

Sparsified SGD with Memory

{sebastian.stich, jean-baptiste.cordonnier, martin.jaggi}@epfl.ch

Quantized SGD: cheaper communication, but slower convergence

Problem:

 $\min_{\mathbf{x}\in\mathbb{R}^d}\frac{1}{n}\sum_{i=1}^n f_i(\mathbf{x})$

L-smooth $f_i \colon \mathbb{R}^d \to \mathbb{R}$, μ -strongly convex $f \colon \mathbb{R}^d \to \mathbb{R}$

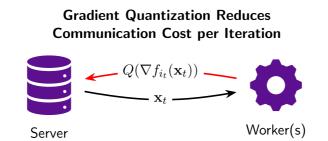
Setting: Data-parallel SGD with parameter server

- **Quantization operator** $Q: \mathbb{R}^d \to \mathbb{R}^d$
- unbiased $\mathbb{E}[Q(\mathbf{x})] = \mathbf{x}, \forall \mathbf{x} \in \mathbb{R}^d$
- bounded variance $\mathbb{E} \|Q(\mathbf{x})\|^2 \leq \rho \|\mathbf{x}\|^2, \forall \mathbf{x} \in \mathbb{R}^d$

Example 1: Ternary Quantization

 $Q(\mathbf{x}) = \operatorname{sign}(\mathbf{x}) \cdot \|\mathbf{x}\| \cdot \xi(\mathbf{x})$

where $\xi(\mathbf{x})_i = 1$ with probability $\frac{\mathbf{x}_i}{\|\mathbf{x}\|}$, $\xi(\mathbf{x})_i = 0$ otherwise. $\mathbb{E} \|Q(\mathbf{x}) - \mathbf{x}\|^2 \le \sqrt{d} \|\mathbf{x}\|^2, \text{ sparsity } \mathbb{E} \|Q(\mathbf{x})\|_0 \le 1 + \sqrt{d}$



Example 2: Quantization with *s* **levels (QSGD)**

 $Q(\mathbf{x}) = \operatorname{sign}(\mathbf{x}) \cdot \|\mathbf{x}\| \cdot \xi(\mathbf{x}, s)$

where $\xi(\mathbf{x},s)_i = \frac{\ell+1}{s}$ with probability $s\frac{\mathbf{x}_i}{\|\mathbf{x}\|} - \ell$, $\xi(\mathbf{x},s)_i = \frac{\ell}{s}$ otherwise. Here $\frac{\ell}{s} \leq \frac{\mathbf{x}_i}{\|\mathbf{x}\|} \leq \frac{\ell+1}{s}$ for integers $\ell \leq s$. $\mathbb{E} \|Q(\mathbf{x}) - \mathbf{x}\|^2 \leq \frac{\sqrt{d}}{2} \|\mathbf{x}\|^2$, sparsity $\mathbb{E} \|Q(\mathbf{x})\|_0 \leq s(s + \sqrt{d})$

Previous results suffer from multiplicative slowdown:

quantization	$Q(abla f_{i_t})$ sparsity \mid convergence ra	
general		$\mathcal{O}\left(\frac{G^2 \rho}{T}\right)$
1 level (Ternary)	\sqrt{d}	$\mathcal{O}\left(\frac{G^2\sqrt{d}}{T}\right)$
s levels (QSGD)	$s(s+\sqrt{d})$	$\mathcal{O}\left(\frac{G^2 s(s+\sqrt{d})}{T}\right)$

Increasing the number of levels does not help:

\sqrt{d} levels (QSGD)	d	$\mathcal{O}\left(\frac{G^2}{T}\right)$
--------------------------	---	---

This Paper: Better sparsity and faster rate:				
1 compression	1	$\mathcal{O}\left(rac{G^2+d}{T} ight)$		
k compression	k	$\mathcal{O}\left(\frac{G^2+d/k}{T}\right)$		

Mem-SGD: cheaper communication and faster convergence

Compression operator $\operatorname{comp}_k \colon \mathbb{R}^d \to \mathbb{R}^d$ $\mathbb{E} \left\| \operatorname{comp}_k(\mathbf{x}) - \mathbf{x}
ight)
ight\|^2 \leq \left(1 - rac{k}{d}
ight) \|\mathbf{x}\|^2, orall \mathbf{x} \in \mathbb{R}^d$

Example 1: Random-*k* Compression $\operatorname{comp}_k(\mathbf{x})_i = \begin{cases} \mathbf{x}_i & \text{with probability } \frac{k}{d} \\ 0 & \text{otherwise} \end{cases}$ **Example 2: Top-***k* **Compression** $\operatorname{comp}_{k}(\mathbf{x})_{i} = \begin{cases} \mathbf{x}_{i} & \text{if } |\mathbf{x}_{i}| \in \overline{\{|\mathbf{x}|_{(1)}, \dots, |\mathbf{x}|_{(k)}\}}\\ 0 & \text{otherwise} \end{cases}$

Example 3: Rescaled Random Quantization

$$\operatorname{comp}_{\sqrt{d}}(\mathbf{x}) = \frac{1}{1+\sqrt{d}}Q(\mathbf{x})$$

for ternary quantizer Q (and analogous for s-level quant.)

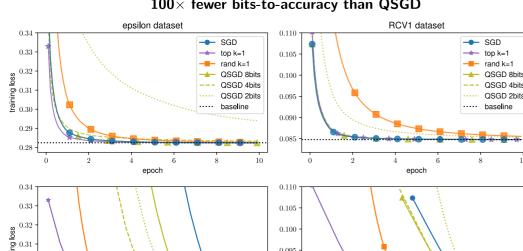
Main Principle:				
Error compensation through auxiliary memory $\mathbf{m} \in \mathbb{R}^d.$				
(Similar mechanism as e.g. in 1Bit-SGD .)				
Marithm 1 MEM SCD				
Algorithm 1 MEM-SGD				
1: Initialize variables \mathbf{x}_0 and $\mathbf{m}_0 = 0$				
1: Initialize variables \mathbf{x}_0 and $\mathbf{m}_0 = 0$ 2: for t in $0 \dots T - 1$ do				
1: Initialize variables \mathbf{x}_0 and $\mathbf{m}_0 = 0$ 2: for t in $0 \dots T - 1$ do 3: Sample i_t uniformly in $[n]$	⊳ on worke			
1: Initialize variables \mathbf{x}_0 and $\mathbf{m}_0 = 0$ 2: for t in $0 \dots T - 1$ do 3: Sample i_t uniformly in $[n]$ 4: $\mathbf{g}_t \leftarrow \operatorname{comp}_k(\mathbf{m}_t + \eta_t \nabla f_{i_t}(\mathbf{x}_t))$	⊳ on worker			
1: Initialize variables \mathbf{x}_0 and $\mathbf{m}_0 = 0$ 2: for t in $0 \dots T - 1$ do 3: Sample i_t uniformly in $[n]$	⊳ on worke ⊳ on serve			

Theorem:
For stepsizes
$$\eta_t = \frac{8}{\mu(5\frac{d}{k}+t)}$$
, $G^2 \ge \mathbb{E} \|\nabla f_{i_t}(x_t)\|^2$ it holds
 $\mathbb{E}f(\bar{x}_T) - f^\star = \mathcal{O}\left(\frac{G^2 + \frac{d}{k}\sqrt{\kappa}}{\mu T}\right)$
with $\bar{\mathbf{x}}_T := \frac{1}{\sum_{t=0}^{T-1} w_t} \sum_{i=0}^{T-1} w_t \mathbf{x}_t$, $w_t = \left(5\frac{d}{k} + t\right)^2$, $\kappa = \frac{L}{\mu}$.

Remarks:

- Previous methods required $\mathcal{O}(G^2 \cdot \frac{d}{k})$ steps to converge, we need $\mathcal{O}(G^2 + \frac{d}{k}\sqrt{\kappa})$ instead.
- Theory holds for arbitrary compression operators.
- Previous analyses were often limited to unbiased updates. Our analysis avoids this limitation which allows—together with the memory variable—to obtain faster rates.

Experiments



0.095

0.09

10

10

ed grad

10

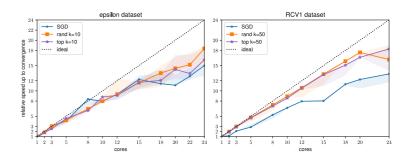
nts (MB)

10

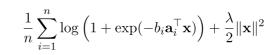
total size of co

$100 \times$ fewer bits-to-accuracy than QSGD

Scales well in multicore (shared memory) implementation



Logistic Regression:



Datasets:

	n	d	density
epsilon	400'000	2'000	100%
RCV1-test	677'399	47'236	0.15%

Open Problems and Future Work

- ✓ Theoretical analysis for W > 1workers, also with compression of the state \mathbf{x}_t communication.
- ✓ Asynchronous updates.
- Extension of the theory to non-convex objectives.

 10^{-}

 10^{1}

10

total size of c

10

adients (MB)

.30 III

0.290.28

> Code github.com/epfml/sparsifiedSGD

 $10^{-10^{-1}}$