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Abstract
When drivers are regularly faced with congestion, they try to optimize their departure
time. If the demand and the road network evolve slowly enough, the entire system may
approach an equilibrium, i.e. a state such that no one can be better off by unilaterally
changing departure time. The transportation community has devoted a significant effort
to identify such equilibria. The ultimate goal is to be able to predict the consequences of
large infrastructure projects and to design smart policies to alleviate congestion. Yet,
several issues still limit the applicability of the existing literature. This thesis identifies
three complementary challenges and attempts to address them.
We first investigate whether, from a theoretical viewpoint, real world unidirectional flows
are likely to be in a near-equilibrium state. Our analytical findings reveal the influence
of schedule preferences on stability, and explain why morning commutes are more likely
to be unstable than evening ones. Fortunately, user heterogeneity or socially optimal
pricing can soften the effects of instability. Residual oscillations result in a congestion
cost decomposition that differs from the one observed at equilibrium, but the overall
average congestion cost at equilibrium is remarkably accurate.
We then characterize departure time choice equilibria in isotropic regions, representing
multi-directional road networks. In this context, users can slow down others who started
their trips earlier and trip length is an important determinant of departure time choice.
We show that with a widely used type of schedule preferences, users with long trips tend
to avoid the peak period. Although the First-In, First-Out (FIFO) property does not
hold in general with heterogeneous trip lengths, such a pattern emerges among families
of early and late users having the same preferences. Simulations suggest that the social
cost and its decomposition greatly differ from those observed in unidirectional settings.
We finally propose an alternative way of reducing congestion, based on an optional
booking service with dedicated right-of-way. Such a service would be advantageously
implemented with shared and/or autonomous vehicles, due to similar requirements and
complementarity. We recognize that participation to such a program would entail an
alternative-specific inconvenience and evaluate the consequences on welfare depending
on the way it is administrated and on the capacity split.
Overall, this thesis advances the state of knowledge regarding the prevailing traffic
conditions and suggests ways to improve them. The adopted approach is largely analytical
to provide insight and generality. Complementary simulations add realism and push back
the limits of tractability.
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Résumé
Les automobilistes régulièrement confrontés à la congestion essaient d’optimiser l’heure
de leur départ. Si la demande et le réseau routier évoluent lentement, le système peut
s’approcher d’un équilibre, i.e. un état dans lequel personne ne peut améliorer sa situation
en changeant de décision unilatéralement. De nombreuses recherches ont été effectuées
pour identifier ces équilibres, dans le but de prédire les conséquences des grands projets
d’infrastructures et de trouver des solutions pour décongestionner les routes. Cependant,
leur concrétisation se heurte encore à plusieurs obstacles. Cette thèse en identifie trois
relativement peu étudiés et apporte quelques solutions.
Nous commençons par examiner si, théoriquement, les décisions d’usagers se déplaçant
dans une même direction sont susceptibles d’approcher un équilibre. Nos résultats révèlent
l’importance des préférences horaires des usagers et suggèrent que la période de pointe
du soir (après le travail) est plus stable que celle du matin. Heureusement, l’hétérogénéité
entre les usagers ou la mise en place d’une stratégie de tarification peuvent atténuer les
effets de l’instabilité. Les oscillations résiduelles induisent une décomposition du coût
de congestion différente de celle de l’équilibre, mais en moyenne, le coût total de la
congestion est remarquablement proche de celui à l’équilibre.
Nous étudions ensuite les conditions d’équilibre dans des régions homogènes et isotropes,
représentant des réseaux routiers multidirectionnels. Dans ce contexte, les automobilistes
peuvent en ralentir d’autres qui ont commencé leur trajet plus tôt, et la longueur de
trajet est un déterminant essentiel du choix. Nous montrons qu’avec les préférences
horaires les plus communément utilisées dans la littérature, les automobilistes ayant les
trajets les plus longs évitent de circuler pendant les périodes les plus congestionnées.
Bien que l’ordre des arrivées n’est pas nécessairement le même que celui des départs
quand on considère des trajets de différentes longueurs, les trajets sont naturellement
organisés de cette manière parmi des groupes d’usagers arrivant en avance ou en retard.
Nos simulations suggèrent que le coût de la congestion et sa décomposition diffèrent
grandement de ceux observés dans des configurations unidirectionnelles.
Nous proposons finalement une manière de réduire la congestion basée sur la participation
facultative à un service de réservation de créneaux horaires, bénéficiant de voies réservées.
Du fait de leurs besoins similaires et de certaines synergies, ce service est plus facilement
envisageable avec des véhicules autonomes et/ou partagés. Notre étude prend en compte
un coût spécifique lié à la réservation et évalue les conséquences d’un tel système pour la
société, dépendamment du régime économique et de la proportion de la capacité qui lui
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est allouée.
Dans son ensemble, cette thèse améliore notre compréhension des mécanismes à l’origine
de la congestion et indique des solutions possibles. L’approche théorique adoptée confère
à ce travail une certaine généralité et une valeur explicative. La simulation est utilisée en
complément, pour traiter des situations plus réalistes et illustrer nos résultats analytiques.

Mots clés : Heure de départ, Planification, Congestion, Équilibre, Stabilité, Diagramme
fondamental de zone, Goulet d’étranglement, Destion de la demande, Flux directionels.
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1 Introduction

1.1 Context and motivation

Road congestion represents a major challenge for modern societies. It arises mainly in
cities, where demand for travel is high, and space is limited. It has a wide range of
negative consequences on our health, environment and economy. Some of these might
be curbed in the future thanks to technological progress (e.g. electric vehicles and
better pavement design may reduce noise and air pollution), while others are intrinsic
characteristics of congestion. When too many persons want to travel at the same time
and do not agree on a joint strategy, the outcome is unavoidably very costly for society.
Indeed, the hours stressfully spent behind the wheel could be enjoyed or used productively
if it were not for congestion. Besides, congestion also prevents many opportunities from
being seized: when some spend hours in traffic jams, others give up traveling, or travel
at inconvenient times.

To alleviate the congestion cost, we should understand both the demand (when users
depart, how they choose their transportation mode and their route), the supply (how
the demand affects travel times), and their interactions. This thesis focuses only on one
of these aspects, which is the interaction between the supply and the choice of departure
time. From a psychological point of view, one may wonder whether this choice is made
consciously, how often it is made, what information is used, etc. This thesis considers
such behavioral aspects as inputs. It assumes that commuters are rational and that they
try to choose the alternatives that are the best for themselves.

Then, the challenge is to determine how congestion emerges from the interaction between
a great number of individuals. To address it, the traffic literature has relied on various
concepts from game theory. Nash equilibria for instance are very widely used in the
traffic literature, where they are known as user equilibria. With rational users that only
switch to alternatives with higher utilities, Nash equilibria represent fixed points. The
traffic literature often assumes that the systems considered are at equilibrium and focuses

1



Chapter 1. Introduction

on characterizing equilibria. This convenient “equilibrium assumption” has allowed for
many elegant derivations and extremely valuable insight.

The line of research on the departure time equilibrium stems from Vickrey (1969, 1973).
In these seminal works, the Nobel Laureate William Vickrey made the case for dynamic
congestion pricing by considering a single unidirectional bottleneck of constant capacity.
He derived the user equilibrium without toll and showed how the social optimum can
be decentralized using a time-varying toll. This idea gained large support among the
academic community and Vickrey’s bottleneck model has become “the workhorse for the
economic analysis of rush-hour traffic dynamics” (Arnott et al., 2016). Yet, almost 50
years after the first seminal paper, dynamic congestion tolls are still rare. The difficult
transfer from theory to practice is generally attributed to the poor popularity of pricing,
but other reasons may also explain these difficulties.

First, although the literature has flourished, it has left largely unexamined its most fun-
damental assumptions. The equilibrium assumption in particular seems to be supported
only by the gut feeling that “people do not change their departure time too often, or
only because of changes in their constraints (e.g. due to an early meeting)”. While
intuition is often helpful, note that people may also adjust their schedule unconsciously.
For instance, they may account for the traffic conditions experienced over the last days
when scheduling their meetings. Besides, multiple authors have actually reported set-ups
involving unidirectional congestion where the system does not converge to an equilibrium
(de Palma, 2000; Mc Breen et al., 2006; Iryo, 2008; Guo et al., 2018). These examples do
not provide a sufficiently strong basis for generalization (they all use the same highly
schematic specifications of schedule preferences), but they do show that equilibrium
stability cannot be taken for granted.

Second, the congestion phenomena described in the literature are often very different
from those occurring in urban areas. Congestion in urban areas typically results from the
interactions between a large variety of directional flows, while the literature is typically
restricted to unidirectional mechanisms. There is however an emerging branch of the
literature that considers congestion in homogeneous and isotropic areas (Small and
Chu, 2003; Geroliminis and Levinson, 2009; Fosgerau and Small, 2013; Arnott, 2013;
Fosgerau, 2015; Daganzo and Lehe, 2015; Arnott et al., 2016). Isotropic traffic models
have advantages in terms of generality and tractability, but they also have very realistic
features. If the common unidirectional bottleneck represents the access to a monocentric
city, the isotropic area can be considered to represent a large homogeneous urban area, like
those produced by conurbation. The isotropic model also provides a natural framework to
account for hypercongestion, which is a severe form of congestion where the flow decreases
with the number of cars on the road. Importantly, isotropic congestion also allows for
studying the influence of trip length on departure time choice. The first works that
considered an isotropic model with departure time choice only focused on hypercongestion
(Small and Chu, 2003; Geroliminis and Levinson, 2009; Fosgerau and Small, 2013; Arnott,
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1.2. Objectives

2013). It is only very recently that Fosgerau (2015) and Daganzo and Lehe (2015)
recognized how trip length heterogeneity challenges the fundamental First-In-First-Out
(FIFO) assumption and started investigating its impacts on the morning commute. Yet,
these two papers reached very different conclusions concerning the role of trip length,
especially in terms of sorting patterns. Since sorting patterns are likely to influence
stability, their study is a research priority.

Third, the literature does not offer many alternatives to congestion pricing. Some
tradable credit schemes have been proposed (Wada and Akamatsu, 2013) but they
generally failed to account for the inconvenience related to the trading activity they imply.
This is problematic as such an inconvenience might be very large for some persons/trips.
Optional participation to the tradable credit scheme may circumvent the issue. Yet, this
choice would be somehow artificial if all users then travel together: those choosing the
tradable credit scheme would incur an alternative-specific inconvenience, would depart
at a time that might not be optimal for themselves and they would incur the same
congestion as non-cooperating users. Thus, the cooperative alternative would clearly be
dominated for everyone. In order to offer a real choice, it is necessary to separate the
flows. Since new roads cannot easily be constructed, this suggests splitting the existing
capacity. Such a concept raises questions related to the optimal capacity split and to
how such a service should be operated.

1.2 Objectives

This thesis aims at bringing the theory on departure time choice closer to the practice
by addressing the three main issues mentioned in Section 1.1. More specifically, our
objectives are:

1. Equilibrium assumption with unidirectional congestion

(a) To determine whether reported instability results can be generalized.

(b) In case of instability: to estimate to which extent the equilibrium assumption
can still be applied.

2. Equilibrium characterization in an isotropic and homogeneous area:

(a) To identify how trip length and other factors determine the prevailing sorting
patterns.

(b) To compare the unidirectional and the isotropic equilibria.

3. Voluntary cooperation:

(a) To determine whether dedicated lanes can lead to voluntary cooperation.

3
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(b) To identify an environment in which such a scheme could realistically be
implemented and enforced, while remaining attractive.

(c) To provide directions for the best mode of operation (public, private, regula-
tions).

1.3 Contributions

The main scientific contributions of this thesis are summarized hereafter.

1. Equilibrium assumption with unidirectional congestion
Chapter 3 decomposes the game at hand into basic elements and identifies properties
of these elements that are related to stability. We demonstrate in particular that
with a homogeneous population, the unidirectional bottleneck exhibits features that
can be associated to instability when the marginal utility rate at the destination
increases (like in the morning commute) and to stability when the marginal utility
rate at the destination is non-increasing. We also show that the location of a toll
booth (upstream or downstream of the bottleneck) may influence these features.

We then rely on simulations to study more complex cases, with heterogeneity and
pricing in discrete time frameworks. We quantify the error associated with the
equilibrium approximation and identify some important biases it entails.

2. Equilibrium characterization in an isotropic and homogeneous area
Chapter 4 only focuses on intra-day dynamics and investigates the equilibrium
properties of the morning commute problem at the network level with heterogeneous
trip lengths. Congestion is modeled with an isotropic model relating the space-
mean speed of a network to the vehicular accumulation. Stability issues are not
considered analytically (a good knowledge of static properties is a prerequisite) but
simulation-based studies suggest that the equilibrium approximation is reasonable
there, at least for light and medium congestion levels. Our main contributions
include a proof of continuity of accumulation over time at equilibrium, a proof that
a partial First-In, First-Out (FIFO) sorting pattern emerges at equilibrium with
widely-accepted schedule preferences and a comparison of the morning commutes
with isotropic/unidirectional congestion mechanisms.

3. Voluntary cooperation
Chapter 5 considers the problem of the optimal capacity split at a unidirectional
bottleneck in a context where users can choose among unregulated competition
and cooperation. We depict the cooperative alternative as an original mobility
service, which would be advantageously implemented together with car-sharing
and autonomous vehicles, for reasons detailed in the thesis. Non-cooperative
users choose their departure time from home and compete for the best departure

4



1.4. Thesis structure

times from the bottleneck. Cooperative users need to book their trip in advance.
As the number of time slots available for booking does not exceed the capacity,
cooperative users are guaranteed no delay at the bottleneck. An individual-specific
cooperation cost is introduced in the modeling framework to account for the
related inconvenience. We then investigate how a central planner should allocate
the capacity to these two types of users depending on the regime (laissez-faire,
welfare- or profit-maximizing). Two major findings are that the equilibrium demand
split Pareto-dominates the case with only competitive users and that the social
cost difference between equilibrium and socially optimal demand splits is small
compared to their benefits. Profit-maximizing strategies however turn out to be
hardly compatible with welfare maximization.

1.4 Thesis structure

Chapter 2 introduces the departure time choice problem and provides the background that
is common to all the subsequent chapters. The problem is first presented from a broad
perspective including day-to-day dynamics, before focusing on the intra-day dynamics and
reviewing the associated literature. Chapter 2 further explains how schedule preferences
are usually modeled and introduces the two types of congestion mechanisms that are
used in this thesis (uni-directional and isotropic). It then summarizes various equilibrium
construction methods proposed in the literature and illustrates the simplest of them with
a classic example.

Chapter 3 provides further details on day-to-day dynamics and introduces fundamental
concepts from evolutionary game theory that are related to stability. We then build on
this framework to derive analytical results valid under ideal conditions (continuous time
and homogeneous users) and complement them with simulations of more realistic set-ups.
Preliminary ideas are published as:

• Lamotte, R., Geroliminis, N., 2018. (In)stability of departure time choice with the
bottleneck model. Presented at the 18th Swiss Transport Research Conference
(STRC), Ascona, Switzerland.

Chapter 4 reviews more extensively the literature considering departure time choice with
isotropic congestion and analytically derives important features (e.g. continuity, sorting)
of the equilibrium. Complementary simulation results illustrate these properties and
serve as a basis for comparison with the classic unidirectional problem. The preliminary
ideas of this chapter are published as

• Lamotte, R., Geroliminis, N., 2016. The morning commute in urban areas: In-
sights from theory and simulation. Presented at the 95th Annual Meeting of the
Transportation Research Board, Washington, DC.

5



Chapter 1. Introduction

• Lamotte, R., Geroliminis, N., 2017. The morning commute in homogeneous cities.
Presented at the 17th Swiss Transport Research Conference (STRC), Ascona,
Switzerland.

The content of this chapter has then been published as

• Lamotte, R. and Geroliminis, N., 2017. The morning commute in urban areas with
heterogeneous trip lengths. Transportation Research Part B: Methodological (In
Press). Presented at the 22nd International Symposium on Transportation and
Traffic theory (ISTTT), Chicago, Illinois.

Chapter 5 introduces an original way of fostering cooperation by allocating a proportion
of the capacity to cooperative users. The introductory sections discuss the practical
advantages of booking, its complementarity with autonomous and/or shared vehicles and
the inconvenience it creates. The equilibrium is then characterized mathematically under
various regimes (laissez-faire, welfare or profit-maximizing). It is based on the article

• Lamotte, R., de Palma, A. and Geroliminis, N., 2017. On the use of reservation-
based autonomous vehicles for demand management. Transportation Research
Part B: Methodological, 99, pp.205-227.

Chapter 6 summarizes the contributions of this thesis, highlights its practical implications
and identifies future research directions. The emphasis is given mainly to two specific
research directions, which are to investigate equilibrium stability with isotropic congestion
and to consider time-dependent capacity allocation.

The code I wrote to simulate departure time choice with bottlenecks and within isotropic
areas is available online at https://github.com/raplam/departureTimeChoice.
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2 Background

2.1 Elements of the problem

This thesis considers that agent behavior is defined by two functions. One function cap-
tures the preferences of users and allows comparing the utility (or cost) of all alternatives.
The second function defines how users change their decisions from day to day, depending
on the current choices and the utilities of all alternatives. Together with the congestion
mechanism, these two functions fully define the dynamics of the system. Indeed, given
some initial conditions, we can apply iteratively these three functions and imitate the
evolution of the traffic conditions from day to day, as illustrated in Fig. 2.1.

Yet, to facilitate the analysis of such systems, most of the departure time choice literature
has relied on the equilibrium assumption. Under this assumption, there is no need to
specify the protocol that users follow to update their decision. Indeed, the user equilibrium
is characterized by the fact that users cannot improve their utility by changing decision
unilaterally. If users are rational and non-cooperative, they have no reason to change
their decisions once they are at equilibrium. This assumption greatly simplifies the
analysis as it suffices to determine the equilibrium to evaluate all sorts of indicators,
without accounting for the initial conditions or for convergence issues.

This background section provides an introduction to schedule preferences and to conges-
tion mechanisms, as well as a review of the literature on departure time choice based on
the equilibrium assumption. Adjustment mechanisms and systems out of equilibrium are
only considered in Chapter 3.

7



Chapter 2. Background

Congestion 
mechanism

Schedule 
preferences

Adjustment 
mechanism

Departure 
times

Arrival
times

Utilities

The game

Figure 2.1 – A cyclic description of departure time choice

2.2 Schedule preferences

This thesis follows Vickrey (1973) and assumes that the schedule preferences are expressed
by a utility function of the form

U(to, td) =
∫ to

0
uo(t) dt︸ ︷︷ ︸

Uo(to)

+
∫ 0

td

ud(t) dt︸ ︷︷ ︸
Ud(td)

, (2.1)

where to and td are the times of departure (from the origin) and arrival (at destination).1

In plain words, it means that individuals have values of time that depend on the time of
the day and on their location (at home and at work for the commute problem). Note
that the above expression implicitly assumes that users do not value the time they spend
traveling. While this might sound problematic, it is actually equivalent to defining the
marginal utility rates at the origin and at the destination relatively to the marginal
utility rate of travel time. The values of the lower limit of the integral Uo and of the
upper limit of Ud (both equal to 0 in Eq. (2.1)) do not matter since utility is only defined
up to a constant.

This thesis further assumes that the marginal utility rates at the origin (uo) and at the
destination (ud) are positive everywhere, piece-wise continuous, and that there exists t∗

such that for all t < t∗, uo(t) > ud(t) and for all t > t∗, uo(t) < ud(t). Positivity ensures

1The choice of the specification depends on the problem. For instance when considering multiple
consecutive trips, one should account for the fact that the value of time at a location may depend on how
much time has already been spent at this location. Such dependencies are traditionally ignored when
considering commutes.
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that commuters do not simply drive in circles, while the last condition ensures that users
have an incentive to move from the origin to the destination. The reader can think of t∗

as the “ideal teleportation time” in the sense that if users could simply teleport from
their origin to their destination (such that td = to), they would always prefer to do so
exactly at t∗.

Alternatively, the literature often specifies the schedule preferences in terms of a gener-
alized cost function, which is the negative of a utility function. More specifically, the
generalized cost function typically takes the form C(to, td) = α(td − to) + SP(td) for the
morning commute and C(to, td) = α(td − to) + SP(to) for the evening one. The first term
is known as the cost of delay, the second as the schedule penalty (SP). The schedule
penalty is typically assumed to be a non-negative unimodal function reaching 0 at t∗.
Thus, both terms are always non-negative and since the minimal possible cost is clearly
0, the generalized cost naturally represents the cost of congestion.

The formulation in terms of generalized cost actually corresponds to a special case of
Eq. (2.1) where the marginal utility rate at home is equal to α at all times. To see this,
replace the limits of integration that are equal to 0 in Eq. (2.1) by t∗ (we can do this
because utility is only defined up to a constant). Then, if in a morning commute case uo

is constant, Eq. (2.1) boils down to

U(to, td) = −
∫ td

to

uo(t) dt︸ ︷︷ ︸
=α(td−to)

−
∫ td

t∗
ud(t) − uo(t) dt︸ ︷︷ ︸

�SP(td)

.

Similarly, if in an evening commute case ud is constant,

U(to, td) = −
∫ td

to

ud(t) dt︸ ︷︷ ︸
=α(td−to)

−
∫ t∗

to

uo(t) − ud(t) dt︸ ︷︷ ︸
�SP(to)

.

If the marginal utility of time spent at work is piece-wise constant during the morning
commute (ud(t) = α − β if t < t∗ and ud(t) = α + γ otherwise), the formulation with
marginal utilities of time boils down to the α − β − γ preferences.2 The schedule penalty
is then equal (up to a constant) to:

SPα−β−γ(td, t∗, β, γ) = max(γ(td − t∗), β(t∗ − td)). (2.2)

Although they are widely used in the literature, the use of the α − β − γ preferences
has often been questioned. In fact, the empirical evaluations of marginal utilities
systematically relied on more complex models. Small (1982) allowed for a discrete jump

2These notations seemingly appeared with Arnott et al. (1990) and became standard.
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in utility for late arrivals and for a flexible range of arrival times with lower penalties.
Hendrickson and Plank (1984) estimated two quadratic penalty functions for early and late
arrivals, which are both equivalent to affine marginal utility functions. Tseng and Verhoef
(2008) estimated marginal utilities at different times of the day in a non-parametric way,
and Hjorth et al. (2015) used exponential marginal utility functions. However, when
comparing different models with stated preference data, Hjorth et al. (2015) found that
piecewise constant and affine specifications outperformed the exponential ones. While
all agree that constant marginal utilities are not ideal, there is no consensus on the
parametric form that should be used. For instance, Hendrickson and Plank (1984) found
a marginal utility of time at work that decreases after t∗ while the results of the other
works mentioned above suggest an increase.

2.3 Congestion models

2.3.1 The fluid approximation

A typical commute involves many thousands of agents. When dealing with such large
numbers, it is common to rely on the so-called “fluid approximation”. Within this
approximation, the number of users is considered as a real-valued variable (we sometimes
call it the “mass”, or “accumulation” of users). This approximation greatly simplifies
the study of the dynamics as accumulation can then potentially evolve continuously,
and not necessarily with very small steps of one user. When a strictly positive mass of
users departs or arrives simultaneously, the cumulative number of departures or arrivals
exhibits a discontinuity. We refer to such phenomena as “mass departures” and “mass
arrivals”. The two congestion models described hereafter rely on the fluid approximation.

2.3.2 Unidirectional congestion: the constant capacity bottleneck

The constant capacity bottleneck model (a.k.a. Vickrey’s bottleneck model) is the
archetype of unidirectional congestion mechanisms. It considers a single origin-destination
pair, connected by a single route with a bottleneck of constant capacity s, in veh/h.
Travel time is the sum of a fixed component Tf to go from the origin to the bottleneck,
a waiting time at the bottleneck and a fixed component T ′

f to go from the bottleneck
to the destination. Both fixed components can be set to 0 without loss of generality (it
simply means replacing the functions to → uo(to) and td → ud(td) by to → uo(to − Tf )
and td → ud(td + T ′

f )). Thus, to is also the arrival time at the bottleneck and td is also
the departure time from the bottleneck.

Let r(t) denote the arrival rate at the bottleneck and q(t) the queue length (in vehicles)
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at time t. The queue length evolution obeys

q̇(t) =

⎧⎨⎩r(t) − s, if q(t) > 0 or r(t) > s

0, otherwise.
(2.3)

Thus, if we know the departure rate r(t), the arrival time is given by td = to + q(to)/s.

Note that many alternatives allow modeling unidirectional congestion with a finer spatial
resolution (see van Wageningen-Kessels et al. (2015) for a genealogy). For instance,
car-following models provide a very intuitive behavioral description of congestion, in
which vehicles adjusts their speed based on the vehicles ahead. Such models are useful
to describe the spatial distribution of vehicles but they would not allow for an analytical
treatment of trip scheduling problems. Fortunately, these models tend to produce very
similar arrival times at destination, and these are typically quite close to those predicted
with Vickrey’s bottleneck model, especially when a strong demand peak exceeds the
bottleneck capacity (Verhoef, 2001). The main limitation of Vickrey’s bottleneck model
is that it cannot model travel time variations when demand is constantly below the
bottleneck capacity. The trip scheduling literature leaves this issue aside by focusing on
scenarios where demand exceeds capacity. The transitions at the beginning and end of
the congested period are admittedly not realistic, but this inaccuracy is negligible if the
transition periods are short compared to the peak period.

2.3.3 Isotropic congestion: the MFD (or bathtub)

In the real world, different directional flows interact in many ways: they can compete
for the same road, for the same intersection, or interact indirectly through a chain of
interactions with other flows. The range of possible configurations is too large to consider
an analytical treatment of each case. Instead, we consider another idealization that leaves
aside directions altogether and describes the dynamics of vehicles in a homogeneous and
isotropic environment: for any time t, the average speed of all the n(t) vehicles traveling
is assumed to be given by a function V(n(t)).

The same relation can also be described in terms of total distance traveled per time unit,
by all the vehicles currently in the network. This quantity, known as the production, is
given by P (t) = P(n(t)) = n(t)V(n(t)). The production function P is assumed to be
positive and unimodal on an interval [0, njam], while the corresponding speed function V
is positive, continuously differentiable, decreasing on [0, njam]. Both speed and production
reach 0 for n = njam. The accumulation that maximizes the production is assumed to
be unique and is referred to as the “critical” accumulation. The free-flow speed V(0) is
denoted vf.

The idea of a such relations with an optimum accumulation was initiated by Godfrey
(1969) and similar approaches were introduced later by Herman and Prigogine (1979),
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Mahmassani et al. (1984) and Daganzo (2007). Geroliminis and Daganzo (2008) was
among the first works to empirically observe such relationships at the level of a downtown
neighborhood. These relations have been exploited within large-scale traffic control
strategies, where they are usually referred to as (Network) Macroscopic Fundamental
Diagrams, (N)MFD (see e.g. Kouvelas et al. (2017)). Transportation economists refer to
the same concept as “the bathtub model of traffic congestion”, a name reportedly coined
by W. Vickrey (Arnott, 2013). In this thesis, P is called the production-MFD and V the
speed-MFD.

In order to have a complete dynamic model, we need to define when users complete
their trips. Daganzo (2007) proposed an aggregated approach based on the assumption
of slowly-varying conditions. It assumes that at any time t, the trip completion rate
(also called outflow) is given by O(t) = O(n(t)) = P(n(t))

L , where L is the average length
of the generated trips. The function O is referred to as the outflow-MFD. Geroliminis
and Daganzo (2008) also provided empirical observations of such a relationship, using
data from static loop detectors and taxi traces. While it is possible to use the outflow-
MFD as the congestion mechanism of a departure time choice problem (Small and Chu,
2003; Geroliminis and Levinson, 2009), these dynamics cannot easily accommodate for
trip length heterogeneity, especially when the distribution varies over time. This is
problematic as trip length is intuitively an important determinant of departure time
choice. Besides, the conditions are not necessarily slowly-varying during the congestion
peaks.

The “trip-based” model offers an attractive alternative to the outflow-MFD. It is based
on the principle that a trip of length l that starts at time to should finish at the unique3

time td such that∫ td

to

V(n(t)) dt = l. (2.4)

Note that this is automatically the case if all vehicles travel exactly at V(n(t)) (instead
of simply traveling on average at V(n(t))). This principle can then be used to derive the
dynamics of accumulation. Consider the flow entering the zone I(t) as given for all times
t and assume that I(t) = 0 for all times t < 0. If the exit times follow Eq. (2.4), then
the accumulation at time t is given by

n(t) =
∫ t

0
I(s)

(
1 − Fl,s

(∫ t

s
V(n(u)) du

))
ds, (2.5)

where Fl,s(·) is the cumulative distribution function of the trip length for users entering
the network at time s (the associated probability density function is denoted fl,s(·)).

3Uniqueness is guaranteed if we assume that n always remains bounded away from njam.
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Differentiating this equation leads to:

ṅ(t) = I(t) − V(n(t))
∫ t

0
I(s)fl,s

(∫ t

s
V(n(u)) du

)
ds. (2.6)

Note that the outflow rate depends not only on the current value of accumulation but also
on all the previous values. This is in contrast with the outflow-MFD approach. Note also
that it also means that vehicles can slow down those that started their trips earlier. In a
directional setting with identical origins, this is a violation of the fundamental causality
principle. In an isotropic and homogeneous environment however, spatial location and
trip advancement are independent.

2.4 Characterizing equilibria

2.4.1 Methods

As explained earlier, a Nash equilibrium is a situation such that no user can become
better off by changing decision unilaterally. Although this definition is very simple,
finding equilibria can be quite complicated in games with large number of users and
alternatives. Departure time equilibria are especially complicated because congestion
propagates over time, and therefore affects users choosing different alternatives. This is
in contrast with static route choice applications, where the cost of a road often depends
only the flow on that same road.4 Fortunately, the task can be greatly simplified in some
specific settings.

The simplest case is perhaps with a bottleneck and homogeneous users. In this case,
the equilibrium is such that all used alternatives have the same utility and such that no
unused alternative has a strictly greater utility than the used ones. This is the situation
considered in Section 2.4.2.

Another setting that is particularly convenient is when the classical first and second order
conditions for local optimality are sufficient to identify a unique candidate equilibrium
state. Several authors have found situations where this is the case, for instance Vickrey
(1969); Fosgerau and de Palma (2012); Fosgerau (2015). In Fosgerau and de Palma (2012)
and Fosgerau (2015), the authors consider populations that differs in only one parameter
and show that by integrating the derivative of the first-order-condition with respect to
that parameter, they can derive the equilibrium. This method is however limited to cases
where the decision (i.e. the departure or arrival time) is a continuously differentiable
function of the parameter considered at equilibrium.

Then, there also exist two important numerical approaches. Iryo and Yoshii (2007)
introduced a method that boils down to solving a simple linear program. This method

4Although this is quite reductive, these games are known as “congestion games” in game theory.
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only applies when users can only choose among a discrete set of arrival times (each arrival
time having a capacity), and all have the same constant marginal utility rate at their
origin uo. This is because in such cases, the socially optimal arrival times coincide with
the equilibrium arrival times.

Many heuristic approaches are also possible. For instance, one may try to solve the
equilibrium by defining some disequilibrium index and by minimizing it. However the
problem at hand is rarely convex, such that generic optimization techniques often fail to
find the equilibrium. Last, many authors have proposed iterative methods that imitate
to some extent the real world process. The most common approach relies on the Method
of Successive Averages (MSA), in which the state at each iteration is given by a weighted
average between the previous state and the state that would be obtained if all users
updated their decisions using the current conditions. It is used for instance within the
METROPOLIS software (de Palma and Marchal, 2002).

2.4.2 The classical example

While departure time equilibria can be quite complex, one example is particularly elegant
and insightful: that is the case of a bottleneck with constant capacity and homogeneous
users having α − β − γ preferences.

Let N and S denote the total demand and the bottleneck capacity. In order to serve all
users, the bottleneck should be used at full capacity during a total duration N/S. Let c

denote the equilibrium cost. Clearly, to satisfy the equilibrium condition, all arrival times
corresponding to schedule penalties smaller than c should be used at capacity (otherwise
they could be used without queuing and would have a cost smaller than c). Similarly,
all arrival times corresponding to schedule penalties strictly larger than c cannot be
used at equilibrium. Thus, the set of times {t ∈ R, SP(t) < c} should be smaller than
N/S and the set of times {t ∈ R, SP(t) > c} should be larger than N/S. With the
α − β − γ preferences, these two constraints impose that c = δ N

S , where γ = βγ
β+γ , and the

equilibrium is used only during the interval [t1, t2], where t1 = t∗ − N
S

δ
β , t2 = t∗ + N

S
δ
γ .

The delays are then derived by ensuring that all used alternatives have the same total
cost, as illustrated in Fig. 2.2a. The cumulative departure curve (cumulative inflow)
is then built by translating the points on the cumulative arrival curve by the delays
previously derived (see Fig. 2.2b).

2.4.3 Important results

Traditionally, the literature has often focused on the case of a morning commute with
constant uo. The existence (resp. uniqueness) of such an equilibrium was established
by Smith (1984a) (resp. Daganzo (1985)) for the case of a homogeneous population

14



2.4. Characterizing equilibria

Figure 2.2 – Dynamics with a bottleneck model and homogeneous α − β − γ preferences

with continuous and (resp. strictly) increasing ud.5 Various types of heterogeneity were
introduced by Newell (1987) and Arnott et al. (1988). Lindsey (2004) extended these
results to allow for a more general dependence of utility on the arrival time.

The evening commute has been relatively less studied. Vickrey (1973) and Fargier (1983)
described the analytical solution when users have a piece wise constant decreasing uo

and a constant ud. de Palma and Lindsey (2002) provided existence and uniqueness
conditions similar to those of Lindsey (2004) for more general decreasing uo and Fosgerau
and de Palma (2012) formulated existence and uniqueness results that do not require
either uo or ud to be constant, and therefore are valid for both commutes. These results
are however limited to the case of a continuously distributed free-flow travel time. While
there exist some symmetries between the morning and evening commutes (e.g. in terms of
total social cost with homogeneous users), they have different queuing dynamics (Vickrey,
1973).

5Smith (1984a) (resp. Daganzo (1985)) described their assumptions in terms of schedule penalty (see
Section 2.2). Both descriptions are equivalent.
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3 Stability of departure time choice
with a bottleneck

3.1 Introduction

The problem of departure time choice during the morning and evening commutes involves
two levels of dynamics: conditions vary over the day, and from day to day. The abundant
research following Vickrey (1969) and Arnott et al. (1990) has focused mostly on the first
of these two levels, implicitly assuming that if a unique equilibrium exists, commuters
would naturally converge toward it.

Various pieces of evidence have cast doubt on the soundness of this assumption: de Palma
(2000) and Mc Breen et al. (2006) reported simulation-based observations of non-
converging behavior, Iryo (2008) provided some analytical evidence of instability in
continuous time and Guo et al. (2018) recently proved that some dynamic processes
cannot converge in discrete time. Yet, all these results rely on specific schedule preferences
(the so-called α − β − γ) and adjustment mechanisms, and it is not clear whether they
hold under more general assumptions. It is not clear either what this instability means
in practice: is it still reasonable to use an unstable equilibrium as an approximation of a
dynamic process?

The present work tackles these two issues. On the theoretical side, this is the first
work that formulates results valid for wide classes of schedule preferences and rational
adjustment mechanisms. It builds on results from route choice and evolutionary game
theory, and in particular on the concept of monotonic utility functions. These results,
although only valid in continuous time, reveal fundamental differences in the dynamic
properties of the morning and evening commutes. It is also shown how the same congestion
toll can yield both monotonic and non-monotonic utility functions depending on where
the toll booth is installed.

We recognize however that our theoretical derivations still rely on very ideal assumptions
and investigate to which extent the results obtained are transferable to the real world.
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We conclude with practice-relevant statistics on the error made when approximating trip
scheduling problems by their equilibria. Although assumption-specific, these statistics
illustrate how the equilibrium approximation can yield relatively good estimates for
some metrics (e.g. the social cost), and very poor ones for others (e.g. the proportion
of social cost represented by schedule penalties). The analytical and numerical results
are presented in Sections 3.3 and 3.4. Section 3.2 provides an introduction to the trip
scheduling problem and to selected concepts and results from evolutionary game theory.

3.2 Background

3.2.1 Notations and definitions

The following notations and definitions are largely borrowed from this literature, and in
particular from Sandholm (2010b).

Consider a single homogeneous population, i.e. a continuum of users with the same
schedule preferences. The demand is assumed inelastic and of size N ∈ R

∗
+, so that N

agents commute every day. The choice set of departure times is finite and denoted DT =
{t1, ...tn}. The set of possible populations states is X = {(x1, ...xn) ∈ R

n
+,

∑n
i=1 xi = 1},

where xi denotes the proportion of users choosing departure time ti. For all x ∈ X,
TX(x) denotes the set of directions that the system can follow without leaving X.
Mathematically, TX(x) = {z ∈ R

n, ∃y ∈ X, α ≥ 0, z = α(y − x)}.

A population game is characterized by a continuous utility function U : X → R
n, where

Ui(x) represents the utility of departing at time i when the population plays according
to x.1 Since agents have no mass, a population state x∗ is a Nash equilibrium if x∗

i > 0
implies that Ui(x∗) ≥ Uj(x∗) for all j ∈ {1, ..., n} or, equivalently, if 〈y − x∗, U(x∗)〉 ≤ 0
for all y ∈ X. All population games have at least one Nash equilibrium.2

3.2.2 Dynamic system modeling

The evolution of the state x over days can be modeled in many different ways. We
chose here the most convenient assumptions: users update their decision according to a
deterministic process, based only on the conditions observed on the previous day. To the
best of our knowledge, all the previous works considering the trip scheduling problem
as a doubly dynamic process relied on the same assumptions. Yet, other alternatives
would also be worth considering, as argued by Watling and Hazelton (2003) for the route
choice problem.

1The notation Ui should not be confused with the notations Uo and Ud.
2This result was shown for a broader class of noncooperative games with continuums of agents, cf.

Sandholm (2010b)

18



3.2. Background

Besides, the same dynamics can be modeled either in continuous time (ẋ(t) = f(x(t)))
or in discrete time (xk = f(xk−1), where k denotes the day). The discrete alternative
provides a more faithful representation of the real world commute, and it also lends
itself to numerical simulations. Yet, the continuous time approximation is often more
suitable for analytical derivations. The continuous time approximation is standard in
evolutionary game theory and also common in route choice applications (Smith, 1984b;
Dupuis and Nagurney, 1993). Since this chapter builds on results from these fields, we
chose to adopt the continuous time approximation for the theoretical result of Section
3.3 and returned to a more realistic discrete time framework in Section 3.4 for numerical
simulations.

3.2.3 Adjustment mechanisms

Population games are based on two main assumptions: inertia and myopia. Inertia means
that agents only update their decision sporadically, so that the population state evolves
continuously with time. Myopia means that agents only consider the current utilities
of each alternative when taking decision, without trying to predict how other users will
react. When agents do update their decision, they do so by following a protocol. We
focus here on reactive protocols of the form ρ : X × R

n → R
n×n
+ , which map population

states x ∈ X and their corresponding utility vectors u ∈ R
n to matrices of conditional

switch rates ρij . Assuming that the revision protocol is Lipschitz continuous, it defines a
“deterministic evolutionary dynamic”, i.e. a map that assigns to each continuous utility
function U : X → R

n a system of ordinary differential equations (Sandholm, 2015):

ẋi =
n∑

j=1
xjρji(x, U(x)) − xi

n∑
j=1

ρij(x, U(x)) ∀i ∈ {1, ..., n}. (3.1)

To best represent reality, the revision protocol should rely on behavioral assumptions and
information requirements that are consistent with the selected application. In biology
for instance, the revision protocol is often imitative (agents are more likely to choose
alternatives that are already widely used). In transportation however, the most commonly
accepted principle is utility maximization, which is well illustrated by the best response
protocol (ρij(x, u) ∈ arg maxy∈X(y′u)). Yet, it is often more realistic to relax the utility
maximization principle, for instance to allow for ρij to be continuous, or to account for
the fact that users may not know the utilities of all alternatives.

The class of impartial pairwise comparison dynamics addresses this two issues. It is
characterized by ρij(x, u) = φj(uj − ui), where φj are sign-preserving functions3. It can
be interpreted as follows: every user regularly revises her decision by comparing her
current strategy against a randomly selected alternative. If the alternative provides

3Note that ρij(x, u) is always non-negative, by definition of conditional switch rates. Thus, the
sign-preserving constraint ensures that uj ≤ ui ⇔ φj(uj − ui) = 0.
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a larger utility, the user adopts it with a probability that is a function of the utility
difference. Otherwise, she retains her current strategy. In full generality, the function
φ can be specific to the target alternative, but it does not need to be so. For instance,
the most common protocol of this class is the proportional swap mechanism of Smith
(1984b), defined by ρij(x, u) = [uj − ui]+ (where ∀y ∈ R, [y]+ = max(0, y)). It leads to
the following continuous dynamic:

ẋi =
n∑

j=1
xj [Ui(x) − Uj(x)]+ − xi

n∑
j=1

[Uj(x) − Ui(x)]+ . (3.2)

A modified version of Smith’s protocol is used in the simulations of Section 3.4. Since
these simulations are in discrete time, the proportion of the population moving from
alternative i to j from one day to the next was computed as

λ

n
xi [Uj(x) − Ui(x)]+

⎛⎝max

⎛⎝1,
n∑

j=1

λ

n
[Uj(x) − Ui(x)]+

⎞⎠⎞⎠−1

, (3.3)

such that the state remains in the feasible space X. The ratio λ/n captures the sensitivity
of users to utility variations and influences the step size. We refer hereafter to λ as the
“sensitivity”.

Another important category is the class of separable excess payoff dynamics. This class
is such that users only switch to strategies associated to a payoff that is larger than the
average payoff experienced in the population, and do so independently of their previous
strategy. The corresponding protocols are of the form ρij(x, c) = φj ((

∑n
k=1 xkck) − cj),

where the functions φj are sign-preserving. For further details on these various classes of
mechanisms, the reader is referred to Sandholm (2015).

3.2.4 Monotonicity and stability

Although the word “stability” is often used in a loose sense, analytical results require
precise definitions. The following are three important types of stability, ranked from
weakest to strongest.

Definition 1 (stable equilibrium). A state xe is Lyapunov stable if for every ε > 0,
there exists δ > 0 such that, if |x(0) − xe| < δ then for every t > 0, |x(t) − xe| < ε.

Definition 2 (asymptotically stable equilibrium). A state xe is asymptotically stable
if it is Lyapunov stable and there exists δ > 0 such that if |x(0) − xe| < δ, then
limt→∞|x(t) − xe| = 0.

Definition 3 (globally asymptotically stable equilibrium). A state xe is globally asymp-
totically stable if it is Lyapunov stable and if limt→∞|x(t) − xe| = 0 for any x(0).
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The stability of a Nash equilibrium depends both on the game and on the revision
protocol. Fortunately, recent progress in evolutionary game theory has identified classes
of games and revision protocols that share many important dynamic properties. One
such class, the class of stable (or contractive) games, is central to our work. Stable games
are population games that are associated to a monotonic utility function. With 〈·, ·〉
denoting the canonical scalar product (∀x, y ∈ R

n, 〈x, y〉 =
∑n

i=1 xiyi), monotonic utility
functions are defined as follows.

Definition 4 (Monotonic utility function). A utility function U : X → R
n is monotonic

if 〈y − x, U(y) − U(x)〉 ≤ 0 for all x, y ∈ X.

In plain words, monotonicity requires that the average utility improvement of alternatives
that are abandoned (weighted by how many users abandon them) is larger than the
(also weighted) average utility improvement of alternatives that agents are switching to
(improvements can be positive or negative). If U is continuously differentiable, Hofbauer
and Sandholm (2009) explains that U is monotonic if and only if its Jacobian matrix
DU(x) is negative semidefinite with respect to TX for all x ∈ X. A classical example is
the class of negative diagonal dominant games (i.e. games such that for all x and for all
i ∈ {1, ...n}, ∂Ui

∂xi
(x) ≤ 0 and ∂Ui

∂xi
(x) ≤ ∑

j �=i

∣∣∣∂Ui
∂xj

(x)
∣∣∣).

From a static point of view, it is easy to show that the set of Nash equilibria of a
stable game is convex and that if the utility function is strictly monotonic at some Nash
equilibrium (i.e. if the inequality in Definition 4 is strict for all pairs involving this Nash
equilibrium), then this Nash equilibrium is unique (Smith, 1979; Hofbauer and Sandholm,
2009). Yet, as the name suggests, stable games also have important dynamic properties.
We explained above that dynamic properties normally depend both on the game and on
the revision protocol. For stable and continuously differentiable games however, Hofbauer
and Sandholm (2009) showed that the set of Nash equilibria is globally asymptotically
stable with a wide range of adjustment mechanisms, including all those presented in
Section 3.2.3 (best response, impartial pairwise comparison, separable excess payoff) and
the class of perturbed best response mechanisms, whose best-known instance is the logit
model. Similar local stability results also exist for cases where the utility function is not
monotonic everywhere, but only locally (local monotonicity is formalized by the concept
of evolutionary stable state) (Sandholm, 2010a).

In order to better understand the role of monotonicity, it is useful to read an example
of Lyapunov stability proof (see for instance the proof of Theorem 7.1 in Hofbauer and
Sandholm (2009)). These proofs proceed by showing that some global disequilibrium index
V (x) (called the Lyapunov function, and specific to the adjustment mechanism chosen)
decreases over time when the system follows the adjustment mechanism. One way of
proving this is by analyzing d

dtV (x(t)) = ∇V (x)′ẋ, where ∇V (x) denote the gradient of V

at x. V is typically a function of the form V (x) =
∑n

i=1 xiψi(x, U(x)), where ψi(U(x), x)
is the contribution of users currently playing i to the index V (x). Thus, when users shift
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Chapter 3. Stability of departure time choice with a bottleneck

to other alternatives, they impact V (x) by (i) changing the weights xi associated to each
contribution ψi(U(x), x), and by (ii) changing the contributions ψi(U(x), x) themselves.
Then, the proof consists in showing that the adjustment mechanism is such that users
move on average from alternatives having a large contribution ψi(U(x), x) to alternatives
having a smaller one (so that the term (i) is strictly negative) and that the term (ii) is
always non-positive because of the monotonicity condition.

This summary, although highly schematic, provides some useful intuition. Note in
particular that V (x) might also be decreasing if the utility function is not monotonic but
the first term dominates the second. This is likely the case far from equilibrium, when
users can greatly increase their utility, and thus reduce their contribution to V (x). Yet,
if 〈y − x, U(y) − U(x)〉 is only positive for very specific states x and y, and if the revision
protocol does not bring the system in such states, the first term may also dominate the
second one close to equilibrium. This highlights the fact that monotonicity is a sufficient
condition for stability, but not a necessary one.

3.3 Monotonicity with the bottleneck model

The main result of this Section is Theorem 1, which provides a necessary and sufficient
condition for the monotonicity of utility functions with a bottleneck model. It extends
the non-monotonicity result established by Iryo (2008) for the well-known α − β − γ

preferences. Before stating it, we propose to analyze a simple but insightful example.

Note also that we consider in this section that departures occur continuously over
time, to simplify the analysis. The set of possible departures rates is then the class of
non-negative real-valued functions which are measurable and essentially bounded on a
compact time interval, denoted L∞(R) (we follow here Mounce (2006)). The concept
of a monotonic utility function remains valid with the canonical scalar product of that
space (∀f, g ∈ L∞(R), 〈f, g〉 =

∫ ∞
∞ f(t)g(t) dt).

3.3.1 A simple example

Let us first leave aside the schedule preferences and consider that utility is simply the
negative of travel time. The congestion mechanism described by the constant capacity
bottleneck model implies highly asymmetric externalities: users are only delayed by those
traveling before them, and only delay those traveling after them. Also importantly, these
externalities do not vanish with time: all users traveling after some perturbation are
delayed by the same amount, as long as the queue does not entirely disappear. This is
illustrated in Fig. 3.1.

Consider now a constant capacity bottleneck that is consistently congested during some
time period, and the departure rate modification illustrated in Fig. 3.2, occurring entirely
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3.3. Monotonicity with the bottleneck model

Figure 3.1 – Additional delay imposed on every other user by a user of mass np arriving
at time t = 0 at a bottleneck of capacity s, as a function of others’ arrival time at the
bottleneck. The bottleneck is assumed to be congested for the entire period of interest.

Figure 3.2 – Influence of a small perturbation of the departure rate on experienced delays.
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Chapter 3. Stability of departure time choice with a bottleneck

inside the congested period. Let r1 and r2 denote the original and modified departure
rates. If utility is simply equal to −(td − to) (i.e. uo and ud are both equal to the same
constant), we have that 〈r2 − r1, Ur2 − Ur1〉 =

∫ ∞
−∞(r2(t) − r1(t))(Ur2(t) − Ur1(t)) dt =∫ t1+δt

t1
ε2

s (t − t1) dt +
∫ t2+δt

t2
− ε2

s (t2 + δt − t) dt = 0. In other words, the change in utility
function is perpendicular to the change in departure rate. If users were previously
indifferent between the time slots [t1, t1 + δt] (where users were added) and [t2, t2 + δt]
(where users were removed), they are still indifferent after the departure rate modification.
By combining similar changes, we obtain that any departure rate modification that does
not affect the congested period and the total number of departures yields changes in
utility functions that are perpendicular to the changes in departure rate.

Now imagine that ud slightly increases between t1 and t2 + δt: the delays would be more
costly for users traveling after this increase than for those traveling before it, so that
〈r2 − r1, Ur2 − Ur1〉 would be positive, thus violating the monotonicity condition. This
small example shows that for the scheduling problem to be monotonic, it is necessary
that the marginal utility rate at the destination ud is non-increasing. This condition is
actually also sufficient, as formalized by Theorem 1.

3.3.2 Monotonicity of the laissez-faire policy

Theorem 1. Assume that ud(t) > 0 for all t. With a bottleneck of constant capacity, the
bottleneck utility function is a monotonic function of the flow into the bottleneck if and
only if the marginal utility function at the destination ud is a non-increasing function of
time.

Although this is the first work providing conditions for the monotonicity of the trip
scheduling problem with a bottleneck, this result is intricately related to theorems
established for route choice applications (without schedule preferences). Indeed, Smith
and Ghali (1990) and Mounce (2006) already investigated the monotonicity of the utility
function that arises from the bottleneck congestion mechanism when individual costs
are reduced to travel times. Smith and Ghali (1990) established the monotonicity of the
constant-capacity problem, while Mounce (2006) established a result similar to ours with
an exogenous time-dependent bottleneck capacity.

Theorem 2 (Mounce (2006)). Without schedule preferences, the bottleneck delay function
is a monotonic function of the flow into the bottleneck if and only if the bottleneck capacity
is non-decreasing with respect to time.

Rather than proving Theorem 1 from scratch, we take advantage of these existing results
and simply prove that the case with schedule preferences can actually be seen as another
interpretation of Mounce’s result.
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3.3. Monotonicity with the bottleneck model

Proof of Theorem 1. Let s(t) denote the capacity of the bottleneck at time t and let
A(t) =

∫ t
0 s(τ) dτ denote the maximum possible cumulative number of arrivals at desti-

nation at time t, starting from time 0. If a user arrives at the bottleneck at time to, she
will leave it at time

td(to) =

⎧⎨⎩to, if q(to) = 0
to + A−1(A(to) + q(to)), otherwise.

Thus, her utility would be

U(to, td(to)) =

⎧⎨⎩Uo(to) + Ud(to), if q(to) = 0
Uo(to) + Ud(to) −

∫ A−1(A(to)+q(to))
to ud(τ) dτ, otherwise.

By making the change of variable a = A(t), her utility becomes

U(to, td(to)) =

⎧⎨⎩Uo(to) + Ud(to), if q(to) = 0
Uo(to) + Ud(to) −

∫ A(to)+q(to)
A(to)

ud(A−1(a))
s(A1−(a)) da, otherwise.

Thus, the utility function does not depend on ud and s separately, but only on their ratio.
In particular, a problem with constant capacity s0 and time varying marginal utility at
work u0

d(t) has the same utility function as a problem with time varying capacity s0/u0
d(t)

and constant marginal utility at work equal to 1. In such a case, the utility of each
alternative decreases linearly with travel time, as in Theorem 2. The terms Uo(to)+Ud(to)
play the role of alternative-specific constants, which do not impact monotonicity. Thus,
Theorem 1 follows from Theorem 2.

One of the main insights offered by Theorem 1 is that the morning and evening commutes
may have very different dynamic properties. Indeed, ud is usually an increasing function
of time for the morning commute (see for instance the empirical work of Tseng and
Verhoef (2008)), while it is typically assumed to be constant in the evening commute.
The utility function would thus be non-monotonic during the morning but monotonic
during the evening, although this latter case should be considered carefully as a constant
ud represents a limit case. If users were indeed updating their decisions in continuous
time, this difference would be extremely significant as it would imply stability for the
evening commute (with the caveat that it is a limit case), and possible instability for
the morning commute.4 Thus, our extension brings an entirely new significance to the

4Another caveat is that most of the analytical results establishing stability for monotonic utility
functions are only established for discrete choice sets. Continuous choice sets involve additional technical
difficulties, but Mounce (2006) circumvented them to establish global asymptotic stability with Smith’s
adjustment mechanism. We are not aware of similar extensions for other mechanisms. Note however that
utility functions that are monotonic with Mounce’s class of departure rate are also monotonic with the
more restrictive class of piece-wise constant departure rates considered in Section 3.2. The converse is
not generally true, but if ud is increasing on a time scale that is larger than the time step between two
possible departure times (considered to be 1 min in our numerical applications), then counter-examples
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Chapter 3. Stability of departure time choice with a bottleneck

earlier monotonicity results of Smith (1984b) and Mounce (2006).

3.3.3 Pricing and monotonicity

It has long been known that by setting appropriate prices on all alternatives, network
authorities can avoid wasteful queuing and ensure that the tolled user equilibrium
coincides with the social optimum (Vickrey, 1969). Yet, as for the no-toll equilibrium, it
is generally not clear whether the tolled equilibrium is stable. As evidenced hereafter,
the answer depends on how the toll is implemented.

Consider a homogeneous population. In order to minimize the total cost, one should
find a departure rate r(t) that does not generate any queuing and such that all the used
departure times t have a no-queue utility U(t, t) larger than all the unused departure
times. Although some additional assumptions are required for uniqueness, such an
optimum always exists (because utility is continuous and the choice set compact), and
one can associate to it a utility level Ū = mint∈supp(r){U(t, t)} (where supp(r) denotes
the support of r). By definition of the social optimum, Ū can also be defined as the
maximum of {u ∈ R,

∫
[U(t, t) > u]s dt ≥ N}, where [X] = 1 if X is true and 0 otherwise

(Iverson brackets).

Then, in order to make the social optimum an equilibrium, one should ensure that all
used alternatives have the same utility when there is no queuing. We can ensure this is
the case by adding a toll either upstream or downstream of the bottleneck. We propose
the same time dependence in both cases:

$(t) = max(Uo(t) + Ud(t) − Ū, 0), (3.4)

Note that this formulation depends on the time of the day, but that the toll remains the
same from day to day, independently of the traffic conditions.

The choice of the toll booth location has some consequences. If it is downstream of
the bottleneck, the toll is applied to td, such that whenever $(td) > 0, U(to, td) =
Uo(to) + Ud(td) + Ū − Uo(td) − Ud(td) = Uo(to) + Ū − Uo(td) = Uo(to) + Ū +

∫ 0
td

uo(t) dt.
This utility function has the same structure as in the no-toll case, except that uo(t) in the
tolled case plays the role of ud(t) in the no-toll case. Thus, if the choice set was reduced to
the times such that $(td) > 0, the utility function would be monotonic if and only if uo is
non-increasing (which is likely to be the case during the morning commute). On the other
hand, if the toll booth is installed upstream of the bottleneck, the toll is applied to to and
whenever $(to) > 0, U(to, td) = Uo(to)+Ud(td)+Ū −Uo(to)−Ud(to) = Ud(td)+Ū −Ud(to).
If the choice set was reduced to the times such that $(to) > 0, this utility function would
be monotonic if and only if ud is non-increasing, as in the no-toll case.

such as the one illustrated in Fig. 3.2 can easily be constructed.
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3.4. Discrete time analysis (simulation-based)

Theoretical results are limited by the fact that users might still choose from time to
time to depart at times that are not used in the social optimum, and for which the
monotonicity results above do not hold. This problem could be addressed by setting also
an appropriate price on suboptimal alternatives. In practice however, such alternatives
should not be chosen too often as they are always dominated.

3.4 Discrete time analysis (simulation-based)

3.4.1 Objectives

Combined with the existing results on stable games (see Section 3.2.4), the analytical
results covered in Section 3.3 establish some sufficient conditions for the continuous
time stability of the trip scheduling problem with homogeneous users. Yet, these are
not sufficient for deriving practical recommendations and several issues remain to be
investigated.

First, we shall investigate whether systems that are stable in continuous time are also
stable in discrete time. The distinction is well explained by Watling (1999). In general,
the stability of discrete-time systems depends on how much the state can evolve from
iteration to iteration. In previous simulation reports (de Palma, 2000; Mc Breen et al.,
2006), the proportion of agents updating their decisions every day was defined exogenously.
Here this proportion is endogenous but it can be tuned via the sensitivity λ, in Eq. (3.3).

Second, we need to determine whether non-monotonic situations are unstable. In the
simple set-up considered in Section 3.3.1 (homogeneous users with a long queuing interval),
monotonicity violations are so common that instability appears very likely. It is not
clear however whether this would also be the case in more realistic set-ups. Mc Breen
et al. (2006) showed that user heterogeneity can have a significant stabilizing effect.
Specifically, the authors considered a population of users having the same function ud,
but translated by various offsets to produce heterogeneity in t∗. It can be interpreted
either as heterogeneity in the timing of the utility drop/surge, or as heterogeneity in the
constant travel time required between the bottleneck location and the location where
marginal utility changes. Intuitively, the stabilizing effect comes from the fact that it
reduces both the range of departures that each user considers (and thereby reduces
the shifting frequency with Smith’s mechanism), and the frequency of unrealistic shifts,
where users move from the congestion onset to the offset, and vice versa. Such shifts are
problematic as (i) they perturb many users (recall that a user shifting from a departure
time t to another t′ only affects users that arrive at the bottleneck between t and t′) and
(ii) they involve great variations in ud(t), which were shown in Section 3.3 to violate
the monotonicity property for the morning commute. This intuition is supported by
another observation of Mc Breen et al. (2006) that heterogeneity in the strength of the
preferences alone does not have a similar stabilizing effect (without heterogeneity in t∗,
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Chapter 3. Stability of departure time choice with a bottleneck

users were indifferent at equilibrium between two departures times that were respectively
in the congestion onset and offset). The amount of heterogeneity in t∗ is parameterized
in the present work by its standard deviation, denoted σ∗.

We shall further precise the influence of monotonicity on stability. To that end, we
try to isolate this effect. Without pricing, this is done by considering a family of
schedule preferences parameterized by a coefficient δ that influences monotonicity while
maintaining some symmetry. With pricing, we simply compare the cases with toll booths
installed upstream and downstream of the bottleneck. This comparison differs from
the previous one because tolls are designed to avoid queues at equilibrium. Since the
externalities behind the monotonicity property are generated by queues, monotonicity
may not influence stability as much as in the no-toll case.

Finally, practitioners ultimately want to know whether the equilibrium approximation is
reasonable. This issue cannot be reduced to a stability analysis. For instance, a system
that would move fast towards its equilibrium and then oscillate close to it could be well
approximated by this equilibrium, even though it is unstable. On the contrary, a system
that would approach its equilibrium steadily but slowly may always be far from it. Thus,
this section also aims at quantifying disequilibrium and its consequences in practice.

3.4.2 Description

Scenarios

In order to mimic the evolution of real world commutes, simulations were run for 200
days, starting from uniformly distributed departures.5 We could have run the simulations
over longer time periods but real world systems do not remain unperturbed for so long.
The bottleneck capacity s was chosen such that it takes 2 h to serve all users (with a unit
population, s = 1/2). The scenarios considered are all symmetric: the average desired
arrival time t∗ is always 0, and the schedule preferences are such that at equilibrium, the
bottleneck is used during the interval [−1 h, 1 h].

The possible departure times were evenly spaced over the interval [−1.5 h, 1.5 h], every
1 minute. In practice however, the simulator was designed such that users choosing to
depart at time ti were actually departing uniformly over the interval [ti − δt

2 , ti + δt
2 ],

where δt = 1 min is the time between two consecutive departure alternatives. The
resulting departure rate is piece-wise constant, allowing for simple analytical derivations
of the queue dynamics. The utility associated to alternative i was computed based on
the distribution of arrival times of users departing in [ti − δt

2 , ti + δt
2 ].

Variations in marginal utility rates were produced by the function fδ(t) = α+ δ
π tan−1(w(t−

5The code used for the following simulations is available at https://github.com/raplam/
departureTimeChoice.
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3.4. Discrete time analysis (simulation-based)

Figure 3.3 – Marginal utility rates for morning and evening commutes

t∗)), with w = 4 h-1. We refer to δ as the “amplitude”. Depending on the sign of δ,
the function fδ generates either a utility surge or a utility drop. We created “morning
commutes” by using uo(t) = α = 1 and ud(t) = fδ(t) with δ > 0 and “evening commutes”
by using ud(t) = α = 1 and uo(t) = fδ(t), with δ < 0. These marginal utility rates
are illustrated in Fig. 3.3. The magnitude |δ| determines the strength of the schedule
preferences. In a morning commute scenario, users that really need to arrive at work
around t∗ would have a large and positive δ.

Heterogeneity was introduced by creating G = 10 groups and allocating each of them
a different t∗.6 Different standard deviations σ∗ were produced by varying the gap
between consecutive values. For any g ∈ {1, ...G}, the value t∗ of that group was set to
t∗
g =

(
g − G+1

2

)√
12

G2−1σ∗.

Disequilibrium index

Some objective function is needed to quantify convergence. Here, we consider a rather
intuitive measure, the “potential gain”. It is defined as the average over all users of the
maximum utility improvement they could achieve given the current utility functions,
divided by their current congestion cost.7 To simplify its expression, we defined the
utility functions Uo and Ud of each group of user relatively to their own t∗: for any
g ∈ {1, ...G}, Ug

o (to) =
∫ to

t∗
g

uo(t) dt and Ug
d (td) =

∫ t∗
g

td ud(t) dt. With these definitions,
the maximum possible utility (Ug(t∗

g, t∗
g)) is equal to 0. The congestion cost is thus the

negative of utility and if we denote xg
i the proportion of the population belonging to

6We initially considered other values but the aggregate indicators were extremely similar for all G ≥ 10.
G = 10 was found to be a good compromise between granularity and computational resources.

7The congestion cost of an alternative i for users of group g is defined as the difference between Ug
i (x)

and the maximum possible utility without congestion, reached when to = td = t∗
g.
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Chapter 3. Stability of departure time choice with a bottleneck

Figure 3.4 – Influence of heterogeneity in t∗ on convergence, with different values of the
sensitivity λ (δ = 1.5).

group g and choosing alternative i, the potential gain is given by

PG(x) =
G∑

g=1

n∑
i=1

xg
i

maxj∈{1,...,n}
(
Ug

j (x) − Ug
i (x)

)
|Ug

i (x)| . (3.5)

It belongs to [0, 1] and is equal to zero if x is an equilibrium.

3.4.3 Results

Influence of λ, σ∗ and δ on convergence

Fig. 3.4 shows the evolution of the potential gain PG(x) for multiple heterogeneity
levels σ∗ and for various sensitivity parameters λ. These runs can be classified in two
categories: those where PG(x) oscillates very early, and those where PG(x) exhibits a
global decreasing trend (although at various rates). When analyzing simulations, we
abusively brand the latter behavior as converging. For each value of λ, there seems to
be a critical σ∗ such that runs with less heterogeneity oscillate, while those with more
heterogeneity converge. The critical value of σ∗ apparently increases with λ, such that
for a given σ∗, the system is more likely to converge with a smaller λ. However, increased
stability comes at the cost of slower convergence. With σ∗ = 0.5 for instance, it takes 86
days to reach PG(x) = 30% with λ = 1, but only 12 days with λ = 10.

These results challenge the idea of a binary relation between the slope of ud and stability.
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Figure 3.5 – Influence of the amplitude δ on convergence, with different values of the
sensitivity λ (σ∗ = 0.4).

Indeed, the above cases all correspond to non-monotonic utility functions8, and yet some
of them converge (at least from a practical point of view). Yet, this does not mean that
monotonicity is irrelevant. Fig. 3.5 is the analogue of Fig. 3.4, except that the graphs
are replicated for various amplitudes δ, instead of various standard deviations σ∗ (for
brevity, we only present results for σ∗ = 0.4). The sign of δ is especially important. With
our schedule preferences, Theorem 1 implies that in the homogeneous case, the utility
function is monotonic if and only if the perturbation has a positive amplitude (δ > 0).

Here, runs with positive and negative amplitudes having the same magnitude |δ| behave
identically during the first iterations (this is because the two commutes are pure mirror
images as long as there is no queuing), and then diverge. When they diverge, several
trends can be distinguished: (i) both runs exhibit similar oscillations (e.g. when λ = 10
and |δ| = 0.5), (ii) both runs converge and the run with negative amplitude δ converges
at the same rate or faster (e.g. all cases with λ = 1), (iii) only the run with negative
amplitude converges (e.g. when λ = 10 and |δ| = 1 or 1.5). Thus, even if the sign of δ

is not the only determinant of stability, these simulations show that monotonicity does
have a stabilizing effect and that evening commutes are generally closer to equilibrium
than the symmetric morning ones.

Finally, the evolution of the proportions of users updating their decision displayed in the
lower panels of Fig. 3.4 and 3.5 provide some orders of magnitude regarding the decision-

8With group-based heterogeneity, clear monotonicity violations can be obtained by considering
intra-group movements identical to those considered in Section 3.3.1.
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making process. When the system is relatively close to equilibrium, users typically update
their departure time only about 0.3% of days, i.e. approximately once a year. Yet users
with the same parameters can also react quite quickly to major perturbations, as shown
during the first days of the simulation.

Departure rate analysis

The effect of user heterogeneity and the practical consequences of instability are better
understood when considering the departure profiles. Each row of Fig. 3.6 shows as
functions of time (i) the cumulative input and output of the bottleneck (1st column) and
(ii) the departure rates of all groups, for two days of the previous simulations (2nd and 3rd

columns). These days, identified by circles in the Figs 3.4 and 3.5, were selected among
the last 100 to avoid a strong dependence on the initial conditions. We chose them to be
as different as possible in terms of potential gain. Thus, the cumulative plots illustrate
the magnitude of variations in queue length (the vertical distance between the input and
output curves) and travel time (the horizontal distance) observable over a single run.

The situations illustrated in the first two rows correspond to highly oscillatory behaviors,
with large potential gains. Since the output is constrained by the bottleneck capacity,
these oscillations mostly affect the cumulative input. These oscillations also influence the
distribution of departures within each group and convergence seems highly correlated
with a strong segregation between groups. Indeed, the 2nd, 3rd and 4th rows correspond
to situations with the same amount of heterogeneity (σ∗ = 0.4) but users are clearly
more segregated in situations with smaller oscillations and smaller potential gain. This
observation supports the intuition that heterogeneity brings stability by restraining
the scope of alternatives considered by users. When heterogeneity is not sufficient to
effectively restrain this scope, the system remains unstable.

Finally, note that the amount of delay (i.e. the area between the cumulative input and
output curves) is larger in the first row than in the others. Is it due to instability or to
different schedule preferences? This is investigated in Section 3.4.3, together with other
practical consequences of instability.

Pricing

Pricing is also likely to affect stability, and not only through the concept of monotonicity.
To simplify the analysis, we focus here on the morning commute with homogeneous users.
Without pricing, this case was the furthest from equilibrium.

Fig. 3.7 represents the potential gain evolution in different situations. All three panels
contain 30 curves, corresponding to five initial points, three values of λ and two tolling
strategies. The initial conditions considered correspond to the five first iterations of a
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Figure 3.6 – Cumulative input/output curves and disaggregated departure profiles for
pairs of days belonging to the same run, for various triplets (λ, σ∗, δ).
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Figure 3.7 – Influence of the pricing duration on convergence, with homogeneous users
(δ = 1).

run made with λ = 10 without tolling. This ensures that the results are robust to queues,
which are neither present in the social optimum, nor when departures are uniformly
distributed. Each panel then corresponds to a different pricing scheme: the population
considered when defining the pricing strategy was either underestimated by 15% (left),
perfectly estimated (middle), or overestimated by 15% (right).

The comparison of these three panels shows that the stability greatly depends on the
pricing duration, but that there is no noticeable difference in behavior between the
scenarios with tolls upstream ($o) and downstream ($d) of the bottleneck. This can be
explained by the shape of the utility preferences. With large pricing time windows, all
travelers can use priced alternatives. Without congestion, these alternatives are the most
attractive. If some of these alternatives happen to be overused, their utility is lowered.
But since priced alternatives cannot be all overused simultaneously, there is always some
priced alternative that is not overused and that is more attractive than unpriced ones.
Thus, pricing incites users to spread on all the priced time interval, independently of the
monotonicity of the utility function. Such a mechanism intuitively has a stabilizing effect.
For instance, in continuous time and with a best-response adjustment mechanism, the
priced equilibrium would be stable regardless of the monotonicity of the utility function,
because users would only switch to alternatives that are priced and not overused. If the
pricing duration is too short however, users have to travel also during unpriced intervals.
The utility function is not monotonic in that case, irrespective of the toll booth location.

Biases in congestion cost estimation

It should be clear by now that without appropriate tolls, the real world is unlikely
to be exactly at equilibrium. Yet, it is also clear that alternatives to the equilibrium
approximation are likely to be far more complicated and impractical. We should therefore
identify the impacts of this approximation and the biases it entails. While other indicators
may be considered, we focus here on the estimation of the congestion cost and on its
decomposition between delay and schedule penalties. Since we only consider cases where
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3.4. Discrete time analysis (simulation-based)

Figure 3.8 – Delay, schedule penalty and congestion cost observed over individual days
for various pairs (σ∗, δ) and sensitivity λ.

either uo or ud is constant, we define the cost of delay as the travel time (td − to),
multiplied by this constant marginal utility rate. The schedule penalty is then the
difference between the congestion cost and the delay cost.

Fig. 3.8 compares these different costs at various stages of the previous simulations
for three pairs (σ∗, δ). The equilibrium values are also indicated for the instances with
positive amplitude (δ > 0). They were obtained using an equivalent linear program
proposed by Iryo and Yoshii (2007), which only applies when uo is constant and identical
for all users. Since runs with different values of λ share the same equilibrium, they were
combined in the same plots, with different colors.

The analysis of the third column suggests that the equilibrium approximation is suitable
to estimate the congestion cost. The estimation can admittedly be quite far on specific
days (e.g. up to 15 − 20% difference for (σ∗, δ) = (0.4, 1.5) and PG(x) = 30%). Yet, the
cloud of points is approximately symmetric compared to the equilibrium line, such that
the average congestion cost over many days is close to its equilibrium value.
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Chapter 3. Stability of departure time choice with a bottleneck

In terms of cost decomposition however, the equilibrium approximation entails severe
biases. It systematically overestimates the average delay and underestimates the average
schedule penalty. The discrepancy can be quite large, especially compared with the
average schedule penalty at equilibrium. These results were expected for the first two
rows. Indeed, they correspond to a special case where the equilibrium is known to
minimize the sum of schedule penalties (see e.g. Iryo and Yoshii (2007)). The amplitude
of the bias was however unknown and it is interesting to notice that a similar bias exists
in the evening commute scenario considered (last row).

These biases have important practical consequences. When estimating the congestion cost
for instance, it is common to measure only the average delay and to deduce the average
schedule penalty by applying some proportionality ratio deduced from equilibrium analysis.
Our results suggest that such a method could greatly underestimate the congestion cost.

3.5 Discussion

As shown by our literature review, stability analyses raise complex theoretical questions.
Yet, stability is an important practical issue, which ultimately requires clear answers and
quantitative estimates. Faced with this challenge, we proposed a hybrid approach, based
on both analytical derivations and simulations. Analytical derivations give this work
a broad scope. By combining results from route choice and evolutionary game theory,
it is possible to derive sufficient conditions for continuous time stability that are valid
for many rational adjustment mechanisms. Yet, these theories only address part of the
problem: they ignore discrete-time issues and do not tell us what happens when utility
functions are not monotonic. While simulation results are inherently limited by the range
of scenarios considered, they can provide orders of magnitude and illustrate important
trends. Here, simulations shed light on the role of some behavioral parameters and on
the soundness of the equilibrium assumption in different situations. Given the great
heterogeneity existing in the real world, the equilibrium assumption may still provide
rather good estimates of the congestion cost. The decomposition of the congestion cost
may however be quite far from the one observed in practice. Schedule penalties in
particular tend to be severely underestimated by the equilibrium assumption.

This work could be extended in many ways. Empirical work is needed, in particular to
quantify the daily variations existing in real world departures. On the theoretical side, an
important research priority would be to consider other congestion mechanisms that could
be applied to model cities. Previous reports of detailed network simulations (e.g. with the
METROPOLIS simulator (de Palma et al., 1997)) and of an ideal isotropic zone-based
congestion model (Lamotte and Geroliminis, 2017) suggest that multi-directionality may
lead to different dynamic properties.
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4 The morning commute in urban
areas with heterogeneous trip
lengths
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4.1 Introduction

The morning commute has historically been studied with point bottlenecks, following
the seminal paper of Vickrey (1969). Urban networks however, cannot be modeled as
collections of independent point bottlenecks. In fact, congestion propagates from one
bottleneck to its neighbors, creating connected components of congestion that grow
and may extend to the whole network (Ji et al., 2014). In the face of this complexity,
an attractive solution consists in considering congestion in homogeneous and isotropic
areas (Small and Chu, 2003; Geroliminis and Levinson, 2009). This approach relies on
empirically supported relationships, referred to as Macroscopic Fundamental Diagrams
(MFD), which describe the dynamics of congestion with just a few variables such as
accumulation, space-mean flow, trip completion rate and speed (see Section 2.3.3).

The consequences of this change of scale are not fully understood yet. The first works
combining an MFD with departure time choice called attention to the cost of hypercon-
gestion, i.e. the phenomenon by which vehicle flow decreases with accumulation when
accumulation exceeds a critical level (Small and Chu, 2003). Geroliminis and Levinson
(2009) and Fosgerau and Small (2013) argued that by maintaining the system at the
flow-maximizing accumulation, the benefits of congestion pricing with homogeneous users
could be even greater than with Vickrey’s bottleneck, as the duration of the peak hour
could be shortened. Arnott (2013) showed that further gains can be obtained by main-
taining the accumulation always below its flow-maximizing value, at a level that increases

37



Chapter 4. The morning commute in urban areas with heterogeneous trip
lengths

with the peak duration. While they reach similar conclusions, the aforementioned papers
utilized different assumptions to deal with complex dynamics involving endogenous delays.
Small and Chu (2003) and Geroliminis and Levinson (2009) assumed that travel time is
entirely determined by the conditions at a single instant (e.g. at the arrival), Fosgerau
and Small (2013) considered a piece-wise constant decreasing branch for the MFD of
flow versus accumulation and Arnott (2013) assumed that at any time, all users have
the same probability of exiting the network, independently of the time at which they
started their trip. Yet, it is only very recently that Fosgerau (2015) and Daganzo and
Lehe (2015) recognized how trip length heterogeneity challenges the fundamental FIFO
assumption and started investigating its impacts on the morning commute.

Surprisingly however, Fosgerau (2015) and Daganzo and Lehe (2015) reached very
different conclusions on the role of trip length. Using mathematically convenient but
unconventional exponential-type scheduling preferences, Fosgerau (2015) showed that
under some assumptions, the user equilibrium exhibits the “regular sorting” property, i.e.
two users differing only by their trip length sort according to a Last-In, First-Out (LIFO)
pattern where the user with the longest trip starts earlier and finishes later. On the other
hand, Daganzo and Lehe (2015) proved for the more conventional α − β − γ scheduling
preferences but with a less realistic congestion mechanism (actually very similar to
a point bottleneck) that the social optimum exhibits the FIFO property. Based on
these theoretical considerations, Daganzo and Lehe (2015) also proposed a usage-based
toll maintaining the accumulation near its flow-maximizing value and demonstrated
numerically its benefits on the same realistic congestion mechanism as in Fosgerau (2015).
The question of the prevailing sorting pattern with heterogeneous trip lengths remains
not fully solved, despite probably severe consequences of congestion management and
stability.

This chapter investigates the morning commute problem with inelastic demand and a
MFD relating speed to accumulation. Our focus is primarily on the impact of trip length
heterogeneity, but we also study the impact of heterogeneity in the scheduling preferences.
In line with most of the literature, we rely on the so-called “fluid approximation” (Newell,
1982), in which the stochastic dynamics of a large number of agents are modeled
by a deterministic real-valued process. With Vickrey’s constant capacity bottleneck,
this assumption, together with some convexity assumptions on the schedule penalties,
permitted to prove the existence and the uniqueness of an equilibrium distribution of
arrival times (Smith, 1984a; Daganzo, 1985). In this work, we leave aside the existence
and uniqueness questions as they would require tedious derivations beyond the scope
of the thesis (even for a bottleneck model with much simpler dynamics, the proofs in
Smith (1984a) and Daganzo (1985) contain a significant number of modeling assumptions,
but also very long derivations). Instead, we analytically characterize an hypothetical
equilibrium and confirm using simulations that (i) an attracting steady-state exists for
a wide range of demands and that (ii) the patterns theoretically predicted are indeed
observed.
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The complexity of the problem is mainly due to an endogenous delay in the dynamical
model (more information is provided in Section 2.3). This makes a fully analytical solution
intractable, as also pointed out by Arnott (2013). Nevertheless, in this work we are able
to mathematically prove important properties of the equilibrium solution and develop a
numerical simulation of the detailed model that confirms some of the proofs and provides
further insight. More specifically, this chapter has three main contributions. First, we
show that with a continuum of users having continuously distributed characteristics,
accumulation and speed are continuous functions of time. This result is valid for a
large class of scheduling preferences and contrasts with the discontinuities resulting
from the assumption of homogeneous trip lengths (Arnott et al., 2016). Second, we
assume α − β − γ preferences and, under certain conditions, demonstrate that they
result in a partial FIFO pattern among early and late users at equilibrium. This FIFO
pattern is strict only within families of users having identical α − β − γ preferences
and heterogeneous trip lengths, or vice versa. Yet, simulation results indicate that it
influences the overall properties of the equilibrium, and in particular the cost function.
It is also shown that with this more detailed dynamic model, the proportion of on-time
users may be larger than previously found under simpler approximations and that, under
rapid demand variations, the social optimum may exhibit hypercongestion. This finding
goes against the previously proposed pricing strategies and calls for further research on
congestion pricing under rapidly varying demand.

Sections 4.2.2 and 4.3 provide analytical treatments of the continuity and sorting proper-
ties, while Section 4.4 presents the simulation results.

4.2 General properties

4.2.1 Time-space transformation

As highlighted by Eq. (2.6), the phenomena occurring with a speed-MFD may be difficult
to analyze in the time domain. Thus, it is often convenient to change the frame of
reference and to study the dynamics of congestion over some distance measure. More
specifically, we can introduce the bijection f : R → R given by f(t) =

∫ t
0 v(s) ds, which

associates to a time t the distance traveled by a virtual user from the origin of time to t.1

In the same fashion as we use t to denote a particular time, let x = f(t) denote a particular
distance traveled and let V be the speed function in the x space: V (x) = v(f−1(x)).

We can now define the function T (tw, l) that associates to an arrival time at work tw ∈ R

and a trip length l ∈ R
+ the corresponding travel time. In the time domain, T (tw, l) is

only implicitly specified by the constraint
∫ tw

tw−T (tw,l) v(s) ds = l. In the distance domain

1Note that f might not be bijective in some out-of-equilibrium situations reaching (or converging
towards) gridlock, but we discard these pathological cases to focus on the equilibrium properties.
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however, T admits an explicit expression:

T (tw, l) =
∫ f(tw)

f(tw)−l

1
V (s)

ds. (4.1)

Note that f is continuous and since V is positive almost everywhere at equilibrium, T is
continuous as well. In addition, if v(t) is continuous, then V (x) is also continuous and T

is continuously differentiable. In particular,

∂T

∂tw
(tw, l) =

v(th) − v(tw)
v(th)

, (4.2)

where the departure time from home th is actually a function of tw and l, given by
th(tw, l) = tw − T (tw, l).

4.2.2 Continuity of accumulation over time

Besides being extremely numerous, commuters are also very diverse. This heterogeneity
is often neglected for the sake of tractability and intuition. Yet, this section shows that
trip length heterogeneity radically changes the equilibrium patterns when considering
a system governed by a speed-MFD. Indeed, Arnott et al. (2016) showed that with
homogeneous trip length, there exists an equilibrium which exhibits piece-wise constant
accumulation and non-overlapping trip intervals. We demonstrate that when users have
continuously distributed characteristics and especially trip lengths, such an equilibrium
cannot occur as accumulation should be continuous over time. More specifically, the
continuity result demonstrated in this section requires the following assumption.

Assumption 3 (Distributed characteristics). Assume that:

• All users have marginal utilities of time at home and at work h(t, Θ) and w(t, Θ, T ∗),
where Θ is a vector of individual-specific parameters and T ∗ is a continuously
distributed scalar parameter.

• For all Θ, t → h(t, Θ) is positive and continuous everywhere and for all Θ and T ∗,
t → w(t, Θ, T ∗) is continuous everywhere, except possibly at t = T ∗.

• Trip length and trip length conditioned on T ∗ are continuously distributed variables.

Although its statement is technical, Assumption 3 is actually quite reasonable. It simply
requires continuous marginal utility functions (but still allows for a discontinuity in the
marginal utility at work at a single specific time T ∗) and that some user characteristics
(trip length, T ∗ and trip length conditioned on T ∗) are continuously distributed. Note
that continuous distributions are overwhelmingly common in nature and there are strong
reasons to believe that trip length and T ∗ are no exception. Indeed, the trip length
distribution arises from a very large number of pairs of origins and destinations (primarily
home and work locations). Similarly, the distribution of desired exit times from the
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road network (when the marginal utility is likely to be discontinuous) depends on both
the distribution of official work starting times (which is admittedly not continuously
distributed) and on the (continuous) distribution of time spans required to reach the
workstations from the time the vehicle exits the road network modeled by the MFD
(e.g. when entering a parking lot). Note finally that the continuity result obtained is
also corroborated by many empirical studies (see for example Geroliminis and Daganzo
(2008); Buisson and Ladier (2009)).

To prove continuity of accumulation, we prove that there cannot be mass departures or
mass arrivals at equilibrium, or that they have to exactly cancel out each other. This
result only makes sense in the context of the fluid approximation as it requires that a
single agent does not have a mass, but only a density.2

We first need to describe the framework considered and define some basic notions. A
realization of the morning commute is an allocation of departure times (or equivalently,
arrival times) to all users. An equilibrium is a realization such that no user can reduce
her cost by unilaterally changing her decision. A socially optimal realization minimizes
the sum of the costs of all users, excluding potential tolls (which are considered pure
financial transfers).

Consider a population of mass N > 0. In general, an allocation of departures times
or arrival times might be such that there are masses of users that depart or arrive
simultaneously. If mass departures and mass arrivals do not exactly cancel out, they
create discontinuities in the accumulation. For any realization, we can define the
set of times Tdis for which such discontinuities occur and mi the (relative) change in
accumulation at time i ∈ Tdis. If, for instance, there is a mass departure at time i but no
mass arrival, then mi is the mass of departures at time i. If there is a mass arrival but
no mass departure, then the mass of arrivals is given by −mi. If we further define dc(t)
and ac(t) as the continuous components of the departures and arrivals, the variation in
accumulation during some period [t1, t2) is given by

∫ t2
t1

dc(t)−ac(t) dt+
∑

i∈Tdis
⋂

[t1,t2) mi.
We now introduce two Lemmas that are useful to prove the continuity of accumulation
in Proposition 1.

Lemma 1. If trip length is continuously distributed, then for any realization of the
morning commute, the set of users that have discontinuities both at their departure and
arrival has Lebesgue measure zero.

Proof. Clearly
∑

i∈Tdis |mi| ≤ 2N , so the set {mi, i ∈ Tdis} is summable, and consequently
countable. As there is a bijection between each element of {mi, i ∈ Tdis} and Tdis, Tdis is
countable as well, so its Lebesgue measure (in the time domain) is zero.

2A discrete version of this result would be along the lines of “if users all have different trip lengths
and desired arrival times, then no user departs or leaves exactly at the same time as another one” but it
would be more cumbersome to prove, if it can be proven at all.
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Now, one can associate to any pair of times (t1, t2) in (Tdis)2 the distance separating
them:

∫ t2
t1

v(u)du. Since Tdis is countable, the set of distances separating two events of
Tdis is also countable. Since trip length is a continuously distributed variable, the set of
users having exactly these trip lengths is of measure zero.

Lemma 2. Left and right-hand limits of the the accumulation exist everywhere for any
realization of the morning commute.

Proof. The variation in accumulation during some period [t1, t2) is given by
∫ t2

t1
dc(t) −

ac(t) dt +
∑

i∈Tdis
⋂

[t1,t2) mi. The first term converges to zero when t1 tends towards
t2, whether the endpoints t1 and t2 are included or not. For the second term however,
the distinction matters as there might be a point mass at t2. If t2 is excluded, the
function t1 �→ ∑

i∈Tdis
⋂

[t1,t2)|mi| is weakly decreasing and remains strictly positive for
all t1 ∈ (−∞, t2). Hence, it converges towards its infimum as t1 → t−

2 . This infimum is
equal to zero as all point masses occurring at times strictly smaller than t2 are excluded
progressively as t1 → t−

2 . As |∑i∈Tdis
⋂

[t1,t2) mi| ≤ ∑
i∈Tdis

⋂
[t1,t2)|mi|, |∑i∈Tdis

⋂
[t1,t2) mi|

also converges towards zero as t1 → t−
2 . If we define a sequence of times (ti)i∈N that

converges from below towards t2 but remains strictly smaller, (n(ti))i∈N
is a Cauchy

sequence in R, hence it converges. The same reasoning shows that limu→t+
2

n(u) exists.

Proposition 1 (Continuity). Consider a system governed by a speed-MFD and a popu-
lation satisfying Assumption 3. If a realization of the morning commute is an equilibrium,
then for this realization the accumulation is a continuous function of time.

Proof. In order to prove the continuity of the accumulation function, we assume the
existence of a discontinuity at some time this ∈ Tdis and show that it implies that some user
is not at equilibrium. We first assume that the discontinuity is an accumulation decrease,
which implies the existence of a mass arrival. Since T ∗ is continuously distributed, only a
set of measure 0 can have T ∗ = this (we will say such users are “on time” by analogy with
the α − β − γ preferences, even though this does not necessarily have the same meaning
with other types of schedule penalty functions). Thus, most of the users arriving at this
are not on time. Using Lemma 1, we can select a user from the mass that is not on time
such that there was no discontinuity at the time of her departure th. Let t∗ and θ denote
the values of T ∗ and Θ of this specific user.

Lemma 2 guarantees that left and right-hand limits of accumulation exist everywhere.
Consequently, the utility function admits left and right derivatives (with respect to the
arrival time) everywhere. A local necessary condition for the selected user to be at
equilibrium is that U̇−(tw) ≥ 0 ≥ U̇+(tw) where U̇− and U̇+ denote the left and right
hand derivatives. Using Eq. (2.1) and Eq. (4.2), this is equivalent to

v(t−
his)

v(th)
h(th, θ) − w(this, θ, t∗) ≥ 0 ≥ v(t+

his)
v(th)

h(th, θ) − w(this, θ, t∗), (4.3)
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where v(t−
his) = limu→t− v(u) and v(t+

his) = limu→t+ v(u) denote the left-handed and
right-handed limits of the speed v at the discontinuity. Since h(th, θ) > 0, Eq. (4.3) is
equivalent to v(t−

his) ≥ v(t+
his), which is inconsistent with a brutal decrease of accumulation.

Thus, a discontinuous decrease of accumulation cannot occur at equilibrium under the
assumptions made.

The case of a discontinuous accumulation increase is treated in a similar manner by
selecting a user that departs at the discontinuity. Among the users departing with
this mass, only a zero-measure set can be on-time (because we assumed that both
desired arrival time and trip length conditioned on desired arrival time are continuously
distributed and only one trip length corresponds to a pair of departure and arrival time)
and only a zero-measure set can arrive at another discontinuity (Lemma 1). Thus, we
can select a user who departs at this, is not on time and arrives at a time tw with no
discontinuity. The local equilibrium condition (4.3) becomes

v(tw)
v(t−

his)
h(this, θ) − w(tw, θ, t∗) ≥ 0 ≥ v(tw)

v(t+
his)

h(this, θ) − w(tw, θ, t∗),

i.e. v(t−
his) ≤ v(t+

his), which is inconsistent with a brutal increase of accumulation.

In the case where only the trip length is distributed and its distribution does not
have any point mass, then one can show with a similar proof that the accumulation
n(t) is continuous everywhere except at the common desired arrival time. Note also
that while Proposition 1 precludes the existence of an equilibrium consisting only of
departure and arrival masses, departure and arrival masses might still coexist if they
occur simultaneously and exactly cancel out.

4.3 Properties of the equilibrium with α−β −γ preferences

Depending on the congestion mechanism and on the scheduling preferences used, the first
and second-order equilibrium conditions may lead to different sorting properties. For
instance, Fosgerau (2015) showed for users with homogenous exponential-type scheduling
preferences and a speed-MFD that, provided some endogenous assumptions on the
equilibrium, these conditions translate into a LIFO pattern where all trips overlap and
shorter trips are “included” within longer trips, i.e. start later and finish earlier. We
demonstrate in this section that with α − β − γ preferences and a speed-MFD, these
conditions constrain the speed evolution (see Proposition 2) in such a way that, provided
the accumulation over time follows a unimodal curve, a partial FIFO sorting emerges (see
Proposition 3). If parameters of the schedule penalty functions vary between individuals,
they might also act locally as a sorting criterion, just as trip length (see Proposition 4).
An important consequence of the use of α − β − γ preferences is that sorting applies even
among users having different desired arrival times.
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4.3.1 First and second order equilibrium conditions with α − β − γ

preferences

Assume some user (t∗, l) with α − β − γ preferences arrives at equilibrium at time tw. If
her schedule penalty function SP is locally continuously differentiable (i.e. tw 
= t∗), the
first order equilibrium condition ( ∂U

∂tw
(tw, t∗, l) = 0) translates into

∂T

∂tw
(tw, l) = − 1

α

∂SP
∂tw

(tw, t∗). (4.4)

Similarly, if T (tw, l) and SP(tw, t∗) are twice differentiable, the second order equilibrium
condition becomes

∂2T

∂t2
w

(tw, l) ≥ − 1
α

∂2SP
∂t2

w
(tw, t∗). (4.5)

With α − β − γ preferences, these conditions can be stated as follows:

Proposition 2. Consider a system governed by a speed-MFD and a population of users
satisfying Assumption 3. For a user with α − β − γ preferences, trip length l and desired
arrival time t∗, the equilibrium departure and arrival times th and tw satisfy:

• if tw < t∗, then v(tw) = α−β
α v(th) ;

• if tw > t∗, then v(tw) = α+γ
α v(th) ;

• if tw = t∗, then α−β
α v(th) ≤ v(tw) ≤ α+γ

α v(th).

In addition, if tw 
= t∗ and v(t) is differentiable at tw and th:

v̇(th)
v(th)2 ≥ v̇(tw)

v(tw)2 . (4.6)

Proof. For early and late users, the proportionality result between the speeds at departure
and at arrival is obtained by combining the first order equilibrium condition (Eq. (4.4))
with Eqs. (2.2) and (4.2). Similarly, Eq. 4.6 is obtained from the second order condition
(Eq. (4.5)) by noticing that ∂2SP

∂t2
w

(tw, t∗) = 0 for all early and late users, by differentiating
Eq. (4.2) and reinserting it into Eq. (4.5). Note that if v(t) is differentiable at tw and th,
then the second order differentiability of the travel time at (tw, l) is a direct consequence
of its definition in Eq. (4.1). Regarding on-time users, although their utility function is
not differentiable at their arrival time, it admits left and right derivatives. At equilibrium
∂−u
∂tw

(tw, t∗, l) ≥ 0 and ∂+u
∂tw

(tw, t∗, l) ≤ 0, i.e.⎧⎨⎩
∂T
∂tw

(tw, l) ≤ − 1
α

∂−SP
∂tw

(tw, t∗),
∂T
∂tw

(tw, l) ≥ − 1
α

∂+SP
∂tw

(tw, t∗).
(4.7)

Combine Eq. (4.7) with Eqs. (2.2) and (4.2) to obtain the result for on-time users.
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Let us provide further intuition for the proposition above. The necessary conditions for
some user to be at equilibrium stated in Proposition 2 already impose severe constraints
on the shape of the equilibrium. Indeed, if we define the function Ql(t) = v(t)

v(th(t,l)) , the

set of candidate arrival times at which a user may be at equilibrium is Q−1
l

({
α−β

α

})
∪

Q−1
l

({
α+γ

α

})
∪ {t∗}, where Q−1

l (I) denotes the (possibly empty) preimage of I ⊂ R.
Thus, provided desired arrival times are sufficiently similar, the exact value of t∗ does not
influence the equilibrium arrival times of early and late users, and users sort themselves
based on their trip length and α − β − γ coefficients.

This suggests that the α − β − γ coefficients and trip length play a similar role and
essentially sort users. The desired arrival time however seems to influence the equilibrium
arrival time in a very distinct manner. Given some α − β − γ coefficients and trip length,
the function that associates to a desired arrival time t∗ the corresponding equilibrium
arrival time would be the identity function for some range of times such that arriving on
time is optimal, and would be piece-wise constant for the complement of this range. In
the remainder of this section, we will focus on the effect of the α − β − γ coefficients and
trip length. The reason for this choice is that the effect of t∗ is either trivial (when users
arrive exactly on time), or requires comparing the costs of candidate equilibrium arrival
times, which means that the variations of accumulation must be known over long time
intervals. Thus, understanding the effect of the α − β − γ coefficients and trip length is a
preliminary step to understand the effect of t∗.

Note that this is very similar to the situation with a bottleneck model. When desired
arrival time plays little role, the dynamics can be solved easily. For instance, with a
S-shape cumulative distribution of desired arrival times and homogeneous α − β − γ

coefficients, the dynamics only depend on two particular points of the distribution of
t∗ (Smith, 1984a; Daganzo, 1985). Yet, when heterogeneity in desired arrival time is
combined with heterogeneity in α − β − γ coefficients or when the desired arrival time
does not have a S-shape cumulative distribution, numerical methods are necessary.

4.3.2 From a demand peak to a congestion peak

Various types of assumptions may be used to limit the influence of heterogeneity in
desired arrival times. The S-shape assumption of Smith (1984a) and Daganzo (1985) is
an excellent example, being a reasonable idealization and still allowing for strong results
in the case of a constant capacity bottleneck. So far, we have been unable to adapt this
result to dynamics imposed by a speed-MFD, although early simulation results suggest
a similar law might exist. Yet, as with a constant capacity bottleneck, our analytical
investigations have shown that the exact distribution of desired arrival times is of little
significance. What primarily matters is whether the distribution leads to a unimodal
evolution of accumulation or to several peaks.

45



Chapter 4. The morning commute in urban areas with heterogeneous trip
lengths

To obtain the sorting results of Section 4.3.3, we chose to consider the existence of a
single peak as granted. More specifically, we made the following endogenous assumption.

Assumption 4 (Single peak). The distribution of users’ characteristics is such that at
equilibrium: (i) all commuters travel within an interval [t1, t2] and (ii) accumulation ex-
hibits a single peak, i.e. there exists tp ∈ (t1, t2), such that for all t ∈ [t1, tp), accumulation
is strictly increasing and for all t ∈ (tp, t2], accumulation is strictly decreasing.

This assumption has the great advantage that it can be tested empirically. In fact,
several empirical observations suggest that unimodal evolutions of accumulation are quite
common (Parthasarathi et al., 2011; Yildirimoglu et al., 2015).3 It also greatly simplifies
the analysis, as evidenced by the following corollary of Proposition 2.

Corollary 1. Consider a system governed by a speed-MFD and assume that users’
characteristics are such that the accumulation n(t) is continuous and exhibits a single
peak, reached at time tp, as specified in the Assumptions 3 and 4. Consider a group of
users with α − β − γ preferences. At equilibrium, early users depart and arrive before tp
while late users depart and arrive after tp.

Alternatively, it is shown in Appendix A that sorting results similar to those presented
in Section 4.3.3 can be obtained with only exogenous assumptions on the distribution of
user characteristics (with, in particular, the assumption that desired arrival times are
restricted to a compact subset of the time space). It requires however some additional
precautions and, in the end, the sorting results apply only out of the range where desired
arrival times are distributed. In that sense, it is similar to the numerous works assuming
homogenous desired arrival times for Vickrey’s bottleneck model, but with a more tedious
derivation due to the state-dependent speed. We did not include this in the body of the
thesis as we favor realism, simplicity and far-reaching results over strict exogeneity of
assumptions.

4.3.3 Sorting properties

This section includes two main sorting results. The first one (Proposition 3) builds on
the Propositions 1, 2 and on the single peak assumption (Assumption 4) to provide
a FIFO sorting result based on trip length that is valid for any pair of users having
similar α − β − γ preferences and arriving both early (or both late). The second result
(Proposition 4) is an extension of the first providing some complementary insight about
the sorting phenomena emerging among users having different scheduling preferences, at
the cost of several additional endogenous assumptions.

3Smaller peaks with faster variations (e.g. on a time scale of 15 min) are often observed on top of the
main peak but they might be considered as less predictable and therefore less important in the choice of
departure time.
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Proposition 3. Consider a system governed by a speed-MFD and a population of users
satisfying Assumptions 3 and 4. Consider two users having α − β − γ preferences and ar-
riving early (resp. late) at equilibrium at the times tw,1 and tw,2. Denote (l1, t∗

1, α1, β1, γ1)
and (l2, t∗

2, α2, β2, γ2) their respective trip lengths, desired arrival times, α, β and γ coef-
ficients. Assume without loss of generality that for instance t∗

1 ≥ t∗
2. If β1

α1
= β2

α2
(resp.

γ1
α1

= γ2
α2

) and tw,1 ≤ t∗
2 (resp. tw,2 ≥ t∗

1), then the user that arrives the earliest (resp.
latest) has the longest trip length.

Proof. In the case where both users are early (resp. late), assuming tw,1 ≤ t∗
2 (resp.

tw,2 ≥ t∗
1) is equivalent to assuming that both users would remain early (resp. late) after

switching their arrival times.

Independently of the order of desired arrival times, let us use the index i ∈ {1, 2} for the
user that has the shortest trip length and j for the other. In addition to the notations
previously defined, let us also define th,i and th,j the departure times of users i and j and
t′
h,i, a departure time such that user i arrives exactly at t′

w,i = tw,j . Since the original
situation was an equilibrium, user i cannot change her decision unilaterally and reduce
her cost. Therefore, the cost C ′

i of departing at t′
h,i must be at least as great as the cost

Ci of departing at th,i: C ′
i ≥ Ci.

Let us compare the cost for user j of arriving at tw,i (denoted C ′
j) and the cost of arriving

at tw,j (denoted Cj). In the case both users are early:

C ′
j = αjT (tw,i, lj) + βj(t∗

j − tw,i),
= αj (T (tw,i, li) + T (th,i, lj − li)) + βj(t∗

i − tw,i) + βj(t∗
j − t∗

i ),

=
αj

αi
Ci + αjT (th,i, lj − li) + βj(t∗

j − t∗
i ).

Similarly, Cj = αj

αi
C ′

i + αjT (t′
h,i, lj − li) + βj(t∗

j − t∗
i ).

Equilibrium requires that C ′
j ≥ Cj , i.e.

αj

(
T (th,i, lj − li) − T (t′

h,i, lj − li)
)

≥ αj

αi

(
C ′

i − Ci
)

,

and that C ′
i ≥ Ci. Hence,

T (th,i, lj − li) ≥ T (t′
h,i, lj − li). (4.8)

By applying Corollary 1, both users departed and arrived during the onset of congestion,
so speed strictly decreases for the entire duration considered (Assumption 4). Thus, Eq.
(4.8) imposes that th,i ≥ t′

h,i, and therefore tw,i > tw,j .

If both users are late at equilibrium, two cases should be distinguished, depending on
whether users i and j can exchange their arrival times and still depart both during the
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offset of congestion. If they cannot (user j would have to depart during the onset), then
tw,i < tw,j . If they can, then βi and βj should simply be replaced by −γi and −γj and
the equations above remain valid, leading to Eq. (4.8). Since the period considered is
after the peak, speed strictly increases during the entire period so Eq. (4.8) imposes that
th,i < t′

h,i (i.e. tw,i < tw,j).

The ordering of arrivals demonstrated trivially implies the ordering of departures for
early users (if li < lj and tw,i > tw,j , then th,i > th,j). For late arrivals, this is not true in
general but it is true with the assumptions made as (i) speed is monotonously increasing
during the offset of congestion and (ii) Proposition 2 imposes that if speed if greater at
tw,j than at tw,i, it is also greater at th,j than at th,i. This leads to the following corollary.

Corollary 2. Consider a system governed by a speed-MFD and a population of users
satisfying Assumptions 3 and 4. At equilibrium, departures and arrivals among a family of
early (resp. late) users having the same ratio β/α (resp. γ/α) follow a First-In-First-Out
order.

This is in sharp contrast with the LIFO pattern found by Fosgerau (2015). The difference
stems from the types of scheduling preferences considered. In Fosgerau (2015), the
marginal utilities at home and at work decrease and increase exponentially with time,
such that users just try to be at the good place at the good time, i.e. travel around the
time when both utility curves intersect. Note that this is valid independently of the level
of congestion, so the system would unavoidably reach gridlock if there is a number of
users having identical scheduling preferences that is greater than the jam accumulation.
Here, the marginal utilities of time are respectively constant and piece-wise constant so
earliness and lateness is more acceptable. Since travel time is relatively more important
for users with long trip lengths, they naturally avoid the peak.

Proposition 3 is however limited to early users having identical ratios β
α or late users

having identical ratios γ
α . Since the coefficients α, β and γ are actually continuously

distributed in the real world, the scope of this proposition might appear limited. However,
one can actually extend Proposition 3 to cover such cases by applying the implicit function
theorem (see Proposition 4).

For any early or late user, let r denote the user’s active ratio of scheduling preferences, i.e.
r = β

α for early users and r = γ
α for late users. Let also σ denote the sign of ∂SP

∂tw
(tw, t∗)

(+1 for late users and -1 for early users).

Proposition 4. Consider a user with trip length l̃, desired arrival time t̃∗ and α − β − γ

preferences that arrives early or late at equilibrium, at time t̃w. Denote r̃ her active ratio
of scheduling preferences.

If (i) speed is continuously differentiable at th(t̃w, l̃) and t̃w, (ii) t̃w is the only arrival time
that minimizes the user’s cost (i.e. the global optimum is unique) and (iii) ∂2T

∂t2
w

(t̃w, l̃) > 0 ;
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4.3. Properties of the equilibrium with α − β − γ preferences

then there exists an open set U around (l̃, t̃∗, r̃) such that there exists a unique function
tw(l, t∗, r) on U such that a user with trip length l, desired arrival time t∗ and active
ratio of scheduling preferences r in U would be at equilibrium by arriving at tw(l, t∗, r).

The function tw(l, t∗, r) is continuously differentiable on U and its derivatives are given
by:

∂tw
∂l

(l, t∗, r) =
v(tw)v̇(th)

v(tw)2v̇(th) − v(th)2v̇(tw)
; (4.9a)

∂tw
∂r

(l, t∗, r) = −σ
v(th)3

v(tw)2v̇(th) − v(th)2v̇(tw)
; (4.9b)

∂tw
∂t∗ (l, t∗, r) = 0 ; (4.9c)

where th and tw are functions of l, t∗ and r.

Proof. Since the user considered does not arrive on time at equilibrium and speed is
continuously differentiable at th(t̃w, l̃) and t̃w, the first order equilibrium condition is
∂T
∂tw

(tw, l) + σr = 0. Using Eq. (4.2), this is equivalent to g(tw, t∗, l, r) = 0, where
g(tw, t∗, l, r) = v(th(tw,l))−v(tw)

v(th(tw,l)) + σr.

Since v is continuously differentiable at th(t̃w, l̃) and t̃w, th(tw, l) = tw − T (tw, l) is also
continuously differentiable (see Eq. (4.2)). Thus g is continuously differentiable. In
addition, ∂g

∂tw
(tw, l) = ∂2T

∂t2
w

(tw, l) > 0. Hence, we can apply the implicit function theorem
to obtain the existence of a unique function tw(l, t∗, r) on a open neighborhood around
(l̃, t̃∗, r̃) such that a user characterized by (l, t∗, r) would be at equilibrium by arriving

at tw(l, t∗, r). Furthermore, ∂g
∂l = v(tw)v̇(th) ∂th

∂l
v(th)2 = −v(tw)v̇(th)

v(th)3 ; ∂g
∂tw

= v(tw)2v̇(th)−v(th)2v̇(tw)
v(th)3 ;

∂g
∂t∗ = 0 ; and ∂g

∂r = σ. The implicit function theorem then provides the expressions of
the partial derivatives of tw(l, t∗, r) given in the proposition.

The expressions of the three partial derivatives in Eq. (4.9) provide three local sorting
results. If there is a single peak, v̇(th) is negative (resp. positive) for early (late) users.
In addition, the condition (iii) is equivalent to v(tw)2v̇(th) − v(th)2v̇(tw) > 0. Hence the
equilibrium arrival time locally decreases (increases) with the trip length, in agreement
with Proposition 3. Similarly, ∂tw

∂r (l, t∗, r) > 0 so the equilibrium arrival time increases
(resp. decreases) with the ratio β

α (resp. γ
α), i.e. when schedule penalties are relatively

more important. Finally, the fact that ∂tw
∂t∗ (l, t∗, r) = 0 confirms that among early users,

the desired arrival time plays no sorting role. Note that Newell (1987) obtained the same
last two sorting properties (without using the gradient of tw) for Vickrey’s bottleneck. In
fact, these qualitative properties result directly from the first order equilibrium condition,
and only the quantitative properties of the gradient depend on the congestion mechanism.

Finally, let us discuss the assumptions used in Proposition 4. The differentiability
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assumption in Condition (i) is stronger than the continuity result shown in Proposition
1. Yet, we believe that in the same way we proved the continuity of the accumulation
requiring only that the distributions of some characteristics of the population do not
include any point-mass, the differentiability of the accumulation could be obtained by
requiring only the continuity of the probability density functions of the trip length, of the
desired arrival time and of the schedule penalty parameters. Although we do not prove
this result, the intuition behind it is the following. Continuously distributed desired
arrival times ensure the continuity of on-time departure and arrival rates. Continuously
distributed trip lengths ensure the continuity of early and late departure and arrival rates.
Then, continuously distributed schedule penalty parameters ensure that the transition
between e.g. early and on-time departure does not occur simultaneously for many types
of users. Condition (ii) simply discards some borderline cases and Condition (iii) is the
second order sufficient optimality condition. Note that assuming Condition (i) and that
the user is early or late at equilibrium already ensures that ∂2T

∂t2
w

(t̃w, l̃) ≥ 0. However, a
strict inequality is necessary to ensure that the conditions are also satisfied in an open
neighborhood around the user considered.

4.4 Simulation-based analysis

Simulation-based and analytical approaches are complementary. While analytical con-
siderations provide useful understanding about the key variables involved in congestion
mechanisms, simulation can test more complicated configurations and provide clues as
to whether systems with higher degrees of freedom and uncertainties can be described
with little error by elegant analytical models. Indeed, most of the results proven in the
previous sections require some assumptions that are simplifications of the real world
(e.g. strict α − β − γ preferences or any homogeneity assumption). Simulation allows
for the relaxation of these assumptions. Furthermore, the stability and the “power of
attraction” of equilibria is just as important as their exact characterization. In fact, only
a stable and attractive equilibrium is likely to be similar to the ever-changing real world
traffic conditions. While these characteristics are usually extremely difficult to identify
analytically, simulation inherently addresses these issues as it mimics the evolution of
demand from day to day.

4.4.1 Description of the simulation

The simulation-based method proposed mimics the day-to-day adaptation of real drivers
to changing conditions in order to identify a potential equilibrium. The basic idea consists
in iteratively 1) updating the departure time decisions and 2) running an event-based
and agent-based simulation based on Eq. (2.5) to determine the evolution of congestion
over time and the cost of each user. In order to provide some stability, the commonly
used (Peeta and Mahmassani, 1995; de Palma and Marchal, 2002) method of successive
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averages (MSA) is applied on the departure time decisions. At each iteration, the
departure time decisions of a fraction of the population (e.g. 5% or 100

n %, where n is
the iteration number) were updated based on the results of the previous simulation.
Alternatively, MSA could have been applied on the travel times by updating the decisions
of all the agents but using average travel times instead of those of the last iteration. The
algorithm used is described in more details in Lamotte and Geroliminis (2016).

A quadratic speed-MFD such that V(n) = vf
(
1 − n

njam

)2
if n ∈ [0, njam] and V(n) = 0

otherwise is used for all numerical applications (vf denotes the free-flow speed). Note that
this MFD has a critical accumulation ncr = njam/3, that V(ncr) = 4/9vf and that the
maximum production is (4/27)njamvf = (4/9)ncrvf. To decrease the degree of freedom,
the free-flow speed was assumed to be 1 and the trip length to be uniformly distributed
between 0 and 3 in all numerical applications.

Ten types of α−β−γ preferences were created with α = 1, β = 0.4+ 0.2k
9 , and γ = 1.5+ k

9 ,
where k ∈ {0, 1, . . . , 9} indicates the family. For each family, 400 agents were created with
desired arrival time (i/400 − 1/2)h, where i ∈ {1, 2, ...400} and h represents the length
of the interval with desired arrival times. Hence, the total population is represented
by 4000 agents. Various demands are simulated by varying the mass of each agent (or
equivalently, the value of the jam accumulation) but keeping the number of agents (i.e.
the resolution of the simulation) constant. A value of h = 5 was used for most results
except when the impact of h is explicitly studied. For each scenario, 2000 iterations were
carried out to approximate the equilibrium.4

4.4.2 Validation of the theoretical findings and relaxation of some as-
sumptions

The analytical approach presented in the previous sections relied on a number of assump-
tions to characterize an hypothetical user equilibrium. This section provides some insight
on the validity and scope of these results using the agent-based simulation described in
Section 4.4.1.

Figures 4.1a and b are the main tools for this investigation, providing respectively
aggregated and disaggregated description of the dynamics. Fig. 4.1a represents the
natural logarithm of the speed versus x = f(t). Recall that f(t) represents the distance
traveled at time t by a virtual user that enters the network with the first user and never
exits (see Section 2.3). Since both f and the natural logarithm are bijections, this graph
is similar to the evolution of speed over time, but in a different coordinate space. One
can readily observe that this is a single peak case. Fig. 4.1b represents each agent by
a single point with coordinates the value of x = f(t) at the agent’s departure (xh) and

4Fewer iterations would have often been sufficient but cases with high congestion levels or little
heterogeneity typically require a large number of iterations to converge.
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Figure 4.1 – (a) Evolution of the natural logarithm of speed (ln(V )) as a function of
x, the distance traveled by a virtual user. (b) Representation of all users in the space
(xh, xw), illustrating the value of x at the arrival versus the value of x at the departure.
All users had α − β − γ preferences as described in Section 4.4.1, the demand N/ncr was
set to 3.

arrival (xw). Note that since xw − xh represents the trip length, all the points are above
the line xw = xh.

Let us define xp = f(tp) the value of x that minimizes ln(V (x)). In other words, speed
reaches its minimum at tp. First, note that all the colored points corresponding to
early users in Fig. 4.1b are located on the left and below the point (xp, xp). This is
actually the case for all early users (which form lines parallel to those colored), so all
early users depart and arrive during the onset of congestion. Similarly, all colored points
corresponding to late users are on the right and above the point (xp, xp), i.e. late users
depart and arrive during the offset of congestion, as per Corollary 1.

The sorting properties can also be observed in Fig. 4.1b. For each user, the trip length
may be read as xw − xh, i.e. the vertical distance between the point representing the user
and the line xw = xh. Fig. 4.1b shows clearly that within the sets of early users having
identical coefficients α − β − γ, those with long trips are on the left and below those
with shorter trips, meaning that that they depart and arrive earlier, as per Proposition
3. Similarly, late users with the same coefficient γ sort such that those with short trips
depart and arrive earlier than those with longer trips. It is also clear that early users with
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Figure 4.2 – (a) Cumulative departure and arrival curves with strict α −β −γ preferences
and the smooth approximation h(t) = α and w(t) = 2+γ−β

2 + arctan(4(t − t∗))γ+β
π . (b)

and (c): Contour plots representing the amount of lateness for all 400 users having
β = 0.4 and γ = 1.5 with strict α − β − γ scheduling preferences (b) and their smooth
approximation (c). The results were obtained with a demand N/ncr = 3.

β = 0.49 depart and arrive later than those having approximately the same trip length
but with β = 0.4. In between, the points are located along three lines, corresponding
respectively to the families β = 0.4 + 0.2k

9 with k = 1, 2 and 3. The same applies to late
users, as per Proposition 4.

Finally, the joint analysis of Figs. 4.1a and b illustrates the first and second order equi-
librium conditions studied in Section 4.3.1. Indeed, in the coordinate system (x, ln(V )),
the first order condition (4.4) simply becomes ln(V (xw)) = ln(V (xh)) − ln( α

α−β ) for
early users and ln(V (xw)) = ln(V (xh)) + ln(α+γ

α ) for late users. These conditions are
illustrated for two early users and one late user by the dashed lines of different colors
joining the Figs. 4.1a and b. For any user (x0

h, x0
w) materialized in Fig. 4.1b, ln(V (x0

h))
can be read at the intersection of the vertical line xh = x0

h with the curve ln(V ) (in Fig.
4.1a). Similarly, ln(V (x0

w)) may be read by starting from the point materializing the user,
drawing an horizontal line xw = x0

w until the line xw = xh in Fig. 4.1b and then a vertical
line xh = x0

w until the curve ln(V (x)) in Fig. 4.1a. One can then check that ln(V (x0
w))

is at the same vertical level as the curve ln(V (x)) − ln( 1
1−β ) at x0

h for early users, or at
the same level as ln(V (x)) + ln(1 + γ) for late users. Besides, the second order condition
(4.5) for early or late users becomes d

dx ln(V (x))
∣∣∣
x=xh

≥ d
dx ln(V (x))

∣∣∣
x=xw

. One can easily

verify that the slope of ln(V (x)) systematically decreases between the departure and the
arrival of early and late users.

Last, we investigate whether the phenomena obtained for the α − β − γ can be expected
to hold with more realistic scheduling preferences that do not exhibit a discontinuity in
t∗. The simulation above was replicated with a smooth approximation of the α − β − γ

preferences, modeled by h(t) = α and w(t) = 2+γ−β
2 +arctan(4(t−t∗))γ+β

π . The resulting
cumulative departure and arrival curves are displayed in Fig. 4.2a, together with those
obtained with strict α − β − γ preferences. While departures and arrivals occur almost
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exactly over the same periods, the evolution of the cumulative arrival curve is smoother
with the smooth preferences than with the α − β − γ preferences. The peak is also less
pronounced and the maximum accumulation (i.e. the vertical distance between the two
curves) smaller.

Despite these minor differences in the dynamics, the analysis of the individual decisions
suggests the existence of similar patterns. Fig. 4.2b and c illustrate the amount of lateness
(a negative amount corresponds to earliness) of all the 400 users characterized by β = 0.4
and γ = 1.5 with both types of preferences. With strict α − β − γ preferences, only users
with long trips choose not to arrive on time. They reschedule earlier or later depending
on their desired arrival time t∗. With smooth preferences, the same observation is valid
for users with long trips. In this case however, short trips are also rescheduled in such
a way that arrival times remain close to desired arrival times. This is caused by the
slow variations in utility around t∗: with smooth scheduling preferences, there exists
a range of arrival times which are almost equivalently desirable. Thus, in both cases,
users with short trips are approximately on time, while those with long trips are early
or late, depending on their desired arrival time. Overall, α − β − γ preferences produce
results that are remarkably similar to those associated with a smooth approximation,
thus justifying the use of the α − β − γ preferences for analytical derivations.

4.4.3 Impact of demand on the user equilibrium

Demand severity is described throughout this chapter in terms of total demand (N/ncr)
and duration over which desired arrival times are distributed (h). Fig. 4.3a and 4.3b
illustrate the time series of accumulation and speed for different values of N/ncr. As
expected, the peak duration and the maximum congestion level both increase with the
total demand (keeping h constant). Note that for the four scenarios considered, the
maximum congestion level is reached for t = −h

2 , i.e. at the earliest desired arrival time.
With Vickrey’s bottleneck model and homogeneous α − β − γ preferences, the maximum
would be reached later, for t = γ−β

β+γ
h
2 . Intuitively, as users have to travel some distance

in the congested area, they are necessarily in the network before their desired arrival
time, so the accumulation peak occurs earlier than with a constant capacity bottleneck.

As shown by Fig. 4.3c, the detailed dynamic model used allows for a very large share of
users arriving during the interval [−h/2, h/2], even though large accumulations may be
observed earlier. To explain this phenomenon, we analyze the trajectory of the outflow
in the accumulation-outflow space (see Fig. 4.3f). The common steady-state (and static
average trip length L) approximation assumes that this trajectory lays along a well-
defined curve O(n) = P(n)/L (represented by a black dashed line in Fig. 4.3f). Here, the
observed outflow is very far from this idealized model and during the interval [−h/2, h/2],
it is about twice as large as the outflow-MFD capacity. Two reasons can explain this
discrepancy. First, the average trip length of users in the network is time-dependent, as
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Figure 4.3 – User equilibrium comparison for different demands of the (a) accumulation
over time ; (b) speed over time ; (c) cumulative departure and arrival curves ; (d)
decomposition of the average congestion cost per user into its components associated
to delays, earliness and lateness. The sub-figures (e) and (f) represent the harmonic
average of trip length of all users in the network as a function of time (smoothed with
a moving average) and the observed outflow (also smoothed with a moving average) in
the accumulation-outflow space, for the scenario N/ncr = 3.6. The observed outflow
is compared in (f) with P (t)/L (where L=3/2) and with P (t)/L(t), where L(t) is the
harmonic average trip length represented in (e). Desired arrival times are distributed on
an interval of length h = 5.
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shown in Fig. 4.3e.5 By replacing the constant trip length of the outflow model by the
time-dependent average trip length L(t), an anti-clockwise hysteresis loop is obtained,
represented by the red curve in Fig. 4.3f.6 Yet, this hysteresis loop remains smaller
than the one observed. The rest of the discrepancy might be explained by the complex
endogenous delay in Eq. (2.6). Indeed, users that are about to finish their trip are
under-represented in the network during the onset of congestion but over-represented
during the offset. Thus, even if all the generated trips had the same length, an hysteresis
loop would still be obtained. Note that the hysteresis phenomenon obtained here is
extremely severe but that it would be reduced with slower time variations.

This high outflow during the most desired period allows for very little schedule penalties
overall, as shown in Fig. 3d. In contrast, schedule penalties account for half the congestion
cost with a bottleneck of constant capacity and homogeneous users. Note also that the
individual congestion cost increases approximately linearly with the demand, at least
for the range N/ncr ∈ [1.8, 3.6]. This is similar to Vickrey’s bottleneck problem (Arnott
et al., 1990) and to the results of Arnott (2013) but in sharp contrast with those of
Fosgerau (2015), in which a LIFO sorting means that a population larger than the jam
accumulation of users having homogeneous scheduling preferences cannot be served at a
finite cost. This result is related to the sorting pattern and is expected to hold whenever
the system converges towards an equilibrium.

4.4.4 Impact of staggered work hours

Staggered work hours may be used instead or in addition to congestion pricing to flatten
the peak and reduce schedule penalties (Henderson, 1981). With homogeneous α − β − γ

preferences and a S-shape distribution of desired arrival times, Vickrey’s bottleneck
predicts a schedule penalty reduction but no impact on the dynamics as long as all
desired arrival times remain within the congested period (Vickrey, 1969).

With a speed-MFD however, Fig. 4.4 shows that staggered work hours do impact the
dynamics, in a way that depends on the total demand N/ncr. Fig. 4.4a compares the
average congestion cost for different demands and ranges h of desired arrival times. Fig.
4.4b and Fig. 4.4c provide similar comparisons for the time series of accumulation (only
for N/ncr = 1.8 and 3) and the proportions of early and late users (only for h = 2 and
5). h = 2 may correspond to an initial state while h = 5 may correspond to a state
after staggering work hours. Fig. 4.4b suggests that the impact of h on the dynamics of
accumulation is larger when the demand is lower, i.e. when the range of desired arrival
times is of the same order of magnitude as the peak duration. When the peak period
is significantly longer than the range of desired arrival times, staggering work hours

5The harmonic average considered in Fig. 4.3e would be equal to the arithmetic average trip length of
the trip-generating process if the system was in a steady state.

6The noise in the upper part of the loop is caused by users having trip lengths almost equal to 0 and
traveling during the period [−h/2, h/2].
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Figure 4.4 – (a) Comparison for h = 2, 3, 4 and 5 of the average individual congestion
cost as a function of the demand N/ncr ; (b) time series of accumulation for a demand
of N/ncr = 1.8 and N/ncr = 3 ; (c) proportions of early and late users as functions of
the demand for desired arrival times distributed on intervals of length h = 2 and h = 5.

only slightly reduces the maximum congestion level. Yet, it still allows for significant
cost reductions, as evidenced by Fig. 4.4a. These cost reductions are explained by the
reduced congestion level but also by a large reduction of the proportions of early and
late users (see Fig. 4.4c). Note that we only focused here on the impact of staggering
work hours on the congestion cost. In reality, staggering work hours also entails other
costs. For instance, for many types of professions, the productivity of a worker at a given
time depends on whether others also work at that time (Henderson, 1981).

4.5 Discussion

This chapter has investigated the equilibrium properties and appropriate congestion
pricing strategies for the morning commute problem with a regional bottleneck modeled
by a speed-MFD. Our investigations have shed light on the fundamental role of trip
length heterogeneity. We first showed that with the fluid approximation, a continuously
distributed trip length ensures that the main variables of the morning commute (accumu-
lation, speed) are continuous functions of time for a large class of scheduling preferences.
This essential property served then as the basis for several analytical derivations. We
showed in particular that if the users’ characteristics are such that the morning commute
consists of a single peak, a FIFO sorting pattern naturally emerges within families of
early and late users having identical α − β − γ preferences and heterogeneous trip lengths,
or vice versa. Simulations suggest that these sorting properties influence the global
characteristics of the equilibrium and produce patterns that are also observed with similar
but smooth utility functions.

Yet, many questions remain open. The comparison of the present work with Fosgerau
(2015) underlines the importance of empirical measurements. Different estimations of
scheduling preferences reaching different conclusions have highlighted the complexity
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of an apparently simple choice. While this would not fully characterize the scheduling
preferences, the analysis of a large number of observations of real world trips may
answer the question of the prevailing pattern (FIFO or LIFO). On a more theoretical
note, an important issue is the determination of necessary and sufficient conditions for
the emergence of a single peak. Early results towards this direction are detailed in
Appendix A and deserve to be extended. This might also be completed by empirical
works investigating whether commuters schedule their trip mostly based on a smoothed
profile of the dynamics (that would exhibit a single peak in most cases) or whether they
also account for small oscillations.

The consequences of rapidly varying demand on congestion pricing should also be
investigated. Different tolls have been proposed that maintain the accumulation below
its critical value, either at a constant (Daganzo and Lehe, 2015) or at a time-varying
level (Arnott, 2013). These tolls were shown to be optimal under some simplifying
assumptions and are expected to provide significant benefits as long as demand does
not vary too rapidly. Under more rapid variations however, such pricing strategies
might prove inefficient and a complete change of paradigm may be needed. Consider for
instance a system governed by a triangular production-MFD, such that the production-
maximizing accumulation is N . Assume that there are exactly N long-distance travelers
that travel (at free-flow speed) from 7 am to 8 am. Now assume that there is an additional
short-distance traveler, who would like to arrive at 7:30 am. If the short trip length
is short enough, it is socially optimal that all users arrive on-time, even if it creates
transient hypercongestion.7 Note that the fact that demand results from scheduling
preferences is of little importance. Indeed, even if we considered departures times as
given, it would not be optimal to prevent the N + 1th user from entering the network
until 8 am. Such a measure would impose 30 min delay to this user while her impact
on the others can be arbitrarily small (with arbitrarily small trip lengths). Thus, when
the dynamics are governed by a speed-MFD, the total distance traveled in the next time
unit by all vehicles is not the only performance criterion: its distribution among users
matters as well. In some situations, finishing as many trips as possible in the near future
might be a more appropriate myopic objective than keeping the system in a state that
maximizes the number of vehicle kilometers traveled (i.e. the production). This is also
supported by recent control applications in networks governed by multi-region MFD
dynamics (Ramezani et al., 2015). Estimation of the trip completion rate is difficult with
traditional measurement methods (e.g. loop detectors) but will become more practical
with the increasing use of trajectory data.

7To prove this, first note that the situation proposed is a local optimum. Indeed, small changes of
departure times only add schedule penalties and do not reduce travel time. Second, adding one on-time
user with a very short trip length is equivalent to keeping the number of users constant but continuously
switching the trip length of the N + 1th user from zero to some non-zero value. By continuity of the social
cost function with respect to the N + 1 pairs of arrival times and trip length (gridlock is not possible
here), as there is only one global optimum when the trip length of the N + 1th user is zero, the global
optimum changes continuously in a small neighborhood around this situation. Thus, if the short trip is
short enough, the situation proposed is the global optimum.
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5 Splitting the road to foster coop-
eration
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5.1 Introduction

Shared autonomous vehicles, also known as autonomous taxis or automated mobility on
demand, are widely seen as a very likely future for urban passenger mobility. According
to the International Transport Forum (2015a), it represents one of the two main pathways
envisioned towards the large-scale development of autonomous vehicles, together with
the gradual automatization of privately owned vehicles. For several decades already,
studies have been conducted to evaluate the potential impacts of automation in fields
such as road safety (Jamson et al., 2013), traffic flow on highways (Varaiya, 1993), or on
urban roads (Fajardo et al., 2012; Qian et al., 2014). Yet, the potential of this mobility
revolution for demand management remains largely unexplored. We investigate in this
chapter how a central planner should administer systems involving both conventional
and bookable autonomous vehicles on separated roads.

We consider a single bottleneck dynamic setting, in which the capacity of a freeway is
divided between conventional and bookable autonomous vehicles (referred to hereafter as
independent and cooperative, respectively). Users of conventional vehicles freely choose
their departure time from home, while users of bookable vehicles choose in advance their
time slot among those proposed by a central operator. Booking users are guaranteed
no delay at the bottleneck. The main challenges addressed in this chapter are then to
determine how a central planner should allocate the capacity to these two vehicle types
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depending on the regime (laissez-faire, welfare- or profit-maximizing) and in the cases
of the welfare or profit-maximizing regimes, which constant tolls/subsidies should be
applied on each route. The bottleneck capacity is assumed to be perfectly divisible.

Booking is a particularly well-suited congestion management tool under unpredictable
conditions. With congestion pricing, a time-dependent toll is set based on predictions of
the characteristics of the population. Then, given this toll, users compete to minimize
their own cost. If both the road operator and the users were able to predict perfectly
the traffic conditions, queues could be avoided with appropriate time-dependent tolls
(Vickrey, 1969). In practice however, the demand on a specific day is only revealed once
the vehicles are on the road and have selected a departure time. Thus, the efficiency of
the toll is determined by the quality of the predictions, which are notoriously difficult to
make. On the contrary, booking does not rely on predictions. Time-slot booking has
regularly been proposed over the last two decades as an alternative to congestion pricing
for demand management (Wong, 1997; De Feijter et al., 2004; Edara and Teodorović, 2008;
Liu et al., 2015). Probably because it would impose some important habit change and
appears difficult to implement with conventional vehicles, it has never gained the same
support as congestion pricing. Yet, the emergence of large-scale car sharing permitted by
automation may challenge this status quo as booking is already well accepted for fleet
management and autonomous vehicles remove the need for enforcement.

In theory, the cooperative system described could also be implemented with conventional
private cars. Yet, the fact that booking has remained rather anecdotic in the literature
on road congestion suggests that some important drawback has not been accounted for
and prevents this development. In this work, an individual-specific cost of cooperation is
introduced.1 This cost accounts for all inconveniences related to the cooperative service,
except the price, the travel time and the schedule penalties, which are modeled as in
Vickrey (1969). The most important inconvenience modeled is certainly the need for
users to schedule their tasks in advance. A similar cost was already proposed by Tisato
(1992) and Fosgerau (2009) in the context of public transit to distinguish planning from
non-planning users.

Of course, the cooperation cost is likely to depend on the flexibility that the system
offers to its customers. While quantifying this effect is beyond the scope of this thesis,
the rapid emergence of diverse forms of mobility services involving a similar scheduling
inconvenience (car-sharing, ride-sharing and, to a lesser extent, e-hailing and on-demand
public transit) suggests that a significant proportion of the population is willing to bear
this cost in exchange for some benefits associated with mobility as a service. Since a
cooperative service would bring the additional benefit of avoiding congestion for essentially
the same cost, its materialization in the context of mobility as a service seems plausible.

1If registration to the service is considered on single-trip basis, this cost would become de facto
trip-specific.
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The proposed interpretation of the reservation service as a car-sharing system based on
autonomous vehicles has important consequences from a practical point of view. First,
self-driving vehicles and car-sharing systems are likely to expand together. Indeed, self-
driving technologies and car-sharing are complementary: their combination allows for a
door-to-door service and addresses issues related to relocation, liability and maintenance
(International Transport Forum, 2015a,b). Second, isolating autonomous vehicles from
conventional vehicles would remove several obstacles to their development and would
allow for higher capacity utilization (Varaiya, 1993), hence bringing another justification
for the allocation of a reserved infrastructure. Third, self-driving technologies would
naturally resolve the difficulties associated to the enforcement of the slot allocation
mechanism as the vehicles would pick up their passengers only at the scheduled time.
Fourth, booking also facilitates fleet management. In fact, as many car-sharing services
are already reservation-based, the implementation of demand management strategies
would simply bring more benefits to the current users and potentially attract new ones.
In terms of our analytical results however, the only impact of automation stems from the
gain in capacity associated to introducing autonomous vehicles on a separate roadway.
This gain is accounted for by considering a different capacity for autonomous vehicles.

The remainder of this chapter is structured as follows: Section 2 provides further details
on the cooperation cost, suggests some possible interpretations for the booking service
and discusses the impacts of the service on the effective capacity of the roadway. The
differences with existing congestion management techniques are also highlighted. Section
3 lays the background by introducing the general assumptions and the expressions of the
different costs. Then, the user equilibrium and social optimum are treated in Section
4 for both fixed capacity splits and optimal capacity splits. It is shown in particular
that the user equilibrium can be made socially optimal with a simple constant toll
(decentralization of the social optimum) but that unlike the social optimum, the user
equilibrium with no toll and with a socially optimal capacity split Pareto-dominates the
case with no cooperation. It is also shown numerically that the equilibrium and the
social optimum allow very similar social cost reductions. The management of a route by
a private operator is considered in Section 5 to assess the impact of profit-maximizing
strategies on the social cost and finally, conclusions are drawn and suggestions for future
research are stated in Section 6.

5.2 Motivation and main concepts

5.2.1 The cost of cooperation

The cost of cooperation can be interpreted as the alternative-specific constant generally
introduced in mode choice models (Small and Verhoef, 2007). Here, it is individual
specific, i.e. it is distributed in the population. Although this cost accounts mostly for
the need to schedule a trip in advance, user experiences might also differ in many other
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dimensions, depending on the interpretation chosen for the booking service.

For example, the proposed interpretation of the service as a car-sharing system utilizing
autonomous vehicles entails several such differences. Indeed, not only the car running
costs might differ but also the safety, the value of the in-vehicle time, the free-flow travel
time itself, the travel time variability, etc. In this chapter, we assume that all these
differences between the two routes or types of vehicles can be approximated by constant
terms in the generalized cost function (i.e. that the associated costs do not depend on the
demand and capacity splits) such that these inconveniences can be considered as parts of
the cooperation cost. This assumption seems reasonable for the car running cost (if we
exclude the fuel consumed while waiting), for the safety consequences, for the free-flow
travel time and for the in-vehicle value of time.2 The impact of the cooperative scheme
proposed on the travel time variability would deserve to be further studied. While the
travel time with autonomous vehicles might be considered as fixed, it is not clear yet how
the demand and capacity split would influence travel time variability for the conventional
vehicles and how this variability should be valued. This is still an active research topic
(see e.g. Fosgerau (2010), Li et al. (2010), Fosgerau and Karlström (2010), Carrion and
Levinson (2012), Xiao et al. (2017)).

5.2.2 Implementation of advance booking

“Advance booking” is understood in this thesis as a means to force the early allocation of
time slots, thus avoiding queuing but introducing a scheduling inconvenience. In order to
distribute the demand over time as efficiently as possible, the choice of the slot allocation
mechanism is paramount. At the frontier between game theory and economics, such
mechanism-design problems have been extensively studied (Hurwicz and Reiter, 2006)
and a variety of tools have been proposed. For the problem at hand, Liu et al. (2015)
have already proposed to distribute time slots of the bottleneck capacity via auctions.
Alternatively, the time slots could be issued by the road manager before being exchanged
on a trading market (Wada and Akamatsu, 2013). More ideas have been suggested in
the context of other well-known transportation-related problems such as airport slot
allocation (Rassenti et al., 1982) or coordination of autonomous vehicles at intersections
(Schepperle et al., 2008).

The only restriction imposed by our methodology is that the system should be fair, in
the sense described hereafter. In the general case, cooperative users experience a cost
Cc(j, t) = Ccoop(j) + SP(t) + Cc

run + Ccomp(t), where Ccoop(j) is the cooperation cost of
individual j, SP(t) is the schedule penalty for arriving at time t (as in Vickrey (1969)),
Cc

run is the running cost (vehicle purchase, maintenance, fuel...) and Ccomp(t) is an
2This would most likely not be true if autonomous and conventional vehicles had to share the same

road as in van den Berg and Verhoef (2016). Nevertheless, since autonomous vehicles are assumed to
be separated spatially from other vehicles and since users have the same scheduling preferences, the
individual costs do not depend on the value of the in-vehicle time (Arnott et al., 1990).
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additional cost, that might be positive or negative and acts as a compensation mechanism.
Similarly, independent users experience a cost Ci(j, t) = W (t) + SP(t) + Ci

run, where
W (t) is the waiting cost if arrival occurs at t and Ci

run is the running cost of driving a
private car. Since the demand is inelastic and the running costs are constant, only their
difference matters. Yet, by defining the cooperation cost as the sum of the inconvenience
related to cooperating, plus the reduction/increase in running cost that results from
sharing vehicles (Cc

run − Ci
run), running costs can be ignored altogether. Then Ccomp(t)

is a term that compensates for individual variations in schedule penalties incurred (this
will play a role in the acceptability of such a system). It has a zero-average, such that the
cooperative service as a whole is neither taxed nor subsidized. Formally, if S̄P denotes
the average schedule penalty experienced by all users of the cooperative service, setting
Ccomp(t) = ¯SP − SP(t) ensures that the average compensation cost is equal to zero and
leads to Cc(j, t) = Ccoop(j) + S̄P.3 Note that even though Ccomp(t) may be negative,
there is no need to actually pay users as long as Ccomp(t) < |Cc

run|. In this case, Ccomp(t)
is merely an off-peak discount (or peak charge). This is only one example of compensation
mechanism. Further research can identify additional mechanisms, which will be fair and
acceptable to potential users. We refer to this situation as the “no-toll equilibrium”.
The impact of a tax or subsidy is studied in Section 5.4. The notations introduced in
this Section were only aimed at making explicit the different cost components but are
replaced by more convenient notations in the remainder of the chapter.

5.2.3 Improvement of the effective capacity

Besides avoiding waiting time, the reservation service proposed is expected to increase the
effective capacity of the roadway, i.e. the rate at which vehicles can pass the bottleneck.
If a part of the bottleneck normally serves up to z conventional vehicles per time unit, it
would serve up to gz vehicles per time unit when allocated to the cooperative service,
where g is called the capacity improvement factor. The amplitude of g highly depends
on the interpretation adopted.

In case the service is assumed to be provided by autonomous vehicles only, the difference
in effective capacity could be dramatic. Although there is no consensus on the scale of
this change, the impact is globally expected to be positive on highways, with authors
estimating capacity improvements ranging from 20% to more than 100% (Varaiya, 1993).
For urban networks, the impact is even more uncertain. Different research groups working
on intersection control showed that communication technologies could allow for reductions
in delays at intersections (Fajardo et al., 2012; Qian et al., 2014). On the contrary,
Le Vine et al. (2015) argued that users of autonomous vehicles would have a lower

3In practice, users have different values of time and different schedule preferences. Since users would
be able to acquire their preferred combination of schedule penalty/price paid, the average cost would
represent an upper bound, given the social efficiency of second-price sealed-bid auction (which would be
implemented via a mobile app for instance) (Vickrey, 1961).
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acceptance to accelerations and decelerations, which would actually slow down traffic in
urban areas. Progress in terms of safety could also significantly improve the capacity
overall. Indeed, since traffic incidents are responsible for approximately 10-30% of the
total congestion delay (see e.g. Skabardonis et al. (2003)) and since human error is the
critical factor in the vast majority of crashes, reducing crashes would also increase the
average capacity of roadways.

Based on the literature above, various values of g between 1 and 2 are used for numerical
applications, corresponding to improvements between 0% and 100%. Fortunately, the
theoretical results obtained remain valid for any value of the capacity improvement factor
g > 0.5, which seems to be an extremely reasonable assumption.

5.2.4 Comparison with other demand management strategies

As highlighted in the introduction, congestion pricing and advance booking differ mostly
in terms of acceptability and timing. In more practical terms, the simultaneous booking of
the vehicle and of the road utilization confers to the proposed system several advantages
over congestion pricing. Since a potential time-dependent price can be included within
the vehicle fare, this price can (i) have a zero-average (a negative price is simply a
discount on the vehicle fare) and hence be more acceptable, (ii) be collected without
additional administrative overhead. Besides, although this is difficult to evaluate, peak
pricing might be politically more acceptable and easier to implement if it is applied by a
fleet operator to its mobility service than by the government to the road network. In
fact, peak pricing is already implemented by many airlines, railways and more recently
by mobility companies like Uber (Surowiecki, 2014).

Besides these differences, congestion pricing and advance booking share many common
characteristics and the analysis of the literature on partial road pricing can provide some
precious insight. Systems in which a fine toll is applied only on one of two parallel
routes have already been considered in the past by many authors Braid (1996); Liu
and McDonald (1999); de Palma and Lindsey (2000). Although the social optimum in
the cases studied appeared to be obtained by pricing the entire capacity, partial tolling
was justified by legal, political and technical constraints requiring the existence of a
free-access alternative. By introducing wealth heterogeneity, Verhoef and Small (2004)
and van den Berg and Verhoef (2011) shed some light on these political constraints,
using respectively static and dynamic models of congestion. Both studies found first-best
pricing to provide larger benefits on average but in a much less egalitarian way than
second-best partial pricing. By modeling in addition the reduction of capacity that is
commonly caused by congestion, Hall (2018) demonstrated that partial tolling can be
used to produce a Pareto improvement before redistributing the toll revenues. Thus,
while in these cases the social optimum imposes a unique system, a more diverse offering
is relevant because it is more egalitarian. The idea of reserving access to some part
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of the road to a group of users (e.g. carpools) during some time slot is also proposed
by Fosgerau (2011). This work differs from ours however as the “privileged” users still
compete with each others, thus generating queuing.

5.3 Optimum and Equilibrium

This section focuses on the socially optimal and equilibrium demand splits, for fixed
or optimal capacity splits. The socially optimal capacity split of course depends on
the regime considered (equilibrium or optimum). Note also that the expression “social
optimum” refers in this chapter to the socially optimal demand split, not to the absence
of congestion on both routes. The notations used in this chapter are listed in Table 5.1.

5.3.1 Background

Setting

Let us consider a single origin/single destination situation with only one route and a
bottleneck of capacity S and a total (inelastic) demand N . This route can be divided into
two parallel routes, which have bottlenecks at the same location as the original route and
which are reserved for independent and cooperative users, respectively. The proportion
of the demand that is cooperative and the proportion of the bottleneck capacity that is
allocated to them are denoted by x and y ∈ [0, 1]. However, for the reasons given above,
the effective capacity of the cooperative route is likely to differ as it is used by autonomous
vehicles. Thus, a cooperative infrastructure with a “traditional-vehicle-capacity” of yS

would have an effective capacity of gyS, where the capacity improvement factor g would
characterize how much more/less efficiently the facility is used (g would be equal to 1 if
the cooperative service was implemented with conventional cars).

Individual costs

We consider that all users have α − β − γ preferences (described in Section 2.2) with
the same coefficients α, β, γ and t∗. On the part of the road allocated to independent
users, (1 − x)N users want to pass a bottleneck with capacity (1 − y)S, hence the total
duration of congestion is (1−x)N

(1−y)S . Note that it corresponds to the situation studied in
Section 2.4.2. The individual equilibrium congestion cost, denoted ci, is given by:

ci =
{

δN
S

1−x
1−y if y ∈ [0, 1)

∞ if y = 1.
(5.1)

Since their departure times are properly scheduled, cooperative users do not have any
queuing time. However, they still incur a schedule penalty cost, which is a uniformly
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Variables Unit Description
α $/h unit cost of travel time
β $/h unit cost of arriving early
γ $/h unit cost of arriving late
δ $/h � βγ

β+γ

t∗ h common desired departure time from the bottleneck
S veh/h capacity of the bottleneck
N veh demand
x - proportion of the demand that is cooperative
y - proportion of the capacity that is reserved for cooperative users
g - capacity improvement factor
θ - type of user or (normalized) cooperation cost
θ̂ - critical value of θ separating cooperative from independent

users
κ $ unit cooperation cost
f, F - probability (pdf) and cumulative (cdf) density function of θ
Θ - support of f

¯
θ, θ̄ - infimum and supremum of Θ
τ $ a toll imposed for each trip on the independent route
τpc, τpi, τgc,
τgi

$ toll imposed for each trip by the government (g) or the private
operator (p) on the cooperative (c) or on the independent (i)
route

θ̂pc, θ̂pi - critical value of θ at equilibrium with the tolls τpc and τpi
cc, ci $ individual congestion cost for cooperative and independent

users
r - cost ratio equal to δN

κS

yo(θ̂), θ̂o(y),
xo(y)

- socially optimal values, given the variables in parentheses

θ̂e(y), xe(y) - user equilibrium values (no toll) for a given capacity split y

θsol(a, b) - solution of θ̂ + aF (θ̂) − b = 0 (see Lemma 3)
ŷ - � F

((
1 − 1

2g

)
r
)
, capacity split such that at equilibrium x = y

SC(θ̂, y) $ social cost as a function of θ̂ and y
SC(x, y) $ social cost as a function of x and y

SC(θ̂) $ � SC
(
θ̂, yo(θ̂)

)
, social cost function with a socially optimal

capacity split
SC(y) $ � SC

(
θ̂o(y), y

)
, social cost function with a socially optimal

demand split
SCref, cref $ social and individual cost in the reference scenario (no coopera-

tion)
S̃C - � SC

SCref ; the same tilde notation is used for other variables and
it always indicates the ratio of the variable divided by its value
in the reference scenario (no cooperation).

Table 5.1 – Notations
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distributed random variable taking values between 0 and δN
S

x
gy . By assuming the

existence of a compensating mechanism (see Section 5.2.2), we can consider that each
user experiences the average schedule penalty, that is δN

S
x

2gy . In addition, cooperative
users also incur a cooperation cost, which is a characteristic of each individual. The
probability density function (pdf) of this cost in the entire population is assumed to be
known and to satisfy the following condition:

Condition 1. The support of the probability density function of the cooperation cost is
an interval including 0, positive for at least some users, bounded below but not necessarily
above.

Note that this condition allows the cooperation cost to be negative for some users. This
might happen, for instance, if travel time reliability is highly valued or if the technology
used for cooperative vehicles has significant advantages. Since the cooperation cost is the
only source of heterogeneity, users can be characterized by their individual cooperation
cost, relatively to the entire population: an individual of type θ has the cooperation cost
κθ, where κ is referred to as the unit cooperation cost. The pdf of the type θ is denoted
by f , its support by Θ, and its infimum and supremum by

¯
θ and θ̄. Condition 1 imposes

that
¯
θ ∈ R

− and θ̄ ∈ R
+∗ ∪ {+∞}. With this notation, the average cost for a cooperative

individual of type θ is:

cc + κθ =
{

δN
S

x
2gy + κθ if y ∈ (0, 1]

∞ if y = 0,
(5.2)

where cc is referred to as the congestion cost for cooperative users.

Social cost

Since individuals differ only by their cooperation cost, there exists a critical type denoted
by θ̂ such that all individuals of type θ < θ̂ are cooperative, while all individuals of type
θ > θ̂ are independent. In other words, the cooperative population consists only of the
individuals with the smallest values of θ, both under user equilibrium and under social
optimum. Note that θ̂ might potentially be equal to

¯
θ or θ̄, in which case all users belong

to the same category. The proportion of the demand that is cooperative is simply given
by the cumulative distribution function (cdf) F of the cooperation cost θ evaluated at θ̂

(see Fig. 5.1):

x(θ̂) = F (θ̂). (5.3)

By assumption (cf Condition 1), f(u) > 0 for all u ∈ (
¯
θ, θ̄) so x is a strictly increasing

function of θ̂. Consequently, θ̂ → x(θ̂) is a bijection from [
¯
θ, θ̄] to [0, 1]. Then, the social
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θ

f(θ)

θ̂θ

Cooperative Independent

Figure 5.1 – Example of a distribution of the cooperation cost among the population
and separation between cooperative and independent users

cost is expressed as a function of the demand and capacity splits by:

SC(θ̂, y) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Nκ

∫ θ̄

¯
θ

uf(u) du + δN2

S
1
2g if (θ̂, y) = (θ̄, 1)

Nκ

∫ θ̂

¯
θ

uf(u) du + δN2

S
x2

2gy + δN2

S
(1−x)2

1−y if (θ̂, y) ∈ [
¯
θ, θ̄] × (0, 1)

δN2

S if (θ̂, y) = (
¯
θ, 0),

(5.4)

where x = x(θ̂) according to Eq. (5.3). The social cost is infinite for θ̂ 
=
¯
θ and y = 0

and for θ̂ 
= θ̄ and y = 1.

Besides the demand and capacity splits x and y, Eq. (5.4) also involves the exogenous
variables N , S, κ and δ. To further simplify this expression and those derived thereafter,
we now introduce the relative social cost, that is the social cost divided by the social
cost in a reference scenario. The reference scenario chosen here is the situation with
no cooperation at all (x = 0, y = 0). This case is referred to hereafter as the “user
equilibrium with no cooperation”. In this case, the social cost is simply SCref = δN2

S .
Similarly, we will also consider individual costs relative to the individual cost in the
reference scenario cref = δN

S and the duration the route is used, relative to N
S . With this

transformation, the relative social cost is given by:

S̃C(θ̂, y) � SC(θ̂, y)
SCref =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
r

∫ θ̂

¯
θ

uf(u) du +
1
2g

if (θ̂, y) = (θ̄, 1)

1
r

∫ θ̂

¯
θ

uf(u) du +
x2

2gy
+

(1 − x)2

1 − y
if

(
θ̂, y

)
∈ [

¯
θ, θ̄] × (0, 1)

1 if (θ̂, y) = (
¯
θ, 0),

(5.5)
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where r � δN
κS . Note that r has a physical interpretation: it represents the ratio of the

congestion costs (if all users are independent, δN
S is the individual cost, i.e. the sum

of the schedule delay penalty and of the travel time cost) and the unit cooperation
cost. Note that the relative social cost is only a function of the capacity y, the capacity
improvement factor g, the cost ratio r and the critical cooperation cost θ̂. If both the
demand split and the capacity split are optimally chosen, the relative social cost depends
only on g and r. Similarly, it is shown in Section 5.3.2 that the demand split under user
equilibrium is only a function of g, r and y and that hence, the relative social cost under
user equilibrium with a socially optimal capacity split is also a function only of g and r.

We will also denote by S̃C the relative social cost functions that use other input arguments.
However, to avoid any ambiguity, the relevant input arguments will always be mentioned.
Later in this work, the functions S̃C(θ̂) = S̃C(θ̂, yo(θ̂)) and S̃C(y) = S̃C(θ̂o(y), y) will
be used to refer to relative social cost functions of one variable only, assuming that the
other split is fixed (or optimal).

Specific distributions and numerical values

An effort was made throughout this work to keep a general scope and assumptions about
specific distributions or numerical values were avoided when appropriate. However, some
analytical expressions and the graphical illustrations require assumptions. When necessary
(and it is always mentioned), a uniform distribution is assumed for the cooperation cost.
Some numerical applications are also replicated with a log-normal or an exponential
distribution with the same expected value.

Based on Eq. 5.5, the results depend only on dimensionless relative quantities that
are used in all graphical illustrations. However, some intuition about reasonable values
of r = δN

κS is critical to assess the scale of the benefits that should be expected. The
numerical evaluation of the reference individual cost δN

S is relatively common. Typical
values of earliness (β = 0.5α) and lateness (γ = 2α) (Small, 1982) lead to δ = βγ

β+γ = 0.4α,
where α is the value of time at home while N

S is simply the length of the peak period (∼
2 h for instance).4

Concerning the scale κ of the cooperation cost, mode choice models can suggest an
educated guess since most of them also require that users plan their trips in advance
(e.g. carpooling, buses with long headways, trains, and planes). Bhat (1995) for instance
proposed different models for mode choice between cities, including a multinomial logit.

4Since user homogeneity artificially increases the average cost, we chose a peak period that is shorter
than what is commonly observed to produce realistic average costs. For a peak period of 2 h, homogeneous
users and the scheduling preferences mentioned above, the earliest user would be 96 min early, the latest
24min late and the on-time user would have a trip duration that is 48 min longer than the free-flow travel
time. These costs are rather large, but would be doubled for a 4h peak period (which is closer to the real
duration of the peak period in large cities).
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The ratio of the mode-specific parameter and of the parameter associated to in-vehicle
travel time leads to the following estimates: the train has a mode-specific cost that is
approximately equal to the cost of 51 min of travel time and the mode-specific cost of
taking the plane is about 62 min (compared to the car). However, this intrinsic utility
does not only account for the cooperation cost but also for other characteristics of the
mode which penalize public transit (e.g. comfort). Thus, the cooperation cost would
most likely have a smaller value if personal vehicles were used, say around 30 min. If the
time unit is 1h, then the average value of κθ should be around 0.5α so with a uniform
distribution on [0, 1], this leads to κ = α. Altogether, these estimates lead to the best
guess r = δN

κS ∼ 0.8.

5.3.2 Fixed capacities

In this Section, the capacity split is considered as a parameter, such that the only variable
is the demand split. The results of this restricted case are not only useful to derive results
in the relaxed case (in which the capacity split is also a variable, see Section 5.3.3) but
they also have direct implications for the real world, as the capacity allocated to the
car-sharing service might be constrained for various reasons (e.g. road geometry).

Optimal demand split with fixed capacities

Since the cooperation cost plays a crucial role in this section, we will consider the relative
social cost S̃C as a function of the type θ̂ rather than the demand split x. Before studying
potential optimal demand splits, we state the following technical lemma, which will be
useful for different propositions.

Lemma 3. Let G(θ̂) = θ̂ + aF (θ̂) − b, where a, b > 0. Then G(θ̂) = 0 has a unique
interior solution denoted by θ̂sol if and only if θ̄ + a − b > 0. If the probability density
function f is continuous, then θ̂sol is a locally continuous and differentiable function of a

and b, decreasing with a and increasing with b.

Proof. Since
¯
θ ≤ 0, G(

¯
θ) =

¯
θ − b < 0. Besides, limθ̂→θ̄ G(θ̂) = θ̄ + a − b. Thus, if

θ̄ + a − b > 0, the intermediate value theorem ensures the existence of a solution and
since G is strictly increasing, this solution is unique. Else, G(θ̂) < 0 for all θ̂ < θ̄ so there
can be no interior solution.

Let us now see G as a function of θ̂, a and b. G is simply affine with a and b so if f

is continuous, G is continuously differentiable with: ∂G
∂θ̂

= 1 + af(θ̂), ∂G
∂a = F (θ̂) and

∂G
∂b = −1. As θ̂ is interior, all the previously mentioned derivatives are invertible so the
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implicit function theorem implies that θ̂sol is locally continuous and differentiable with:

∂θ̂sol

∂a
(a, b) = − F (θ̂sol)

1 + af(θ̂sol)
< 0 and

∂θ̂sol

∂b
(a, b) =

1
1 + af(θ̂sol)

> 0.

Proposition 5. For a given capacity split and for a cooperation cost verifying Condition
1, there exists a unique demand split that minimizes the social cost. If the capacity split is
interior (y ∈ (0, 1)), then the optimal demand split is interior and is the unique solution
of

1
r

θ̂o +
1 + (2g − 1)y

gy(1 − y)
x(θ̂o) − 2

1 − y
= 0. (5.6)

In addition, θ̂o is a continuous function of the capacity improvement factor (for g ∈
[0.5, +∞)), the capacity split (for y ∈ [0, 1]) and the cost ratio (for r ∈ (0, +∞)),
increasing with g and y. It increases (resp. decreases) with r if θ̂o > 0 (resp. θ̂o < 0).

Proof. If y ∈ {0, 1}, there is only one demand split that yields a finite social cost, so the
result is trivial. Let us now consider y ∈ (0, 1). By differentiating Eq. (5.5): ∀θ̂ ∈ Θ,

dS̃C
dθ̂

(θ̂) =
1
r

θ̂f(θ̂) +
x(θ̂)
gy

f(θ̂) −
2
(
1 − x(θ̂)

)
1 − y

f(θ̂)

=
1
r

f(θ̂)G(θ̂),

where we define: G(θ̂) � θ̂ + r
(

1
gy + 2

1−y

)
x(θ̂) − 2r

1−y . G has the form of the function
required by Lemma 3 with:

θ̄ + a − b = θ̄ + r

( 1
gy

+
2

1 − y

)
− 2r

1 − y
= θ̄ +

r

gy
> 0.

Thus, there exists a unique demand split θ̂o ∈ (
¯
θ, θ̄) satisfying G(θ̂o) = 0, i.e. satisfying

Eq. (5.6).

Finally, since f(θ̂)
r > 0, ∀θ̂ ∈ Sθ, dS̃C

dθ̂
(θ̂) has the same sign as G(θ̂), i.e. dS̃C

dθ̂
(θ̂) >=< 0 for

θ >=< θ̂o so S̃C reaches its global minimum for θ̂ = θ̂o.

The second part of Lemma 3 implies that θ̂o is locally continuous and increases with g.
Since this is valid for every g ∈ [0.5, +∞), θ̂o is continuous and increasing everywhere.
Similarly, by the implicit function theorem, θ̂o is continuous and increases (resp. decreases)
with r on (0, +∞) if θ̂o > 0 (resp. θ̂o < 0) and is continuous and increases with
y on (0, 1). To generalize this last result to the closed interval y ∈ [0, 1], note first
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that θ̂o =
¯
θ for y = 0 and θ̂o = θ̄ for y = 1. Then Eq. (5.6) can be rewritten

as: x(θ̂o)
gy(1−y) = − θ̂o

r − 2g−1
g(1−y)x(θ̂o) + 2

1−y . As the left-hand term is clearly positive, so must
be the right-hand term. In addition, the right-hand term is bounded above by −¯

θ
r + 2

1−y .
Consequently, x(θ̂o) is non-negative and bounded above by gy(1 − y)

[
−¯

θ
r + 2

1−y

]
, and

thus converges toward 0 when y tends towards 0, which ensures continuity in 0. Similarly,
Eq. (5.6) can also be rewritten as 1 − y = r

θ̂o

[
2 − 2x(θ̂o) − 1−y

gy x(θ̂o)
]
. The left-hand

term clearly converges towards 0 when y tends towards 1, so the right-hand term must
do so as well. The right-hand term however is the product of two terms that are related:
if the first is small (i.e. θ̂o is big), then y must be close to 1 so the second term must be
small as well, and vice versa. Thus it is trivial to show that both terms tend towards 0,
or, equivalently, that y converges towards 1.

The existence and uniqueness results stated in Proposition 5 confirm an intuitive result:
if the road capacity is split into two, the optimal demand split is such that both roads
are used and its exact value depends on how much users dislike cooperating. As we have
not specified the distribution of the cooperation cost yet, the exact value of the optimal
demand split is given by an implicit equation. This equation could be made explicit by
assuming some particular distribution, as done in Section 5.3.2.

Note also that if we set κ = 0 (i.e. no cooperation cost), the problem studied is equivalent
to solving for the socially optimal fine toll when the capacity of a road is divided into two
and only one road can be tolled. Eq. (5.6) then reduces to xo = 2gy

1+(2g−1)y , or equivalently
xo

gy = 2(1−xo)
1−y . This imposes that the ratio of demand to capacity (or equivalently, the

duration the route is used) is twice as big for the cooperative route as for the independent
one, as found by Braid (1996).

User equilibrium with fixed capacities

At equilibrium, no user can reduce her cost by changing her decision. Hence, either only
one route is used and its cost is smaller than the cost on the other road for all users,
or both roads are used and their costs are equal for some critical user (because of the
continuity assumption included in Condition 1). If tolls are small enough, both roads are
necessarily used at equilibrium as Condition 1 imposes that some user has zero cost of
cooperation. The equilibrium condition is then:

κθ̂e(y, τ) + cc = ci + τ , (5.7)

where τ is a constant toll on the independent route (if the toll is on the cooperative route,
then τ is simply negative) and θ̂e(y, τ) characterizes the critical user that is indifferent
between the two routes. Hereafter, in cases with no toll, θ̂e(y, 0)) is simply denoted θ̂e(y).

Proposition 6. For a given capacity split and with no toll, a demand split satisfies
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the user equilibrium equation (5.7) with a unit cooperation cost κ = K if and only if
the demand split satisfies the social optimum equation (5.6) with a unit cooperation cost
κ = 2K.

Proof. Eq. (5.7) is equivalent to

κθ̂e(y) +
δN

S

x(θ̂e(y))
2gy

=
δN

S

(1 − x(θ̂e(y)))
1 − y

,

or

r

(1 + (2g − 1)y
2gy(1 − y)

)
x(θ̂e(y)) = r

1
1 − y

− θ̂e(y). (5.8)

It suffices now to note that Eq. (5.8) with κ = K is identical to the social optimum
equation (5.6) for κ = 2K.

A consequence of Proposition 6 is that the results obtained for the social optimum remain
valid after multiplying κ by two. In particular:

Corollary 3. For a given capacity split and with no toll, there exists a unique demand
split satisfying the user equilibrium equation. It is a continuous function of the capacity
improvement factor g (on [0.5, +∞)), of the cost ratio r (on (0, +∞)), and of the capacity
split y (on [0, 1]).

In addition, Proposition 6 also highlights the important role played by the cooperation
cost in the problem considered. Indeed, by taking the extreme case κ = 0, one obtains
the following corollary:

Corollary 4. If cooperation is not costly, the equilibrium demand split with no toll is
socially optimal.

By adding a cooperation cost, we impose that on one hand, the critical user at equilibrium
equalizes her own cooperation cost with the difference in her congestion cost on the two
routes ci − cc. On the other hand, the social optimum is obtained by equalizing this same
critical cost of cooperation for one user with the change in the total congestion cost for
all users. Hence, the choice of the route entails externalities which are not accounted
for at the equilibrium. Without a cost of cooperation however, one can observe that
imposing ∂S̃C

∂x = 0 is mathematically equivalent to imposing cc = ci, i.e. the externality
imposed by the route choice of the critical user at the user equilibrium is equal to 0. This
is in agreement with the result of Braid (1996), who found that, if a welfare-maximizing
operator can only toll one of two parallel routes, it should add to Vickrey’s fine toll
a negative flat component, that attracts more demand to the route with no queuing.
The negative flat component is such that the toll is equal to zero on average, i.e., it

73



Chapter 5. Splitting the road to foster cooperation

corresponds to our compensating mechanism (see Section 5.2.2). This leads us to state
this additional corollary:

Corollary 5. For any interior capacity split, there exists a toll of the same sign as the
critical cooperation cost that increases the social welfare when applied to the independent
route.

If a toll is imposed, it can be proven that there still exists a unique demand split satisfying
the user equilibrium condition but in this case, the solution is not necessarily interior.
The proof is left to the reader as it is similar to the proof of Proposition 5.

Decentralization of the social optimum

The objective of this section is to determine, given some capacity split, how the routes
should be tolled to shift the user equilibrium to socially optimal conditions. Corollary 5
implies that the independent route should be tolled and Proposition 6 can be used to
determine the exact amount without additional calculations.

Indeed, if one solves the social optimum problem to find θ̂o and then sets the toll to
τ = 1

2κθ̂o, Eq. (5.7) becomes:

κ

(
θ̂e

(
y,

1
2

κθ̂o
)

− 1
2

θ̂o
)

+ cc = ci.

Proposition 6 implies that θ̂o is a solution and since the solution is unique, θ̂e
(
y, 1

2κθ̂o
)

=
θ̂o, i.e. the equilibrium is the social optimum.

Intuitively, this toll forces some naturally independent users that are close to being
cooperative to become cooperative. Hence, it is natural that it should increase with the
cooperation cost of these users (κθ̂o).

It is of practical interest to notice that this toll is only paid by independent users, is
time-independent and is relatively small (numerical applications show that for the range
of κ considered, it is about half the average toll required by Vickrey’s time-dependent
tolling strategy). Note however that the social optimum reached has a higher social cost
of congestion than the one produced by Vickrey’s fine toll since only cooperative users
avoid queuing. Thus, while the user acceptability of such a pricing strategy in a possible
implementation is expected to be higher, it does not convey the same extraordinary
benefits as the ideal fine toll.
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Special case: uniform distribution

In order to find closed-form expressions of the demand split for the social optimum and
user equilibrium, we assume a uniform distribution of the type θ: f(θ) = 1 if θ ∈ [0, 1]
and f(θ) = 0 elsewhere. Hence, x = θ̂ for all θ̂ in [0, 1], i.e. the demand split is equal to
the critical type of user. Under these conditions, the social optimum equation Eq. (5.6)
has an explicit solution given by

θ̂o =
2rgy

gy(1 − y) + r(1 + (2g − 1)y)
. (5.9)

It can be easily verified that this solution is interior, i.e. that ∀y ∈ (0, 1), θ̂o ∈ (0, 1). The
expression of the equilibrium demand split can be derived immediately from Eq. (5.9)
using Proposition 6:

θ̂e =
2rgy

2gy(1 − y) + r(1 + (2g − 1)y)
. (5.10)

The demand split and the times both routes are used are displayed in Fig. 5.2a and
Fig. 5.2b for r = 0.2, r = 0.4, r = 1 and r = 2 for the social optimum. Note that by
exploiting the correspondence between social optimum and user equilibrium, the same
curves also describe the user equilibrium for r = 0.4, r = 0.8, r = 2 and r = 4. Some
simple considerations and empirical observations in other contexts requiring scheduling
(public transit, airlines) suggest a realistic value of r would be in the order of 0.8 (see
5.3.1).

It is clear in Fig. 5.2a that the optimal demand split increases with both r and y (see
Proposition 5). Note that besides the very specific cases where the capacity is entirely
allocated to one alternative (x = 0 and x = 1), the curves for different cost ratios r are
quite different: those associated to small values of r have a S shape while those associated
to large values of r appear to be concave. Nevertheless, all curves are similar for the
range of small capacity splits y, which is a natural consequence of the limited number
of cooperative users. Indeed, as only the users with almost no cooperation cost are
cooperative when the capacity split y is small, such situations can all be approximated
by the case with no cooperation derived at the end of Section 5.3.2. Hence, as the
independent users have a demand-to-capacity ratio close to 1, the demand-to-capacity
ratio of the cooperative user (i.e. the slopes of the curves in Fig. 5.2a or value on
the y-axis in Fig. 5.2b) must tend towards 2 as the capacity split y tends towards 0,
regardless of the cost ratio r.

Fig. 5.2b illustrates the balance of the flows across the two routes. For small capacity
splits y, the demand-to-capacity ratio (i.e. the time the road is used) is twice as large on
the cooperative road as on the independent one. For y = 1 however, the route that is
used during the longest period depends on the cost ratio r. Smaller cost ratios r lead
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Figure 5.2 – Graphical representations as functions of the capacity split y of (a) the
socially optimal demand split (x), (b) the relative time each route is used in the social
optimum (1 corresponds to the reference scenario), and (c) the relative social cost for
both the social optimum and the user equilibrium. All results were obtained with a
uniform distribution of the cooperation cost and are provided for different values of the
cost ratio r and for g = 1.

to a greater usage of the independent road, which can be used for a period up to three
times longer than the cooperative route. Such an imbalance is intuitively not desirable
as it implies that the capacity is most of the time only partially used.

The performance of the different regimes can be assessed by the relative social cost,
which is represented in Fig. 5.2c for both the social optimum and the user equilibrium.
Although the social optimum by definition always yields a smaller social cost than the
user equilibrium, the difference between these two regimes appears to be relatively small,
especially for large values of the cost ratio r. Intuitively, large values of r correspond to
cases in which cooperation has a small cost compared to congestion, and hence to cases
where the user equilibrium is close to being socially optimal (see Corollary 4 and the
discussion following it).

Thus, cooperation can reduce the social cost in some cases, an ill-adapted capacity split
leads to an imbalance between the two routes, which translates either into a very little
gain (large r and small y) or into a severe increase in social cost (small r and large y).
This highlights the importance of the role of the central planner when allocating road
capacity to the two vehicle types.

5.3.3 Optimal capacities

Optimal demand and optimal capacity splits

We now assume that both the demand and the capacity splits can be governed by a
central planner and we determine the pair of splits that minimizes the social cost. This
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problem is most easily solved by first identifying the explicit expression that associates a
demand split x to the capacity split yo that minimizes the social cost given the demand
split x, and then minimizing the function S̃C(θ̂) � S̃C(θ̂, yo(x(θ̂))), where we use the
same notation with a slight abuse of notation.

Proposition 7. For any given demand split x ∈ [0, 1], there exists a unique capacity split
that minimizes the social cost. It is independent of the cooperation cost and congestion
parameter δ, and it is given by:

yo(x) =
x√

2g(1 − x) + x
. (5.11)

This capacity split is continuous and strictly increasing on [0, 1]. The cooperative route is
used

√
2g times longer than the independent route.

Proof. If x = 0 (or x = 1), the socially optimal capacity split is trivially given by yo = 0
(resp. yo = 1).

Now, if x ∈ (0, 1), the choices y = 0 and y = 1 lead to infinite values of the social cost.
Thus, we can restrict the search to y ∈ (0, 1). By differentiating Eq. (5.5), we get for
y ∈ (0, 1):

dS̃C
dy

(y) = − x2

2gy2 +
(1 − x)2

(1 − y)2 .

Thus, dS̃C
dy (yo) = 0 is equivalent to:

√
2g

1 − x

1 − yo =
x

yo , (5.12)

so that we obtain Eq. (5.11) for x ∈ (0, 1).

It is trivial to show that this solution is interior for x ∈ (0, 1) and that d2S̃C
dy2 (y) is strictly

positive for y ∈ (0, 1). Therefore, the social cost reaches its global minimum for y = yo(x).

Finally, the function yo is clearly continuous on (0, 1) while:

lim
x→0+

(yo(x)) = 0 = yo(0) ; lim
x→1−

(yo(x)) = 1 = yo(1).

Hence, yo is continuous on [0, 1].

As highlighted in Proposition 7, Eq. (5.12) has the intuitive interpretation that the
cooperative route is used

√
2g times as long as the independent route. Since the total

cooperation cost is a constant, the social optimum simply minimizes the total congestion
cost and as routes are always either used at capacity or not used at all, the duration a
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route is used is simply the demand-to-capacity ratio. It is natural that the social optimal
requires a higher ratio on the cooperative route as there is no queueing, only schedule
penalties.

We then derive an explicit formulation of the relative social cost as a function of only
one variable: the demand split x (or alternatively, the critical user θ̂).

Lemma 4. The relative social cost with a socially optimal capacity split S̃C(θ̂) is a
continuous function on [

¯
θ, θ̄] and, with x = x(θ̂),

S̃C(θ̂) =
1
r

∫ θ̄

¯
θ

uf(u) du +
(
√

2g(1 − x) + x)2

2g
. (5.13)

Proof. S̃C is trivially continuous on (
¯
θ, θ̄). Let us now show that S̃C is continuous

on the closed interval [
¯
θ, θ̄]. By combining Eq. (5.5) and Eq. (5.11) and after some

manipulations, we obtain: ∀θ̂ ∈ (
¯
θ, θ̄),

S̃C(θ̂) =
1
r

∫ θ̄

¯
θ

uf(u) du +
x2

2g x√
2g(1−x)+x

+
(1 − x)2

1 − x√
2g(1−x)+x

=
1
r

∫ θ̄

¯
θ

uf(u) du +
1
2

(√
2g(1 − x) + x

) [
x

g
+

2(1 − x)2
√

2g(1 − x)

]

=
1
r

∫ θ̄

¯
θ

uf(u) du +
1
2g

(√
2g(1 − x) + x

)2
.

We can now evaluate this expression at the boundaries of its domain:

lim
θ̂→

¯
θ

(
S̃C(θ̂)

)
=

1
2g

(√
2g

)2
= 1 = S̃C (

¯
θ) ;

lim
θ̂→θ̄

(
S̃C(θ̂)

)
= Nκ

∫ θ̄

¯
θ

uf(u) du +
1
2g

(√
2g(1 − 1) + 1

)2

=
1
r

∫ θ̄

¯
θ

uf(u) du +
1
2g

= S̃C(θ̄).

Therefore, S̃C is continuous on [
¯
θ, θ̄].

Finally, the results of Lemmas 3 and 4 can be combined to obtain the following proposition.

Proposition 8. If the cooperation cost satisfies Condition 1, there exists a unique pair
of demand and capacity splits that minimizes the social cost. This solution is interior if
and only if r < θ̄ g√

2g−1 . In this case, the demand split x(θ̂) is given implicitly by:

1
r

θ̂ +
(
√

2g − 1)2

g
x(θ̂) −

(√
2g − 1

)√
2
g

= 0. (5.14)
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Both the demand split x and capacity split y increase with the cost ratio r and with the
capacity improvement factor g. If r ≥ θ̄ g√

2g−1 , at the social optimum all vehicles should
cooperate.

Proof. Since the expression of S̃C obtained in Eq. (5.13) is valid on [
¯
θ, θ̄], we will now

use it to avoid handling different cases. This function is continuous, differentiable and
we have:

dS̃C
dθ̂

(θ̂) =
1
r

θ̂f(θ̂) − 1
2g

[
2
(√

2g −
(√

2g − 1
)

x(θ̂)
)

(
√

2g − 1)f(θ̂)
]

=
1
r

f(θ̂)H(θ̂),

where H(θ̂) � θ̂ + r
g

(
(
√

2g − 1)2
x(θ̂) − (2g − √

2g)
)
.

Lemma 3 can be applied on function H with θ̄+a−b = θ̄+ r
g (1 + 2g − 2

√
2g − 2g +

√
2g) =

θ̄ − r
√

2g−1
g . Thus, given g and θ̄, the existence of an interior solution depends on the

cost ratio r.

If r < θ̄ g√
2g−1 , then θ̄ > r

√
2g−1
g , so according to Lemma 3 there exists a unique θ̂o such

that H(θ̂o) = 0. Since dS̃C
dθ̂

is negative on [
¯
θ, θ̂o), positive on (θ̂o, θ̄] and equal to zero at

θ̂o, θ̂o is the unique global minimum of S̃C. Although the comparative statics of lemma
3 do not apply directly here, the implicit function theorem can be used in a very similar
fashion to demonstrate that θ̂o increases with r and g. Since the demand split is an
increasing function of θ̂o and the capacity split an increasing function of the demand
split, both splits increase with r and g.

If r ≥ θ̄ g√
2g−1 , then ∀θ̂ ∈ [

¯
θ, θ̄), dS̃C

dθ̂
< 0 and dS̃C

dθ̂
(θ̄) ≤ 0. Thus, there is a unique global

minimum and it is reached for θ̂ = θ̄ (and x = 1). From a practical point of view, this
means that if the cooperation cost is small enough for all the population, the social
optimum is an entirely controlled infrastructure.

Thus, there is an interior solution if and only if the maximum cooperation cost within
the population (κθ̄) is more than

√
2g−1
g times the individual cost when all users are

independent. Since
√

2g−1
g ∈ (0, 0.5] for g > 0.5, the following sufficient condition holds:

Corollary 6. If the maximum cooperation cost within the population is greater than
half the individual cost with no cooperation (κθ̂ > δN

2S ), the optimal demand and capacity
splits are interior.

The assumption included in Condition 1 mentioning that the closure of the cooperation
cost support includes 0 is critical here. Thanks to this assumption, allocating at least
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some part of the capacity to cooperative users is always socially beneficial. Else, allocating
capacity to cooperative users would be detrimental unless there is at least some minimum
level of congestion, which would slightly complicate the derivations and properties.
However, as waiting time represents on average half the individual congestion cost for
homogeneous independent users, it suffices that some users have a cooperation cost
smaller than half the individual congestion cost without cooperation to ensure that the
optimum features a cooperative route.

Optimal capacity split with equilibrium demand

Even though Proposition 6 shows the existence of a strong relationship between the user
equilibrium and the social optimum, the properties of these two regimes are fundamentally
different. In particular, while the user equilibrium assumes purely selfish users, the
numerical applications provided in Section 5.3.3 highlight how the social optimum
requires the “sacrifice” of some cooperative users, for which the cost is worse than in
the reference scenario. We demonstrate in this section that unlike the social optimum,
the user equilibrium is Pareto-improving for the socially optimal capacity split. This
result is obtained without actually determining the socially optimal capacity split under
user equilibrium as the calculations involved are particularly tedious even with simplistic
assumptions5.

Before actually demonstrating this result with Propositions 9 and 10, let us define

ŷ = F

((
1 − 1

2g

)
r

)
.

As shown in the following lemma, the capacity ŷ plays a very particular role as it
separates situations where the demand-to-capacity ratio is greater for cooperative users
from situations where it is greater for independent users.

Lemma 5. Let y denote a capacity split and xe(y) denote the associated demand split at
user equilibrium with no toll. If the distribution of the cooperation cost satisfies Condition
1, then xe(y) > y for all y ∈ (0, ŷ), xe(y) < y for all y ∈ (ŷ, 1) (if ŷ < 1), and xe(y) = y

for y ∈ {0, ŷ, 1}.

Proof. First, it is trivial that xe(0) = 0 and xe(1) = 1 as users have no choice in these
conditions. Second, one can verify that that if y = ŷ, then x = ŷ is a user equilibrium.
Indeed, if the critical user is of type θ̂ = (1− 1

2g )r, the total individual cost for the critical
user is (following (5.2)) κθ̂ + δNx

2gSy = δN
S (1 − 1

2g ) + δN
2gS = δN

S . As the demand split x

is equal to the capacity split y, this is also the individual cost for independent users,

5Assuming a uniformly distributed cooperation cost, the differentiation of the function associating to
a capacity split its social cost under user equilibrium leads to a rational function whose numerator is a
4th order polynomial.
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5.3. Optimum and Equilibrium

so this is a user equilibrium. Corollary 3 ensures uniqueness so x = ŷ is the only user
equilibrium for the capacity split y = ŷ.

Now, let y ∈ (0, ŷ). The reasoning above shows that x = y is not a user equilibrium
because the critical cooperation cost would be smaller than (1 − 1

2g )r, i.e. it would be in
the interest of some independent users to become cooperative. Hence, as the individual
costs for a given capacity split are monotonous functions of the demand split, the user
equilibrium necessarily verifies xe(y) > y.

Conversely, if ŷ < 1 and y ∈ (ŷ, 1], x = y is not a user equilibrium either because it
would be in the interest of some cooperative users to become independent. Thus, the
equilibrium verifies xe(y) < y.

While these comparisons of demand-to-capacity ratios might seem abstract, we argue
below that a capacity split smaller than ŷ is also necessary and sufficient to have a Pareto
improvement.

Proposition 9. For any distribution of the cooperation cost verifying Condition 1, the
user equilibrium with no toll Pareto-dominates the user equilibrium with no cooperation
if and only if the capacity split y is in the interval (0, ŷ].

Proof. By applying Lemma 5:

y ∈ (0, ŷ] ⇔

⎧⎪⎨⎪⎩
xe(y) ≥ y

y > 0
if y = 1, then ŷ = 1.

(5.15)

Then, in order to obtain a Pareto improvement, three conditions should be verified: (i)
the independent users are not worse-off, (ii) the user with the critical cooperation cost is
not worse-off on the cooperative route, and (iii) at least one user is better off.

Let us first show that y ∈ (0, ŷ] implies that there is a Pareto improvement. Based on
the equation of the individual cost for independent users (5.1), Condition (i) is equivalent
to x ≥ y, i.e. the proportion of the demand that is cooperative should not be smaller
than the proportion of the capacity they are allocated. Note then that if Condition (i)
is verified and y < 1, Condition (ii) must be verified as well since the critical user is
indifferent at equilibrium. If y = 1, users have no choice, so we cannot use the indifference
argument. However, as highlighted by Eq. (5.15), then we must have ŷ = 1, so the
cooperative user with the biggest cost is still not worse-off. In addition, if Condition
(ii) is verified and x > 0 (which is guaranteed by Condition 1 as long as y > 0), then
there are some users with a cooperation cost strictly smaller than the critical one who
are better off. Thus, y ∈ (0, ŷ] implies that there is a Pareto improvement.
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Conversely, y = 0 corresponds to the reference scenario, which violates Condition (iii).
If y > ŷ, then Lemma 5 implies that either xe(y) < y or y = 1 and ŷ < 1. The first
case clearly violates Condition (i) while the second violates Condition (ii). Indeed, in
this last situation xe(y) = y so the congestion cost for cooperative users is equal to δN

2gS .
The cooperation cost that makes a user indifferent between the reference scenario and
cooperation in this scenario is reached for x(ŷ) = ŷ. As y > ŷ, there are more cooperative
users for y = 1 and these additional cooperative users are all worse-off.

Intuitively, even though there may be a higher demand-to-capacity ratio on the cooperative
route at equilibrium, cooperative users must always have a cost that is smaller than
independent users (otherwise they would be independent). Thus, we should simply
ensure that independent users are better-off. This requires that they have a demand-to-
capacity ratio that is smaller than in the reference scenario, which, according to Lemma
5, happens if and only if y ≤ ŷ (and y > 0). For y > ŷ, the capacity split allocated to
cooperative users exceeds the proportion of the demand that is disposed to cooperate.
Hence, independent users are not better off unless some users with large cooperation cost
cooperate, which does not occur at equilibrium.

Note that this result might not strictly hold when diverse but highly correlated sources
of heterogeneity co-exist. If, for instance, the cooperation cost is strongly negatively
correlated with the value of travel time α, then providing cooperation might separate
users into two groups with little intra-group heterogeneity. Thus, the travel time of
the independent users (who have high cooperation cost and hence small values of α)
arriving near t∗ may increase even if independent users have a better demand-to-capacity
ratio. Such effects should be further studied as individual characteristics are often highly
correlated in the real world.

Pareto improvements are extremely important from a political point of view. While
socially optimal policies should theoretically be sought, it happens that sub-optimal
measures are implemented instead, simply because they are Pareto-improving, which is
not necessarily the case of socially optimal measures. In the situation at hand however,
we argue below that the socially optimal capacity split exists and Pareto-dominates the
user equilibrium with no cooperation.

Proposition 10. For any distribution of the cooperation cost verifying Condition 1,
there exists a capacity split that minimizes the social cost of the user equilibrium with
no toll. The associated user equilibrium Pareto-dominates the user equilibrium with no
cooperation.

Proof. By applying Corollary 3, the demand split is a continuous function of the capacity
split for y ∈ [0, 1]. Thus, the social cost under user equilibrium is also a continuous
function of the capacity split on [0, 1] and the extreme value theorem guarantees the
existence of a capacity split minimizing the social cost.
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If ŷ = 1, all capacity splits y > 0 are Pareto-improving so the result is trivial. Let us now
assume that ŷ < 1. Let Y > ŷ and X be a capacity split and its associated demand split
at user equilibrium. We demonstrate hereafter that the social cost at user equilibrium
for y = Y is bigger than for y = ŷ.

First, although the pair (x = X, y = X) is not an equilibrium, we can show that
S̃C(X, Y ) > S̃C(X, X) (we use in this proof the relative social cost S̃C as a function
of the capacity split y and of the demand split x, rather than of the type θ̂). Indeed,
note that the number of cooperative users is identical so the cooperation cost is exactly
the same and we just have to compare the costs of congestion. We consider here the
demand split as given so the total congestion cost is simply a function of the capacity
split: g(y) = X2

2gy + (1−X)2

1−y . Differentiating this expression leads to g′(y) = − X2

2gy2 + (1−X)2

(1−y)2 ,
which is positive for all y > X. Thus, S̃C(X, Y ) > S̃C(X, X).

Second, since the demand split is a strictly increasing function of the capacity split,
X > x (ŷ) = ŷ. We can then show that S̃C(X, X) > S̃C (ŷ, ŷ). In fact, the individual
costs are the same in these two scenarios for all users that do not change their decision
(i.e. those that are independent or cooperative in both scenarios). In addition, x = y = ŷ

is an equilibrium so all users that are independent in these conditions would be worse-off
if they were forced to be cooperative with the same congestion conditions, which is
exactly what happens in the situation (x = X, y = X).

Thus, S̃C(X, Y ) > S̃C(X, X) > S̃C(ŷ, ŷ) so the socially optimal capacity split verifies
y ≤ ŷ. To conclude, note that y = 0 is clearly not socially optimal as it is Pareto-
dominated by any y ∈ (0, ŷ].

In other words, Proposition 10 states that the socially optimal capacity split exists and
cannot be greater than ŷ, i.e. that “sacrificing” the users with a high cooperation cost
to reduce the travel time of those with a lower cooperation cost is overall detrimental.
Note however that if we introduce a new source of heterogeneity by considering that
users have different values of time (but the same relative value of earliness β

α and lateness
γ
α) and that the time of users with low cooperation cost is more valuable (shift-workers
usually have lower wages), Proposition 10 might not stand anymore. This is considered
as a future research direction.

Special case: uniform distribution

As in the case with a fixed capacity split, we assume a uniform distribution to provide
explicit solutions for the social optimum and numerically compare it with the user
equilibrium.

Proposition 11. If the cooperation cost is uniformly distributed on [0, 1], then the
socially optimal demand and capacity splits and the corresponding social costs are given

83



Chapter 5. Splitting the road to foster cooperation

by:

For all r < θ̄ g√
2g−1 : θ̂o = r

√
2g(√

2g−1)
g+r(√

2g−1)2 , yo = r
√

2g−1
g , S̃Co

(θ̂o) = g

g+r(√
2g−1)2 .

For all r ≥ θ̄ g√
2g−1 : θ̂o = 1, yo = 1, S̃Co

(θ̂o) = 1
2r + 1

2g .

Proof. In the case of a uniform distribution and assuming that the optimum is interior
(i.e. r < θ̄ g√

2g−1), the optimality condition given by Eq. (5.14) becomes

θ̂o +
r

g

((√
2g − 1

)2
θ̂o −

(
2g −

√
2g

))
= 0,

which is equivalent to the expression of θ̂o provided in the proposition. Then, with a
uniform distribution Eq. (5.11) can be rewritten:

yo =
θ̂o

√
2g − (

√
2g − 1)θ̂o

,

and by using the expression of θ̂o found above, we obtain the required expression for yo.
For r ≥ θ̄ g√

2g−1 , Proposition 8 imposes that θ̂o = yo = 1, regardless of the distribution
chosen.

The expression of the relative social cost is also greatly simplified for a uniform distribution
of the cooperation cost on [0, 1]. Indeed, Eq. (5.13) becomes:

S̃C(θ̂) =
θ̂2

2r
+

(√
2g

(
1 − θ̂

)
+ θ̂

)2

2g
.

The final expressions provided in the proposition are then simply obtained by replacing
θ̂ by the values of θ̂o found above.

As explained in Section 5.3.3, it is much more complicated to obtain similar analytical
expressions for the user equilibrium. Hence, the optimization was carried out numerically.
The demand and capacity splits obtained and the resulting social costs are displayed
together in Fig. 5.3a. Fig. 5.3b provides a comparison of the costs borne by different
individuals and Fig. 5.3c provides a decomposition of the social cost into its different
components (waiting time, schedule penalties and cooperation cost).

The most striking result of this numerical application is certainly the very small social
cost difference between the user equilibrium and social optimum in Fig. 5.3a. Even when
the difference is the largest (around r = 1), the user equilibrium achieves more than
90% of the social cost reduction associated to the social optimum. This suggests that
decentralizing the social optimum might not be necessary for practical applications. Note
also that the social costs at the optimum and at the equilibrium are both decreasing
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Figure 5.3 – (a) Demand and capacity splits and the resulting relative social costs for
the social optimum and user equilibrium as functions of the cost ratio r. (b) Comparison
of the relative individual costs of the independent users (ci) on one hand and of the
two extreme cooperative users (the one with no cooperation cost (cc) and the one
with the critical cooperation cost (cc + κθ̂)) on the other hand. (c) Decomposition of
the relative social cost obtained into waiting time S̃Cw, schedule penalties S̃Cs and
cooperation costs S̃Cc for the social optimum and user equilibrium. All results were
obtained with a cooperation cost uniformly distributed between 0 and 1 and with the
capacity improvement factor g = 1. The superscripts “o” and “e” denote respectively the
social optimum and user equilibrium.

functions of the cost ratio r. Although it is not visible here, both actually converge
towards 1/2g as r tends towards infinity.6

Besides this small difference in social cost, the optimum and equilibrium differ in terms of
demand-to-capacity ratios. One can see in Fig. 5.3a that for a large range of values of the
cost ratio r, the demand split x is greater than the capacity split y under socially optimal
conditions, while the difference is much smaller under equilibrium conditions. Hence,
even though the proposed system is aimed at removing queues for cooperative users,
under socially optimal conditions it would be biased in favor of the independent users, in
the sense that they benefit from a proportionally larger share of the infrastructure than
the cooperative users. This inequity is particularly obvious in Fig.5.3b, which shows the
individual costs of some particular users. Indeed, for values of r between 0 and about
1.8, the cooperative user with the largest cooperation cost is worse-off compared to the
reference scenario (i.e. her relative individual cost is greater than 1), while the individual
cost of the independent users is significantly reduced. Note that such inequalities cannot
occur at the user equilibrium as by construction, the cooperative user who has the largest
individual cost has the same cost as the independent users. Hence, the savings from
the cooperation benefit mostly the cooperative users at the equilibrium, while the social
optimum forces more users to cooperate, thereby generating a redistributive effect.

Finally, while the social cost is a convenient measure of performance, it aggregates several
6This is the classic result for Vickrey’s bottleneck model that can be obtained without cooperation

cost, with g = 1 and with a fine toll on the entire route - cf Arnott et al. (1990).
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inconveniences that are very different: schedule penalties, waiting time and cooperation.
The decomposition of the social cost into these different components is displayed in Fig.
5.3c. While the sum of schedule penalties hardly changes, cooperation greatly reduces the
total waiting time. In fact, while the social cost is only reduced by approximately 14% for
r = 1, the waiting time is reduced by about 56% at the social optimum and 42% at the
user equilibrium. Since the external costs ignored in this chapter are related primarily
to the presence of vehicles on the road (e.g. pollution and travel time variability), the
estimation of the benefits of cooperation provided in this paper is considered conservative.

Numerical applications with other distributions

In order to obtain simple closed-form expressions for the social optimum, it was assumed
in the previous part that the cooperation cost was uniformly distributed. For some
values of r, the results suggest that the entire infrastructure should be allocated to
cooperative users. However, common sense suggests that such a uniform distribution is
not realistic. In fact, even if most trips could be scheduled in advance at a rather low
cost, there will still remain some emergency trips that cannot be scheduled, such that
a more realistic distribution should allow for large positive values of the cooperation
cost. Hence, two additional distributions with supports [0, +∞) are considered: the
exponential and log-normal distributions. To allow for a fair comparison, the parameters
of the log-normal distribution were set to μ = ln(1

2) − 1
8 and σ = 0.5 (μ and σ are

the expected value and standard deviation of ln(θ)) while the rate parameter λ of the
exponential distribution was set to two. Thus, the expected value of the type θ is equal
to 0.5 with both distributions, as for the uniform distribution. These distributions are
represented in Fig. 5.4a. The demand split and the relative social cost were numerically
evaluated with these distributions and the results are plotted in Fig. 5.4b and Fig. 5.4c,
together with the uniform distribution case.

Impact of an improvement of the effective capacity

As discussed in Section 5.2.3, the scheme proposed is likely to improve the effective capacity
of the roadway due to the introduction of autonomous vehicles, their isolation on allocated
roadways, and hypercongestion avoidance. We investigate how this potential capacity
improvement would impact the way the cooperative system should be implemented.

As expected, a more efficient use of the roadway by cooperative vehicles allows for further
reductions in the social cost (see Fig. 5.5) and this gain naturally increases with r, as
the proportion of cooperative users increases. For instance for r = 1 and g = 1, the
optimum reduces the social cost by about 14.5% while for r = 1 and g = 2, the reduction
exceeds 33%. Note also that the maximum social cost difference between equilibrium
and optimum increases with the capacity improvement factor g. Intuitively, the capacity
improvement factor g only amplifies the effect of cooperation. The congestion cost is
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Figure 5.4 – (a) Probability density functions of the three distributions considered for
the cooperation cost. The subplots (b) and (c) illustrate the socially optimal (SO) and
equilibrium (UE) demand split (b) and social cost (c) for socially optimal capacity splits
as functions as the cost ratio r for the three distributions considered for the cooperation
cost (uniform, log-normal and exponential).
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Figure 5.5 – Impact of the capacity improvement factor g on the relative social cost as a
function of the cost ratio r for the social optimum and user equilibrium.

divided by two by avoiding queues, and it is further divided by g by increasing the
effective capacity. We explained after the Corollary 4 that the critical user compares her
own cooperation cost against her own travel time reduction when choosing her route
selfishly, while she would compare it against the travel time reduction for all users if she
were choosing what is socially optimal. As the difference between these two quantities
increases with the impact of cooperation, the difference between equilibrium and optimum
increases with the capacity improvement factor g.

5.4 Private operator

This last section investigates the compatibility of the cost-reducing scheduling service
introduced above with profit-maximizing objectives. Given the current global enthusiasm
for privatization, it seems in fact very likely that if such a scheduling service were to
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be implemented, its operation would be left to some independent organization, as it is
already the case for about one third of highways in Western Europe (Verhoef, 2007).
If this independent operator is not subsidized, it would need to collect revenue, most
likely via a toll. As discussed in Section 5.3.2 however, there are already fewer users
that are cooperative at the equilibrium than at the social optimum. Thus, it seems a
priori preferable that either the private operator manages the independent route (even
though this does not address the issue of the scheduling service management), or that
two tolls should are applied. Based on these first considerations, the exact impact of
profit-maximizing strategies is studied hereafter, first with only one toll set by a private
operator on one of the two routes, and then with two tolls defined in a Stackelberg
setting in which the government is leader and the private operator adjusts its toll in
function of the government’s toll. Stackelberg competition is classically considered in
games involving several heterogeneous players, where one player is able to implement its
decision first, e.g. in a spatial market competition (Wang and Ouyang, 2013; Drezner
et al., 2015), when building or expanding private transportation infrastructures (Xiao
et al., 2007; van den Berg and Verhoef, 2012) or, in a case more similar to ours, when a
central authority concerned with the social optimum delegates the network operations
to independent organizations with different objectives (Zhang et al., 2011). Stackelberg
competition is believed to be one of the prevailing strategic interactions in many market
situations as it often allows all players to make more benefits than, for instance, in a
Nash competition (Wang et al., 2014). In the case at hand, the different types of players
and the strong grip of the government on public infrastructure are strong arguments for
a Stackelberg framework. Note that since the amount tolled is only a transfer of money
from some individuals to others, it is not taken into account in the calculation of the
social cost.

5.4.1 Profit-maximizing toll (one player only)

In this first sub-section, the private operator is the only player and it sets a toll to
maximize its profit. Two cases are considered, depending on the route that is managed
by the private operator.

Cooperative service managed by a private operator

Consider that a private operator is given a proportion y of the capacity and manages the
cooperative service. The toll is set in order to maximize the profit, which is given by:

Π = xNτpc,

where τpc is the toll set by this private operator on the cooperative route (“p” stands for
“private” and “c” for “cooperative”). The only user equilibria that bring some profit to
the private operator are such that both routes are used (otherwise, the private operator
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would have either no customer, or it should pay them to use its route because the other
one would have zero cost at least for some users). Thus:

κθ̂(y) + ce
c + τpc = ce

i , (5.16)

or

κθ̂(y) +
δN

S

x

2gy
+ τpc =

δN

S

1 − x

1 − y
,

and therefore

δN

S

(1 + (2g − 1)y
2gy(1 − y)

)
x =

δN

S

1
1 − y

− κθ̂(y) − τpc. (5.17)

Since given a capacity split y, the function θ̂ → δN
S

(
1+(2g−1)y
2gy(1−y)

)
x(θ̂) − δN

S
1

1−y + κθ̂ + τpc
is strictly increasing, there can be only one equilibrium for a given toll but once again,
there is no closed-form expression of this equilibrium demand split.

Special case: uniform distribution With a uniform distribution of the cooperation
cost, Eq. (5.17) is equivalent to

θ̂(y) =
δN
S

1
1−y − τpc

κ + δN
S

(
1+(2g−1)y
2gy(1−y)

) .

The profit is now a second-order polynomial that is maximized at:

τpc =
δN

S

1
2(1 − y)

. (5.18)

Interestingly, this toll does not depend on κ and corresponds to the average cost of travel
time if all users had to use the independent route. With such a toll, the profit-maximizing
demand is:

Nθ̂pc = N

δN
S

1
1−y − δN

S
1

2(1−y)

κ + δN
S

(
1+(2g−1)y
2gy(1−y)

)
= N

rgy

2gy(1 − y) + r(1 + (2g − 1)y)
, (5.19)

which is exactly half the cooperative demand when there is no toll. Note that since
there were already fewer cooperative users in user equilibrium than in social optimum,
this profit-maximizing strategy moves the demand split in the “wrong” direction. Thus,
such a strategy where the private operator is free to choose his optimal price is not
recommended for an implementation.
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Independent route managed by a private operator

The same approach can be used for this symmetric case, so we just provide the final
results here. The profit-maximizing toll is:

τpi =
(2κgyS + δN)

4gyS
. (5.20)

The profit-maximizing demand is:

θ̂pi =
2gy(1 − y) + r(1 + (4g − 1)y)

2[2gy(1 − y) + r(1 + (2g − 1)y)]
.

Numerical applications

The social costs obtained with the profit-maximizing strategies studied in Sections 5.4.1
and 5.4.1 are represented in Fig. 5.6, together with the social costs associated to the user
equilibrium with no toll and to the social optimum. When the private operator manages
the independent route and has only a small percentage of the total capacity (y � 0.9),
the profit-maximizing strategy can slightly improve the user equilibrium, especially if r is
small (e.g. for r = 0.5 and g = 1). Intuitively, the private operator forces a few users to
become cooperative (which is overall beneficial for the society, as shown by Corollary 5)
but not too many as it does not have control over a large part of the capacity and thus
cannot force the users to pay extreme costs. However, this situation is not desirable since
it leads to a social cost that is higher than the reference social cost. For more reasonable
values of r (in the range of 0.5 − 1), the social optimum is obtained for a capacity split
that is quite balanced (y � 0.3) and for this range of balanced capacity splits, the two
profit-maximizing strategies studied always lead to poor social costs. Thus, it seems that
profit-maximizing strategies are not compatible with the objective of minimizing the
social cost if there is only one toll applied by the private operator. The same numerical
applications were repeated with different values of g ranging between 1 and 2 but the
results obtained (not shown here) were extremely similar. Note however that different
governmental regulations (like taxing or price caps) could guide such a system to better
situations for the social good.

Relationship between capacity and profit Let us now consider that the private
operator has to pay a given amount c for each capacity unit that it rents from the
government. Assuming that the private operator manages the cooperative route and
that it always sets the toll to maximize its profit, the profit depends on the capacity split
with the following function:

Π = Nθ̂pcτpc − cyS.
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Figure 5.6 – Comparison of the social costs obtained under social optimum, user equi-
librium, if the independent route is privately managed and if the cooperative route is
privately managed, as functions of the capacity split and for cost ratios r equal to 0.5, 1
and 2. g = 1 for all figures.

Obviously, if the demand is not price-elastic and if all the capacity is given to the private
operator, the users would be captive and the optimal toll would be infinite. However, for
y small enough (y → 0), Π =

(
δN2

2S2 − c
)

yS + o(yS). Thus, depending on the value of
c, operating only a small part of the route might not be profitable. However, when the
capacity that is privately operated gets closer to the full capacity, the situation becomes
similar to a monopoly and profits dramatically increase. The situation is very similar if
we consider that the private operator manages the independent route. Alternatively, one
could consider that the government sets the capacity split y (or equivalently, the value
of c) as a function of the toll proposed by the private operator. If the private operator
manages the independent route and proposes a toll that is small enough (considering the
population’s cost ratio r), then the government could allocate to the private operator a
capacity split that is such that the toll proposed is optimal.

5.4.2 Stackelberg equilibria

We now study the impact of a profit-maximizing strategy within a Stackelberg competition,
where the government and a private company both impose a toll on one route and the
capacity split is considered as given. While the government aims at minimizing the social
cost (i.e. the sum of the schedule delays, congestion and cooperation costs), the private
company aims at maximizing its profit. Since the government has a dominant position,
we will consider that the government sets its toll first, knowing how the private company
will react (we will see however that the Stackelberg equilibria obtained are also Nash
equilibria).

The lack of flexibility of toll is indeed more credible for the public than for the private
sector, although this does not prevent from considering some compensation for the
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potential profit loss of the private sector. In addition, a welfare-maximizing leader should
intuitively lead to a higher welfare in the society than the private duopoly. Although this
is not always the case (see for example the work of Anderson et al. (1997) with Logit
demand function and without congestion effects), this result was proven by de Palma
and Lindsey (2000) with an elastic demand and congestion effects for the case where
the government and the private operator levy the same type of toll (either flat or fine).
The case considered in this work also involves congestion effects but is analogous to
having two different types of tolls: one fine toll on the cooperative route (which would
be the sum of the flat toll and of the compensation mechanism) and one flat toll on the
independent route. The next two subsections investigate the cases where the cooperative
and independent routes are managed by the government and the private operator and
vice versa.

Cooperative service managed by a private company, independent route by
the government

By including an additional toll set by the government τgi on the independent route in
Eq. (5.16), the equilibrium equation becomes:

κθ̂(y) + ce
c + τpc = ce

i + τgi.

As the demand is assumed inelastic, the equilibrium demand split is uniquely determined
by the difference in the two tolls, independently of their level. Thus, the calculations
done with only one player (Eqs. (5.16) to (5.17)) remain valid after replacing τpc by
(τpc − τgi). Assuming a uniform distribution for the cooperation cost, the equilibrium
demand split is:

θ̂(y) =
δN
S

1
1−y − (τpc − τgi)

κ + δN
S

(
1+(2g−1)y
2gy(1−y)

) . (5.21)

Proposition 12. Assuming that the government is leader, for any capacity split y

there exists a unique Stackelberg equilibrium. It is such that the government sets on the
independent route the toll:

τgi =
κr

1 − y

r(1 + (2g − 1)y) + 3gy(1 − y)
r(1 + (2g − 1)y) + gy(1 − y)

. (5.22)

This equilibrium is also the social optimum and a Nash equilibrium.

Proof. The profit is a second-order polynomial maximized at

τpc =
τgi
2

+
δN

S

1
2(1 − y)

. (5.23)
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This is simply the arithmetic mean of the government toll and of the average congestion
cost (schedule penalty and travel time cost) if all users had to use the independent route.
By combining equations (5.21) and (5.23):

θ̂pc =
2δNgy + 2gyS(1 − y)τgi

2κgyS(1 − y) + δN(1 + (2g − 1)y)
−

− 2gyS(1 − y)
2κgyS(1 − y) + δN(1 + (2g − 1)y)

δN + (1 − y)Sτgi
2S(1 − y)

=
κrgy + gy(1 − y)τgi

2κgy(1 − y) + κr(1 + (2g − 1)y)
. (5.24)

The only decision variable is now τgi and the government should set its value such that it
minimizes the social cost. Although it is a priori not necessarily feasible, if the government
can set a toll such that the demand found in Eq. (5.24) is equal to the demand found in
Eq. (5.9), then this toll is optimal. Mathematically, this requires that θ̂o = θ̂pc, so

2rgy

gy(1 − y) + r(1 + (2g − 1)y)
=

κrgy + gy(1 − y)τgi
2κgy(1 − y) + κr(1 + (2g − 1)y)

,

or

2r [2gy(1 − y) + r(1 + (2g − 1)y)] =
[
r + (1 − y)

τgi
κ

]
[gy(1 − y) + r(1 + (2g − 1)y)] ,

or

r(1 + (2g − 1)y)
[
r − (1 − y)

τgi
κ

]
= gy(1 − y)

[
(1 − y)

τgi
κ

− 3r

]
,

or

(1 − y)
τgi
κ

[r(1 + (2g − 1)y) + gy(1 − y)] = r [3gy(1 − y) + r(1 + (2g − 1)y)] ,

which is equivalent to Eq. (5.22).

Thus, the social optimum can be obtained even when a private operator manages the
cooperative service. Finally, note that since the government can impose the minimum
social cost, in this case Stackelberg’s equilibrium is also an equilibrium in the sense of
Nash.

In the Stackelberg equilibrium studied, the objective of the government is to set its toll in
such a way that the profit maximizing toll for the private operator minimizes the social
cost, given this capacity split. We can actually demonstrate that by varying its own toll,
the government can make any demand split profit-maximizing for the private operator
and can therefore lead the system to the social optimum. Intuitively, when the private
operator already has n customers, attracting the next one to its route implies reducing
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its toll by the sum of (i) a constant term resulting from the additional congestion cost
imposed by one additional user (equal to δ

2S ) and (ii) the difference in cooperation cost
between the previous critical user and the new one. This amount is independent of the
current level of the toll. As it is profitable to attract this user if and only if the new
amount of the toll is bigger than n times the toll reduction, the government can obtain
the demand split desired simply by setting the reference toll. Note however that this
mechanism can involve considerable financial transfers from the users to the private
operator and the government.

In terms of comparative statics, Eq. (5.22) can be differentiated to show that the relative
toll S

δN τgi increases with the capacity split y, with the capacity improvement factor g

and decreases with the cost ratio r. Intuitively, if the private operator manages a greater
proportion of the capacity, it is more powerful and can impose higher tolls. Similarly,
if users have a lower cost ratio r, their cooperation cost is greater relatively to the
congestion cost, so they are ready to pay higher tolls.

Cooperative service managed by the government, independent route by a
private company

Again, this problem is symmetrical to the previous one so the details of the calculations
are left to the reader. Similarly to the previous case, it is possible to obtain a social
optimum if the government sets the toll to:

τgc = κ

(
1 + r

r(1 + (2g − 1)y) − gy((1 + 4g)y − 1)
2gy[r(1 + (2g − 1)y + gy(1 − y))]

)
. (5.25)

The relative toll S
δN τgc decreases with the capacity split y and the cost ratio r.

Numerical applications

The optimal relative tolls obtained in the Sections 5.4.2 and 5.4.2 are plotted in Fig.
5.7, together with the profit-maximizing tolls obtained in Sections 5.4.1 and 5.4.1. Note
that as r increases, the tolls imposed by the government and by the private operator in
Stackelberg equilibria become almost identical, which is natural since the user equilibrium
coincides with the social optimum for κ = 0, i.e. r → ∞ (cf. Corollary 4). Note in
addition that as the private operator always sets its own toll relatively to the government’s
toll, the absolute value of the private toll is significantly greater for the Stackelberg
equilibrium than when the government does not set any toll. The toll set on the
independent route is however slightly higher than the toll on the cooperative route, in
agreement with Corollary 5.

Finally, it is of practical interest to notice that the relative tolls applied in the Stackelberg
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Figure 5.7 – Comparison of the tolls set by the government and by the private operator
when the private operator manages the cooperative route (τpc and τgi), or when it manages
the independent route (τpi and τgc), with and without a toll set by the government (τgi = 0
or τgc = 0). g = 1 for all figures.

equilibrium are systematically greater than 0.5, and often much higher7. In comparison,
an optimal time-varying toll applied on the entire capacity as described by Vickrey (1969)
allows to reach the social optimum with a maximum relative toll of exactly 0.5. Thus, a
Stackelberg equilibrium with cooperation requires more money transfers and leads to a
greater social cost (because of cooperation costs) than a fine toll, which makes it less
acceptable and less effective. Thus, a privatization of the proposed service should be
followed by governmental regulations that would lead the system close to social optimum
conditions without imposing very high tolls. Again, different values of the capacity
improvement factor g between 1 and 2 were tested but they led to very similar results
(not included).

5.5 Conclusion

This chapter investigated the potential benefits of booking as a demand management
tool in a context where some proportion of a bottleneck with constant capacity would
be allocated to shared autonomous vehicles. Unlike in previous works on booking, the
demand split between conventional and autonomous vehicles was made endogenous by
the introduction of a cooperation cost distributed in the population. The socially optimal
capacity split is then a function of this distribution. An ill-adapted capacity split may be
highly counter-productive as it would create an imbalance in the network and increase
the social cost.

With a socially optimal capacity split however, both the equilibrium and the socially
optimal demand split reduce the social cost. The equilibrium presents several highly

7The assumption of an inelastic demand becomes clearly unrealistic in these cases. In practice, the
tolls would be limited to more reasonable levels, but would deter some users from traveling.
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desirable characteristics as it Pareto-dominates the case with no cooperation and reduces
the social cost almost as much as the socially optimal demand split. While the social
optimum can be decentralized with a relatively small flat toll, the independent users and
some cooperative users would be worse-off (at least before redistributing the revenue
of the toll). The amplitude of the social cost reduction obtained highly depends on
the cooperation cost distribution and on the severity of the congestion. By offering the
possibility to cooperate to the users that are naturally disposed to do so, the social cost
may be reduced by about 15% for a typical peak period, even with a classic bottleneck
model with constant capacity. This gain may be further multiplied by a factor of two
or more if the bottleneck was previously hypercongested or if separating autonomous
vehicles from conventional vehicles increases the bottleneck capacity.

Finally, the possibility of delegating the management of a route to a private operator was
investigated. If prices are not restricted and if the private operator controls a significant
proportion of the total capacity, the social cost may significantly increase. The socially
optimal capacity split can still be obtained if the government acts as the leader of a
Stackelberg competition and imposes a constant toll on the other route as well. This,
however, leads to very high prices for all users. The design of suitable toll regulations
should be one of the priority topics.

There are several directions in which our analysis could be extended. Besides heterogeneity
in the scheduling preferences, a priority would be to model the impacts of demand elasticity
and of other modes of transportation. A public transit alternative would essentially act
as a source of demand elasticity for travel by autonomous or conventional vehicles. As
tolling would deter some users from traveling by car, the optimum and the equilibrium
might be even more similar with demand elasticity. It is unlikely however that the
Stackelberg framework studied can still lead to socially optimal conditions, given the
exorbitant tolls found. Nevertheless, simple profit-maximizing strategies might become
more compatible with welfare maximization, as private operators should be careful not
to deter too many users from using private vehicles. Finally, equity aspects should be
investigated as users with low cooperation cost would benefit from this system more than
others and income might be correlated with the cooperation cost. For a more general
discussion on equity in transportation, we refer to Trannoy (2011).
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6 Conclusion and future research

6.1 Summary of contributions

This thesis has explored several avenues related to the scheduling of trips during re-
currently congested periods, generally assimilated with commutes. These avenues had
received relatively little attention so far, despite their practical importance.

Chapter 3 brought the theory closer to the practice by considering stability issues with a
unidirectional bottleneck model. It combined analytical insights derived for homogeneous
populations in continuous time and numerical simulations of more realistic settings.
On the theoretical side, we established conditions on the schedule preferences that are
necessary and sufficient to guarantee the monotonicity of the utility function. This
finding unveils a fundamental difference between the morning and evening commutes and
explains why many morning commute simulations were reported to be unstable. Our
simulations showed however that the undesirable effects of instability are largely curtailed
by the presence of user heterogeneity or queue-removing pricing strategies. We concluded
that real world commutes may still be reasonably approximated by their equilibrium
under favorable circumstances, at least in terms of congestion cost. Other indicators
such as total schedule penalties are subject to important biases.

Chapter 4 contributed to extend the field of applications of the literature by considering
an entirely different type of congestion, closer to large urban areas than to isolated
highways. Among other advantages, this approach allows for trip length heterogeneity.
We then characterized some of the properties of the equilibrium. It is shown in particular
that if users have continuously distributed characteristics, the network accumulation
at equilibrium is a continuous function of time. With α − β − γ preferences and under
certain conditions, a partial FIFO pattern emerges among early and late users. This
FIFO pattern is strict only within families of users having heterogeneous trip lengths
and identical preferences, or vice versa. Finally, the well-established flow-maximizing
pricing strategy is proven to be sub-optimal when departure time choice is considered.
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Chapter 4 also identified many differences between isotropic and unidirectional congestion.
The major difference is perhaps in the shape of the cumulative outflow. Unlike the
bottleneck model, an isotropic area allows for strong temporal variations in the trip
completion rate, which are further amplified by trip length heterogeneity. Since users
with short trips are less sensitive to congestion, they are more likely to travel at times
with severe congestion. As a consequence, the decomposition of social cost into delays
and schedule penalties greatly differs from the one observed with a bottleneck model.

Finally, Chapter 5 proposed an original approach of the bottleneck problem based on the
optional participation to a cooperative service of slot-reservation, which benefits from
dedicated right of way. Users then choose whether to participate in that cooperative
program by weighing the congestion cost saving it offers against their personal cooperation
cost (accounting for the inconvenience associated to reserving a slot and traveling at
that time). We explained how such a scheme would be advantageously implemented
together with car-sharing and autonomous vehicles, mostly for reasons of capacity gains,
simplified enforcement, and cooperation cost reduction.

The consequences on welfare were then evaluated depending on the regime (laissez-faire,
welfare- or profit-maximizing) and on the capacity split. Provided some users have low
cooperation costs, there exists a capacity split such that the laissez-faire equilibrium
Pareto-dominates the case without a cooperative service. The demand split between
the two services can be made socially optimal by applying a constant toll on the non-
cooperative lanes, but it only marginally improves the benefits of cooperation. Although
the Pareto-improvement result may not hold for every single user in the case of richer
heterogeneity, it remains a key advantage of letting users choose. Profit-maximizing
strategies however turn out to be hardly compatible with welfare maximization.

6.2 Practical implications

The thesis has important practical implications concerning cost-benefit analyses and
the design of congestion alleviating measures. Cost-benefit analyses require comparing
welfare in different situations. Welfare however includes many components, which are
sometimes difficult to estimate. When considering road congestion, travel time and
schedule penalties represent two major components of the congestion cost. Since schedule
penalties cannot be directly measured, one may be tempted to infer them from the
measured travel time, by applying a proportionality factor derived theoretically. This
thesis reveals that doing so would typically entail several biases. Chapter 3 showed that
instability is rather common with unidirectional flows and that it typically results in
a larger proportion of schedule penalties in the total congestion cost. On the contrary,
Chapter 4 revealed that the relative weight of schedule penalties is typically smaller with
isotropic models, although it strongly depends on congestion severity. In a different vein,
Chapter 5 enhanced another aspect of cost-benefit analyses by recognizing that schemes
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based on mobility credits would entail an important cooperation cost.

This thesis also provides useful guidance for the design of congestion alleviating measures.
The measure that is currently the most widely supported by the academic community is
certainly congestion pricing. With unidirectional congestion, the socially optimal toll is
known for different types of schedule preferences and heterogeneity. Yet, it had rarely
been studied from a stability point of view. Chapter 3 shows that besides corresponding
to a more efficient equilibrium, pricing also greatly stabilizes the system and therefore
reduces travel time variability. Chapter 3 also suggests that when the total demand is not
precisely known, it is preferable to overestimate the population size when designing the
toll than to underestimate it. With isotropic congestion however, we still know relatively
little concerning the socially optimal toll. Although it was not our priority, Chapter 4
contributed to the body of knowledge by showing that with heterogeneous trip lengths,
the social optimum may exhibit hypercongestion.

Finally, the scheme proposed in Chapter 5 would fit particularly well with the currently
emerging trends toward vehicle automation and car-sharing. Although future mobility
services will probably not follow our framework precisely, it is important to raise awareness
about the cost of competition in departure time choice and to show that smart designs
can significantly reduce that cost.

6.3 Future research

Many avenues for future research have already been outlined in the conclusions of the
Chapters 3, 4 and 5. This section provides further details about two specific directions
that are particularly urgent in our opinion.

6.3.1 Stability in isotropic environments

One of the next research priorities is to analyze the stability of departure time choice with
multi-directional flows. Intuitively, directionality matters because it affects the structure
of externalities. Indeed, uni-directional congestion mechanisms are normally expected to
satisfy the “causality” criterion, which requires that externalities only propagate forward
in time (i.e. users can only delay those departing later). Such a constraint does not apply
to multi-directional flows, where users can even mutually delay each other. Too see this,
consider for instance a two-way road, where intersections are such that additional vehicles
cause delays in both directions (for instance because of left turns, or roundabouts). Two
users traveling in opposite directions who cross in the middle of the road would afterwards
be delayed by the additional congestion the other user left behind her.

Another important characteristic of multi-directional networks is hypercongestion. Al-
though some unidirectional models theoretically allow for hypercongestion (e.g. via a
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link travel time function (Mahmassani and Herman, 1984) or via a bottleneck where
capacity depends on queue length (Yang and Huang, 1997)), it is not clear whether
such phenomena exist in real-world unidirectional settings. With multiple directions
however, hypercongestion is very natural. If we consider for instance a ring road, the
average flow on the road first increases with the number of vehicles, then decreases and
eventually reaches zero at the jam accumulation. Such situations also naturally emerge
in grids, when queues in one direction create queues in another, which create queues in
still another, etc. until the last queue blocks the first. Gridlock situations are admittedly
rare in practice, but hypercongestion has been repeatedly observed at the zone level
(Geroliminis and Daganzo, 2008; Loder et al., 2017). The challenge is now to determine
how these specificities of multidirectional set-ups influence stability. The analysis of
the literature provides some valuable hints. de Palma (2000) for instance reported that
“the adjustment processes converge under much milder conditions (on the values of the
parameters) as the size of the network increases”. Yet, these effects need to be better
explained and documented.

The isotropic model used in Chapter 4 seems to be a good candidate mechanism to explain
these effects because it exhibits the desirable features of real world multi-directional
settings (hypercongestion and externalities propagating also backward in time), while
remaining quite general and independent of the exact network topology. Even with this
simplification however, the equilibrium turns out to be significantly more difficult to
analyze than with a unidirectional bottleneck. One major difficulty is the absence of a
general and strict relation between the orders of departures and arrivals. Pure LIFO
and FIFO sorting patterns emerge with some types of schedule preferences (as shown in
Fosgerau (2015) and in Chapter 4), but the real world is likely to exhibit a combination
of both LIFO and FIFO regimes.

Consider for instance the situation illustrated in Fig. 6.1, obtained after running
a simulation for 200 days with an isotropic region and 4000 discrete agents having
schedule preferences uo(t) = α and ud(t) = 2+γ−β

2 + arctan(4(t − t∗))γ+β
π , with α = 1,

β = 0.5, γ = 2.1 Trip lengths l were uniformly between 0 and 1 and users were divided
(independently of l) in 10 groups of equal size, each having a different value of t∗ in
the set {8.05, 8.15, ...8.95}. The ratio of demand to capacity was set to 4, such that
at capacity, the peak period would last 4 h (N/ncr � 3.56). If we focus on the group
with the largest t∗ (in dark red), users with short trips (approximately smaller than 0.6
distance units) follow a LIFO pattern (those with longer trips start earlier and arrive
later), while those with longer trips are sorted in a FIFO pattern (those with longer trips
start later and arrive later). The LIFO pattern naturally prevails in the middle of the
peak, when schedule preferences vary the most rapidly and speed reaches a plateau.

Fig. 6.1 also illustrates another complexity of the equilibrium: the yellow, orange and
red groups (with intermediate t∗) not only combine FIFO and LIFO patterns, but they

1The code used to generate this figure is available at https://github.com/raplam/departureTimeChoice.
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Figure 6.1 – Departure and arrival times with uniformly distributed trip lengths and 10
values of t∗ (smooth schedule preferences)

also include two disconnected FIFO periods. If we consider the departure or arrival
times as functions of trip length for one of these groups only, we see a discontinuity,
occurring for trip lengths around 0.9 (slightly smaller for the yellow group, larger for
the red group). These two FIFO periods can be quite far away: for the red group, one
occurs during the onset and the other during the offset. These sorting patterns need to
be better understood before analyzing the stability properties of the equilibrium because
they strongly influence the structure of externalities.

6.3.2 Other types of road usage separations

The interaction between road usage separation and departure time choice represents
another important research avenue that has been largely overlooked. In Chapter 5 we
considered the case of a permanent capacity split. In theory, this idea could be extended
to deal with other types of congestion mechanisms. In practice however, the situation is
quite different in multi-directional set-ups because the capacity cannot easily be divided.
Some streets could admittedly be reserved (similarly to what is done for public transit in
many cities) but it would be extremely difficult to create a fully connected subnetwork
that provides access to all parts of the city and yet does not interact with general traffic.
Thus, it seems difficult to fully segregate vehicles in urban environments, at least spatially.

An interesting alternative would be time segregation. Segregation could either be fully
time-based (the capacity is allocated to only one class of vehicles at a time), or hybrid
(spatial but time-dependent), with temporary reserved lanes. This idea is very similar
to the concept of fast lane, proposed by Fosgerau (2011). Note that time-dependent
capacity allocation can reduce queuing, even without cooperation. Indeed, as the amount
of queuing per passenger reflects the variability in schedule penalty in the allocated
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Figure 6.2 – Illustration of a bottleneck divided between two populations

period, the queueing times can be significantly reduced if the allocated period only covers
a small range of schedule penalties. Fosgerau (2011) showed that with homogeneous
users, such a scheme is equivalent to a coarse toll and produces a Pareto-improvement.

However, it is not clear yet to which extent “fast lanes” might be implemented in a fair and
efficient manner in the real world. With homogeneous users, the optimum would require
as many slots as users. Yet, such a solution can hardly be applied with heterogeneous
users for several reasons. First, users’ scheduling preferences are generally unknown and
ignoring them could be counterproductive and increase the social cost. Second, users
with different access rights arriving at the same time should go to different queues (see
Fig. 6.2 for an example with two populations), thereby limiting the number of user
classes that can be considered in practice. Third, creating almost individual categories
also raises equity and privacy-related issues commonly associated with non-anonymous
pricing.

In a joint work presented at the 2017 edition of the hEART conference (Lamotte
et al., 2017), we considered only two categories based on vehicle type (autonomous and
conventional vehicles) but introduced discrete intra-group heterogeneity in value of time
and/or scheduling preferences. We showed that in such a context, the socially optimal
access restrictions apply to the entire bottleneck capacity, such that the road capacity is
always fully allocated to one vehicle type at a time (bang-bang control). The number of
time windows allocated per group depends on the amount of heterogeneity in schedule
preferences. With strong heterogeneity, it might be socially optimal to allocate multiple
non-contiguous time periods to the same category of vehicles.

This was only a preliminary investigation in a very simple setting. In practice, the time
segregation should probably not be strict, to allow for errors in planning or emergency
trips. One way to circumvent this issue would be to keep some capacity open to all at all
times. Another may be to allow vehicles to travel out of their allocated period by paying
a fine.
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A An approach of sorting with the
MFD relying only on exogenous
assumptions
This Appendix details an approach to sorting that only relies on exogenous assumptions
and represents an alternative to the approach presented in Chapter 4. The main
assumption is that desired arrival times are distributed in a compact subset of the time
axis. Then, we show that accumulation cannot be decreasing before this time interval
and cannot be increasing after it (Proposition 14). We refer to this result as the ‘single
predominant peak”. Accumulation can be constant during some time period only if
nobody departs or arrives during that time period (Lemma 6). Altogether, these results
form a basis to derive a sorting result that is valid among users traveling exclusively out
of the interval where desired arrival times are distributed (Proposition 15).

A.0.1 Preliminary results

While the concept is quite simple, the proofs are made more tedious by the utilization of
a continuum of users. A drawback of this approach is that even with the full knowledge
of the cumulative numbers of departures and arrivals D(t) and A(t), the departure and
arrival rate functions are only determined up to a set of measure zero, so that one
cannot be sure that there are actually users departing or arriving at any specific time.
Fortunately, Proposition 13 allows us to circumvent this issue. Before stating it, we need
to introduce some notations and a definition.

Let Z = {(α, β, γ, l, t∗) ∈
(
R

∗+)4 ×R, β < α} denote the set of admissible characteristics
for users with α−β −γ preferences. The condition β < α ensures that users arriving early
do not remain in their vehicle until their desired arrival time t∗. Let also C(z, ta) denote
the function from Z × R to R that maps a user with characteristics z and arrival time ta
to her experienced cost. Note that since the travel time function τ(ta, l) is continuous,
the cost function C(z, ta) is continuous as well.

Definition 5. A function h : R → R is said to be locally constant at t̃ ∈ R if there exists
ε > 0, such that h(t) is constant on [t̃ − ε, t̃ + ε].
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Proposition 13. Consider a system governed by a speed-MFD and a population of
users whose characteristics are continuously distributed on a compact subspace Z of Z.
Consider an equilibrium realization of the morning commute. If the cumulative number of
departures (resp. arrivals) is not locally constant at some t ∈ R, then t is an equilibrium
departure (resp. arrival) time for some user with characteristics z ∈ Z.

Proof. If D(t) (resp. A(t)) is not locally constant, one can find for all n ∈ N a user that
arrives (at equilibrium) in the interval tn ∈ [t − 1/n, t + 1/n]. Denote zn and tn her
characteristics and arrival time. Since all terms of (zn)n∈N are in the compact space Z,
the Bolzano-Weierstrass theorem ensures that there exists a subsequence of (zn)n∈N that
converges. Let z denote the limit of this subsequence. Because Z is closed, z belongs
to Z. The continuity of the function C(z, t) ensures that t is an equilibrium departure
(resp. arrival) time for a user characterized by z.

Note that there might not be any user with characteristics z in the population but it does
not matter. Note also that the statement “D is not locally constant at t” is equivalent
to “there exists m ∈ (0, N ], such that t = inf{u ∈ R, D(u) ≥ m}”. The time t is often
abusively referred to as the departure time of the mth user to depart, although as we
have discussed, there might not be any user in the population who departs at t.

A.0.2 The single predominant peak result

We are now ready to define our assumptions and the single predominant peak result.

Assumption 5 (Distributed α − β − γ preferences). 1. All users have α−β−γ pref-
erences, with coefficients belonging to a compact subspace Z of Z. In particular, t∗

belongs to an interval [
¯
t∗, t̄∗].

2. Desired arrival times (t∗) are continuously distributed.

3. β
α and γ

α are bounded away from 0 for all users.

4. Trip length and trip length conditioned on the desired arrival time are continuously
distributed variables.

Note that Assumption 5 implies Assumption 3. The main additional requirements
of Assumption 5 are that all users have α − β − γ preferences and that the users’
characteristics are distributed on a compact space. Requirement 3 is purely technical
and quite reasonable.

Proposition 14 (Single predominant peak). Consider a system governed by a speed-
MFD and a population satisfying Assumption 5. At equilibrium, accumulation is weakly
increasing for all t <

¯
t∗ and weakly decreasing for all t > t̄∗.
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Proof of Proposition 14. Requirement 3 of Assumption 5 allows us to define ε > 0 such
that α

α−β > 1 + ε and γ+α
α > 1 + ε for all users. Proposition 2 implies that between

the departure and the arrival of an early (resp. late) user, speed must be divided (resp.
multiplied) by at least 1 + ε. Then, the proof proceeds by contradiction: we demonstrate
that an accumulation decrease before

¯
t∗ or an increase after t̄∗ implies the existence of

a sequence of users whose speed at departure or arrival tends to infinity, which is not
possible given the speed-MFD considered.

We detail the proof that n(t) is weakly increasing for t <
¯
t∗ and then explain how it

can be adapted to show that n(t) is weakly decreasing for t > t̄∗. Suppose there exist
t1 < t2 <

¯
t∗ such that n(t1) > n(t2) and let u ∈ (v(t1), v(t2)) ∩ (v(t2)/(1 + ε), v(t2)).

Since Assumption 5 implies Assumption 3, Proposition 1 guarantees the continuity of
accumulation and speed. The intermediate value theorem ensures the existence of a time
t′′
1 ∈ [t1, t2] such that v(t′′

1) = u. Define then A = {t ∈ [t′′
1, t2], n(t) = n(t′′

1)}. A is clearly
bounded, not empty and since n(t) is continuous, A is closed and admits a largest element,
that we denote t′

1. Similarly, let t′
2 be the smallest element of {t ∈ [t′

1, t2], n(t) = n(t2)}.
The interval [t′

1, t′
2] constructed is such that for all t inside it, n(t) belongs to [n(t′

2), n(t′
1)].

The definition of t′
1 also implies that for all ξ > 0, there exists t ∈ [t′

1, t′
1 + ξ] such

that n(t) < n(t′
1), hence A(t) > A(t′

1), i.e. A is not locally constant at t′
1. By applying

Proposition 13, there exists an element z = (α, β, γ, l, t∗) ∈ Z that would be at equilibrium
by arriving at t′

1. Hence:

C(z, t′
1) ≤ C(z, t′

2) ⇔ ατ(t′
1, l) + β(t∗ − t′

1) ≤ ατ(t′
2, l) + β(t∗ − t′

2)
⇔ α(τ(t′

2, l) − τ(t′
1, l)) ≥ β(t′

2 − t′
1)

⇔ α

∫ t′
2

t′
1

∂τ

∂u
(u, l) du ≥ β(t′

2 − t′
1)

⇔ α

∫ t′
2

t′
1

1 − v(u)
v(td(u, l))

du ≥ β(t′
2 − t′

1) (using Eq. (4.2))

⇔
∫ t′

2

t′
1

f(u) du ≥ 0, (A.1)

where f(t) = 1 − β
α − v(t)

v(td(t,l)) .

Proposition 2 implies that v(t′
1)/v(td(t′

1, l)) = 1 − β/α, i.e. f(t′
1) = 0. Since v(u) ≥ v(t′

1)
for all u ∈ [t′

1, t′
2] and v(u) > v(t′

1) in a neighborhood around t′
2, then v(t) also has to

be strictly greater than v(td(t′
1, l)) for some t ∈ [td(t′

1, l), td(t′
2, l)] for Eq. (A.1) to be

satisfied. We ignore a priori whether t′
1 is greater or smaller than td(t′

2, l) but we do
know that for all t ∈ [t′

1, t′
2], v(t) ≤ v(t′

2) < (1 + ε)v(t′
1) < v(td(t′

1, l)). Hence, there exists
a time s2 ∈ (td(t′

1, l), t′
1) such that n(s2) < n(td(t′

1, l)).

To conclude, one could repeat the same process iteratively with the pair (s1 = td(t′
1, l), s2)

replacing the pair (t1, t2). Since v(td(t′
1, l)) > (1 + ε)v(t′

1) > v(t1), the speed of the
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left-hand term of the pair tends to infinity. This is not possible with the speed-MFD
considered and we can reject the initial assumption.

The reasoning to prove that accumulation cannot be increasing after t̄∗ is very similar.
Consider an hypothetical pair t̄∗ < t1 < t2, such that n(t1) < n(t2). By following
the same process as above, one can find an interval [t′

1, t′
2] such that for all t inside

it, n(t) belongs to [n(t′
1), n(t′

2)], n(t1) < n(t′
1), v(t′

2) > v(t′
1)/(1 + ε) and D(t) is not

locally constant at t′
2. We then need to define the function ta(t, l) which associates

to a departure time t and a trip length l the corresponding arrival time. Clearly,
ta(td(t, l), l) = t holds for all t ∈ R. Then, C(z, ta(t′

1, l)) ≥ C(z, ta(t′
2, l)) is equivalent

to
∫ ta(t′

2,l)
ta(t′

1,l) f(u) du ≤ 0, where f(t) = 1 + γ
α − v(u)

v(td(u,l)) . Again f(ta(t′
2, l)) = 0 and since

v(td(u, l)) ≥ v(t′
2) for all u ∈ [ta(t′

1, l), ta(t′
2, l)] and v(td(u, l)) > v(t′

2) in a neighborhood
around ta(t′

1, l), then v(t) also has to be strictly greater than v(ta(t′
2, l)) for some t ∈

[ta(t′
1, l), ta(t′

2, l)]. We ignore a priori whether t′
2 is greater or smaller than ta(t′

1, l) but
we do know that for all t ∈ [t′

1, t′
2], v(t) ≤ v(t′

1) < (1 + ε)v(t′
2) < v(ta(t′

2, l)). Hence,
there exists a time s1 ∈ (t′

2, ta(t′
2, l)) such that n(s1) < n(ta(t′

2, l)). Note finally that
v(ta(t′

2, l)) > (1 + ε)v(t′
2) > v(t2). The same process can be repeated iteratively with the

pair (s1, s2 = ta(t′
2, l)) replacing (t1, t2) and the speed of the right-hand term tends to

infinity.

Proposition 14 states essentially that out of the range where desired arrival times are
distributed, accumulation does not exhibit local extrema: it is weakly increasing before
the lower bound of desired arrival times and weakly decreasing after the upper bound.
Intuitively, if desired arrival time is close to being homogeneous, then accumulation would
essentially consist of single peak. While this supports the idea that single congestion
peaks should be quite common as well with MFD dynamics, this result is weaker than the
result of Smith (1984a) and Daganzo (1985) for the bottleneck with constant capacity.

A.0.3 Sorting result

Lemma 6. Consider a system governed by a speed-MFD and a population satisfying
Assumption 5. Let t ∈ R\[

¯
t∗, t̄∗].1 If accumulation is locally constant at time t at

equilibrium, then the cumulative departure and cumulative arrival functions are also
locally constant at t.

Proof of Lemma 6. This proof follows the same approach as the proof of Proposition 14:
we show by contradiction that the existence of a time t that violates Lemma 6 implies
the existence of a sequence of speeds that tends to infinity. We only prove the result for
the early case as the late case is very similar.

1The notation A\B denotes the complement of B with respect to A, i.e. the set of elements in A but
not in B.
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Let us first define ε > 0 such that α
α−β > 1 + ε and γ+α

α > 1 + ε for all users. Assume that
there exists t̃ <

¯
t∗ and ξ > 0 such that accumulation is constant on [t̃ − ξ, t̃ + ξ]. Take ξ

small enough to ensure that t̃ + ξ <
¯
t∗. Assume (by contradiction) that the cumulative

departure function D or the cumulative arrival function A is not locally constant at t̃.
Since n(t) = D(t) − A(t) for all time t, this actually implies that both D and A are not
locally constant at t̃.

For any interval I, let DI(t) denote the cumulative departure function of the users arriving
during I. Let M denote the measure of users arriving during [t̃−ξ/2, t̃+ξ/2]. Choose any
z ∈ (0, M ]. For any small neighborhood around the time t̃′ = min{t ∈ R, D[t̃−ξ/2,t̃+ξ/2] =
z}, there is a positive measure of users that departed in this neighborhood and arrived
in [t̃ − ξ/2, t̃ + ξ/2].

We now show that accumulation is locally constant at t̃′. Let ξ′ = ξv
(
t̃
)

/vf, where vf is
the free-flow speed. Let l and ta denote the trip length and arrival time of some user
departing in [t̃′ − ξ′/3, t̃′ + ξ′/3] and arriving in [t̃ − ξ/2, t̃ + ξ/2]. On one hand, user
equilibrium requires that for all t ∈ [t̃ − ξ, t̃ + ξ], Cl(ta) ≤ Cl(t). By applying the same
reasoning as in the proof of Proposition 14, this is equivalent to

∫ t
ta

f(u) du ≥ 0, where
the function f(t) is defined as in Eq. (A.1). On the other hand, since v(u) is constant
between ta and t and v(td(u, l)) is weakly decreasing (Proposition 14), f(t) is also weakly
decreasing between ta and t. Since this is valid for all t ∈ [t̃ − ξ, t̃ + ξ] and Proposition 2
requires that f(ta) = 0, f(t) is non-negative on [t̃ − ξ, ta] and non-positive on [ta, t̃ + ξ].

Together, these two results imply that f(t) = 0 for all t ∈ [t̃ − ξ, t̃ + ξ], i.e. speed
is constant on [td(t̃ − ξ, l), td(t̃ + ξ, l)]. By construction, t̃′ belongs to the interior of
[td(t̃−ξ, l), td(t̃+ξ, l)]. Indeed, as

∫ t̃−ξ
td(t̃−ξ,l) v(u) du and

∫ ta
td(ta,l) v(u) du must both be equal

to l,
∫ td(ta,l)

td(t̃−ξ,l) v(u) du =
∫ ta

t̃−ξ
v(u) du. Since

∫ td(ta,l)
td(t̃−ξ,l) v(u) du ≤

(
td(ta, l) − td(t̃ − ξ, l)

)
vf

and
∫ ta

t̃−ξ
v(u) du =

(
ta − (t̃ − ξ)

)
v(t̃) ≥ ξ

2v(t̃), we obtain td(t̃ − ξ, l) ≤ td(ta, l) − ξv(t̃)
2vf

. As
td(ta, l) ≤ t̃′ + ξ′/3, we have shown that td(t̃ − ξ, l) ≤ t̃′ + ξ′/3 − ξ′/2, i.e. td(t̃ − ξ, l) < t̃′.
Similarly, td(t̃ + ξ, l) ≥ td(ta, l) + ξv(t̃)

2vf
≥ t̃′ − ξ′/3 + ξ′/2 > t̃′. Hence accumulation is

locally constant at t̃′.

To conclude, one could repeat the same process iteratively, going back in time from t̃

to t̃′, then from t̃′ to t̃(2), etc. Since there are early users that depart close to t̃′ and
arrive close to t̃ and accumulation is locally constant in the neighborhoods of t̃′ and t̃,
Proposition 2 implies that speed is multiplied by a factor of at least (1 + ε) at every step,
and hence tends to infinity.

The proof for the case t̃ > t̄∗ is extremely similar, except that one should go forward in
time, as in the proof of Proposition 14.

Proposition 15. Consider a system governed by a speed-MFD and a population of users
satisfying Assumption 5. Consider two users with schedule preferences (α1, β1, γ1) and
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(α2, β2, γ2) arriving before
¯
t∗ (resp. after t̄∗) at equilibrium and departing at times where

the cumulative departure function is not locally constant. If β1
α1

= β2
α2

(resp. γ1
α1

= γ2
α2

),
then the user that arrives the earliest (resp. latest) has the longest trip length.

The proof is very similar to the proof of Proposition 3 but makes use of the Proposition
14 and Lemma 6 to conclude from Eq. (4.8).
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