actually experienced

between the two nodes. Since the performance of the estimation is directly related to the

sample size, it makes sense to use consistent sampling.

Second, independent random sampling enables a certain type of collusion: When each

node/domain is allowed to sample different packets, domains have both the incentive and the

opportunity to collude and trick the monitor: each domain samples, and produces receipts

for, the packets it happened to treat well; this way, all domains exaggerate their performance

without implicating each other. The only way to remove the incentive to collude is to expect

each domain to sample a specific set of packets, which are also sampled by the domain’s

neighbors.

Third, consistent sampling enables incentive-compatible reporting on loss events. Consider

for example a misbehaving domain, that forges its receipts to pretend that packet losses, w.r.t.

9

Chapter 2. Sampling-based Transparency

a flow F , do not occur in its internal network (while they actually do). If samples are consistent

among all nodes along F ’s path, then the best that the misbehaving domain can achieve with

its lies, is to shift the blame for the lost packets to an inter-domain link. Since an inter-domain

link is shared responsibility, such fake reporting does not exonerate the culprit; hence there is

no incentive for the domain to pursue it. Moreover, the liar will be exposed to the neighbor

that was implicated in its lies. In §3.4.2, we will examine closer this issue and leverage this

exposure to disincentivize fake receipts of lost packets.

Despite all its advantages, consistent, hash-based sampling is not enough to address all our

goals (§1.3); it needs to be equipped with mechanisms that ensure resistance to misbehavior.

In the next three chapters, we will enhance consistent sampling with properties that incentivize

honest reporting (Chap. 3) and unbiased sampling (Chap. 4), and enable topology obfuscation

(Chap. 5).

10

3 Incentive-compatible reporting

In this chapter, we describe how to achieve goal G4: the monitor’s decision making should be

incentive-compatible. Each domain has an incentive to emit receipts that will lead the monitor

to make the “best” decisions for the domain. Therefore, we study “bad receipt” attacks, where

a misbehaving domain manipulates receipts in order to exaggerate its performance and/or

hide neutrality violations. One might expect that such an attack would trivially succeed (since

the monitor has no ground truth beyond the receipts emitted by the domains themselves).

We show that this is not the case: by using the proper decision metrics, we ensure that the

domains have an incentive to report truthfully. In particular, we design our mechanism such

that, to exaggerate its performance, a domain must either falsely blame one of its neighbors

and get caught; or appear to violate neutrality (more than it actually does).

We first present the attack and trust model (§3.2); then we formalize the decision-making

process by introducing decision and rating functions (§3.3); and finally we describe the tools

that enable truthful reporting and our approach (§3.4).

3.1 Notation

As stated in the introduction (§1.3), the monitor performs two kinds of processes: statistical

estimation, where it estimates loss and delay statistics for which there exists an efficient point

estimator (e.g., average loss rate, average delay, delay variance, some important percentile

of delay); and decision making, where it uses the estimates to make a decision about a given

domain’s performance w.r.t. a given aggregate.

Let: A denote the set of possible decisions that the monitor may make about a given domain

and a given aggregate; Sz denote the set of all estimates that the monitor computes based on

the receipts emitted by domain z for a given aggregate G ; S denote the set of all estimates that

the monitor computes based on the receipts emitted by all the participating domains and for

all aggregates.

There are two things to keep in mind about S and Sz : First, if Z is the set of all domains, then

11

Chapter 3. Incentive-compatible reporting

×z∈Z Sz ⊂ S, because S includes estimates computed based on the receipts emitted by domains

other than z and for aggregates other than G . Second, both sets may include manipulated

estimates, because they are based on receipts emitted by the nodes, which may be honest or

misbehaving, depending on their chosen strategies.

Definition 3.1.1. A function fG : S → A is called a decision function about aggregate G.

Each decision that the monitor makes about domain z and aggregate G results in a rating of

domain z w.r.t. G , which represents the utility that z gains because of the monitor’s decision.

In general, rating could be one-dimensional or multi-dimensional, i.e., it could be expressed

by either a single number, e.g., the average loss rate or the average delay attributed by the

monitor to a domain, or a vector of several numbers e.g., average loss rate, average delay, and

number of neutrality violations.

Definition 3.1.2. A function uz : Sz ×A →Rn is called a rating function of domain z.

Definition 3.1.3. A collection
(
fG,u1, . . . ,uZ

)
is called a decision-making mechanism about G.

In addition to sz ∈ Sz , we denote with s−z ∈ (S \ Sz) any statistical estimate that is not computed

exclusively based on z’s receipts for G , but may also be based on receipts emitted by other

domains and for other aggregates. E.g., if sz is the estimated mean loss rate of domain z w.r.t

G (which is computed exclusively based on z’s receipts), then s−z may be: the mean loss rate

of some other domain w.r.t G ; the mean loss rate of one of z’s inter-domain links w.r.t G ; z’s

mean loss rate w.r.t. some aggregate other than G . As a result, vector s ∈ S can be written as

(sz , s−z), and the outcome selected by a decision function fG can be written as fG (sz , s−z).

Also, let s (resp. sz) denote a statistic when it is truthfully reported, and with s′ (resp. s′z) the

same statistic when it is manipulated through a bad-receipt attack.

3.2 Trust model and sub-problem

In the context of this chapter, the monitor is trusted, whereas the nodes may misbehave by

launching bad-receipt attacks. In such an attack, a node may: suppress a receipt, i.e., pretend

that it never received a packet that it actually did receive and dropped; emit a superfluous

receipt, i.e., pretend that it delivered a packet that it actually dropped; modify a receipt, i.e.,

pretend that it received a packet later, or delivered a packet earlier than it actually did. We

distinguish two kinds of bad-receipt attacks:

• Independent attacks, where the node acts independently from the nodes of other do-

mains, but possibly in cooperation with other nodes of the same domain.

• Collusion attacks, where two nodes that belong to neighbor domains may lie in collusion

to improve both of their domains’ position compared to other domains.

12

3.2. Trust model and sub-problem

Given this trust model, we want to design a decision-making mechanism
(
fG,u1, . . . ,uZ

)
with

the following properties:

1) The mechanism should be incentive-compatible under both independent and collusion

bad-receipt attacks: the decision and rating functions should be designed such that each

domain maximizes its rating by reporting truthfully.

Definition 3.2.1 (Incentive compatibility). We call a mechanism
(
fG,u1, . . . ,uZ

)
incentive com-

patible if for every domain z, every statistic s1 ∈ S1, . . . , sZ ∈ SZ and every s′z ∈ Sz , if we denote

α= fG (sz , s−z) and α′ = fG
(
s′z , s−z

)
, then uz (sz ,α) ≥ uz (s′z ,α′).

We want to ensure that every estimate sz is truthful, but not necessarily every piece of infor-

mation included in a receipt. This is because the monitor makes its decisions based on the

estimates, not on the individual receipts used to compute the estimates. Hence, a mechanism

that allows the domains to manipulate individual receipts without affecting the resulting

estimates is still incentive-compatible.

2) The rating metric should enable comparability, i.e., one should be able to compare and

at least partially order the ratings of a set of domains w.r.t. the same aggregate. Hence, we

consider one common codomain set for all rating functions uz that is either one-dimensional

and has a total order (in which case, in Def. 3.1.3, we have: n = 1 and Rn = R) or multi-

dimensional and equipped with a partial order.

To compare multi-dimensional ratings, we use a Kiviat diagram [39]. When comparing two

such ratings, it may happen that none of them is better than the other (e.g., one has a better

average loss rate, while the other has a better average delay). However, it is still useful to

determine whether a rating is non-dominated, i.e., the monitor did not compute any better

rating w.r.t. the given aggregate. When comparing several multi-dimensional ratings, the

non-dominated ones are the only ones of interest.

We use the following assumptions (Section §1.5):

First, for any given aggregate G and any given domain z on G’s path, each of z’s neighbors

knows the actual loss and delay performance of the inter-domain link between itself and z.

This is a reasonable assumption because any domain that is adjacent to an inter-domain link

can always directly debug that link and measure its loss and delay performance.

Second, the monitor employs standard statistical techniques to compute the accuracy of

each loss or delay estimate; to provide confidence intervals, these techniques must assume

something about the nature of the loss/delay that is being estimated, and the typical assump-

tion is that loss/delay is i.i.d. (independent identically distributed) across all packets. This

is equivalent to the traffic aggregates having always a small enough size that the packet loss

events and/or delays seem independent. We use this assumption to design our neutrality

detector (§3.4).

13

Chapter 3. Incentive-compatible reporting

3.3 Approach

In this section, we describe our approach. First, we explain our rationale (§3.3.1), which

is based on game-theoretic mechanism design [49]. Then, we provide intuition through

examples of flawed mechanisms (§3.3.2).

3.3.1 Rationale

We formulate the problem using decision and rating functions because of their relevance

to game-theoretic mechanism design. Our rating functions are similar to the players’ utility

functions in game theory. Our decision functions are similar to social choice functions in game

theory: a social choice function aggregates the preferences of the different participants toward

a single joint decision; similarly, a decision function aggregates the information emitted by the

participating domains through their receipts toward a single decision about their performance.

We build on mechanism design with payments [49, 58, 34], but instead of payments we

use rating penalization. In our context, mechanism design with payments would enforce

payments for each domain that do not depend on the information provided by the domain

itself. Instead, we design the decision function such that: for every estimate sz ∈ Sz that

influences domain z’s rating and is based on z’s receipts, the monitor causes another estimate,

which is not based on z’s receipts, to also influence z’s rating. This is done in such a way that

misbehavior always decreases a domain’s rating.

This is why we defined a rating function of domain z (Def. 3.1.3) to take as input not only Sz

(which is based on z’s receipts), but also A (the monitor’s decision about z). This is crucial in

our context. Suppose, for a moment, that a rating function of domain z took as input only Sz .

In that case, one domain’s strategy would never affect another domain’s rating. Hence, each

domain could choose its strategy by solving an independent optimization problem, and the

best strategy would always be to misbehave. By making the monitor’s decision an input to

the rating function, we make it possible to reason about how one domain’s strategy affects

another domain’s rating.

Our challenge is to find rating penalties that make sense in our context and enable incentive

compatibility. We leverage two observations related to bad-receipt attacks: First, the only way

for a domain to lie about its mean loss rate or mean delay is to falsely attribute loss or delay

on one of its inter-domain links, which is shared responsibility with a neighbor. Second, a

domain that lies about its delay variance appears to violate neutrality. Before describing our

solution, we give intuition through two examples of flawed mechanisms.

3.3.2 Examples

[1] Mean performance + collusion. Consider the following decision mechanism: The monitor

estimates the mean loss rate between each pair of consecutive nodes w.r.t. each aggregate.

14

3.3. Approach

Then, as part of the decision function, the monitor determines each domain z’s performance

w.r.t. an aggregate G as the sum of the estimated mean loss rates of z’s intra-domain segment

and inter-domain links w.r.t. G . For instance, in Fig. 3.1, the monitor would determine z’s

performance w.r.t. G as the total estimated mean loss rate between nodes oz−1 and iz+1. When

all domains are honest, each domain’s rating is equal to its performance as determined by the

monitor (because this is the utility that the domain gains from the monitor’s decision). When

a domain misbehaves independently to harm a neighbor, it ends up with a significantly worse

rating: In this mechanism, each domain determines the decision that the monitor makes

about its neighbors (e.g., the monitor’s decision about domain z depends on the receipts

emitted by nodes oz−1 and iz+1). If a domain lies in a way that causes the monitor to make a

worse decision about a neighbor, then it enters a dispute with that neighbor, which is bad for

the business of both involved domains. We capture this by assigning a rating of ∞ to any pair

of neighboring domains that are in dispute.

With this mechanism, a domain that launches an independent bad-receipt attack does not

improve its rating; moreover, if the purpose of the attack is to harm a neighbor, the misbehaving

domain worsens its rating significantly. For example, consider Fig. 3.1 and suppose that node

oz misbehaves, while all the other nodes are honest. In particular, every time z drops a packet

p from aggregate G , node oz pretends that it observed p by issuing a fake receipt for it. This

does not help domain z: First, the monitor concludes that packet p was dropped on the

inter-domain link between z and z +1; hence, the attack does not affect the decision that the

monitor makes about z, while it causes the monitor to make a worse decision about z +1.

Second, domain z +1 realizes that z’s exit node is misbehaving and enters a dispute with z,

causing both domains’ ratings to drop significantly.

On the other hand, with this mechanism, a pair of neighboring domains have an incentive to

collude and improve both domains’ ratings. Consider again Fig 3.1 and suppose that all nodes

are honest except for nodes oz and iz+1 that misbehave in collusion in the following way:

Node oz manipulates its receipts to increase the estimated mean loss rate of z’s intra-domain

segment by Δz , while node iz+1 manipulates its receipts to also increase the estimated mean

loss rate of z +1’s intra-domain segment by Δz+1. Even though this increases the estimated

loss rate of each domain’s intra-domain segment, it decreases the estimated loss rate of their

inter-domain link by (Δz +Δz+1). As a result, not only do both domains increase their ratings,

but they also do it without affecting any other neighbor, hence without entering any dispute.

oz+1oz iz+1
z z+1

izoz-1

z-1
iz-1

Figure 3.1 – A part of an aggregate’s path.

15

Chapter 3. Incentive-compatible reporting

The problem is that summing up the estimated loss rates of overlapping segments creates the

opportunity for neighboring domains to increase their ratings by transferring utility between

them.

[2] Performance variance + independent attacks. Consider a decision mechanism where the

monitor estimates the mean delay and delay variance between each pair of consecutive nodes.

Then, as part of its decision process, the monitor determines domain z’s performance w.r.t.

aggregate G as a six-dimensional vector that contains the mean delay and the delay variance

of z’s intra-domain segment and inter-domain links w.r.t. G . The rating function is similar to

the one from the previous example: when a domain is not in dispute with any other domain,

its rating is equal to its performance (the six-dimensional vector) as computed by the monitor.

With this mechanism, a pair of neighboring domains cannot improve their ratings through

collusion. This is achieved simply by replacing the one-dimensional rating of the previous ex-

ample with a multi-dimensional one, which prevents neighboring domains from transferring

utility between them.

On the other hand, with this mechanism, each domain has an incentive to launch an inde-

pendent bad-receipt attack and claim lower delay variance for its intra-domain segment. For

example, consider Fig. 3.1 and suppose that node oz misbehaves, while all the other nodes are

honest. Let D be the true delay of z’s intra-domain segment w.r.t. G ; let X be the true delay of

the inter-domain link between oz and iz+1 w.r.t. G ; and let D ′ and X ′ be the corresponding

estimated delays (which are affected by oz ’s misbehavior). Since all the nodes except for oz

are honest, D +X = D ′ +X ′. Node oz changes the timestamps of its receipts such that: it does

not affect any of the estimated mean delays, while var (D ′) < var (D), var (X ′) < var (X) and

var (D +X) = var (D ′ +X ′). This causes the monitor to make better decisions for both z and

z +1, which means that z +1 has no incentive to enter a dispute with z, and both domains

improve their ratings.

The problem is that, unlike changes in mean performance, changes in performance variance

are not always externalizable. As a result, a domain that lies about the performance variance

of an intra-domain segment may end up increasing both its own and a neighbor’s rating (as in

the example above).

3.4 Analysis and Solution

In this section, we present our solution. First, we state necessary and sufficient conditions

that make a decision mechanism incentive-compatible (§3.4.1). Then, we describe two

fundamental trade-offs involved in bad-receipt attacks (§3.4.2, §3.4.3). Finally, we specify a

mechanism that leverages these trade-offs to impose penalties that meet the conditions for

incentive-compatibility (§3.4.4).

16

3.4. Analysis and Solution

3.4.1 Rating penalties

As stated in §3.3.1, we capture the fact that domain ratings depend on the monitor’s decisions

by making each monitor decision an input to a rating function. To make this dependence

explicit, we update our initial notation for the rating functions: instead of the generic notation

uz
(
sz , fG (sz , s−z)

)
, where fG (sz , s−z) is the monitor’s decision, we will use uz (sz ,πz), where

πz ∈ S is the penalty that the monitor’s decision inflicts on z’s rating.

The following theorem adapts mechanism design with payments to mechanism design with

rating penalization:

Theorem 3.4.1 (Proper penalization). A mechanism
(
fG,u1, . . . ,uZ

)
is incentive-compatible iff:

i. The rating function of each domain z includes a penalty that does not depend on sz , but

on the decision made by the mechanism fG (sz , s−z). I.e. for every s−z , there exist penalties

πα ∈ S, for every α ∈ A, such that for all sz with fG (sz , s−z) =α, we have that the rating of z

is uz (sz ,πα).

ii. The mechanism optimizes for each domain z when it tells the truth. I.e. for every domain z,

we have fG(sz , s−z) ∈ ar g maxα(u(sz ,πα)), where the maximization is over all alternative

decisions in the range of fG(·, s−z).

Proof. See section §3.5.

Theorem 3.4.1 formalizes the simple intuition already discussed in Section 3.3.1: each domain’s

penalty πz should not depend exclusively on the estimates sz ∈ Sz computed from z’s receipts

(which z could manipulate), but also on other estimates s−z ∈ (S \ Sz).

3.4.2 Disputes and externalization

Certain statistics have the “externalization” property: if a domain z launches an independent

bad-receipt attack to exaggerate its intra-domain performance w.r.t. such a statistic, then at

least one of its inter-domain links will appear worse w.r.t. the same statistic. Mean loss rate is

such a statistic, and its externalization was illustrated in Example [I] in Section §3.3.2.

We can leverage externalization to provide a rating with proper penalization (in the sense of

Thm 3.4.1): If the monitor determines, as part of a domain z’s performance w.r.t. aggregate

G , not only z’s intra-domain performance, but also that of its inter-domain links, then a

misbehaving domain’s rating is penalized in two ways:

• Weak penalization: A bad-receipt attack essentially shifts the blame for some loss or

delay from an intra-domain segment to at least one inter-domain link. For instance, if

domain z uses bad receipts to reduce its perceived intra-domain mean loss rate w.r.t. G

17

Chapter 3. Incentive-compatible reporting

by Δ, it will cause the perceived aggregate mean loss rate of its inter-domain links w.r.t.

G to increase by Δ.

Weak penalization makes a misbehaving domain internalize the externality caused by

the attack, which means that the domain has no incentive to launch the attack.

• Strong penalization: By shifting the blame for loss/delay to an inter-domain link, a

domain essentially shifts part of the blame to the neighbor connected through that link

(because an inter-domain link is shared responsibility between two domains). Moreover,

the falsely blamed neighbor detects the attack and identifies the misbehaving domain

(because of the assumption we have made in Section 3.2 that a domain knows the true

performance of its inter-domain links). Hence, a domain that launches a bad-receipt

attack independently from the neighbor(s) affected by the attack enters a dispute with

them. This is strong penalization in the sense that such a dispute with a neighbor has a

significant negative impact on a domain’s business.

Strong penalization provides an incentive to domains to not launch bad-receipt attacks.

Let xz ∈ (S \ Sz) denote the estimate of the same type as sz that the monitor computes for

the inter-domain link that follows domain z on a given aggregate’s path. E.g., if sz is domain

z’s intra-domain mean loss rate w.r.t. an aggregate G , then xz is the mean loss rate of the

inter-domain link between z and z +1. Similarly, xz−1 ∈ (S \ Sz−1) denotes the estimate of the

same type as sz−1 (and sz) that the monitor computes for the inter-domain link that follows

domain z −1.

Definition 3.4.1. We say that an estimate sz is “externalizable” when the following holds: if

s′z ≶ sz , then x ′
z ≷ xz or x ′

z−1 ≷ xz−1.

Lemma 3.4.2. Mean estimates are externalizable; variances and percentiles are not.

Proof. The proof is in §3.5, but a short version is the following: the expectation of the aggre-

gated loss/delay distribution of all three segments that a domain is responsible for (intra- and

inter-domain) is a linear operator over the estimates of these segments, whereas variance and

percentiles are not.

Lemma 3.4.3 (Externalization is sufficient under independent attacks). There exists a deci-

sion mechanism that is based on externalizable statistics and is incentive-compatible under

independent bad-receipt attacks.

Proof. See section §3.5.

Lemma 3.4.4 (Multi-dimensional rating with partial order is sufficient under collusion). There

exists a decision mechanism that is based on externalizable statistics, uses multi-dimensional

rating with a partial order, and is incentive-compatible under colluding bad-receipt attacks.

18

3.4. Analysis and Solution

Proof. See section §3.5.

The last lemma is related to Example [2] in Section 3.3.2, where two misbehaving domains

exploited one-dimensional rating and colluded to improve their ratings. The lemma says

that a multi-dimensional rating prevents this type of collusion. The gist of the proof is that

having separate rating values for different (intra-domain and inter-domain) segments prevents

neighbors from “exchanging” utility.

To summarize: we can design a decision mechanism, where the monitor estimates externaliz-

able statistics (mean loss rate and mean delay) and does so separately about each intra- and

inter-domain segment; such that each participating domain has an incentive to emit truthful

receipts.

3.4.3 Discrimination and internalization

Unfortunately, delay variance is not externalizable, yet it does need to be part of our decision

mechanism. First, network users care about it: for a flow packet rate of hundreds of packets

per second or less, collecting the sample size necessary to achieve reasonable accuracy takes

tens of minutes or more; mean delay over such a long period of time does not provide enough

information on its own to assess network performance. Second, knowing the delay variance

is necessary for accurately estimating mean delay: recall that we express accuracy through

γ-confidence intervals, which are functions of variance; hence, without knowing the delay

variance, the monitor could not compute the accuracy of its mean-delay estimates. In sum-

mary, we face the following challenge: mean delays are externalizable, so we could incentivize

the domains to report them truthfully; however, to assess the accuracy of each mean-delay

estimate, we need to know delay variance, which is not externalizable, hence domains could

lie about it.

Our solution relies on the relationship between variance and neutrality. If a network seg-

ment does not experience performance variance and is neutral, then it has the same mean

performance w.r.t. all flows that traverse it. Conversely, a network segment’s performance

variance and degree of discrimination determine how different its mean performance is w.r.t.

the different flows that traverse it. As we will see, because of this relationship, if a domain

manipulates its receipts to report lower than its actual performance variance, this is equivalent

to reporting more than its actual discrimination, and vice versa. Hence, we can design an

incentive-compatible decision mechanism by incorporating both variance and discrimination

in the decision and rating functions.

Discrimination detection

A straightforward way to detect whether domain z discriminates aggregate G is to compare z’s

performance w.r.t. two aggregates: G and the aggregate that consists of all traffic that enters

19

Chapter 3. Incentive-compatible reporting

and exits z at the same nodes as G ; we denote the latter by Y . If z’s mean loss rates or mean

delays w.r.t. G and Y are significantly different, then z discriminates either against or in favor

of G .

Our system does not enable this kind of detection, because it exposes only the domains’ sample

mean performance (based on their receipts), which can differ from the true performance due

to sampling error. Comparing the sample means without taking into account their accuracy

does not make sense.

Let μY (μG) denote domain z’s true performance mean w.r.t. aggregate Y (G), and let σ2
Y

(σ2
G) denote z’s true variance. Also, let μ̂Y (μ̂G) denote z’s sample performance mean w.r.t.

aggregate Y (G), and let σ̂2
Y (σ̂2

G) denote z’s sample variance. The sample means and variances

are computed based on z’s receipts (i.e. a random sample of the relevant traffic aggregate).

We can approximate μY and σ2
Y with μ̂Y and σ̂2

Y . This approximation is acceptable because Y

consists of all the flows that traverse the corresponding path segment, hence typically has a

significantly bigger sample size than the rest of the aggregates.

According to the central limit theorem (CLT), μ̂G is distributed around μG according to the

normal distribution with variance σ2
G/NG , where NG is G’s sample size1. We denote by fN the

density function of the normal distribution N
(
μ̂Y ,

σ̂2
Y

NG

)
, and by F−1

N
its inverse cumulative

distribution function.

Definition 3.4.2 (Neutrality likelihood). We define the likelihood LG that z is neutral w.r.t. G as

LG ≡ fN (μ̂G).

LG is simply the likelihood that μG =μY , where μY is approximated by μ̂Y .

Definition 3.4.3 (Discrimination detector). We determine, with confidence level γ, whether

domain z discriminates w.r.t. aggregate G based on the following function:

detectG(μ̂G, μ̂Y , σ̂2
Y ,γ,NG) =

⎧⎪⎪⎨⎪⎪⎩
G was treated worse , if μ̂G > F−1

N

(
1− 1−γ

2

)
G was treated better , if μ̂G < F−1

N

(
1−γ

2

)
G was treated neutrally , otherwise

(3.1)

Our detector (Def. 3.4.3 and Fig. 3.2) simply determines whether domain z’s sample mean

performance w.r.t. aggregate G is “far away” from z’s sample mean performance w.r.t. aggre-

gate Y (the rest of the traffic), with confidence level γ. Conversely, one can view 1−γ as the

significance level of the null hypothesis that G is not neutrally treated.

1The use of CLT is subject to our second assumption of Section §3.2: G has a small enough size that the packet
loss events and/or delays seem independent; hence, a random sample of G always yields a set of i.i.d. loss/delay
values. If the size of G is larger so that the sample loss/delay values can be assumed to be weakly dependent, then
the CLT for dependent random variables [37] must be used instead.

20

3.4. Analysis and Solution

fN

μ̂Y μ̂G

ηγ

LG

FN
−1 1− 1− γ

2
⎛
⎝⎜

⎞
⎠⎟FN

−1 1− γ
2

⎛
⎝⎜

⎞
⎠⎟

Figure 3.2 – Traffic-discrimination detection.

Internalization of misbehavior:

We can leverage the relationship between variance and discrimination to provide a rating with

proper penalization (in the sense of Thm 3.4.1): Suppose the monitor includes in its decision

about domain z and aggregate G , not only z’s mean performance w.r.t. G , but also: z’s sample

mean performance and sample variance w.r.t. Y and z’s likelihood of discrimination w.r.t. G .

Then, a misbehaving domain’s rating is penalized in two ways:

• Weak penalization: Suppose domain z lies about its variance, i.e., manipulates its

receipts to artificially decrease its sample variance w.r.t. Y ; this automatically increases

the likelihood that z discriminates w.r.t. G . Conversely, suppose z lies about its neutrality,

i.e., manipulates its receipts to artificially decrease the likelihood that it discriminates

w.r.t. G ; this automatically increases z’s sample variance w.r.t. G .

By including both metrics (sample variance w.r.t. Y and likelihood of discrimination

w.r.t. G), we prevent a domain from improving its rating by lying about either metric,

which means that the domain has no incentive to do so.

• Strong penalization: By definition of our discrimination detector, when domain z is

honest, it is perceived as discriminating w.r.t. a fraction φz of its aggregates that is always

equal to γ. Conversely, when z lies about its variance, φz
= γ. Hence, one can tell that z

is lying about its variance simply by comparing φz and γ. This is strong penalization in

the sense that being exposed as lying about variance, especially to hide discrimination,

can have a significant impact on a domain’s business.

We call the trade-off between variance and discrimination an “internalization,” because lying

about either one directly affects the lying domain’s rating through the other—as opposed to

an “externalization,” where lying first affects another domain’s rating, then indirectly the lying

domain’s rating through the resulting dispute.

To summarize, we can design a decision mechanism, where the monitor estimates not only

externalizable statistics, but also variances; such that each participating domain has an

incentive to emit truthful receipts.

21

Chapter 3. Incentive-compatible reporting

3.4.4 The mechanism

In Def. 3.4.4, we state our decision-making mechanism
(
fG,u1, . . . ,uZ

)
that uses the external-

ization and internalization trade-offs to provide incentive-compatibility:

Definition 3.4.4 (Mechanism). Given an aggregate G, the monitor attributes a performance

to each domain z that observed G, by using all the emitted receipts and the following decision

function:

fG(S) =

⎧⎪⎪⎨⎪⎪⎩
z’s intra-domain average performance is μ̂{0}

G

z’s inter-domain average performance is
(
μ̂{+1}

G , μ̂{−1}
G

)
σ{0}

G = σ̂{0}
Y

(3.2)

where the superscripts denote z’s intra- and inter-domain segment on G’s path; i.e.:

• μ̂{0}
G is the sample mean loss (resp. delay) w.r.t. G inside z,

• μ̂{+1}
G is the sample mean loss (resp. delay) w.r.t. G of the inter-domain link after z,

• μ̂{−1}
G is the sample mean loss (resp. delay) w.r.t. G of the inter-domain link before z,

• μ̂{0}
Y is the sample mean loss (resp. delay) w.r.t. Y inside z,

• σ̂{0}
Y is the standard deviation of the loss rate (resp. delay) w.r.t. Y inside z.

Given the monitor’s decisions about all domains and aggregates, z’s rating2 becomes:

uz =
{

(∞,∞,∞,∞,∞,−∞) , if z is in dispute or φz
= γ (strong penalization)(
μ̂{0}

G , μ̂{+1}
G , μ̂{−1}

G , μ̂{0}
Y , σ̂{0}

Y ,L{0}
G

)
,otherwise (weak penalization)

(3.3)

The mechanism of Def. 3.4.4 is incentive-compatible, because it fulfills the two necessary

conditions of Thm. 3.4.1: The rating function of each domain z includes penalties πz =(
μ̂{+1}

G , μ̂{−1}
G , μ̂{0}

Y , σ̂{0}
Y ,L{0}

G

)
that do not depend on z’s receipts for G , but on the monitor’s way

of deciding, i.e. the attribution of the average performance of the inter-domain links, and the

use of the detection method described in §3.4.3 and the fact that the monitor approximates

the variance of z’s performance about G with the variance of the performance about the

entire traffic, i.e., σ2
G = σ̂2

Y . Note that μ̂{+1}
G , μ̂{−1}

G , μ̂{0}
Y , σ̂{0}

Y and L{0}
G are just special types of s−z

that do not depend only on z’s receipts about G , as opposed to μ̂{0}
G . Also, because of strong

penalization, the mechanism maximizes each domain’s rating when the domain tells the truth

about the input statistics.

2For the strong penalization of a misbehaving domain, each vector element of its multi-dimensional rating
is selected to be either ∞ or −∞ according to its nature: e.g., if the vector element denotes a loss rate or delay
estimate, then we use ∞, because it is worse than any real value; else, if the vector element denotes the neutrality
likelihood, then we use −∞, because it is worse than any likelihood value.

22

3.5. Proofs

Our mechanism addresses our goal G4: it enables domain-performance comparison and

traffic-discrimination detection based on truthful statistics. For neutrality checks, the monitor

uses the detector in Def. 3.4.3, while for performance comparison of any two domains z1, z2 ∈ Z

that are not in dispute and do not violate neutrality (i.e. φz = γ), it uses a partial order and

Kiviat diagrams [39] to compare the rating vectors uz1 and uz2 .

3.5 Proofs

Theorem 3.4.1

Proof. [“if” part:] Let α= fG (sz , s−z), α′ = fG
(
s′z , s−z

)
, and consider the corresponding penal-

ties: πα and π′
α. The rating of z when telling the truth about sz is therefore uz (sz ,πα),

while when misbehaving it is uz
(
s′z ,π′

α

)
. Then, since the mechanism optimizes for z, i.e.

α= fG (sz , s−z) ∈ ar g maxα(u(sz ,πα)), we have that uz (sz ,πα) ≥ uz
(
s′z ,π′

α

)
.

The “only if” part is proved through contradiction:

[“only if” part – item (i):] Assume that for some sz and s′z , we have fG (sz , s−z) = fG
(
s′z , s−z

)=
α, but uz (sz ,πα) ≤ uz

(
s′z ,πα

)
, then z could increase its rating by declaring s′z instead of sz

(untruthful reporting).

[“only if” part – item (ii):] Assume that fG(sz , s−z) ∉ ar g maxα(u(sz ,πα)) and let some other

decision α′ maximize z’s rating in the range of fG(·, s−z): i.e. α′ ∈ ar g maxα(u(sz ,πα)). Thus,

for some s′z , α′ = fG
(
s′z , s−z

)
, which means that z could increase its rating by declaring s′z

instead of sz (untruthful reporting).

Lemma 3.4.3

Proof. Lemma is proved if we find a rating function with the conditions of Thm. 3.4.1. A

mechanism (fG,uz), where the monitor computes each domain’s performance as a vector

containing the mean (loss rate or and/or delay) performance in its intra- and inter-domain

segments, considers all three segments for which z is responsible by construction. Denote

with sz the statistic of interest. The rating of each domain can be the following vector: uz =
(s′z , x ′

z , x ′
z−1). The rating includes statistics that do not depend only on z’s receipts: x ′

z , x ′
z−1 ∈

S \ Sz . Also, without loss of generality suppose that z reports s′z < sz , which implies that at

least one of the two holds, x ′
z > xz or x ′

z−1 > xz−1. Then, (sz , xz , xz−1) is not dominated by

(s′z , x ′
z , x ′

z−1), which means that z does not increase its rating by lying. Moreover, z is exposed

to at least one neighbor, which results in strong penalization. In this case, the monitor can

assign to z a very bad rating, e.g. uz = (∞,∞,∞), which makes the mechanism optimize for z

only when z reports truthfully, because (sz , xz , xz−1) < (∞,∞,∞).

23

Chapter 3. Incentive-compatible reporting

Lemma 3.4.2

Proof. For the proof of this lemma, we will abuse notation and let sz , xz and xz−1 denote not

the statistics of the intra-domain and inter-domain segments, but the loss/delay distributions

of the corresponding segments:

[Mean:] In Fig. 3.1, let domain z lie about the mean loss/delay of its internal network by

manipulating the receipts of its exit node, i.e. it reports E
[
s′z

]
= E [sz]; while the entry node of

z+1 reports truthfully3. Then, since E [sz +xz] = E
[
s′z +x ′

z

]⇔ E [sz]+E [xz] = E
[
s′z

]+E
[
x ′

z

]
, we

have: E
[
s′z

]< E [sz] ⇒ E
[
x ′

z

]> E [xz]. Similarly, E
[
s′z

]> E [sz] ⇒ E
[
x ′

z

]< E [xz].

[Variance:] As previously, let z manipulate the loss/delay variance through the receipts of its

exit node, i.e. it reports var
[
s′z

]
= var [sz], while the entry node of z+1 reports truthfully. Then,

since var [sz +xz] = var
[
s′z +x ′

z

] ⇔ var [sz]+ var [xz]+2cov [sz , xz] = var
[
s′z

]+ var
[
x ′

z

]+
2cov

[
s′z , x ′

z

]
, externality is not always possible: for a given cov [sz , xz], that is unknown to

the monitor, z can manipulate cov
[
s′z , x ′

z

]
, so that var

[
s′z

]< var [sz], and at the same time

var
[
x ′

z

]< var [xz].

[Percentiles:] A domain can report a lower percentile, by only decreasing its intra-domain

variance and without changing the reported intra-domain mean. Since variance is not exter-

nalizable, percentiles are not either.

Lemma 3.4.4

Proof. Let sz be the mean intra-domain loss/delay estimate and sz , xz , xz−1 be the mean

inter-domain loss/delay estimates. Consider a mechanism where the monitor computes

each domain’s performance as a vector containing the mean (loss rate or delay) performance

in its intra- and inter-domain segments; hence by construction takes into account all three

segments for which z is responsible. Let z and z + 1 collude and report s′z = sz +Δz and

s′z+1 = sz+1+Δz+1, so that x ′
z = xz −Δz −Δz+1, where Δz ,Δz+1 ≥ 0. Then, because of the partial

order, z’s rating uz (s′z , x ′
z , x ′

z−1) = uz (sz +Δz , xz −Δz −Δz+1, x ′
z−1) does not dominate the rating

that it would have if it reported truthfully, i.e. uz (sz , xz −Δz+1, x ′
z−1).

3This is without loss of generality, because manipulating the receipts of z’s entry node is just the dual problem
towards its other neighbor z −1.

24

4 Unbiased reporting

In this chapter, we describe how we achieve goal G3: the monitor’s estimation should be

unbiasable. When a domain’s performance is estimated based on how it treats a small sample

of forwarded packets, the domain has an incentive to bias the sample—treat the sampled

packets better than the rest—resulting in arbitrarily inaccurate estimation of its performance.

Therefore, we study “prioritization attacks”, where the domains emit truthful receipts, yet

prioritize sampled packets to claim lower loss or delay. In the face of such attacks, basic

consistent sampling (§2.1) is not enough: the nodes can easily determine whether a packet

is sampled upon its arrival and treat it accordingly. Instead, we propose retro-active packet

sampling, where the sampling function is keyed on subsequent traffic, making the samples

unpredictable.

We first present our trust model (§4.1). Then, we describe our algorithm (§4.2) and sketch

one possible hardware implementation (§4.3). Finally, we analyze the attack resistance (§4.4),

accuracy (§4.5), and resource requirements (§4.6) of our algorithm and confirm them with an

experimental evaluation (§4.7).

4.1 Trust model and sub-problem

In the context of this chapter, the monitor is trusted, while a node (and the domain that owns

the node) may launch a “prioritization attack”: it emits truthful receipts, but treat some or

all of the sampled packets preferentially (e.g., by assigning them to higher-priority queues

or routing them through a better intra-domain path), thereby introduce sampling bias to

exaggerate the domain’s performance.

Given this trust model, we want to design a sampling algorithm that: (a) yields an unbiased,

representative sample based on which the monitor can compute estimates with a desired

(γ,ε)-accuracy in a desired time interval T , while (b) it does not require an increase in the

node’s data-to-control-path bandwidth or data-path memory by more than a few percentage

points.

25

Chapter 4. Unbiased reporting

Symbols
p A packet
d A disclosure packet
F A flow

Workload characteristics
r Packet arrival rate of a flow at a node
R Total packet arrival rate at a node

Algorithm parameters
β The size of the receipt buffer
κ The duration of the quiet period

δr
Disclosure rate: prob. that a packet from a flow
with packet rate r is picked as a disclosure packet

σ Selection rate: prob. that a non-excluded packet is sampled

Table 4.1 – Parameters and symbols

We restate the following assumption (§1.5):

The packet arrivals of each flow form a stationary and ergodic process with a high enough rate

(e.g. at the order of OC-12 or higher) that ergodic convergence is achieved in less than 100msec.

The limitation resulting from this assumption is that we cannot reason about aggregates that

consist of relatively few packets/sec, e.g., an aggregate that consists of a typical TCP flow.

We think that this is acceptable given our motivation to enable the comparison of domain

performance and the verification of neutrality regulations, which typically apply to relatively

large aggregates. This assumption is used for the proofs of Lemmas 4.4.1 and 4.5.1.

4.2 Solution

We now describe our algorithm, which we call “retroactive sampling”: first the parts that are

adapted from prior work (§4.2.1), then the novel parts (§4.2.3) and the rationale behind them

(§4.2.4).

Table 4.1 states all the relevant symbols.

4.2.1 Basic Delayed Disclosure

The algorithm (Alg.2) takes as input the sequence of packets arriving at a node and outputs a

sequence of receipts to be exported to the monitor. Each node maintains a circular “receipt

buffer” of size β, where it adds a receipt for every new packet (lines 1,2). Moreover, from each

observed flow F , the node picks some packets that act as “disclosure packets”; these special

packets determine the sampling fate of the previously observed packets from F . For example,

in Fig. 4.1, disclosure packet d1 determines that, among previously observed packets p0 . . .p9,

only p1 and p4 will be sampled.

26

4.2. Solution

Algorithm 2 RetroActiveSampling (p)

p̂ non-mutable content of packet p
Receipt() constructs a receipt
PacketRate() computes packet rate
DiscHash() hash function
DiscRange() subset of DiscHash’s range
Hash() hash function
Range subset of Hash’s range

1: rec′ ← Receipt(p,currentTime)
2: Add rec′ to receipt buffer.
3: r ← PacketRate(rec′.flowID)
4: if DiscHash

(
p̂
) ∈ DiscRange(r) then

5: Emit receipt rec′.
6: if LateDisclosure(flowID) then
7: Emit warning.
8: end if
9: for all receipts rec in receipt buffer with

10: rec.flowID = rec′.flowID do
11: Remove rec from receipt buffer.
12: if

(
currentTime− rec.timestamp

)≤ κ then
13: continue
14: end if
15: if Hash

(
rec.digest,rec′.digest

) ∈ Range then
16: Emit receipt rec.
17: end if
18: end for
19: end if

More specifically: When a new packet d arrives, the node picks d as a disclosure packet with

some probability, by applying a hash function with strong randomization properties on d’s

non-mutable content (line 4). If d is picked as a disclosure packet, the node samples d (line 5),

removes from the receipt buffer all receipts with the same flowID as d (lines 9–11), and picks

some of them for sampling (lines 15, 16).

One key point is that, whether a packet p is sampled or not depends on the next disclosure

packet d from the same flow as p that arrives at the node; we say that “disclosure for p happens”

when d arrives at the node, and that d is “p’s disclosure packet.”

Another key point is that disclosure packets are normal packets that happen to be picked

by the nodes to play a particular role in the sampling algorithm; disclosure packets are not

explicitly labeled by anyone, nor explicitly introduced into the traffic stream by the monitor,

the nodes, or the traffic sources. If two nodes observe the same flow, they pick the same

packets as disclosure packets (modulo loss), by virtue of using the same function on line 4.

27

Chapter 4. Unbiased reporting

4.2.2 Late Disclosure

We say that “packet p suffers late disclosure” at a node, when p’s disclosure packet arrives at

the node after p’s receipt has been overwritten in the circular receipt buffer (in which case

lines 9 to 18 are never executed for p). For example, suppose that, in Fig. 4.1, by the time

disclosure packet d1 arrives at the node, packet p1’s receipt has been overwritten; in this case,

p1 suffers late disclosure.

When late disclosure occurs at a node, the node warns the monitor: When a node picks packet

d1 from flow F as a disclosure packet, it checks whether the receipt for the previous disclosure

packet, d0, from F is still in the buffer (line 6); if yes, it is certain that none of F ’s packets that

arrived at the node between d0 and d1 suffered late disclosure. if no, the node emits a “late

disclosure” warning (line 7), which references the earliest of F ’s packets whose receipt is still

in the buffer. Back to our last example: When d1 arrives at the node, the node detects that d0’s

receipt is not in the buffer, and that the earliest of F ’s packets whose receipt is still in the buffer

is p2. Hence, the node emits a late-disclosure warning that references p2, which indicates that

F ’s packets that arrived at the node between d0 and p2 may have suffered late disclosure.

4.2.3 Quiet Periods and Adaptive Disclosure

We want disclosure to happen too late to be useful to a misbehaving node/domain; the

challenge lies in achieving this goal for the millions of flows observed by each node, without

violating the simplicity of basic delayed disclosure.

First, we impose a “quiet period” of duration κ before each disclosure packet, during which no

packets from the same flow can be sampled. More specifically, if p’s disclosure packet arrives

less than κ time units after p, the node explicitly excludes p from sampling (lines 12,13). For

example, in Fig. 4.1, the node excludes packets p6 to p9 from sampling, because they arrive

during the quiet period that precedes their disclosure packet d1.

Second, we adapt the disclosure process to each flow’s packet rate: When a new packet p

arrives, the node roughly estimates F ’s packet rate r (line 3) and picks p as a disclosure packet

with a probability δr that depends on r . The nodes track flow packet rates without maintaining

explicit per-flow state. A separate lookup table that maintains per-flow packet rates is out

of the question, as it would introduce precisely the kind of expensive state we have been

trying to avoid with our design. In the Appendix, Section 4.3, we describe a hardware-friendly

implementation that does not keep explicit per-flow state.

When disclosure for packet p happens neither early nor late, the node picks p for sampling

with a fixed probability σ, by applying a hash function with strong randomization properties

on p’s and its disclosure packet’s non-mutable contents (lines 15, 16). For example, in Fig. 4.1,

after processing disclosure packet d1, the node samples previously observed packets p1 and

p4.

28

4.2. Solution

quiet period

p9p8p7p6p5p4p3p2p1p0

Figure 4.1 – Delayed disclosure and exclusion.

4.2.4 Rationale

Our algorithm is the result of combining delayed disclosure with consistent sampling: The

former requires that each packet p’s sampling fate be determined by a subsequent disclosure

packet; the latter requires that all nodes that observe p make the same sampling decision about

it. Combining the two, p and its disclosure packet should ideally traverse the same nodes, i.e.,

the same inter-domain path. In the current Internet architecture, there is no way to guarantee

this; the best indication a node has that two arriving packets follow the same inter-domain

path is that they share the same flow—the same source and destination IP prefix—which is

why nodes pick p’s disclosure packet from the same flow.

Given that our algorithm’s decisions are affected by local traffic, the nodes may, occasionally,

sample inconsistently (e.g., due to late disclosure); when this happens, the monitor identifies

and discards the inconsistent samples. So, inconsistent sampling affects efficiency (it causes

the monitor to collect fewer useful samples), but not correctness (it does not cause the monitor

to make incorrect estimates).

Quiet periods make prioritization attacks more expensive by ensuring that the decision to

sample a packet p is disclosed within time κ from p’s observation only for a limited number

of packets that is configurable through the arrival probability of the disclosure packets or

differentially the disclosure rate δ. As we will see, by tuning κ and δ, we can control how much

a misbehaving domain worsens its perceived delay performance.

The adaptation of the disclosure process to each flow’s packet rate regulates early and late

disclosure and ensures that each node produces enough receipts from each flow to enable

accurate statistics. Both early and late disclosure exclude packets from sampling; hence, if we

want a node to sample packets from a flow F at some minimum rate, we have to ensure that

enough packets from F escape early and late disclosure. The probability of early disclosure

depends on the interplay between F ’s packet rate r , the disclosure rate δ, and the quiet-period

duration κ; this interplay determines how many of F ’s packets fall into a quiet period. The

probability of late disclosure depends on the interplay between r , δ, the rest of the traffic

arriving at the node, and the size of the receipt buffer β; this interplay determines how quickly

the receipt buffer fills up and how many of F ’s receipts are overwritten prematurely. So, to

keep the probabilities of early and late disclosure at a desired value, we have to quantify the

above interactions and continuously adapt the disclosure process to F ’s packet rate—this is

29

Chapter 4. Unbiased reporting

why nodes track flow packet rates and why δ is a function of r .

4.3 Sketch of a Hardware Design

Our proposed hardware implementation consists of two parallel threads: a “producer” thread

that processes incoming packets, computes receipts, and adds them to the local state; and a

“consumer” thread that removes receipts from the local state and determines whether to emit

or discard each receipt. The local state, however, is organized differently: there is a receipt

buffer for “normal” packets, stored in SRAM and accessible only as a queue; and a receipt

buffer for disclosure packets, stored in content-addressable memory (CAM) that supports O(1)

parallel lookups on the flowID field.

Organizing state in separate receipt buffers for normal and disclosure packets (as opposed to a

common receipt buffer) does not introduce any extra or any per-flow state; we keep exactly as

many receipts for normal and disclosure packets as Alg. 2, we just store them in two different

kinds of memory, because receipts for disclosure packets need to be looked up by flowID

(hence require CAM), whereas receipts for normal packets, which constitute the vast majority,

do not (hence can be stored in cheaper SRAM).

The consumer thread performs the actual sampling: It iterates over the receipt buffer for

normal packets, removes receipts, and performs the following operations for each receipt

rec that corresponds to a normal packet p: (a) It retrieves the set of all receipts R in the

disclosure buffer with the same flowID as p. (b) It finds in R the receipt rec′ that corresponds

to p’s disclosure packet: it is the one with the earliest timestamp that satisfies rec′.timestamp

> rec.timestamp. It increments rec′.packetCtr. It determines whether to exclude or select p

according to lines 10 and 12 of Alg. 2. (c) It checks whether disclosure may have occurred late

for p, i.e., if there is no receipt in R with timestamp < rec.timestamp. If so, it emits a warning.

The producer thread creates the local state: It processes each incoming packet p, computes a

receipt rec′ for it, extracts the flowID, retrieves F ’s packet rate, checks whether to pick p as a

disclosure packet according to line 4 of Alg. 2, and adds rec′ to the appropriate receipt buffer.

Moreover, the producer thread tracks flow packet rates based on information that is piggy-

backed by the consumer thread on the disclosure receipts. We previously said that receipts

consist of three fields (§2.1); receipts for disclosure packets have two additional fields for

packet-rate tracking, packetRate and packetCtr. Consider a flow F and suppose the first

disclosure packet d1 arrives at time t1; when the second disclosure packet d2 arrives at time

t2, the producer thread retrieves d1’s receipt rec, estimates F ’s packet rate (as rec.packetCtr

divided by t2 − t1), and stores the estimate in d2’s receipt (in the packetRate field); when the

third disclosure packet d3 arrives, the node repeats the process, computes a new packet-rate

estimate, and stores it in d3’s receipt; and so on. The node may compute a brand new estimate

every time a disclosure packet arrives, or it may update the previous estimate, akin to keeping

a moving-average filter [38]; we choose the latter, because it ensures a smooth variation of

30

4.4. Misbehavior Analysis

estimate without risking sharp increases in rare cases where disclosure packets arrive very

close to each other.

We do not need perfect packet-rate tracking: Suppose a flow’s real packet rate is r , while the

estimated one is r̂ . If r and r̂ are in the same zone (map to the same disclosure rate), the

disclosure process works as intended; if they map to different disclosure rates, then, of course,

it is possible that the chosen disclosure rate is too high or too low for the real packet rate, and

we miss the desired accuracy until the estimate catches up with the real value. The fewer

disclosure-rate values we use, the less likely we are to hit this scenario, and this is why we

designed our disclosure process to operate with smallest number of disclosure-rate values.

With this design, each node performs per packet: two hash computations, a couple of times-

tamp comparisons, a read and a write access to SRAM, and a parallel lookup and an update in

the CAM.

4.4 Misbehavior Analysis

In this section, we analyze our algorithm’s behavior in the face of prioritization attacks: we

present our attack model (§4.4.1), then prove that it is possible to parametrize our algorithm

such that any prioritization attack is ineffective (§4.4.2).

4.4.1 Attack Model

In a prioritization attack, the misbehaving node runs the algorithm, but also buffers each

arriving packet p for a maximum “buffering period” t ≥ 0 before forwarding it, with the hope

that it will learn some information about p’s sampling fate. The attack is successful when

the benefit gained from learning this information outweighs the cost of buffering—hence

delaying—packets.

More concretely, consider domain x in Fig. 4.2 with an entry node i and an exit node o, and

two routes between i and o: a “good” route with mean loss and delay {lg ,dg }, and a “bad” route

with mean loss and delay {lb ≥ lg ,db ≥ dg }. We consider one flow F that enters x at node i with

packet rate r and exits at node o. Of all the packets arriving at i , the maximum fraction that

can be forwarded over the good route is g. Node i forwards a fraction g ∈ [0,1) of F ’s packets

over the good route and the rest over the bad route. Upon receiving a packet p, node i runs

Alg. 2, then Alg. 3: It buffers p for a maximum period t ≥ 0 (line 1). If disclosure occurs while

p is buffered (lines 2,3), and it occurs early or determines that p will not be sampled (line 4),

then i forwards p over the bad route (line 5), unless it has already exhausted the bad route’s

capacity (line 6). If disclosure occurs while p is buffered, does not occur early, and determines

that p will be sampled (line 7), then i forwards p over the good route (line 8), unless it has

already exhausted the good route’s capacity (line 9). Finally, if the buffering period runs out

before disclosure occurs, then i forwards p over the good or the bad route (line 13) based on

31

Chapter 4. Unbiased reporting

i o

good

bad

Domain x

Monitor

Ri Ro

Pi Po

Figure 4.2 – Example.
P i and Po are the packet streams observed by nodes i and o,
Ri and Ro are the sampled packet receipts of nodes i and o.

Attack parameters (unknown to us)
{lg ,dg } Loss/delay of good route
{lb,db} Loss/delay of bad route
g Fraction of traffic sent over good route
t Buffering period

Symbols used in analysis
{l̂hon, d̂hon} Loss/delay estimates if node i is honest
{l̂mis, d̂mis} Loss/delay estimates if node i misbehaves
l̂hon − l̂mis Loss benefit
d̂hon − d̂mis Delay benefit

Table 4.2 – Attack parameters and symbols.

an arbitrary forwarding strategy (as long as, in the end, i forwards a fraction g of F ’s packets

over the good route and the rest over the bad route).

By varying the parameters t and g, we capture all rational behaviors of node i that involve no

more than two priority levels: (a) Honest behavior w/o prioritization: t = 0 and g = 0 (i does

not buffer and forwards all packets on the same route). (b) Honest behavior w/ prioritization:

t = 0 and g > 0 (i does not buffer and uses both routes). (c) Misbehavior: t > 0 and g > 0 (i

buffers and uses both routes). For any behavior where node i uses more than two priority

levels (more than two routes), it is trivial to show that there exists a behavior where i uses only

two priority levels (only the best and worst of its routes) and domain x achieves at least the

same perceived performance. Hence, if we prove that any prioritization attack captured by the

above model is unsuccessful, then we have also proved that any prioritization attack that uses

more priority levels is unsuccessful.

The monitor estimates x’s loss and delay with respect to F . When node i is honest, the expected

values of the mean loss and mean delay estimates are:

l̂hon = g · lg + (1−g) · lb, d̂hon = g ·dg + (1−g) ·db,

32

4.4. Misbehavior Analysis

Algorithm 3 PrioritizationAttack (p)

1: buffer p, start timer tm
2: while tm < t do
3: if disclosure for p then
4: if tm <κ then
5: forward p over bad route
6: else if p sampled then
7: forward p over good route
8: else
9: forward p over bad route

10: end if
11: end if
12: end while
13: forward p randomly over good or bad route

since a fraction g of the traffic is forwarded over the good route, and the rest over the bad route.

When node i misbehaves, we denote the estimated mean loss and mean delay by l̂mis and

d̂mis, respectively.

We define the attack’s “loss benefit” as l̂hon − l̂mis, and its “delay benefit” as d̂hon − d̂mis. These

numbers quantify how much x exaggerates its perceived loss and delay performance by

misbehaving, taking into account that misbehavior involves buffering, which necessarily

delays packets.

It is trivial to show that the attack’s loss benefit is always positive: The longer node i buffers

packets before forwarding them, the bigger the fraction of packets whose sampling fate is

disclosed to i before forwarding. Ultimately, if i does not mind introducing extra delay, it

can buffer every single packet long enough to learn its sampling fate and forward all sampled

packets over the good route, and all non-sampled packets over the bad route. This would

result in estimated mean loss rate l̂mis = lg and loss benefit l̂hon − l̂mis = (1−g)(lb − lg).

The interesting question is what happens with the attack’s delay benefit: under what conditions

does the cost of buffering packets outweigh the benefit of sending some of the sampled packets

over the better route?

A clarification: Our attack model involves one good and one bad route, but the exact same

results can be achieved by considering multiple routes, of which the “best” has the same

features as our good route, and the “worst” the same features as our bad route. The gist is that

the misbehaving node i has a cheating opportunity because it can forward sampled packets

over a better route than non-sampled packets.

33

Chapter 4. Unbiased reporting

4.4.2 Conditions for Resistance

Lemma 4.4.1. Let packets arrive as a stationary and ergodic process, disclosure arrivals form a

Bernoulli random process on the top of it, and quiet periods be long enough for the ergodicity

theorem to hold (i.e., assumptions stated in §1.5 hold). If node i attempts to predict the proba-

bility that each new packet from flow F will be sampled, then its best prediction (given a perfect

estimate of F ’s packet rate r) will be the same for all new packets from flow F .

Proof. See section §4.7.5.

Lemma 4.4.1 says that, when packet p arrives at node i , the probability of p being sampled

is the same as for any other newly arrived packet. Hence, node i can have no probabilistic

benefit from treating p preferentially, unless it buffers p for t > 0 and gains information on p’s

sampling fate from subsequent packet arrivals.

Lemma 4.4.2. If both of the following conditions hold:

κ> db −dg ; (4.1)

(1−δr)rκ ≥ 1

e
; (4.2)

then:

d̂hon − d̂mis < 0; (4.3)

d{d̂hon − d̂mis}

dt
≤ db −dg

κ
−1. (4.4)

Proof. See section §4.7.6.

Lemma 4.4.2 says that, if we set κ and δr such that Inequalities 4.1 and 4.2 hold, then: (a) The

attack’s delay benefit is always negative (Inequality 4.3), which means that the misbehaving

domain x always worsens its perceived delay performance. (b) The attack’s delay benefit

always decreases as the buffering period t increases (Inequality 4.4), which means that the

longer node i buffers packets to gain information about their sampling fate, the worse x’s

perceived delay performance becomes. In particular, if κ� db −dg , then d{d̂hon−d̂mis}
dt →−1,

which means that: for every msec that node i buffers a packet, it worsens x’s perceived delay

performance by almost one msec. In our opinion, given the importance of delay for modern

applications, no domain would choose to penalize its perceived delay performance this way

in order to exaggerate its loss performance.

We now provide intuition behind the two lemmas:

The intuition behind Lemma 4.4.1 is that the sampling fate of a new packet p depends only

on future events that are unpredictable at the moment of p’s arrival. In particular, packet

34

4.5. Accuracy Analysis

p is sampled when two events happen: (1) the if-statement on line 15 of Alg. 2 is true and

(2) disclosure for p happens neither early nor late. Event (1) always happens with a fixed

probability σ. Event (2) depends on when (after how many other packets) p’s disclosure packet

will arrive; this “distance-to-disclosure” follows a geometric distribution with parameter δr
1,

hence is memoryless, i.e., does not depend on p’s time of arrival or any prior packet arrivals.

The best node i can do is track F ’s packet arrivals, predict its average packet rate r until the

next disclosure packet, and compute an expectation of when Event (2) will occur. The result,

however, is the same for all new packets from F , hence node i cannot tell whether one new

packet is more likely to be sampled than another.

The first condition of Lemma 4.4.2 is straightforward: the quiet period should be longer than

the delay difference between the bad and good route within the misbehaving domain. The

longer the quiet period, the longer node i needs to buffer p before learning its sampling fate.

By making the quiet period longer than the good-bad route delay difference, we ensure that i

cannot compensate for the buffering delay by sending p over the good route.

The second condition, however, is more subtle and something we did not expect—it emerged

from the math: the average fraction of packets that do not suffer early disclosure should be at

least 1/e. If disclosure for a packet p happens early (i.e., during a quiet period), node i learns

that p will not be sampled and cheats by forwarding p over the bad route. Increasing the quiet-

period duration does not help control this event—quite the contrary: longer quiet periods lead

to more early-disclosure events and more opportunities for this kind of cheating. Ultimately,

the amount of packets that suffer early disclosure could become large enough to saturate the

bad route; in this case, by forwarding all packets that suffer early disclosure over the bad route,

node i ends up forwarding all packets that do not suffer early disclosure—which include all

the sampled packets—over the good route. The second condition prevents this scenario. This

being a sufficient (not necessary) condition, we do not have an intuitive explanation for why

the 1/e bound in particular works; it is the tightest bound we could find that—together with

the first condition—enabled us to prove that the delay benefit is always negative, but a tighter

bound may exist.

4.5 Accuracy Analysis

To estimate a domain’s performance w.r.t. aggregate G , the monitor first picks a target (γ,ε)-

accuracy, then computes the sample size N (number of G ’s receipts) necessary for achieving it.

For this estimation, the monitor uses well-established statistical methods that assume either

i.i.d. loss of minimum rate lossmi n or Gilbert loss of minimum rate lossmi n and maximum

burst size burstmax [36]. The parameters of the loss model depend on the scenario: When

estimating the loss of a domain that promises maximum loss �, lossmi n should be set to

1If flow F has packet rate r , each packet from F is chosen as a disclosure packet with the same probability δr ;
hence, the arrivals of F ’s disclosure packets form a standard Bernoulli stochastic process that is renewed at each
packet arrival from F .

35

Chapter 4. Unbiased reporting

≤ �; the typical loss rate mentioned in today’s SLAs is 0.1% [11, 3, 8], so this is the default

value we use in our examples. When assuming Gilbert loss, we use burstmax = 2, because we

experimentally found that this value is conservative even for highly congested environments.

The monitor can achieve any target accuracy as long as it waits long enough to collect the

necessary number of receipts N . At the same time, we want to offer some notion of timeliness:

for an aggregate of a given packet rate, collecting the necessary number of receipts—hence

achieving a target accuracy—should take a predictable, reasonable amount of time.

Lemma 4.5.1. Given a flow F arriving at a node with packet rate r , the expected number of

receipts that the node emits for F ’s packets per time period T is at least equal to N, if:

N ≤ r ·T ·
[

(1−δr)rκ− (1−δr)
r
R β

]
·σ. (4.5)

Proof. See section §4.7.7.

Informally, Lemma 4.5.1 says that it is possible to parametrize our algorithm such that the

monitor collects the necessary receipts to achieve a target accuracy in a timely manner. More

precisely, if we set a node’s β, κ, and δr according to Inequality 4.5, then the node emits at least

N receipts per time period T for any flow with packet rate r . If an aggregate consists of one

or more such flows, then the monitor achieves the target accuracy for it (collects N receipts)

within T . If an aggregate makes up 1
n th of such a flow, then the monitor achieves the target

accuracy for it within approximately n ·T .

We now provide intuition behind the lemma: The term on the right-hand side of Inequality 4.5

is the expected number of receipts emitted by the node per time period T for any flow F

with packet rate r . We explain each term: r ·T is the expected number of packets from

F that arrive per T ; σ is the probability that a packet p from F is sampled given that its

disclosure is neither early nor late; and the term in brackets approximates the probability

that p’s disclosure is neither early nor late. More specifically, (1−δr)rκ approximates the

probability that p’s disclosure is not early, i.e., no packet that arrives within rκ after p is a

disclosure packet; (1−δr)
r
R β approximates the probability that p’s disclosure is late, i.e., none

of the F packets that are in the buffer when p’s receipt is overwritten are disclosure packets.

These are approximations, not exact probabilities; the exact probabilities depend on quantities

that we cannot predict (the number of packets that arrive after p within a κ-time period, and

the number of packets that arrive after p until p’s receipt is overwritten in the buffer). However,

due to the stationarity assumption, we can compute their expected values (r ·κ and r
R ·β, resp.).

Moreover, due to the ergodicity assumption and the high rates r considered in this paper

(higher than OC-3c or OC-12 transmission rates), the actual values of the distances converge

to their expected values at a sub-second granularity. Because of this convergence, we can use

the expected values of the distances to approximately compute the probabilities of early and

late disclosure as summarized above.

36

4.6. Parametrization and Resource Analysis

4.6 Parametrization and Resource Analysis

We now describe how to set the four parameters of our algorithm (Table 4.1) based on the

analysis of the last two sections (§4.6.3), then the resulting resource requirements (§4.6.4).

First, we set the selection rate σ—the probability with which a non-excluded packet is sam-

pled, hence the maximum sampling rate that our algorithm may apply to a flow. In the

current Internet, we would set σ to 1% or so, which is typically supported by modern network

devices [10].

Second, we set the duration of the quiet period κ based on Lemma 4.4.2: Ideally, we want

κ� db −dg , such that the delay benefit of any prioritization attack not only is negative, but

drops as the buffering period increases with a rate of −1 (Inequality 4.4). Given that we cannot

know the value of db −dg for all prioritization attacks, we need to set κ conservatively, such

that it is significantly larger than any realistic intra-domain route difference. In the current

Internet, we would set κ to 100msec or so.

Third, we compute each node’s buffer size β based on Lemma 4.5.1: (a) We pick the loss model,

i.e., lossmi n and—if we assume Gilbert loss—burstmax , as well as the target accuracy that the

monitor should achieve given this model. From these, we compute the number of receipts

N that the monitor needs to collect per flow in order to compute an estimate (computation

in Section §4.6.1). (b) We pick the time interval T and the minimum flow packet rate rmin

for which the monitor should achieve the target accuracy. Given (a), (b), and each node’s

maximum total packet rate R, we analytically compute, from Inequality 4.5, the minimum

buffer size β that the node needs in order to emit N receipts per T time units from each flow

with packet rate r ≥ rmin. (computation in Section §4.6.2). There are two important things to

node: (1) For each node, we compute β such that it is sufficient for all packet rates above rmin.

(2) Across nodes, β can differ significantly, because it depends on the maximum observed

total packet rate R.

Last, we pick the maximum flow packet rate rmax for which the monitor should achieve the

target accuracy, and we define the disclosure function r → δr based on Lemmas 4.4.2 and 4.5.1:

Recall that δr is the probability with which a packet from a flow of packet rate r is chosen

as a disclosure packet. For given values of σ, κ, and β, Lemmas 4.4.2 and 4.5.1 define the

“operational regime” of our disclosure process: the set of all possible disclosure functions that

both make prioritization attacks ineffective and result in the node producing at least the target

number of receipts N . We design our disclosure function such that any tuple {δr ,r } falls in

this operational regime and such that we use the smallest number of different disclosure rates

possible.

37

Chapter 4. Unbiased reporting

4.6.1 Optimal Sample Size

We compute the minimum sample size N , that is required to achieve (γ,ε)-accuracy, using

statistics. In general, N is a function of the target accuracy and some distribution moment of

the quantity we want to estimate.

In this paper, we focus on packet-loss estimates, and since we do not know the distribution of

the actual loss in advance, we consider two practical options:

(a) Packet loss is a Bernoulli process: given the sequence of packets from flow F that arrive at

node i , any packet is lost before reaching node j with probability l ≥ lossmi n , and packet-loss

events are independent. In this case, the standard central limit theorem (CLT) yields a closed

formula for N :

N =
(η
ε

)2
· 1− lossmi n

lossmi n
,

where η is the 1+γ
2 -th quantile of the standard normal distribution.

(b) Packet loss is a bursty process governed by the Gilbert model [36]: which is based on a

Markov chain with two states: the process is either in a “low-loss” (good) or in a “high-loss”

(bad) state, and it transitions between the two with given probabilities. In this case, we can

approximate N empirically through Monte-Carlo simulations.

We can choose one of the two above options based on the nature of the measured traffic (how

bursty we expect it to be). If we want to be conservative, we must choose option (b), which

yields a sufficient sample size for both bursty and non-bursty traffic; the disadvantage is that,

in the non-bursty case, the resulting sample size will be larger than necessary, i.e., we will use

more resources than necessary to meet our target accuracy.

Instead of focusing on packet-loss, we could have focused on estimates of average delay or

delay quantiles. In this case, optimal N for the mean delay estimation is again given by the

central limit theorem:

N =
(η
ε

)2
· (CoVd)2,

where η is the 1+γ
2 -th quantile of the standard normal distribution and CoVd is the coefficient

of variation of the delay distribution. For computing CoVd , one must use a model describing

the delay distribution, which can be obtained by model fitting methods on actual historical

data [18][31][51]. On the other hand, optimal N for a specific χ-quantile is given from the

theorem of the “γ-confidence interval for the sample median and other quantiles” [55] [42]2:

N =
(η
ε

)2
· 1−χ

χ
,

2The length of the confidence interval for quantiles cannot be known in advance, because it is taken by two
specific x and y order statistics around the χ-th quantile of the sample, the actual values of which are be known in
advance. So, the relative error ε of our (γ,ε)-target accuracy is defined here as the index-difference (y −x) of the
confidence interval bounds (instead of the interval between their values).

38

4.6. Parametrization and Resource Analysis

where η is the 1+γ
2 -th quantile of the standard normal distribution and 0 <χ< 1. Comparing

the above to the closed formula for the loss estimation, one may verify that for quantiles

χ ≥ 0.5, the required sample size for measuring delay is always lower than the one needed

for loss, because typically lossmi n << 0.5. Hence, in practice, a system configuration for loss

estimation is already sufficient for accurately measuring delay quantiles.

4.6.2 Minimization of buffer size β

In this section, we analytically derive the smallest buffer size necessary for an operational

regime to exist. In summary, we make condition from Lemma 4.5.1 an equality and solve

for β to obtain β(δr ,r). This is a convex function of δr , and we minimize it over the range of

δr imposed by Lemma 4.4.2 to obtain β∗(r) = minδr {β(δr ,r)}. This is the minimum buffer

size needed to produce N receipts for a flow with packet rate r , and it is a monotonically

decreasing function of r . Hence, by setting a node’s buffer size to β∗(rmin), we ensure that the

node produces receipts at the target receipt rate for any flow with packet rate r ≥ rmin.

Consider a flow F , of packet rate r , which enters a domain at node i and exits at node j ;

we have derived conditions which guarantee that: the sample produced by nodes i and j is

sufficiently large for (γ,ε)-accuracy (Lemma 4.5.1) and representative even when node i is

launching a biasing attack (Lemma 4.4.2).

The minimum buffer size that satisfies Lemma 4.5.1 depends on input and workload parame-

ters (which are given), as well as algorithm parameters σ, κ, and δr . The values of σ and κ are

dictated, respectively, by practicality (§4.2) and attack-resistance (§4.4.2) concerns, which are

independent of the buffer size. The disclosure rate δr is restricted by Lemma 4.4.2. Hence, we

minimize the buffer size over the disclosure rate δr :

β∗ = min
δr ∈

(
0, 1−e− 1

rκ
) ln

(
(1−δr)rκ− N

r ·T ·σ
)

ln(1−δr)
r
R

. (4.6)

The objective function comes directly from Ineq. 4.5 in Lemma 4.5.1, and the minimization

range of δr comes directly from Ineq. 4.2 in Lemma 4.4.2. This is a convex function of δr , and

we find numerically the disclosure rate δ∗r that minimizes it.

The minimum buffer size β∗ is a decreasing function of the flow packet rate r , i.e., the lower

a flow’s packet rate, the more memory we need to measure the loss rate experienced by the

flow. We show this in Fig. 4.3a, where we plot β∗ as a function of r . Intuitively: To achieve

our target accuracy, we must lower-bound the probability of late disclosure to some value π

(because late disclosure reduces the sample size). For any given disclosure rate δr , there are

two ways to decrease the late-disclosure probability: increase the buffer size or increase the

packet rate. Hence, as the packet rate increases, the minimum buffer size necessary to reduce

the late-disclosure probability to π decreases.

Now consider the same domain and the same entry and exit point, but instead of a single

39

Chapter 4. Unbiased reporting

102 103

M
B

yt
es

0

20

40

60

80

100

120

r (Kpkts/sec)

M
R

ec
ei

pt
s

0

2

4

6

8

10

(a) β∗ as a function of r .
lossmi n = 0.1%, σ= 1%, T = 10mi n.

101 102

M
B

yt
es

0

10

20

30

40

50

60

σ = 1%
σ = 1.5%
σ = 2%

T (mins)

M
R

ec
ei

pt
s

0

1

2

3

4

5

(b) β∗ as a function of T .
lossmi n = 0.1%, rmin = 155K pkt s/sec (OC-12).

10-3 10-2

M
B

yt
es

0

10

20

30

40

50

60

σ = 1%
σ = 1.5%
σ = 2%

loss

M
R

ec
ei

pt
s

0

1

2

3

4

5

(c) β∗ as a function of lossmi n .
T = 10min, rmin = 155K pkt s/sec (OC-12).

Figure 4.3 – Minimum buffer size as a function of various parameters. κ= 100msec, ε= 10%, γ= 95%,
R = 2.5M packets/sec (which corresponds to a saturated OC-192 link assuming an average packet size
= 500 bytes).
The y-axis numbers assume a receipt size of 12 bytes.

flow of constant packet rate, consider a set of flows, each with a potentially different, variable

packet rate; our only assumption is that the packet rate of any of these flows always falls within

a range [rmin,rmax], which is given as problem input.

We pick the buffer size β based on the smallest supported packet rate rmin:

β=β∗(rmin),

40

4.6. Parametrization and Resource Analysis

where β∗ is given by Eq. 4.6. Since the minimum buffer size is a decreasing function of the

flow packet rate, the minimum buffer size that corresponds to the smallest supported packet

rate is sufficient for all the other packet rates.

To provide concrete numbers, Figs. 4.3b and 4.3c show the resulting buffer size in various

realistic settings. For instance, for a minimum supported rate equal to rmin = 155K packets/sec

(which corresponds to a saturated OC-12 link assuming an average packet size = 500 bytes),

we see that a few MB of memory are typically sufficient for measuring a minimum loss rate

of lossmi n = 0.1% in T = 10 minutes. We also see that the buffer size drops rapidly as the

measurement period T and/or the minimum measurable loss rate lossmi n increase. Intuitively,

the more time we can afford to reach a target accuracy, and the higher the loss rate that we

want to be able to measure accurately, the lower the necessary sampling rate, and the fewer

the resources necessary to provide it.

Clarification: We see that, for any selection rate, there always exists a minimum T and a

minimum lossmi n at which β∗ becomes infinite, i.e., at these points, we could not achieve the

target accuracy even with an infinite buffer size. This is because, at these points, the number

of packets produced by the slowest flows in our supported range falls below the minimum

necessary sample size.

4.6.3 Operational Regime

Fig. 4.4 shows an example operational regime. The particular scenario for which it was

computed does not matter for this discussion, but we provide it for completeness: target

accuracy (γ = 95%, ε = 10%), target time interval T = 10min, minimum packet rate rmin =
155Kpps (saturated OC-12 interface, assuming average packet size 500B), maximum packet

rate rmax = 2.5Mpps (saturated OC-192 interface, assuming average packet size 500B), and

algorithm parameters σ= 1%, κ= 100msec, and β= 10.5MB. The operational regime consists

of the surface enclosed between the lower bound obtained from Ineq. 4.5 (blue curve) and

the smallest of the two upper bounds obtained, respectively, from Ineq 4.2 (yellow curve) and

Ineq 4.5 (red curve). In this particular example, the smallest upper bound is the former (the

yellow curve).

In more detail: (a) We analytically compute all the tuples {δr ,r } that satisfy Inequality 4.2

of Lemma 4.4.2: solving the inequality for r yields an upper bound for r as a function of

δr (the middle, yellow curve in Fig. 4.4). (b) We numerically3 compute all the tuples {δr ,r }

that satisfy the inequality of Lemma 4.5.1: solving the inequality for r yields an upper and a

lower bound for r as a function of δr (top/red curve and bottom/blue curve in Fig. 4.4). (c)

We divide [rmin,rmax] into non-overlapping packet-rate “zones” and map each zone to one

disclosure rate that falls between the lower bound and the smaller of the two upper bounds,

using as few zones as possible. In Fig. 4.4, we use two zones, shown on the figure as black

3We can only do this numerically. Solving Ineq. 4.5 for r analytically would require solving a polynomial of

degree
β
R −κ.

41

Chapter 4. Unbiased reporting

Disclosure rate δ
r ×10-5

0 1 2 3 4 5

P
ac

ke
t r

at
e

r
(p

ps
)

106

107

lower bound from Ineq. 5
upper bound from Ineq. 5
upper bound from Ineq. 2

Figure 4.4 – Example operational regime.

vertical lines: packet rates 155–437Kpps map to disclosure rate 2.18 ·10−5, while packet rates

155Kpps–2.5Mpps map to disclosure rate 0.137 ·10−5.

The disclosure function affects the implementation of our algorithm in the following sense:

The algorithm tracks each flow’s packet rate r in order to choose disclosure packets from

that flow with the right probability δr (lines 3,4 in Alg. 2). The fewer packet-rate zones we

use, the less precise our packet-rate tracking needs to be, which simplifies our algorithm’s

implementation. For example, if we use two zones (as in the example of Fig. 4.4), then our

packet-rate tracking needs to be only precise enough to determine whether a flow’s packet

rate falls in one zone or the other. We found 2 or 3 zones to be enough in all the scenarios we

considered.

Do we know that the operational regime is always computable—that, for any σ, κ, and β,

Lemmas 4.4.2 and 4.5.1 yield an upper and lower bound for r as a function of δ, and that, for

any fixed δ, we can identify a closed range of packet rates r that honor the two bounds? This

was true in all the scenarios we considered, but we cannot prove it in the general case, because

step (b) of the computation (solving Ineq. 4.5 for r) is numerical, not analytical. We can only

prove it in one particular, interesting case: when β becomes so large that it never overflows

(the probability of late disclosure becomes negligible for all flows). In this particular case,

Ineq. 4.5 can be solved for r analytically and yields the following lower and upper bound:

W0
(Nκ

Tσ ln(1−δr)
)

κ ln(1−δr)
≤ r ≤ W−1

(Nκ
Tσ ln(1−δr)

)
κ ln(1−δr)

where W0 and W−1 are the two branches of the Lambert function. The exact formulas do not

matter—we provide them for completeness; the point is that, in this one case where we can

analytically compute the operational regime, it has the shape that we expect based on our

numerical solution.

42

4.6. Parametrization and Resource Analysis

4.6.4 Resource Requirements

Having established how to set the parameters of our algorithm, we considered the values we

would use in various realistic scenarios and computed the resulting resource requirements.

Memory overhead: We found that our algorithm requires a buffer size β that increases data-

path memory only by a few percentage points, which is at least an order of magnitude less

than alternative algorithms.

We present a concrete example: Consider a node collocated with a 10GigE interface, observing

a total packet rate R = 2.5Mpps with an average packet size 500B. Assume 12B per receipt. We

set σ= 1% and κ= 100msec. We set target accuracy (γ= 95%,ε= 10%), within a time interval

of T = 10min, assuming i.i.d. loss of minimum rate lossmi n = 0.1% (e.g., we are verifying SLAs

that promise loss rate below 0.1%). We set rmax = 2.5Mpps, which is the maximum packet

rate at which a flow could arrive at this node. Fig. 4.5 shows the amount of data-path memory

required by our algorithm, as well as various alternatives, as a function of rmin (the minimum

supported flow packet rate).

Our algorithm (red line, abbrev. “retro”) requires a few MB of data-path memory, whereas basic

delayed disclosure (green circles, abbrev. “basic DD”) requires at least an order of magnitude

more. To put this in perspective, a 10GigE interface needs about 125MB of packet buffers

(using the “one round-trip worth of traffic” rule and assuming a typical Internet round-trip of

100msec), i.e., our algorithm increases data-path memory only by a few percentage points.

There are three reasons why our algorithm requires less data-path memory: (a) Basic DD

samples more packets than necessary to achieve the target accuracy in the target time interval,

because it tries to achieve a target sampling probability, not the target accuracy in the target

time interval. (b) Basic DD uses a fixed disclosure rate δ, yet no single δ works well for all flows:

faster flows need a lower δ to prevent early disclosure from happening too often, while slower

flows need a higher δ to prevent late disclosure from happening too often. Basic DD picks a δ

that is low enough to accommodate the fastest flows (those with packet rate rmax) and, as a

result, requires too much memory to protect the slowest flows (those with packet rate rmin)

from late disclosure. (c) Basic DD avoids late disclosure more than necessary to achieve the

target accuracy in the target time interval, because it was designed to avoid late disclosure

with a fixed, high probability.

To quantify the impact of each issue, Fig. 4.5 shows the data-path memory required by up-

graded versions of basic DD: (a) Basic DD+optimal N is like basic DD, except it tries to achieve

the target accuracy in the target time interval. (b) Basic DD+optimal N+zones moreover uses

an adaptive disclosure rate, though it still computes the disclosure function so as to avoid

late disclosure with a fixed, high probability. (c) Retro—our algorithm—uses an adaptive

disclosure rate and computes the disclosure function so as to achieve the target accuracy in

the target time interval. We see that each issue plays a non-trivial role, with the last one being

the most impactful: avoiding late disclosure improves accuracy but requires a bigger receipt

43

Chapter 4. Unbiased reporting

Minimum supported rate (pps)
×105

2 4 6 8 10 12 14

M
em

or
y

(M
B

)

101

102

basic DD
basic DD + optimal N
basic DD + optimal N + zones
retro

Figure 4.5 – Data-path memory consumed by receipt buffer as a function of the minimum supported
packet rate.

buffer; hence, it is important to avoid it just enough to achieve the target accuracy in the target

time interval, but not with an arbitrarily high probability.

Processing overhead: Our algorithm requires a small number of hash computations, times-

tamp comparisons, and accesses to data-path memory per packet, which is similar to basic

delayed disclosure (we claim no improvement on processing overhead). The exact numbers

depend on the implementation; the hardware design sketched in the Appendix, Section 4.3,

requires per packet: two hash computations, a couple of timestamp comparisons, one read

and one write access to data-path SRAM, and a parallel lookup and an update to data-path

CAM.

4.7 Experimental Evaluation

After describing our methodology (§4.7.1), we demonstrate that our algorithm is useful (§4.7.2),

confirm that it works as expected (§4.7.3) and is resistant to prioritization attacks (§4.7.4).

4.7.1 Methodology

In each experiment, we emulate some number of flows, crossing one or more domains. We

use 1-hour backbone traces made available by CAIDA in 2016 (chicago-equinix, direction

A). Each flow observed at an entry node consists of one entire trace, while the total traffic

observed at an entry node consists of multiple traces merged into one. Why this particular

emulation: The question we are most frequently asked is how well our system would work for

busy backbone routers located at the Internet core. The traffic rate of a single CAIDA trace

ranges from a few hundred Mbps to a few Gbps; this is too low to represent the total traffic

arriving at a busy backbone-router interface, but could represent, e.g., the traffic between

a source and destination prefix connected to the Internet through OC-48 or lightly loaded

10GigE links. By merging multiple traces—and shifting packet timestamps such that all traces

start at the same time—we created higher-rate ingress streams.

44

4.7. Experimental Evaluation

In each experiment, we emulate either i.i.d. or bursty loss (of various rates). For the latter,

we obtained the loss pattern from an actual congested link: we created in our lab a simple

topology where 16 pairs of end-points communicated over a bottleneck GigE link, and we had

each pair exchange back-to-back TCP flows; this resulted in the bottleneck link experiencing

packet loss of average rate 4.8% and burstiness 1.52 packets.

Our configuration is purposefully not realistic in all scenarios, because we want our algorithm

to operate at its limits. For instance, in a real deployment, we would set lossmi n = 0.1% or so.

However, if the actual loss rate is � lossmi n , our algorithm will use significantly more memory

than necessary to estimate this loss rate, and our results will be obviously good. Hence, we

set lossmi n to the actual loss rate, which results in our algorithm using the absolute minimum

memory needed to estimate this loss rate. So:

(a) In all experiments, we set the selection rate to σ= 1%, the quiet-period duration to κ=
100msec, the target accuracy to (γ= 95%, ε= 10%), and the target time interval to T = 10min.

(b) In all experiments, we set lossmi n to the actual loss rate and—when the actual loss is

bursty—burstmax to the actual loss burstiness. This way, we test how accurately the monitor

estimates loss that is exactly at the limit of what the nodes were configured to handle.

(c) In §4.7.2, we set rmin to the average packet rate of the target flow F . This way, we test how

accurately the monitor estimates loss experienced by a flow whose packet rate is exactly at

the limit of what the nodes were configured to handle. This way, we test how accurately the

monitor estimates loss experienced by a flow whose packet rate is exactly at the limit of what

the nodes were configured to handle. For the same reason, in §4.7.3, we set rmin to the average

packet rate of the slowest flow involved in the experiment.

(d) In §4.7.4, where node i launches prioritization attacks, we configure the nodes such that

the average packet rate of the target flow F falls exactly on the upper bound of the operational

regime (the middle, yellow curve in Fig 4.4). This is the most challenging setting we could think

of: if node i operates close to the upper bound of the operational regime, it is possible that F ’s

instant packet rate fluctuates so fast that it temporarily pushes node i out of the operational

regime, where it could potentially cheat.

4.7.2 Use Cases

First, we demonstrate that our algorithm enables the monitor to draw useful conclusions

about network behavior.

In each experiment, we emulate two to four flows that enter an ISP x at node i and exit at node

o. Both nodes are collocated with highly loaded 10GigE interfaces. We use four CAIDA traces.

The total traffic observed at node i consists of the four traces merged together and has a rate

of 8Gbps.

45

Chapter 4. Unbiased reporting

FlowID
1 2 3 4

Lo
ss

 r
at

e

×10-3

0.85

0.9

0.95

1

1.05

1.1

1.15

(a) I.i.d. loss 0.1%.

FlowID
1 2 3 4

Lo
ss

 r
at

e

0.042
0.044
0.046
0.048
0.05

0.052
0.054

(b) Bursty loss 4.8%.

FlowID
1 2 3 4

Lo
ss

 r
at

e

×10-3

1

1.5

2

2.5
3

(c) Loss rates per flow ID: 0.1%, 0.1%, 0.15% and 0.3%.

Figure 4.6 – Loss estimates after T = 10min.

SLA verification. ISP x has signed an SLA with a customer network, promising loss below

0.1%; the customer’s traffic suffers exactly 0.1% loss within x. On the customer’s request, the

monitor estimates x’s loss with respect to traffic from the customer’s prefix to four popular

destination prefixes (so, we have four aggregates, each corresponding to a flow). Fig. 4.6a

shows the monitor’s loss estimates with respect to each aggregate/flow after the target 5min

time interval; in each boxplot, the red line shows the median, while the limits of the boxplot

indicate the 95% confidence interval. We see that all estimates achieve the target accuracy

(γ= 95%, ε= 10%). Hence, y correctly determines that x is borderline violating its SLA.

Cheap SLA verification. Same as above, but this is a cheaper SLA, promising loss below 5%;

the customer’s traffic suffers 4.8% loss with burstiness 1.5 due to a congested bottleneck link

46

4.7. Experimental Evaluation

at x’s core. Fig. 4.6b shows that the monitor’s loss estimates achieve the target accuracy after

the target 5min time interval. Hence, y correctly determines that x is honoring its SLA, despite

the fact that it is introducing loss just below the promised maximum.

Subtle prefix discrimination. Transit ISP x is dissatisfied with networks y and z: the former is

a popular video provider; the latter is an eyeball ISP whose customers freely participate in peer-

to-peer networks; x wants to renegotiate its peering agreement with each of these networks,

but they are resisting. In response, x subtly discriminates against them: while most transit

traffic experiences loss 0.1%, y ’s and z’s traffic experience, respectively, 0.15% and 0.3% loss.

After user complaints, the monitor estimates x’s loss with respect to two random flows, one

flow originating from y , and one flow originating from z (so, again, we have four aggregates,

each corresponding to a flow). Fig. 4.6c shows that the monitor catches the discrimination

after the target 5min time interval.

Policing of SYN packets. ISP x has signed an SLA with a customer network, promising loss

below 0.1%; it honors this SLA for all but TCP SYN packets, which are policed such that they

experience 3–30 times higher loss (we conducted 240 experiments with various policing rates).

The customer observes end-to-end that something is wrong with connection setup and asks

the monitor whether x is discriminating against its SYN packets. In response, the monitor

defines two aggregates: SYN packets from the customer’s prefix to some popular destination

prefix; all other packets with the same source and destination prefix. So, in this case, we have

two aggregates that are subsets of the same flow.

The challenge is that the SYN aggregate is relatively small, and the monitor would need to

collect receipts for hours in order to estimate x’s loss with respect to the SYN aggregate with the

target accuracy of (γ= 95%,ε= 10%). However, the goal here is not to estimate x’s performance,

but to determine whether it treated the two aggregates differently. This can be done much

faster, with a simple Maximum Likelihood differentiation detector: the monitor estimates

x’s loss rate for each aggregate based on the receipts it collects within some period of time

(minutes, not hours); and computes the corresponding confidence intervals (CI); if the lower

limit of the CI for the SYN aggregate estimate is greater than the upper limit of the CI for the

no-SYN aggregate, then the monitor concludes that x discriminates against the SYN aggregate.

Our results, after the target 5min time interval: When x’s loss with respect to SYN packets

is 5 or more times higher, the monitor detects differentiation with probability 100% (in all

experiment runs); when SYN loss is 3–5 times higher, detection rate is ≥ 94%; for subtler

differentiation, detection rate drops sharply. For completeness, we also ran 480 experiments

where x does not differentiate, and the monitor correctly detects no differentiation.

4.7.3 Basic Operation

Next, we confirm that our algorithm works as it should, i.e., the nodes sample consistently at

the necessary rates.

47

Chapter 4. Unbiased reporting

ys
iys oys

yd
iyd oyd

xs
ixs oxs

xd
ixs oxs

d
id

s
os

10GigE 40GigE 100GigE 40GigE 10GigE

Figure 4.7 – Topology emulated in §4.7.3.

We emulate the topology in Fig. 4.7: there are 4 flows between edge networks s and d ; 6

additional flows enter and exit the topology, respectively, at regional ISPs xs and xd ; and 22

additional flows enter and exit, respectively, at Tier-1 ISPs ys and yd . Hence, we use a total

of 32 CAIDA traces. The total packet rates observed at nodes os , oxs , and oys are, respectively,

1.92, 4.81 and 15.47Mpps (equiv. 7.67, 19.2 and 61.8Gbps). There is i.i.d. loss of rate 0.2%

inside domain xs and 0.1% inside domain ys .

Fig. 4.8 shows, for each flow, the consistent sample size (the number of consistently sampled

packets) produced within the target time interval by all the nodes that observed the flow. For

instance, Fig. 4.8a shows the consistent sample size produced by each of the 4 flows observed

by all 10 nodes; Fig. 4.8c shows the consistent sample size produced by each of the 32 flows

observed by nodes oys and i yd . In all plots, the horizontal red line shows the minimum sample

size N needed to estimate i.i.d. loss of minimum rate lossmi n = 0.1% with the target accuracy.

We see that, for all flows, the produced consistent sample size exceeds the minimum necessary.

In particular, Fig. 4.8a shows that all 10 nodes sample consistently at the necessary rate, despite

the fact that they observe total packet rates that differ by an order of magnitude; this is because

each node’s receipt buffer is large enough to accommodate the maximum total packet rate that

the node may observe. Moreover, Fig. 4.8c shows that nodes oys and i yd sample consistently at

the necessary rate from all 32 flows that they observe in common; this is because each node is

configured to produce at least the minimum sample size for all flows with packet rate ≥ rmin.

4.7.4 Resistance to Prioritization

Finally, we confirm that our algorithm makes prioritization attacks ineffective, whereas basic

delayed disclosure allows a misbehaving network to significantly exaggerate its performance.

ISP x launches a prioritization attack (§4.4.1) against one target flow. The delay of the two

routes is db = 50msec and dg = 10msec (the good route is 5 times faster than the bad one).

We vary the attack parameter g (the fraction of traffic that fits in the good route) from 0 to

100%, and the attack parameter t (the buffering period) from 0 to 120msec. We measure the

attack’s relative delay benefit: by how much the misbehaving domain exaggerates its perceived

delay performance relative to the delay performance it would achieve without a prioritization

attack.

Fig. 4.9a shows the results. The y-axis measures the attack’s relative delay benefit (in percent-

age points), while the two x-axes measure, respectively, the attack parameters t (in msec)

and g (in percentage points). We do not obtain the plotted data points from our formulas, but

48

4.7. Experimental Evaluation

1 2 3 4

FlowID

2

3

4

5

S
am

pl
e

si
ze

105

(a) Flows between s and d .

1 2 3 4 5 6 7 8 9 10

FlowID

2

3

4

5

S
am

pl
e

si
ze

105

(b) Flows between xs and xd .

1 5 10 15 20 25

FlowID

4

4.5

5

S
am

pl
e

S
iz

e

105

(c) Flows between ys and yd .

Figure 4.8 – Consistent sample size after T = 10min.

experimentally, as the monitor would compute them from the receipts produced by x’s entry

and exit nodes.

We see that the attack’s relative delay benefit is always negative and as low as −1122% (by

misbehaving, x worsens its perceived delay performance by this much). The highest delay

benefit is close to 0, and it occurs when t → 0, at which point x almost does not buffer/cheat.

The lowest delay benefit occurs at t = 120msec and g → 1. At this point, x forwards most

packets over the 10msec good route, while it buffers sampled packets for 120msec. As a result,

relative to an honest behavior (where it would not buffer and its performance, both true and

perceived, would be almost 10msec), x worsens its relative delay benefit by almost −1200%.

This is consistent with the math in the proof of Lemma 4.4.2, which shows that x’s misbehaving

49

Chapter 4. Unbiased reporting

g (%)

0

50

100050

t (msec)

100150

0

-200

-400

-600

-800

-1000

-1200

De
lay

 B
en

efi
t (%

)

(a) Our algorithm.

0

g (%)

50
1000

50
t (msec)

100

60

40

20

0
150

De
lay

 Be
ne

fit
(%

)

(b) Basic delayed disclosure.

Figure 4.9 – Relative delay benefit of a prioritization attack as a function of attack parameters t and g.

function is convex w.r.t. t and concave w.r.t. g, hence the lowest delay benefit occurs when

either g → 0 or g → 1.

One might expect that basic delayed disclosure would also handle prioritization attacks well,

without the added complexity of quiet periods and an adaptive disclosure rate. To show that

this is not the case, we repeat the experiment, but have node i run basic delayed disclosure

instead of our algorithm. To cheat, node i buffers each packet p for t or until disclosure occurs,

whichever comes first; if disclosure comes first and p is sampled, node i forwards p over the

good route, otherwise, it forwards p such that, overall, a fraction g of all packets are forwarded

over the good route. We configure basic delayed disclosure with β= 4.2MB (the same amount

used by our algorithm) and δ= 9.9∗10−5, σ= 1% (as advised in [14]).

We see, in Fig. 4.9b, that there exist multiple prioritization strategies—multiple {g, t} combinations—

where the attack’s delay benefit is both positive and significant, as high as +41% (by misbehav-

ing, x improves its perceived delayed performance by this much). The intuition is that x does

not need to know the sampling fate of all the packets it forwards in order to exaggerate its

perceived delay performance; knowing the sampling fate of a small fraction of the forwarded

packets is enough, and this knowledge can be gained with a surprisingly short t that does

not introduce significant delay overhead. As a result, without counter-measures in place,

prioritization attacks defeat the purpose of delayed disclosure.

50

4.7. Experimental Evaluation

4.7.5 Proof of lemma 4.4.1

Let F (resp. P) denote the stationary and ergodic point process with intensity r (resp. R) that

corresponds to the packet arrivals from flow F (resp. to the packet arrivals of the total traffic

observed by node i). P and F are two point processes of the same stationary continuous-time

arrival process. Their intensities (R and r) are just two different event “clocks” of that process:

P-clock ticks every time that a packet arrives and F -clock ticks only if the arriving packet

belongs to flow F .

Consider a packet p from flow F arriving at node i at random time t = 0; that is, an F -point

occurs at an arbitrary point in time4. Xp denotes the number of F -points until p’s disclosure

packet arrives (which is also an F -point occurrence); nF [0,κ] denotes the number of F -points

that occur a time interval κ after t = 0; nF
[
P0,Pβ

]
denotes the number of F -points that occur

in the upcoming β P-points after p.

Packet p is sampled when the following three events occur: (a) the disclosure of p is not early,

i.e., Xp > nF [0,κ]; (b) neither is it late, i.e., Xp ≤ nF
[
P0,Pβ

]
; and (c), p is selected by line 15 of

Alg. 2.

Therefore, p’s sampling probability P0(a,b,c), as computed at time t = 0 is given by the chain

rule of probability:

P0(a,b,c) =P(a) ·P(b|a) ·P(c|a,b) (4.7)

The last part P(c|a,b) of Eq. 4.7 is equal to the selection rate σ. The first two parts are computed

based on the following observation: In Alg. 2, DiscHash has strong randomization properties,

which means that the arrivals of the disclosure packets occur independently over the F -arrivals

and with equal probability δr . I.e., the disclosure arrivals form a Bernoulli stochastic process

on the top of F -arrivals, which is renewed at each F -point. Therefore, for any arbitrary packet

p of flow F , the “distance” until the disclosure packet Xp, counted in F -points, follows the

geometric distribution:

P(a) ·P(b|a) =
=P

(
Xp > nF [0,κ]

) ·P(
Xp ≤ nF

[
P0,Pβ

] | Xp > nF [0,κ]
)

=P
(
Xp > nF [0,κ]

) · (1−P
(
Xp > nF

[
P0,Pβ

] | Xp > nF [0,κ]
))

=P
(
Xp > nF [0,κ]

) · (1−P
(
Xp > nF

[
P0,Pβ

]−nF [0,κ]
))

= (1−δr)nF [0,κ] ·
(
1− (1−δr)nF [P0,Pβ]−nF [0,κ]

)
= (1−δr)nF [0,κ] − (1−δr)nF [P0,Pβ], (4.8)

4For this proof, we use the same convention as in Palm Calculus [42]: t = 0. This convention is the one used to
give a meaning to an arbitrary point in time and differs from the beginning of the process; it is the time of arbitrary
point in a process that has a stationary regime and has run long enough to be in steady state.

51

Chapter 4. Unbiased reporting

where the third derivation step is because of the memoryless property of the geometric

distribution.

Given Eq. 4.7 and 4.8, the sampling probability of packet p is:

P0(a,b,c) =
(
(1−δr)nF [0,κ] − (1−δr)nF [P0,Pβ]

)
·σ (4.9)

Main proof

To prove lemma 4.4.1, it is sufficient to show that the sampling probability P0(a,b,c) that node

i can predict upon p’s arrival does not depend on p’s arrival time (t = 0), and it is equal for

all packets from flow F . We will use the same assumption of Section §1.5, which we restate

here for completeness: P and F are stationary, ergodic, and both intensities r and R are high

enough that the ergodic convergence occurs in less than 100msec, i.e., in time less than the

typical values for κ.

Stationarity of point processes implies that: distributions of the number of points in a fixed

interval (t ′1, t ′′1] are invariant under translation, i.e., is the same for (t ′1 +h, t ′′1 +h] for all h. An

immediate consequence is that the distribution of the number of points nF in an interval

depends only on the length of the interval and not its time origin [22].

Therefore, the distributions of nF [0,κ] and nF
[
P0,Pβ

]
depend only on κ and β and not on the

time that p is observed. They are the same at any arbitrary point in time.

As for any random variable, the best prediction for nF
[
P0,Pβ

]
and nF [0,κ] is obtained using

their expected values. This is true because if one wants to predict a random variable from its

distribution, then the mean-square-error (MSE) predictor and the best one-number guess is

just its expected value [1].

We compute the expected values of nF [0,κ] and nF
[
P0,Pβ

]
using Palm Calculus [42]:

E [nF [0,κ]] = r ·κ (4.10)

E
[
nF

[
P0,Pβ

]]= r

R
·β (4.11)

Eq. 4.10 is an immediate consequence of the definition of the intensity of a stationary point

process, which is equal to the expected number of points per time unit. Eq. 4.11 requires the

auxiliary lemma 4.7.1 (provided at the end of this section), and linearity of expectation.

By applying Eqs. 4.10 and 4.11 to Eq. 4.9, we see that the best prediction of the sampling

probability of an arbitrary packet p, as computed at the time of arrival, does not depend on

p’s arrival time or any other previously observed packet arrival. It only depends on the the

intensities R and r . Even if node i manages to estimate perfectly R and r , when it attempts to

predict the sampling probability of each new packet p that it observes, it computes the same

sampling probability for all new packets.

52

4.7. Experimental Evaluation

A longer version:

In the rest of this section, we provide a longer version of this proof starting from the ergodicity

assumption, which is implied in the above results based on Palm Calculus.

The ergodic theorem [33] for weakly5 stationary processes implies that: for each weakly

stationary process, the time average of the process converges to a random variable that has

the same expected value. Let F (t) denote the continuous-time arrival process of F -point

occurrences and FP [j] denote the arrival process of the same F -point occurrences according

to the P-event clock. I.e., F (t) (resp. FP [j]) is 1, if an F -point occurs at time t (resp. at P-

point j) and 0 otherwise. From the definition of processes F and P , F -events are a subset

of P-events; hence, process F is stationary in both continuous time and P-event clock. Let

also the random variables to which the time averages converge be Y and YP . Then, given

that convergence rates are fast due to our assumption of high packet arrival rates, the ergodic

theorem suggests that:

1

κ

∫κ

0
F (t)d t

m.s.−−−→ Y

1

β

β∑
j=1

FP [j]
m.s.−−−→ YP

Because of the definition of nF [0,κ] and nF
[
P0,Pβ

]
, we have the following: nF [0,κ] =∫κ

0 F (t)d t

and nF
[
P0,Pβ

]=∑β

j=1 FP [j]. So, nF [0,κ] and nF
[
P0,Pβ

]
converge to κ ·Y and β ·YP , respec-

tively.

We obtain the MSE (best) predictor for nF
[
P0,Pβ

]
and nF [0,κ], by computing the best pre-

dictors for Y and YP ; i.e., E [Y] and E [YP]. From ergodicity, we get: E [Y] = E [F (0)] and

E [YP] = E [FP [1]] (same mean condition above); and from the definition of the intensity r of

process F and lemma 4.7.1, we get: E [F (0)] = r and E [FP [1]] =πF = r
R .

Therefore, the best predictions for nF
[
P0,Pβ

]
and nF [0,κ] are:

�nF [0,κ] = r ·κ (4.12)�nF
[
P0,Pβ

]= r

R
·β (4.13)

By applying the best predictions to Eq. 4.9, we see that the sampling probability is independent

of p’s arrival time and is the same for all packets from flow F .

Note 1: The geometric distribution requires only an integer exponent of (1−δr). This is

because in the PMF of a geometrically distributed random variable the exponent denotes the

number of trials until the success, which must be an integer. But, in our case, rκ and r
R β are

5Weak stationarity is enough for the proof of our theoretic results. There is no need to assume strong stationarity,
which is already impractical to verify in real traffic traces.

53

Chapter 4. Unbiased reporting

not necessarily integer values. Another way for computing the probabilities P(a) and P(b|a)

would be to regard the arrivals of the disclosure packets as a Poisson arrival process, which

is the continuous-time equivalent of the Bernoulli. In this case, X would be exponentially

distributed with rate δr . However, if the exponents of the geometric distribution are generally

large and the probability δr is relatively small (which holds in our case as shown in Fig. 4.4),

then the probabilities obtained using the geometric distribution approximate very well the

ones obtained by the exponential distribution. In this work, we have used the geometric

distribution, because we believe it provides more intuitive results. A similar analysis holds

when considering a Poisson arrival process for the disclosure packets.

Note 2: Lemmas 4.4.1 and 4.7.1 (below) do not imply any assumption about independence of

F -arrivals, nor Poisson packet arrivals. The proofs are based on Palm Calculus and linearity of

expectation, that do not require independence. The only assumptions here are stationarity

and ergodicity. The “steady-rate”or the Poisson assumption make the computation of Eq. 4.11

easier and provide a good insight of the proof, but do not correspond to real traffic arrival

patterns.

Lemma 4.7.1. Given two point processes P and F of the same stationary process, which have

rates R and r , respectively, the probability of an arbitrary P-arrival to be an F -arrival (i.e the

arrived packet belongs to flow F), is:

πF = r

R

Proof. We base our proof on the concepts of Palm Calculus [42].

Let λF (P) denote the intensity of the P point process measured with the event clock F . Also,

let nF [P0,P1] denote the number of points of process F that fall between the two random

subsequent P points P0 and P1.

Apply Neveu’s Exchange Theorem [42] to obtain:

λF (P) = R

r
and E (nF [P0,P1]) = 1

λF (P)
.

Note that nF [P0,P1] is 1, if the packet at P0 is an F packet, i.e. if the P point at P0 is also an F

point, and 0 otherwise. Hence, E (nF [P0,P1]) is the probability πF that an arbitrary packet is a

packet from flow F . Thus:

πF = λ(F)

λ(P)
= r

R

54

4.7. Experimental Evaluation

4.7.6 Proof of lemma 4.4.2

The main part of the proof consists of an analysis of the expected misbehavior benefit w.r.t.

t and g. A node launches a prioritization attack only if its expected misbehavior benefit is

non-negative. We work with expectations because the actual (final) misbehavior benefit is not

known to the node (or anyone else) at the time that it observes traffic; it can be computed only

when the measurement ends. We consider all possible cases for t > 0 and g ∈ (0,1) and show

that Ineq. 4.1, 4.2 are sufficient to make the expected misbehavior benefit negative:

MBd < 0 (4.14)

Case a: t ≥κ

In this case the exact computation of the misbehavior benefit is not easy, but it is enough to

commute an upper bound and show that it is negative.

Since t ≥ κ, the monitor’s delay estimate cannot be less than the delay of the good path

(achieved when all samples happen to follow the good path) plus κ:

d̂mis ≥ dg +κ (4.15)

Given now the definition of the misbehavior benefit, we get the following upper bound:

MBd := d̂hon − d̂mis

= g ·dg + (1−g) ·db − d̂mis

≤ (
1−g

)(
db −dg

)−κ

(4.1)< −gΔd ≤ 0

Thus, Ineq. 4.1 implies Ineq. 4.14, i.e., the condition about κ given by Ineq. 4.1 is sufficient to

guarantee that a prioritization attack of Case (a) is unsuccessful.

Case b: t <κ

For this case, we divide the packets forwarded by a misbehaving node i that performs a

prioritization attack into two categories:

• Category I: The packets for which disclosure happens within t. Node i knows that these

are excluded from the sampling process, because they fall into the quiet period κ, and it

forwards them over the bad path.

55

Chapter 4. Unbiased reporting

• Category II: The packets for which disclosure does not happen within t (hence, each of

them is buffered for t before being forwarded). Node i knows that a subset of these will

not be excluded, and a subset of the non-excluded ones will be sampled, but it does not

know which subsets these are. Hence, it forwards as many as it can over the good path

and the rest over the bad path.

Misbehavior Benefit Function

Let Δd = db−dg be the delay difference of the two paths and m(t) denote the expected fraction

of packets for which disclosure happens within t (packets of Category I described above).

Let also t�, denote the buffering time at which the bad path is saturated with packets whose

disclosure happens during their buffering period and therefore their exclusion for the sampling

process is verified by the misbehaving node. I.e.:

m(t�) = 1−g (4.16)

Given the attack model that is described in §4.4.1, for any g ∈ (0,1), the expected misbehavior

benefit takes the following form w.r.t. t:

MBd =
{

gm(t)
1−m(t)Δd − t if 0 < t ≤ t�(
1−g

)
Δd − t if t ≥ t�

(4.17)

Computation of the upper branch of Eq. 4.17:

Due to its definition, m(t) is an increasing function of t. Hence:

m(t) ≤ m(t�)

(4.20)⇐==⇒m(t) ≤ 1−g

⇔ g

1−m(t)
≤ 1 (4.18)

Ineq. 4.18 shows that the packets of Category II exceed or exactly match the capacity of the

good path. In this case, the node forwards as many of these packets as it can (i.e. g
1−m(t)) over

the good path and the rest (i.e. 1− g
1−m(t)) over the bad path. It does so, because this is the only

way it never exceeds the capacities of both paths and it maximizes the number of packets of

Category II (from which the sample will be selected) that follow the good path.

Note that the exact algorithm, with which the node manages to perform the above policy at

line rates, is not required for this proof. I.e. we consider here the best possible misbehaving

scenario that is offered to the node because of the domain’s network conditions. This makes

our analysis a worst-case approach.

The monitor always produces an accurate delay estimate, based on a sample of packets of

56

4.7. Experimental Evaluation

Category II. Hence, the expected6 value of estimated mean delay of the domain is:

d̂mis = g

1−m(t)

(
dg + t

)+(
1− g

1−m(t)

)
(db + t) (4.19)

Based on Eq. 4.19, we obtain the upper branch of Eq. 4.17:

MBd =g ·dg + (1−g) ·db − d̂mis

(4.19)= − g −gm(t)−g

1−m(t)
dg − t

+ 1−g −m(t)+gm(t)−1+g +m(t)

1−m(t)
db

= gm(t)

1−m(t)
Δd − t, ∀t ∈ [

0, t�
]

.

Computation of the lower branch of Eq. 4.17:

At the buffering time t = t�, the capacity of the bad path is saturated with packets of Category

I, and, because of Eq. 4.20, the misbehavior benefit becomes MBd (t�) = (
1−g

)
Δd − t�. I.e. all

sampled packets follow the good path.

If the node buffers for time t > t�, then the packets will be delayed for more time, while

all non-excluded packets will continue to follow the good path. So, d̂mis = dg + t and thus

MBd = (
1−g

)
Δd − t.

Upper bound for Eq. 4.17:

We can compute an upper bound for the expected misbehavior benefit using an upper bound

for the expected fraction of packets of Category I, i.e., m(t).

Given a disclosure probability δr and a buffering period t, for any packet from flow F that

arrives at time t0, the probability that its disclosure packet arrives within period t follows

the geometric distribution with parameter δr , and it is equal to: 1− (1−δr)nF [t0,t0+t], where

nF [t0, t0 + t] is the number of packets from flow F that fall inside the time interval (t0, t0 + t].

Therefore, since nF [t0, t0 + t] is random variable, the actual fraction of packets of Category I is

also a random variable.

An upper bound for the expected fraction of packets of Category I m(t) can be found using

our stationarity assumption (§1.5) and Jensen’s Inequality: Due to that flow-F packet arrivals

6The exact estimate cannot be known in advance because it is produced from the collected sample, but the
estimate will be very close to the expected value. This is because the number of packets of Category II is smaller
than the total flow traffic. This, in turn, means that the collected sample (as computed in §4.6.1) is larger than
necessary to estimate the average delay of those packets with adequate accuracy. By fixing γ and ε to reasonable
values (e.g. γ= 95% and ε= 10%), the accuracy of d̂mis is, almost surely, adequately high.

57

Chapter 4. Unbiased reporting

form a stationary and ergodic point process with intensity r , nF [t0, t0 + t] is a random variable

whose distribution is invariant under time shifts, i.e., it is the same for any t0.

Also, from the definition of the intensity r (which is the expected number of points per time

unit [42]), the expected value of nF [t0, t0 + t] is: E [nF [t0, t0 + t]] = r t, for any t0 ≥ 0.

Last, since the function 1−(1−δr)nF [t0,t0+t] is concave w.r.t. nF [t0, t0 + t], from Jensen’s Inequal-

ity we get:

m(t) ≤ 1− (1−δr)r t (4.20)

Given Ineq. 4.20, we now obtain an upper bound for the expected misbehavior benefit MBd :

MBd ≤
{

g(1−(1−δ)r t)
(1−δ)r t Δd − t if 0 < t ≤ t�(

1−g
)
Δd − t if t ≥ t�

(4.21)

We denote the right hand side of the above with maxMBd . I.e.:

maxMBd =
{

g(1−(1−δ)r t)
(1−δ)r t Δd − t if 0 < t ≤ t�(

1−g
)
Δd − t if t ≥ t�

(4.22)

Analysis of Eq. 4.22:

The upper branch of Eq. 4.22 is a convex function of t, while the lower branch is a decreasing

function of t. To see why, we provide hereunder the first and second derivatives of maxMBd .

One can verify that the second derivative (Eq. 4.24) of the upper branch is non-negative and

the first derivative (Eq. /4.23) of the lower branch is negative.

d(maxMBd)

dt
={

gΔd
(−r (1−δr)−r t ln(1−δr)

)−1 , 0 < t ≤ t�

−1 , t ≥ t�
(4.23)

d 2(maxMBd)

dt2 =

=
{

gΔd (−r ln(1−δr))2 (1−δr)−r t , 0 ≤ t ≤ t�

0 , t ≥ t�
(4.24)

Since the maximum misbehavior benefit maxMBd is a continuous function of t, that is convex

in
[
0, t�

]
and decreasing for t ≥ t�, then, for any g ∈ [0,1], the function takes its maximum

value at one of the edges of the support of its upper branch, i.e. t = 0 or t = min
{
κ, t�

}
(because

58

4.7. Experimental Evaluation

of the general assumption of Case b: t < κ). At t = 0, MBd (0) = 0, while at t = t�, the sign of

MBd depends on the actual values of g, δr and κ.

Moreover, the maximum misbehavior benefit maxMBd is decreasing with t�. We obtain a

lower bound for t� directly from Ineq. 4.20 and Eq. 4.16:

t� ≥ lng

r ln(1−δr)
(4.25)

Thus, to show that the conditions of lemma 4.4.2 about κ and δr (i.e. Ineqs. 4.1 and 4.2) imply

Ineq. 4.14, it is sufficient to show that, when they hold, then:

maxMBd
(
min

{
κ,min

{
t�

}}
,g

)
=maxMBd

(
min

{
κ,

lng

r ln(1−δr)

}
,g

)
< 0, ∀g ∈ [0,1] (4.26)

In this case, the expected misbehavior benefit MBd is always non-positive, for any possible t

and g. We will show this, by considering two sub-cases w.r.t. g:

Case b1: (1−δr)rκ ≥ g

Using this assumption, we get:

lng

r ln(1−δr)
≥κ⇒ min

{
κ,

lng

r ln(1−δr)

}
= κ. (4.27)

Therefore,

(4.26)
(4.22),(4.27)⇐======⇒ MBd (κ,g) < (

1−g
)
Δd −κ

(4.1)< −gΔd ≤ 0.

Thus, Ineq. 4.1 implies Ineq. 4.26, i.e, the condition about κ given by Ineq. 4.1 is sufficient to

guarantee that a prioritization attack of Case (b1) is unsuccessful.

Case b2: (1−δr)rκ < g

Using this assumption, we get:

lng

r ln(1−δr)
<κ (4.28)

Since min
{
t�

}= lng
r ln(1−δr) < κ, no conditions about κ exist that provide an upper bound for

the maximum possible benefit at t = min
{
t�

}
. At that time, the node manages to forward over

the bad path only excluded packets, which equivalently ensures that all the remaining packets,

among which the non-excluded ones, are forwarded over the good path. Moreover, at that

59

Chapter 4. Unbiased reporting

time, the maximum benefit depends on the values of g and δr and it cannot be bounded only

through the choice of κ. It is necessary to properly set δr , too.

We consider again Ineq. 4.26 and show why 4.1 and 4.2 are sufficient to guarantee the require-

ment.

(4.26)
(4.22),(4.28)⇐======⇒(

1−g
)
Δd −

lng

r ln(1−δr)
< 0

⇔ −1

rΔd ln(1−δr)
> g −1

lng
(4.29)

First, we need to prove the following auxiliary lemma:

Lemma 4.7.2. lng ≤ g −1

Proof. Take the Taylor expansion of lng around g0 = 1:

lng = lng0 +
(
g −g0

) dlng

dg

∣∣∣∣
g=g0

+ 1

2

(
g −g0

)2 dlng

dg2

∣∣∣∣
g=ξ

, for some ξ ∈ [g0,g]

= ln(1)+ (
g −1

) 1

1
+ 1

2

(
g −1

)2
(
− 1

ξ2

)1

The last term of the above is always non-positive. Thus,

lng ≤ 0+ (
g −1

)

Because of lemma 4.7.2, we get that g−1
lng ≤ 1.

Now, we go back to Ineq. 4.29. To show that the inequality is satisfied, it is enough to show

that the left hand side (LHS) of the inequality satisfies the following: LHS(Ineq. 4.29) > 1, for

some δr ∈ (0,1). But,

- if (1−δr)rκ ≥ 1
e (i.e. Ineq. 4.2 holds), then:

(1−δr)rκ ≥ 1

e

⇔ ln((1−δr)rκ) ≥−1

⇔ rκ ln(1−δr) ≥−1

⇔ −1

rκ ln(1−δr)
≥ 1. (4.30)

60

4.7. Experimental Evaluation

- if additionally κ>Δd (i.e. Ineq. 4.1 holds), then:

1

Δd
> 1

κ

⇔ −1

rΔd ln(1−δr)
> −1

rκ ln(1−δr)
(4.30)===⇒ −1

rΔd ln(1−δr)
> 1

(lem.4.7.2)=======⇒ −1

rΔd ln(1−δr)
> g −1

lng
→ (4.29,4.26) hold

Hence, if an attack is considered unsuccessful according to Ineq. 4.14, then Ineq. 4.1 and 4.2

are sufficient to guarantee that an attack of Case (b2) is unsuccessful.

In conclusion, by considering both cases (a) and (b), we have showed that for any t > 0 and

any g ∈ (0,1), Ineq. 4.1 and 4.2 are sufficient to make a prioritization attack unsuccessful.

Proof of Inequality 4.4

The inequality can be derived directly from Eq. 4.23 and 4.2:

d(MBd)

dt
≤

{ g
(1−δr)−r t Δd (−r ln(1−δr))−1 , t ≤ t�

−1 , t ≥ t�

(4.2)==⇒ d(MBd)

dt
≤

{ g
(1−δr)−r t Δd

1
κ −1 , t ≤ t�

−1 , t ≥ t�

And because for t ≤ t�
(4.25)⇐=== g < (1−δr)−r t , the above results in:

d(MBd)

dt
≤

{
Δd
κ −1 , t ≤ t�

−1 , t ≥ t�

Δd
κ
>0

===⇒ d(MBd)

dt
≤ Δd

κ
−1

4.7.7 Proof of lemma 4.5.1

To prove this lemma it is enough to prove that the expected sample size after time T w.r.t a

flow with rate r is:

r ·T ·
[

(1−δr)rκ− (1−δr)
r
R β

]
·σ

Let the number of packets that are observed at a node in a measurement period T be M . Then

61

Chapter 4. Unbiased reporting

Time (secs)
5 10 15

P
ro

ba
bi

lit
y

×10-3

0

1

2

3

4

5

6

actual prob
approx. prob

Figure 4.10 – Actual sampling probability.

the corresponding sample size nM in time T will be have the following expected value:

E [nM] =
M∑

j=1
1{j-th pkt is sampled} ·p j (4.31)

where p j is the sampling probability of j -th packet of the flow to be sampled.

For this proof, we approximate the actual number of packet arrivals with the expected values.

The sampling probability p j of each packet j depends only on the exact number of flow F ’s

packet arrivals in a period of κ time following j , and the exact number of packet arrivals before

j is dropped from the circular buffer. Because of stationarity (§1.5), the expected values of

these numbers are r ·κ and r
R ·β, respectively. Also, due to ergodicity and the very high packet

rates that are considered in this paper (R’s that correspond to rates higher than OC-12), the

actual number of packet arrivals converges to its expected value at a sub-second granularity

(less than 100msec, which are the typical values for κ). So, the exact number of packets that

arrive in time κ can be approximated by r ·κ. Therefore, we can approximate p j with:

p j ≈
[

(1−δr)rκ− (1−δr)
r
R β

]
·σ,

where the term (1−δr) comes from the Bernoulli arrival process of the disclosure packets over

the F packet arrivals.

To verify the latter approximation, we have computed the “actual” sampling probability of

all packets in real flow traces. We used the same flow traces as the ones in our evaluation

section, and for every packet j in the trace we have computed p j without making the above

mentioned approximations of the number of packets in time κ or in the buffer β. In all cases,

we found that the approximation works very well in practice. Fig. 4.10 depicts an example

20-sec trace case (Equinix-chicago April 2016). The actual and the approximated probabilities

for all packets are indeed very close packets.

To complete the proof, we may also take M ≈ r ·T . Due to the larger time T , this approximation

is even better.

62

4.7. Experimental Evaluation

Using the above approximations into Eq. 4.31, we finally get:

E [nM] = M ·
[

(1−δr)rκ− (1−δr)
r
R β

]
·σ

= r ·T ·
[

(1−δr)rκ− (1−δr)
r
R β

]
·σ

which implies the lemma’s statement.

Instead of the approximation for the sampling probability, we could use a similar approach

to the one that was followed for the derivation of Ineq. 4.20 in Section §4.7.6, to find an

lower bound for E [nM] using Jensen’s inequality: E [nM] ≥
[

(1−δr)rκ− (1−δr)
r
R β

]
However, as

showed in our experiments, due to the fast ergodic convergence this bound is tight enough

that an equality can be used instead of inequality.

63

5 Topology-obfuscation reporting

In this chapter, we describe how to achieve goal G2: the traffic receipts that a domain emits

should not disclose information about the domain’s internal topology. Internet service

providers typically consider their internal topology to be private information. Therefore,

we study "topology-discovery" attacks, where the monitor (or any adversary who has access to

the same information as the monitor, e.g., a government that subpoenas the receipts collected

by the monitor) tries to use the receipts emitted by a domain in order to reverse-engineer

the domain’s internal topology. Starting from the observation that internal topology can be

revealed through the diversity of intra-domain path delays, we design receipts that obfuscate

this information. A key challenge we face is that topology obfuscation requires a special kind of

receipt manipulation, which is something that our incentive-compatible reporting (Chapter 3)

was designed to penalize. We show that it is possible to obfuscate topology and at the same

time emit receipts that enable the monitor to make correct decisions and yield correct domain

ratings.

First, we state our trust model (§5.1). Then we describe our general approach (§5.2) and two

specific algorithms that implement it (§5.3). We close with a brief experimental evaluation

(§5.4).

5.1 Trust model and problem statement

The receipts that a domain emits can leak information that is otherwise private: It has been

shown that an entity with access to measurements of a network’s paths can use network tomog-

raphy to infer the network’s topology [30, 29, 19, 27, 57]. Today, obtaining such measurements

is typically hard, as it requires coordination and trust between large numbers of end-users.

Our transparency system, however, changes this, as it requires the participating domains

themselves to publish measurements of their network paths.

In the context of this chapter, the monitor (or any adversary who has access to the same infor-

mation as the monitor) may misbehave by launching “topology-discovery” attacks: consider

65

Chapter 5. Topology-obfuscation reporting

the receipts that a domain emits and use network tomography in an effort to infer the domain’s

internal topology. We assume that the monitor uses a perfect tomographic algorithm: if a

domain emits correct receipts as described in the last two chapters, the monitor correctly

reconstructs the domain’s internal topology without error. We make this assumption because

we want to base our solution on fundamental weaknesses of network tomography that pose

hard limits on how well an adversary can infer network topology, as opposed to imperfections

of particular tomographic algorithms.

Given this trust model, we want to design an algorithm for producing receipts that enables the

monitor to make correct decisions (as specified in Chapter 3), but prevent the monitor from

inferring internal domain topology.

We restate the assumption from Section §1.5 that is relevant to this chapter: Domains know

the true loss and delay of their own inter-domain links. For any given aggregate G and any

given domain z on G ’s path, the neighbor domains of z know the true loss/delay performance

of their inter-domain link with z with respect to G’s packets.

5.2 Approach

In this section, we describe our approach. First, we describe how topology inference works

(§5.2.1) and how we can prevent it in principle (§5.2.2). Then, we explain the rationale behind

our algorithms (§5.2.3).

5.2.1 Topology inference

Topology inference exploits the diversity of the pairwise similarities (either covariances or

correlations) of network-path delay vectors. An (intra-domain network) path is defined by the

pair of its entry and exit nodes. The delay vector of a path is the vector of the delays experienced

by the sequence of sampled packets that entered and exited, respectively, at these nodes.

Consider the topology in Fig. 5.1. Packets entering the domain at node a and exiting at either

b

a

c

R

Domain

Figure 5.1 – Example of topology inference on a simple logical topology.

66

5.2. Approach

node b or node c travel along the same path until router R. Consider two packets that enter

back-to-back at a and exit, respectively, at b and c . Topology inference assumes that these two

packets experience highly correlated delays before router R (because they encounter the same

network conditions) and uncorrelated delays after router R (because they follow different

paths after R). Given these assumptions, the covariance of the path delays of back-to-back

packets that follow paths a,b and a,c leaks information about the amount of shared physical

topology between the two paths. Covariance, however, is sensitive to the delay variances of the

involved paths. Hence, topology-inference algorithms estimate the "pairwise similarity" (the

amount of shared physical topology between two paths) based on the correlation coefficient

of the delay vectors of the two paths: cor r ({a,b}, {a,c}) = cov({a,b},{a,c})�
var ({a,b})var ({a,c})

.

Given the pairwise similarities of a domain’s paths, a topology-inference algorithm proceeds

in two steps: First, for each set of paths with a common entry node, it reconstructs the likeliest

tree topology based either on agglomerative clustering [27, 57, 16, 30, 29] or maximum

likelihood [19]. Agglomerative clustering resolves the hierarchical clustering of a set of objects

with pairwise similarity values by finding the maximum similarity element and merging the

rows/columns of the similarity matrix corresponding to those two end-hosts, then finding

the next maximum element and merging those rows/columns of the similarity matrix to the

new maximum element. In contrast to clustering strategies, maximum likelihood techniques

use a global maximum-penalized likelihood criterion for topology identification. Second, the

algorithm merges all the reconstructed trees to reconstruct the entire topology [20].

5.2.2 Topology Obfuscation

Our approach is to alter the timestamps of (some of) the domain’s emitted receipts, so that

any pairwise similarities that the monitor might compute are negligible. By doing so, we target

the fundamental reason that enables topology inference, which is the existence of different

pairwise similarities between network path delays. Alternatively, we could have exploited the

sources of error of specific topology-inference algorithms. However, a domain cannot know in

advance which algorithm will be used to infer its topology. By reporting pairwise similarities

(close to) 0, it ensures that any such algorithm will fail.

We face two challenges:

(1) Our solution must scale with the number of the domain’s intra-domain paths. This pre-

cludes a straightforward solution that considers all path pairs and all possible timestamp

changes (and tries to find one that makes all pairwise similarities 0). Instead, we design an

obfuscation algorithm that can be applied individually to each path or flow.

(2) Our solution must not penalize domains for obfuscating their topologies. In Ch. 3, we

designed decision and rating functions precisely to penalize domains that manipulate their

receipts. Hence, we need a solution that somehow enables domains to change the timestamps

on some of their receipts without affecting the decision and rating functions, hence without

getting penalized.

67

Chapter 5. Topology-obfuscation reporting

Algorithm 4 ChangeTimestamps (flowID)

Ri all receipts for flowID that initially computed by entry node i
Ro all receipts for flowID emitted by exit node o
R′

i all new receipts for flowID emitted by entry node i
Obfuscate() algorithm that creates topology-obfuscation (altered) delay vector
j index for the delay vector

1: delaySamples ← {}
2: for each ro ∈Ro do
3: Find receipt ri from node i with ri.digest = ro.digest.
4: delaySamples(j) ← ro.timestamp− ri.timestamp
5: j ← j +1
6: end for
7: delaySamples′ ← Obfuscate(delaySamples)
8: for each ro ∈Ro do
9: Find receipt ri from node i with ri.digest = ro.digest.

10: ri.timestamp ← ro.timestamp−delaySamples′(j)
11: j ← j +1
12: end for
13: Output R′

i and Ro.

Alg. 4 presents our “altered-timestamps” approach: It takes as input the sequences of the

true receipts Ri and Ro that a domain’s entry node i and exit node o would emit w.r.t. flow F ,

and it outputs the sequences of receipts that the two nodes should emit in order to obfuscate

the domain’s internal topology. For each receipt that the two nodes compute for the same

sampled packet, Alg. 4 computes the intra-domain delay for that packet and adds it to the

delay vector delaySamples (lines 1-6). Then, an Obfuscate() algorithm alters the elements of

the delay vector so that they leak no information about the domain’s internal topology, i.e., the

covariance between this delay vector and the delay vector of any other flow that exited the

domain from another exit node is close to 0 (line 7). Finally, Alg. 4 alters the timestamps of the

entry node’s receipts, such that the sequence of sampled packets appear to have experienced

the obfuscating delays delaySamples′ (lines 8-13).

5.2.3 Rationale

Given a flow F , Alg. 4 changes the timestamps emitted by the flow’s entry node. We made this

choice for two reasons:

First, by hiding the true entry timestamps from the monitor, we prevent it from identifying

the packets that would be most helpful for topology inference. Even through the monitor has

access to all the receipts from all the flows observed by a domain, if it does not know the true

entry timestamps, it cannot identify packet pairs like the one in Fig. 5.1 (packets that enter the

domain back-to-back at the same entry point and exit at different points).

68

5.3. Solution

Second, changing only the entry timestamps is simpler, in that each change affects the per-

formance of a single inter-domain link in a predictable way. The alternative would be to

change both the entry and exit timestamps, which would affect the performance of both of the

domain’s inter-domain links, hence the ratings of both of the domain’s neighbors. Controlling

the impact of the change on the ratings of all the involved domains would require complex

coordination among the domains.

We discuss the Obfuscate() algorithm in the next section, but state here the conditions that it

needs to satisfy: The last and most important point is how the algorithm works.

1. Applying Obfuscate() to each flow observed by a domain should make the pairwise

covariances of all flow delay vectors be (close to) 0. This is equivalent to the following

condition: once normalized such that their means are zero, the altered delay vectors of

all flows should form an (almost) orthogonal basis.

2. Obfuscate() should not significantly impact the monitor’s decisions and the domains’

ratings. This precludes straightforward solutions, e.g., based on Gram-Schmidt orthogo-

nalization.

5.3 Solution

We present two algorithms for topology obfuscation that are built on scrambling: they take

as input a vector of intra-domain delays experienced by a sequence of sampled packets; and

they produce as output a permutation of these delays. Hence, by construction, a domain that

uses our algorithm alters its receipt timestamps in a way that does not affect the intra-domain

delay distribution that can be estimated from the domain’s receipts. This approach has two

advantages related to our condition (2): First, it does not affect the monitor’s delay estimates

(mean, variance, percentile) of any intra-domain path. Second, it does not affect the monitor’s

mean delay estimate of any inter-domain link. However, depending on how the scrambling

occurs, it may affect the monitor’s delay variance and percentile estimates of inter-domain

links.

We avoid random scrambling because it does not scale. A randomly chosen permutation of

the input delays will most likely not meet our two conditions: it will not make all the pairwise

similarities close to 0, and it will affect the monitor’s delay variance estimates of inter-domain

links. Hence, to meet our two conditions, we would need to consider all pairs of flows and

search over all possible combinations of permutations. If the length of the input delay vectors

is N (equal to the sample size) and the number of flows is NF , then the complexity of this

search is O
(
N2 · (NF

2

))
.

To reduce complexity, each algorithm scrambles its input delay vector such that the outcome is

as close as possible to another, specially crafted vector. Let D be the input delay vector (which

is computed from the true receipts of the entry and exit nodes), and Q be another, specially

69

Chapter 5. Topology-obfuscation reporting

crafted vector of equal size. Also, let C : D ×Q �→R be a cost function for the assignment.

Definition 5.3.1 (Assignment problem1). Given D, Q and C , find a bijection b : D �→ Q that

minimizes the aggregated cost:
∑

d∈D C (d , q).

The solution of the above problem assigns every element of D to an element of Q. Let D[j],

j = 1, . . . ,N , be the elements of D and Q[k], k = 1, . . . ,N , be the elements of Q. The minimizing

bijection of the solution is just a mapping of the indices j to the indices k. As a result, we obtain

a new order of the elements of D that “follows” the indices k of Q. This permuted version of D ,

which we denote with D ′, is the output of the Obfuscate() algorithm, i.e. Obfuscate(D) = D ′. We

say that Obfuscate(D) “maps” its input vector D to vector Q with minimum cost, by reordering

its elements.

In our first algorithm, Obfuscate1(), vectors D are mapped to vectors Q that are chosen from

an orthonormal basis (i.e. meet our condition (1) by construction) and we design the cost

function C such that D ′ is as close as possible to a chosen Q. In our second algorithm,

Obfuscate2(), each vector D is mapped to a vector Q that contains the delays between entry

node i ’s predecessor node (the exit node of the previous domain) and exit node o of the path

which is related to D . And we design the cost function C such that the output vector comes as

close as possible to meeting our conditions (1) and (2). We can minimize the cost function

in polynomial time using the standard solution to the assignment problem: the Hungarian

algorithm [48], which has complexity O(N3).

5.3.1 Obfuscate1(): Assignment to Fourier orthogonal basis

This algorithm maps the input delay vector to a vector that belongs to the Fourier orthogonal

basis. So, for each input delay vector D, Q is a real-time cosine signal of frequency f , where

f = 0, . . . ,N −1. The frequencies are chosen randomly but differently for each D. The cost

function C is the L2-norm of the vector (D −Q). Hence, the assignment algorithm minimizes

the mean square error of reporting D ′ = Obfuscate(D) instead of Q: since Q is a cosine of a

single frequency, D ′ is a noised version of Q, where the noise is minimized.

The intuition behind this algorithm is the observation that the covariance of two delay vectors

is almost equivalent to their dot product (they differ only by a fixed factor 1/N). Given that each

scrambled vector is "close" to a vector that belongs to the basis (a cosine signal with a given

frequency), then the covariance of any two scrambled vectors will be "close" to 0.

Any orthogonal basis could work; we chose the Fourier basis because of its flexibility and its

well-established theory: Using Discrete Fourier Transforms (DFT), we can design the basis to

contain only a small set of frequencies that are far apart from one another such that any noise

1Another way to formulate the assignment problem is by considering a complete bipartite graph with N vertices
corresponding to the elements d of the delay vector D, N vertices corresponding to the elements q of special
vector Q, and where each edge has a non-negative cost C (d , q). Then, an assignment is a perfect matching with
minimum cost.

70

5.4. Experimental evaluation

effect is amortized. Also, given any two delay vectors, D ′
1 and D ′

2, we can reason about their

dot product (and their covariance) in the time domain 〈D ′
1,D ′

2〉 by looking at the product of

their DFT spectra (Parceval Theorem).

5.3.2 Obfuscate2(): Assignment to extended-path delays

In this algorithm, if the input vector D contains the delays w.r.t. flow F between node i and

node o, the vector Q contains the delays w.r.t. F between node i ’s predecessor and node o.

We specify the cost function as a matrix where element [k, j] indicates the cost of assigning

element D[j] to element Q[k]: C (D,Q)[k, j] =
((

Q[k]−D[j]
)2 − var (Q −D)

)2 +D[j] ·D[k].

The intuition behind this algorithm is the following: with Obfuscate2() we want to achieve

obfuscation without affecting the inter-domain link delay variance var
(
X ′), according to

our condition (2). However, we cannot add directly var (X)− var
(
X ′) to the minimization

objective of the assignment problem, because X ′ depends on D ′, which is the assignment

solution; we need a vector that remains unchanged by obfuscation. The only vector that has

this property and is related to both X and X ′ is: Q = (D +X) = (
D ′ +X ′).

The first term of the cost function
((

Q[k]−D[j]
)2 − var (Q −D)

)2
helps minimize the change

in the estimated variance of the inter-domain link between node i ’s predecessor and node i

that is due to obfuscation; this minimizes the impact of obfuscation on the decision and rating

functions, according to our condition (2). The second term of the cost function (d [j] ·d[k])

helps minimize the dot product between true and scrambled delay vectors, hence make the

two as less correlated as possible; this targets to achieve close-to-zero pairwise similarities,

according to our condition (1).

5.4 Experimental evaluation

We now confirm that our two obfuscation algorithms indeed obfuscate the pairwise similarities

between delay vectors, i.e., the information that enables topology inference.

We use synthetic tree topologies of different sizes and shapes: complete balanced binary trees,

complete unbalanced binary trees and ternary trees of depth 2. In each topology, we assign to

each link a fixed propagation delay and a random queueing delay per packet. Queuing delays

are chosen from a Weibull distribution with with scale parameter 0.5 and a shape parameter

that varies uniformly in the interval [0.6,0.82] for each link, according to the analysis of single-

hop queuing delays in [51].

In each experiment, we emulate the scenario where a sequence of packets from multiple flows

enter domain z at the same entry node i (the root of one of our tree topologies). Each flow

follows a different path through z and exits at a different node (a leaf of the topology). For each

flow F , domain z runs Alg. 4, which alters the timestamps of F ’s receipts emitted by node i .

71

Chapter 5. Topology-obfuscation reporting

This affects the monitor’s delay estimates for: (a) The inter-domain link that F traverses before

entering z. We denote by XF and X ′
F , respectively, the original and scrambled vectors of this

inter-domain link w.r.t. F . (b) The intra-domain segment that F traverses within z. We denote

by DF and D ′
F , respectively, z’s original and scrambled intra-domain delay vectors w.r.t. F .

At the end of each experiment, we compute how useful our obfuscation algorithms were in pre-

venting topology inference. In particular, we compute the covariance of each pair of original

delay vectors DFi and DF j and compare it to the covariance of the corresponding scrambled

delay vectors D ′
Fi

and D ′
F j

. Every time the original vectors have significant covariance while

the scrambled vectors do not, our obfuscation algorithms were useful. Also, to measure the

impact on the inter-domain link we compute and compare the variances of each XF and X ′
F .

We consider two types of scenarios:

[I] XF is independent from DF . In this case, the inter-domain delays are chosen similarly to

the intra-domain delays, based on a Weibull distribution.

[II] XF is correlated to DF with correlation coefficient ρ ∈ (−1,1).

The purpose of the type [II] scenarios is to explore the limits of Obfuscate2(). Recall that

our second obfuscation algorithm maps each flow’s original intra-domain delay vector DF

to vector (XF +DF). Even though the algorithm tries to find a mapping such that D ′
F is not

correlated to DF (through the second term of its cost function), this becomes increasingly

hard as the correlation between DF and XF increases. Hence, we would like to assess the

algorithm’s performance as a function of the correlation coefficient ρ. In practice, we expect

ρ < |0.2|, i.e., DF and XF to be loosely, if at all, correlated, because of the high rate and diversity

of the traffic that crosses inter-domain links.

All our topologies yielded similar results. Hence, we present results from only one topology: a

complete balanced tree of depth 5, with 31 links, 16 paths, and one flow traversing each path.

The mean intra-domain propagation delay was set to 50msec. The mean and variance of each

inter-domain delay vector XF were set to 10%, respectively, of the mean and variance of the

corresponding intra-domain delay vector DF .

Figs. 5.2 and 5.3 depict our results in scenario [I]. In the upper two figures, we plot the co-

variances and correlation coefficients of 8 flow pairs that share the longest path inside the

tree topology, i.e., they have 4 common links and only the last link before their exit is differ-

ent for each flow. These flow pairs are the hardest to obfuscate, because their initial delay

vectors are the most highly correlated. In the third figure, we plot the inter-domain delay

variances XF and X ′
F for each flow. We see that Obfuscate1() performs better with respect to

our condition (1), i.e., obfuscating internal domain topology: the correlation between the

scrambled intra-domain delay vectors is always close to 0. This is not the case for Obfuscate2(),

although it still reduces correlation significantly—the correlation coefficient of the scrambled

intra-domain delay vectors is below 0.2 in 50% of the cases. On the other hand, Obfuscate2()

72

5.4. Experimental evaluation

performs better with respect to our condition (2), i.e., preserving the variance of inter-domain

links: the variance of each scrambled inter-domain delay vector X ′
F follows closely that of the

original delay vector XF . This is not the case for Obfuscate1(), which increases the estimated

inter-domain link variance by 3-4 times.

Figs. 5.4 and 5.5 depict our results in scenario [II] with respect to a particular flow pair [F 1,F 2].

Flows F 1 and F 2 share one of the longest common intra-domain paths and exit the tree

topology from two nodes that are siblings. In the upper two figures, we plot the covariance and

correlation coefficient of pair [F 1,F 2] as a function of the intra- and inter-domain correlation

coefficient ρ. In the third figure, we plot the delay variances of flow F 1: XF 1 and X ′
F 1. We see

that Obfuscate1() obfuscates well independently from inter/intra-domain correlation, whereas

Obfuscate2() obfuscates increasingly worse when ρ > 0.4.

In the end, there exists a fundamental trade-off between truthfully reporting a domain’s

performance and obfuscating its internal topology: To obfuscate internal domain topology, we

need to hide certain information about intra-domain delay. We can do this without affecting

the monitor’s mean delay estimates, but we need to affect some of the monitor’s delay-variance

estimates. The question is which ones. We chose to not affect the estimated delay variance

of intra-domain segments (in order to preserve the incentives of our decision mechanism).

But this means that we need to affect the estimated delay variance of inter-domain links. Our

two obfuscation algorithms make different choices: Obfuscate1() obfuscates as well as it can

without worrying about inter-domain delay variance. Obfuscate2() tries to preserve inter-

domain delay variance as much as possible, but obfuscates less well. The two of them together

illustrate the best that can be done while considering only the principle behind topology

inference (the pairwise similarities of delay vectors). We do think that better obfuscation

algorithms can be designed, but that would require considering specific topology-inference

algorithms and exploiting their limitations. We leave this to future work.

73

Chapter 5. Topology-obfuscation reporting

[F1,F2] [F3,F4] [F5,F6] [F7,F8] [F9,F10] [F11,F12] [F13,F14] [F15,F16]
0

2

4

6

8
covariances

initial
Obfuscate1()

[F1,F2] [F3,F4] [F5,F6] [F7,F8] [F9,F10] [F11,F12] [F13,F14] [F15,F16]
0

0.2

0.4

0.6

0.8

1
correlations

initial
Obfuscate1()

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16
0

5

10

15

20

25
variances

initial
Obfuscate1()

Figure 5.2 – Results of Obfuscate1() in scenario I.

[F1,F2] [F3,F4] [F5,F6] [F7,F8] [F9,F10] [F11,F12] [F13,F14] [F15,F16]
0

2

4

6

8
covariances

initial
Obfuscate2()

[F1,F2] [F3,F4] [F5,F6] [F7,F8] [F9,F10] [F11,F12] [F13,F14] [F15,F16]
0

0.2

0.4

0.6

0.8

1
correlations

initial
Obfuscate2()

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16
3

3.5

4

4.5

5

5.5

6

6.5
variances

initial
Obfuscate2()

Figure 5.3 – Results of Obfuscate2() in scenario I.

74

5.4. Experimental evaluation

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

co
va

ria
nc

e

initial
Obfuscate1()

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

co
rre

lat
ion

initial
Obfuscate1()

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
5

10

15

20

25

30

35

va
ria

nc
e

initial
Obfuscate1()

Figure 5.4 – Results of Obfuscate1() in scenario II.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

co
va

ria
nc

e

initial
Obfuscate2()

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

co
rre

lat
ion

initial
Obfuscate2()

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
5

5.5

6

6.5

7

7.5

8

8.5

va
ria

nc
e

initial
Obfuscate2()

Figure 5.5 – Results of Obfuscate2() in scenario II.

75

6 Related Work

Network confessional (same problem, similar approach):

The closest work to ours is Network Confessional [14], which shares the same goal about

incentive-compatible and unbiased reporting, but offers no privacy-preserving guarantees

for the reporting domains. Network Confessional also involves consistent packet sampling

and relies on a basic idea of delayed disclosure to avoid sampling bias: when a network node

observes a packet p, it cannot immediately determine whether it should sample p or not,

because that information is disclosed by subsequent traffic; by the time disclosure happens,

the node has normally forwarded p, hence cannot treat it according to its sampling fate.

Basic Delayed Disclosure (which is how we call the sampling algorithm proposed in [14], to

differentiate it from ours) is promising, however, an analysis of the algorithm reveals flaws:

First, vulnerability to subtle prioritization attacks (§4.7.4), where a misbehaving network

buffers packets long enough to learn their sampling fate with a non-trivial probability, yet

short enough not to introduce significant buffering delays; we show that such an attack

enables a misbehaving network to claim significantly less loss and delay (as much as 41% in

our experiments) than it actually introduces. Second, in many realistic scenarios, achieving

good accuracy in a timely manner requires many tens of MBs of data-path memory per 10Gbps

of forwarding capacity (§4.6); at this cost, we might as well use a completely different approach

from sampling, e.g., maintain explicit per-flow loss and delay information on the data-path,

which is not vulnerable to prioritization attacks in the first place.

Our contribution is a sampling algorithm that builds on basic delayed disclosure, but corrects

these flaws: First, it is provably robust to prioritization attacks (§4.4). Second, it provably uses

the minimum amount of data-path memory necessary for achieving a desired accuracy in a

desired time interval (§4.5). As a result, it achieves good accuracy in a timely manner, while

requiring a modest amount of resources, affordable by modern networks; for instance, in

the same scenario where basic delayed disclosure requires many tens of MBs of data-path

memory per 10Gbps of forwarding capacity, our algorithm requires only a couple of MB—an

order of magnitude less (§4.6). To achieve these properties, we enhance delayed disclosure

77

Chapter 6. Related Work

with carefully regulated “quiet periods,” during which no sampling may occur, and with a

new disclosure process, which is continuously adapted to the observed traffic. These two

techniques allow us to control the pace of disclosure, such that we emit no more receipts than

necessary and make prioritization attacks ineffective: by the time a misbehaving network has

learned the sampling fate of a packet, it has buffered—hence delayed—the packet for so long

that it cannot benefit from prioritization any more. Our experimental evaluation confirms our

analysis using real traffic traces (§4.7).

The Network Confessional paper assumed that prioritization attacks would be too expensive

to implement in practice, but we disagree; in fact, without proper defense, even buffering

for a few msec can yield a significant benefit to a misbehaving domain. The paper did not

offer any analytical security or efficiency argument about how much such an attack can

affect the monitor’s estimates. This assumption has deep implications for the system’s design:

If a node never buffers packets, then there is no need for quiet periods; as a result, the

nodes need a much smaller receipt buffer, which in turn removes the need for adaptive

disclosure rates. Moreover, the bias/accuracy analysis becomes trivial (one just needs to

make the receipt buffer large enough to avoid frequent overflows). In short, if we ignore

prioritization attacks, the problem becomes significantly simpler. The Network Confessional

paper acknowledges this issue and references a technical report that discusses it; however,

even that report does not include a bias/accuracy analysis nor offer a complete, practical

solution (for instance, it sketches a solution that requires 200MB of fast memory for a 10GigE

link, whereas we require less than 5MB for a 40GigE link). The core of our contribution lies

in our analysis of why/how our disclosure process with properly regulated quiet periods

and adaptive disclosures penalizes prioritization attacks and achieves a target accuracy with

modest resources.

Secure reports for fault localization (same problem, different approaches):

Apart from network confessional, delayed disclosure has been mentioned twice in the context

of packet sampling for fault localization [60, 61], but none of these proposals offers in-band

disclosure process: sampling nodes are explicitly told which packets to sample, either by

end-hosts or by a central controller.

Zhang et al. were the first to mention delayed disclosure, as part of their PAAI-1 proposal [60].

However, they did not explore the idea in depth or include any bias/accuracy analysis; they

only proposed that an end-host that sends out a packet and wants this packet sampled by the

network should send an explicit sampling request some time after the packet: upon receiving

a packet, a node computes a traffic receipt, stores it in a receipt buffer, and starts a timer; if the

node receives an explicit request to sample this packet before the timer expires, it emits the

traffic receipt and stops the timer; when a timer expires, the node discards the corresponding

traffic receipt. Traffic sources can then locate where packets got lost or corrupted by examining

traffic reports from the nodes. This is conceptually simple, but impractical to implement in

our context: a node located at the Internet core may observe millions of packets per second,

78

and we are not aware of any network hardware with the capability to start and stop timers

with that frequency. Also, involving the end-hosts would require upgrading the end-hosts,

which would make deployment significantly harder.

Subsequently, Zhang et al. proposed a packet sampling technique where routers store packet

fingerprints and later a central controller sends explicit sampling requests to all the sampling

nodes by distributing a key that determines a sampling function [61]. The sampled packet

fingerprints are then sent to the central server. Their approach was designed for a local network

and would face scalability concerns if deployed in an inter-domain setting. We cannot imagine

a secure, scalable system where backbone routers handle controller disclosure messages for

individual packets. Also, the paper did not include any analysis that combines misbehavior,

accuracy and resources.

Beyond delayed disclosure, there exists extensive related work on fault localization [12, 32, 13,

62, 15]:

Packet Obituaries [12] is a proposed transparency framework where networks produce and

store a receipt for every single packet they observe. A modest extension of that protocol

would be conceptually straightforward— no sampling nor any packet processing beyond

receipt computation and management: each node could compute a receipt for every observed

packet. Then the monitor could be able to perform all its decisions w.r.t. aggregate G , with

better accuracy than our sampling algorithm, because it is able to compute the summarized

statistics on the entire packet population and not only a sample of it. Bad-receipt attacks can

be exposed on a per-packet basis: e.g. if node i computed a receipt for the packet, and node

o did not; then the monitor detects an inconsistency, it notifies both involved nodes (hence,

if the inconsistency is the result of one node being detectably faulty, that node is exposed to

its peering node). Neutrality violations are detected with probability 1, because the monitor

computes the means accurately and the means cannot be forged because of the exposure to

the neighbors. Although the extended version of Packet Obituaries may be appealing, it makes

sense only in low-rate environments and cannot be used in our context. It requires storing

and disseminating per-packet receipts for the entire traffic, which yields a forbidding resource

overhead in the high-rate environments that we consider (it requires an extravagant amount

of fast on-path memory–approx. 400 MB of SRAM for a packet rate of 14.88 Mpps) and leaves

no room to a participating domain to tune, according to network conditions the amount of

resources it devotes to reporting its performance. Even if we configured the network to emit

per-packet receipts only for one aggregate G , the resulting overhead could still be forbiddingly

high; for instance, if G is “all traffic from content provider X that transits through ISP Y ” or

“all BitTorrent traffic that transits through ISP Y ,” having each of Y ’s nodes emit a receipt for

every single such packet would be an overkill.

Another family of proposals is based on aggregated performance reports for entire aggregates,

as seen in the “Secure Sketch” [32], AudIt [13], and ShortMAC [62] papers. Such reports

provide approximate information about the traffic aggregate, whereas a sample provides exact

79

Chapter 6. Related Work

information about a specific packet. In the “Secure Sketch” protocol [32], a node aggregates

all the observed traffic into a space-efficient data structure and reports it to the source. In

AudIt [13], ISPs export performance information – aggregated at the granularity of TCP flows –

back to the source. In ShortMAC [62], the routers maintain per-flow counters to record the

number of packets originated from a given source and at the end of each measurement epoch,

the source retrieves the counter reports from all routers and the destination, via a secure

channel, to perform fault localization. These techniques were not designed with our goals and

constraints (no pre-defined aggregates or per-aggregate state) in mind. It is unclear: (a) how

networks would agree on which aggregates to produce receipts for, and (b) what the resulting

memory requirements would be, given that all these techniques require per-aggregate or

per-flow state. Furthermore, their coarser estimation granularity enables a node to hide

preferential treatment behind the aggregated performance metrics (e.g., average delay). On

the contrary, random sampling does not require a global consent of the networks on which

traffic aggregates to report on, it inherently covers a wide variety of them. The monitor can

therefore define the aggregates as necessary, potentially with help from the source nodes,

but without affecting the operation of the rest of the network. Also, if properly enhanced

with retro-active mechanism (as we showed in Chapter 4), sampling can resist to preferential

treatment.

Subsequent work brought formal rigor and security guarantees to the idea of networks report-

ing on their own performance [15], even when intermediate nodes on the path misbehave.

This proposal shows that any fault can be localized to a link between two subsequent reporting

nodes—even when there is no centralized monitor, and networks may tamper both with

packet contents and with the receipts produced by other networks. However, it focuses on

fault localization for specific “paths” (in our context, a path would correspond to a flow) and

require nodes to keep per-path state. The authors recognize that their results require active

cooperation (i.e. maintaining keys and agreeing on, and performing, cryptographic protocols)

from all of the intermediate nodes along the path. This may be problematic in the Internet,

where links operate at extremely high speeds, and intermediate nodes are owned by competing

business entities with little incentive to cooperate.

In addition to the differences described above, our work is different from all prior work on

fault localization [12, 13, 14, 15, 32, 60, 61, 62] in the way we approached bad-receipt attacks:

All proposals argue that the best a domain can achieve with a bad receipt attack is to shift

the blame for a lost or delayed packet to an inter-domain link; since an inter-domain link is

shared responsibility, the attack does not exonerate the culprit, hence there is no incentive

for a domain to launch it. For example, suppose domain y delivers packet p to domain x,

which drops it; both y and x sample p, but x suppresses the receipt produced for p at its

entry point, i.e., pretends that it never received p; since y produces a receipt for p but x does

not, the monitor concludes that p was dropped on the inter-domain link between y and

x. Whenever the monitor concludes that an inter-domain link between x and y introduces

certain loss/delay in aggregate G , the monitor attributes this loss to both x and y .

80

We partially disagree with the “shifting-responsibility’ argument: while it holds when the

monitor cares only about the domains’ loss rate, things become more complicated when

reasoning about each and every packet with a Bernoulli random variable is not possible and

the distribution being estimated is not known in advance; which is what happens when the

monitor cares also about the domains’ delay. The problem is that the accuracy of a delay

estimate that the monitor computes depends on the variance of the delay distribution, and as

we proved in Chapter 3, a bad-receipt attack w.r.t. the variance is not always externalized to the

inter-domain links. Moreover, collusion attacks or other sophisticated attacks that manipulate

the summarizing delay estimates without manipulating each and every receipt, make this

problem more complex.

Instead of adopting the shifting-responsibility argument as is, we analyzed bad-receipt at-

tacks in a structured way that was based on the ideas of incentive-compatible mechanism

design [49]: we identified the decisions about loss and delay in which the monitor is interested,

and designed the decision mechanism in such a way that each domain’s reporting w.r.t. the

estimates is always truthful. In this way, externalization (which we term that we use for the

shifting-responsibility idea) was proved to be only the one part of the solution.

Coordinated measurements (different problem, related approaches):

Our work shares common ground with proposals for coordinated traffic measurements inside

one domain [25, 40, 43], which fulfill different objectives: In [25], Duffield et al propose

Trajectory Sampling an implicitly coordinated method among routers for consistent sampling

and direct inference of packet trajectories. The sampling decisions are based on deterministic

hash functions over packets’ invariant part (i.e. those bits that do not change from bit to bit).

To reduce collection overhead, the authors use a second hash (instead of compression) to

label the huge variety of trajectories with a few bits and parameterize the hash functions in

a way that maximizes the expected fraction of unambiguous labels. In [40], Kompella et al

explore the problem of measuring fine-grained latency and loss between any sender A and a

receiver B (segmented measurement). They propose the Lossy Difference Aggregator (LDA), a

low-overhead mechanism which aggregates timestamps of the sampled packets to overcome

the linear relationship between sample size and communication overhead. They make their

system resilient to packet loss using uniform consistent sampling similar to [25] and different

sampling probabilities in parallel. In [43], Lee et al propose Consistent NetFlow that utilizes

existing NetFlow architecture, which already reports the first and last timestamps per-flow,

and consistent sampling to ensure that two adjacent routers record the same flows. They

introduce a Multiflow estimator that approximates the intermediate delay samples from other

background flows to improve the per-flow latency estimates compared to the naive estimator

that only uses actual flow samples.

We build on the same idea of consistent sampling that all these proposals use and that was

introduced (to the best of our knowledge) in [65]: a packet is either sampled by all or none of

the nodes inside a network; sampling is performed by computing a digest over the immutable

81

Chapter 6. Related Work

packet content. Also, the estimation processes that we use for the monitor are quite similar

to theirs. However, that work was designed for single-domain management. Its target was to

aid traffic engineering by also addressing the accuracy/overhead trade-off: reduce the data

of traffic reports to meet processing, storage and bandwidth constraints, on the one hand,

and supply sufficiently accurate measurements for applications, on the other. None of those

proposals considers untrusted sampling nodes and therefore cannot be used in adversarial

environments, especially where prioritization attacks are possible.

Other relayed work on network measurements (common vision):

We share common vision with another interesting domain called network provenance [63, 64],

where a set of network nodes maintain a distributed provenance graph that records interesting

network events—potentially including packet arrivals and departures—and can be used for

diagnosis and forensics. However, this approach is mostly suitable for the control plane due

to its high overhead. We believe that our work could help the system scale: recording every

single packet arrival and departure is expensive; instead, the provenance graph could record

only arrivals and departures of a few representative packets—and our retro-active sampling

algorithm would ensure that these are indeed representative.

Last, there two more measurement systems that allow network diagnosis: Handigol et al. [35]

propose NetSight, an extensible platform that captures histories of every packet’s journey

through the intra-domain network and enables applications to concisely and flexibly re-

trieve packet histories of interest; but, they do not consider malicious components. Liu et al.

propose UnivMon as a universal packet monitoring function [46], however, they assume a

non-adversarial environment.

Network tomography for topology inference:

For our work on topology obfuscation, we needed to identify the common ground of all the

state-of-the-art approaches in the area of network tomography for topology inference [30,

29, 56, 19, 28, 26, 27, 57]. All proposals start from the same fundamental idea: the level of

covariance between the delays experienced from a series of back-to-back packets that fol-

lowed two different intra-domain paths, gives information about the amount of shared logical

topology between those paths. And then, they provide ways to turn this information into

logical-topology reconstruction in two steps: first they construct a tree topology between

any given node and the other nodes of the domain; second, the entire domain topology

is reconstructed with the help of tree-merging algorithms [20]. The first step of this pro-

cess is the one that the approaches differ, as some of them use an agglomerative clustering

algorithm [27, 57, 16, 30, 29], and some others use maximum likelihood techniques [19]. Ag-

glomerative clustering resolves the hierarchical clustering of a set of objects with pairwise

similarity values by finding the maximum similarity element and merging the rows/columns

of the similarity matrix corresponding to those two end-hosts, then finding the next maximum

82

element and merging those rows/columns of the covariance matrix to the new maximum ele-

ment. Maximum likelihood techniques use a global maximum-penalized likelihood criterion

for topology identification, which is a global optimality criterion as opposed to the suboptimal,

pair-clustering strategies.

Our topology-obfuscating algorithms targeted the covariances instead of the topology-reconstruction

techniques: We craft the transparency receipts such that their delay covariance is always close

to 0 for all the domain’s pairs of intra-domain paths, and thus leak no information about the

domain’s topology.

Mechanism Design (our basis for incentive compatibility):

We build our incentive-compatible reporting (Chap. 3) on the ideas of game-theoretic mech-

anism design [49]. Mechanism design is a subfield of economics that is concerned with the

question of how to incentivize agents (for us agents are the domains) to truthfully report their

private information, also known as their type. Given potentially non-truthful reports from the

agents, a mechanism (which in our case is owned by the monitor) determines a single joint

solution, and possibly additional monetary transfers to and from the agents. A mechanism is

said to be incentive compatible if it is always in the agents’ best interest to report their true

types. Our monitor’s decision function (§3.1) are similar to social choice functions: as a social

choice function aggregates the preferences of the different participants toward a single joint

decision, in the same way, our decision function aggregates the emitted information of the

participating domains toward a single decision about their performance. However, instead of

payments [34], the mechanism adds penalties to the domain’s rating/utility functions, so that

the domains maximize their utility by telling the truth.

More distantly related to our work from a game-theoretic perspective, is Regression Learning

studies that consider strategic agents [23, 53, 59, 17]: an analyst wants to construct a real-

valued function based on a training set of examples, where each example consists of an input

to the function and its corresponding output, but each agent holds as private information an

individual distribution over the input space and values for the points in the support of this

distribution, and measures the quality of a regression function with respect to this data. That

work offers more rigorous results than ours, but it is not applicable in our context. The goal of

the work is to do well with respect to a statistical estimate (e.g. the average) of the individual

points of view–not all of them–and it is often assumed that the precisions with which the

agents perturb their reported values are known to the analyst.

83

7 Conclusions

We proposed a network transparency system, where domains produce receipts for the traffic

they observe, and independent monitors collect each domain’s receipts and use them to

estimate the domain’s loss/delay performance and detect neutrality violations with respect

to various traffic aggregates. Our design was studied in an adversarial context, where both

domains and monitors may misbehave for different reasons: the domains may launch bad-

receipt or prioritization attacks, while the monitor may try to infer the domains’ topologies

using network tomography.

We proposed solutions that make the system robust to misbehavior:

First we proposed a performance and neutrality decision-making mechanism that is provably

robust to bad-receipt attacks, where domains manipulate their receipts to cause the monitors

make decisions that are to their advantage. Our mechanism was structured on the principles of

game-theoretic mechanism design, which enables truthfulness using payments. We designed

the monitors’ decisions such that the each domain’s performance rating includes loss/delay

estimates that the domain cannot control through its receipts and are worsen when the

domain launches a bad-receipt attack.

Second, we proposed a packet sampling algorithm that prevents the network node that

performs the sampling from treating the sampled packets preferentially. Our algorithm builds

on delayed disclosure—where the sampling function is disclosed to the sampling node with

a delay—and enhances it with quiet periods, during which sampling is disallowed, and a

disclosure process that adapts to each flow’s packet rate. These two techniques together

ensure that a misbehaving domain that tries to bias the sample to exaggerate its performance

instead provably worsens its perceived delay performance. Our algorithm can be configured

to provably emit enough receipts to achieve a desired accuracy within a desired time interval,

while using the minimum amount of data-path memory necessary—which ends up being a

few MB of data-path memory per 10Gbps of forwarding capacity.

Third, we proposed two receipt-generating algorithms that prevent tomographic approaches

85

Chapter 7. Conclusions

from inferring a domain’s topology. Our algorithms build on the idea of scrambling the

reported packet delays of each intra-domain path, so that all pairwise covariances of the path

delays are (close to) 0. This causes any tomographic approach to construct only direct logical

links among the domain’s nodes, which gives no information about the internal topology.

Also, since the sample delay distribution is reported truthfully, the quality of the monitors’

statistical estimation is not penalized.

Limitations and Reality Check

We state the limitations of our system in the form of critical questions:

Can we compute statistics for arbitrary aggregates? No. We can compute statistics for any

aggregate of significant volume, but not aggregates that consist of a few packets, e.g., a single

short TCP or UDP flow. To reason about the statistical significance of a loss estimate that is

based on sampling, we have to model the estimated loss as either i.i.d. or Gilbert, which is is

reasonable only for large aggregates.

Can we catch SLA violations against end-users? Yes, but that requires deploying nodes at the

user end, for instance, collocated with users’ DSL or cable modems. Involving the end-users is

unavoidable if we want to reason about their network experience. Even lightweight techniques

that do not require any in-network infrastructure [24, 54] do require active user participation.

In our examples and evaluation, we consider the scenario where the users of our system are

edge networks like eyeball ISPs or enterprise/campus networks.

Why would networks agree to produce receipts? Any entity—e.g., government or regulatory

body—that wants network innovation has an incentive to push for transparency [41]. If such

an entity has the authority to enact, e.g., neutrality regulations (and apparently many do [9]),

it also has the authority to require infrastructure that leads to transparency. All this aside, it is

possible that, once a low-cost transparency system is shown to be feasible, some ISPs will want

to participate in order to showcase their qualities, i.e., the market will drive deployment—but

we have not shown this.

How can the nodes be implemented? Either as a bump-in-the-wire appliance or integrated

in router linecards, potentially as a NetFlow or sflow extension. Our algorithm has standard

hardware requirements, e.g., hashing of packet headers and timestamp computation. We

describe a hardware-friendly implementation in our technical report.

How can the monitor be implemented? As a set of controllers, akin to a scalable SDN control

plane [6]: each controller collects receipts from specific nodes/domains, and each node knows

how to reach its controller and communicate with it securely. Such an implementation is a

non-trivial engineering problem, but there is nothing fundamentally new in implementing a

scalable logically centralized controller that collects reports from network nodes.

86

A Appendix

A.1 Basic Delayed Disclosure Algorithm

Algorithm 5 BasicDelayedDisclosure (p)

p̂ non-mutable content of packet p
Receipt() constructs a receipt
DiscHash() hash function
DiscRange subset of DiscHash’s range
Hash() hash function
Range subset of Hash’s range

1: rec′ ← Receipt(p̂,currentTime)
2: Add rec′ to receipt buffer.
3: if DiscHash

(
p̂
) ∈ DiscRange then

4: Emit receipt rec′.
5: for all receipts rec in receipt buffer with
6: rec.flowID = rec′.flowID do
7: Remove rec from receipt buffer.
8: if Hash

(
rec.digest,rec′.digest

) ∈ Range then
9: Emit receipt rec.

10: end if
11: end for
12: end if

See Algorithm 5.

A.2 Monitor Algorithm

See Algorithm 6.

87

Appendix A. Appendix

Algorithm 6 PerformanceEstimation (flowID)

Ri all receipts for flowID emitted by node i
Ro all receipts for flowID emitted by node o

1: intervalStart ← 0.
2: numPktsIn ← 0. numPktsOut ← 0.
3: delaySamples ← {}.
4: for each disclosure receipt ri

∗ in Ri do
5: intervalEnd ← ri

∗.t i me.
6: Output “Time interval:
7: intervalStart to intervalEnd”.
8: Remove ri

∗ from Ri.
9: Find disclosure receipt ro

∗ in Ro

10: with ro
∗.digest = ri

∗.digest.
11: if (none found) then
12: Output “No estimate: disclosure packet lost”.
13: continue
14: end if
15: Remove ro

∗ from Ro.
16: if (ro

∗.l ate) then
17: Output “No estimate: late disclosure”.
18: continue
19: end if
20: for each receipt ri in Ri

21: with ri.timestamp < ri
∗.timestamp do

22: Remove ri from Ri.
23: if ri

∗.timestamp− ri.timestamp > κ+μ then
24: ++ numPktsIn.
25: end if
26: end for
27: for each receipt ro in Ro

28: with ro.timestamp < ro
∗.timestamp do

29: Remove ro from Ro.
30: Find receipt ri from node i
31: with ri.digest = ro.digest.
32: if (none found AND ro

∗.timestamp− ro.timestamp > κ+μ) then
33: Output “Potentially inaccurate estimate:
34: reordering or jitter.”
35: else
36: ++ numPktsOut.
37: Add to delaySamples ro.timestamp− ri.timestamp.
38: end if
39: end for
40: Output loss estimate numPktsIn−numPktsOut

numPktsIn .
41: Output delay samples delaySamples.
42: intervalStart ← intervalEnd.
43: numPktsIn ← 0. numPktsOut ← 0.
44: delaySamples ← {}.
45: end for88

Bibliography

[1] Optimal Prediction (with Refreshers). (????). http://www.stat.cmu.edu/~cshalizi/mreg/

15/lectures/01/lecture-01.pdf

[2] 2005. FCC Fines Telecom that Blocked Vonage VoIP Calls. (March 2005). http://bit.ly/

1MokIA4

[3] 2009. Comcast SLA for Wholesale Dedicated Internet. (January 2009).

https://www.comcastwholesale.com/sites/default/files/service_level_agreement_

for_wholesale_dedicated_internet_sla07292014.pdf

[4] 2012. AT&T Faces Formal FCC Complaint for Blocking Cellular FaceTime Use. (Sept.

2012). http://bit.ly/1JYNxpt

[5] 2014. Netflix Performance on Verizon and Comcast Has Been Dropping for Months. (Feb.

2014). http://bit.ly/1URc8zR

[6] 2015. A Distributed and Robust SDN Control Plane for Transactional Network Updates.

In Proc. of IEEE INFOCOM.

[7] 2015. Regulation of the European Parliament and of the Council. http://eur-lex.europa.

eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015R2120&from=en. (2015).

[8] 2016. Cogent Network Services SLA Global. (September 2016). https://cogentco.com/

files/docs/network/performance/global_sla.pdf

[9] 2016. Status of Net Neutrality Around the World. (2016). https://www.thisisnetneutrality.

org/

[10] 2017. Cisco IOS NetFlow. (2017). http://www.cisco.com/c/en/us/products/ios-nx-os-

software/ios-netflow/index.html

[11] 2017. Verizon Global Latency and Packet Delivery SLA. (2017). http://www.

verizonenterprise.com/terms/global_latency_sla.xml

[12] Katerina Argyraki, Petros Maniatis, David Cheriton, and Scott Shenker. 2004. Providing

Packet Obituaries. In Proc. of ACM HotNets.

89

Bibliography

[13] Katerina Argyraki, Petros Maniatis, Olga Irzak, Subramanian Ashish, and Scott Shenker.

2007. Loss and Delay Accountability for the Internet. In Proc. of IEEE ICNP. 194–205.

https://doi.org/10.1109/ICNP.2007.4375850

[14] Katerina Argyraki, Petros Maniatis, and Ankit Singla. 2010. Verifiable Network-

Performance Measurements. In Proc. of ACM CoNEXT.

[15] Boaz Barak, Sharon Goldberg, and David Xiao. 2008. Protocols and Lower Bounds for

Failure Localization in the Internet. In Proc. of EUROCRYPT.

[16] R.M. Castro, M.J. Coates, and R.D. Nowak. 2004. Likelihood Based Hierarchical Clustering.

Trans. Sig. Proc. 52, 8 (Aug. 2004), 2308–2321. https://doi.org/10.1109/TSP.2004.831124

[17] M. Chessa, J. Grossklags, and P. Loiseau. 2015. A Game-Theoretic Study on Non-monetary

Incentives in Data Analytics Projects with Privacy Implications. In 2015 IEEE 28th Com-

puter Security Foundations Symposium. 90–104. https://doi.org/10.1109/CSF.2015.14

[18] Baek-Young Choi, Sue Moon, Zhi-Li Zhang, K. Papagiannaki, and C. Diot. 2004. Analysis

of point-to-point packet delay in an operational network. In INFOCOM 2004. Twenty-

third AnnualJoint Conference of the IEEE Computer and Communications Societies, Vol. 3.

1797–1807 vol.3. https://doi.org/10.1109/INFCOM.2004.1354590

[19] Mark Coates, Rui Castro, Robert Nowak, Manik Gadhiok, Ryan King, and Yolanda Tsang.

2002. Maximum Likelihood Network Topology Identification from Edge-based Unicast

Measurements. In Proceedings of the 2002 ACM SIGMETRICS International Conference on

Measurement and Modeling of Computer Systems (SIGMETRICS ’02). ACM, New York, NY,

USA, 11–20. https://doi.org/10.1145/511334.511337

[20] Mark Coates, Michael Rabbat, and Robert Nowak. 2003. Merging Logical Topologies

Using End-to-end Measurements. In Proceedings of the 3rd ACM SIGCOMM Conference

on Internet Measurement (IMC ’03). ACM, New York, NY, USA, 192–203. https://doi.org/

10.1145/948205.948230

[21] European Commission. 2013. On-line public consultation on “specific as-

pects of transparency, traffic management and switching in an Open Inter-

net”. (2013). https://ec.europa.eu/digital-single-market/en/news/answers-public-

consultation-specific-aspects-transparency-traffic-management-and-switching-open

[22] David Cox and P A. W. Lewis. 1966. The statistical analysis of series of events / by D. R. Cox

and P. A. W. Lewis. 59–60 pages.

[23] Ofer Dekel, Felix Fischer, and Ariel D. Procaccia. 2010. Incentive Compatible Regression

Learning. J. Comput. Syst. Sci. 76, 8 (Dec. 2010), 759–777. https://doi.org/10.1016/j.jcss.

2010.03.003

90

Bibliography

[24] Marcel Dischinger, Massimiliano Marcon, Saikat Guha, Krishna P. Gummadi, Ratul Ma-

hajan, and Stefan Saroiu. 2010. Glasnost: Enabling End Users to Detect Traffic Dif-

ferentiation. In Proceedings of the 7th USENIX Conference on Networked Systems De-

sign and Implementation (NSDI’10). USENIX Association, Berkeley, CA, USA, 27–27.

http://dl.acm.org/citation.cfm?id=1855711.1855738

[25] Nick G. Duffield and Matthias Grossglauser. 2001. Trajectory Sampling for Direct Traffic

Observation. IEEE/ACM Trans. Netw. 9, 3 (2001).

[26] N. G. Duffield, J. Horowitz, F. Lo Presti, and D. Towsley. 2002. Multicast topology inference

from measured end-to-end loss. IEEE Transactions on Information Theory 48, 1 (Jan

2002), 26–45. https://doi.org/10.1109/18.971737

[27] N. G. Duffield and Francesco Lo Presti. 2004. Network Tomography from Measured

End-to-end Delay Covariance. IEEE/ACM Trans. Netw. 12, 6 (Dec. 2004), 978–992. https:

//doi.org/10.1109/TNET.2004.838612

[28] N. G. Duffield1, J. Horowitz, F. Lo Presti, and D. Towsley. 2001. Network Delay Tomography

from End-to-End Unicast Measurements. In Evolutionary Trends of the Internet, Sergio

Palazzo (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 576–595.

[29] B. Eriksson, G. Dasarathy, P. Barford, and R. Nowak. 2010. Toward the Practical Use of Net-

work Tomography for Internet Topology Discovery. In 2010 Proceedings IEEE INFOCOM.

1–9. https://doi.org/10.1109/INFCOM.2010.5461970

[30] Brian Eriksson, Gautam Dasarathy, Paul Barford, and Robert Nowak. 2012. Efficient

Network Tomography for Internet Topology Discovery. IEEE/ACM Trans. Netw. 20, 3 (June

2012), 931–943. https://doi.org/10.1109/TNET.2011.2175747

[31] C. Fraleigh, F. Tobagi, and C. Diot. 2003. Provisioning IP backbone networks to support

latency sensitive traffic. In INFOCOM 2003. Twenty-Second Annual Joint Conference of

the IEEE Computer and Communications. IEEE Societies, Vol. 1. 375–385 vol.1. https:

//doi.org/10.1109/INFCOM.2003.1208689

[32] Sharon Goldberg, David Xiao, Eran Tromer, Boaz Barak, and Jennifer Rexford. 2008.

Path-Quality Monitoring in the Presence of Adversaries. In Proc. of ACM SIGMETRICS.

[33] G.R. Grimmett and D.R. Stirzaker. 2001. Probability and random processes. Vol. 80.

Oxford university press. 393–394 pages. http://scholar.google.com/scholar.bib?q=info:

xzStZXK20NkJ:scholar.google.com/&output=citation&hl=en&as_sdt=0,5&ct=citation&

cd=0

[34] Theodore Groves. 1973. Incentives in Teams. Econometrica 41, 4 (1973), 617–31. https:

//EconPapers.repec.org/RePEc:ecm:emetrp:v:41:y:1973:i:4:p:617-31

[35] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Mazières, and Nick

McKeown. 2014. I Know What Your Packet Did Last Hop: Using Packet Histories to

Troubleshoot Networks. In NSDI.

91

Bibliography

[36] Gerhard Hasslinger and Oliver Hohlfeld. 2008. The Gilbert-Elliott Model for Packet Loss in

Real Time Services on the Internet. In Measuring, Modelling and Evaluation of Computer

and Communication Systems (MMB), 2008 14th GI/ITG Conference -. 1–15.

[37] Wassily Hoeffding and Herbert Robbins. 1994. The Central Limit Theorem for Dependent

Random Variables. Springer New York, New York, NY, 205–213. https://doi.org/10.1007/

978-1-4612-0865-5_9

[38] Manish Joshi and Theyazn Hassn Hadi. 2015. A Review of Network Traffic Analysis and

Prediction Techniques. CoRR abs/1507.05722 (2015). http://arxiv.org/abs/1507.05722

[39] Kenneth W. Kolence. 1973. The Software Empiricist. SIGMETRICS Perform. Eval. Rev. 2, 2

(June 1973), 31–36. https://doi.org/10.1145/1113644.1113647

[40] Ramana Rao Kompella, Kirill Levchenko, Alex C. Snoeren, and George Varghese. 2009.

Every Microsecond Counts: Tracking Fine-grain Latencies with a Lossy Difference Aggre-

gator. In Proc. of ACM SIGCOMM. New York, NY, USA.

[41] P Laskowski and J Chuang. 2006. Network Monitors and Contracting Systems: Competi-

tion and Innovation. In Proc. of ACM SIGCOMM.

[42] Jean-Yves Le Boudec. 2010. Performance Evaluation of Computer and Communication

Systems. EPFL Press, Lausanne, Switzerland.

[43] Myungjin Lee, Nick G. Duffield, and Ramana Rao Kompella. 2010. Two Samples are

Enough: Opportunistic Flow-level Latency Estimation using NetFlow. In Proc. of IEEE

INFOCOM.

[44] William Lehr, Erin Kenneally, and Steven Bauer. 2015. The Road to an Open Internet

is Paved with Pragmatic Disclosure & Transparency Policies. (2015). http://ssrn.com/

abstract=2587718

[45] W. Lehr, E. Kenneally, and S. Bauer. 2015. The Road to an Open Internet is Paved with

Pragmatic Disclosure and Transparency Policies. In Telecommunications Policy Research

Conference (TPRC).

[46] Zaoxing Liu, Antonis Manousis, Greg Vorsanger, Vyas Sekar, and Vladimir Braverman.

2016. One Sketch to Rule Them All: Rethinking Network Flow Monitoring with UnivMon.

In Proc. of ACM SIGCOMM.

[47] D. Mills, U. Delaware, J. Martin, Ed.ISC, J. Burbank, and W. Kasch. 2010. Network Time

Protocol (RFC 5905). (2010). https://tools.ietf.org/html/draft-ietf-ntp-ntpv4-proto-06

[48] James Munkres. 1957. ALGORITHMS FOR THE ASSIGNMENT AND TRANSPORTATION

PROBLEMS. (1957).

[49] Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V. Vazirani. 2007. Algorithmic

Game Theory. Cambridge University Press, New York, NY, USA.

92

Bibliography

[50] Body of European Regulators for Electronic Communications (BEREC). 2016. BoR (16)

127: Guidelines on the Implementation by National Regulators of European Net Neutral-

ity Rules. (2016). http://berec.europa.eu/eng/document_register/subject_matter/berec/

download/0/6160-berec-guidelines-on-the-implementation-b_0.pdf

[51] K. Papagiannaki, S. Moon, C. Fraleigh, P. Thiran, and C. Diot. 2006. Measurement and

Analysis of Single-hop Delay on an IP Backbone Network. IEEE J.Sel. A. Commun. 21, 6

(Sept. 2006), 908–921. https://doi.org/10.1109/JSAC.2003.814410

[52] Christos Pappas, Katerina Argyraki, Stefan Bechtold, and Adrian Perrig. 2015. Trans-

parency Instead of Neutrality. In Proc. of ACM HotNets (HotNets-XIV). ACM, New York,

NY, USA, Article 22, 7 pages. https://doi.org/10.1145/2834050.2834082

[53] Javier Perote and Juan Perote-Peña. Strategy-Proof Estimators for Simple Regression.

EcoMod2003 330700120. EcoMod. https://EconPapers.repec.org/RePEc:ekd:003307:

330700120

[54] Mario A. Sánchez, John S. Otto, Zachary S. Bischof, and Fabián E. Bustamante. 2011. Dasu

- ISP Characterization from the Edge: A BitTorrent Implementation. In Proceedings of

the ACM SIGCOMM 2011 Conference (SIGCOMM ’11). ACM, New York, NY, USA, 454–455.

https://doi.org/10.1145/2018436.2018517

[55] Joel Sommers, Paul Barford, Nick Duffield, and Amos Ron. 2007. Accurate and Efficient

SLA Compliance Monitoring. In SIGCOMM.

[56] Han Hee Song, Lili Qiu, and Yin Zhang. 2006. NetQuest: A Flexible Framework for Large-

scale Network Measurement. In Proceedings of the Joint International Conference on

Measurement and Modeling of Computer Systems (SIGMETRICS ’06/Performance ’06).

ACM, New York, NY, USA, 121–132. https://doi.org/10.1145/1140277.1140293

[57] Yolanda Tsang, Mehmet Yildiz, Paul Barford, and Robert Nowak. 2004. Network Radar:

Tomography from Round Trip Time Measurements. In Proceedings of the 4th ACM SIG-

COMM Conference on Internet Measurement (IMC ’04). ACM, New York, NY, USA, 175–180.

https://doi.org/10.1145/1028788.1028809

[58] William Vickrey. 1961. COUNTERSPECULATION, AUCTIONS, AND COMPETITIVE

SEALED TENDERS. Journal of Finance 16, 1 (1961), 8–37. https://EconPapers.repec.org/

RePEc:bla:jfinan:v:16:y:1961:i:1:p:8-37

[59] C. Papadimitriou Y. Cai, C. Daskalakis. 2014. Optimum statistical estimation with strategic

data sources. (2014). preprint,availableasarXiv:1408.2539.

[60] Xin Zhang, Abhishek Jain, and Adrian Perrig. 2008. Packet-dropping Adversary Identifica-

tion for Data Plane Security. In Proc. of ACM CoNEXT.

[61] Xin Zhang, Chang Lan, and Adrian Perrig. 2012. Secure and Scalable Network Fault

Localization under Dynamic Traffic Patterns. In Proc. of IEEE Security & Privacy.

93

Bibliography

[62] Xin Zhang, Zongwei Zhou, Hsu-Chun Hsiao, Adrian Perrig, and Patrick Tague. 2012.

ShortMAC: Efficient Data Plane Fault Localization. In Proc. of NDSS.

[63] Wenchao Zhou, Qiong Fei, Arjun Narayan, Andreas Haeberlen, Boon Thau Loo, and

Micah Sherr. 2011. Secure Network Provenance. In Proc. of ACM Symposium on Operating

Systems Principles (SOSP).

[64] Wenchao Zhou, Suyog Mapara, Yiqing Ren, Yang Li, Andreas Haeberlen, Zachary Ives,

Boon Thau Loo, and Micah Sherr. 2013. Distributed Time-Aware Provenance. In Proceed-

ings of International Conference on Very Large Data Bases (VLDB).

[65] Tanja Zseby, S Zander, and G Carle. 2001. Evaluation of Building Blocks for Passive

One-Way-Delay Measurements. (2001).

94

th

120

8.07/10 8.78/10

4

92.44/100

19.6/20

2

10

