000261122 001__ 261122
000261122 005__ 20190302131616.0
000261122 022__ $$a0946-7076
000261122 022__ $$a1432-1858
000261122 02470 $$2isi$$a000423697800029
000261122 0247_ $$a10.1007/s00542-017-3467-9$$2doi
000261122 037__ $$aARTICLE
000261122 245__ $$aTheoretical study of an electrostatically actuated torsional microsensor for biological applications
000261122 260__ $$c2018$$bSPRINGER$$aNew York
000261122 269__ $$a2018-02-01
000261122 336__ $$aJournal Articles
000261122 520__ $$aWe develop an analytical formulation to calculate the induced resonance frequency shifts of an electrostatically actuated torsional microsensor due to an added bio-mass (E. coli). Based on a lumped-parameter model, we investigate the static and the linear eigenvalue problem of the torsional microsensor. The added mass is modeled as a point mass load placed on different locations along the x-axis of the microsensor. A closed-form expression is determined to calculate the frequency shift under a DC voltage as a function of the added mass. Finite Element Analysis (FEA) results show good agreement with the analytical approach.
000261122 650__ $$aEngineering, Electrical & Electronic
000261122 650__ $$aNanoscience & Nanotechnology
000261122 650__ $$aMaterials Science, Multidisciplinary
000261122 650__ $$aPhysics, Applied
000261122 650__ $$aEngineering
000261122 650__ $$aScience & Technology - Other Topics
000261122 650__ $$aMaterials Science
000261122 650__ $$aPhysics
000261122 6531_ $$amass sensor
000261122 6531_ $$aoscillators
000261122 700__ $$aBouchaala, Adam M. S.
000261122 773__ $$q1109-1114$$j24$$tMicrosystem Technologies-Micro-And Nanosystems-Information Storage And Processing Systems$$k2
000261122 909C0 $$x252735$$pSTI
000261122 909CO $$particle$$ooai:infoscience.epfl.ch:261122$$pSTI
000261122 973__ $$rREVIEWED$$sPUBLISHED$$aEPFL
000261122 980__ $$aARTICLE
000261122 980__ $$aWoS