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Abstract. We determine the dimension of every simple module for the alge-

bra of the monoid of all relations on a finite set (i.e. Boolean matrices). This
is in fact the same question as the determination of the dimension of every

evaluation of a simple correspondence functor. The method uses the theory of

such functors developed in [BT2, BT3], as well as some new ingredients in the
theory of finite lattices.

1. Introduction

Let k be a field, letRX be the monoid of all relations on a finite set X (also known as
Boolean matrices), and let kRX be the k-algebra of the monoid. This is an algebra

of dimension 2n
2

, where n = |X|, hence growing very fast in terms of n. It was
considered many years ago in [CP, Ki, KR, PW, Sc1, Sc2] and more recently in [BE,
Br, Di], but the dimensions of the irreducible representations of kRX remained
unknown in general.

We solve here the open problem of describing all simple kRX -modules and finding
their dimension. This requires to embed the category of kRX -modules into the
larger category of correspondence functors, namely functors from the category of
finite sets and correspondences to the category k-Mod. We use methods of the
representation theory of categories, as well as some new ingredients in the theory
of finite lattices. The proof is based on very delicate arguments about a system of
linear equations which was introduced in [BT3]. We also deduce a formula for the
dimension of the Jacobson radical of kRX (in characteristic zero). The formulas
behave exponentially with respect to n.

It is not too hard to show (and known to specialists) that the simple modules
for kRX are classified by isomorphism classes of triples (E,R, V ), where E is finite
set with |E| ≤ |X|, R is a partial order relation on E, and V is a simple module for
the group algebra kAut(E,R). When E = X, we get precisely the simple modules
for an algebra kPX which is a quotient of kRX and which we call the algebra of
permuted orders on X, because it has a k-basis PX consisting of all R∆σ where R
is a partial order on X and ∆σ is the graph of a permutation σ of X. The simple
kPX -modules and their dimension are known and can be described explicitly. The
more difficult cases occur when |E| < |X|. All cases are uniformly treated in the
present paper.

The largest part of our work is concerned with correspondence functors. It is
only in Section 8 that we actually deal with the simple modules for the algebra kRX
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and prove the main results mentioned above, which follow easily from the previ-
ous sections of a functorial nature. The connection between functors and simple
kRX -modules is provided by the known fact that the evaluation of a simple cor-
respondence functor at a finite set X is either zero or a simple module for the
algebra kRX . Conversely every simple kRX -module occurs as the evaluation at X
of a simple functor. This provides a way to handle simple modules for the alge-
bra kRX by studying simple correspondence functors. It is this embedding in the
larger category of correspondence functors which allows us to prove our results. A
first step, which is not very hard and explained in [BT2], is the description of the
parametrization of simple correspondence functors SE,R,V by isomorphism classes
of triples (E,R, V ), where (E,R) is a finite poset (i.e. R is a partial order relation
on a finite set E) and V is a simple module for the group algebra kAut(E,R).

The main ingredients for this work are our papers [BT2, BT3] about correspon-
dence functors. Some fundamental modules and functors play a crucial role in
our approach. Here k is allowed to be an arbitrary commutative ring. For any
finite poset (E,R), we described in [BT1] a fundamental module ME,R := kPEfR
for kPE , where kPE is the algebra of permuted orders mentioned above and fR is
a suitable idempotent of kPE depending on the order relation R (see Section 3).
From this, we constructed and studied in [BT2, BT3] a fundamental functor SE,R,
which is the key for understanding simple correspondence functors because the sim-
ple functor SE,R,V appears as a suitable quotient of the fundamental functor SE,R
(see Section 4).

Another main ingredient is the link between correspondence functors and the
theory of finite lattices, see [BT3]. Associated to any finite lattice T , there is a
correspondence functor FT and a surjective morphism

Θ : FT −→ SE,Rop

where (E,R) denotes the full subposet of join-irreducible elements of T and Rop

denotes the opposite relation. The main problem is to describe the kernel of Θ and
this gives rise to a complicated system of linear equations which was introduced
in [BT3]. One of the main contributions of the present paper is to solve this
system. From this solution, a k-basis can be found for each evaluation SE,Rop(X)
of a fundamental functor. Generators are found in Section 5 and they are proved
to be k-linearly independent in Section 6. The cardinality of this basis is given by
a well-known combinatorial formula, behaving exponentially as a function of X.

Turning to simple functors (assuming again that k is a field), we need to pass to a
quotient of SE,R in order to obtain the simple functor SE,R,V . This requires to show
that each evaluation SE,R(X) has a free right kAut(E,R)-module structure and
that the simple functor SE,R,V is isomorphic to a tensor product SE,R⊗kAut(E,R)V .
This nontrivial part of the argument requires the whole of Section 7 and culminates
with an explicit formula for the dimension of each evaluation SE,R,V (X) of a simple
correspondence functor. The last step is to go back to the algebra kRX and deduce
the dimension of every simple kRX -module as well as a description of the action
of relations on it. As mentioned above, this last step is explained in Section 8.
Finally, a few examples are described in Section 9.

There is a classical approach to the classification of simple modules for the alge-
bra of a finite semigroup, going back to the work of Munn and Ponizovsky, using
Green’s theory of J -classes (see the textbook [CP], the more recent article [GMS]
for a modern point of view, or the textbook [St2] for a very recent account). For
the algebra kRX we are interested in, we do not use this point of view for several
reasons. First, our approach to the parametrization of simple modules for kRX is
not classical and does not use at all J -classes in the monoid RX . It is based instead
on the classification of simple correspondence functors, which in turn depends only,
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for each E, on the quotient algebra kPE and its simple modules. These are easy
to describe explicitly and depend in an important way on the fundamental mod-
ule ME,R associated to a poset (E,R). Secondly, taking advantage of the link with
the theory of correspondence functors and using the functor FT associated to a
finite lattice T , our main task is the study of the above morphism Θ (which is itself
also based on the fundamental module ME,R). Finally, we do not only consider
relations, namely subsets of X × X, but also correspondences, namely subsets of
Y ×X, for Y 6= X, to the extent that some of them play a crucial role in the large
system of linear equations which is finally solved.

Although we do not use the classical way of handling simple modules for the
algebra of a finite monoid, it is not surprising that our functorial approach has
connections with the classical one. Whenever such connections can be made clear,
we mention them, in a series of remarks. This will help the interested reader to
establish the link between some of the functorial concepts we are using and the
monoid-theoretic classical approach. However, we emphasize that the question of
translating all the functorial proofs of our results in monoid-theoretic terms remains
wide open. If such a translation is possible, it will probably require much more work.

Acknowledgements. We are grateful to the referee for pointing out many con-
nections between our development and the classical approach to simple modules for
the algebra kRX .

2. Preliminaries on lattices

In this section, we define, in any finite lattice, two operations r∞ and σ∞, as well as

a subset Ĝ of special elements, each lying at the bottom of a totally ordered subset
with strong properties. We then prove some results which will play a crucial role
in the description of the evaluation of fundamental functors and simple functors.

Let us first fix some notation. By an order R on a finite set E, we mean a partial
order relation on E. In other words, (E,R) is a finite poset. We write ≤R for the
order relation, so that (a, b) ∈ R if and only if a ≤R b. Moreover a <R b means
that a ≤R b and a 6= b. The opposite relation Rop of R is defined by the property
that (a, b) ∈ Rop if and only if (b, a) ∈ R.

If T is a finite lattice, we write ≤T , or sometimes simply ≤, for the order relation,
∨ for the join (least upper bound), ∧ for the meet (greatest lower bound), 0̂ for the

least element and 1̂ for the greatest element.

2.1. Notation and definitions.

(a) If (E,R) is a finite poset and a, b ∈ E with a ≤R b, we define intervals

[a, b]E := {x ∈ E | a ≤R x ≤R b} , ]a, b[E := {x ∈ E | a <R x <R b} ,
[a, b[E := {x ∈ E | a ≤R x <R b} , ]a, b]E := {x ∈ E | a <R x ≤R b} ,
[a, ·[E := {x ∈ E | a ≤R x} , ]·, b]E := {x ∈ E | x ≤R b} .

When the context is clear, we write [a, b] instead of [a, b]E.
(b) If T is a finite lattice, an element e ∈ T is called join-irreducible, or simply

irreducible, if, whenever e =
∨
a∈A

a for some subset A of T , then e ∈ A. In

case A = ∅, the join is 0̂ and it follows that 0̂ is not irreducible. If e 6= 0̂
is irreducible and e = s ∨ t with s, t ∈ T , then either e = s or e = t. In
other words, if e 6= 0̂, then e is irreducible if and only if [0̂, e[ has a unique
maximal element.
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(c) If (E,R) is a subposet of a finite lattice T , we say that (E,R) is a full
subposet of T if for all e, f ∈ E we have :

e ≤R f ⇐⇒ e ≤T f .

In particular Irr(T ) denotes the full subposet of irreducible elements of T .
(d) If (E,R) is a finite poset, I↓(E,R) denotes the set of lower R-ideals of E,

that is, the subsets A of E such that, whenever a ∈ A and x ≤ a, then
x ∈ A. Clearly I↓(E,R), ordered by inclusion of subsets, is a lattice, the join
operation being union of subsets, and the meet operation being intersection.
Similarly, I↑(E,R) denotes the set of upper R-ideals of E, which is also a
lattice. Obviously I↑(E,R) = I↓(E,R

op).

Note that if (E,R) is the poset of irreducible elements in a finite lattice T , then
T is generated by E in the sense that any element x ∈ T is a join of elements of E.
To see this, define the height of t ∈ T to be the maximal length of a chain in [0̂, t]T .

If x is not irreducible and x 6= 0̂, then x = t1 ∨ t2 with t1 and t2 of smaller height
than x. By induction on the height, both t1 and t2 are joins of elements of E.
Therefore x = t1 ∨ t2 is also a join of elements of E.

Recall that a lattice T is distributive if a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) for all
a, b, c ∈ T (or equivalently a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for all a, b, c ∈ T ).

2.2. Lemma. Let (E,R) be a finite poset.

(a) The irreducible elements in the lattice I↓(E,R) are the lower ideals ]·, e]E,
where e ∈ E. Thus the poset (E,R) is isomorphic to the poset of all irre-
ducible elements in I↓(E,R) by mapping e ∈ E to the ideal ]·, e]E.

(b) I↓(E,R) is a distributive lattice.
(c) For any finite lattice T with Irr(T ) = (E,R), there is a join-preserving

surjective map f : I↓(E,R) −→ T which sends any lower ideal A ∈ I↓(E,R)
to the join

∨
e∈A e in T .

(d) The map f : I↓(E,R) −→ T above is bijective if and only if T is a distribu-
tive lattice. In that case, f is an isomorphism of lattices.

Proof : This is not difficult and well-known. For details, see Theorem 3.4.1 and
Proposition 3.4.2 in [Sta], and also Theorem 6.2 in [Ro].

Whenever we use the lattice I↓(E,R), we shall (abusively) identify E with its
image via the map

E −→ I↓(E,R) , e 7→ ]·, e]E .

Thus we view (E,R) as a full subposet of I↓(E,R).

2.3. Notation. Let T be a finite lattice and (E,R) = Irr(T ). If t ∈ T , then r(t)
denotes the join of all elements strictly smaller than t :

r(t) =
∨

a∈[0̂,t[

a .

It follows that r(t) = t if and only if t /∈ E. More precisely, if t /∈ E and t 6= 0̂, then
t can be written as the join of two smaller elements, so r(t) = t, while if e ∈ E,

then r(e) is the unique maximal element of [0̂, e[. We put rk(t) = r(rk−1(t)) and
r∞(t) = rn(t) if n is such that rn(t) = rn+1(t).
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2.4. Lemma. Let T be a finite lattice, let (E,R) = Irr(T ), and let t ∈ T .

(a) The map r : T → T is order-preserving.
(b) r∞(t) /∈ E.
(c) r∞(t) = t if and only if t ∈ T − E.
(d) If e ∈ E, r∞(e) is the unique greatest element of T − E smaller than e.

Proof : The proof is a straightforward consequence of the definitions.

2.5. Lemma. Let T be a finite lattice, let (E,R) = Irr(T ), and let e ∈ E. Let n
be the smallest integer such that rn(e) = r∞(e).

(a) [r∞(e), e] is totally ordered and [r∞(e), e] = {rn(e), . . . , r1(e), e}.
(b) ]r∞(e), e] is contained in E.
(c) r∞(ri(e)) = r∞(e) for all 0 ≤ i ≤ n− 1.

(d) [0̂, e] = [0̂, r∞(e)] t ]r∞(e), e].

Proof : Since e ∈ E, r(e) is the unique maximal element of [0̂, e[. Inductively,
ri(e) ∈ E for each 0 ≤ i ≤ n − 1 and ri+1(e) is the unique maximal element

of [0̂, ri(e)[. It follows that [r∞(e), e] is totally ordered and consists of the elements
rn(e), . . . , r1(e), e. This proves (a), (b) and (c).

Now let f ∈ [0̂, e]. Then f ∨ r∞(e) ∈ [r∞(e), e]. If f ∨ r∞(e) = r∞(e), then

f ∈ [0̂, r∞(e)]. Otherwise, f ∨r∞(e) ∈ ]r∞(e), e], hence f ∨r∞(e) ∈ E by (b), that
is, f ∨r∞(e) is irreducible. It follows that f ∨r∞(e) = f or f ∨r∞(e) = r∞(e). But
the second case is impossible because f ∨ r∞(e) > r∞(e). Therefore f ∨ r∞(e) = f ,
that is, f ∈ ]r∞(e), e].

2.6. Notation and definitions. Let T be a finite lattice and (E,R) = Irr(T ).

(a) Define ΛE to be the subset of T consisting of all meets of elements of E,
that is, elements of the form

∧
i∈I

ei where I is a finite set of indices and

ei ∈ E for every i ∈ I. Note that we include the possibility that I be the
empty set, in which case one gets the unique greatest element 1̂.

(b) If t ∈ T , define σ(t) to be the meet of all the irreducible elements of T which
are strictly larger than t. Inductively, σk(t) = σ(σk−1(t)) and σ∞(t) =
σn(t) where n is such that σn(t) = σn+1(t).

Notice that the definition of σ is in some sense ‘dual’ to the definition of r,
because r(t) is the join of all the irreducible elements which are strictly smaller
than t. (However, the ‘true’ dual of r is different : it is the operation r in the
opposite lattice T op, thus involving meet-irreducible elements.) It is clear that the
map σ : T → T is order-preserving.

2.7. Lemma. Let (E,R) = Irr(T ) and let t ∈ T .

(a) If t ∈ ΛE − E, then σ(t) = t.
(b) If t /∈ ΛE, then σ(t) > t.

Proof : This follows immediately from the definitions.
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2.8. Remark. For completeness, we can also describe the effect of σ on en element
e ∈ E, with 3 cases :

(1) If ]e, 1̂] ∩ E has at least two minimal elements, then either σ(e) = e or
σ(e) > e but σ(e) is not irreducible.

(2) If ]e, 1̂] ∩ E has a unique minimal element e+, then σ(e) = e+.

(3) If ]e, 1̂] ∩ E is empty (that is, e is maximal in E), then σ(e) = 1̂.

Note that the equality σ(e) = e also occurs in the third case for e = 1̂, provided 1̂
is irreducible.

2.9. Lemma. Let t ∈ T such that r∞σ∞(t) = t. Then :

(a) t /∈ E.
(b) If t ∈ ΛE, then t ∈ ΛE − E and t = σ(t) = r(t).
(c) If t /∈ ΛE and e = σ∞(t), then e ∈ E, the interval [t, e] is totally ordered,

and

[t, e] = {rn(e), rn−1(e), . . . , r1(e), e} = {t, σ1(t), . . . , σn(t)} ,
where n ≥ 1 is the smallest integer such that σn(t) = σ∞(t).

Proof : (a) We have t = r(t) because t is in the image of r∞.
(b) Since t ∈ ΛE − E, the equality t = σ(t) follows from Lemma 2.7.
(c) We have e ≥ σ(t) > t by Lemma 2.7 because t /∈ ΛE. Since t = r∞(e) < e,

we obtain r(e) < e, hence e ∈ E. By Lemma 2.5, [t, e] is totally ordered, and

[t, e] = {rn(e), rn−1(e), . . . , r1(e), e} .
Since σ∞(t) = e, we must have σ(t) > t and also σ(ri(e)) > ri(e) for 1 ≤ i ≤ n
because t ≤ ri(e) < e and σ is order-preserving. But ]t, e] ⊆ E by Lemma 2.5 again,
so the definition of σ implies that σ(ri(e)) = ri−1(e). It follows that σi(t) = rn−i(e)
and therefore

[t, e] = {t, σ1(t), . . . , σn(t)} ,
completing the proof.

Lemma 2.9 is of great significance in this paper and justifies to introduce an
important notation.

2.10. Notation. Define

G] = {t ∈ T | r∞σ∞(t) = t} ,
Ĝ = {t ∈ G] | t /∈ ΛE} ,

G = E tG] = E t (ΛE−E) t Ĝ .

It is not hard to show that Ĝ can be characterized by the properties that t /∈ ΛE
and there exists e ∈ E with t = r∞(e) and σ(e) = e. If e is chosen minimal with

these properties, then we recover the element e of Lemma 2.9. We note that Ĝ
(corresponding to case (c) in Lemma 2.9) is usually a rather small subset of T ,
often even empty (as for instance in Example 9.8).

2.11. Example. If T = {0, 1, . . . ,m} is totally ordered, E = Irr(T ) = {1, . . . ,m}.
Then G] = Ĝ = {0} and G = T .

The following two propositions will be crucial for our results on evaluations of
fundamental functors in Sections 5 and 6. We continue with the assumption that
T is a finite lattice and (E,R) = Irr(T ).
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2.12. Proposition. Let a ∈ T with a /∈ G, and let b = r∞σ∞(a). There exists
an integer r ≥ 0 such that

a < σ(a) < . . . < σr(a) < b ≤ σr+1(a) ,

and σj(a) ∈ E for j ∈ {1, . . . , r}. Moreover b ∈ G].

Proof : We know that a = σ0(a) /∈ E because a /∈ G, hence a = r(a). Also a ≤ b
because a = r∞(a) ≤ r∞σ∞(a) = b. Therefore a < b because otherwise a = b
would be in G]. There are two cases (which will correspond to b satisfying case (b)
or (c) of Lemma 2.9).

Suppose first that there exists an integer r ≥ 0 such that c = σr+1(a) /∈ E. In
this case, we choose r minimal with this property, so that σj(a) ∈ E for 1 ≤ j ≤ r.
We have c = σ

(
σr(a)

)
∈ ΛE − E, hence c = σ(c) = σ∞(c) = σ∞(a). Moreover

b = r∞(c) = c, because c /∈ E. Therefore

a < σ(a) < . . . < σr(a) < b = σr+1(a)

and in fact b ∈ ΛE − E because b = c.
In the second case, we suppose that σr(a) ∈ E for all r ∈ Z>0. Let m be

the smallest positive integer such that σ∞(a) = σm(a). Define ei = σi(a) for all
0 ≤ i ≤ m. Note that e1, . . . , em−1 all belong to E because they belong to ΛE
(since they are in the image of the operator σ) and moreover σ(ei) > ei (excluding
the possibility ei ∈ ΛE − E). Also em = σ∞(a) ∈ E by assumption.

We have a = r∞(a) ≤ r∞(σ∞(a)) < σ∞(a), because σ∞(a) ∈ E. Therefore,
there is an integer r ≤ m−1 such that b ≤ er+1 but b 6≤ er. Note that b /∈ E because
its definition implies that b = r(b). The inequality b < er+1 is strict because b /∈ E
while er+1 ∈ E. (The case r = 0 occurs when a ≤ b < e1.)

In particular b ≤ r∞(er+1) ≤ r∞(σ∞(a)) = b, hence b = r∞(er+1). Suppose
that the element er ∨ b is irreducible. Then either er ∨ b = b or er ∨ b = er. The
first case is impossible because b is not irreducible. The second case is impossible
because it would imply b ≤ er, contrary to the definition of r. Therefore er∨b /∈ E.
Since er ∨ b ≤ er+1, we obtain er ∨ b ≤ r∞(er+1) = b by definition of r∞(er+1). It
follows that er < b < er+1, as required.

The relations σr(a) < b < σr+1(a) imply that σ∞(b) = σ∞(a). Therefore we get

r∞σ∞(b) = b, proving that b ∈ G]. In fact b ∈ Ĝ, otherwise b ∈ ΛE − E, hence
σ(b) = b. But this is impossible because σr(a) < b implies b < σr+1(a) ≤ σ(b).

2.13. Notation. Let ζ : G −→ I↑(E,R) be the map defined by

ζ(t) =

{
[t, 1̂] ∩ E if t ∈ E ,
]σ∞(t), 1̂] ∩ E if t /∈ E .

For any B ∈ I↑(E,R), define ∧B = ∧
e∈B

e. By definition of σ∞(t), we obtain

∧ζ(t) =

{
t if t ∈ E ,
σ∞(t) if t /∈ E .

2.14. Proposition. Let t ∈ G and t′ ∈ T such that t′ ≤ ∧ζ(t).

(a) σ∞(t′) ≤ σ∞(t) and r∞(t′) ≤ r∞(t).

(b) t′ ≤ t, except possibly if t ∈ Ĝ.
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Proof : We have G = (ΛE − E) t E t Ĝ and we consider the three cases
successively.

If t ∈ ΛE − E, then ∧ζ(t) = σ∞(t) = t, hence t′ ≤ t and consequently σ∞(t′) ≤
σ∞(t) and r∞(t′) ≤ r∞(t).

If t ∈ E, then ∧ζ(t) = t, hence t′ ≤ t and consequently σ∞(t′) ≤ σ∞(t) and
r∞(t′) ≤ r∞(t).

Finally, if t ∈ Ĝ, then ∧ζ(t) = σ∞(t), thus σ∞(t′) ≤ σ∞(t). Moreover, using
part (d) of Lemma 2.4 and the fact that r∞(σ(t)) = t fo 1 ≤ i ≤ n (Lemma 2.9),
we obtain

r∞(t′) ≤ r∞(∧ζ(t)) = r∞(σ∞(t)) = t = r∞(t) .

This proves (a), and also (b) because the relation t′ 6≤ t can appear only in the case

t ∈ Ĝ.

3. Fundamental modules

For any finite poset (E,R), we describe in this section a specific module ME,R

for the algebra kRE of the monoid of relations on E. We call it the fundamental
module because it plays a crucial role throughout our work.

If X and Y are finite sets, a correspondence from X to Y is a subset of Y ×X
(using a reverse notation which will later be convenient for left actions). If S ⊆ Z×Y
and R ⊆ Y ×X, the composition of correspondences SR is a correspondence from
X to Z defined by

SR = {(z, x) ∈ Z ×X | ∃ y ∈ Y such that (z, y) ∈ S and (y, x) ∈ R} .
When X = Y , a correspondence from X to X is called a (binary) relation on X,
also called a Boolean matrix. We let C(Y,X) be the set of all correspondences from
X to Y . In particular, whenever E is a finite set, RE := C(E,E) is the monoid of all
relations on E and kRE is the k-algebra of this monoid, where k is a commutative
base ring. If σ is permutation of the set E, we write ∆σ = {(σ(x), x) | x ∈ E} and
we also write ∆E := ∆id.

Define

PE := { R∆σ | R is an order relation on E and σ is a permutation of E } ,
and let kPE be its k-linear span, with k-basis PE . Any two orders R and S can
be multiplied according to the rule that R · S is equal to the transitive closure of
R ∪ S if this closure is an order, and zero otherwise. Then any two basis elements
R∆σ, S∆τ ∈ PE can also be multiplied via the rule

(R∆σ)(S∆τ ) = (R · σS)∆στ ,

where · denotes the product of orders defined above and where σS = ∆σS∆σ−1 ,
that is, σS =

{(
σ(e), σ(f)

)
| (e, f) ∈ S

}
. Thus kPE is a k-algebra, which we called

the algebra of permuted orders in [BT1]. Moreover, there is a surjective k-algebra
map

π : kRE −→ kPE
defined as follows. First π(∆σ) = ∆σ and if R is a reflexive relation then π(R) is
the transitive closure R if this closure is an order, and zero otherwise. Finally if a
relation S does not contain a permutation (i.e. S cannot be written R∆σ with R
reflexive), then π(R) = 0.

The full structure of the k-algebra kPE can be described. We let ΣE be the
group of all permutations of E and for any order R on E we let Aut(E,R) be the
automorphism group of the poset (E,R), that is, the stabilizer of R in ΣE .
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3.1. Theorem. The k-algebra kPE is isomorphic to a direct product of matrix
algebras

kPE ∼=
∏
R

MnR(kAut(E,R)) ,

where the product runs over representatives R of conjugacy classes of orders on E
and where nR = |ΣE : Aut(E,R)|.

This is Theorem 7.5 in [BT1] but it is in fact a very special case of a general
result about inverse monoids (see Remark 3.4 below). In the R-th term of the
product above, we let fR be the matrix having a single nonzero entry 1 in the first
position of the diagonal (and zeroes in all the other terms of the direct product).
Then, for any coset representative σ in ΣE/Aut(E,R), the matrix ∆σfR∆−1

σ = f σR
has a single nonzero entry 1 in the σ-th position of the diagonal. Note that the

isomorphism of Theorem 3.1 maps R ∈ PE to the sum
∑

S∈PE ,R⊆S

fS .

Then we define
ME,R := kPEfR

viewed as a left kPE-module and we call it the fundamental module associated to
the finite poset (E,R). All we need to know about ME,R is its structure, described
in the next result, which is Proposition 8.5 of [BT1].

3.2. Proposition. Let (E,R) be a finite poset.

(a) The fundamental module ME,R is a left module for the algebra kPE, hence
also a left module for the algebra of relations kRE.

(b) ME,R is a free k-module with a k-basis consisting of the elements ∆σfR,
where σ runs through the group ΣE of all permutations of E.

(c) ME,R is a (kPE , kAut(E,R))-bimodule and the right action of kAut(E,R)
is free. Explicitly, the right action of τ ∈ Aut(E,R) maps the basis element
∆σfR to the basis element ∆στfR.

Using Theorem 3.1, one can also view ME,R as the set of column vectors of size
|ΣE : Aut(E,R)| with entries in kAut(E,R), with its obvious (kPE , kAut(E,R))-
bimodule structure. In particular, if τ ∈ Aut(E,R), then ∆τfR = fR∆τ is the
matrix having a single nonzero entry τ in the first position of the diagonal.

3.3. Remark. The action of the algebra of relations kRE on the module ME,R

is given by an explicit formula. For any relation Q ∈ RE ,

Q ·∆σfR =

{
∆τσfR if ∃τ ∈ ΣE such that ∆E ⊆ ∆τ−1Q ⊆ σR,
0 otherwise .

(Note that τ is unique in the first case.) This is proved in Proposition 8.5 of [BT1]
but is not explicitly used in the present paper. It is used implicitly because the
proof of Theorem 4.10 below is based on this formula (see Lemma 6.1 in [BT3]).

3.4. Remark (inverse monoids). The k-basis PE is almost a monoid and The-
orem 3.1 is a very special case of a general result about inverse monoids. Explicitly,

let z be a zero element added to PE and set P̃E = PE t{z}. Then P̃E is a monoid
(by replacing a product equal to 0 by a product equal to z). The algebra of this

monoid satisfies kP̃E ∼= kPE × k and kPE is the contracted monoid algebra of P̃E
(see Remark 5.3 in [St2]). Moreover P̃E is an inverse monoid, the inverse of R∆σ

being ∆σ−1R = Rσ∆σ−1 , where Rσ = ∆σ−1R∆σ.
By Theorem 4.3 in [St1] or Corollary 9.4 in [St2], the algebra of an inverse

monoid is isomorphic to a product of matrix algebras over the group algebras of
its maximal subgroups. Thus, if we discard the term k generated by z, we see that
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Theorem 3.1 is just a specific instance of this general result. In order to get this

special case, one needs to notice that the idempotents of the inverse monoid P̃E are,

apart from z, all orders R and that the maximal subgroup of P̃E at R is isomorphic
to Aut(E,R). Moreover, two idempotents are in the same J -class if and only if
they are conjugate under ΣE and the number of idempotents in the J -class of R
is the number of conjugates of R, that is, nR = |ΣE : Aut(E,R)|.

Finally, it should be noticed that the fundamental module ME,R is isomorphic
to the left Schützenberger module relative to R (see Section 5.2 in [St2]). More

precisely, if LR denotes the L-class of R in the monoid P̃E , then right multipli-

cation by fR defines a surjective kPE-linear map kP̃ER → kPEfR (notice that

RfR = fR). The map has kernel k(P̃ER − LR) and induces an isomorphism of
(kPE , kAut(E,R))-bimodules between the Schützenberger module kLR and the
fundamental module ME,R = kPEfR.

3.5. Corollary. Assume that k is a field. The simple kPE-modules have the form

TR,V = ME,R ⊗kAut(E,R) V

where R runs over a set of representatives of conjugacy classes of orders on E and
V runs over a set of representatives of isomorphism classes of simple modules for
the group algebra kAut(E,R).

Proof : This follows from the Morita equivalence between kAut(E,R) and the
matrix algebra MnR(kAut(E,R)), which is given by the tensor product

V 7→ME,R ⊗kAut(E,R) V ,

and then applying Theorem 3.1. This is made explicit in [BT1].

4. Correspondence functors

In this section, we recall the basic facts we need about correspondence functors.
We refer to [BT2] for details. We denote by C the category of finite sets and
correspondences. Its objects are the finite sets and the set C(Y,X) of morphisms
from X to Y is the set of all correspondences from X to Y , namely all subsets
of Y × X. The composition of correspondences is described at the beginning of
Section 3.

For any commutative ring k, we let kC be the k-linearization of the category C.
The objects are the same, the set of morphisms kC(Y,X) is the free k-module with
basis C(Y,X), and composition is extended by k-bilinearity from composition in C.
For any permutation σ of X, we write ∆σ = {(σ(x), x) | x ∈ X}. In particular,
∆X := ∆id is the identity morphism of the object X.

A correspondence functor is a k-linear functor from kC to the category k-Mod
of left k-modules, for some fixed commutative ring k. We let Fk be the category of
all correspondence functors. As already observed in [BT2], there is a set-theoretic
observation to be made. In order to have sets of natural transformations, we need
to restrict to a small skeleton of C, for instance the full subcategory whose objects
are the sets {1, 2, . . . , n} for n ≥ 0. For simplicity of the exposition, we avoid to
recall this technical point, which is used throughout.

If F is a correspondence functor and ψ ∈ kC(Y,X), we view the k-module homo-
morphism F (ψ) : F (X)→ F (Y ) as a left action of ψ. More precisely, if α ∈ F (X),
we define a left action ψ · α := F (ψ)(α) ∈ F (Y ). In particular, the evaluation of a
correspondence functor at a finite set X is a left kRX -module where RX = C(X,X)
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is the monoid of all relations on X. Our strategy will be to work with correspon-
dence functors rather than kRX -modules.

4.1. Remark (finite category). The category C has infinitely many objects.
If one is interested in fixing an object X, then one can consider the full subcate-
gory C≤X whose objects are all subsets of X. This has finitely many objects and
morphisms and the corresponding category algebra A (the free k-module on all
morphisms in C≤X , as defined for instance in [We]) is a k-algebra which is Morita
equivalent to kRX . This is because if e is the identity morphism of the object X,
then AeA = A and eAe ∼= kRX (see Theorem 4.13 in [St2] for details). Therefore,
the representation theory of the category C≤X is equivalent to the representation
theory of the monoid RX .

However, we do not see any strong reason for the restrictive choice of fixing an
object, as opposed to considering all objects simultaneously. Thus we will always
use correspondence functors defined on the whole of C and we often need to do so.
Also, working with the whole category C allowed us in [BT2] to consider finiteness
conditions as well as asymptotic behavior of correspondence functors. This is an-
other important motivation for avoiding to fix an object and it is used again in
Corollary 6.7.

4.2. Remark (bi-surjective relations). In Example 4.4 of his recent work
[Ste], Stein gives another connection with correspondences, but again fixing a finite
set X. He proves that the algebra kRX is isomorphic to the category algebra of
the category whose objects are the subsets of X and morphisms are bi-surjective
correspondences (hence a subcategory of C).

We use in particular the following construction of correspondence functors. For
any fixed left kRE-module W , the correspondence functor LE,W is defined by

LE,W (X) := kC(X,E)⊗kC(E,E) W ,

with an obvious left action of correspondences in C(Y,X) by composition. Note
that W 7→ LE,W is left adjoint to the evaluation F 7→ F (E). There is a subfunctor
JE,W of LE,W defined as follows (see Lemma 2.5 in [BT2]) :

JE,W (X) =
{∑

i

ϕi ⊗ wi ∈ LE,W (X) | ∀ρ ∈ kC(E,X) ,
∑
i

(ρϕi) · wi = 0
}
.

Let us mention an important functorial property of the quotient functor LE,W /JE,W .

4.3. Lemma. Let E be a finite set and let W be a left kRE-module.

(a) JE,W (E) = {0} and LE,W (E)/JE,W (E) ∼= LE,W (E) ∼= W .
(b) Let α ∈ LE,W (X)/JE,W (X) where X is some finite set. Then ρ · α = 0 for

every ρ ∈ kC(E,X) if and only if α = 0.

Proof : (a) It is clear that LE,W (E) = kC(E,E)⊗kC(E,E)W ∼= W . Corresponding
to w ∈W , let id⊗w ∈ LE,W (E). If id⊗w ∈ JE,W (E), we choose ρ = id ∈ C(E,E)
and we obtain w = (ρ ◦ id) · w = 0, by the definition of JE,W (X). This shows that
JE,W (E) = {0}.

(b) Let ρ ∈ kC(E,X). It follows from (a) that there is a commutative diagram

0 // JE,W (X) //

��

LE,W (X)
π //

ρ

��

LE,W (X)/JE,W (X) //

ρ

��

0

0 // LE,W (E)
∼= // W // 0
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Let
∑
i ϕi ⊗ wi ∈ LE,W (X) such that π(

∑
i ϕi ⊗ wi) = α. From the assumption

that ρ · α = 0 for every ρ ∈ kC(E,X), we obtain

0 = ρ ·
(∑

i

ϕi ⊗ wi
)

=
∑
i

ρϕi ⊗ wi ∈ LE,W (E) .

Viewing this in W via the isomorphism LE,W (E) ∼= W , we get
∑
i(ρϕi) · wi = 0

for every ρ ∈ kC(E,X). In other words,
∑
i ϕi ⊗wi ∈ JE,W (X) and it follows that

α = 0.

We now recall the construction of fundamental functors and simple functors,
which are special cases of the construction above (see [BT2, BT3]). Using the
fundamental kRE-module ME,R associated with a poset (E,R), we obtain the
fundamental functor

SE,R := LE,ME,R
/JE,ME,R

.

Its structure will be described in Theorem 4.12 below, which will be our main tool,
but we first mention the following properties (see Proposition 2.6 in [BT3]).

4.4. Proposition. Let (E,R) be a finite poset and X a finite set.

(a) SE,R(X) = {0} if |X| < |E|.
(b) SE,R(E) ∼= ME,R.

If now V is a left kAut(E,R)-module, we define the kRE-module

TR,V := ME,R ⊗kAut(E,R) V

using the right kAut(E,R)-module structure on ME,R described in Proposition 3.2.
We then obtain an associated correspondence functor

SE,R,V := LE,TR,V /JE,TR,V .

When k is a field and V is a simple kAut(E,R)-module, we have seen in Corol-
lary 3.5 that TR,V is a simple kPE-module, hence also a simple kRE-module via the
surjective homomorphism π : kRE → kPE . But we obtain more (see Theorem 4.7
in [BT2]).

4.5. Theorem. Assume that k is a field.

(a) If the kAut(E,R)-module V is simple, then the functor SE,R,V is simple
and SE,R,V (E) ∼= TR,V is a simple kRE-module.

(b) The map (E,R, V ) 7→ SE,R,V provides a parametrization of all simple cor-
respondence functors by isomorphism classes of triples (E,R, V ), where
(E,R) is a finite poset and V is a simple kAut(E,R)-module.

(c) If S is a simple correspondence functor, the triple (E.R, V ) such that S ∼=
SE,R,V is obtained as follows. First E is a set of minimal cardinality such
that S(E) 6= {0}. Then (R, V ) is the pair corresponding to the simple kPE-
module S(E) ∼= TR,V .

4.6. Remark. In part (c), it should be noticed that the simple kRE-module S(E)
is actually a kPE-module (with the kernel of π : kRE → kPE acting by zero). This
follows from Theorems 4.2 and 4.7 in [BT2]. Therefore, S(E) has the form TR,V
for some pair (R, V ), by Corollary 3.5.
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4.7. Remark (apex and minimality). Theorem 4.5 is the corner stone in
our approach to the classification of simple kRX -modules, which will be given
in Theorem 8.1. In the classical Munn–Ponizovsky theory using J -classes, an
important concept is the apex of a simple kRX -module M , which is the minimal
regular J -class that does not annihilate M (see [GMS]). Here there is also a
notion of minimality, but of a different, and very elementary, nature. Every simple
kRX -module will be realized as the evaluation at X of some simple correspondence
functor SE,R,V and E is then a minimal set on which this simple functor does not
vanish (by part (c) of Theorem 4.5).

An important step in our strategy is to realize every simple correspondence func-
tor as a quotient of a fundamental functor. More generally, the following property
holds (see Lemma 2.7 in [BT3]).

4.8. Proposition. Let (E,R) be a finite poset, let V be a left kAut(E,R)-module
generated by a single element v, and let X be a finite set. There is a surjective
morphism of correspondence functors

Φ : SE,R −→ SE,R,V

such that, on evaluation at the finite set E, we obtain the surjective homomorphism
of kRE-modules

ΦE : ME,R −→ TR,V = ME,R ⊗kAut(E,R) V , a 7→ a⊗ v .

In order to obtain information about simple functors SE,R,V , we shall always
work first with the fundamental functor SE,R, which is a precursor of SE,R,V since
we recover SE,R,V by means of the surjective morphism Φ : SE,R → SE,R,V . This
explains why the fundamental functors play a crucial role throughout our work. We
shall see in Section 7 that there is an explicit way to recover SE,R,V from SE,R. It
is also worth mentioning that both SE,R and SE,R,V are defined over an arbitrary
commutative ring k.

Now we explain the connection between correspondence functors and lattices.
Let T be a finite lattice. We defined in [BT3] a correspondence functor FT as
follows. If X is a finite set, then FT (X) = kTX , the free k-module with basis the
set TX of all functions from X to T . If R ⊆ Y × X is a correspondence and if
ϕ ∈ TX , then we associate the function R ·ϕ = FT (R)(ϕ) ∈ TY , also simply written
Rϕ, defined by

(Rϕ)(y) :=
∨

(y,x)∈R

ϕ(x) ,

with the usual rule that a join over the empty set is equal to 0̂. The map

FT (R) : FT (X) −→ FT (Y )

is the unique k-linear extension of this construction.

4.9. Remark (row spaces and lattices). There is a classical connection
between relations and lattices (see [Ki]). Any relation S ∈ RX can be viewed as a
Boolean matrix and its rows generate the row space of S, which is a lattice under
union (i.e. Boolean addition) and the induced meet. If TS denotes the row space
lattice of S and if a relation U ∈ RX belongs to the left ideal RXS, then the row
space of U is contained in TS . Therefore, for any x ∈ X, the x-th row of U can
be viewed as the value at x of a function ϕ : X → TS . It follows that RXS can
be identified with TXS , hence kRXS ∼= FTS (X). It is easy to see that this is an
isomorphism of left kRX -modules, establishing a link between the principal left
ideals of kRX and the evaluation at X of some of the functors FT .
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However, we wish to emphasize that the functors FT bring a change of perspec-
tive. First, instead of fixing X and varying TS when S varies in RX , we fix T
(which does not depend anymore on any choice of S) and we allow X to vary in
order to get a functor. Thus FT has more structure, namely a functor structure
when X varies, as opposed to principal left ideals in the fixed algebra kRX . Note
also that working with a fixed T is important throughout our approach, in partic-
ular in Sections 5 and 6. Secondly, the fact that TS depends on S ∈ RX implies
in particular that TS is contained in the lattice of subsets of X, so |TS | is bounded
by 2|X|. Hence |X| must be large enough while this restriction disappears with the
change of perspective. We can now consider an evaluation FT (Y ) for a finite set Y
which can be arbitrarily small (up to the empty set). Thus we have not only more
structure, but we have also extended the realm of possible evaluations.

The functors FT play an important role in our approach because they are con-
nected to fundamental functors by a morphism described in the following theorem
(see Theorem 6.5 in [BT3]), which is the starting point for the proofs of our main
results. If E denotes the set of irreducible elements in T , it is elementary to check
that the functions ϕ ∈ TX such that E 6⊆ ϕ(X) generate a subfunctor HT of FT .

4.10. Theorem. Let T be a finite lattice, let (E,R) = Irr(T ), and let ι : E → T
denote the inclusion map.

(a) There exists a unique surjective morphism of correspondence functors

ΘT : FT −→ SE,Rop

such that ΘT,E(ι) = fRop (an element in SE,Rop(E) = ME,Rop = PEfRop).
(b) The subfunctor HT is contained in the subfunctor Ker(ΘT ). Explicitly, if

X is a finite set and if f ∈ TX satisfies the condition E 6⊆ f(X), then
ΘT,X(f) = 0.

(c) The functor FT is generated by ι ∈ FT (E), while the functor SE,Rop is
generated by fRop ∈ SE,Rop(E).

The precise definition of ΘT will be recalled in Definition 7.3. In order to have
control of the fundamental functor SE,Rop , we need to understand the kernel of ΘT .
To this end, we need to consider some correspondences which were introduced
in [BT3] and which play again an important role in the present paper.

4.11. Notation. Let T be a finite lattice and (E,R) = Irr(T ). For any finite set
X and any map ϕ : X → T , we associate the correspondence

Γϕ := {(x, e) ∈ X × E | e ≤T ϕ(x)} ⊆ X × E .

In the special case where T = I↓(E,R), we obtain

Γϕ = {(x, e) ∈ X × E | e ∈ ϕ(x)} .

For the description of the kernel of ΘT : FT → SE,Rop , the following result
was obtained as Theorem 7.1 in [BT3]. The result actually gives a first explicit
description of every fundamental functor and it is one of our main tools in this
paper.

4.12. Theorem. Let T be a finite lattice, let (E,R) = Irr(T ), and let X be a
finite set. The kernel of the map

ΘT,X : FT (X) −→ SE,Rop(X)
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is equal to the set of linear combinations
∑

ϕ:X→T
λϕϕ, where λϕ ∈ k, such that for

any map ψ : X → I↑(E,R) ∑
ϕ

Γopψ Γϕ=Rop

λϕ = 0 .

Here Γϕ = {(x, e) ∈ X × E | e ≤T ϕ(x)} and Γopψ =
{

(e, x) ∈ E ×X | e ∈ ψ(x)
}

,
as in Notation 4.11.

In order to use the condition Γopψ Γϕ = Rop appearing in Theorem 4.12, we shall

also need equivalent formulations. We first fix notation. If ψ : X → I↑(E,R) is a
map, define the function ∧ψ : X → T by

∀x ∈ X, ∧ψ(x) =
∧

e∈ψ(x)

e ,

where
∧

is the meet in the lattice T . If ϕ and ϕ′ are two functions X → T , we
write ϕ ≤ ϕ′ if ϕ(x) ≤ ϕ′(x) for all x ∈ X. The following result is Theorem 7.3
in [BT3].

4.13. Theorem. Let T be a finite lattice, let (E,R) = Irr(T ), let ι : E → T denote
the inclusion map, and let X be a finite set. Let ϕ : X → T and ψ : X → I↑(E,R)
be maps with associated correspondence Γϕ and Γopψ , as in Theorem 4.12 above.
The following conditions are equivalent.

(a) Γopψ ϕ = ι.

(b) Γopψ Γϕι = ι.

(c) ∆E ⊆ Γopψ Γϕ ⊆ Rop.

(d) Γopψ Γϕ = Rop.

(e) ϕ ≤ ∧ψ and ∀e ∈ E, ∃x ∈ X such that ϕ(x) = e and ψ(x) = [e, ·[E.
(f) ∀t ∈ T, ψ

(
ϕ−1(t)

)
⊆ [t, ·[T∩E and ∀e ∈ E, ψ

(
ϕ−1(e)

)
= [e, ·[E.

As noticed in the proof of this theorem in [BT3], we abuse notation in (f). For
any subset Y of X, ψ(Y ) is a subset of I↑(E,R), hence a set of subsets of E, but

we write ψ(Y ) for the union of these subsets of E, that is, ψ(Y ) =
⋃
x∈Y

ψ(x).

Conditions (e) and (f) will play a crucial role in our results on fundamental
functors and simple functors (Sections 5 and 6).

4.14. Remark (Schützenberger modules). There is another connection be-
tween the functorial constructions of the present section and the classical repre-
sentation theory of the monoid RX (see [GMS] or [St2]). Using the notation of
Remark 4.9, suppose U ∈ RXS but U and S are not in the same L-class of the
monoid RX , that is, RXU 6= RXS. Then the row space TU must be strictly con-
tained in the row space TS and therefore TU cannot contain the set E of irreducible
elements of TS since the irreducible elements generate TS . In other words, the
function ϕ : X → TS corresponding to U (as in Remark 4.9) satisfies E 6⊆ ϕ(X),
hence belongs to HTS (X), where HTS denotes the subfunctor of FTS defined before
Theorem 4.10. Thus U is in the same L-class as S if and only if E ⊆ ϕ(X), that is,
ϕ /∈ HTS (X). Using the isomorphism kRXS ∼= FTS (X) of Remark 4.9, we deduce
that the quotient of kRXS giving the left Schützenberger module relative to S (see
Section 5.2 in [St2]) is isomorphic to FTS (X)/HTS (X).

In a more functorial way, given a fixed lattice T , the functor FT /HT links to-
gether various Schützenberger modules FT (X)/HT (X) when X is allowed to vary
(but subject to the restriction |T | ≤ 2|X|, as mentioned in Remark 4.9). It should
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also be mentioned that the quotient FT /HT is only used explicitly at the end of
the proof of Theorem 6.1 and only in the special case when T is a totally ordered
lattice. However, it is used implicitly in Sections 5 and 6 where we are dealing with
functions ϕ : X → T satisfying the condition E ⊆ ϕ(X).

4.15. Remark (construction of simple functors). In the Munn-Ponizovsky
theory, the simple modules for kRX are constructed in the following way (see [GMS]
or [St2]). One starts with a poset (E,R) (with E ⊆ X) and the Schützenberger
module kLR relative to R (quotient of kRXR, as in Remark 4.14). Then kLR has a
(kRX , kAut(E,R))-bimodule structure, noticing that the maximal subgroup ofRX
at the idempotent R is isomorphic to Aut(E,R). Induction from left kAut(E,R)-
modules to left kRX -modules is given by the exact functor kLR ⊗kAut(E,R) −.
For any simple kAut(E,R)-module V , its image kLR ⊗kAut(E,R) V has a unique
maximal submodule and the quotient

(kLR ⊗kAut(E,R) V )
/

Rad(kLR ⊗kAut(E,R) V )

is the required simple kRX -module corresponding to (E,R, V ).
In view of Remark 4.14, an analogous result for constructing simple corre-

spondence functors should involve a functor FT /HT . This is indeed the case
and the simple functor SE,Rop,V can be realized as the unique simple quotient
of (FT /HT )⊗kAut(E,R) V via a surjective morphism

π : (FT /HT )⊗kAut(E,R) V −→ SE,Rop,V

where T is a lattice with Irr(T ) = (E,R). But there is a main new aspect which is
crucial for our approach. Namely, we consider the intermediate functor SE,Rop and
we factorize π as a composite

(FT /HT )⊗kAut(E,R) V
ΘT⊗idV// SE,Rop ⊗kAut(E,R) V

Ψ // SE,Rop,V ,

where ΘT : FT /HT → SE,Rop is induced by the morphism ΘT : FT → SE,Rop of
Theorem 4.10. It is this new aspect which allows us to prove our main results. In
Sections 5 and 6, we control the kernel of ΘT and find the dimension of each evalu-
ation SE,Rop(X). Then we prove in Section 7 the nontrivial fact that Ψ is actually
an isomorphism, allowing us to find the dimension of each evaluation SE,Rop,V (X).

5. Generators for the evaluations of fundamental functors

As usual, E denotes a fixed finite set and R an order relation on E. Our purpose
is to prove that, for an arbitrary commutative ring k and for any finite set X,
the evaluation SE,R(X) of the fundamental correspondence functor SE,R is a free
k-module, by finding an explicit k-basis. In this section, we first deal with k-linear
generators.

Let T be any lattice such that (E,R) = Irr(T ). Note that I↓(E,R) is the
largest such lattice and that any other is a quotient of I↓(E,R) (Lemma 2.2). By
Theorem 4.10, the fundamental functor SE,Rop is isomorphic to a quotient of FT
via a morphism

ΘT : FT −→ SE,Rop .

For this reason, we work with SE,Rop rather than SE,R.
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5.1. Notation. Let G = G(T ) be the subset defined in Notation 2.10 and let
X be a finite set. We define BX to be the set of all maps ϕ : X → T such that
E ⊆ ϕ(X) ⊆ G.

Our main purpose is to prove that the set ΘT,X(BX) is a k-basis of SE,Rop(X).
We first prove in this section that ΘT,X(BX) generates k-linearly SE,Rop(X) and
then we shall show in Section 6 that ΘT,X(BX) is k-linearly independent.

Recall that G = E t G] where G] = {a ∈ T | a = r∞σ∞(a)}, with r∞ defined
in Notation 2.3 and σ∞ in Definition 2.6. We denote by Gc the complement of G
in T , namely

Gc = {a ∈ T | a /∈ E, a < r∞σ∞(a)} .
Recall from Proposition 2.12 that if a ∈ Gc and b = r∞σ∞(a), there exists an
integer r ≥ 0 such that

a < σ(a) < . . . < σr(a) < b ≤ σr+1(a) ,

and σj(a) ∈ E for j ∈ {1, . . . , r}. Moreover, b ∈ G]. This produces a way to pass
from any element a outside G to a uniquely defined element b in G. This justifies
the following terminology :

5.2. Definition. For a ∈ Gc, the sequence a < σ(a) < . . . < σr(a) < b defined
above will be called the reduction sequence associated to a.

5.3. Notation. Let n ≥ 1 and let (a0, a1, . . . , an) be a sequence of distinct
elements of T . We denote by [a0, . . . , an] : T → T the map defined by

∀t ∈ T, [a0, . . . , an](t) =

{
aj+1 if t = aj , j ∈ {0, . . . , n− 1}
t otherwise.

If a ∈ Gc, let (a0, a1, . . . , ar, ar+1) be the reduction sequence associated to a, with
a0 = a and ar+1 = b = r∞σ∞(a). We then denote by ua the element of k(TT ) =
FT (T ) defined by

ua = [a0, a1]− [a0, a1, a2] + . . .+ (−1)r[a0, a1, . . . , ar+1] .

We can now describe a family of useful elements in Ker ΘT .

5.4. Theorem. Let T be a finite lattice, let (E,R) = Irr(T ), let Gc = {a ∈ T |
a /∈ E, a < r∞σ∞(a)}, and let X be a finite set. Then, for any a ∈ Gc and for any
function ϕ : X → T ,

ϕ− ua ◦ ϕ ∈ Ker ΘT,X ,

where ua ◦ϕ is defined by bilinearity from the composition of maps TT ×TX → TX .

Proof : The kernel of the map ΘT,X : FT (X) → SE,Rop(X) was described in
Theorem 4.12. Let

∑
ϕ:X→T

λϕϕ ∈ FT (X), where λϕ ∈ k. Then
∑

ϕ:X→T
λϕϕ belongs

to Ker ΘT,X if and only if the coefficients λϕ satisfy a system of linear equations
indexed by maps ψ : X → I↑(E,R). The equation (Eψ) indexed by such a map ψ
is the following :

(Eψ) :
∑

ϕ
È,R

ψ

λϕ = 0 ,

where ϕ
È,R

ψ means that ϕ : X → T and ψ : X → I↑(E,R) satisfy the equivalent

conditions of Theorem 4.13. We shall use condition (f) of Theorem 4.13, namely

ϕ
È,R

ψ ⇐⇒

{
∀t ∈ T, ψ

(
ϕ−1(t)

)
⊆ [t, ·[T∩E ,

∀e ∈ E, ψ
(
ϕ−1(e)

)
= [e, ·[E .
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Recall that we abuse notation here. For any subset Y of X, in particular for

Y = ϕ−1(t), we write ψ(Y ) =
⋃
x∈Y

ψ(x), a union of subsets of E instead of a set of

subsets of E. This abusive notation is convenient and is used throughout the proof.
Let a ∈ Gc, and let (a, e1, e2, . . . , er, b) be the associated reduction sequence.

Recall that e1, . . . , er ∈ E but b /∈ E. If r ≥ 1, note that [a, ·[T∩E = [e1, ·[E
because a < σ(a) = e1 ∈ E. Define, for each i ∈ {1, . . . , r},

ϕi = [a, e1, . . . , ei] ◦ ϕ , and also ϕr+1 = [a, e1, . . . , er, b] ◦ ϕ .
In particular, for any i ∈ {1, . . . , r + 1},

if ϕ(x) ∈ T − {a, e1, . . . , er} , then ϕi(x) = ϕ(x) .

The other values of the maps ϕi are given in the following table :

(5.5)

x ∈ ϕ−1(a) ϕ−1(e1) ϕ−1(e2) . . . ϕ−1(er−1) ϕ−1(er)

ϕ(x) a e1 e2 . . . er−1 er
ϕ1(x) e1 e1 e2 . . . er−1 er
ϕ2(x) e1 e2 e2 . . . er−1 er
ϕ3(x) e1 e2 e3 . . . er−1 er
. . . . . . . . . . . . . . . . . . . . .
ϕr(x) e1 e2 e3 . . . er er
ϕr+1(x) e1 e2 e3 . . . er b

We want to prove that the element

ϕ− ua ◦ ϕ = ϕ− ϕ1 + ϕ2 − . . .+ (−1)r−1ϕr+1

belongs to Ker ΘT,X . We must prove that it satisfies the equation (Eψ) for every ψ,
so we must find which of the functions ϕ,ϕ1, ϕ2, . . . , ϕr+1 are linked with ψ under
the relation

È,R
. We are going to prove that only two consecutive functions can be

linked with a given ψ, from which it follows that the corresponding equation (Eψ)
is satisfied because it reduces to either 1 − 1 = 0, or −1 + 1 = 0. Of course, if
none of ϕ,ϕ1, ϕ2, . . . , ϕr+1 is linked with ψ, then the corresponding equation (Eψ)
is just 0 = 0. It follows from this that ϕ− ua ◦ϕ satisfies all equations (Eψ), hence
belongs to Ker ΘT,X , as required. We note for completeness that it may happen
that some of the functions ϕ,ϕ1, ϕ2, . . . , ϕr+1 are equal (this occurs if an inverse
image is empty in some column of the table), but this does not play any role in the
argument.

Assume first that r ≥ 1. Write U := T−{a, e1, . . . , er} and V := E−{e1, . . . , er}.
The linking with a fixed ψ is controlled by the following conditions :

ϕ
È,R

ψ ⇐⇒


∀t ∈ U, ψ

(
ϕ−1(t)

)
⊆ [t, ·[T∩E

∀e ∈ V, ψ
(
ϕ−1(e)

)
= [e, ·[E

ψ
(
ϕ−1(a)

)
⊆ [a, ·[T∩E = [e1, ·[E

ψ
(
ϕ−1(ei)

)
= [ei, ·[E ∀i ∈ {1, . . . , r} .

The subsets ϕ−1
j (ei) are determined by Table 5.5 and can be written in terms of ϕ.

In particular, ϕ−1
1 (e1) = ϕ−1(a) t ϕ−1(e1), so we obtain

ϕ1
È,R

ψ ⇐⇒


∀t ∈ U, ψ

(
ϕ−1(t)

)
⊆ [t, ·[T∩E

∀e ∈ V, ψ
(
ϕ−1(e)

)
= [e, ·[E

ψ
(
ϕ−1(a) t ϕ−1(e1)

)
= [e1, ·[E

ψ
(
ϕ−1(ei)

)
= [ei, ·[E ∀i ∈ {2, . . . , r} .
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Similarly, for 2 ≤ j ≤ r, we have ϕ−1
j (e1) = ϕ−1(a) and ϕ−1

j (ei+1) = ϕ−1(ei)

if 1 ≤ i ≤ j − 2, and then ϕ−1
j (ej) = ϕ−1(ej−1) t ϕ−1(ej). Therefore we get

successively

ϕ2
È,R

ψ ⇐⇒



∀t ∈ U, ψ
(
ϕ−1(t)

)
⊆ [t, ·[T∩E

∀e ∈ V, ψ
(
ϕ−1(e)

)
= [e, ·[E

ψ
(
ϕ−1(a)

)
= [e1, ·[E

ψ
(
ϕ−1(e1) t ϕ−1(e2)

)
= [e2, ·[E

ψ
(
ϕ−1(ei)

)
= [ei, ·[E ∀i ∈ {3, . . . , r} .

ϕ3
È,R

ψ ⇐⇒



∀t ∈ U, ψ
(
ϕ−1(t)

)
⊆ [t, ·[T∩E

∀e ∈ V, ψ
(
ϕ−1(e)

)
= [e, ·[E

ψ
(
ϕ−1(a)

)
= [e1, ·[E

ψ
(
ϕ−1(e1)

)
= [e2, ·[E

ψ
(
ϕ−1(e2) t ϕ−1(e3)

)
= [e3, ·[E

ψ
(
ϕ−1(ei)

)
= [ei, ·[E ∀i ∈ {4, . . . , r} .

. . .

ϕr−1
È,R

ψ ⇐⇒



∀t ∈ U, ψ
(
ϕ−1(t)

)
⊆ [t, ·[T∩E

∀e ∈ V, ψ
(
ϕ−1(e)

)
= [e, ·[E

ψ
(
ϕ−1(a)

)
= [e1, ·[E

ψ
(
ϕ−1(ei)

)
= [ei+1, ·[E ∀i ∈ {1, . . . , r − 3}

ψ
(
ϕ−1(er−2) t ϕ−1(er−1)

)
= [er−1, ·[E

ψ
(
ϕ−1(er)

)
= [er, ·[E .

ϕr
È,R

ψ ⇐⇒



∀t ∈ U, ψ
(
ϕ−1(t)

)
⊆ [t, ·[T∩E

∀e ∈ V, ψ
(
ϕ−1(e)

)
= [e, ·[E

ψ
(
ϕ−1(a)

)
= [e1, ·[E

ψ
(
ϕ−1(ei)

)
= [ei+1, ·[E ∀i ∈ {1, . . . , r − 2}

ψ
(
ϕ−1(er−1) t ϕ−1(er)

)
= [er, ·[E .

ϕr+1
È,R

ψ ⇐⇒



∀t ∈ U, ψ
(
ϕ−1(t)

)
⊆ [t, ·[T∩E

∀e ∈ V, ψ
(
ϕ−1(e)

)
= [e, ·[E

ψ
(
ϕ−1(a)

)
= [e1, ·[E

ψ
(
ϕ−1(ei)

)
= [ei+1, ·[E ∀i ∈ {1, . . . , r − 1}

ψ
(
ϕ−1(er)

)
⊆ [b, ·[T∩E .

Suppose that ϕ
È,R

ψ. This clearly implies ϕ1
È,R

ψ. Also ϕi 0
E,R

ψ for i ≥ 2,

because ϕ
È,R

ψ implies ψ
(
ϕ−1(e1)

)
= [e1, ·[E , but ϕi

È,R
ψ implies ψ

(
ϕ−1(e1)

)
⊆

[e2, ·[E when i ≥ 2. Therefore only ϕ and ϕ1 are involved in this case.
Suppose now that ϕ1

È,R
ψ but ϕ 0

E,R
ψ. Then ψ

(
ϕ−1(e1)

)
⊆ ]e1, ·[T∩E = [e2, ·[E

(because e2 = σ(e1)) and ψ
(
ϕ−1(a)

)
= [e1, ·[E , hence in particular ϕ2

È,R
ψ, since
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ϕ1
È,R

ψ also implies ψ
(
ϕ−1(ei)

)
= [ei, ·[E for i ∈ {2, . . . , n}. On the other hand,

since ϕ1
È,R

ψ implies ψ
(
ϕ−1(e2)

)
= [e2, ·[E , we cannot have ψ

(
ϕ−1(e2)

)
⊆ [e3, ·[E

and so ϕi 0
E,R

ψ, for i ≥ 3. Therefore only ϕ1 and ϕ2 are involved in this case.

Suppose by induction that ϕi
È,R

ψ but ϕi−1 0
E,R

ψ, for some i ∈ {1, . . . , r − 1}.
Then the same argument shows that ϕi+1

È,R
ψ and that only ϕi and ϕi+1 are

involved in this case.
Suppose now that ϕr

È,R
ψ but ϕr−1 0

E,R
ψ. Then ψ

(
ϕ−1(er−1) t ϕ−1(er)

)
=

[er, ·[E but ψ
(
ϕ−1(er)

)
6= [er, ·[E . Hence ψ

(
ϕ−1(er)

)
⊆ ]er, ·[E ⊆ [b, ·[T∩E, since

σ(er) ≥ b. Moreover er ∈ ψ
(
ϕ−1(er−1) t ϕ−1(er)

)
and er /∈ ψ

(
ϕ−1(er)

)
. It follows

that er ∈ ψ
(
ϕ−1(er−1)

)
, hence ψ

(
ϕ−1(er−1)

)
= [er, ·[E . Therefore ϕr+1

È,R
ψ and

only ϕr and ϕr+1 are involved in this case.
Finally, if ϕr+1

È,R
ψ, then ψ

(
ϕ−1(er−1)

)
= [er, ·[E and ψ

(
ϕ−1(er)

)
⊆ [b, ·[T∩E ⊆

[er, ·[E . Thus ψ
(
ϕ−1(er−1) t ϕ−1(er)

)
= [er, ·[E . Therefore ϕr

È,R
ψ and we are

again in the case when only ϕr and ϕr+1 are involved.
The special case r = 0 has to be treated separately. There are only 2 terms

ϕ and ϕ1 in the alternating sum. If ϕ
È,R

ψ, then ψ
(
ϕ−1(a)

)
⊆ [a, ·[T∩E, hence

ψ
(
ϕ−1(a)

)
⊆ [b, ·[T∩E because b ≤ σ(a) when r = 0. Therefore

ψ
(
ϕ−1

1 (b)
)

= ψ
(
ϕ−1(a) t ϕ−1(b)

)
⊆ [b, ·[T∩E

and so ϕ1
È,R

ψ. Conversely, it is straightforward to see that ϕ1
È,R

ψ implies ϕ
È,R

ψ.

We have proved that only two consecutive functions can be linked with a given ψ,
as was to be shown.

We have now paved the way for finding generators of SE,Rop(X).

5.6. Theorem. Let T be a finite lattice, let (E,R) = Irr(T ), and let

Gc = {a ∈ T | a /∈ E, a < r∞σ∞(a)} .
For a ∈ Gc, let ua be the element of k(TT ) introduced in Notation 5.3, and let
uT denote the composition of all the elements ua, for a ∈ Gc, in some order (they
actually commute, see Theorem 5.8 below).

(a) Let X be a finite set. Then for any ϕ : X → T , the element uT ◦ ϕ is a
k-linear combination of functions f : X → T such that f(X) ⊆ G.

(b) Let BX be the set of all maps ϕ : X → T such that E ⊆ ϕ(X) ⊆ G. Then
the set ΘT,X(BX) generates SE,Rop(X) as a k-module.

Proof : (a) We see in Table 5.5 that the functions ϕ1, ϕ2, . . . , ϕr+1 do not take
the value a. It follows that for any a ∈ Gc and any ϕ : X → T , the element
ua ◦ ϕ = ϕ1 − ϕ2 + . . . + (−1)rϕr+1 is a k-linear combination of functions ϕi
such that ϕi(X) ∩Gc ⊆

(
ϕ(X) ∩Gc

)
− {a}. We now remove successively all such

elements a by applying successively all ua for a ∈ Gc. It follows that uT ◦ ϕ is a
k-linear combination of functions f : X → T such that f(X) ∩ Gc = ∅, that is,
f(X) ⊆ G.

(b) Since ΘT,X : FT (X) → SE,Rop(X) is surjective, SE,Rop(X) is generated as
a k-module by the images ΘT,X(ϕ) of all maps ϕ : X → T . For any a ∈ Gc,
ua ◦ ϕ has the same image as ϕ under ΘT,X , by Theorem 5.4. Therefore uT ◦ ϕ
has the same image as ϕ under ΘT,X . Moreover, uT ◦ ϕ is a k-linear combination
of functions f : X → T such that f(X) ⊆ G, by (a). Finally, if E * f(X), then
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f ∈ Ker ΘT,X by Theorem 4.10, so we can remove any such function in the linear
combination uT ◦ ϕ without changing the image ΘT,X(uT ◦ ϕ). So we are left with
linear combinations of maps f : X → T such that E ⊆ f(X) ⊆ G.

We now mention that much more can be said about the elements ua appearing
in Theorem 5.6.

5.7. Definition. Let T be a finite lattice. Recall that Gc denotes the complement
of G in T . We define an oriented graph structure G(T ) on T in the following way :
for x, y ∈ T , there is an edge x y// from x to y in G(T ) if there exists a ∈ Gc
such that (x, y) is a pair of consecutive elements in the reduction sequence associated
to a.

5.8. Theorem. Keep the notation of Theorem 5.6 and let G(T ) be the graph
structure on T introduced in Definition 5.7.

(a) The graph G(T ) has no (oriented or unoriented) cycles, and each vertex has
at most one outgoing edge. Hence G(T ) is a forest.

(b) For a ∈ Gc, the element ua is an idempotent of k(TT ).
(c) ua ◦ ub = ub ◦ ua for any a, b ∈ Gc.
(d) The element uT is an idempotent of k(TT ).

There is actually a closed formula for uT and this is useful for the explicit de-
scription of the action of correspondences on the evaluation of simple functors (see
Theorem 8.3). Otherwise, Theorem 5.8 has apparently no direct implication on the
structure of correspondence functors, so we omit the proof.

6. Linear independence of the generators

In Section 5, we found a set ΘT,X(BX) of generators for the evaluation SE,Rop(X)
of a fundamental functor SE,Rop . We now move to linear independence.

6.1. Theorem. Let T be a finite lattice, let (E,R) = Irr(T ), let X be a finite
set, and let BX be the set of all maps ϕ : X → T such that E ⊆ ϕ(X) ⊆ G,
where G = G(T ) is the subset defined in Notation 2.10. The elements ΘT,X(ϕ), for
ϕ ∈ BX , are k-linearly independent in SE,Rop(X).

Proof : We consider again the kernel of the map

ΘT,X : FT (X) −→ SE,Rop(X) ,

which was described in Theorem 4.12 by a system of linear equations. This can be
reformulated by introducing the k-linear map

ηE,R,X : FT (X) // FI↑(E,R)(X)

ϕ
� // ∑

ψ:X→I↑(E,R)
ϕ
È,R

ψ

ψ

where the notation ϕ
È,R

ψ means, as before, that ϕ : X → T and ψ : X → I↑(E,R)

satisfy the equivalent conditions of Theorem 4.13. Theorem 4.12 asserts that

Ker(ΘT,X) = Ker(ηE,R,X) .
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For handling the condition ϕ
È,R

ψ, we shall use part (e) of Theorem 4.13, namely

(6.2)

ϕ
È,R

ψ ⇐⇒

{
ϕ ≤ ∧ψ ,
∀e ∈ E, ∃x ∈ X such that ϕ(x) = e and ψ(x) = [e, ·[E .

Let N = NE,R,X be the matrix of ηE,R,X with respect to the standard basis
of FT (X), consisting of maps ϕ : X → T , and the standard basis of FI↑(E,R)(X),

consisting of maps ψ : X → I↑(E,R). Explicitly,

(6.3) Nψ,ϕ =

{
1 if ϕ

È,R
ψ ,

0 otherwise.

Note that N is a square matrix in the special case when T = I↓(E,R), because
complementation yields a bijection between I↓(E,R) and I↑(E,R). However, if T
is a proper quotient of I↓(E,R), then N has less columns.

In order to prove that the elements ΘT,X(ϕ), for ϕ ∈ BX , are k-linearly inde-
pendent, we shall prove that the elements ηE,R,X(ϕ), for ϕ ∈ BX , are k-linearly
independent. In other words, we have to show that the columns of N indexed by
ϕ ∈ BX are k-linearly independent. Now we consider only the rows indexed by
elements of the form ψ = ζ ◦ ϕ′, where ϕ′ ∈ BX and ζ : G → I↑(E,R) is the map
defined in (2.13). We then define the square matrix M , indexed by BX × BX , by

∀ϕ,ϕ′ ∈ BX , Mϕ′,ϕ = Nζ◦ϕ′,ϕ .

We are going to prove that M is invertible and this will prove the required linear
independence.

The invertibility of M implies in particular that the map ζ must be injective,
otherwise two rows of M would be equal. Therefore M turns out to be a submatrix
of N , but this cannot be seen directly from its definition (unless an independent
proof of the injectivity of ζ is provided).

The characterization of the condition ϕ
È,R

ψ given in (6.2) implies that

Mϕ′,ϕ =

{
1 if ϕ ≤ ∧ζϕ′ and ∀e ∈ E,∃x ∈ X, ϕ(x) = e = ϕ′(x) ,
0 otherwise ,

because the equality ζϕ′(x) = [e, ·[E is equivalent to ϕ′(x) = e, by definition of ζ
(see Notation 2.13).

By Proposition 2.14, if t, t′ ∈ G are such that t ≤ ∧ζ(t′), then r∞(t) ≤ r∞(t′)
and σ∞(t) ≤ σ∞(t′). Let � be the preorder on G defined by these conditions, i.e.
for all t, t′ ∈ G,

t � t′ ⇐⇒ r∞(t) ≤ r∞(t′) and σ∞(t) ≤ σ∞(t′) .

We extend this preorder to BX by setting, for all ϕ′, ϕ ∈ BX ,

ϕ � ϕ′ ⇐⇒ ∀x ∈ X, ϕ(x) � ϕ′(x) ,

which makes sense because ϕ(x), ϕ′(x) ∈ G by definition of BX . We denote by ��
the equivalence relation defined by this preorder.

Clearly the condition Mϕ′,ϕ 6= 0 implies ϕ ≤ ∧ζϕ′, hence ϕ � ϕ′ by Proposi-
tion 2.14 quoted above. In other words the matrix M is block triangular, the blocks
being indexed by the equivalence classes of the preorder � on BX . Showing that
M is invertible is equivalent to showing that all its diagonal blocks are invertible.
In other words, we must prove that, for each equivalence class C of BX for the
relation ��, the matrix MC = (Mϕ′,ϕ)ϕ′,ϕ∈C is invertible. Let C be such a fixed
equivalence class.
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Recall from Definition 2.10 that G = ΛE t Ĝ. If t ∈ Ĝ, then by Lemma 2.9
e := σ∞(t) belongs to E and [t, e] = {rk(e), rk−1(e), . . . , r1(e), e}, where t = rk(e) =
r∞(e). By Lemma 2.5, all elements of [ t, σ∞(t) ]T belong to E except t itself.
Moreover, if x ∈ [ t, σ∞(t) ]T then r∞(x) = t by Lemma 2.9. It follows that the sets

Gt = [ t, σ∞(t) ]T , for t ∈ Ĝ ,

are disjoint, and contained in G. Let

G∗ = G−
⊔
t∈Ĝ

Gt ,

so that we get a partition

G =
⊔

t∈{∗}tĜ

Gt .

6.4. Lemma. Let ϕ′, ϕ ∈ BX . If ϕ′��ϕ, then for all t ∈ {∗} t Ĝ,

ϕ′−1(Gt) = ϕ−1(Gt) .

Proof : Let t ∈ Ĝ and x ∈ ϕ−1(Gt). Then ϕ(x) ∈ [ t, σ∞(t) ]T , hence r∞ϕ(x) =
t and σ∞ϕ(x) = σ∞(t), by Lemma 2.9. But the relation ϕ′��ϕ implies that
r∞ϕ′(x) = r∞ϕ(x) and σ∞ϕ′(x) = σ∞ϕ(x). Therefore r∞ϕ′(x) = t and σ∞ϕ′(x) =
σ∞(t), from which it follows that ϕ′(x) ∈ [ t, σ∞(t) ]T , that is, x ∈ ϕ′−1(Gt). This
shows that ϕ−1(Gt) ⊆ ϕ′−1(Gt). By exchanging the roles of ϕ and ϕ′, we obtain
ϕ′−1(Gt) = ϕ−1(Gt).

Now G∗ is the complement of
⊔
t∈Ĝ

Gt in G and the functions ϕ′, ϕ have their

values in G (by definition of BX). So we must have also ϕ′−1(G∗) = ϕ−1(G∗).

For every t ∈ {∗} t Ĝ, we define

Xt = ϕ−1
0 (Gt)

where ϕ0 is an arbitrary element of C. It follows from Lemma 6.4 that this definition
does not depend on the choice of ϕ0. Therefore, the equivalence class C yields a
partition

X =
⊔

t∈{∗}tĜ

Xt ,

and every function ϕ ∈ C decomposes as the disjoint union of the functions ϕt,
where ϕt : Xt → Gt is the restriction of ϕ to Xt.

For t ∈ Ĝ, define

Et = ] t, σ∞(t) ]T .

By Lemma 2.5, this consists of elements of E, so Et = E ∩ Gt. Then we define
E∗ = E −

⊔
t∈Ĝ

Et = E ∩G∗, so that we get a partition

E =
⊔

t∈{∗}tĜ

Et .

For every t ∈ {∗} t Ĝ and for every ϕ ∈ C, the fact that ϕ belongs to BX implies
that ϕt belongs to the set BX,t of all maps ϕt : Xt → Gt such that

Et ⊆ ϕt(Xt) ⊆ Gt .
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Moreover, if ϕ′, ϕ ∈ C, then

Mϕ′,ϕ = 1 ⇐⇒ ∀t ∈ {∗} t Ĝ,

{
∀x ∈ Xt, ϕt(x) ≤ ∧ζϕ′t(x)

∀e ∈ Et, ∃x ∈ Xt, ϕ
′(x) = e = ϕ(x) .

It follows that the matrix MC is the tensor product of the square matrices MC,t

for t ∈ {∗} t Ĝ, where the matrix MC,t is indexed by the functions ϕt : Xt → Gt
in BX,t and satisfies

(MC,t)ϕ′t,ϕt = 1 ⇐⇒

{
∀x ∈ Xt, ϕt(x) ≤ ∧ζϕ′t(x)

∀e ∈ Et, ∃x ∈ Xt, ϕ
′(x) = e = ϕ(x) .

In order to show that MC is invertible, we shall prove that each matrix MC,t is
invertible.

If ϕ∗ ∈ BX,∗ and x ∈ X∗, then ϕ∗(x) ∈ G∗, hence ϕ∗(x) /∈ Ĝ, because Ĝ consists

of all the bottom elements of the intervals Gt where t ∈ Ĝ. Therefore, the condition

ϕ∗(x) ≤ ∧ζϕ′∗(x) implies ϕ∗(x) ≤ ϕ′∗(x) by Proposition 2.14, because ϕ′∗(x) /∈ Ĝ.
It follows that the matrix MC,∗ is unitriangular, hence invertible, as required.

Now we fix t ∈ Ĝ, we consider the matrix MC,t and we discuss the special role

played by the elements of the set Ĝ. The interval Gt = [t, σ∞(t)]T is isomorphic
to the totally ordered lattice n = {0, 1, . . . , n}, for some n ≥ 1, and the set of
irreducible elements Et =]t, σ∞(t)]T is isomorphic to [n] = {1, . . . , n}. Composing
the maps ϕt : Xt → Gt with this isomorphism, we obtain maps Xt → n.

Changing notation for simplicity, we write X for Xt and ϕ for ϕt, and we let BnX
be the set of all maps ϕ : X → n corresponding to maps in BX,t, i.e. satisfying the
condition [n] ⊆ ϕ(X) ⊆ n. We note that this condition is the same as the condition
that ϕ belongs to BX for the lattice n, because the set G(n) is the whole of n by
Example 2.11. The matrix MC,t, which we write Mn for simplicity, is now indexed
by all the maps in BnX and we have

M
n
ϕ′,ϕ = 1 ⇐⇒

{
∀x ∈ X, ϕ(x) ≤ ∧ζϕ′(x)

∀e ∈ [n], ∃x ∈ X, ϕ′(x) = e = ϕ(x) .

Here we need to clarify the meaning of the notation ∧ζ, so we recall that for any
g ∈ G, we have

∧ζ(g) =

{
g if g ∈ E ,
σ∞(g) if g /∈ E .

If g belongs to Gt and is mapped to a ∈ n via the isomorphism Gt ∼= n, then σ∞(g)
is mapped to n and we obtain

∧ζ(a) =

{
a if a ∈ [n], i.e. a 6= 0 ,
n if a = 0 .

The point here is that we obtain the same result as the one we would have obtained
by working with the lattice n, that is, by working with the corresponding map
ζ : n→ I↑([n], tot), which is easily seen to be a bijection, mapping 0 to ∅ and j ≥ 1
to [j, n].

Now we return to the beginning of the proof of Theorem 6.1 in the special case
of the lattice n, with Irr(n) = ([n], tot), where tot denotes the usual total order.
We have

Ker(Θn,X) = Ker(η[n],tot,X)

and the matrix N of η[n],tot,X has entries 0 and 1, with

Nψ,ϕ = 1 ⇐⇒

{
∀x ∈ X, ϕ(x) ≤ ∧ψ(x)

∀e ∈ [n], ∃x ∈ X, ϕ(x) = e and ψ(x) = [e, ·[[n] ,
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where ϕ : X → n and ψ : X → I↑([n], tot). But since ζ : n → I↑([n], tot) is
a bijection, we can write ψ = ζϕ′ and index the rows by the set of all functions
ϕ′ : X → n. We obtain

Nϕ′,ϕ = 1 ⇐⇒

{
∀x ∈ X, ϕ(x) ≤ ∧ζϕ′(x)

∀e ∈ [n], ∃x ∈ X, ϕ′(x) = e = ϕ(x) ,

If ϕ or ϕ′ is not in BnX (that is, the image of either ϕ or ϕ′ does not contain [n]),
then the second condition cannot hold and so Nϕ′,ϕ = 0. Thus we restrict the
matrix N to the rows and columns indexed by BnX . This restriction is exactly the
same matrix as the matrix Mn above. Therefore, in order to prove that Mn is
invertible, it suffices to prove that the columns of N indexed by BnX are k-linearly
independent. This in turn is equivalent to the condition that the set η[n],tot,X(BnX)

is k-linearly independent, or also that the set Θn,X(BnX) is k-linearly independent
in S[n],totop(X), because Ker(Θn,X) = Ker(η[n],tot,X). In other words, we have to
prove Theorem 6.1 in the case of a total order.

By Theorem 4.10, we know that the surjective morphism

Θn : Fn −→ S[n],totop

has Hn in its kernel, where Hn is the subfunctor of Fn generated by all the maps
ϕ : X → n such that [n] 6⊆ ϕ(X). Therefore Θn induces a surjective morphism

Θn : Fn/Hn −→ S[n],totop .

But Theorem 11.8 in [BT3] asserts that Fn/Hn is isomorphic to S[n],tot, hence
also to S[n],totop in view of the poset isomorphism ([n], totop) ∼= ([n], tot) via the

map j 7→ n − j + 1. Clearly the set BnX is a k-basis of Fn(X)/Hn(X), so that
S[n],totop(X) is also a free k-module of rank |BnX |. Evaluation at X yields a surjective
homomorphism

Θn,X : Fn(X)/Hn(X) −→ S[n],totop(X)

between two free k-modules of the same rank, hence an isomorphism (by standard
algebraic K-theory, see Lemma 6.8 in [BT3]). Since the elements Θn,X(ϕ), for

ϕ ∈ BnX , are the images under Θn,X of the k-basis BnX of Fn(X)/Hn(X), they form
a k-basis of S[n],totop(X). In particular, they are k-linearly independent.

This completes the proof of Theorem 6.1.

In order to obtain formulas for the dimension of the evaluation of a fundamental
functor, we need a well-known combinatorial lemma, which is Lemma 8.1 in [BT2],
but actually goes back to [BBHM].

6.5. Lemma. Let E be a subset of a finite set G. For any finite set X, the
number N of all maps ϕ : X → G such that E ⊆ ϕ(X) ⊆ G is equal to

N =

|E|∑
i=0

(−1)i
(
|E|
i

)
(|G| − i)|X| .

We can now prove one of our main results about fundamental correspondence
functors. This generalizes a formula obtained in [BT3] in the case of a total order.

6.6. Theorem. Let (E,R) be a finite poset and let T be any lattice such that
(E,R) = Irr(T ). Let X be a finite set and let BX be the set of all maps ϕ : X → T
such that E ⊆ ϕ(X) ⊆ G, where G = G(T ) is the subset defined in Notation 2.10.

(a) The set ΘT,X(BX) (more precisely, the injective image of BX under ΘT,X)
is a k-basis of SE,Rop(X).
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(b) The k-module SE,Rop(X) is free of rank

rkk
(
SE,Rop(X)

)
= |BX | =

|E|∑
i=0

(−1)i
(
|E|
i

)
(|G| − i)|X| .

Proof : (a) follows from Theorem 5.6 and Theorem 6.1.

(b) The formula follows immediately from (a) and Lemma 6.5.

6.7. Corollary. With the notation above, |G| only depends on (E,R), and not
on the choice of T .

Proof : The formula of Theorem 6.6 implies that

rkk
(
SE,Rop(X)

)
∼ |G||X| as |X| → ∞ .

Since SE,Rop only depends on (E,R), it follows that |G| only depends on (E,R).

We shall prove in a future paper a stronger property : the full subposet G of T
only depends on (E,R) up to isomorphism.

7. From fundamental functors to simple functors

In this section, we complete the description of simple functors by showing that they
can be constructed directly from fundamental functors. This uses in an essential
way the fact, proved in Theorem 7.5 below, that each evaluation of a fundamental
functor SE,R is a free kAut(E,R)-module. The proof will depend on our main
Theorem 6.6.

In order to use the action of automorphisms, we will need the following lemma.

7.1. Lemma. Let (E,R) be a finite poset.

(a) For any finite lattice T such that Irr(T ) = (E,R), restriction induces an
injective group homomorphism Aut(T )→ Aut(E,R).

(b) There exists a finite lattice T such that Irr(T ) = (E,R) and such that the
restriction homomorphism Aut(T )→ Aut(E,R) is an isomorphism.

Proof : (a) For any lattice T such that Irr(T ) = (E,R), any lattice automorphism
of T induces an automorphism of the poset (E,R). This gives a group homomor-
phism Aut(T )→ Aut(E,R), which is injective since any element t of T is equal to
the join of the irreducible elements e ≤T t.

(b) Requiring that Aut(T ) ∼= Aut(E,R) amounts to requiring that any automor-
phism of (E,R) can be extended to an automorphism of T . This is clearly possible
if we choose T = I↓(E,R).
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Now let T be a finite lattice with Irr(T ) = (E,R). Our first goal is to work with
right kAut(E,R)-module structures on FT and SE,R. First, note that the group
Aut(T ) acts on the right on FT (X) as follows :

∀ϕ : X → T , ∀σ ∈ Aut(T ) , ϕ · σ := σ−1 ◦ ϕ .

Next, recall that the fundamental functor associated to a finite poset (E,R) is

SE,R := LE,ME,R
/JE,ME,R

where ME,R is the fundamental kRE-module. Using the right kAut(E,R)-module
structure on ME,R, we can define a right kAut(E,R)-module structure on each
evaluation

LE,ME,R
(X) = kC(X,E)⊗kC(E,E) ME,R

and we now show that this right module structure can be carried to SE,R(X).

7.2. Lemma.

(a) JE,ME,R
(X) is a right kAut(E,R)-submodule of LE,ME,R

(X).
(b) SE,R(X) has a right kAut(E,R)-module structure.
(c) The left action of any element of kC(Y,X) is a homomorphism of right

kAut(E,R)-modules SE,R(X)→ SE,R(Y ).

Proof : (a) Since kPE is a quotient algebra of kC(E,E) and the tensor product
defining LE,ME,R

(X) is over kC(E,E), any element of LE,ME,R
(X) can be written

ϕ ⊗ fR for some ϕ ∈ kC(X,E). The right action of σ ∈ Aut(E,R) on ME,R (see
Proposition 3.2) induces the right action given by

(ϕ⊗ fR)∆σ = ϕ⊗ (∆σfR) = (ϕ∆σ)⊗ fR .

If ϕ⊗ fR ∈ JE,ME,R
(X), then (ρϕ) · fR = 0 for all ρ ∈ kC(E,X). Then the element

(ϕ∆σ)⊗ fR satisfies

(ρϕ∆σ) · fR = (ρϕ) · fR∆σ = 0

for all ρ ∈ kC(E,X). Therefore (ϕ∆σ)⊗ fR = (ϕ⊗ fR)∆σ belongs to JE,ME,R
(X),

as was to be shown.

(b) This follows immediately from (a).

(c) This follows from the fact that the left and right actions commute, by asso-
ciativity of the composition kC(Y,X)× kC(X,E)× kC(E,E)→ kC(Y,E).

We need now to explain how the morphism ΘT : FT → SE,Rop of Theorem 4.10
is defined. This appears in Theorem 6.5 of [BT3].

7.3. Definition. Let ϕ : X → T be a map, i.e. a generator of FT (X). Then
ΘT,X(ϕ) is the class in the quotient SE,Rop(X) of the element

Γϕ ⊗ fRop ∈ kC(X,E)⊗kC(E,E) ME,Rop = LE,ME,Rop
(X) ,

where Γϕ is the correspondence defined in Notation 4.11.
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7.4. Lemma. Let (E,R) be a poset. Let T be a lattice such that Irr(T ) =
(E,R) and such that the restriction homomorphism Aut(T ) → Aut(E,R) is an
isomorphism. For every finite set X, the map

ΘT,X : FT (X) −→ SE,Rop(X)

is a homomorphism of right kAut(E,R)-modules.

Proof : Note that we obviously have an equality Aut(E,R) = Aut(E,Rop). Let
us first prove that, for any ϕ : X → T and any σ ∈ Aut(T ) ∼= Aut(E,R),

Γϕ∆σ = Γσ−1ϕ .

An element (x, e) ∈ X×E belongs to the left hand side if and only if (x, σ(e)) ∈ Γϕ,
because (σ(e), e) ∈ ∆σ. By the definition of Γϕ, this is equivalent to the condition
σ(e) ≤T ϕ(x), which in turn is equivalent to e ≤T σ−1ϕ(x) because σ ∈ Aut(T ).
Thus we obtain that (x, e) satisfies the condition defining Γσ−1ϕ, that is, (x, e)
belongs to the right hand side.

Now we can compute ΘT,X(ϕ · σ) = ΘT,X(σ−1ϕ). By Definition 7.3, this is the
class in the quotient SE,Rop(X) of the element

Γσ−1ϕ ⊗ fRop = Γϕ∆σ ⊗ fRop = Γϕ ⊗∆σfRop = (Γϕ ⊗ fRop)∆σ .

The latter equality uses the definition of the right action of σ on fRop (Proposi-
tion 3.2). Since the class of Γϕ ⊗ fRop is ΘT,X(ϕ), this shows that ΘT,X(ϕ · σ) =
ΘT,X(ϕ) · σ, as required.

Our next result is crucial for the rest of this section, hence for the computation
of the dimension of the evaluations of simple functors (Theorem 7.10).

7.5. Theorem. Let (E,R) be a poset. Let T be a lattice such that Irr(T ) = (E,R)
and such that the restriction homomorphism Aut(T ) → Aut(E,R) is an isomor-
phism. For every finite set X, the evaluation SE,Rop(X) is a free right kAut(E,R)-
module.

Proof : The set of all maps ϕ : X → T is a k-basis of FT (X) and is permuted
by the right action of Aut(E,R). If G is as before (see Theorem 6.6), we claim
that the subset BX of all maps satisfying E ⊆ ϕ(X) ⊆ G is freely permuted
by Aut(E,R). First note that Aut(E,R) obviously leaves E invariant. It also
leaves G invariant because Aut(T ) ∼= Aut(E,R) preserves the characterization of G
given in Notation 2.10. Therefore Aut(E,R) acts on BX .

If σ ∈ Aut(E,R) stabilizes some ϕ ∈ BX , that is, ϕ·σ = ϕ, then σ−1ϕ(x) = ϕ(x)
for all x ∈ X, hence in particular σ−1(e) = e for every e ∈ E because E ⊆ ϕ(X).
It follows that σ is the identity automorphism of E. This proves the claim above.

Now BX is mapped bijectively onto ΘT,X(BX), which is a k-basis of SE,Rop(X),
by Theorem 6.6. By Lemma 7.4, ΘT,X is a homomorphism of kAut(E,R)-modules.
It follows that ΘT,X(BX) is freely permuted by Aut(E,R) and therefore SE,Rop(X)
is a free (right) kAut(E,R)-module.

Now we construct a morphism Ψ : SE,R ⊗kAut(E,R) V → SE,R,V , which will be
proved later to be an isomorphism (Theorem 7.9).
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7.6. Proposition. Let (E,R) be a finite poset, let A = Aut(E,R), and let V be
a left kA-module, generated by a single element v (e.g. a simple module).

(a) For any finite set X, there is a commutative diagram

0 // JE,ME,R
(X)

j //

��

LE,ME,R
(X)

π //

��

SE,R(X) //

id⊗v
��

0

JE,ME,R
(X)⊗kA V

j⊗idV //

��

LE,ME,R
(X)⊗kA V

π⊗idV //

id

��

SE,R(X)⊗kA V //

ΨX

��

0

0 // JE,ME,R⊗V (X)
i // LE,ME,R⊗V (X) // SE,R,V (X) // 0

(b) On the right hand side, both maps id⊗v and ΨX are surjective.

Proof : The first row comes from the definition of SE,R and j denotes the inclusion
map while π is the quotient map. The second row is obtained from the first by
tensoring with V (tensoring is right exact), using the right kA-module structure
obtained in Lemma 7.2. The three vertical maps from the first to the second row
are all given by α 7→ α ⊗ v and they are surjective because v generates V , hence
V = kA · v. The third row comes from the definition of SE,R,V and i denotes the
inclusion map. Now we have to describe the vertical maps from the second to the
third row. The middle vertical map is the identity because

LE,ME,R
(X)⊗kA V = kC(X,E)⊗kC(E,E) ME,R ⊗kA V = LE,ME,R⊗kAV (X) .

We claim that (j⊗ idV )
(
JE,ME,R

(X)⊗kA V
)

is contained in JE,ME,R⊗V (X). It will
then follow that j ⊗ idV defines the vertical map on the left. This in turn shows
that id induces the vertical map ΨX on the right and ΨX is surjective.

In order to prove the claim, let ϕ⊗ fR ∈ JE,ME,R
(X) where ϕ ∈ kC(X,E). This

means that
∀ρ ∈ kC(E,X) , (ρϕ) · fR = 0 .

It follows that (ρϕ) · (fR ⊗ v) = 0 in ME,R ⊗kA V because ρϕ only acts on the first
term of the tensor product. This means that the element

ϕ⊗ (fR ⊗ v) ∈ LE,ME,R⊗V (X)

actually belongs to JE,ME,R⊗V (X). But this element is equal to

(ϕ⊗ fR)⊗ v = (j ⊗ idV )(ϕ⊗ fR ⊗ v) ,

proving the claim.

7.7. Notation. Consider the diagram of Proposition 7.6. When X is allowed
to vary, the morphisms ΨX on the right hand side define a surjective morphism of
correspondence functors

Ψ : SE,R ⊗kA V −→ SE,R,V ,

providing a direct link between the fundamental functor SE,R and the simple functor
SE,R,V when V is simple.

Similarly, the right hand side composite ΨX◦(id⊗v) yields a surjective morphism

Φ := Ψ ◦ (id⊗v) : SE,R −→ SE,R,V

which is a morphism of correspondence functors because it is induced by the middle
vertical morphism

LE,ME,R
−→ LE,ME,R⊗kAV ,
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which is obviously a morphism of correspondence functors. This defines the mor-
phism Φ appearing in Proposition 4.8.

Our goal is to prove that Ψ : SE,R ⊗kA V → SE,R,V is an isomorphism. We
prepare the ground with the following lemma, which is analogous to Lemma 4.3. In
the proof, we need the full strength of Theorem 7.5, based in turn on Theorem 6.6.
Since we consider simple modules, we assume that k is a field.

7.8. Lemma. Let k be a field, let (E,R) be a finite poset, let A = Aut(E,R), and
let V be a simple kA-module. Let α ∈ SE,R(X)⊗kA V where X is some finite set.
Then ρ · α = 0 for every ρ ∈ kC(E,X) if and only if α = 0.

Proof : Since V is a simple kA-module and A is a finite group, we claim that
there exists an injective homomorphism of kA-modules λ : V → kA. This follows
from the following argument. If V \ denotes the dual simple module, there exists
a surjective homomorphism π : kA → V \, which we dualize to obtain an injective
homomorphism π\ : V → (kA)\. Now the group algebra of a finite group is a
symmetric algebra, so (kA)\ ∼= kA, and this defines the injective homomorphism
λ : V → kA.

If M is a free right kA-module, then

idM ⊗λ : M ⊗kA V −→M ⊗kA kA
remains injective. This is clear if M is free of rank one and then it follows in general
by taking direct sums. Now we compose with the isomorphism M⊗kAkA ∼= M and
we take M = SE,R(X), which is indeed a free right kA-module by Theorem 7.5.
We obtain an injective homomorphism

λX : SE,R(X)⊗kA V −→ SE,R(X)

which is easily seen to define a morphism of correspondence functors

λ : SE,R ⊗kA V −→ SE,R
because we use only the right module structure, whereas correspondences act on
the left.

For every ρ ∈ kC(E,X), there is a commutative diagram

SE,R(X)⊗kA V
λX //

ρ

��

SE,R(X)

ρ

��
SE,R(E)⊗kA V

λE // SE,R(E)

Whenever our given element α ∈ SE,R(X) ⊗kA V satisfies ρ · α = 0 for every
ρ ∈ kC(E,X), we also have ρ · λX(α) = 0 for every ρ ∈ kC(E,X). But this implies
that λX(α) = 0 by Lemma 4.3. Since λX is injective, α = 0, as required.

Now we come to our main description of simple correspondence functors.

7.9. Theorem. Let k be a field, let (E,R) be a finite poset, let A = Aut(E,R),
and let V be a simple kA-module. The morphism Ψ : SE,R ⊗kA V → SE,R,V is an
isomorphism.

Proof : For any finite set X and any ρ ∈ kC(E,X), there is a commutative diagram

SE,R(X)⊗kA V
ΨX //

ρ

��

SE,R,V (X)

ρ

��
SE,R(E)⊗kA V

ΨE // SE,R,V (E)
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Note that ΨE is an isomorphism because

SE,R(E)⊗kA V = ME,R ⊗kA V = SE,R,V (E)

and Ψ is induced by the identity morphism LE,ME,R
⊗kA V → LE,ME,R⊗kAV .

Let α ∈ SE,R(X)⊗kA V such that ΨX(α) = 0. Then

ΨE(ρ · α) = ρ ·ΨX(α) = 0

for every ρ ∈ kC(E,X). Since ΨE is an isomorphism, we obtain ρ · α = 0 for every
ρ ∈ kC(E,X). Therefore α = 0 by Lemma 7.8. This proves that ΨX is injective
and we know that it is surjective by construction.

We can finally prove one of our main results, namely the determination of the
dimension of any evaluation of a simple correspondence functor. Because of the
link with lattices (via the morphism ΘT ), it is convenient to state the result for Rop

rather than R. But this is actually a minor point because SE,R,V is isomorphic to
the dual of SE,Rop,V \ where V \ is the dual module, by Theorem 9.8 in [BT3].

7.10. Theorem. Let k be a field. Let (E,R) be a poset and let V be a simple
left kAut(E,R)-module. Let T be a lattice such that Irr(T ) = (E,R) and such
that the restriction homomorphism Aut(T ) → Aut(E,R) is an isomorphism. Let
G = E t {t ∈ T | t = r∞σ∞(t)} ⊆ T (see Definition 2.10).

For any finite set X, the dimension of SE,Rop,V (X) is given by

dimk SE,Rop,V (X) =
dimk V

|Aut(E,R)|

|E|∑
i=0

(−1)i
(
|E|
i

)
(|G| − i)|X| .

Proof : By Theorem 7.5, SE,Rop(X) is isomorphic to the direct sum of nX copies
of the free right module kAut(E,R), for some nX ∈ N. In particular

dimk SE,Rop(X) = nX |Aut(E,R)| .
By Theorem 7.9, the simple functor SE,Rop,V is isomorphic to SE,Rop⊗kAut(E,R) V ,
using the obvious equality Aut(E,R) = Aut(E,Rop). Thus we obtain

SE,Rop,V (X) ∼= SE,Rop(X)⊗kAut(E,R) V ∼= nX
(
kAut(E,R)

)
⊗kAut(E,R) V ∼= nXV .

Hence dimk SE,Rop,V (X) = nX dimk V . Therefore

dimk SE,Rop,V (X) =
dimk V

|Aut(E,R)|
dimk SE,Rop(X) .

The result now follows from Theorem 6.6.

8. Simple modules for the algebra of relations

Let X be a fixed finite set and consider the monoid RX = C(X,X) of all relations
on X, also known as the monoid of all Boolean matrices of size |X|. As before,
write kRX for the algebra of this monoid. Throughout this section, we assume
that the base ring k is a field. We give the parametrization of all simple modules
for the algebra kRX and then solve the open problem of giving a formula for their
dimension. We also give an explicit description for the action of relations on every
simple kRX -module.

We mentioned in the introduction that, for the parametrization of all simple
modules for the algebra kRX , we do not use the Munn-Ponizovsky theory using
Green’s J -classes. We use instead the parametrization of all simple correspondence
functors SE,R,V by isomorphism classes of triples (E,R, V ) (see Theorem 4.5). The
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method is now very elementary since it simply uses the fact that every evaluation
of a simple functor yields a simple module, or zero, and that every simple module
arises in that way. This mechanism goes back to Green (6.2 in [Gr]) but we also
give some more recent references.

8.1. Theorem. Let X be a finite set.

(a) The set of isomorphism classes of simple kRX-modules is parametrized by
the set of isomorphism classes of triples (E,R, V ), where E is a finite set
with |E| ≤ |X|, R is an order relation on E, and V is a simple kAut(E,R)-
module.

(b) The simple module parametrized by the triple (E,R, V ) is SE,R,V (X), where
SE,R,V is the simple correspondence functor corresponding to the triple
(E,R, V ).

Proof : We first recall that the evaluation S(X) of a simple correspondence func-
tor S at a finite set X is either zero or a simple kRX -module. The proof is very
easy and appears in Proposition 3.2 of [We], or also in Proposition 2.7 of [BT2].

Conversely, we claim that any simple kRX -module W occurs as the evaluation
of some simple correspondence functor S, that is, W ∼= S(X). Explicitly, S is the
functor LX,W /JX,W considered in Lemma 4.3. The claim is Lemma 2.5 of [BT2]
which quotes the first lemma of [Bo]. It also appears in Proposition 3.2 of [We],
where it is attributed to Green (6.2 in [Gr]). This requires to view kRX = kC(X,X)
as a category with a single object X, hence a full subcategory of kC. Proposition 3.2
of [We] or Proposition 2.7 of [BT2] also show that the simple correspondence func-
tor S such that W ∼= S(X) is unique up to isomorphism. All these facts actually
hold for the simple representations of any small category.

By Theorem 4.5, our simple correspondence functor S = SE,R,V is parametrized
by a triple (E,R, V ), where E is a finite set, R is an order relation on E, and
V is a simple kAut(E,R)-module. Whenever W = SE,R,V (X) 6= {0}, we have
|E| ≤ |X| because SE,R,V vanishes on sets Y with |E| > |Y | (by Theorem 4.5).
In order to obtain the parametrization of the statement, we also need to show
that W = SE,R,V (X) is nonzero if |E| ≤ |X|. This is clear if |E| = |X| be-
cause SE,R,V (E) = TR,V is nonzero (see the construction of SE,R,V in Section 4).
Knowing that SE,R,V (E) 6= {0}, Corollary 3.7 in [BT2] asserts precisely that
SE,R,V (X) 6= {0} if |E| < |X|. This provides the required parametrization and
completes the proof.

Note that we used at the end of the proof the non-vanishing of SE,R,V (X) when
|E| < |X|. This is a special property of correspondence functors (Corollary 3.7
in [BT2]) and it may not hold for representations of other small categories.

In view of Theorem 8.1, a formula for the dimension of any simple kRX -module
is now given by Theorem 7.10. More explicitly, we fix a poset (E,R) and a finite
lattice T having (E,R) as the full subset of its join-irreducible elements. We can
also choose T such that Aut(T ) ∼= Aut(E,R) by taking for instance T = I↓(E,R).
We consider the simple kRX -module SE,Rop,V (X), continuing to use Rop as in
Theorem 7.10. We define the subset G of T as in Notation 2.10 and we write
G = GE,R to emphasize its dependence on (E,R). Its cardinality |G| only depends
on (E,R), by Corollary 6.7.

8.2. Theorem. With the notation above, the dimension of a simple kRX-module
is given by the formula

dim(SE,Rop,V (X)) =
dimk V

|Aut(E,R)|

|E|∑
i=0

(−1)i
(
|E|
i

)
(|GE,R| − i)|X| .
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Proof : This is a restatement of Theorem 7.10.

An explicit description can be given for the action of relations on the simple
kRX -module SE,Rop,V (X). We define a subset

BE,R,X = {ϕ ∈ TX | E ⊆ ϕ(X) ⊆ GE,R} ⊆ TX .

By Theorem 6.6, the surjective morphism ΘT : FT → SE,Rop induces a k-module
decomposition

FT (X) = kBE,R,X ⊕Ker(ΘT,X) ,

where kBE,R,X is the k-subspace of FT (X) with basis BE,R,X . Thus we have a
k-module isomorphism

SE,Rop(X) ∼= kBE,R,X .

The family of subspaces kBE,R,X do not form a subfunctor of FT , but they can be
used to describe the evaluations of the functors SE,Rop and SE,Rop,V .

We explain a procedure for modifying an element ϕ ∈ TX modulo Ker(ΘT,X)
in order to project it in kBE,R,X . In Theorem 5.6, we introduced an element
uT ∈ k(TT ) which has the property that, for any ϕ ∈ TX , the composition uT ◦ ϕ
is a k-linear combination of maps f ∈ TX such that f(X) ⊆ GE,R. (Actually, uT
is idempotent, by Theorem 5.8.) Moreover,

uT ◦ ϕ ≡ ϕ (mod Ker(ΘT,X)) .

Let πT,X be the k-linear idempotent endomorphism of k(TX) defined by

∀ϕ ∈ TX , πT,X(ϕ) =

{
ϕ if E ⊆ ϕ(X) ,
0 otherwise .

By Theorem 4.10,

πT,X(ϕ) ≡ ϕ (mod Ker(ΘT,X)) .

Then, for any map ϕ ∈ TX , we obtain

πT,X(uT ◦ ϕ) ∈ kBE,R,X ,

that is, a k-linear combination of maps f ∈ TX such that E ⊆ f(X) ⊆ GE,R.
Moreover,

πT,X(uT ◦ ϕ) ≡ ϕ (mod Ker(ΘT,X)) .

Thus if we lift arbitrarily a basis element of SE,Rop(X) to ϕ ∈ FT (X), we can modify
it modulo Ker(ΘT,X) to obtain an element of kBE,R,X . Applying this procedure to
the action of a relation U ∈ C(X,X) on an element ϕ ∈ kBE,R,X , we obtain

Uϕ ≡ πT,X(uT ◦ Uϕ) (mod Ker(ΘT,X)) ,

and πT,X(uT ◦ Uϕ) belongs to kBE,R,X .
As in Section 7, we tensor on the right with the kAut(E,R)-module V , using the

right action of Aut(E,R) on BE,R,X defined by ϕ·σ := σ−1◦ϕ for all σ ∈ Aut(E,R).
By Theorem 7.9, we have isomorphisms

SE,Rop,V (X) ∼= SE,Rop(X)⊗kAut(E,R) V ∼= kBE,R,X ⊗kAut(E,R) V ,

the second isomorphism being only k-linear.
This analysis proves the following result, which provides a computational method

for describing the action of a relation on a simple kRX -module.
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8.3. Theorem. Fix the notation above.

(a) SE,Rop,V (X) ∼= kBE,R,X ⊗kAut(E,R) V as k-vector spaces.
(b) Transporting the action of relations via this isomorphism, the action of a

relation U ∈ C(X,X) on an element

ϕ⊗ v ∈ kBE,R,X ⊗kAut(E,R) V , (ϕ ∈ BE,R,X , v ∈ V )

is given by
U · (ϕ⊗ v) = πT,X(uT ◦ Uϕ)⊗ v .

Our last result gives the dimension of the Jacobson radical J(kRX) of the k-
algebra kRX . We assume for simplicity that the field k has characteristic zero.

8.4. Theorem. Assume that k is a field of characteristic zero. Let J(kRX) be
the Jacobson radical of the k-algebra kRX and let n = |X|. Then

dim J(kRX) = 2n
2

−
n∑
e=0

∑
R

1

|Aut(E,R)|

( e∑
i=0

(−1)i
(
e

i

)
(|GE,R| − i)n

)2

,

where R runs over a set of representatives of Σe-conjugacy classes of order relations
on the set E = {1, . . . , e}. The integer |GE,R| is the cardinality of the set GE,R
defined in Notation 2.10. Note that if e = 0, then E = ∅, R = ∅ and |GE,R| = 1
(by Example 2.11).

Proof : Since k has characteristic zero, the semi-simple algebra kRX/J(kRX)
is separable, that is, it remains semi-simple after scalar extension to an algebraic
closure k of k. In other words, dim J(kRX) does not change after this scalar
extension. Therefore, we can assume that k = k.

By Theorem 8.1, every simple kRX -module has the form SE,R,V (X) with |E| ≤
|X|, where SE,R,V is the simple correspondence functor parametrized by the triple
(E,R, V ). In order to have a parametrization, we take E = {1, . . . , e} with
0 ≤ e ≤ n, we take R in a set of representatives as in the statement, and finally
we take V in a set of representatives of isomorphism classes of simple kAut(E,R)-
modules.

Since the endomorphism algebra of a simple module is isomorphic to k, by Schur’s
lemma and the assumption that k is algebraically closed, the dimension of the semi-
simple algebra kRX/J(kRX) is equal to the sum of the squares of the dimensions of
all simple modules, by Wedderburn’s theorem. From the formula for the dimension
of simple modules, we obtain

dim
(
kRX/J(kRX)

)
=

∑
E,R,V

(
dimSE,R,V (X)

)2
=
∑
E,R,V

(
dimSE,Rop,V (X)

)2
=

∑
E,R,V

( dimV

|Aut(E,R)|

)2( |E|∑
i=0

(−1)i
(
|E|
i

)
(|GE,R| − i)|X|

)2

=

n∑
e=0

∑
R

(∑
V

(dimV )2

|Aut(E,R)|2
)( e∑

i=0

(−1)i
(
e

i

)
(|GE,R| − i)n

)2

=

n∑
e=0

∑
R

1

|Aut(E,R)|

( e∑
i=0

(−1)i
(
e

i

)
(|GE,R| − i)n

)2

,

because
∑
V

(dimV )2 = dim(kAut(E,R)) = |Aut(E,R)|, by semi-simplicity of the

group algebra in characteristic zero (Maschke’s theorem). Now

dim J(kRX) = dim kRX − dim
(
kRX/J(kRX)

)
= 2n

2

− dim
(
kRX/J(kRX)

)
and the result follows.
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If k is an algebraically closed field of prime characteristic p, the formula has to be
modified in a straightforward manner, in order to take into account the Jacobson
radical of kAut(E,R). Then it seems likely that the same formula holds over any
field of characteristic p (that is, kRX/J(kRX) is likely to be a separable algebra),
but we leave this question open.

9. Examples

We state here without proofs a list of examples. For simplicity, we assume that
the base ring k is a field (but many results actually remain true over an arbitrary
commutative ring k). We first describe a few small cases for modules over the
algebra kRX , using the notation of Section 8. Then we give the decomposition of
the functors FT associated to some particular lattices T .

9.1. Example. Let X = ∅. There is a single relation on ∅, namely ∅, and kR∅ ∼= k.
Then S∅,∅,k(∅) ∼= kB∅,∅,∅ ⊗k k ∼= k and the unique relation ∅ acts as the identity
on k.

9.2. Example. Let X = {1}. There are 2 relations on {1}, namely ∅ and ∆{1}.
For E = ∅, we get S∅,∅,k({1}) ∼= kB∅,∅,{1}⊗k k ∼= k and both relations act as the

identity on k.
For E = {1}, we obtain S{1},∆{1},k({1}) ∼= kB{1},∆{1},{1} ⊗k k ∼= k, the relation

∅ acts by zero, while ∆{1} acts as the identity.
Moroever, kR{1} ∼= k × k is a semi-simple algebra.

9.3. Example. Let X = {1, 2}. There are 24 = 16 relations on {1, 2}, so kR{1,2}
has dimension 16.

For E = ∅, we get a simple kR{1,2}-module S∅,∅,k({1, 2}) of dimension 1.
For E = {1}, we get a simple kR{1,2}-module S{1},∆{1},k({1, 2}) of dimension 3.

For E = {1, 2}, there are two relations in PE up to conjugacy, namely the
equality relation ∆{1,2} and the usual total order tot. Moreover, Aut({1, 2},∆{1,2})
is a group of order 2, with two simple modules k+ and k− (assuming that the
characteristic of k is not 2). Therefore, we obtain two simple kR{1,2}-modules of
dimension 1

S{1,2},∆{1,2},k+({1, 2}) ∼= kB{1,2},∆{1,2},{1,2} ⊗kC2
k+ ,

S{1,2},∆{1,2},k−({1, 2}) ∼= kB{1,2},∆{1,2},{1,2} ⊗kC2 k− ,

For the other relation tot, we obtain a simple kR{1,2}-module of dimension 2

S{1,2},tot,k({1, 2}) ∼= kB{1,2},tot,{1,2} ⊗k k ∼= kB{1,2},tot,{1,2} ,

Altogether, there are 5 simple kR{1,2}-modules and the Jacobson radical has di-
mension 0. Therefore kR{1,2} is semi-simple (provided the characteristic of k is
not 2).

9.4. Example. For |X| = 3, the algebra kRX is not semi-simple. The dimen-
sion of the Jacobson radical of kRX is equal to 42, using either the computer
software [GAP4] or the computer calculations obtained in [Br]. According to The-
orem 8.4, this value can be recovered directly as follows :
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Size e Poset(E,R) |Aut(E,R)| |GE,R|
e∑
i=0

(−1)i
(
e
i

)
(|GE,R| − i)3 total

0 ∅ 1 1 1 1
1 • 1 2 7 49
2 •• 2 4 18 162

•
• 1 3 12 144

3 • • • 6 5 6 6

•
• • 1 5 6 36

• •
\/
• 2 5 6 18

•
/\
• • 2 5 6 18

•
•
• 1 6 6 36

In this case, the algebra kRX has dimension 232

= 512. The sum of the last
column of this table is equal to 470, so we recover the dimension of the radical
42 = 512− 470.

9.5. Example. For |X| = 4, the algebra kRX has dimension 242

= 65,536. The
direct computation of the radical of such a big algebra seems out of reach of usual
computers. However, using the formula of Theorem 8.4 and the structure of the 16
posets of cardinality 4, one can show by hand that the radical of kRX has dimension
32,616.

For larger values of n = |X|, a computer calculation using Theorem 8.4 yields
the following values for the dimension of J(kRX) :

n = 5 n = 6 n = 7 n = 8
29,446,050 67,860,904,320 562,649,705,679,642 18,446,568,932,288,588,616

We now move to examples of fundamental functors and functors associated to
lattices.

9.6. Example. There are many examples of fundamental functors SE,R for which
the set G is the whole of T , for instance when T = ΛE. In all such cases, we have
FT /HT

∼= SE,R. Moreover, in many such cases, Aut(E,R) is the trivial group.
Take for instance (E,R) to be a disjoint union of trees with branches of different
length. In any such case, FT /HT

∼= SE,R ∼= SE,R,k is simple, provided k is a field.

Our next purpose is to decompose the functor FT for some small lattices T . In
order to use an inductive process, we use inclusions A→ T where A is a distributive
sublattice. We could as well use surjective morphisms T → A, as in Section 10
of [BT3], but the following general result shows that it does not matter.

9.7. Lemma. Let T and A be finite lattices and assume that A is distributive.
Let σ : A → T be an injective join-preserving map. Then there is a surjective
join-preserving map π : T → A such that πσ = idA.
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Proof : We define π(t) =
∧
a∈A
σ(a)≥t

a. Then π is order-preserving and therefore

π(t1) ∨ π(t2) ≤ π(t1 ∨ t2) for any t1, t2 ∈ T . Now we have

π(t1) ∨ π(t2) =
( ∧

a1∈A
σ(a1)≥t1

a1

)
∨
( ∧

a2∈A
σ(a2)≥t2

a2

)
=

∧
a1,a2∈A
σ(a1)≥t1
σ(a2)≥t2

(a1 ∨ a2)

by distributivity of A. For any such pair (a1, a2), the join a1 ∨ a2 belongs to the
set {a ∈ A | σ(a) ≥ t1 ∨ t2} and therefore∧

a1,a2∈A
σ(a1)≥t1
σ(a2)≥t2

(a1 ∨ a2) ≥
∧
a∈A

σ(a)≥t1∨t2

a = π(t1 ∨ t2) .

The equality π(t1) ∨ π(t2) = π(t1 ∨ t2) follows.
If σ(a1) ≤ σ(a2), then σ(a1∨a2) = σ(a1)∨σ(a2) = σ(a2), and therefore a1∨a2 =

a2 by injectivity of σ, i.e. a1 ≤ a2. It follows from this observation that, for any
b ∈ A,

πσ(b) =
∧
a∈A

σ(a)≥σ(b)

a =
∧
a∈A
a≥b

a = b ,

hence πσ = idA.

The property of Lemma 9.7 is reflected in the fact that the morphism FA → FT
induced by σ must split, because the functor FA is projective by Theorem 4.12
in [BT3] and injective by Theorem 10.6 in [BT2].

9.8. Example. Let T = ♦ be the lozenge, in other words the lattice of subsets of
a set of cardinality 2 :

♦ =

•

◦ ◦

•
By Theorem 11.12 in [BT3], for any finite lattice T , we can split off from FT simple
functors Sn := Sn,tot

∼= Sn,tot,k corresponding to all totally ordered sequences

0̂ ≤ d0 < d1 < . . . < dn = 1̂ in T . In the case of F♦, we obtain

F♦
∼= S0 ⊕ 3S1 ⊕ 2S2 ⊕ L

for some subfunctor L. We know that F♦ maps surjectively onto the fundamental
functor S◦◦ associated to the (opposite) poset of irreducible elements of ♦, that is, a
set of cardinality 2 ordered by the equality relation. Moreover, all the factors Sn lie
in the subfunctor H♦, because no totally ordered subset contains the two irreducible
elements of ♦ (figured with an empty circle in the above picture). Therefore L maps
surjectively onto S◦◦.

We can evaluate F♦ at a set X of cardinality x, and take dimensions over k. By
Theorem 6.6, we obtain

4x = 1x + 3(2x − 1x) + 2(3x − 2 · 2x + 1x) + dimk L(X) .

It follows that

dimk L(X) = 4x − 2 · 3x + 2x .

Now we apply Theorem 6.6 to the fundamental functor S◦◦. The set G is the whole
of T in this case, so dimk S◦◦(X) = 4x − 2 · 3x + 2x.
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Since L maps surjectively onto S◦◦ and dimk L(X) = dimk S◦◦(X) for any finite
set X, this surjection is an isomorphism. Hence

F♦
∼= S0 ⊕ 3S1 ⊕ 2S2 ⊕ S◦◦ .

Since the lattice ♦ is distributive, F♦ is projective by Theorem 4.12 in [BT3]. It fol-
lows that each summand is a projective object in the category Fk of correspondence
functors.

9.9. Example. Let T be the following lattice :

T =

•

◦ ◦ ◦

•
As in the previous example, FT admits a direct summand isomorphic to

S0 ⊕ 4S1 ⊕ 3S2 .

Moreover, there are three obvious sublattices of T isomorphic to ♦, which provide
three direct summands of FT isomorphic to S◦◦. Thus we have a decomposition

FT ∼= S0 ⊕ 4S1 ⊕ 3S2 ⊕ 3S◦◦ ⊕M
for some subfunctor M of FT . Using arguments similar to those of the previous
example, we get

FT ∼= S0 ⊕ 4S1 ⊕ 3S2 ⊕ 3S◦◦ ⊕ S◦◦◦ .
All the summands in this decomposition of FT , except possibly S◦◦◦, are projective
functors. Since the lattice T is not distributive, the functor FT is not projective
(Theorem 4.12 in [BT3]), thus S◦◦◦ is actually not projective either.

9.10. Example. Let D be the following lattice :

D =

•
◦

◦
◦
•

As before, we know that FT admits a direct summand isomorphic to a direct sum
S0 ⊕ 4S1 ⊕ 4S2 ⊕ S3. Moreover, there are two inclusions

• // •
◦

◦
11

◦ // ◦
◦

• // •

and

• // •
◦

◦
--

◦ // ◦
◦

• // •
of the lattice ♦ into D, which yield two direct summands of FD isomorphic to S◦◦.
So there is a decomposition

FD ∼= S0 ⊕ 4S1 ⊕ 4S2 ⊕ S3 ⊕ 2S◦◦ ⊕N
for a suitable subfunctor N of FD. As in the previous examples, the subfunctor N
maps surjectively onto the fundamental functor S ◦

◦
◦

associated to the (opposite)

poset ◦
◦
◦ of irreducible elements of D. Computing dimensions, we obtain N ∼= S ◦

◦
◦
,

and therefore

FD ∼= S0 ⊕ 4S1 ⊕ 4S2 ⊕ S3 ⊕ 2S◦◦ ⊕ S ◦
◦
◦
.

Again D is not distributive, so that FD is not projective. Thus the functor S ◦
◦
◦

is

not projective either.
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Actually, the lattice D and the lattice T of the previous example are the smallest
non-distributive lattices and they are used for the well-known characterization of
distributive lattices (see Theorem 4.7 in [Ro]).

9.11. Example. Let C be the following lattice :

C =

•

◦ ◦

◦

•

Again, we know that FC admits a direct summand isomorphic to a direct sum
S0 ⊕ 4S1 ⊕ 5S2 ⊕ 2S3. Moreover, the inclusion

•

•
22

◦ ◦

◦
22

◦
22

◦

• // •

of ♦ in C yields a direct summand of FC isomorphic to S◦◦. So there is a decom-
position

FC ∼= S0 ⊕ 4S1 ⊕ 5S2 ⊕ 2S3 ⊕ S◦◦ ⊕Q

for some direct summand Q of FC .
Now FC maps surjectively onto the fundamental functor S ◦

/\
◦ ◦

associated to the

opposite poset of its irreducible elements, and arguments as before yield an isomor-
phism Q ∼= S ◦

/\
◦ ◦

, hence a decomposition

FC ∼= S0 ⊕ 4S1 ⊕ 5S2 ⊕ 2S3 ⊕ S◦◦ ⊕ S ◦
/\
◦ ◦

.

Since C is distributive, FC is projective and we conclude that S ◦
/\
◦ ◦

is projective.

Taking dual functors corresponds to taking opposite lattices (see Theorem 8.9 and
Remark 9.7 in [BT3]), so we get a decomposition

FCop ∼= S0 ⊕ 4S1 ⊕ 5S2 ⊕ 2S3 ⊕ S◦◦ ⊕ S ◦ ◦
\/
◦

.

Therefore S ◦ ◦
\/
◦

is also projective.

9.12. Example. Let P be the following lattice :

P =

•

◦ •

◦ ◦

•

that is, the direct product of a totally ordered lattice of cardinality 3 and a totally
ordered lattice of cardinality 2.
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We know that FP admits a direct summand isomorphic to S0 ⊕ 5S1 ⊕ 7S2 ⊕ 3S3

and the inclusions

•

•
44
◦ •

◦
44
◦

44
◦ ◦

• // •

•

•
44
◦ •

◦
44
◦ // ◦ ◦

• // •

•

•
//
◦ •

◦
//
◦ // ◦ ◦

• // •
of ♦ in P yield 3 direct summands of FP isomorphic to S◦◦. Moreover, the inclusions

• // •

◦
//
◦ // ◦ •

◦ // ◦ ◦

• // •

and

◦ // •

•
//
◦ •

◦
//
◦ // ◦ ◦

• // •
of C and Cop in P yield direct summands S ◦ ◦

\/
◦

and S ◦
/\
◦ ◦

of FP , hence there is a

direct summand U of FP such that

FP ∼= S0 ⊕ 5S1 ⊕ 7S2 ⊕ 3S3 ⊕ 3S◦◦ ⊕ S ◦ ◦
\/
◦

⊕ S ◦
/\
◦ ◦

⊕ U .

Since the lattice P is distributive, the functor FP is projective, hence U is projective.
Now FP maps surjectively onto the fundamental functor S ◦

◦
◦
, and HP is contained

in the kernel of this surjection. It follows that U maps surjectively onto S ◦
◦
◦
, which

is a simple functor, as k is a field and the poset ◦
◦
◦ has no nontrivial automorphisms.

A more involved analysis shows that U is indecomposable and is a projective
cover of the simple functor S ◦

◦
◦
. Moreover, one can show that the functor U is

uniserial, with a filtration

0

S ◦
◦ ◦

⊂ W

S ◦ ◦
/\/
◦ ◦

⊂ V

S ◦
◦ ◦

⊂ U ,

where W ∼= U/V ∼= S ◦
◦
◦
, and V/W is isomorphic to the simple functor S ◦ ◦

/\/
◦ ◦

associated to the poset
◦ ◦

◦ ◦
of cardinality 4. An easy consequence of this is

that

Ext1
Fk(S ◦

◦
◦
,S ◦ ◦

/\/
◦ ◦

) ∼= Ext1
Fk(S ◦ ◦

/\/
◦ ◦

,S ◦
◦
◦
) ∼= k .
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