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Résumé

La simulation de la matière condensée avec la dynamique moléculaire ab
initio (AIMD) s’appuie fortement sur la théorie de la fonctionnelle de den-
sité de Kohn-Sham (KS-DFT). La précision de telles simulations est dictée
par la fiabilité de la surface d’énergie potentielle (PES), de même que par
l’échelle de temps disponible. Ces facteurs sont influencés de manière cru-
ciale par le choix de la fonctionnelle d’échange-correlation (xc). Parmi les
fonctionnelles xc les plus exactes disponibles de nos jours se trouvent les
fonctionelles hybrides, qui incluent une partie d’échange exact. En combi-
naison avec une base d’ondes planes, populaire dans le domaine de l’AIMD,
le surcoût computationnel engendré par l’évaluation des intégrales d’échange
peut cependant significativement limiter l’échelle de temps accessible, ce qui
peut entraver la convergence des observables. Cet ouvrage a pour but d’amé-
liorer la disponibilité de fonctionnelles hybrides dans une base d’ondes planes
tout en réduisant leur coût computationnel.

La première partie fournit une introduction à la AIMD. En partant de la
fonction de partition quantique, les simplifications dues à l’approximation de
Born-Oppenheimer sont démontrées. Suit une discussion de la base théorique
de la KS-DFT, un aperçu des approximations faites en pratique ainsi que
leur implémentation dans le formalisme d’ondes planes/pseudopotentiels.

La deuxième partie présente l’implémentation et les performances de
deux familles populaires de fonctionnelles xc. Premièrement, la méthode
d’attenuation de Coulomb (CAM) est déclinée pour les ondes planes et ses
performances sont comparées aux bases centrées sur les noyaux atomiques.
Une nouvelle fonctionnelle, CAM-O3LYP, est documentée. Celle-ci surpasse
la très populaire CAM-B3LYP dans certains cas difficiles. Deuxièmement,
l’implémentation en ondes planes des fonctionnelles de Minnesota M05 à
M11 est présentée. Une analyse détaillée de la convergence suggère qu’une
grille d’intégration suffisamment dense est exigée pour obtenir des différences
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énergétiques précises. Une comparaison d’enthalpies entre ondes planes et
bases centrées sur les noyaux révèle une sensibilité inhabituelle de certaines
fonctionelles par rapport au choix de base. Une explication est présentée en
comparant les densités électroniques parmi des bases et fonctionnelles diffé-
rentes. Ceci démontre que les ondes planes permettent d’obtenir des valeurs
limites pour les fonctionnelles s’avérant difficiles à converger dans une base
centrée sur les noyaux.

La troisième partie introduit une approche pour le calcul des intégrales
d’échange exact d’un système isolé, basée sur la mise à l’échelle des coor-
données. En appliquant cette approche à l’expression Hartree-Fock, il est
possible de réduire le coût des transformations de Fourier rapides (FFT) qui
constituent le goulet d’étranglement calculatoire, tout en maintenant une
bonne précision. L’implémentation et la parallélisation de cette méthode
sont présentées. Des accélérations d’un ordre de grandeur sont atteintes,
ce qui améliore significativement le bilan computationnel des fonctionnelles
hybrides.

Dans la quatrième partie, des résultats additionnels sont résumés. Une
extension de la collection de potentiels centrés sur les noyaux corrigeant
pour la dispersion (DCACP) est proposée. Finalement, une méthode pour
l’affinement de structures basée sur la différence de densité électronique est
présentée (d3MD). L’ouvrage se termine par une synthèse des résultats et
par une discussion de futures applications envisageables.

Mots-clés : dynamique moléculaire ab initio ; théorie de la fonctionnelle de
la densité (DFT) ; fonctionnelles hybrides ; méthode d’attenuation de Cou-
lomb (CAM) ; échange exact ; mise à l’échelle des coordonnées ; méthodes
multigrilles ; base d’ondes planes ; d3MD
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Abstract

The simulation of condensed matter using quantum mechanical methods in
first principles Molecular Dynamics (FPMD) heavily relies on Kohn-Sham
Density Functional Theory (KS-DFT) calculations. The accuracy of such
simulations is governed by the reliability of the underlying potential energy
surface (PES) and the accessible time scale; both factors are crucially in-
fluenced by the choice of exchange-correlation (xc) functional. Hybrid xc
functionals, which include a fraction of exact exchange, are among the most
accurate xc approximations available to date. However, in particular in
combination with the plane wave basis commonly used in FPMD, the com-
putational overhead due to the evaluation of exchange integrals significantly
limits the accessible time scale of the simulation, thus hampering convergence
of observables. This work aims at improving the availability of popular hy-
brid xc functionals in a plane wave basis while reducing their computational
overhead.

Part I provides an introduction to the field of FPMD. Starting from the
quantum mechanical partition function, we show the simplifications behind
the single-state Born-Oppenheimer approximation, followed by a discussion
of the theoretical foundations of KS-DFT, an overview of practical approxim-
ations, and their implementation in a plane wave/pseudopotential formalism.

In Part II, we outline the implementation and performance of two pop-
ular families of xc functionals. We first derive the plane wave expressions
for the Coulomb-Attenuation Method (CAM) and compare the performance
of the method in a plane wave basis to common atom-centred basis sets. A
new xc functional, CAM-O3LYP, is reported, which outperforms the com-
monly employed CAM-B3LYP in some notorious cases. We then present
the implementation of the M05 to M11 families of Minnesota functionals
in a plane wave basis. A detailed convergence analysis suggests that a fine
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enough integration mesh has to be provided in order to obtain accurate en-
ergy differences, and a comparison of reaction enthalpies obtained in plane
waves and atom-centred bases reveals an unusual sensitivity of certain Min-
nesota functionals to the choice of basis. We provide a rationale for the
observed differences by comparing electron densities between different func-
tionals and basis sets demonstrating that plane waves make it possible to
conveniently obtain values for basis set limits for functionals that can be
difficult to converge in atom-centred bases.

Part III introduces a coordinate-scaling scheme for the calculation of ex-
act exchange integrals for isolated systems in a plane wave basis. By apply-
ing the scaling relations of the exact exchange functional to the Hartree-Fock
term, we show that it is possible to effectively reduce the cost of the Fast
Fourier Transforms (FFT) that constitute the bottleneck of the calculation
while retaining good accuracy. We then present the practical implementation
and parallelisation of the method in the CPMD code and show that spee-
dups can reach values of up to one order of magnitude, thereby considerably
improving the computational footprint of hybrid functionals.

In Part IV, we offer a perspective on further work by discussing re-
cent additions to the library of dispersion-corrected atom-centred potentials
(DCACP) and by introducing a method for structural refinement based on
electron density difference maps, density-difference driven molecular dynam-
ics (d3MD). We conclude by providing a brief overview of the results obtained
in this work and by discussing future perspectives.

Keywords: First-principles Molecular Dynamics; Density Functional The-
ory (DFT); Hybrid Functionals; Coulomb-Attenuation Method (CAM); Ex-
act Exchange; Coordinate-Scaling; Multigrid Methods; Plane Wave Basis;
Density-Difference Driven Molecular Dynamics (d3MD)
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Abstraktum

Quantenmechanische Simulationen kondensierter Materie mittels ab initio
Molekulardynamik (AIMD) werden heute hauptsächlich mit der Kohn-Sham
Dichtefunktionaltheorie durchgeführt. Die Genauigkeit einer AIMD-Simulati-
on wird dabei sowohl von der Zuverlässigkeit der zugrundeliegenden Potenti-
alhyperfläche (PES) als auch von der erreichbaren Zeitskala beeinflusst. Diese
beiden Faktoren wiederum hängen von der Wahl des Austausch-Korrelations-
Funktionals (xc-Funktional) ab. Hybridfunktionale, die auf den Austauschin-
tegralen einer einzelnen Determinante basieren, gehören zu den präzisesten
xc-Funktionalen, die zur Zeit verfügbar sind. Die Berechnung der Austau-
schintegrale ist jedoch sehr rechenintensiv, insbesondere wenn die Simulation
in ebenen Wellen durchgeführt wird, die im Gebiet der AIMD sehr verbrei-
tet sind. Dies limitiert die erreichbare Zeitskala, was sich negativ auf die
Konvergenz der Observablen auswirkt. In dieser Dissertation soll aufgezeigt
werden, wie die Verfügbarkeit beliebter Hybridfunktionale in ebenen Wellen
verbessert und die Rechenkosten verringert werden können.

Im ersten Teil wird das Gebiet der AIMD vertieft eingeführt. Von der
quantenmechanischen Zustandsfunktion her wird gezeigt, welche Vereinfach-
ungen und Annahmen hinter der Born-Oppenheimer-Näherung liegen. Dar-
auf folgt eine Diskussion der theoretischen Grundlagen der KS-DFT sowie
ein Überblick häufig getroffener Näherungen und ihrer Implementierung in
ebenen Wellen.

Im zweiten Teil wird die Implementierung zweier populärer Familien von
xc-Funktionalen beschrieben. Auf der Basis der Ableitung der Coulomb-
Attenuationsmethode (CAM) in ebenen Wellen werden die erhaltenen Re-
sultate mit atomzentrierten Basissätzen verglichen. Ein neues xc-Funktional,
genannt CAM-O3LYP, das sich in gewissen problematischen Systemen als
zuverlässiger als das beliebte CAM-B3LYP herausstellt, wird ebenso vor-
gestellt. Darauffolgend wird die Implementierung der M05 bis M11-Familien
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der Minnesota-Funktionale in ebenen Wellen dargelegt. Anhand einer detail-
lierten Konvergenzanalyse wird gezeigt, dass zur Erreichung genauer Ener-
gieunterschiede ein dichtes Integrationsgitter vonnöten ist. Ein Vergleich von
Reaktionsenthalpien aus Rechnungen mit atomzentrierten Basissätzen zeigt
eine aussergewöhnliche Empfindlichkeit der Minnesota-Funktionale gegen-
über dem Basissatz. Dies wird anhand eines Vergleichs der Elektronendich-
ten zwischen verschiedenen Funktionalen und Basissätzen illustriert. Somit
wird gezeigt, dass ebene Wellen für Konvergenzanalysen den Basissatz der
Wahl darstellen.

Im dritten Teil wird eine Methode eingeführt, die die Berechnung von
Austauschintegralen beträchtlich beschleunigt. Indem die Koordinatenska-
lierungsbeziehungen des exakten Austauschfunktionals auf die Austauschin-
tegrale angewandt werden, gelingt es, die Rechenzeit derjenigen schnellen
Fouriertransformationen (FFT), die den Engpass der Rechnung darstellen,
zu reduzieren, ohne Abschläge in der Genaugikeit der Resultate einzugehen.
Die Implementierung der Methode, die Effizienzsteigerungen von bis zu einer
Zehnerpotenz erlaubt, wird aufgezeigt.

Im vierten Teil werden weitere Arbeiten, die im Rahmen dieser Disserta-
tion durchgeführt wurden, zusammengefasst. Erstens wird die Erweiterung
der Bibliothek dispersionskorrigierter atomzentrierter Potenziale (DCACP)
dokumentiert. Zweitens wird, basierend auf Elektronendichteunterschieden
zwischen zwei Strukturen, eine neue Methode zur Strukturaufklärung ein-
geführt, die dichtedifferenzgesteuerte Molekulardynamik (d3MD). Der Text
wird mit einer kurzen Übersicht der Resultate dieser Dissertation sowie mit
einem Ausblick auf zukünftige Entwicklungen und Anwendungen abgeschlos-
sen.

Schlagwörter: Ab initio Molekulardynamik; Dichtefunktionaltheorie; Hy-
bridfunktionale; Coulomb-Attenuationsmethode; Exakter Hartree-Fock Aus-
tausch; Koordinatenskalierung; Mehrfachgitteransatz; Basissatz ebener Wel-
len; dichtedifferenzgesteuerte Molekulardynamik (d3MD)
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Das Problem ist zu schwierig für einen einzelnen Mann.
Ich werde mein Elektronengehirn befragen.

Dagobert Duck in ‘Die Geldquelle’, as translated by Dr. Erika Fuchs2
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Chapter 0

Preface

Wiggle, wiggle, bump. This is how the author pictured the atomistic con-
tents of his round bottom flask in the wet lab, just seconds before he absent-
mindedly inhaled some not so innocuous cauliflower-like fumes. He then fled
the lab. No permanent damage was caused.

Admittedly, at the time, the organic molecules at the source of this olfact-
ory nuisance were to him nothing but a collection of symbols, interconnected
with sticks; and all of the time the sticks moved, pushed around other sticks,
attracted even others, and this was how chemical bonds were formed. In
his head and on paper, that is, not in reality. But the level of abstraction
was intriguing and appealing, arrows and lines hastily sketched on a piece
of paper. And while he was surely aware that different solvents would have
different effects on the reactions he so much loved to draw, influencing their
stereochemical outcome, inhibiting or accelerating certain processes, this was
dubious knowledge that had to be learnt by heart. There was no space for
solvent on the paper. It would obscure the mechanistic beauty. It was not
really interesting. And above all, it seemed that there was little proof that
was not phenomenological in nature. The concepts of theoretical and phys-
ical chemistry, back then, seemed to be of little helpi, and so they had no
place within the author’s world of pencil drawn arrows.

Especially thermodynamics. That one seemed particularly useless. Dis-
cussions with fellow organic chemistry enthusiasts would often follow along
the same lines: One was able to calculate the rate of a reaction from exper-
imental data, estimate its barrier, determine the reaction enthalpy, but to
what avail? Even with the knowledge of all possible thermodynamic quant-
ities, how would they tell anyone why the molecules behaved the way they

iThey seemed a powerful sedative, though.
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CHAPTER 0. PREFACE

did? Reaction rates could support a certain mechanism, measured enthalpies
could make others unlikely, but the proof of a reaction following a particular
path was often in the observed intermediates. Which, again, was the realm
of a world impregnated with sweet solvent fumes, the wet lab.

Oh, woe was him who had to study for a thermodynamics exam. What
dry matter. And how wrong the author was!

0.1 Theoretical Chemistry - No Dry Matter

Early on in their studies, the author and his colleagues came to appreciate
thermodynamics for a particularly dubious reason: It came in handy as an
excuse. For as soon as a chemical reaction would not take place in quite the
way they had expected, they were quick to cite the same old unpredictable
delinquent: Entropy. Even if they might not have fundamentally understood
what it was (entropy was just disorder, or was it?), everything bizarre and
surprising was always and exclusively due to entropy. The entropic factor
was the perfect scapegoat.

But the author soon learned that there was more to theoretical chemistry
than he thought. Soon, it was no dry matter anymore. Not at all.

0.1.1 Schrödinger

At the same time, some new perspectives surfaced in the author’s quest for
answers: Quantum Chemistry. The basic concepts of this discipline are so
different to the classical world that calling them fascinating is for sure no
overstatement. More than that, they suddenly made that whole bunch of
theory lectures become much more appealing (not quite that appealing yet,
but at least much more than before). It wasn’t only about this infamous
cat in a box! Elegant and tremendously powerful: The author had fallen
for Quantum Mechanics, even if it was no love at first sight, but more of an
infatuation with the seemingly incomprehensible.

The basic principle of quantum wave mechanics is magnificent: Given
a wavefunction of a system, all its physical properties can be derived by
applying the proper set of operators to it. The wavefunction itself is a mere
mathematical tool; a cryptic key that encodes all one could want to know
about the system. More commonly: Ψ. A molecular Ψ is, however, of
abhorrent dimensionality: Every nucleus, every electron will bring its own
set into the coordinates of the wavefunction, which means that the overall
object is some kind of Pandora’s box that cannot be fully visualised, except
for the case of one single particle (and even then, this is only possible if
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0.1. THEORETICAL CHEMISTRY - NO DRY MATTER

Ψ is real). In all other cases, any attempt at illustration will run out of
dimensions that are available to the human eye. Admittedly, a chemist may
hope for something rather more visual.

The basic principles of applying the Schrödinger equation to chemical
matter are these3–5: Firstly, the problem cannot be solved analytically for
virtually any case of interest. Secondly, it therefore needs to be represented
numerically and thirdly, since memory and paper are both finite, it needs to
be suitably approximated such that a numerical representation is feasible.
In order to make the necessary approximations, there exist a hierarchy of
methods, one more accurate than the other. However, the more elaborate the
approximation to the wavefunction, the more computationally demanding
are the methods to treat. This ultimately leads to a point where the most
exact method cannot be used for a sizeably large system, and compromises
between accuracy and computational overhead have to be made.

So could these methods provide the explanations the author had been
seeking ever since the beginning of his studies? There was never any discus-
sion of molecules in solution at finite temperature. Such a system would be
too big to be treated by an accurate wavefunction approximation. To the
author, the sheer idea of attempting it seemed outrageous. The path seemed
clear: Calculations are done on the species of interest - and on this species
only. This may include an occasional, small handful of solvent molecules
around the centre of interest, but not much more. The system itself is in va-
cuum, and solvation effects will be mimicked by appropriate models,6,7 they
may for instance incorporate the dielectric constant of a solvent to make the
molecule experience a more or less polar environment. Finally, there exist
approaches to interpolate the results to room temperature. And that was
that.

Insecurity soon struck. Sceptical of the author’s newly found enthusiasm
for the quantum world, his friends would ask how he imagined those mod-
els to capture what was going on in their round bottom flasks, among an
uncountable number of molecules. How would five water molecules mimic
Avogadro numbers of particles8? Can rate constants really be reliably pre-
dicted by only implicitly accounting for the Gibbs free energy of activation,
ΔG†, based on the enthalpy ΔH†9? The author had no answer. And he
soon learned that many a property rather accurately calculated at 0 K (and
appropriately extrapolated) would not always reflect what was going on in
a reaction vessel at room temperature.10 And with some theoretical study11

hinting at a behaviour conflicting with what the author had observed while
performing some novel radical reaction during his bachelor thesis,12 hope
cast on the predictive power of these computational methods seemed rather

5



CHAPTER 0. PREFACE

lost again. What had happened? The entropic factor had seemingly stricken
back.

And so it appeared that the universe of Chemistry had to remain divided
into two worlds: The world of the wet lab and the world of the theoretician.
There was a missing link in between. Even if one were to calculate the
wavefunction of a representative system, the author wondered, how would
one then describe a chemical reaction at finite temperature? Meanwhile, un-
answered questions from courses in Inorganic Chemistry, Organic Chemistry
and Biochemistry would keep piling up.

0.1.2 Boltzmann

Statistical Mechanics changed it all by providing the missing link. It is a
beautiful discipline: By invoking a statistical picture of the constituents of a
chemical system, the familiar thermodynamic quantities - entropy, enthalpy,
free energy, internal energy - can be derived not from measurements, but
from sleek, elegant equations and by making use of clear assumptions. On
a more empirical level, any chemist is soon confronted with Ludwig von
Boltzmann and his factor, e−E/kBT . But it is only in the study of statistical
mechanics that this simple exponential reveals all of its elegance. We will see
in the next part that it plays a fundamental role in one of the key concepts
- the summit13 - of statistical mechanics: The partition function. Much like
in wave mechanics, it is the vault that contains all that is to be known. Not
only can many properties be directly derived from it, but it also serves as
the crucial normalisation factor in thermal averages of observables.

What before were pencil drawn lines and arrows of Organic Chemistry
have become equations: Integrals, derivatives, sums. Statistical Mechanics
provides much more than a model of what is going on in that round-bottom
flask; the resulting equations are not rooted in (admittedly cleverly made)
assumptions or intuition, but they are fundamental theorems of physics.
Alas, in those equations it appears again, the untractability of any chemical
system of interest. So would it in the end have been nothing but running in
circles?

Surprisingly, it does not have to be. There exists a hypothesis in Statist-
ical Mechanics that allows for averages to be obtained over time. Or: Aver-
aging an observable over the partition function is equivalent to averaging it
over time; and this can be carried out by simply following the time-evolution
of a system of interest. This solves the tractability problem of the partition
function, but it does not solve one other principal issue.

In statistical mechanics, the Hamiltonian is a far more than familiar

6



0.1. THEORETICAL CHEMISTRY - NO DRY MATTER

sight, and that distinctly recalls the dimensionality problem of wavefunction
theory: If the system is too large, compromises have to be made. Then
again, Statistical Mechanics is about statistics, and statistics require many
samples, many particles. A reagent surrounded by half a dozen solvent
molecules might make as bad if not worse a model than the same system
treated in vacuo, at 0 K, using wavefunction theory. So the system one
explores should be representative of the chemical event one wants to observe,
and that means including its surroundings beyond that of a small cluster.
While it is possible to treat such larger systems with wavefunction methods,
their accuracy will be limited, and their computational cost too high to allow
for the time evolution of the system to be followed.

The solution to this problem is as compellingly elegant as it is deceptively
simple. It lies in the electron density of the system. The basic theorems
of Hohenberg and Kohn14 in 1964 were the foundations of a revolution in
electronic structure theory. They proved that instead of resorting to the
wavefunction, all ground-state expectation values of the Hamiltonian can be
obtained from the N -electron density, a 3D-Cartesian variable, in a density
functional theory14,15 (DFT; and under appropriate conditions only, as we
will see later on in the text). A variational principle exists, making the
theory as straightforward (if not more) to use in practice as wavefunction
theory. Since DFT casts the problem into that of finding a quantity that
is a function of only 3 Cartesian coordinates, suitable algorithms make it
possible to treat large systems, while scaling linearly with system size.16

Statistical mechanics and DFT are not only intimately linked by some
fundamental concepts (there exists an ensemble formulation of DFT17), but
both of them add up to draw a picture much greater than any of its single
elements. It is this unique combination that makes the link between macro-
scopic and microscopic worlds computationally possible.

Cue numerics.
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Chapter 1

Introduction

The numerical aspects of putting the concepts of statistical mechanics and
electronic structure theory to good use can be (almost) as exciting as the
fundamental theories themselves. For if Statistical Mechanics and Density
Functional Theory provide us with the equations that we need to solve to
describe a chemical process, we are unable to solve them analytically (let
a part a few small systems where analytical solutions are at least partially
available). For most of those equations, we are not even able to solve their
exact forms numerically. Instead, we search for appropriate models that are
computationally tractable. Whether in the world of wavefunctions or dens-
ities: As physically justified, as accurate and as computationally efficient
as possible - these are the challenges in the field of Computational Chem-
istry, where phenomena from the work bench are elucidated in silico on core
processing units (CPUs).

1.1 In Silico: From Work Bench to Core Processing
Unit

Computational Chemistry is, in its present form, a rather young discip-
line at the interface of Biology, Chemistry, Physics, Mathematics and Com-
putational Sciences. The synergistic combination of increasingly powerful
computational infrastructure, advances in electronic structure methods and
algorithmic developments have made it possible to elucidate physical, chem-
ical or biochemical processes at the atomistic level by simulating their time-
evolution in solution and at finite temperature in silico. While considerable
progress has been achieved in the field over the last decades, making it pos-
sible to simulate increasingly large systems, some problems and processes
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CHAPTER 1. INTRODUCTION

remain difficult to describe; be it due to the lack of availability or tractabil-
ity of a suitable method.

1.1.1 Computational Chemistry

The possibility of gaining some fundamental understanding of chemical pro-
cesses is certainly desirable from a philosophical perspective, but its impact is
by far not limited to a metaphysical point of view. The simulation of chemical
compounds and their interactions at an atomistic level is of high practical
relevance: Understanding the detailed mechanisms of a chemical reaction
can allow for reactions to be tweaked and applied under optimal conditions,
guaranteeing maximal yields or minimal environmental impact.18 Compre-
hending the molecular action of drugs has helped develop new compounds
and fight resistance.19–22 It is thanks to modern Theoretical and Compu-
tational Chemistry that an atomistic understanding of these challenges has
become much more easily accessible: Partition functions comprising a large
number of particles are efficiently sampled using stochastic Monte Carlo
approaches,23 the dynamics of liquids such as water can be followed using
(path-integral) Molecular Dynamics (MD),24 reaction barriers in vacuo can
be calculated from high-throughput methods,18 the binding of thousands of
compounds to a putative active site in a protein can be performed in dock-
ing calculations,21 and the decomposition of compounds upon impact of a
laser pulse can be simulated in the excited state25–27 - to mention only a
few. From the plethora of studies that have seen the light over the last few
decades, it appears that every problem chemically conceivable cannot escape
some theoretical treatment.

This would not have been possible without the existence of appropriate,
affordable infrastructure: The rise of Computational Chemistry has been
accompanied and encouraged by ever improving computational methods,
efficiency and CPU power. Using classical potentials, proteins in a mem-
brane can now routinely be simulated, coarse-graining methods allow for
even larger systems and time scales to be investigated and using Density
Functional Theory (DFT),28 it has become possible to model hundreds of
atoms quantum mechanically, based on first principles. Computers have
become powerful enough that even for large systems, calculations are not
restricted to a single geometry, but it has instead become possible to track
the dynamical evolution of the system over the pico- over the nano- up to
a millisecond20 range, permitting the extraction of thermodynamic observ-
ables at finite temperature. With computational power still increasing, so is
the size of the systems that can be tackled. The scalability of highly accur-
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ate, correlated wavefunction methods has come a long way as well,5,29 and
while such methods may not lend themselves to dynamics over long time
scales30 (yet), efficient wavefunction algorithms are vital in facilitating the
benchmarking of computationally more cost-effective methods such as DFT.

A part of the formalism at the base of in silico chemistry will be explored
in detail in Part I of this text.

1.2 Time-Scale vs. Accuracy and the Aim of this
Thesis

Numerical simulations, commonly referred to as ‘runs’, rely on models be-
ing computationally tractable. Computational tractability implies that in
a given time, a run can be performed that is on one hand long enough (to
ensure convergence of the statistical observables), and on the other hand of
sufficient accuracy with respect to the underlying potential energy surface
(to ensure that the computed observables make any sense). Both criteria are
intimately linked, as we shall see in the following paragraphs.

1.2.1 Accuracy: A Three Fold Problem

The practicability of a simple static electronic structure calculation is lim-
ited by two factors: The accuracy of the model itself with respect to the
system that it is applied to, as well as the computational cost of that partic-
ular model. Especially in wavefunction based theory, apart from execution
time, sufficient memory to store the information on the system may be an
issue; this is much less of a problem for a density-dependent theory such as
DFT. Nonetheless, for any method that is not exact but an approximation of
the exact form, some desirable approximation may be too computationally
expensive for a system of a given size. In the field of first principles MD,
one particularly prohibitive combination can be the unfortunate combination
of hybrid exchange-correlation (xc) functionals and plane wave-based MD:
Many of the popular exchange-correlation (xc) approximations used to date
belong to an extension of the group of hybrid functionals31 initially proposed
by Becke, which are among the most accurate approximations available to
date. However, their use in a delocalised and periodic basis such as plane
waves will engender a large computational overhead that, depending on the
system, can prove prohibitive. While sometimes, the system may be replaced
by a smaller model system, finite size effects should not be underestimated
especially at the first principles level (one example being BLA - bond length
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alteration in polyenes32). Hence, a balanced compromise between execution
time and accuracy has to be found.

If the dynamics of the system should be explored to unravel the underly-
ing thermodynamics and kinetics (implying finite temperature), yet another
question poses itself. We will see in Part I that the accuracy of an observable
obtained as a time-average over a MD trajectory depends on the time scale
of the fluctuations of the observable. It is therefore directly linked to the
length of the simulated dynamics. If the dynamics are too short, the prop-
erty may not have been sufficiently sampled, and the time-average taken
over the trajectory will exhibit a large statistical error. This may result in
an unphysical prediction. Enhanced sampling methods exist to overcome
the time scale problem,33–37 but while they reduce the time that has to be
simulated in order for a given process to take place, they cannot remedy for
fallacies due to an inaccurate PES.

Errors introduced due to insufficient sampling can be much larger than
the error of the underlying, static electronic structure calculation. In first
principles based MD, the compromise that has to be found will be inclined
towards low execution time, rather than towards highest possible accuracy of
the underlying electronic structure method. Given the magnitude of thermal
fluctuations at room temperature, compromises on the accuracy of the PES
can be made, provided that the approximate PES be at least qualitatively
correct and representative of the physics of the process. And so, the choice
of methods in first principles Molecular Dynamics is a choice between the
achievable time scales and the accuracy of the underlying potential energy
surface (PES)i. In practice, the errors due to sampling and the underlying
electronic structure method should be well balanced.

1.2.2 Structure and Aim of the Present Work

Higher accuracy can be attained in a three-fold way: Once by creating or
implementing more accurate approximations in the electronic structure re-
gime, once by making existing approaches more computationally efficient,
and once by attempting to overcome the time scale issue by improving the
sampling itself via enhanced sampling techniques.

Part I of this work provides a journey through the theoretical foundations
of DFT-based first principles MD; it shall be dedicated to the pleasure of
theory. By drawing our very own Quantum Picture of Chemistry, we will

iWith the notable exception of those cases where a computationally more tractable
method introduces unacceptable errors. For such systems, a highly accurate PES is un-
avoidable.
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attempt to establish a sleek link between the commonly employed models
and approximations in the field to the rigorous basis that is exact quantum
statistical mechanics. We will encounter several issues that render some of
the approximations computationally untractable, and step by step, we shall
explore formulations to break the problem down to a level at which it can
be, finally, solved numerically. A small part will cover the actual numerics
of DFT-based MD, focusing on aspects that are most important for the
subsequent topics of this thesis. Whenever a particular approach should
pose problems in terms of computational tractability, it shall be explicitly
mentioned.

We will not be able to resolve all of the problems evoked in Part I - nor
do we even attempt to -, but we can try to improve over some of them. This
is the aim of the present work, guided by the wish to extend the accuracy
of first principles Molecular Dynamics simulations for a broad variety of
systems both in terms of the time scale of the dynamics as well as the quality
of the underlying PES.

Along these lines, in Part II, we will describe the implementation and
validation of more accurate approximations in DFT in a framework specific
to first principles MD: In Chapter 5, we detail the first implementation of the
successful Coulomb-attenuation method in a plane wave basis typical for first
principles MD. Based on the promising results that have been documented
for excited state calculations with the Coulomb-attenuated CAM-B3LYP38

exchange-correlation (xc) functional, we will show that it is easily possible to
construct a customised functional which outperforms CAM-B3LYP for some
of the systems where the latter has its known weaknesses, while being slightly
more accurate in systems where CAM-B3LYP excels. We will also provide
a short comparison between plane waves and the abundantly used atom-
centred Gaussian basis which is used for many static studies. Along a similar
line, Chapter 6 will in particular focus on the difference between different
families of basis functions: We will outline the implementation of the popular
Minnesota family39–46 of xc functionals in plane waves and show that, due to
their highly empirical character, it may be necessary to take special measures
in a plane wave basis in order to recover fully converged results. We will
see how reaction enthalpies obtained in plane waves may differ from atom-
centred bases, highlighting the strong basis-set dependency of the Minnesota
xc family; and we shall see that given appropriate conditions, energetics may
converge much quicker in plane waves than in atom-centred bases.

Then, in Part III, we will describe how the new methods from Part II
(and many more) can be made more computationally tractable by exploiting
some formal scaling properties of DFT. Chapter 7 will present the use of
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coordinate-scaling relations in the calculation of the exact exchange of the
Kohn-Sham determinant. In Chapter 8, we will detail the implementation
and parallelisation of this coordinate-scaling scheme and demonstrate that
speedups scale favourably with the number of orbitals, reaching about one
order of magnitude at above around 200 states. The speedups obtained with
respect to the standard algorithm will make it possible to perform higher-
accuracy simulations for larger systems, which is especially important in the
excited state regime, providing yet another link to Chapters 5 and 6.

In Part IV, we will offer a recapitulation and discuss some perspectives
related to the methodology and implementations carried out in this work.
We shall also briefly review some additional projects that have been ex-
plored in the context of this thesis: Firstly, the extension of the library
of dispersion-corrected atom-centred potentials (DCACP)47 that have been
shown to considerably increase the quality of the PES of weakly bound com-
plexes in combination with generalised gradient approximation (GGA) xc
functionals. Secondly, we will sketch a method to perform structural elu-
cidation based on N -electron density difference maps and show preliminary
results of performing such density-difference driven MD (d3MD) at the ex-
ample of three text-book organic chemistry reactions, allowing to overcome
the time scale problem due to the rare event that links reactants to products.

This dissertation hence covers diverse aspects of development in Com-
putational Chemistry: From implementations of existing approaches in an
alternative basis set to the efficiency-driven derivation of new computational
algorithms. But for now, we will plunge into the theoretical realms of the
quantum mechanical world of chemistry. Over the next few pages of Part I,
it is mainly this what the author would love to share with the reader: His
personal insight into why what we do is such great fun. He sincerely hopes
that the reader will see it like this, too.
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Part I

A Quantum Picture of
Chemistry
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Notes on Notation

We shall denote quantum mechanical operators by upright letters carrying
a hat (Ĥ), whereas their classical analogues (functions) are denoted using
calligraphic letters (H). Vectors are represented by upright, bold letters
(p,q) and abstract state vectors are identified using Dirac’s Bra-Ket nota-
tion (|Ψ〉). We shall use p and r for general momentum and direct space
coordinates, respectively, and p and r shall be associated scalars. Discrete
functions will take an argument in capitals. Other definitions will be given en
passant in their respective chapters. Where possible, definitions are given in
the space spanned by the complete set of state vectors labelled by i, {∣∣Ψi

〉};
their projections and only their projections onto direct space are referred to
as wavefunctions and denoted by Ψi(r1, . . . , rN ). Parametric dependencies
shall be denoted by a semicolon.
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Chapter 2

The Foundations of Molecular
Dynamics

i�
d

dt
|Ψ(t)〉 = Ĥ |Ψ(t)〉 (2.1)

- the time dependent Schrödinger equation48 needs no introduction. Early
on, many a chemistry student is confronted with this mysterious equation
that seems to hold the answer to everythingi a chemist could ever care about:
Given the knowledge of the Hamiltonian Ĥ of interest along with the wave-
function 〈r|Ψ(t)〉 = Ψ(r1, . . . , rN , t) of a molecule, all of the possible observ-
ables are accessible, and the systems’ time-evolution can be predicted.

There are only two problems: Neither is there an analytical expression for
the wavefunction of any system of chemical interest, nor would a pure state
in the spirit of eq. 2.1 be sufficient to describe the statistics of chemical and
biological phenomena that make chemistry so magic. The most basic reaction
conditions such as pressure and temperature are not (or ill) defined if only
a single molecule is considered; and most reactions - even intramolecular
- will refuse to take place in absence of a suitable chemical environment.
Chemistry is about more than only molecules; it is about the ensemble of
molecules interacting with each other.

There are two principal problems; and this chapter shall be the start-
ing point of our quest for a link between the microscopic particles and the
macroscopic behaviour of a chemical system; be it in an Erlenmeyer flask
or in a living being, but in both cases at finite temperature and pressure,
constituted by several Avogadro numbers of molecules.

iEverything non-relativistic, that is.
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CHAPTER 2. THE FOUNDATIONS OF MOLECULAR DYNAMICS

2.1 Classical Statistical Mechanics

Long before the advent of quantum mechanics, Boltzmann49 and Gibbs50

brought the field of Statistical Mechanics13,51,52 to life, linking microscopic
properties at the atomistic level (single molecules wiggling and bumping
into each other) to macroscopic properties (the reagent in an Erlenmeyer
flask that is just foaming over and distributing a nasty odour throughout
the laboratory due to the overzealous bumping and wiggling). So before we
delve into the fruit of the quantum revolution of the 20th century, let us step
back yet another 100 years.

2.1.1 The Fundamental Postulate in the Microcanonical En-
semble

The state of N particles is uniquely defined by the set of their positions q =
{q1, . . . ,qN} and momenta p = {p1, . . . ,pN} that span the 6N -dimensional
phase space Γ(p,q), and their time-evolution in this space is governed by
Hamilton’s equation of motion:

dpi
dt

= −∂H(p,q)

∂qi
, (2.2)

dqi
dt

=
∂H(p,q)

∂pi
, (2.3)

where the classical Hamiltonian H(p,q) is simply:

H(p,q) =
N∑
i=1

p2
i

2m
+ U (q1, . . . ,qN ) . (2.4)

A system of constant particle number N , volume V and energy E will evolve
on a hypersurface spanned by constant E = H(p,q) according to eqs 2.2
and 2.3. Such a microcanonical ensemble of particles will explore all distinct
points or microstates in phase space, X = {p,q ∈ Γ | H(p,q) = E}, with
an equal probability pi proportional to the inverse of the total number of
microstates W :

pi =
1

W
. (2.5)

This is the fundamental postulate of statistical mechanics.
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It is the groundbreaking statement by Boltzmann49 that links the number
of accessible microstates W , a purely microscopic quantity, with a macro-
scopic thermodynamic property: The entropy S of the system.

S = −kB lnW. (2.6)

Since lnW is dimensionless, the Boltzmann constant kB ensures the right
dimensionality. Gibbs went on to provide a generalised expression for eq. 2.6,
considering that the probability of a microstate pi will not be equidistributed
once the constraint E = const. is abandoned:

S = −kB
∑
i

pi ln pi. (2.7)

This definition opens the possibility of leaving the microcanonical ensemble.

2.1.2 The Canonical Partition Function

This fundamental law is the summit of statistical mechanics [. . . ].
Richard P. Feynman on the Canonical Partition Function13

Consider a system closer to ‘chemical reality’: A collection of particles at
constant N , T and volume V : The canonical ensemble. What is the prob-
ability pi(Γ) that this system is in a certain microstate? By considering two
microcanonical ensembles coupled to each other, where one of the ensembles
serves as a heat bath, the canonical equivalent of the phase space distribution
function pi can be found in the form of a simple exponential:

pi(Γ) ∝ e−βH(Γ), (2.8)

where the thermodynamic β has been introduced as β = (kBT )
−1. This

expression is commonly referred to as the Boltzmann factor. Unlike the mi-
crocanonical ensemble, which is restricted to a hypersurface in phase space,
a system at constant temperature has no such limitation. It can in principle
explore the whole of phase space, and the probability of a certain configura-
tion is given by the relation between its energy and the average temperature.
The equality in eq. 2.5 has given way to a proportionality since the infinite
continuum of probabilities does not sum up to 1. It is the subsequent norm-
alisation that will give rise to a crucial result, if not the most crucial result
of statistical mechanics.

The normalisation over probabilities in eq. 2.8 reads:

Z(β) =

∫
Γ
dΓe−βH(Γ). (2.9)
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This is the canonical partition function Z(β): According to Feynman, this
sleek expression is the summit of statistical mechanics.

The inconspicuous Z(β) is much more than just a normalisation factor.
All important thermodynamic properties, such as the average total energy
E, can be derived from the partition function:

〈E〉 = − ∂

∂β
lnZ. (2.10)

One can then introduce an associated thermodynamic potential, the Helm-
holtz free energy A53:

〈A〉 ≡ 〈E〉 − TS (2.11)
= −kBT lnZ, (2.12)

from which the entropy is easily derived:

S = −∂A
∂T

. (2.13)

All these thermodynamic quantities are defined in terms of the probabilistic
behaviour of particles that constitute the system, linking the macroscopic
and the microscopic worlds.

The same holds for any observable of the system. By combining eqs 2.8
and 2.9, after integration, one arrives at an expression for the expectation
value for a macroscopic observable 〈O〉:

〈O〉 = 1

Z
∫
Γ
dΓO(Γ)e−βH(Γ). (2.14)

Every macroscopic property of interest can hence be derived from the par-
tition function, which is based on the microscopic properties of the system.
It is therefore no exaggeration if one is to attribute a paramount importance
to the partition function. It is the summit that we ultimately want to reach
in our quest for a theoretical description of chemistry.

In the following chapters, we will see how to formally describe an en-
semble of particles on the quantum mechanical level. After all, chemistry
with classical particles only would not be chemistry. We shall then discuss
approaches and approximations that enable us to solve the problem in finite
time and using finite computational resources.
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2.2 Quantum Statistical Mechanics

If the time-dependent Schrödinger equation exactly describes the time evol-
ution of a system (up to a phase), it is not possible to apply it to a stat-
istical mixture of states by resorting to the basic pure state vector pic-
ture; a prerequisite if a thermodynamic ensemble should be described.54,55

Indeed, if one wishes to describe a system in a superposition of states,
|Ψi(t)〉 =∑j c

i
j(t) |ψij〉, where {|ψij〉} is the spectrum of Ĥ, this gives rise to

cross terms of the form cik
∗
(t)cij(t). These terms, mediating between states,

do not describe a statistical mixture of states {j} over time, but give instead
the probability of finding the very system i in one of its eigenstates |ψij〉.
Clearly, a thermodynamic ensemble cannot be constructed on this basis,
since the complex amplitudes give rise to coherence between the states.

Should we, instead, want to describe a statistical mixture of N systems
each in a state |Ψi(t)〉 - which may or may not be found in a superposition
of states each, |Ψi(t)〉 =∑j c

i
j(t) |ψij〉, - we shall have to resort to a different

formalism. The solution is found in a projector.

2.2.1 About Pure and Mixed States: The Density Operator

Following von Neumann,56 the state of a mixed system is described by a
density operator constructed from the set of state vectors {∣∣Ψi(t)

〉}, each
carrying a statistical probability pi,

γ̂(t) =
∑
i

pi
∣∣Ψi(t)

〉 〈
Ψi(t)

∣∣ , (2.15)

which is a Hermitian operator of trace 1. There exists a set of |ψj〉
diagonalising γ̂(t). For a single pure state, γ̂ is idempotent with Tr γ̂2 = 1
and only one pi �= 0. For a statistical mixture of states, we have in general
that pi �= 0, and Tr γ̂2 ≤ 1; only in the particular case of only pure

∣∣Ψi(t)
〉
,

equality holds. This case, with Tr γ̂2 ≤ 1, is referred to as a mixed state.
In the density operator formalism, a basis function |ψj〉 of any state

|Ψi(t)〉 can be observed with a probability that corresponds to the square of
its (time-dependent) expansion coefficient |cij(t)|2 weighted by the statistical
term pi associated to the state i. (We may prove this by projecting the above
expression onto some basis.) Hence, if an observable is an eigenfunction of
some |Ψi(t)〉, eq. 2.15 gives the probability of observing this particular state
within a mixture of states, and not the probability of the measurement col-
lapsing into an eigenstate (for if an observable is associated to an eigenvalue,
there is no collapse). Instead, if the state is in a superposition of eigenstates
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associated to the observable, the probability is the product of the probability
of collapse and the probability of observing a state that is collapsing. The
key advantage of the density operator formalism lies in its versatility: Both
pure and mixed states are described with equal ease. We should not fail to
note that the Hamiltonian of the |Ψi(t)〉 does not need to be separable. It
can just as well be a tensor product of Hamiltonians, Ĥ = Ĥ1⊗Ĥ2⊗· · ·⊗ĤN .
The notion of partial traces Tri then allows for the information due to one
specific Hamiltonian i to be traced out : The state of the complete system
need not be completely known, and still, expectation values for a subsys-
tem Ĥi may be obtained, all the while taking the uncertainty due to the
remaining subsystems into account.54,56 For an ensemble of states, the pi
contain all the information on the composition of the system and its statist-
ical uncertainties, and for a single pure state, γ̂ is simply a convenient and
phase-less alternative to the state vector picture.

It is the same thought exercise that we have evoked for the expectation
values of the pi that can now lead us to the expectation value of a general
observable. One simply calculates the elements of γ̂(t) in a given basis that
diagonalises Ĥ and inspects the resulting equation: There are only diagonal
terms. (One might be concerned with only one sub-system and the associated
partial trace without loss of generality.) It is then straightforward to imagine
that this operation must have been analogous to tracing over γ̂, which leads
us to:

〈Ô〉 = Tr
(
Ôγ̂
)
. (2.16)

The energy of the system is therefore obtained from

E = Tr
(
Ĥγ̂
)
. (2.17)

For any γ̂ with Tr(γ̂) = 1, von Neumann has demonstrated that the
entropy can be directly derived from an expression very much reminiscent
of the entropy definition due to Gibbs50: The quantum or von Neumann
entropy is given by

S = −kB Tr (γ̂ ln γ̂) . (2.18)

So far, we have provided a comprehensive alternative to the use of the
time-independent Schrödinger equation and we have found a fundamental
link between quantum mechanics and statistical mechanics - but the question
on the time evolution of γ̂ has been left open. The time-dependent case is
easily covered by inserting γ̂ into the time-dependent Schrödinger equation:
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In a striking analogy to classical mechanics, the time evolution of a mixed
system is described by the Liouville-von Neumann equation:

˙̂γ =
1

i�

[
Ĥ, γ̂

]
, (2.19)

where [. . . ] denotes the commutator, the quantum analogue of the Poisson
bracket. Contrary to

∣∣Ψ(i)
〉
, γ̂ is phase-independent. It is in this equation

that the density operator formalism reveals all of its beauty (we note that
nothing keeps us from applying it to a single state vector, in which case
eq. 2.19 is nothing but a complementary expression for the time-dependent
Schrödinger equation). By further exploring the analogy to classical mech-
anics, we may follow the classical Liouvillian, L, and define the quantum
Liouville operator as:

iL̂ =
1

i�

[
· , Ĥ

]
. (2.20)

We find the time evolution of the density operator to be:

˙̂γ(t) = e−iL̂tγ̂(0), (2.21)

just as we know it from classical Hamiltonian mechanics.
Consider now a system in some equilibrium ensemble. Just as its classical

analogue, a quantum system at equilibrium is characterised by [γ̂, Ĥ] = 0,
and therefore, the {cj(t)} must obey |cj(t)|2 = |cj(0)|2, and the same goes
for the {pi}. We can therefore drop the time-dependency. In the canonical
ensemble, the weights pi will be given by a Boltzmann distribution (by defin-
ition): The probability associated with any state i is thus pi = exp(−βEi).
We may hence rewrite γ̂ as the thermal density operator ρ̂ (note the omitted
dependency on t)51,54:

ρ̂ =
∑
i

e−βĤ
∣∣Ψi
〉 〈

Ψi
∣∣. (2.22)

If one expands the above expression in an eigenbasis of Ĥ, one arrives at

ρ̂ =
∑
i

e−βEi . (2.23)

This is nothing but the familiar, classical partition function expressed in
terms of discrete energies, rather than an integral. We now recognise that
eq. 2.23 corresponds to the trace of ρ̂ in its eigenbasis. Since the trace of
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an operator is independent of the choice of basis, the quantum partition
function Z may be written more generally as:

Z = Tr (ρ̂) . (2.24)

Just as in eq. 2.14, any observable 〈Ô〉 can be obtained from Z, by tracing
over ρ̂ like it was done for the density operator γ̂ in eq. 2.16:

〈Ô〉 = 1

Z
Tr
(
Ôρ̂
)
. (2.25)

Based on the classical partition functions for various ensembles, their
analogues for quantum systems are then easily derived. Given that the time
evolution of the density operator is known exactly and that any observable
can be obtained from tracing, the full quantum problem can be described by
a set of simple, but strikingly beautiful equations.

Only, it cannot be solved. For if its formal properties are known, a
practical solution of the above equations is impossible apart from a few small
(toy) systems. The problem lies in the representation of |Ψ〉: Spanning a
complex Hilbert space on their own, the state vectors remain evasive to direct
interpretation. And even though our familiar Euclidean space is a special
case of a Hilbert space (and the mathematical extension from 3D Cartesian
to ∞-dimensional Hilbert space can be rather intuitive), projecting the state
vectors onto a real space basis does not solve the problem: In real space, the
dependency on 3N Cartesian coordinates implies that for all but the smallest
systems, a single wavefunction 〈r|Ψi〉 = Ψi(r1, . . . , rN ) becomes in itself an
untractable object; let alone the projection of γ̂, which becomes nonlocal,
thus exacerbating the dimensionality issue: γ(r′1, . . . , r′N ; r1, . . . , rN ). As we
shall see later on, we may safely integrate over most of the N coordinates,
but that does not make things substantially easier.

But the situation is not all as grim as it seems. Let us first tackle the
prominent issue of nonlocality of γ; any worries about the remaining (huge
number of) dimensions of Ψ we shall have to postpone to a later point.

2.2.2 Time-evolution and Ensemble Averages: The Ergodic
Hypothesis

If we know that the probability of our system of interest to be in a certain
state is governed by an equation of the form 2.25, would it not be possible to
observe the very same ensemble for a sufficiently large amount of time while
keeping track of the states that are explored? The (partial) answer to this
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question is given by the ergodic hypothesis.49,51 According to the Liouville
equation, the phase space measure is invariant under time for Hamiltonian
systems. Therefore, if the microstates in phase space are distributed uni-
formly at some point in time, they shall remain so in the future and at all
times. Therefore, for such a system, one has

〈Ô〉 = 1

Z
Tr
(
Ôρ̂
)
= lim

τ→∞
1

τ

∫ t=τ

t=0
dt Tr

(
Ô |Ψ(t)〉 〈Ψ(t)|

)
, (2.26)

where we write the trace over a pure-state density operator, which is equi-
valent to evaluating 〈Ô(t)〉 = 〈Ψ(t)| Ô |Ψ(t)〉. This assumption is, however,
not valid for all Hamiltonian systems; hence the name ergodic hypothesis,
rather than theorem. (The main issue lies in the uniform distribution of the
microstates at t = 0.)

The ergodic hypothesis offers an appealing alternative to the computation
(or direct sampling23) of the partition function: If the time evolution of a
system is followed for sufficiently large times τ , the time average of the
observable will approach its ensemble-average. Even though ergodicity is
not proved for many systems - and it is even disproved for others - evidence
suggests that it holds in many cases; it is this assumption that opens the door
to Molecular Dynamics57 (MD) simulations. By computing the trajectory,
i.e. the time evolution of a system under appropriate simulation conditions,
all thermodynamic quantities become accessible without having to resort to
the density matrix or any other form of the partition function.

We have now found an elegant way of sampling the distribution generated
by ρ̂ without computing ρ̂ itself. However, the dimensionality problem asso-
ciated to the wavefunction Ψ(t) that is to be propagated over time has yet
to be resolved. We shall start with a very basic problem founded in chemical
intuition: How to separate a single, abstract state vector into nuclear and
electronic components.
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CHAPTER 2. THE FOUNDATIONS OF MOLECULAR DYNAMICS

2.3 Molecular Dynamics in the Born-Oppenheimer
Formulation

This is an annotated post-print version of a chapter published in:

Bircher, Martin P.; Liberatore, E.; Browning, N. J.; Brickel, S.; Hofmann, C.; Pa-
toz, A.; Unke, O. T.; Zimmermann, T.; Chergui, M.; Hamm, P.; Keller, U.; Meuwly,
M.; Woerner, H.-J.; Vaníček, J.; Rothlisberger, U. Structural Dynamics 2017, 4,
061510

We have seen that, given appropriate initial conditions, the ensemble av-
erage over the thermal density operator can be replaced by a time-average
based on a pure state. We shall therefore base our discussion on the time-
(in)dependent Schrödinger equation for a single state vector, circumventing
the density operator.

2.3.1 Separating the Hamiltonian: The Born-Oppenheimer
Approximation

The behaviour of a pure, closed, non-relativistic quantum system is com-
pletely characterised by the time-dependent Schrödinger equation:

i�
d

dt
|Ψ(t)〉 = Ĥ |Ψ(t)〉 , (2.27)

where |Ψ〉 is a single state vector in Hilbert space. For a molecular system,
the time-independent Hamiltonian Ĥmol is given by:

Ĥmol =
∑
α

P̂2
α

2Mα
+ Ĥel, (2.28)

Ĥel =
∑
i

p̂2
i

2
+
∑
i<j

1

r̂ij
−
∑
α,i

Zα∣∣∣R̂γ − r̂i

∣∣∣ +
∑
α<β

ZαZβ

R̂αβ
(2.29)

= T̂el + V̂ee + V̂eN + V̂NN, (2.30)

where the electronic Hamiltonian Ĥel has been introduced. The eigenval-
ues of the position operators r̂ and R̂ are the set of electronic and nuclear
coordinates described by the collective variables {r} and {R}, respectively,
while p̂ and P̂ denote the corresponding momentum operators. The molecu-
lar Hamiltonian contains kinetic terms due to the nuclei α and electrons i,
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2.3. MOLECULAR DYNAMICS IN THE BORN-OPPENHEIMER FORMULATION

the potential energy due to the interaction of electrons and nuclei (V̂eN), as
well as nuclear-nuclear (V̂NN) and electron-electron (V̂ee) repulsion terms.

The projection of the time-dependent state vector in real space, Ψ(r,R, t)
depends both on nuclear and electronic coordinates and remains, in this
form, an untractable object for most systems of interest. If the molecu-
lar Hamiltonian were separable, a simplification could easily be achieved by
a factorisation of the wavefunction into a nuclear and electronic compon-
ent.54,55 However, due to the presence of V̂eN , the molecular Hamiltonian
is not separable. The question on how to separate nuclear and electronic de-
grees of freedom has therefore been of paramount importance to molecular
quantum mechanics, be it for static or dynamic approaches.

Indeed, a first ansatz to this problem was proposed by Born and Oppen-
heimer as early as 1927,58 and was later generalised by Born and Huang in
1954.59 The different time scales of electronic and nuclear motion lie at the
very heart of their approach. A non-separable Hamiltonian may be written
as the tensor product of two subsystems; in particular, Ĥmol = Ĥfast ⊗ Ĥslow,
where one Hamiltonian is due to the fast motion of the electrons, and the
other is due to the slower, nuclear components.55 The spectrum of Ĥfast can
then be expanded in terms of electronic eigenstates |Φ〉 by taking the limit
of clamped (or ‘frozen’) nuclei, a limit in which the kinetic contribution of
the nuclei vanishes. Only terms due to the electronic Hamiltonian remain,
Ĥfast = Ĥel; since the potential energy still contains the terms V̂NN and V̂eN,
the dependency of the Hamiltonian on the nuclear coordinates R becomes
parametric. For any nuclear configuration R, one can therefore obtain a set
of electronic eigenstates:

Ĥel(R) |Φl;R〉 = El(R) |Φl;R〉 , (2.31)

where the eigenfunctions |Φl;R〉 depend parametrically on R through V̂eN .
Since Ĥel and R̂ commute, the basis of the molecular Hamiltonian Ĥmol
can be constructed from the direct product of eigenfunctions of R̂ and the
eigenstates of the fast Hamiltonian,55 |R,Φl;R〉 = |R〉 ⊗ |Φl;R〉. After
introducing a resolution of identity in this basis into the real-space projection
of the state vector, Ψ(r,R, t) = 〈r,R|Ψ(t)〉, by orthogonality, one obtains a
factorised expression for Ψ(r,R, t):

Ψ(r,R, t) = 〈r,R|Ψ(t)〉 =
∑
l

〈r|Φl;R〉〈R,Φl;R|Ψ(t)〉 (2.32)

=
∑
l

Φl(r;R)χl(R, t). (2.33)
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Here the nuclear components χl(R, t) (or ‘nuclear wavefunctions’, although
they are no wavefunctions stricto sensu) are projections of the configura-
tional basis onto the Hilbert space vector |Ψ(t)〉, and the Φl(r;R) are the
electronic wavefunctions of a system with configuration {R}. Note that the
Φl(r;R) are time independent. This is commonly referred to as the Born-
Oppenheimer58 or Born-Huang59 ansatz for the total wavefunction. The
problem has now been conveniently split in two parts: In line with chem-
ical intuition, the electronic structure problem can be treated independently
from the nuclear wavefunction; the latter is, however, less straightforward
to interpret, since its definition involves a component-wise projection of the
total wavefunction of the system.

2.3.2 Nuclear Dynamics with the Born-Huang Expansion

Depending on the expansion (or: truncation) adopted in eq. 2.32, the Born-
Huang ansatz can give rise to a hierarchy of different nuclear dynamics re-
gimes.

The description of the nuclear dynamics of the system is obtained by
inserting the ansatz 2.32 into the time-dependent Schrödinger equation. The
resulting coupled-channels equation describes the exact time-evolution of the
nuclear dynamics. Written explicitly in terms of � rather than atomic units:

i�
∂

∂t
χk(R, t) =

[
−
∑
α

�
2

2Mα
∇2
α + Ek(R)

]
χk(R, t)

+
∑
l

Cklχl(R, t),

(2.34)

Ckl(R, t) =−
∑
α

�
2

2Mα
Dα
kl(R, t) +

∑
α

�
2

Mα
dαkl(R, t)∇α. (2.35)

The terms collected under Ckl(R, t) are mediating between different elec-
tronic states and are referred to as the nonadiabatic coupling terms, with
the scalar quantity Dα

kl(R) being the kinetic coupling, and the vectorial
quantity dαkl(R) being the derivative coupling:

Dα
kl(R) = 〈Φk;R| D̂α(R) |Φl;R〉 , (2.36)

D̂α(R) = ∇2
α, (2.37)

dαkl(R) = 〈Φk;R| d̂α(R) |Φl;R〉 , (2.38)

d̂α(R) = ∇α. (2.39)
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These terms are responsible for part of the nuclear quantum effects.
In the Born-Oppenheimer (BO) approximation in its proper sense, these

coupling terms are neglected by setting Dα
kl(R) = 0 and dαkl(R) = 0 (which

is equivalent to neglecting the effect of the nuclear kinetic energy operator
on the electronic wavefunction). This results in a greatly simplified ansatz
for the total wavefunction and a less complex nuclear dynamics:

Ψ(r,R, t) = Φ(r;R)χ(R, t), (2.40)

i�
∂

∂t
χ(R, t) =

[
−
∑
α

�
2

2Mα
∇2
α + E(R)

]
χ(R, t). (2.41)

This simplification is often justified by the fact that the coupling terms
are small and weighted by the inverse of the (heavy) nuclear masses (which
leads to the often stated simplification that the BO approximation separates
nuclear from electronic degrees of freedom due to differences in mass).

With this particular split in mind, we still have not discussed the practical
form of χ(R, t), which depends on 3N nuclear coordinates. It is the most
brut approximation that is the most common one: Chemical processes are
governed by electrons rearranging - following an organic chemists’ drawing
scheme, one may chose to neglect the quantum nature of the nuclei and con-
sider them to be simple, classical objects. The limit of classical nuclei (point
particles or delta functions centred at R) may be recovered by rewriting the
nuclear components χ(R) in polar representation16,60,61:

χ(R, t) = A(R, t) exp

[
i

�
S(R, t)

]
(2.42)

Insertion of the above expression (2.42) into eq. (2.41), separating real and
imaginary parts and taking the classical limit � → 0, results in an isomorph-
ism with the classical Hamilton-Jacobi equation of motion:

∂S(R, t)

∂t
+
∑
α

1

2Mα
(∇αS(R, t))

2 + E(R) = 0 (2.43)

In BO dynamics, the nuclei evolve according to the forces due to a single
electronic state. In the limit of classical nuclei, this results in delta functions
being propagated on a single potential energy surface (PES), neglecting all
nuclear quantum effects. Some of these nuclear quantum effects such as zero-
point energy and tunnelling may be recovered by resorting to techniques such
as the path integral formalism.62 Still, in order to describe the complete ar-
ray of nuclear quantum effects, the nonadiabatic coupling elements must
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CHAPTER 2. THE FOUNDATIONS OF MOLECULAR DYNAMICS

imperatively be included, since any dynamics based on the BO formalism
forbids the nuclei - described as classical point charges or nuclear wave pack-
ets - to switch between potential energy surfaces; BO dynamics is therefore
a strict single state dynamics.

Should we wish to assess possible regions of breakdown, it proves con-
venient to rewrite the leading derivative coupling term in eq. 2.38 in a more
intuitive form that depends on the eigenvalues of Ĥel

63:

dαkl(R) =
〈Φk;R| ∇αĤel |Φl;R〉
El(R)− Ek(R)

. (2.44)

This expression reveals that the nonadiabatic coupling terms become im-
portant whenever two eigenstates are close in energy. In the case of a conical
intersection, where the eigenvalues of Ĥel are degenerate, they even diverge.
In such systems, the Born-Oppenheimer approximation breaks down and
with it the picture of classical nuclei evolving on one single potential energy
surfaces is no longer suitable. Due to faster nuclear motion, the nuclear
wavepacket cannot be thought of as being localised on one PES, but instead
spreads over several electronic states. In order to properly describe the dy-
namics of those systems, it is therefore necessary to go beyond the BO and
to include the nuclear quantum effects that lead to couplings between elec-
tronic states. We shall briefly review two semiclassical approaches that allow
nonadiabatic effects to be incorporated into the dynamics.

Semiclassical Methods: Ehrenfest Dynamics An alternative possib-
ility to include the effects of several electronic states within a semiclassical
approach is based on an ansatz for the total wavefunction of:

Ψ(r,R; t) = Φ(r; t)χ(R; t) exp

[
− i

�

∫ t

t0

Eel(t
′)dt′

]
(2.45)

Eel(t) =

∫∫
Φ∗(r, t)χ∗(R, t)Ĥel(r,R)χ(R, t)Φ(r, t) dR dr. (2.46)

This single-configuration ansatz gives rise to Ehrenfest dynamics .61 In con-
trast to the BO formalism, the time-dependent electronic wavefunction Φ(r; t)
exhibits no dependence on the nuclear coordinates at all, not even paramet-
rically. Instead, an additional exponential term, the phase term is intro-
duced. By inserting this ansatz into the time-dependent Schrödinger equa-
tion, the evolution of the nuclear and electronic wavefunctions are given by
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the Time-Dependent Self-Consistent Field (TDSCF) equations64:

i�
∂

∂t
Φ(r, t) =

[
T̂el +

∫
dR χ∗(R)V̂(r,R)χ(R)

]
Φ(r, t), (2.47)

i�
∂

∂t
χ(R, t) =

[
T̂N +

∫
dr Φ∗(r, t)Ĥel(r,R)Φ(r, t)

]
χ(R, t), (2.48)

where V̂ = V̂ee + V̂eN + V̂NN. The nuclei evolve in a time-dependent mean
field of the electronic states, and vice versa. As described above for the
Born-Oppenheimer ansatz, the limit of classical nuclei can be recovered by
inserting the polar representation of the nuclear wavefunction, (2.42), into
the time derivative of eq. (2.48) and taking the limit � → 0.61 The resulting
equation is again isomorphic to the Hamilton-Jacobi equation and may be
further recast to yield a Newton-like equation for the nuclei:

−Fα(t) = ∇Rα

∫
dr Φ∗(r, t)Ĥel(r,R)Φ(r, t). (2.49)

According to (2.49), the classical nuclei evolve on an ‘averaged PES’ due to
Φ(r, t). The corresponding equation for the electronic degrees of freedom is
obtained by writing χ(R, t) =

∑
α δ(R(t) − Rα(t)); it is simply the time-

dependent Schrödinger equation for Φ, with a (re)introduced parametric
dependence on R:

i�
∂Φ(r;R(t), t)

∂t
= Ĥel(r,R)Φ(r;R(t), t). (2.50)

Therefore, the method lends itself to be combined with time-dependent
density functional theory (TDDFT),65 where Φ in (2.49) can be expanded
in terms of time-dependent Kohn-Sham noninteracting Slater determinants
Φ(r, t) = det |ψ1(r, t), . . . , ψN (r, t)|, and Fα is derived using the Hellmann-
Feynman theorem. Eqs. (2.49) and (2.50) have to be solved simultaneously,
which can be carried out on-the-fly e.g. by using a Runge-Kutta integrator.65

Due to the averaged nature of Φ(r, t), Ehrenfest dynamics is a suitable
choice whenever the classical trajectories due to different electronic states
do not differ considerably; such as when the relaxation of the electronic
degrees of freedom is fast with respect to the nuclear motion. Otherwise,
e.g. for molecular dissociations, the mean-field approximation may introduce
large errors: After leaving regions of strong nonadiabaticity, the nuclei are
unable to collapse on either of the PES, making their dynamics potentially
unphysical.61 Ehrenfest dynamics is therefore typically limited to ultrafast
or instantaneous processes.
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Semiclassical Methods: Trajectory Surface Hopping Trajectory Sur-
face Hopping (TSH)66 offers another possibility of including nonadiabatic ef-
fects by independently propagating a swarm of particles on different, single
electronic states, and allowing them to ‘hop’ onto a different state accord-
ing to some predefined hopping probability. As in the case of Ehrenfest
dynamics, this propagation can be carried out on-the-fly.

Given a set of initial nuclear coordinates and velocities, trajectories are
propagated on a single electronic state according to the Born-Oppenheimer
scheme. Subsequently, the probability for a jump is calculated. In a first
approximation, the Landau-Zener67,68 transition probability may be used.
Originally formulated in a diabatic framework, some simplifications allow
for it to be reformulated based on adiabatic quantities16:

P (t) ≈ exp

⎛
⎝− π

2�

min
{
|ΔE01(t)|2

}
max

{
∂|ΔE01(t)|

∂t

}
⎞
⎠ . (2.51)

Here, P is the probability to perform a nonadiabatic transition at an avoided
crossing for a two-state system and ΔE01 is the adiabatic electronic gap.

A more rigorous approach to the transition probabilities is given by
Tully’s ‘Fewest Switches’ formulation of TSH.69 A set of complex amplitudes
{C(t)} is assigned to every trajectory to quantify the degree of nonadiabadi-
city during the propagation. The complex amplitudes themselves evolve
along each trajectory according to:

i�
∂Cj(t)

∂t
=

∞∑
i

Ci(t)
[
Eel
i (R)δij − i�σij(R, t)

]
, (2.52)

where σij(R, t) = dij(R) ·Ṙ and dij(R) is the derivative coupling as defined
in eq. (2.38). After integration, the probability of hopping from state j to
state i within an infinitesimal time interval dt is computed:

gij(t, t+ dt) = 2

∫ t+dt

t
dτ

−�
[
Ci(τ)C

∗
j (τ)σij

]
Cj(τ)C∗

j (τ)
. (2.53)

The hop is then accepted or rejected according to a Metropolis criterion by
comparing the hopping probability to a random number ζ ∈ [0, 1]:∑

k≤i−1

gjk < ζ <
∑
k≤i

gjk. (2.54)
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Total energy conservation is ensured by rescaling the nuclear velocities after
an accepted hop. The trajectory γ is now further propagated along the new
electronic state i in an adiabatic fashion, until the next hopping attempt.

The terms needed in trajectory surface hopping can be rigorously de-
rived from linear response time-dependent density functional theory (LR-
TDDFT).70 The sum in eq. (2.52) may be truncated after N adiabatic states,
and the (diagonal) electronic eigenvalues Eel

i may be replaced by a relative
term, Ṽij =

[
Eel
i − Eel

0

]
δij . Ṽij has an analogue in the TDDFT excitation

energies ωi, and eq. (2.52) may be recast in terms of a set of transformed
coefficients

{
C̃(t)

}
and the TDDFT excitation energies {ω}:

i�
∂C̃i(t)

∂t
= C̃i(t)ωi − i�

N∑
j

C̃j(t)σij(R, t). (2.55)

The σij are accessible via finite differences:

σij(R, t)
∣∣∣
t+dt/2

=
1

2dt

[∫
dr Φ∗

i (r;R(t))Φj(r;R(t+ dt))

−
∫

dr Φ∗
i (r;R(t+ dt))Φj(r;R(t))

]
.

(2.56)

After integration of eq. (2.52), the switching probability is computed ac-
cording to eq. (2.54), using C̃j rather than Cj and by linearly interpolating
σij(τ). This approach has been implemented in combination with a plane
wave/pseudopotential formalism.70,71

The nuclear dynamics in TSH are still governed by a single-state Born-
Oppenheimer formalism, but the propagation of the complex amplitudes
and the calculation of the hopping probability allow for a transition between
states. Since TSH is carried out for a collection {γ} of trajectories, this
hopping can mimick the spread of the wavepacket in nonadiabatic regions.
However, nuclear quantum effects such as tunnelling and the zero-point en-
ergy are not described, due to the classical nature of the individual traject-
ories. For a more extensive review of nonadiabatic dynamics, see e.g. Refs
16,61,72,73.

Comments on Single-State Dynamics Single-state BO dynamics of
classical point particles, with none of the aforementioned quantum correc-
tions applied, remain reliable and sufficiently accurate for a vast majority of
systems. The simplification may be taken even further by using a classical

35



CHAPTER 2. THE FOUNDATIONS OF MOLECULAR DYNAMICS

expression for the PES E(R) on which the system evolves: Parametrised
interactions are at the base of the highly successful classical Molecular Dy-
namics simulations that have provided valuable insight into dynamics and
thermodynamics in both the solid state and condensed matter systems.

In this text, however, we wish to pursue the quantum path to the electronic
hypersurface: By invoking the Born-Oppenheimer approximation and relying
on classical nuclear dynamics, we are only left with one unknown, |Φl(r;R)〉.
But even with the explicit dependency on the nuclear coordinates R removed,
we are left with an unknown, high-dimensional function depending on 3N
Cartesian electron coordinates r. This unknown, however, we may avoid:
The single state dynamics in eq. 2.41 does not explicitly refer to the electronic
wavefunction, but only to the electronic potential energy surface. It is in the
next chapter that we will present an approach to find El(R) without any
explicit usage of the electronic wavefunction |Φl(r;R)〉 and its untractable
dependency on r.
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Chapter 3

The Electronic Structure Problem

In 1964, Hohenberg and Kohn published their two theorems for the nonde-
generate ground state of an interacting electron gas in an external potential
v(r).14 The first theorem states that the external potential v(r) is, up to
a constant, uniquely determined by the density ρ(r). Since v(r) fixes the
Hamiltonian of the system, ‘the many-particle ground state is a unique func-
tional of the density’. Therefore, a density functional F [ρ] exists such that
the energy Ev of a system subjected to the potential v is given by

Ev[ρ] =

∫
v(r)ρ(r)dr+ F [ρ]. (3.1)

The second theorem proves the validity of a variational principle for ρ(r),
namely that ‘the density minimising the total energy corresponds to the
ground-state density’.

E0[v] = min
ρ

(Ev[ρ]) . (3.2)

The Hohenberg-Kohn theorems are the fundamental basis of a density func-
tional theory (DFT), which has revolutionised Computational Chemistry.
Instead of solving an eigenvalue problem for a high-dimensional wavefunc-
tion, it becomes possible to calculate the ground-state energy of a system
- and, by extension, its properties - by resorting to a simple, 3-dimensional
Cartesian observable: The electron density ρ(r).

3.1 The Universal Density Functional

If the Hohenberg-Kohn (HK) theorems were revolutionary, there were some
serious uncertainties and problems associated with the representability of
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ρ(r) and v(r).17,74–77 It is the work of Levy74 and Lieb75 that has put
DFT on a rigorous mathematical basis and that has formally resolved these
issues. In the following, we shall illustrate their proof of the existence of a
truly universal density functional by recapitulating parts of Lieb’s work.

3.1.1 Levy-Lieb Density Functional Theory

[The] exact theory of DFT is almost useless.
Walter Kohn, as reported by Kieron Burke during a lecture78

Almost. As intriguing as it is, HK-DFT is mathematically awkward - Lieb
commented that ‘the search space is filled with holes.’ 75 It all starts with
the very basic problem of N -representability: If the minimisation in eq. 3.2
is fed with some ρ(r), there is no guarantee that this ρ(r) corresponds to a
density of an N -electron system. Fractional electrons are chemically rather
unacceptable (although of great conceptual importance). Furthermore, in
eq. 3.2, the trial space in the minρ must imperatively be a convex space of
ground-state densities in order for such a search to be performed at all.

The caveat is in the definition of the density functional itself. Hohenberg
and Kohn defined the density functional according to eq. 3.114:

FHK [ρ] = E[v]−
∫
v(r)ρ(r)dr (3.3)

= 〈Ψv
GS | T̂ + Ŵ |Ψv

GS〉 , (3.4)

where v
GS denotes a ground state due to the external potential v, T̂ denotes

the kinetic energy operator and Ŵ =
∑

i<j r̂
−1
ij is the Coulomb operator.

FHK [ρ] is only defined for ρ ∈ AN and for v ∈ VN :

AN = {ρ | ρ comes from a ground state} , (3.5)

VN =
{
v
∣∣∣ Ĥ[v] has a ground state

}
, (3.6)

and we therefore have to search over all ground-state densities to find our
ground-state density for a given v. More precisely, one would therefore have
to write the original HK variational principle as:

E[v] = min

{
FHK [ρ] +

∫
v(r)ρ(r)dr

∣∣∣∣ ρ ∈ AN

}
, (3.7)

for an unknown v ∈ VN , and restricted to an unknown set AN . We especially
do not know whether our search space is convex, and we are therefore left in
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the dark about whether or how we can take a functional derivative77 - which
we would need if we wish to find ρvGS .

The criteria that account for N -representability are linked to the finite-
ness of T , with

∫ ∣∣∇ρ1/2(r)∣∣2 dr < T and T <∞:

ρ(r) ≥ 0 ,

∫
ρ(r)dr , and

∫ ∣∣∣∇ρ(r)1/2∣∣∣2 dr <∞. (3.8)

It can also be shown that ρ(r)1/2 ∈ H1(R3), i.e. both ρ(r)1/2 and ∇ρ(r)1/2
are in an L2-space. Based on these conditions, one may now properly define
a search space IN :

IN =

{
ρ

∣∣∣∣ ρ(r) ≥ 0,

∫
ρ(r)dr = N, ρ(r)1/2 ∈ H1

(
R
3
)}

, (3.9)

which Lieb has demonstrated to be convex.75,77 But there is no guarantee
that all densities within IN are indeed densities of any ground state. In
order for the variational principle to hold soundly, the functional FHK [ρ]
should be convex, and it should be defined on the well-defined search space
IN (or a convex subset thereof). But neither does the domain AN of FHK [ρ]
contain all of IN , nor is it convex!

We may, however, introduce another functional - Levy’s universal density
functional (DF).74 We shall first have to confirm that E[v] is a concave
functional in the potential v, such that one can safely write:

E[v] = inf
{
〈Ψ| Ĥ[v] |Ψ〉

∣∣∣Ψ ∈ WN

}
, (3.10)

WN = {Ψ | ||Ψ|| = 1, T (Ψ) <∞} , (3.11)

which Lieb proved in theorem 3.1 of Ref. 75, and the appropriate search
space is given by WN . || || denotes an L2 norm. In order for a trial wave-
function to be admissible, it must be normalised and its kinetic energy T
must be finite. Any such minimising Ψ then satisfies the time-independent
Schrödinger equation, Ĥ[v] |Ψ〉 = E[v] |Ψ〉.

We now define Levy’s universal DF to be:

F̃ [ρ] = inf
Ψ

{
〈Ψ| Ĥ[0] |Ψ〉

∣∣∣Ψ �→ ρ, Ψ ∈ WN

}
(3.12)

= inf
Ψ

{
〈Ψ| T̂ + Ŵ |Ψ〉

∣∣∣Ψ �→ ρ,Ψ ∈ WN

}
= Q[ρ], (3.13)

where we have introduced Ĥ[0] as the Hamiltonian of a system in absence of
an external potential. For a Coulomb system in the absence of an external
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potential, F̃ [ρ] searches the wavefunction space for some ground-state wave-
function |Ψ〉, the density of which yields ρ. Where the minimum as in eq.
3.2 does not exist, the greatest lower bound is obtained instead. From this,
by combining eqs 3.12 and 3.10, we find that:

E[v] = inf
ρ

{
F̃ [ρ] +

∫
v(r)ρ(r)dr

∣∣∣∣ ρ ∈ IN

}
, (3.14)

and therefore, as a special case,

F̃ [ρ] = FHK [ρ] if ρ ∈ AN . (3.15)

Lieb then proved that for each ρ in IN (eq. 3.9) there is a Ψ ∈ WN (eq. 3.11)
such that F̃ [ρ] = 〈Ψ| Ĥ[0] |Ψ〉, i.e. the infimum in eq. 3.12 is a minimum
(Lieb’s theorem 3.3). But this says nothing about Ψ being a ground-state
Ψ, and unfortunately, Levy’s F̃ [ρ] itself is not convex either; even though
its search space is. For if N > q = number of spin states, F̃ [ρ] is not a
convex functional, and there exists a ρ ∈ IN that does not come from a
ground-state Ψ (Lieb’s theorem 3.4), which is a rather subtle point.77

These limitations make it necessary to define yet another functional. Lieb
showed that the construction of a convex, universal functional is possible by
performing the Lieb maximisation over potentials v:

F [ρ] = sup
v

{
E[v]−

∫
v(r)ρ(r)dr

∣∣∣∣ v ∈ L3/2 + L∞
}
. (3.16)

By defining F [ρ] on a set X = L3∩L1 of Lp-spaces, the restrictions ρ(r) ≥ 0
and

∫
ρ(r)dr = N can be lifted, with F [ρ] = ∞ if ρ /∈ IN , thus yielding a

convex functional. It follows that F [ρ] ≤ F̃ [ρ] for all ρ ∈ IN . We then find
E[v] as the Legendre-Fenchel transform of F [ρ]:

E[v] = inf
ρ

{
F [ρ] +

∫
v(r)ρ(r)dr

∣∣∣∣ ρ ∈ L3 ∩ L1

}
, (3.17)

which is a concave functional, and F [ρ] = CEF̃ [ρ] for all ρ ∈ L3 ∩ L1, i.e.
F is the complex envelope of F̃ . Consequently, equality holds when the
search space is IN ⊂ L3 ∩ L1. Lieb shows in his theorem 3.7 that F is the
Legendre-Fenchel transform of E[v], and that the Lieb maximisation can be
performed for all concave E[v]. In approximate theories where E[v] is not
concave, F [ρ] is still well-defined, but will yield an upper bound to E[v].75,77

It is therefore possible to characterise a ground-state system based on its
density and external potential only, since E[v] and F [ρ] are mutual Legendre-
Fenchel transforms. The Hohenberg-Kohn variational principle has been
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extended to a well-defined, known search space of densities ρ, where the
functional returns ∞ whenever the density under consideration does not
come from IN and is therefore not N -representable. If the potential does
not admit a ground-state, the energy is obtained as an infimum instead.

Finally, we note that there is a complementary formulation for F [ρ] in
terms of the density operator on an ensemble density matrix:

FDM [ρ] = inf
γ̂→ρ

Tr
(
Ĥ[0]γ̂

)
. (3.18)

This is the Levy-Lieb constrained search functional for canonical ensembles
which, due to linearity γ̂ → ρ is convex on IN , and where a minimising γ̂
always exists. Therefore,

E[v] = inf
ρ

{
FDM [ρ] +

∫
v(r)ρ(r)dr

∣∣∣∣ ρ ∈ IN

}
. (3.19)

Lieb75: ‘The amusing fact is that:’

F [ρ] = FDM [ρ] , ρ ∈ IN , (3.20)

which is less obvious than it might seem at first glance.

A Few Notes on the Time-Dependent Case We cannot possibly con-
clude our discussion of the intricacies of ground-state DFT without mention-
ing its time-dependent analogue. In 1984, 20 years after the seminal paper
by Hohenberg and Kohn, Runge and Gross79 provided a (rather) general
formulation of a time-dependent density functional theory (TDDFT) - a dif-
ferent theory with its own theorems, proofs and issues. Thanks to TDDFT,
it has become possible to conveniently calculate excitation energies of mo-
lecules, which are available as the poles of the density response function.
Many excited-state properties can then be calculated in the linear response
regime. However, and just like ground-state DFT, N -representability of the
time-dependent density remains an issue, and a rigorous generalisation has
been provided by Cohen and Wasserman.80

3.2 Kohn-Sham Density Functional Theory

As appealing as it is, DFT carries its main problem in its name: The density
functional. Although its existence has been put on a rigorous basis thanks
to the work by Levy and Lieb, its functional form remains elusive. This does
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not come as a surprise: over 30 years before the seminal paper by Hohenberg
and Kohn, the Thomas-Fermi-Dirac81,82 model of the homogeneous electron
gas showed that it is all but trivial to describe the kinetic and correlation
energy of some density ρ(r). To date, an overwhelming majority83 of DFT
calculations is carried out within the Kohn-Sham DFT15 (KS-DFT) frame-
work, since it elegantly circumvents the problem of the description of the
kinetic energy functional. We shall explore this approach in the following
paragraphs.

3.2.1 The Kohn-Sham Formalism

Although the exact density functional exists, it is not known, and finding
accurate approximations to it is quite a formidable task. In 1965, Kohn and
Sham introduced a formalism that, in practice, considerably simplifies the
determination of the functional F [ρ]. According to Hohenberg and Kohn,14

one may separate the classical Coulomb energy of the interacting electrons
J out of eq. 3.1:

Ev[ρ] =

∫
v(r)ρ(r)dr+ J [ρ] +G[ρ] , ρ ∈ AN , (3.21)

which leaves all the non-classical terms to G[ρ]. The key to the Kohn and
Sham15 picture of DFT lies in taking this decomposition one step further.
This is possible thanks to the introduction of a simple way of construct-
ing the electronic density and the resulting possibility of computing a large
contribution to the kinetic energy.

We start by noting that the kinetic energy Ts of a noninteracting singlei

particle system is not only known, but that it also has an appealing, simple
form. Such a system is represented by a single-determinantal wavefunction,
and its corresponding kinetic energy is:

Ts =

N∑
i

∫
drψ∗

i (r)

(
−1

2
∇2

)
ψi(r) , ψ → Ψ , Ψ ∈ W0, (3.22)

where the single-determinantal wavefunction is constructed from single-par-
ticle orbitals {ψi}:

W0 = {Ψ |Ψ is a single determinant;ψ → Ψ, 〈ψi|ψj〉 = δij} . (3.23)

iWhence the s in Ts
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We also note that one simple way of resolving the N -representability issue
of ρ would lie in the construction of ρ(r) from the N occupied, orthonormal
orbitals that constitute the aforementioned determinant:

ρ(r) =
N∑
i

ψ∗
i (r)ψi(r) , ψ → Ψ , Ψ ∈ W0. (3.24)

Any density constructed in such a way will be member of a set A 0
N of densities

that come from a single-determinantal noninteracting ground state:

A 0
N =

{
ρ

∣∣∣∣∣∑
i

|ψi|2 = ρ , ψ → Ψ , Ψ ∈ W0

}
, (3.25)

and it will be N -representable, since A 0
N ⊂ IN by construction.77

Kohn and Sham exploited those key concepts by inserting a density con-
structed from Ψ ∈ W0 into the Hohenberg-Kohn density functional. Since the
ground-state energy is a functional of the density and the density alone, one
may just as well construct the density from a set of auxiliary single-particle
orbitals. Not only will this ensure N -representability, but it also makes the
computation of the noninteracting part of T possible. This constitutes a
rather natural approach since the noninteracting kinetic energy makes up
the vast majority of the kinetic energy of a system, T −Ts � T . The energy
difference should be easier to account for (and approximate) than the total
kinetic energy.15,17

Kohn and Sham started from the splitting adopted in eq. 3.21: Given that
Ts is known for any density in A 0

N , one may take the given decomposition
one step further and define

G[ρ] ≡ Ts[ρ] + Exc[ρ]. (3.26)

The remaining, unknown term - Exc - is due to all non-classical exchange-
correlation effects. The exchange-correlation energy is thus defined by the
difference between the noninteracting kinetic energy Ts and the (true) in-
teracting kinetic energy T of the system, as well as the difference between
classical (J) and (true) quantum mechanical interaction (potential) energy
(Vee) of the electrons:

Exc[ρ] ≡ T [ρ]− Ts[ρ]︸ ︷︷ ︸
kinetic terms

+Vee[ρ]− J [ρ]︸ ︷︷ ︸
potential terms

, ρ ∈ A 0
N . (3.27)
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Since the exchange energy is orders of magnitudes larger than the correlation
energy, it is customary and certainly more practical to write Exc[ρ] = Ex[ρ]+
Ec[ρ]; we shall make reference to this partitioning further on in the text.

By expressing the total energy in terms of the by now well-known func-
tionals and the auxiliary orbitals {ψi} that add up to ρ, Kohn and Sham
found that:

Ev[ρ] =
N∑
i

∫
ψ∗
i (r)

(
−1

2
∇2

)
ψi (r) dr+ J [ρ] + Exc[ρ]

+

∫
v(r)ρ (r) dr ,

∑
i

|ψi|2 = ρ, ψ → Ψ, Ψ ∈ W0, v ∈ VN .

(3.28)

The auxiliary single-particle orbitals are commonly referred to as the Kohn-
Sham orbitals. A priori, their sole purpose lies in summing up to the correct
density and in the straightforward computation of the kinetic energy Ts;
the are intended to have no other physical interpretation.15,17,84,85 The key
concept is that both the interacting system in eq. 3.28 and the noninter-
acting system that the {ψi} belong to share the same N -electron density.
The only quantities not shared by both systems are cast away in the func-
tional Exc[ρ]. The beauty of this set of equations lies in the mapping of an
interacting, physical problem, onto an artificial, but easy-to-solve auxiliary
noninteracting problem, where the only common element is the identical N -
electron density. We note that Ts, although expressed in terms of auxiliary
orbitals, is still an implicit functional of the density: The overall expression
in eq. 3.28 remains a true density functional, since it can be shown that the
Slater determinant ΨKS constructed from the Kohn-Sham orbitals fulfils

ΨKS[ρ] = argmin
Ψ

{Ts[ρ] |Ψ → ρ} . (3.29)

But not only does the Kohn-Sham approach make it possible to easily
construct N -electron densities, but the result of inserting eq. 3.28 into the
Euler-Lagrange equation for a density variation is most appealing, too.ii By
subjecting eq. 3.28 to such a constrained minimisation, using the orthonor-
mality of the auxiliary orbitals as boundary conditions, Kohn and Sham

iiThe question whether the density variation in the Euler-Lagrange procedure can be
properly carried out, i.e. whether the variation of the density and the functionals in eq.
3.32 is possible for every ρ ∈ A 0

N is a rather intricate one, and we refer the interested
reader to the available, enlightening literature.77
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derived a set of single particle equations for the noninteracting ψ that yield
the ground-state density:[

−1

2
∇2 + veff(r)

]
ψi(r) = εiψi(r), (3.30)

where veff is an effective potential given by:

veff = v(r) +
δJ [ρ]

δρ (r)
+
δExc[ρ]

δρ (r)
, (3.31)

or, alternatively,

veff = v(r) +

∫
ρ (r′)
|r− r′|dr

′ + vxc (r) , (3.32)

where he have defined

vxc ≡ δExc[ρ]

δρ (r)
(3.33)

as the exchange-correlation potential, which is the functional derivative of
Exc[ρ] and the one and only part of the potential due to non-classical effects.
This potential is local in space!iii

The resulting expressions are neat, clean and (deceptively) simple: Given
an expression for the exchange-correlation functional Exc[ρ], the solution
to eq. 3.30, and therefore the solution of the HK variational principle, is
obtained from a straightforward self-consistent field (SCF) approach.

The question is whether the word ‘straightforward’ is fully justified, since
we have not discussed the search space A 0

N in any detail (and neither have we
been concerned with any a practical functional form for Exc[ρ]). A 0

N is clearly
a subset of AN , but we do not know much about it, except how to construct
its members. Kohn-Sham DFT carries all the burden of Hohenberg-Kohn
DFT. This is no encouraging perspective. Moreover, in addition to the ba-
sic problems associated to the Hohenberg-Kohn theorems that we have dis-
cussed in the previous chapter, the Kohn-Sham formalism gives rise to an
additional condition that has to be accounted for, which is noninteracting-v-
representability88 of the density. Much alike the v-representability issue,75,76

this requirement is only met if a noninteracting ground-state density exists
that is represented by the effective potential veff. In their discussion of v-
representability, Levy74 and Lieb75 demonstrated that a ‘perfectly smooth

iiiBurke referred to this as a semi-classical description of exchange and correlation ef-
fects.86,87
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and innocent’ 75 density constructed from degenerate ensembles is only en-
semble-v-representable, rather than pure-state-v-representable. This directly
implies that not every such ensemble-v-representable density can possibly be
associated to a single noninteracting Kohn-Sham Slater determinant77 . . .

Is there any certainty that the Kohn-Sham equation yields some reason-
able result? Luckily, this is the case, since if it were not, years of results
based on KS-DFT calculations would be of more than questionable quality.
Eschrig77 pointed out that if a self-consistent solution is obtained from eq.
3.30, then the density obtained is forcibly noninteracting-v−representable.
While mathematically ill defined, the questions evoked in the preceding para-
graphs are of little practical importance: There may be systems for which
no solution can be found, but where it can be found, we can be positive that
v ∈ VN and ρ ∈ AN , and since the density is in practice not decomposed
into the {ψi}, but instead constructed from them, even ρ ∈ A 0

N . We are
therefore ready to tackle the next unknown: Exc[ρ].

On the Interpretation of Kohn-Sham Orbitals Kohn and Sham ex-
plicitly stressed the auxiliary nature of the noninteracting single particle
orbitals.15 However, Janak89 later showed that the derivative of the en-
ergy of an N -electron system with respect to the occupation number ni of
a given orbital is equal to the orbital eigenvalue, ∂EN/∂ni = εi. A relation
between an N and N+1 electron system can then be established by inserting
0 ≤ n ≤ 1 (fractional) electrons in the lowest-lying unoccupied KS-orbital i
of the N -electron system:

EN+1 − EN =

∫ 1

0
dn εi(n). (3.34)

Practical evidence also suggests that Kohn-Sham orbitals lend themselves
to some straightforward physical interpretation within a one-electron pic-
ture.17,84 Kohn-Sham gaps have been found to provide a good approxim-
ation of the optical gap in molecular systems, and the eigenvalues of the
highest occupied KS orbitals agree with experimental ionisation potentials
to about ≈ 0.1 eV.85

Yet Another Note on the Time-Dependent Case The Kohn-Sham
scheme can also be applied to TDDFT, and Runge and Gross have de-
veloped the formalism in their seminal paper.79 Such KS-TDDFT cal-
culations will require the computation of the exchange-correlation kernel,
fxc(rt, r

′t′), which describes the response of the exchange-correlation poten-
tial at r at time t to a density variation at r′ at some other time t′. This
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expression is inserted into the Dyson equation of TDDFT, from which the
excitation energies of the system can then be obtained. The search for the
xc kernel is even more intricate than the search for the xc functional, and
it is often approximated by using the adiabatic local density approxima-
tion (ALDA), where fALDA

xc (rt, r′t′) = δvxc(r, t)/δρ(r
′, t′)δ(r − r′)δ(t − t′).

Since the ALDA is the most common approximation, most functionals de-
veloped for ground-state KS-DFT can be (and are indeed) routinely applied
in KS-TDDFT calculations. The considerations in the following pages will
therefore not only be of importance for KS-DFT, but for KS-TDDFT alike
(with the additional constraint that fALDA

xc be a sufficient approximation to
fxc).

3.2.2 The Exact Form of the Exchange-Correlation Func-
tional

It is possible to reconstruct the exchange-correlation functional for every
system.90 However, this approach does not lead to any portable expression
that would be general enough to be applied in routine calculations. Still, it
has relevant implications in the development of new xc approximations and
in the physical analysis of existing xc approximations.91 We shall therefore
quickly sketch how the exact KS xc functional is derived from Lieb’s universal
DF in the framework of the adiabatic connection, a formalism which has
accompanied DFT development for the last few decades.17,90–95

Lieb proved that a minimising density matrix γρ associated to Ĥ[0], the
Hamiltonian in absence of an external potential, exists (turning the inf into
a proper min)75:

Fλ[ρ] = min
γ̂→ρ

{
Tr Ĥλ[0]γ̂

}
= Tr Ĥλ[0]γ̂

ρ
λ, (3.35)

where we have introduced λ as the adiabatic connection interaction para-
meter that ‘switches on’ the electron-electron interaction in a general Hamil-
tonian Ĥ[v]:

Ĥλ[v] = T̂ + λŴ + v(r). (3.36)

One can rewrite eq. 3.35 in terms of an integration95:

Fλ[ρ] = F0[ρ] +

∫ λ

0
dλF ′

λ[ρ]. (3.37)

In the absence of an external potential, we simply have Ts[ρ] = Tr(Ĥ0[0]γ̂
ρ
0) =

Tr(T̂γ̂ρ0) at λ = 0. We then recognise that, correspondingly, the kinetic
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contribution to F0[ρ] is simply Ts[ρ]. The integrand in 3.37 can be computed
by calculating F ′

λ[ρ] = dFλ[ρ]/dλ using the Hellman-Feynmann theorem,
which leads us to:

Fλ[ρ] = Ts[ρ] +

∫ λ

0
dλWJxc,λ[ρ], (3.38)

where we have introduced WJxc,λ[ρ] = Tr(Ŵγ̂ρλ) in the integrand as the
energy due to the Coulomb operator in a partially interacting system with a
minimising density matrix γ̂ρλ (thus the absence of a min). Note that the λ in
front of Ŵ has vanished due to the derivative ∂Ĥλ[v]/∂λ, the λ dependency is
only retained in the minimising ensemble-density matrix γ̂ρλ.

95 Decomposing
this interaction energy as in the Kohn-Sham scheme, we have that:

WJxc,λ[ρ] = λJ [ρ] + λEx[ρ] + Ec,λ[ρ], (3.39)

which we may integrate term-by-term within the interval [0, 1]. We then find
for the terms that:

J [ρ] =
1

2

∫∫
ρ(r)ρ(r′)
|r− r′| drdr′, (3.40)

Ẽx[ρ] = Tr
(
Ŵγ̂ρ0

)
− J [ρ], (3.41)

Ẽc[ρ] =

∫ 1

0
dλ Tr

(
Ŵ
(
γ̂ρλ − γ̂ρ0

))
. (3.42)

We note that Ẽx is a functional of the noninteracting density matrix γ̂ρ0 ,
and that Ẽx is therefore a constant for all of λ: It is the exchange energy
associated to a single, noninteracting Slater determinantiv. We note that
this functional is explicitly known, and its form is very familiar, but we will
not write it out explicitly just yet. The correlation energy, Ẽc[ρ], on the
other hand, is associated to the orbital relaxation upon switching on the
interaction parameter λ, and is therefore given by the action of the Coulomb

ivWithin the framework of the adiabatic connection, this actually gives rise to a formal
correlation contribution for an energy computed from the Hartree-Fock method, even
though any correlation energy is absent from Hartree-Fock theory by the very wavefunction
definition of it90,91,95! The correlation energy in KS-DFT is therefore not identical to the
correlation energy within wavefunction theory. The attribution of DFT-correlation to
the Hartree-Fock method comes from the interpretation of the Hartree-Fock orbitals as
the orbitals of an interacting, single Slater determinant, whereas the Kohn-Sham scheme
imposes a purely determinantal exchange for a system of noninteracting particles. The
difference between the energy of an interacting Hartree-Fock system and its noninteracting
counterpart is minute, though.91
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operator on the difference between the minimising density matrix at λ = 1
and the noninteracting minimising γ̂ρ0 . For the total exchange-correlation
energy, one thus obtains the overall (but a tad less insightful) expression

Ẽxc[ρ] =

∫ 1

0
dλ Tr

(
Ŵγ̂λ

)
− λJ [ρ], (3.43)

known as the adiabatic connection formulation of the xc functional. The
stealthy appearance of a tilde in Ẽxc is due to the Levy-Lieb constrained DF
in eq. 3.35; only if a density under consideration is noninteracting pure-state
v-representable - only if it belongs to A 0

N - is the AC xc functional Ẽxc equal
to the Kohn-Sham xc functional Exc.

Admittedly, this is all rather abstract. The ‘unknown’ xc functional is
exactly defined in terms of ensemble density matrices (!) - with all of the as-
sociated computational burden. And while this formulation of Exc[ρ] is more
than just insightful for theoretical discussions of xc approximations, its use
in the elucidation of chemical problems is as unfeasible as the computation
of the complete Ψ(r1, . . . , rN ).

We still lack a reasonably accurate (and possibly elegant) model for
Exc[ρ]. We are set for a detour.

3.2.3 The Exchange-Correlation Hole

Ein Loch ist da, wo etwas nicht ist.
Kurt Tucholsky, ‘Zur soziologischen Psychologie der Löcher’96

If electrons were to behave purely classically,17 the probability distribution
function ρ2(r, r

′) of finding one electron at r and another one at r′ would
read:

ρ2(r, r
′) = ρ(r)ρ(r′), (3.44)

and all of our previous considerations would become obsolete: Since the
Coulomb operator |r − r′|−1 is merely a two-body operator, the knowledge
of ρ2 would allow us to evaluate the complete electron-electron repulsion
term97,98:

Vee =
1

2

∫∫
dr dr′

ρ2(r, r
′)

|r− r′| . (3.45)

Arguably, electrons do not behave classically. Every electron creates around
itself a hole in the probability distribution function, meaning that it is less
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likely that an electron be found at r if another one already sits around the
same position. This hole is commonly referred to as the exchange-correlation
hole.17,93,99,100 So, if we wish to make proper use of eq. 3.45, we shall first
have to be able to quantify the xc hole, which implies finding the correspond-
ing expression for ρ2 in a system of fermions.98,101 This quest will make us
encounter some formulations of density matrix functional theory.

Given the infamous γ̂, we may carry out a straightforward integration
over all of the N−2 coordinates that we do not need, yielding the two-matrix
or the two-body reduced density matrix γ2(r, r′)v :

γ2(r1, r2; r
′
1, r

′
2) = N(N − 1)

(∫
· · ·
∫

dr3 . . . drN

∫
· · ·
∫

dr′3 . . . dr
′
N

γ(r′1, . . . , r
′
N ; r1, . . . , rN )

)
.

(3.46)

We are particularly interested in its diagonal elements, for which we shall
adopt a short-hand notation:

γ2(r, r
′) = γ2(r1, r2; r1, r2), (3.47)

where the prime is now simply associated to the second coordinate in r,
rather than an off-diagonal element. This is the quantity we have been
looking for, and ρ2(r, r

′) = γ2(r, r
′), which we could now plug into eq. 3.45

- but we choose not to do it just yet.
Instead, let us focus on what is not there in a system of quantum fermi-

ons. From what we know, we may quantify the absence of things by defining
the exchange-correlation hole hxc(r, r′)17,93,102:

hxc(r, r
′)ρ(r) = γ2(r, r

′)− ρ(r′)ρ(r), (3.48)

which is nothing but the difference of conditional probability of finding an
electron at r′ at a fixed coordinate r between a system of interacting fermions
and its classical counterpart.

This definition opens the path to an alternative approach to γ2(r, r′). By
isolating γ2 in the above equation and inserting it into eq. 3.45, we arrive at

vYet another integration would lead to the one-matrix or one-body reduced density
matrix γ1, where Tr γ1 = N and the diagonal elements of which are interpreted as our
familiar ρ(r)!
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an appealing use of hxc:

Vee[ρ] =
1

2

∫∫
dr dr′

ρ(r′)ρ(r)
|r− r′|︸ ︷︷ ︸

J [ρ]

+
1

2

∫∫
dr dr′

hxc(r, r
′)ρ(r)

|r− r′|︸ ︷︷ ︸
Ẽxc[ρ]

, (3.49)

which can be used instead of γ2 to calculate the expectation value of the
two-body operator V̂ee. We have found yet another definition of the exact
xc functional; and although we would yet again have to make reference to an
ensemble density matrix to find the exact hxc(r, r′), eq. 3.49 contains some
valuable information.

First, let us consider what happens to eq. 3.49 if it is used as an explicit
form for Tr

(
Ŵγ̂λ

)
in eq. 3.43: The term due to the classical Coulomb energy

J [ρ] disappears, and we are left with:

Ẽxc[ρ] =

∫ 1

0
dλ

∫∫
dr dr′

hλxc(r, r
′)ρ(r)

|r− r′| , (3.50)

where hλxc, through its dependency on the minimising ensemble density mat-
rix, is still dependent on λ. Since ρ is fixed for all values of λ, we may just
as well change the order of integration:

Ẽxc[ρ] =

∫∫
dr dr′

ρ(r)
∫ 1
0 dλhλxc(r, r

′)
|r− r′| , (3.51)

and we find that hxc(r, r′) =
∫ 1
0 dλhλxc(r, r

′): The exchange-correlation hole
introduced in eq. 3.48 and used in eq. 3.49 is actually a λ-averaged xc
hole.93,102

We have noted before that the particularity of the λ = 0 limit is that it
uniquely defines the exchange energy, which is simply the Coulomb energy
due to a single Slater determinant, and we know its familiar form from
Hartree-Fock theory.4,90 It is thanks to this limit that we are now able to
separate the exchange hole, commonly referred to as the Fermi hole, from
the correlation or Coulomb hole17,93,102:

hc(r, r
′) = hxc(r, r

′)− hx(r, r
′) (3.52)

=

∫ 1

0
dλhλxc(r, r

′)− h0xc(r, r
′) (3.53)
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It is rather straightforward to express the Hartree-Fock quantities in
terms of density matrices, and after rearranging some terms, we find an ana-
lytical expression for the exchange hole in terms of single-particle orbitals17:

hx(r, r
′) = − 1

ρ(r)

(∑
i

∣∣ψi(r)ψi(r′)∣∣
)2

, (3.54)

where {ψi} may be a set of Hartree-Fock orbitals just as well as a set of
Kohn-Sham orbitalsvi.

This hole has useful properties.93,94,99,102–104 From eq. 3.54, it follows
that the sum rule for the exchange hole reads:∫

dr′ hx(r, r′) = −1, (3.55)

and

hx(r, r
′) ≤ 0, (3.56)

since the hole can remove at most one electron, for otherwise, by virtue of eq.
3.48 it would create some (anti)matter. Both equations have an important
consequence for the correlation hole.

It is easy to find the corresponding sum rule for the λ-averaged hxc: Since
Tr ρ(r, r′) = N and Tr γ2(r1, r2; r

′
1, r

′
2) = N(N − 1), we must have from the

very definition of hxc in eq. 3.48 that∫
dr′ hxc(r, r′) = −1, (3.57)

i.e. the exchange-correlation hole reflects that if an electron is observed at r,
only N −1 electrons can be observed elsewhere in space (i.e. at all r′).100,102

This, together with the sum rule for hx, implies that∫
dr′ hc(r, r′) = 0. (3.58)

These three sum rules impose important limits especially on the exchange
hole100,102: The higher the value of the diagonal term hx(r, r) (known as
the on-top value105), the more rapidly decaying the hole must be if it should
integrate to −1 (since it is a negative definite kernel). We even know the

viWe note, however, that the definition of the correlation energy will change accordingly.
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overall behaviour of the on-top exchange hole, which for the spin-restricted
case is:

hx(r, r) = −ρ(r)
2
. (3.59)

The correlation hole, unfortunately, is more evasive; much like its counter-
part, the correlation energy, it just contains what one could blatantly de-
scribe as what we are unable to grasp with a more straightforward approach
or - the whole rest of the array of quantum effects. This is reflected in its
integral being naught.

These five conditions (eqs 3.55, 3.56, 3.57, 3.58 and 3.59) constitute a
vital basis for both the development and assessment of new approximations
to Exc[ρ]. This task is substantially facilitated by the fact that in the com-
putation of Vee, it is sufficient to consider a spherically averaged xc hole100

h̄xc(r, u) =

∫
dΩu
4π

hxc(r, r+ u), (3.60)

which greatly simplifies the construction of models for h̄xc. Together with the
known behaviour of Exc[ρ] under certain scaling conditions and in some par-
ticular limits, the spherically averaged xc hole may then serve as a guideline
to what conditions a reasonable xc approximation should obey.31,93,94,103–106

The importance of those conditions is, however, a matter of discussion.
It is in the following lines that we shall - finally - sketch the history of

exchange-correlation approximations. Starting from the basics outlined in
the seminal paper by Kohn and Sham, we shall encounter both pitfalls and
small revolutions until we will, finally, cross paths again with the adiabatic
connection for a last time.

3.2.4 Approximations to the Exchange-Correlation Functional

With four parameters I can fit an elephant,
and with five I can make him wiggle his trunk.

John von Neumann, as attributed by Enrico Fermi.107

Over the years, a plethora of different approximations to Exc have been
developed.83,108 Some of them share the same functional form, but differ in
the constraints to which the parameters were fit; others are fitted to a similar
set of physical or chemical constraints, but have a different functional form,
and even others are a combination (a collection, so to say) of pre-existing
functional forms, the panoply of parameters of which were parametrised
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based on an horrendously large database. It is a matter of vivid dispute
which option is the most desirable, the most appropriate, the most justifiable,
or simply the prettiestvii.

In principle, the hxc for every Ex[ρ] and Ec[ρ] should obey eqs 3.55 to
3.59, and the functionals should adopt a certain behaviour when fed with a
density uniformly scaled by some constant γ109–111:

ργ(r) = γ3ρ(γr). (3.61)

Specifically,

Ex[ργ ] = γEx[ρ], (3.62)
Ec[ργ ] > γEc[ρ]. (3.63)

The exchange energy is therefore homogeneous to degree one under a uniform
scaling of the density. Many more general scaling relations exist, such that it
is for instance possible to demonstrate that the noninteracting kinetic energy
is homogeneous to degree two.112,113

Among the many limits, conditions and bounds the exact functional must
fulfil, we shall not fail to mention one particularly important property. In
principle, the overall Exc is limited by the Lieb-Oxford bound17:

0 ≥ Exc[ρ] ≥ −B
∫

drρ4/3(r), (3.64)

where 1.67 < B < 2.273 (and, following rigorous derivation, the optimum B
might be either 2.273 or 2.215 ).114

In principle, that is. Not every functional necessarily obeys every single
constraint we have evoked so far, and the question of which conditions have
to be obeyed in order for a functional to be ‘reasonable’ are another source of
never-ending ideological collisions.115 Nevertheless, among the most common
functionals used to this date, we find examples of every flavour. We shall
start with the oldest of the xc approximations, and we will see that, despite
(or rather for) its simplicity, it fulfils a surprisingly large amount of formal
limits.

3.2.4A Local Density Approximation (LDA)

The concept of a locally approximated exchange energy makes us take a
step back into the 1930ies: The Thomas-Fermi81 model of the electron gas

viiIt is also a matter of dispute which one is the ugliest.
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preceded DFT by about 40 years, and Dirac82 proposed a functional form for
its exchange energy soon after. Its exact form, Ex = Cx

∫
dr ρ4/3, with Cx

initially found to be Cx = −3/(2π)(3π2)1/3, was introduced by Slater in 1951
in his paper on ‘a simplification of the Hartree-Fock model’ .116 In Slater and
Johnson’s subsequentXαmodel,117 the exchange energy is determined based
on a locally averaged hx, which fixes the prefactor at Cx = −9α(3/(4π))1/3,
with a system-dependent parameter α.108

In order to establish an approximation for the unknown functional, Ho-
henberg and Kohn referred to the exchange energy of the uniform electron
gas (UEG) even before the introduction of the xc functional by Kohn and
Sham.14,15 The latter introduced an innocuous notation. In a general form,
Kohn and Sham proposed to write:

ELDAx =

∫
dr ρ(r)εUEG

x (ρ), (3.65)

which is known as the Local (Spin) Density Approximation or L(S)DA to
the Kohn and Sham xc functional. Kohn and Sham initially made rather
pessimistic prognostics on its applicability in inhomogeneous systems such
as molecules. However, calculations using the Xα method soon revealed that
a value of α = 2/3117 consistently yielded reasonable exchange energies for
a variety of system - this was the α-value for a uniform electron gas.108 By
adopting this very value in the LDA, one finds that:

CUEG
x =

3

4

(
3

π

)1/3

, (3.66)

εUEG
x (ρ) = −CUEG

x ρ1/3, (3.67)

EUEG
x [ρ] = −3

4

(
3

π

)1/3 ∫
ρ4/3dr, (3.68)

which is used in solid state calculations until today, and it remains a valuable
ingredient in almost all of the more elaborate approximations to Exc[ρ].

The assumption thus made is that the density of a non-homogeneous sys-
tem can be locally described in terms of the exchange-hole due to a uniform
electron gas. An analytical representation for the correlation functional is
substantially more complicated to find, since its exact form is unknown and
approximations have to be derived with the known limits for the interacting
electron gas in mind.15 This is especially cumbersome for the spin-dependent
case: It usually involves different parametrisations for parallel and antipar-
allel correlation. Early examples include the work by Vosko, Wilk and Nu-
sair (VWN)118 or Perdew and Zunger (PZ).119The former parametrisation is
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based on data from the random-phase approximation (RPA),118 whereas the
latter is derived from exact Quantum Monte Carlo results.119 Both VWN
and PZ correlation have in principle been superseded by the Perdew-Wang
functional form of 1992 (PW92),120 which is simpler than its predecessors
and remedies some minor fallacies associated to the latter. Nevertheless,
both VWN and PZ are still in use today. The equations for εUEG

c obtained
from the aforementioned models are omitted here: Even if primordial to the
development of modern day DFT, they are far less appealing than the sleek
LDA for the exchange energy.

The LDA works surprisingly well both for molecules and in particular for
solid state systems. What comes as a surprise bearing the original comments
by Kohn and Sham (and many others) in mind becomes all the more expec-
ted as the approximation is compared to the conditions introduced on the
previous pages. Not only does the LDA exchange functional obey all of the
restrictions on the exchange hole, including its on-top derivative, but it also
obeys the Lieb-Oxford bound and all of the scaling relations.105,114 Burke
pointed out that an exact on-top derivative is almost impossible to obtain
even in many wavefunction based methods.100

The LDA is still popular in solid state physics, but its use in chemistry
has become relatively obsolete, due to a general overbinding tendency,121

and since the computational overhead associated with more accurate, but
slightly more complex approximations is negligible when using today’s com-
puters: The failures of LDA are especially detrimental in the prediction of
hydrogen bonds and weakly bound complexes (where LDA tends to over-
bind ludicrously), and better functionals are available for most chemical
problems.83

3.2.4B Generalised Gradient Approximation (GGA)

Due to its very nature, the LDA performs reasonably well for systems with
a slowly varying density: The closer the approximation of local homogeneity
is to the physical truthviii, the more accurate the LDA. But once densit-
ies exhibit considerable fluctuations, the LDA will break down to a - more
or less - drastic extent.86,122,123 The first proposition by Hohenberg, Kohn
and Sham consisted in using the gradient expansion, i.e. a simple Taylor
expansion of the density, the first term of which would be the LDA. What
seemed so straightforward was of nightmarish practicability: the expansion
with respect to the derivatives of the density diverges,124 violating all (!)

viiiFor non-relativistic systems and only in so far as there is any physical ‘truth’.
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of the conditions on the exchange-correlation hole. Instead, a generalised
gradient expansion can be derived, resulting in the Generalised Gradient
Approximation (GGA)125 to the xc functional. One of the first GGA regu-
larly used in production runs was introduced by Perdew in 1986,126 based on
a rather cumbersome approach: Following a procedure originally proposed
by Langreth125 some years earlier, Perdew advocated the truncation of the
divergent parts of the GEA,127 so that it would obey the constraints on the
xc hole. This was done numerically on a real space grid.127 Perdew then
‘simply’ fit an analytical form to the numerical result.126 Becke’s approach
to the problem was much simpler; he based his famous B88122 (‘Becke 1988’)
exchange functional on the GGA introduced by Langreth and Mehl, the free
parameters of which he fit to the atomic atomisation energies of the noble
gases He to Rn.

The general form of a GGA exchange functional is a simple generalisation
of the LDA, and as such, it can be considered a leading correction to the
locally homogeneous approximation:

EGGA
x [ρ] =

∫
H(ρ,∇ρ)ρ(r)dr = −

∑
σ

∫
Kσ(ρ,∇ρ)ρ4/3σ (r)dr. (3.69)

K(ρ,∇ρ) denotes the most common form of the spin-dependent exchange
enhancement factor, and H(ρ,∇ρ) is its spin-restricted analogue. The nota-
tional difference that comes with both forms is rather subtle; H(ρ,∇ρ) is
notationally closer to the proposition by Kohn and Sham, since it corres-
ponds to an enhanced εUEG

x (ρ). H and K are more or less easily converted
from one to another thanks to the spin-scaling relation for the exchange
functional:

Ex[ρα, ρβ ] =
1

2
(Ex[2ρα] + Ex[2ρβ ]), (3.70)

from which conversion factors are easily derived. Usually, both forms and
parametrisations for H or K are chosen such that in the limit of the uniform
electron gas, eq. 3.68 is recovered.

It was the development of reliable GGA that constituted a real milestone
in the ascent of KS-DFT28,87,121: Reasonable results could now be obtained
for a variety of molecular systems. Structural predictions based on GGA are
usually very reliable.28 However, their performance for energies, and thus
thermochemical properties, can be rather spurious at best (if not to say:
mediocre, even though they already substantially improve over the LDA).31

Reaction enthalpies can often not be reliably predicted, and barrier heights
are almost consistently underestimated, sometimes to a drastic extent.128
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However, there exist cases where GGA predictions seem to profit from some
error compensation, making them surprisingly accurate.

3.2.4C Kinetic Energy Density: Meta-GGA

In the non-trivial pursuit of accuracy, the logical sequel to the first order
correction - the GGA - is a second-order leading correction - the meta-
GGA.127,129–131 After the gradient comes the Laplacian, ∇2ρ. However,
there exists a quantity related to the Laplacian of the density which is even
more promising, the kinetic energy density τ ,129,131

τσ(r) =
∑
i

ψσi
∗(r)∇2ψσi (r). (3.71)

For if we consider a spin-dependent system, τσ(r) can serve as a probe
of the one-electron character of the spin-density ρσ(r): It will be equal
to the von Weizsäcker kinetic energy density for real orbitals, τWσ (r) =
|∇ρσ(r)|2/8ρσ(r) if ρσ(r) is a one-electron density. This behaviour also im-
mediately lends itself to be used as a boundary condition in the derivation of
the functional form. In a meta-GGA, the enhancement factorH(ρ,∇ρ) in eq.
3.69 is simply replaced by a more flexible functional form H(ρ,∇ρ,∇2ρ, τ)
that may be designed to recover some underlying GGA approximation under
certain limits for ∇2ρ and τ , thereby ensuring that the limits to the LDA
can be recovered via the GGA.130,132 Some meta-functionals completely omit
the Laplacian term, ∇2ρ. Meta-functionals are more sensitive to long-range
effects: Thanks to the presence of the higher-order derivatives, they seem
to better probe the chemical environment. Due to their sensing the von
Weizsäcker condition, they may substantially reduce the many-electron self-
interaction error that plagues open-shell systems treated with LSDA and
GGA.129,133,134

Unfortunately, the general, average performance of exchange-correlation
functionals does not significantly improve upon inclusion of the Laplacian or
the kinetic energy density121ix, and among the most successful functionals83

that contain terms due to τ there are mostly hybrid functionals,31 which
combine the approximations described above with the exchange energy of a
single Slater determinant, the theoretical base of which we shall now discuss
at last.

ixReferring to functionals that are purely based on physical constraints.
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3.2.4D Hybrid Functionals from the Adiabatic Connection

The approximations to the exchange-correlation functional discussed so far
all yield an orbital-independent, fully local exchange-correlation potential
as the direct functional derivative of the exchange-correlation energy with
respect to the density - just as it was proposed and intended by Kohn and
Sham. A fundamental paradigm shift was suggested by Axel Becke in 199331

in a rather unusual - empirical - approach based on the λ = 0 limit in
the adiabatic connection theorem.31,90,92,135,136 Becke advocated the inclu-
sion of only a percentage of orbital-dependent, nonlocal exchange as used in
Hartree-Fock theory, along with the corresponding orbital-dependent, non-
local potential, in KS-DFT: He provided a generalised KS-DFT with hybrid
functionals.

Based on the shapes of hxc, Becke noted that regions of different λ cannot
be described equally well by LDA and GGA functionals. On one hand, an
LDA xc-hole may be a suitable approximation in correlated systems where
λ → 1, but in the λ → 0 limit of uncorrelated systems, it is qualitatively
wrong (e.g., the LDA xc hole considerably overestimates left-right correl-
ation, which is absent in exchange-dominated systems).31,128 This comes
at no surprise, since the LDA reference system is conceptually far from an
exchange-only system constructed from a determinant of noninteracting or-
bitals. On the other hand, as we have seen, the exchange-only limit at λ = 0
is well known (and so is its xc hole). Based on the known (λ = 0) and
at least somewhat hand-wavingly known (λ = 1) limits, Becke proposed to
model the adiabatic connection integrand by interpolating between the two
limits31 E0

x and E1
x:

E0
x[ρ] = −1

2

∑
i

∑
j

∫∫
drdr′

ψ∗
i (r)ψ

∗
j (r

′)ψj(r)ψi(r′)
|r− r′| , (3.72)

E1
x[ρ] =

∫
drKx(ρ) ρ

4/3(r). (3.73)

Linear interpolation now yields the general form for a hybrid exchange-
correlation functional :

Ehyb
xc [ρ] = λE0

x[ρ] + (1− λ)E1
x[ρ] + E1

c [ρ]. (3.74)

Implementations in Becke’s spirit still use the orbital-dependent exchange
potential from Hartree-Fock theory,31,121 which is why hybrid functionals
are formally part of a generalised137 Kohn-Sham (GKS) theoryx. A local

xCaveat ahead: Not all of the properties of KS-DFT orbital eigenvalues, scaling rela-
tions etc. are also valid in a GKS context, cf. also the discussion in Chapter 7.
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potential corresponding to the exact DFT exchange functional in eq. 3.72
can be derived, but it is computationally cumbersome to obtain86,138 and
while formally accurate, its practical benefits over the straightforwardly ob-
tained nonlocal potential as used in most hybrid functionals often do not
merit the much higher computational cost. Hybrid functionals in Becke’s
spirit have seen tremendous success,83 and his idea still forms the basis of
most of the xc functionals developed nowadays. With the introduction of hy-
brid functionals, various thermochemical properties and in particular barrier
heights could be more accurately described. Just as importantly, the pre-
diction of many molecular excitations within LR-TDDFT became possible
due to an improved accuracy of the Kohn-Sham orbital energies and the in-
clusion of nonlocal effects: Since the orbital eigenvalues enter the response
function, they have a direct influence on the spectra, and the nonlocality of
the exact exchange functional can substantially improve the results obtained
from frequency-independent kernels.

Still, it is in the calculation of spectra that hybrid functionals have per-
formed particularly disappointingly in some systems.139,140 This problem
will be the base of the last xc approximation we discuss here: The group of
range-separated hybrids.

3.2.4E Range-Separated Hybrid Functionals

Failures of an xc approximation can be, were and are still often attributed
to an erroneous long-range decay of vxcxi. Whereas the exact value is given
by the presence of a Coulomb operator and should therefore be r−1, GGA
usually exhibit a different long-range dependency. One motivation for the
use of hybrid functionals with a large percentage c of exact exchange is that
the potential will then decay as cr−1,31 which may improve the accuracy of
the result while also allowing for some spatial nonlocality in the frequency-
independent xc kernel fALDA

xc (rt, r′t) to be taken into account. However,
molecular excitation energies can be particularly sensitive to both decay and
nonlocality, and cr−1 may still not be accurate enough.139,140 To this end,
some functionals have been devised that combine 100% of exchange exchange
with some correlation functional,31 but due to the absence of typical error
cancellation between approximate exchange and correlation functionals, such

xiWe shall not hide that the situation is fare more involved than that: It has been
shown that a GGA with a corrected asymptotic behaviour improves the description in
some cases, but fails to perform up to initial expectations in many other cases.139 This
can be attributed to a lack of spatial nonlocality in the frequency-independent xc kernel
f(rt, r′t).
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100%-HFX-hybrids are often less accurate than their truly mixed counter-
parts.

An alternative lies in splitting the Coulomb operator according to38,141,142:

1

r
=
f(r)

r
+

1− f(r)

r
, (3.75)

which is referred to as the range-separation approach. The trick of intro-
ducing a resolution of identity in some appropriately chosen function f(r)
allows for the two terms to the right hand side of eq. 3.75 to be treated
using different approximations.38,141,143 If an appropriate f(r) is selected
such that the overall operator decays as r−1 for r → ∞, it becomes possible
to treat one part of the regime using the exact exchange functional, whereas
the other part can be treated by a simple (meta-)GGA. This combines the
advantages of a conventional hybrid functional with those of a functional
with 100% HFX, but without the disadvantages of the latter (in particular,
some error compensation is retained).140,144 The exact long-range decay of
range-separated hybrids is especially beneficial for the description of Rydberg
states and charge transfer states which exhibit a low overlap between the or-
bitals that are involved in the transition, and it is in these very transitions
that both a proper r−1 decay and the inclusion of exact exchange become
crucial (either ingredient alone will not suffice).

For now, we shall leave the discussion of range-separated functionals at
this abstract level. A much more detailed account of the approach, the
choice of f(x) and its application, along with its implementation in a plane
wave/pseudopotential framework, will be given in Chapter 5 of the next
Part, where we will also describe the formal modifications to the GGA and
exact exchange functional that are required upon introducing the resolution
of identity in eq. 3.75.

Principles of Generalised Kohn-Sham Schemes By definition, the
noninteracting orbitals of Kohn-Sham DFT are all subject to the same ef-
fective potential veff(r), obtained as the functional derivative of Exc[ρ]. Once
Exc[ρ] depends explicitly on the noninteracting ψi(r) - which, within KS-
DFT, are still an implicit functional of ρ(r) - it is this very functional deriv-
ative that becomes both notationally and computationally tedious. It may
therefore appear appealing to resort to the orbital-dependent exchange (or
Fock) potential of Hartree-Fock theory, but such a potential is not admiss-
ible within what is now commonly referred to as the Kohn-Sham schemexii.

xiiEven though Kohn and Sham themselves were the first to propose the use of pure
Hartree-Fock exchange (along with the corresponding orbital-dependent potential).15
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A proper formalisation of this problem is due to Görling and Levy.137,145

Consider a general AC Hamiltonian of the form of eq. 3.36 and a search
space of determinantal wavefunctions ΨGKS ∈ W0. We shall use a general
two-electron operator Ŵ rather than the classical Coulomb operator, thus
pre-empting use of alternative forms for the electron-electron interaction.
One then decomposes the Hohenberg-Kohn functional according to:

FHK[ρ] = FGKS
λ [ρ] +QGKS

λ [ρ], (3.76)

with

FGKS
λ [ρ] = min

Ψ

{〈
ΨGKS∣∣ T̂ + λŴ

∣∣ΨGKS〉 ∣∣∣ΨGKS → ρ,ΨGKS ∈ W0

}
(3.77)

and QGKS
λ [ρ] defined as FHK[ρ]−FHFX

λ [ρ]. The functional FHFX
λ [ρ] searches

over all single N -electron determinants that yield a given ρ(r). For λ �= 0,
T �= Ts due to the presence of an orbital-dependent potentialxiii. Solving
the generalised Kohn-Sham (GKS) equations is then equivalent to solving
the Hartree-Fock equations with a generalised two-electron operator and an
effective potential veff

λ (r), which corresponds to the AC Hamiltonian evalu-
ated at fixed ρ and a defined value of λ, but using a single-determinantal
search space W0 only (in lieu of a search over density matrices). We are left
with determining veff

λ (r) such that the minimising density fulfils ρ ∈ AN .
Subtracting the Euler-Lagrange equations for FHK[ρ] and FGKS

λ [ρ] eval-
uated at the ground-state density ρ(r) = ρ0(r) leads to:

veff
λ (r)− veff(r) =

δ
(
FHK[ρ]− FGKS

λ [ρ]
)

δρ(r)

∣∣∣∣∣
ρ=ρ0

=
δQGKS

λ [ρ]

δρ(r)

∣∣∣∣∣
ρ=ρ0

, (3.78)

and hence

veff
λ (r) = veff(r) +

δQGKS
λ [ρ]

δρ(r)

∣∣∣∣∣
ρ=ρ0

(3.79)

= veff(r) + (1− λ)vJ(r) + vGKS
xc,λ (r), (3.80)

where vGKS
xc,λ (r) is defined by eqs 3.79 and 3.80, and vJ(r) is the classical

Coulomb potential. We then decompose further:

vGKS
xc,λ (r) = (1− λ)vx(r) + vGKS

c (r), (3.81)

xiiii.e. Hartree-Fock correlation
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where vGKS
c (r) has yet again been defined by definition.

Quintessentially, the effective GKS potential differs from the KS potential
by the Coulomb and exact exchange contribution that are implicit to the
use of Ŵ and the resulting orbital-dependent potential, which gives rise to a
scaling by (1−λ) with respect to the full effective KS potential for exchange.
However, vGKS

c (r) �= vc(r), since the kinetic contribution due to FGKS
λ [ρ] is

Tλ − Ts �= 0, whereas the difference Tλ=1 − Ts = Tc is explicitly accounted
for in the KS correlation functional! It is however customary to use the
same correlation functionals in both GKS and KS calculations. The success
of hybrid functionals can then not only be rationalised by improvements
made to the exchange hole, but also by the ability of common approximated
Ec[ρ] to describe TGKS

c = Tc − Tλ (which might be better described than Tc
alone).145,146 GKS theory provides a true hybridisation that goes beyond
the mixing of exact exchange with semi-local functionals: The use of an
orbital-dependent potential results in a set of Hartree-Fock like equations
which are solved subject to an external potential veff

λ . Just as in the spirit
of the original Kohn-Sham scheme - which covers the special case λ = 0 -,
the determinant ΨGKS is not the best single-determinantal approximation
to the full Ψ, but instead provides ρ0(r) through vGKS

λ (r).
In the following, a certain notational leniency should be allowed. We

will use ψi for single-particle orbitals, independent of their coming from a
GKS or KS determinant. Similarly, for the exact exchange functional, we
shall write Ex[ρ] rather than Ex[{ψ}] since in KS-DFT (with λ = 0 and a
fully local vx(r)) the Kohn-Sham orbitals are uniquely defined by eq. 3.29,
whereas in GKS-DFT (0 < λ ≤ 1, with a hybridised exchange-correlation
potential), they follow by virtue of eq. 3.79. We finally note that, just like in
KS-DFT, the (trial) GKS orbitals generated during an energy minimisation
do not necessarily come from any ground-state ρ(r), which we have assumed
by the use of FHK[ρ] in eq. 3.77.

We have now gathered the theoretical basis needed for the numerical simu-
lation of chemicophysical processes. Still, it is the basis itself that we still
lack: The basis vectors in which our systems of equations are expanded in
practice have gone unmentioned so far. The next chapter will conclude this
First Part with a discussion of one of the many possible choices of basis set, a
choice that has proven to be particularly attractive for molecular dynamics:
The plane wave/pseudopotential framework.
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Chapter 4

A Numerical Solution

Sampling the quantum partition function in an approximate way is an art
- solving such an approximation numerically is an art on its own.

Different communities have developed different approaches, and the fol-
lowing discussion shall be limited to a basis set that is of particular appeal
in the study of condensed matter not at least due to its intrinsic periodicity:
In the condensed phase, plane waves offer many advantages over Gaussian
basis sets147 that are most commonly used in Computational Chemistry. But
every medal has two sides, and in the following sketch of the plane wave/
pseudopotential approach, we will see that these advantages can sometimes
come at a cost.

For a discussion of the general numerics of Molecular Dynamics (periodic
boundary conditions, integrators), the interested reader may refer to Refs 16
and 51.

4.1 An Expansion in Plane Waves

While atom-centred bases intuitively appeal to the theoretical chemist - after
all, what is a molecule but a collection of atoms that interacti - there are
certain pitfalls to such a picture once the chemical system begins to wiggle
and move. Since an atom-centred basis moves along with its atoms, this gives
rise to additional forces on the nuclei, the Pulay forces.148 These have to
be appropriately accounted for at a non-negligible computational cost. Once
diffuse components are involved, in particular when molecules approach each

iIn Organic Chemistry, they interact by means of lines and arrows; in Inorganic Chem-
istry, the linear combination of atomic orbitals (LCAO) approach is very popular.
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other, the localised nature of the basis means that the flexibility of the basis
set in the intermolecular region can change significantly, thereby altering the
results. This is known as the basis set superposition error, and corrections to
it are not always straightforward and remain somewhat ad hoc.149 It seems
desirable to have a basis set at hand that uniformly fills the space, that
does not depend on the nuclear positions and that lends itself to a periodic
description. One such basis set is given by the solution of the Schrödinger
equation of a free particle: The plane wave basis.

4.1.1 Infinitely Replicated Systems

Plane waves are very popular in solid state physics: plane wave based k-
point sampling over unit cells has become a standard tool to elucidate the
electronic structure of zero- and small-band gap materials.16 However, due
to their nonlocality, plane waves are also ideally suited for the description of
the dynamics of condensed matter (implying finite band gaps) where only
the Brillouin zone (the Γ-point) needs to be sampled. In the following, we
shall therefore restrict our discussion to the Γ-point, at the benefit of a much
sleeker notation.

In a most general form, the plane wave expansion of the KS orbitals takes
the form:

ψi(r) =

Gmax∑
G

ψ̄i(G)eiG·r, (4.1)

where ψ̄i(G) is an expansion coefficient of the plane wave at a given G
vector in reciprocal space. The sum is in practice finite; the vector at which
it is truncated is commonly expressed in terms of the supercell-independent
energy cutoff value Ecut:

Ecut =
1

2
G2

max. (4.2)

The number of G-vectors below Gmax is restricted by the domain of the
periodic supercell Dh and the periodicity of the plane wave eiG·r. If we
denote by h the matrix obtained from the supercell Bravais vectors, h =
(a1, a2, a3), the supercell restricts the number of plane waves ngw up to a
given cutoff energy approximately by:

ngw =
1

2π2
E

3/2
cut deth , (4.3)
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where Ω = deth is the volume of the supercell. The finite expansion of the
orbitals has a direct consequence on the maximum periodicity of the ψi(r).

Eq. 4.1 reveals that ψ̄i(G) is nothing but the Fourier series equival-
ent of the momentum space representation of the continuous orbital ψi(r),
represented by the equally continuous ψi(G) (note the absence of a bar):

ψ̄i(G) =

rmax∑
r

ψi(r)e
iG·r = S [ψi(r)] , (4.4)

ψi(G) =

∫
dr, ψi(r)e

iG·r = F [ψi(r)] . (4.5)

Whereas the latter is nonperiodic and is obtained from a Fourier transform
F (and therefore requires integrals to be taken over the entire space and mo-
mentum domain), the Fourier series representation S ii implies periodicity of
ψi(r) over the domain Dh over which r or, equivalently, G is sampled (hence
the bar in ψ̄i(G)). This domain is defined as nothing but the periodic super-
cell in which the system of interest is enclosed. The use of a Fourier series
representation results in a discrete real-space grid expansion of ψi(r), with
the grid spacing being determined by the dimension of the supercell and the
cutoff energy Ecut.

Following eq. 4.1, it becomes possible to switch between direct and recip-
rocal space representations by means of numerically efficient Fast Fourier
Transforms (FFT). This has an important implication in the calculation of
the Hartree term J [ρ]: Whereas cumbersome and nonlocal in direct spaceiii,
the matrix elements of the Coulomb operator Ŵ are diagonal in reciprocal
space. The Fourier transform of the L2 real-space Coulomb potential is:

〈
G′∣∣ Ŵ |G〉 = F

[〈
r′
∣∣ Ŵ |r〉

]
(4.6)

=
4π

G2
δ(G′ −G), (4.7)

which implies that the Coulomb potential of a reciprocal space density ρ(G)
is simply:

〈
Ŵ
〉
=

∫∫
dG dG′ 〈G| Ŵ ∣∣G′〉 〈G′|ρ〉 =

∫
dG

4πρ(G)

G2
. (4.8)

iiFourier series
iiiEven though this can be somewhat alleviated in Gaussian bases by making extensive

use of the Gaussian product theorem.
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Some technicalities are involved in the discrete representation of ρ(G).
While most conveniently constructed in real space according to eq. 3.24,
the occurrence of a product ψ∗

i (r)ψi(r) has important implications on the
truncation of the sum in eq. 4.1: More Fourier components are needed in
order to properly sample the resulting ρ̄(G), which implies that the plane
wave cutoff used to obtain the reciprocal space density from the real-space KS
orbitals needs to be higher with respect to the one adopted in the expansion
of the orbitals alone. The cutoff energy for discrete Fourier transformations
associated to the density, Eρcut, has to be 4 times higher than the one used
to expand the orbitals ψi(r), E

ψ
cut. The final procedure to compute a given

Coulomb potential employing a set of discrete Fourier transforms at a given
cutoff value Ecut can be formalised as:

vJ(r) = S−1
Eρcut

[
4π

G2

(
SEρcut

[
Nb∑
i

(
S−1

Eψcut

[
ψ̄i(G)

])2
])]

, (4.9)

where

Nb∑
i

(
S−1

Eψcut

[
ψ̄i(G)

])2

=

Nb∑
i

|ψi(r)|2 = ρ(r), (4.10)

and Nb denotes the number of occupied states (‘number of bands’ in solid
state terminology). Eq. 4.9 can be solved efficiently thanks to the Fast Four-
ier Transform (FFT) algorithm, which scales as O(ngw log(ngw)), implying
an overall scaling of the order 3Nb[ngw log(ngw)] with respect to the system
size.

Comments on the Nuclear Cusp The cusp condition requires that the
derivative of the wavefunction be infinite on top of the nucleus. This would
imply an infinite plane wave cutoff. Even if the cusp were only approximated
(cf. Gaussian bases147,150,151), high-frequency components due to rapid os-
cillations of higher-angular momentum orbitals would still require numbers
of grid points that make any FFT untractably expensive. A solution to the
problem lies in pseudising the atomic core.152–154 The effect of the core or-
bitals on the chemically relevant valence orbitals is mimicked by an effective
potential, and the valence orbitals are further smoothened inside a core ra-
dius rc. This parameter should be chosen small enough that the effects of
chemical bonding are captured for all R ≥ rc. Most pseudopotentials used
in state of the art calculations are norm-conserving,152 i.e. we have that for
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a radial atomic pseudo-wavefunction ψ(r) and its all-electron counterpart
ψae(r): ∫

r≥rc
dr |ψ(r)|2 =

∫
r≥rc

dr |ψae(r)|2, (4.11)

and the eigenvalues for a given configuration of valence orbitals are identical
by construction,

εi = εae
i for i ∈ used in pseudopotential generation; (4.12)

and, most importantly, ψ(r) = ψae(r) at r ≥ rc for all orbitals used in
the pseudisation procedure, making atomic pseudo-wavefunctions and all-
electron wavefunctions indistinguishable in the chemically relevant space
outside the core radius. Different pseudisation approaches exist, an in-depth
discussion of which is readily available in the literature.16

With an appropriate choice of valence space and rc, many (if not most)
of the molecular properties that are calculated based on this plane wave/
pseudopotential approach are virtually indistinguishable from all-electron
treatmentsiv.

4.1.2 First Image Periodicity and the Poisson Solver

As compelling as eq. 4.8 is, it binds our discussion to infinitely replicated
periodic systems.155 For if ρ(r) is implicitly periodic in a plane wave ex-
pansion in the spirit of eq. 4.1, restricting sums or integrals to the domain
Dh, the matrix elements of 〈G′| Ŵ |G〉 are obtained from a Fourier trans-
formation (and not a Fourier series) of the Coulomb operator that has to be
carried out over the entire space. Ŵ will therefore incorporate long-range
interactions between all the periodic images of ρ(r), which are sizeable due
to the slow decay of the Coulomb operator with respect to spatial distance.

The plane wave basis can still be a suitable choice for clusters (‘isol-
ated systems’), since we can always assume that the cluster density simply
vanishes at the boundaries of Dh, while nothing keeps it from having the
periodicity of the domain implicit to the expansion in eq. 4.1.155,156 We may
then define any applied (general) potential Φ to have the periodicity of the
domain, too, which is the first or nearest image form. The error due to a
first image periodic description when describing a true isolated cluster can
be controlled by the size of the simulation supercell. Written with respect

ivThis will be demonstrated later on at the example of the results presented in Part II.

69



CHAPTER 4. A NUMERICAL SOLUTION

to the expectation value of the general potential Φ155:〈
Φ(c)

〉
=
〈
Φ(1)

〉
+ ε(1)(h). (4.13)

In contrast to the true cluster limit that we shall denote by c, the first im-
age form will take the superscript 1. The decay of ε(1)(h), and thus the
approach to the cluster limit, can be systematically analysed by performing
convergence tests on simulation supercells of different sizes. For the Coulomb
potential of an electron density, the cluster limit in eq. 4.13 is reached once
the simulation supercell spans about twice the extent of the charge density
under consideration (which is also the requirement for the validity of a mul-
tipole expansion, but does not apply to long-range interactions in charged
or highly polar systems).155

While this gives a practical justification for the use of the nearest-image
periodic form, we still lack an appropriate first-image Coulomb operator.
Tuckerman and Martyna155 suggested to obtain the proper Fourier series
representation of Ŵ, denoted by Ŵ(c), by splitting both the periodic and
the first image potential into long- (sr) and short-range (lr) components:

Ŵ = Ŵlr + Ŵsr. (4.14)

The short range is then chosen such that the integral in the Fourier transform
in eq. 4.8 taken over the whole space does not differ from the integral taken
over the domain of the simulation supercellDh (Fourier series representation)
only: 〈

G′∣∣ Ŵsr |G〉 ∣∣SDh = SDh
[〈
r′
∣∣ Ŵsr |r〉

]
(4.15)

= F
[〈
r′
∣∣ Ŵsr |r〉

]
+ ε (4.16)

=
〈
G′∣∣ Ŵsr |G〉 ∣∣F + ε, (4.17)

where we have introduced a vertical bar to represent matrix elements ob-
tained as either discrete Fourier series coefficients (|SDh ), or calculated from
Fourier transforms and evaluated at quantised values of G, (|F ) respectively.
The error ε is exponentially small if the range of Ŵsr is small enough with
respect to Dh and can therefore be neglected provided that the domain of
the real-space operator be suitably chosen. We may therefore write:〈

G′∣∣ Ŵ |G〉 ∣∣SDh =
〈
G′∣∣ Ŵlr |G〉 ∣∣SDh +

〈
G′∣∣ Ŵsr |G〉 ∣∣F + ε (4.18)

=
〈
G′∣∣ Ŵsc |G〉+ 〈G′∣∣ Ŵ |G〉 ∣∣F + ε, (4.19)
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where we have introduced matrix elements of a screening function sc that is
easily seen to be:

〈
G′∣∣ Ŵsc |G〉 = SDh

[〈
r′
∣∣ Ŵlr |r〉

]
−F

[〈
r′
∣∣ Ŵlr |r〉

]
. (4.20)

This function screens the interaction of the system with its infinite replicas
and is nothing but the difference between the Fourier series coefficients of
the Coulomb potential and its analytical Fourier transform for a given value
of G. This is rather important semantics. The Coulomb potential of a given
density of an isolated system is then obtained from:

〈
Ŵ(c)

〉
=

∫
dG′ 〈G| Ŵ + Ŵsc ∣∣G′〉 〈G′|ρ〉 =

(
4π

G2
+Φsc(G)

)
ρ(G),

(4.21)

where Φsc(G) =
∫
dG′ 〈G′| Ŵsc |G〉. Φsc(G) = 0 recovers the infinitely

replicated interactions for full periodic boundary conditions. Tuckerman and
Martyna also proposed an efficient scheme to calculate the matrix elements
SDh [〈r′| Ŵlr |r〉] needed for the screening function, which can be calculated
once at the beginning of the simulation. The direct computational overhead
due to the method is therefore very low, since the matrix elements can be
precomputed. However, due to the use of the nearest image convention, in
order for the method to be valid, the simulation supercell must be chosen
at least twice as large as the extent of the density of the system - given
the cubic scaling of the FFT with increasing supercell volume, this renders
calculations on large systems rather computationally expensive.

We have not discussed an alternative algorithm due to Hockney,156 which
requires additional Fourier transforms to be performed in every iteration of
the density minimisation. The Hockney model only requires that the charge
density vanish at the border of the simulation supercell, which can easily
be accounted for by modestly enlarging the latterv. We should not fail to
mention that this is beneficial for larger systems, since the overhead due
to the computation of two additional FFTs in an overall smaller simula-
tion supercell is lower than the one due to the conditions imposed by the
Martyna-Tuckerman approach. It is, however, prohibitively expensive if ex-
act exchange integrals need to be evaluated, as we shall see in the next few
paragraphs. In those cases, the Martyna-Tuckerman algorithm as outlined
above is the method of choice.

vHowever, stricto sensu, the Hockney algorithm is limited to spherical charge densities.
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4.1.3 Exact Exchange Potentials in Plane Waves

While hybrid functionals have become a standard tool for many applications,
their use in plane wave based first principles dynamics is hampered by the
considerable computational cost associated to the evaluation of the integrals
of the exact exchange functional.157 While analytical expression in reciprocal
space can be derived both for the energy and the potential, they are nonlocal
in G, making them untractable for practical applications.158 Instead, by
recognising that orbital pairs ψ∗

i (r)ψj(r) of a single noninteracting Slater
determinant form nothing but elements of the one-particle reduced density
matrix, an algorithm similar to the computation of the Coulomb term of the
N -electron density can be devised.157 In particular, we can rewrite eq. 3.72
in terms of eq. 3.45 by introducing the pair densities ρij(r) = ψ∗

i (r)ψj(r),
which gives:

E0
x[ρ] = −1

2

Nb∑
i

Nb∑
j

∫
dr ρ∗ij(r)

∫
dr′

ρij(r
′)

|r− r′| , (4.22)

where we have only used occupied orbitals in constructing the ρij(r), thus
circumventing the use of occupation numbers. As for the N -electron density,
we may exploit the reciprocal space Coulomb operator in eq. 4.8 to obtain
E0
x via two discrete Fourier transforms. The reciprocal space representation

of ρij fulfils the properties of a correlation function, and after some algebra,
we find that:

E0
x[ρ] = −1

2

Nb∑
i

Nb∑
j

Gmax∑
G

Φ(G) |ρij(G)|2 , (4.23)

where we have used a generalised Coulomb matrix element Φ(G). In a
cluster, Φ(G) = 4π

G2 + Φsc(G) as discussed earlier on in the text, whereas
the G = 0 term needs to be appropriately screened in a fully periodic
setup.158,159 The necessity for this screening stems from the divergence of
the discrete representation of G-vectors at G = 0 and would not occur in a
continuous momentum basis, since it is integrable. A discussion of this issue
will be given in Chapter 5 of this text; for what follows, it suffices to note
that Φ(G) can therefore never be just 4π

G2 . Now, just as for ρ(r), ρij(r) can
be obtained from the reciprocal-space expansion coefficients by a series of
Fast Fourier Transforms:

ρij(r) =

(
S−1

Eψcut

[
ψ̄i(G)

])∗
S−1

Eψcut

[
ψ̄j(G)

]
, (4.24)

ρ̄ij(G) = SEρcut
[ρij(r)] . (4.25)
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The calculation of the exact exchange energy therefore requires at least Nb

inverse FFTs at the wavefunction cutoff Eψcut (provided that the ψ can be
stored) and N2

b FFTs on the density cutoff Eρcut.157,160 In practice, due
to memory restrictions, inverse FFTs have to be recomputed, making the
scaling on Eψcut approach N2

b , too. However, it is possible to decrease the
effective number of inverse FFTs in eq. 8.13 by storing blocks of them. An
efficient blocking scheme for the orbital pairs has been presented in Ref.
160. In a plane wave basis, there is no tractable equation comparable to
the Roothaan-Hall equation used for atom-centred non-orthogonal functions,
and the orbital coefficients have to be updated directly from the (functional)
derivative of the energy with respect to an orbital, evaluated at a given
discrete value of the basis G. This quantity is obtained from a FFT of the
real-space functional derivative, performed at the wavefunction cutoff.

δE0
x[ρ]

δψ̄∗
i (G)

= S
Eψcut

[
δE0

x[ρ]

δψ∗
i (r)

]
, (4.26)

where it is easy to show that

δE0
x[ρ]

δψ∗
i (r)

=

Nb∑
j

ψj(r)

∫
dr′

ρij(r
′)

|r− r′| . (4.27)

We now have from eq. 4.9 that:

δE0
x[ρ]

δψ∗
i (r)

=

⎡
⎣ Nb∑

j

ψj(r)
(
S−1
Eρcut

[Φ(G)ρ̄ij(G)]
)⎤⎦ , (4.28)

which immediately implies that the calculation of the potential is substan-
tially more expensive than that of the energy, since for every orbital pair
ij, an additional inverse FFT on the density cutoff and one additional FFT
on the wavefunction cutoff have to be performed. Hence, when compared
to a (semi-)local density functional, calculations involving hybrid function-
als carry an overhead of up to 2N2

b (FFT[Eψcut] + FFT[Eρcut]). It is therefore
straightforward to see why hybrid xc functionals have often played a minor
role only in plane wave based first principles MD: In the absence of vast com-
putational resources (about a million of threads on a BG/Q), they are simply
frustratingly expensive, greatly limiting the simulation time scale that can
be reached within a reasonable project time.160 The problem is even exacer-
bated for isolated systems, since the Hockney algorithm would require two
additional FFTs for every single orbital pair, whereas the overall cost of the
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FFT is artificially enlarged in the scheme by Tuckerman and Martyna due
to the nearest image convention applied.

But not to despair. In Part III, we shall sketch a method which can partly
alleviate the problems encountered in isolated systems, and which results in
a considerable speedup of the exact exchange computation. However, before
tackling this fascinating issue, we will take a step back to the functionals
discussed in Chapter 3.2.4 at the example of two implementations of pop-
ular and rather accurate xc functionals in the plane wave/pseudopotential
molecular dynamics package CPMD, which will be presented in Part II.
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Part II

Climbing Jacob’s Ladder in
first principles Molecular

Dynamics
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Preface

This part will be concerned with the implementation and validation of im-
proved approximations to the xc functional in the plane wave/pseudopoten-
tial code CPMD. For one, we will present the implementation of a popular
range separation scheme already outlined in Chapter 3.2.4E. We will also
discuss intricacies linked to a particular family of meta-GGA functionals first
mentioned in Chapter 3.2.4C, named the Minnesota family, when implemen-
ted in a highly flexible basis such as plane waves.
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Chapter 5

Plane-Wave Implementation and
Performance of à-la-carte

Coulomb-Attenuated
Exchange-Correlation Functionals for

Predicting Optical Excitation
Energies in Some Notorious Cases

Chapter 5 is a post-print version of an article published as:

Bircher, Martin P.; Rothlisberger, U. Journal of Chemical Theory and Computation
2018, 14, 3184–3195
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CHAPTER 5. À-LA-CARTE COULOMB-ATTENUATION METHOD FOR PLANE WAVES

Linear-response time-dependent density functional theory (LR-TD-
DFT) has become a valuable tool in the calculation of excited states of
molecules of various sizes. However, standard generalised gradient approx-
imation (GGA) and hybrid exchange-correlation (xc) functionals often fail to
correctly predict charge-transfer (CT) excitations with low orbital overlap,
thus limiting the scope of the method. The Coulomb-attenuation method
(CAM) in the form of the CAM-B3LYP functional has been shown to reli-
ably remedy this problem in many CT systems, making accurate predictions
possible. However, in spite of a rather consistent performance across differ-
ent orbital overlap regimes, some pitfalls remain. Here, we present a fully
flexible and adaptable implementation of the CAM for Γ-point calculations
within the plane-wave pseudopotential molecular dynamics package CPMD
and explore how customised xc functionals can improve the optical spectra of
some notorious cases. We find that results obtained using plane waves agree
well with those from all-electron calculations employing atom-centred bases,
and that it is possible to construct a new Coulomb-attenuated xc functional
based on simple considerations. We show that such a functional is able to
outperform CAM-B3LYP in some notorious cases, while retaining similar
accuracy in systems where CAM-B3LYP performs well.

5.1 Introduction

Be it for the vital conversion of sunlight to chemical energy in a leaf, for
photochemical reactions causing harmful DNA damage to skin, for the blue
fluorescence of scorpions, or for energy conversion in man-made solar cells:
electronically excited states are of crucial importance to fundamental pro-
cesses in Nature, and in scientific fields ranging from biology over chemistry
to solid state physics. The theoretical description of the excitations which
are at the base of these phenomena makes it possible to ultimately gain an
improved understanding of these key events.

A fully correlated description at the wave-function level is, unfortu-
nately, prohibitively expensive for many, if not most systems of relevant
size. It is thanks to the considerable progress in the field of Kohn-Sham
time-dependent density functional theory (KS-TDDFT)14,15,79 that such
excited-state processes can these days be described at a comparably moder-
ate computational cost. The application of the linear-response formulation
of TDDFT162 is routinely used by many a computational chemist, and the
ever increasing availability of computational resources has made it possible
to describe larger and larger systems. However, like ground-state DFT and
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even more so, the choice of an appropriate exchange-correlation (xc) func-
tional, or respectively xc kernel, is crucial, and often decides between results
in good agreement with high-level reference data, and spectra which are
considerably red-shifted and exhibit an incorrect ordering of states.

The accuracy of the calculated transitions is mainly hampered by an inac-
curate long-range decay of the xc potential, which leads to larger errors in the
prediction of the excitation energies.143 Hence, in analogy to their tendency
to underestimate HOMO-LUMO gaps, generalised-gradient approximation
(GGA)124 xc functionals typically shift excitation energies by a considerable
factor and may fail to recover the correct ordering of states.139 Hybrid func-
tionals,31 which include a fixed proportion of exact exchange, may partly
alleviate this problem for states in which there is an overlap between the
orbitals involved in the transitions. However, even hybrid functionals will
inevitably fail to describe low-overlap charge-transfer (CT) and Rydberg
states, where the 1/r decay of the Coulomb operator is an important con-
stituent in the correct description of the interaction between spatially distant
orbitals.140 But it is the inclusion of exact exchange that is most vital for
these transitions: While an asymptotic correction of the (GGA) xc poten-
tial alone recovers the proper 1/r dependency and improves the description
of Rydberg states, it cannot successfully capture the effects of pronounced
charge separation.139 A promising remedy to this problem has been found
in an appropriate splitting of the Coulomb operator, making it possible to
ensure a correct decay of the xc potential at long-range, while keeping the
accuracy and simplicity of a standard local formulation for the short-range
components. The long-range correction (LC) scheme141,143 and its general-
isation, the Coulomb-attenuation method (CAM),38 separate the Coulomb
operator using an error function. While the short-range components are de-
scribed using the GGA, the long-range components are taken into account
using the exact exchange operator. This splitting captures the essentials of
charge-transfer transitions and considerably increases the accuracy for such
states. LC- and CAM-based xc functionals have therefore become a stand-
ard tool for the calculation of molecular excitation energies with pronounced
charge-transfer character within TDDFT.46 The correspondingly modified
Coulomb operator is easily implemented in a Gaussian basis.

CAM-B3LYP is not only the first functional that was constructed us-
ing the Coulomb-attenuation method, it has also become the probably most
prominent and abundantly used functional of this family. Peach et al.140

have assessed its performance on a diverse test set of main-group molecules
shortly after the original paper presenting CAM-B3LYP, and many successful
applications of the functional followed: Among the substantial improvements
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documented with respect to B3LYP31,163 or PBE,103 Peach et al. have found
that CAM-B3LYP accurately describes excitations in (poly)acenes including
naphthalene, yielding correct state ordering. They could also show that
the spectra of model dipeptides improve substantially with respect to non-
Coulomb attenuated functionals.139 Subsequently, other studies have found
that the use of CAM-B3LYP can predict spectra of AT nucleobase dimers164

and indoles165 of varying substitution patterns with increased accuracy. All
these systems exhibit charge-transfer or Rydberg transitions between spa-
tially separated states, which results in the inevitable failure of GGA and
conventional hybrid functionals.

The orbital overlap in a transition can be quantitatively characterised by
the parameter Λ introduced by Peach et al.140; a small value of Λ indicating a
small overlap between the involved orbitals, a large value a substantial one.
In their study covering excitations of different character, they have found
that both GGA and conventional hybrids suffer from an inconsistent per-
formance over the complete range of Λ values: For overlap values Λ < 0.4 in
the case of PBE and Λ < 0.3 in the case of B3LYP, the errors in the excitation
energies become substantially bigger. For CAM-B3LYP, no such correlation
was found over the whole range 0 < Λ < 1. CAM-B3LYP was shown to
fare particularly well for charge transfer excitations, especially in the ‘low
overlap’ regime, Λ < 0.3; although some cases with charge transfer character
in the ‘intermediate Λ regime’ are accurately described, too (e.g. the retinal
protonated Schiff base166,167). However, in systems where there is significant
overlap between the orbitals involved in the transition, conventional hybrid
functionals such as PBE0104,168 often fare better, and CAM-B3LYP tends
to red-shift the excitation energies. This is notably the case for the doubly
fluorescent dye DMABN, for which CAM-B3LYP tends to overestimate the
excitation energies of the S2 CT state with Λ = 0.72.140 Fully long-range
corrected functionals144 such as LC-BLYP143 or LC-PBE0169 were not evalu-
ated in the study by Peach et al., but they have since been shown to perform
well in certain systems with very low overlap that cannot be accurately de-
scribed with CAM-B3LYP.164,165,170 This is attributed to the absence of
any GGA exchange at longest range, which benefits the description of Ry-
dberg states,140,144 but comes at the cost of an inferior average performance
especially for local excitations.38,144,165

Despite the absence of correlation between the predicted excitation en-
ergies and their Λ-values, there exist some systems even in the low-overlap
range (Λ < 0.3) for which CAM-B3LYP fails to deliver an accurate descrip-
tion. In the case of p-nitroaniline, the excitation energies are reasonably pre-
dicted, but solvatochromic shifts cannot be reproduced since the ground- and
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excited-state dipoles are grossly over- and underestimated, respectively.171

Whereas CAM-B3LYP predicts a correct state ordering and reasonable ener-
getics for the excitations in the AT base pair,164 the HOMO is predicted to lie
on the wrong base when compared to higher-level wavefunction methods and
basic considerations based on the ionization potential of the isolated bases.172

Seemingly reasonable results may therefore be obtained based on the wrong
physical reason. Similarly, the ordering of close-lying, low energy excitations
may be inversed in some systems; this is the case for the β-dipeptide model
system introduced by Serrano-Andrés et al.173 and subsequently popularised
in the aforementioned benchmark set by Peach et al.140 Other studies have
found the same problem to occur in the case of 7-azaindole,165 even though
the state ordering for other substituted indoles could be correctly predicted.
A wrong ordering of states may be especially detrimental for excited-state
molecular dynamics,174 where the forces exerted on the nuclei may substan-
tially differ between the two swapped states, leading to a quantitatively as
well as qualitatively wrong propagation of the system. For systems such as
the β-dipeptide and 7-azaindole,165 the use of an LC functional may yield
a qualitatively correct ordering of the low-lying excitations, but the ener-
gies often remain too low. Alternatively, the range separation parameter μ
in CAM-B3LYP may be tuned in order to ameliorate the performance of
the functional.175 This process known as γ-tuning adjusts the range separ-
ation parameter to a value that accurately reproduces ionization potentials.
This approach often permits for an accurate description of the excitations of
interest,165 but it constitutes a rather system-specific remedy, lacking port-
ability and thus predictive power in comparing various systems. All of these
notorious systems are included in Fig. 5.1 and have been chosen here to test
the performance of an ‘à-la-carte’ combination of range-separated function-
als.

In other applications, a splitting of the Coulomb operator opposite to the
LC and CAM scheme may be beneficial. This has been proposed in screened
hybrid functionals for solid state applications,142 where the exact exchange is
limited to short- and the GGA exchange to long range. Functionals such as
HSE03142 yield results superior to those obtained with the GGA for many
systems. Screened hybrids are especially beneficial in combination with a
plane wave/pseudopotential approach, since they conveniently eliminate the
divergence of the Coulomb operator at the G = 0 component of the plane
wave basis in sufficiently large simulation cells. Since the splitting adopted
in the LC and CAM schemes does not offer any particular advantage in solid
state applications and does not eliminate this problematic divergence term,
these methods have received much less attention in plane wave codes.
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dipeptide

-dipeptide

DMABN

p-nitroaniline 7-azaindole

retinal protonated Schi  baseAT base pair

naphthalene

Figure 5.1: Molecules explicitly discussed in this study, all of which contain ex-
citations that are difficult to describe in TDDFT when using a GGA or hybrid
functional as the xc kernel.

In the following, we present the Coulomb-attenuation method applied to
Γ-point calculations in a plane wave/pseudopotential framework. The imple-
mentation allows for the CAM to be combined with any exchange functional
of choice, offering maximum flexibility. This makes the construction of cus-
tomised ‘à-la-carte’ Coulomb-attenuated xc functionals possible, which can
be tailored to any system of choice, thus maximising the performance of
the method. In order to gain maximum flexibility, all CAM parameters
can be chosen freely. Our implementation of the CAM in the molecular
dynamics package CPMD176 targets applications where Γ-point sampling is
routinely used, and makes the sampling of large systems possible via the fully
Hamiltonian QM/MM-scheme implemented in the CPMD code. Simulations
of charge-transfer systems in the gas phase as well as in condensed matter
therefore become feasible using a plane wave/pseudopotential approach. To
facilitate the calculation of the necessary terms, a new driver for the calcula-
tion of the exchange-correlation energy has been implemented in the CPMD
code.

The paper is organised as follows: First, we give a short summary of
the Coulomb-attenuation method, followed by a description of the imple-
mentation. We then give a more detailed account of the test systems used
to benchmark both the implementation and a new Coulomb-attenuated xc
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functional. We discuss the performance of the CAM in plane waves with
respect to the choice of pseudopotential, and in comparison to all-electron
calculations with atom-centred basis sets. Finally, we will show how a flex-
ible choice of the underlying GGA exchange-functional can improve accuracy
in systems where standard functionals yield unsatisfactory results by com-
paring a customised ‘à-la-carte’ CAM-xc functional constructed based on
simple considerations to the well-established CAM-B3LYP.

5.2 Theory

5.2.1 The Coulomb-Attenuation Method

In the Coulomb-attenuation method, the Coulomb operator Ŵ is split into
two domains dominated by long-range (lr) and short-range (sr) components
each:

Ŵ = Ŵsr + Ŵlr, (5.1)〈
r′
∣∣ Ŵsr |r〉 = 1− [α+ β erf(μ |r− r′|)]

|r− r′| , (5.2)

〈
r′
∣∣ Ŵlr |r〉 = α+ β erf (μ |r− r′|)

|r− r′| , (5.3)

where α, β and μ are adjustable parameters38 and α = 0 and β = 1 in the
original LC method.141,143 The first term is treated using a GGA expression
for the exchange functional and becomes smaller for larger Coulomb dis-
tances, whereas the second term grows with increasing |r− r′| and is treated
using Fock’s expression for the exchange energy.

The effective Coulomb operator in the exchange integrals then becomes:

EHFX
x =

1

2

∑
σ

∑
ij

∫∫
ψ∗
iσ(r)ψ

∗
jσ(r

′)
α+ β erf(μ |r− r′|)

|r− r′| ψjσ(r)ψiσ(r
′)drdr′.

(5.4)

Correspondingly, the GGA enhancement factor has to be adapted to the
screened Coulomb operator. The adaptation is based on the LDA for a
short-range Coulomb operator and appropriately generalised143:

EGGA
x =

1

2

∑
σ

ρ4/3σ Kσ

{
1− α− β

8

3
aσ

[√
πerf

(
1

2aσ

)
+ 2aσ (bσ − cσ)

]}
,

(5.5)
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where Kσ is the spin-dependent formulation of the exchange enhancement
factor and the terms due to the correction read:

aσ =
μK

1/2
σ

6
√
πρ

1/3
σ

, (5.6)

bσ = exp
(
− 1

4a2σ

)
− 1, (5.7)

cσ = 2a2σbσ +
1

2
. (5.8)

5.2.2 Singularity of the Coulomb Operator Ŵ in Reciprocal
Space

At the Γ-point, the exact exchange energy can be efficiently computed with a
mixed real-space reciprocal-space algorithm160 after introducing a resolution
of identity in G and rearranging the terms due to the complex conjugate
of the generalised Kohn-Sham (GKS) orbitals (where 〈r|iσ〉 = 〈iσ|r〉 at the
Γ-point):

EHFX
x =

∑
σ

∑
i

∑
j≥i

∫
dr′
〈
jσ
∣∣r′〉 〈r′∣∣iσ〉 ∫ dr

〈
r′
∣∣ Ŵ |r〉 〈iσ|r〉 〈r|jσ〉 , (5.9)

=
∑
σ

∑
i

∑
j≥i

∫
dG′

∫
dG

〈
G′∣∣ Ŵ |G〉

(∫
dr 〈G|r〉 〈iσ|r〉 〈r|jσ〉

)2

.

(5.10)

Here, i, j index generalised Kohn-Sham orbitals. The matrix elements of
the Coulomb operator in reciprocal space, 〈G′| Ŵ |G〉 = 1

Ω
4π
G2 δ(G − G′),

exhibit an integrable divergence at G = 0.158 In practice, the plane wave/
pseudopotential formalism relies on a discrete representation of points in
direct and reciprocal space, and the integrals become sums associated to
discrete Fourier transforms. The divergence term becomes problematic in
this discrete form, and the Coulomb operator has to be replaced by a suitable
generalisation Φ̂:

EHFX
x =

∑
σ

∑
i

∑
j≥i

∫
dG′

∫
dG

〈
G′∣∣ Φ̂ |G〉

(∫
dr 〈G|r〉 〈iσ|r〉 〈r|jσ〉

)2

.

(5.11)

86



5.2. THEORY

In the generalised matrix element 〈G′| Φ̂ |G〉, the offending divergence is
screened by a suitable function χ:

〈
G′∣∣ Φ̂ |G〉 =

⎧⎨
⎩

1

Ω

4π

G2
δ(G−G′) for G �= 0

χ(0)δ(G′) for G = 0,
(5.12)

where Ω denotes the supercell volume and Φ̂, like Ŵ, is diagonal in G.
In the initial treatment proposed by Gygi and Baldereschi,158 the screen-

ing term χ is obtained numerically. An auxiliary function which exhibits the
same singularity as the problematic term is added to and subtracted from
the Coulomb operator, and the screening is given by the difference of the
discrete representation of the auxiliary function as a sum over G and its
analytical integral over a continuous range Q. Due to their particular choice
of χ, the approach could not be applied to Γ-point sampling due to its poor
convergence with respect to the number of k-points and simulation supercell
size. In the following, we base our treatment on the scheme subsequently
developed by Broqvist et al159 which - in contrast to the initial approach
by Gygi and Baldereschi - selects an auxiliary function f(Q) that converges
rapidly towards 1/Q2:

f(Q) =
e−γQ2

Q2
. (5.13)

The G = 0 term is then given by the residual difference between the integral
and discrete sum over the auxiliary function:

χ(0) =
1

2π2

∫
Q
f(Q)dQ− 4π

Ω

∑
G�=0

f(G) (5.14)

= lim
γ→0

[
1√
πγ

− 4π

Ω

∑
G

e−γG2

G2

]
, (5.15)

where the second term (the discrete sum) is obtained numerically. This
results in a more rapid convergence with respect to the size of the supercell,
and the scheme can therefore be applied in Γ-point only calculations.

Although a non-divergent analytical description for the G = 0 compon-
ent is found for screened hybrids (it is simply π/Ω2μ2), its accuracy depends
on the size of the periodic supercell. If μ is small, the potential does not decay
sufficiently rapidly with respect to the number of G-vectors and a treatment
analogous to the non-screened Coulomb operator has to be used.159 Broqv-
ist et al have therefore suggested to treat the short range exact exchange
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analogously to the full Coulomb operator:

〈
G′∣∣ Φ̂sr |G〉 =

⎧⎨
⎩

1

Ω

4π

G2

[
1− e−G2/4μ2

]
δ(G−G′) for G �= 0

χ̃(μ)δ(G′) for G = 0.
(5.16)

Using the same auxiliary function as for the full Coulomb potential, the
resulting G = 0 term for the short-range screened exchange then reads:

χ̃(μ) = χ(0)− χ

(
1

4μ2

)
, (5.17)

where μ is the range separation parameter.
Based on this treatment, the singularity correction for the Coulomb-

attenuation method is easily found by using the identity erf(x) + erfc(x) =
1 and introducing the parameters α and β. We write for the long-range
components:

〈
G′∣∣ Φ̂lr |G〉 =

⎧⎨
⎩

1

Ω

4π

G2

[
α+ βe−G2/4μ2

]
δ(G−G′) for G �= 0

χ̄(μ, α, β)δ(G′) for G = 0,
(5.18)

where the G = 0 term is simply a sum of the terms due to the full and the
screened Coulomb potential, weighted by the attenuation parameters α and
β:

χ̄(μ, α, β) = αχ(0) + βχ

(
1

4μ2

)
. (5.19)

5.3 Implementation

Some exchange-correlation functionals make use of a linear combination of
different GGA exchange contributions, such as XLYP177 (using 72.2% B88122

and 34.7% PW91178 exchange) or the well-known B3LYP (using 80% LDA,
72% of the B88 gradient correction term and 20% exact exchange). Accord-
ingly, the usage of the CAM does not have to be intrinsically limited to a
single type of exchange functional (as it is the case for the most promin-
ent CAM-B3LYP and LC-PBE0, where B88 and PBEx are attenuated, re-
spectively). With respect to all possible combinations, our implementation
achieves maximum flexibility in the choice of exchange functional by writing
the exchange enhancement factor as a sum over individual contributions:

Kx
σ =

N∑
f

cfK
f
σ , (5.20)
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where Kf
σ denotes any GGA exchange-functional and cf are the correspond-

ing weights of a total of N exchange functionals;
∑N

f cf = 1. The atten-
uation is then applied to Kx

σ after all N contributions have been added
up. This makes it possible to consistently apply the CAM to any arbit-
rary combination of LDA and GGA exchange functionals, creating a custom
‘à-la-carte’ xc functional.

Three terms are needed for the propagation of a Kohn-Sham wavefunc-
tion with a GGA description:

E[ρ] = −1

2

∑
σ

∫
η[Kx

σ ]K
x
σ [ρσ,∇ρσ]ρ4/3σ (r)dr (5.21)

= −1

2

∑
σ

∫
ε[ρσ(r)]dr, (5.22)

V x
1 =

δε[ρ]

δρσ
, (5.23)

V x
2 =

δε[ρ]

δ |∇ρσ| , (5.24)

where we have introduced η as the attenuation function. For functionals
that are derived for the closed-shell case or use a different definition of the
enhancement factor, e.g. E[ρ] =

∫
ρ(r)F [ρ]dr, the spin-dependent exchange

enhancement factor Kx
σ is easily obtained from F [ρ] or Kx

αβ using the spin-
scaling relations.

All derivatives can be efficiently calculated by making extensive use of the
chain rule and by transiently storing frequently used terms (notably δKx/δρ,
δKx/δ∇ρ) on the stack. In order to make further performance gains, certain
powers of the density and the gradient (ρ, ρ4/3, ρ1/3, |∇ρ|,∇ρ2) are precom-
puted on a per-grid-point basis and reused in the calculation of Kf

σ and the
attenuation function, thus avoiding repetitive, unnecessary operations. The
implementation makes use of procedure pointers in order to facilitate the
choice of functional. At the beginning of every run, the procedure pointer
denoting Kf

σ is set to the selected exchange functional, no (explicit) if-
construct is therefore necessary when looping over grid points. The new
algorithm reaches an asymptotic speedup of 20% when calculating the LDA
and GGA contributions with respect to the previous standard implementa-
tion, which obtained LDA and GGA contributions for each functional from
separate drivers and used extensive if-constructs to select among the func-
tionals at every individual gridpoint (Fig. 5.2).

89



CHAPTER 5. À-LA-CARTE COULOMB-ATTENUATION METHOD FOR PLANE WAVES

S
U
B
R
O
U
T
I
N
E

c
a
l
c
u
l
a
t
e
_
x
c
_
e
n
e
r
g
y
(
r
h
o
,
g
r
a
d
,
E
_
x
)

r
e
a
l
,

d
i
m
e
n
s
i
o
n
(
:
)
,

&

i
n
t
e
n
t
(
i
n
)

:
:

r
h
o
,

g
r
a
d

r
e
a
l
,

i
n
t
e
n
t
(
o
u
t
)

:
:

E
_
x
c

! !
S
t
o
r
e
s

r
h
o
,

r
h
o
*
*
1
/
3
,

r
h
o
*
*
4
/
3
,

|
\
n
a
b
l
a

r
h
o
|
,

|
\
n
a
b
l
a

r
h
o
|
*
*
2

! t
y
p
e
(
s
t
o
r
a
g
e
_
t
)

:
:

s
t
o
r
a
g
e

! !
S
t
o
r
e
s

K
,

d
K
/
d
r
h
o
,

d
K
/
d
_
n
a
b
l
a
_
r
h
o
,

e
p
s
i
l
o
n
_
x

! t
y
p
e
(
f
u
n
c
t
i
o
n
a
l
_
t
)

:
:

f
u
n
c
t
i
o
n
a
l

f
o
r
a
l
l

p
i
n

g
r
i
d
p
t
s

C
A
L
L

s
t
o
r
a
g
e
%
p
r
e
c
a
l
c
u
l
a
t
e
_
r
e
u
s
e
d
_
t
e
r
m
s
_
f
r
o
m
(
r
h
o
(
p
)
,
g
r
a
d
(
p
)
)

f
o
r
a
l
l

f
i
n

K
_
x

C
A
L
L

f
u
n
c
t
i
o
n
a
l
%
K
(
f
)
%
c
a
l
c
u
l
a
t
e
_
e
n
e
r
g
y
_
a
n
d
_
d
e
r
i
v
a
t
i
v
e
s
(
s
t
o
r
a
g
e
,
f
u
n
c
t
i
o
n
a
l
)

i
f

(
f
u
n
c
t
i
o
n
a
l
_
i
s
_
a
t
t
e
n
u
a
t
e
d
)

C
A
L
L

f
u
n
c
t
i
o
n
a
l
%
a
t
t
e
n
u
a
t
i
o
n
(
s
t
o
r
a
g
e
,
f
u
n
c
t
i
o
n
a
l
)

e
p
s
i
l
o
n
_
x
(
p
)

=
f
u
n
c
t
i
o
n
a
l
%
e
p
s
i
l
o
n
_
x

E
_
x

=
s
u
m
(
e
p
s
i
l
o
n
_
x
(
:
)
)

E
N
D

S
U
B
R
O
U
T
I
N
E

c
a
l
c
u
l
a
t
e
_
x
c
_
e
n
e
r
g
y

F
ig

u
re

5.
2:

P
se

ud
oc

od
e

de
sc

ri
bi

ng
th

e
st

ru
ct

ur
e

of
th

e
m

ai
n

ro
ut

in
e

of
th

e
ne

w
xc

dr
iv

er
(c
p_

xc
_d

ri
ve

r)
in

th
e

C
P

M
D

co
de

.

90



5.4. TEST SET AND COMPUTATIONAL DETAILS

5.4 Test Set and Computational Details

5.4.1 Description of the Test Set

Basic convergence tests with respect to basis set and supercell size were
carried out on a single, isolated water molecule.

A test set for excitation energies was assembled comprising the molecules
mentioned before and depicted in Fig. 5.1. The set includes the original
test systems by Peach et al.,140 augmented with other systems where range-
separation is known to be of importance: p-nitroaniline, 7-azaindole, the AT
nucleobase dimer and the retinal protonated Schiff base.

For the sake of comparison with localised basis sets, 5 of those systems
were selected. The model dipeptide represents a typical system where CAM-
B3LYP can successfully be applied: Peach et al found that a GGA (PBE)
yields an inaccurate state ordering of the charge-transfer excitations, whereas
B3LYP and CAM-B3LYP reproduce the ordering of the reference values.
However, B3LYP is known to underestimate the energies of the n1 → π∗2
and π1 → π∗2 charge transfer excitations by up to 1.7eV, which are both re-
produced by CAM-B3LYP with a reasonable accuracy of about 0.2eV. The
spectrum of p-nitroaniline has also been reported to be reasonably predicted
using CAM-B3LYP,171 and although the charge separation in the first CT
state was reported to be overestimated, we have used p-nitroaniline as an-
other probe known to benefit from range-separation. Naphthalene served as
the most simple example of an acene and another notable example of the
influence of range separation: Whereas the 1B3u and 1B3u states are inverted
when using both PBE and B3LYP, only CAM-B3LYP recovers the correct
state ordering. However, the reported excitation energies for the two low-
est optically allowed singlet transitions deviate from the reference by about
+0.21eV for 1B3u and −0.16eV for 1B2u, which results in a considerable
underestimation of the state separation. The separation is reported to im-
prove for larger acenes (anthracene, tetracene etc.); we have therefore chosen
naphthalene as the most critical and sensitive compound to assess our im-
plementation. An example where CAM-B3LYP (narrowly) fails to deliver a
quantitatively correct description of states is given by 7-azaindole. Whereas
a comprehensive study of various substituted indoles found CAM-B3LYP to
be in good agreement with reference values, in the case of 7-azaindole,165

the 1La and 1Lb states have been reported to be swapped. Analogously to
naphthalene, the states also lie much too close in energy, but are now also
incorrectly ordered. This molecule can therefore serve as a representative of
excitations with CT character and low orbital overlap where CAM-B3LYP
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surprisingly fails. The final molecule used in the selected test set is DMABN,
with a Λ value of 0.72 for the S2 CT state it is a typical usage case for a non-
range separated hybrid or even a simple GGA.140 Indeed, whereas the errors
for the 1A and 1B states are smaller than 0.2eV in conjecture with B3LYP, it
is about doubled when using CAM-B3LYP. It serves as an example of an ex-
citation with considerable overlap, thus completing the range of excitations
covered here. The chosen test suite therefore includes both systems that are
well described using CAM-B3LYP, as well as some notorious cases.

In order to assess a possible gain of accuracy by using a customised func-
tional rather than the established CAM-B3LYP, three additional systems
were studied. The retinal protonated Schiff base constitutes a system where
CAM-B3LYP has been successfully used to predict both simple optical166,179

and two-photon absorption spectra,180,181 improving over conventional hy-
brids. In an investigation on the GC and AT nucleobase dimers,164 it was
found that CAM-B3LYP can predict accurate excitation energies for the AT
base pair, but the functional localises the HOMO and the LUMO on the
wrong moieties, respectively.172 According to the ionization potential of the
isolated base, the HOMO should be localized on adenine, but it is predicted
to lie on thymine. The AT base pair can therefore serve as a probe for the
correct orbital localization obtained with a given functional. Similarly as in
7-azaindole, in the β-dipeptide studied by Peach et al, all PBE, B3LYP and
CAM-B3LYP fail to describe the ordering of the π1 → π∗2 and n1 → π∗2 trans-
itions, with errors being larger than 0.75eV for CAM-B3LYP and reaching a
maximum value of about 4.5eV when using PBE. The β-dipeptide therefore
serves as yet another example in which CAM-B3LYP does not work even
on a quantitative level, probably constituting the hardest test case for new
range-separated functionals. Finally, in order to verify a possible overall gain
of accuracy, the MAE of both CAM-B3LYP and CAM-O3LYP is compared
for the complete test set by Peach et al.140

5.4.2 Computational Setup

Calculations using Gaussian basis sets were either carried out using DALTON
2016182 (p-nitroaniline, the retinal protonated Schiff base and naphthalene)
or the Gaussian09 suite of programs183 (the remaining molecules) using Dun-
ning’s correlation-consistent basis sets.151 All calculations employing a Slater
basis set184 were carried out using ADF.185–187

The structures for the dipeptides, DMABN and naphthalene were taken
from the database published by Peach et al.. The structure from the retinal
protonated Schiff base is an arbitrarily chosen snapshot extracted from mo-
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lecular dynamics simulations at 300K, whereas the structure of p-nitroaniline
was optimised using the aug-cc-pVTZ basis and the B3LYP xc functional.
Structural optimisations for the remaining molecules were performed using
the Gaussian suite of programs, following the published protocols of existing
benchmarks for the AT base pair164 and and 7-azaindole.165 Excitation ener-
gies, where not quoted from the literature, were calculated using the Tamm-
Dancoff approximation to TDDFT188 and the cc-pVDZ, aug-cc-pVDZ and
d-aug-cc-pVDZ basis sets, respectively.

The new exchange-correlation driver was implemented in a development
version of CPMD176 (successor of version 4.1). The GKS orbitals were ex-
panded in plane waves contained in an orthorhombic supercell of varying
dimensions and using either Martins-Troullier (MT)153 or Goedecker-Teter-
Hutter (GTH)154 pseudisation of the atomic core orbitals (the respective
values for the energy cutoff are given in the results section; the supercell
size for every system is available in the supporting information). Following
standard practice for hybrid functionals, BLYP pseudopotentials were used
for CAM-B3LYP calculations, and OLYP pseudopotentials were used for
calculations with CAM-O3LYP. The density was expanded with a 4 times
greater cutoff value than the one adopted for the orbitals. The Poisson equa-
tions for the isolated systems were solved using the algorithm of Martyna
and Tuckerman.155 All calculations made use of an atomic wavefunction ini-
tialization using distributed Lanczos,189 the new distributed linear algebra
algorithm by Bekas and Curioni190 and the ‘new’ exact exchange driver by
Weber et al.160; the cutoff in the calculation of the Fock exchange energy
were not changed with respect to the standard values for orbitals and density.

5.5 Results and Discussion

5.5.1 Convergence of Eigenvalues

5.5.1A HOMO-LUMO Gaps in a Plane Wave/Pseudopotential
Basis

When implementing the singularity correction for (screened) hybrid func-
tionals, Broqvist et al.159 have also assessed the convergence of the GKS-
HOMO-LUMO gaps with respect to both the energy cutoff and the size of
the supercell. In the following, we shall present a similar assessment on an
isolated water molecule. Considering that the LUMO is very diffuse in this
specific case, the HOMO-LUMO gap appears to be a sensitive measure of
convergence.
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Table 5.1: HOMO-LUMO gap of a water molecule calculated using CAM-B3LYP
and GTH pseudopotentials at increasing energy cutoffs and varying cubic simulation
cell lengths l using periodic or isolated system boundary conditions for solving the
Poisson equation.

Ecut [Ry] Δεi [eV], isolated system Δεi [eV], periodic system
10 Å 20 Å 30 Å 10 Å 20 Å 30 Å

70 10.080 10.361 10.399 10.105 10.362 10.399
80 10.073 10.420 10.447 10.100 10.420 10.448
100 10.150 10.490 10.510 10.177 10.491 10.509
120 10.259 10.531 10.548 10.284 10.532 10.548
150 10.345 10.560 10.577 10.367 10.561 10.577
180 10.383 10.574 10.591 10.404 10.575 10.591

When assessing the convergence with respect to the size of the simulation
supercell, two scenarios have to be distinguished: In a periodic setup, the
gap for an isolated system can only be reproduced when the molecule at the
centre of the cell is sufficiently far apart from its periodic images. When
the Poisson equations of the replicas are decoupled (and the requirements of
the used Poisson solver appropriately met155), the gap will converge with re-
spect to the lowest G-vector components, which corresponds to increasingly
longer-range components in real space as the supercell size increases. This
may be especially important if the LUMO is very diffuse (we note that an
unbound continuous state will only be appropriately described if the length
of the simulation cell l = ∞). Hence, a change in cutoff value enhances the
accuracy of the description by adding more rapidly oscillating, short-range
components; the maximum ‘diffuseness’ allowed is essentially governed by
the choice of l for the simulation cell.

Table 5.1 shows the gap obtained using the CAM-B3LYP xc functional
for an isolated system contained in varying sizes of the simulation supercell
using hard GTH pseudopotentials. Values for a fully periodic system are
also given. The corresponding values for softer MT pseudopotentials are
tabulated in the SI.

The gaps show convergence at 150Ry or all systems. For a small cubic
simulation supercell (l = 10Å), choosing a lower cutoff value of 100Ry in-
troduces a substantial error of 0.23eV. A notable error is still present at
100Ry even for the two larger simulation cells, but it becomes less relevant
for practical purposes, since the maximal deviation of < 0.1eV lies below the
typical accuracy of the functional itself. Whereas the values in the smallest
of the supercells still have an error of about 0.1eV at a cutoff of 120Ry, the
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corresponding values have converged in the 20Å and 30Å supercells, with
errors being lower than 0.05eV, and full convergence is reached at 150Ry for
all of the three supercells considered.

The convergence behaviour is analogous to the one observed for GGA
or standard hybrid functionals once the simulation cell is of sufficient size:
Changes in the gap are still substantial when increasing the length l of the
cubic simulation cell from 10 Å to 20 Å, with changes in the converged gap of
0.2eV. The change in gap is within the usual numerical tolerance (< 0.05eV)
for a further extension to 30 Å, emphasising again the importance of an
appropriately large cell for the correct description of the system’s LUMO.

The results for the fully periodic system (where the Poisson equations are
not decoupled) show the same trend, with the only relevant difference with
respect to the isolated system occurring in the 10 Å box. Still, these dif-
ferences are lower than those observed when enlarging the supercell. Given
the trends observed for the isolated system, this is most likely attributed
to spurious interactions between periodic images at this intermolecular dis-
tance. The influence of these interactions on the gap supports the view
that the requests on the Tuckerman-Martyna Poisson solver are not yet met
either, since the simulation cell must span at least twice the spatial extent
of the charge density. The strong changes in gaps when increasing the cutoff
within the small simulation cell is hence due to an insufficient cell size for
both the isolated and periodic system, resulting in an incorrect description
of the electron density.

The same considerations hold for the gaps obtained with the softer MT
pseudopotentials (cf. the SI), albeit convergence is achieved at lower cutoff
values. The maximum deviation in the converged gaps with respect to GTH
pseudisation is very small, ΔΔε = 0.02eV, illustrating that the influence of
the pseudisation of the cusp on the gaps is negligibly low.

These results confirm that the use of the CAM in a plane wave/pseudo-
potential formalism does not introduce any convergence issues or additional
restrictions, given that the size of the simulation supercell is chosen suffi-
ciently large in order to accommodate the whole spectrum of G-vectors that
are required to span the range of the μ-dependent switching function.

5.5.1B Comparison with Atom-Centred Basis Sets

Plane waves inherently contain diffuse components even at a low cutoff en-
ergy, and the character of the diffuse functions is restricted only by the size of
the supercell, and convergence is reached with respect to high-frequency com-
ponents needed to describe the region around the pseudised core. In turn,
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the number of short-range components and the description of the orbitals
around the nuclei can be systematically improved by using pseudopotentials
of increasing hardness (which requires a simultaneous increase in the cutoff
value). The complete basis set limit can therefore be systematically reached
(once completeness holds with respect to the adopted pseudopotential).

The situation presents itself substantially different in atom-centred basis
sets. In a Gaussian basis, the orbitals around the nuclei are well described,
but for an accurate description of most molecular properties, the compact
basis usually has to be enhanced by augmentation with long-range functions.
When the GKS orbitals are expanded in Gaussians, a single set of diffuse
functions is often sufficient for routine applications. (A more realistic de-
scription of the cusp and a correct decay of the basis at long range can be
obtained by resorting to a Slater-type basis.)

A comparison between plane wave and atom-centred basis set calculations
can therefore reveal the influence of the longest-range components (described
well within plane waves) and the explicit description of the orbitals around
the nuclear cusp (reproduced well using Gaussian functions). In the follow-
ing, we will compare the HOMO-LUMO gaps of the preceding section with
the corresponding results obtained from various Gaussian basis sets of in-
creasing accuracy. Additional tests were performed using a Slater-type basis
in order to obtain a systematic analysis with respect to the cusp condition.
The results are shown in Table 5.2.

When increasing the size of the basis from double to hextuple zeta,
changes in the gap are considerable for the non-augmented basis sets, span-
ning a range of a total of 0.9eV. Once a single diffuse function is included, the
gaps become much more uniform, with a difference between aug-cc-pVDZ
and aug-cc-pVTZ of only 25 meV. When increasing zeta to ζ = 6, the gap
fluctuates within a negligible range of 3 meV. Adding more diffuse func-
tions never changes the gap by more than 5 meV. The aug-cc-pVDZ basis
can therefore be considered sufficiently accurate when calculating HOMO-
LUMO gaps with CAM-B3LYP.

The trend is very similar for a Slater-type basis, where we have only
included single-zeta values for comparison. As for the Gaussian basis set,
the omission of diffuse functions leads to an insufficient description of the
gap. However, as soon as a single set of diffuse functions is included, the gap
again converges rapidly. The change from augmented double to triple zeta
is only about 8meV. Even an augmented single zeta basis seems to yield a
surprisingly accurate gap, with the difference being only 0.08eV with respect
to the augmented triple zeta basis.

While the difference between the converged gaps in plane waves and the
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Table 5.2: HOMO-LUMO gap of a water molecule calculated using atom-centred
basis sets augmented with a varying number of diffuse functions (aug. fcts).

Aug. fcts 0 1 2 3
Gaussian basis

cc-pVDZ 9.832 10.679 10.667 10.666
cc-pVTZ 10.387 10.702 10.696 10.695
cc-pVQZ 10.576 10.705 10.670 10.700
cc-pV5Z 10.691 10.705 10.700 10.700
cc-pV6Z 10.714 10.704 10.700 10.700

Slater basis
SZ 17.300 10.711
DZ 12.318 10.631
TZ 11.310 10.639

corresponding values in a Gaussian basis is about 0.1eV, it is only 0.03eV
when compared to a Slater type basis (augmented triple zeta vs. GTH/180
Ry/30 Å cell). Even though the orbitals are pseudised around the core,
the plane wave/pseudopotential approach yields results which are virtually
indistinguishable from all-electron calculations with an atom-centred basis.
The slightly larger deviation with respect to the Gaussian basis may be
attributed to differences in the long-range decay and the description of the
cusp, but they still lie well within what is usually deemed chemical accuracy.

5.5.2 Excitation Energies

The most frequent use of Coulomb-attenuated functionals is the description
of excited states (which is influenced by the accuracy of the GKS eigenvalues
examined in the previous section through the linear response equations).
We therefore conclude the assessment of our implementation of the CAM
in plane waves by comparing the results to excited-state energies obtained
using Gaussian bases. In line with the trends observed in the preceding
section, only the cc-pVDZ basis was considered, which was augmented with
a different number of diffuse functions. The results are depicted in Table
5.3.

The excitation energies were computed for the set of molecules introduced
above, which apart from DMABN all contain transitions with charge-transfer
or Rydberg character. Since the plane wave/pseudopotential implementation
of LR-TDDFT in the CPMD code is limited to the Tamm-Dancoff approxim-
ation (TDA), the electronic spectra in a Gaussian basis were obtained within
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the same approximation for the sake of comparison. While it has been found
that high-overlap singlet transitions can be substantially affected by the use
of the TDA, it has also been reported that the results obtained from the TDA
compare more favourably to high-level reference values than those obtained
from full TDDFT.191 This effect can be understood in terms of the triplet
stability measure, the corresponding values for a subset of the molecules
considered here have been reported and discussed in reference 191.

For the dipeptide, DMABN and 7-azaindole, the results of the singly-
augmented Gaussian basis sets already exhibit a negligible difference to those
obtained with the plane wave/pseudopotential approach. Neither the char-
acter nor the energetics of the transitions do change when using a doubly
augmented Gaussian basis. Both Gaussians and plane waves yield the same
ordering of states and differences in the excitation energies, which are smaller
than 0.05eV, i.e. they lie within a range that we have previously considered
as converged. The small deviations may be attributed to both the pseudisa-
tion of the orbitals in plane waves, as well as the limited spatial extent of a
localised atom-centred basis, along with its predefined decay properties.

The situation is different in naphthalene and p-nitroaniline. In naph-
thalene, the S1 state dominated by a HOMO-1 → LUMO transition is only
predicted using plane waves or the singly augmented atom-centred Gaussian
basis. However, the energetics of the S2 state (mainly HOMO → LUMO) is
consistent between the singly and doubly augmented Gaussian basis. The
excitation energies agree well between our plane wave implementation and
aug-cc-pVDZ.

The basis-set dependency issue becomes more involved in the case of p-
nitroaniline. Whereas the S2 π → π∗ transition is predicted in all cases, the
S3 n → π∗ state at 4.68eV only appears when one single diffuse function
is used. Once a further set of diffuse functions is included, the S3 n → π∗

transition disappears again. It can therefore be concluded that in the case
of p-nitroaniline, the description of the S3 state using CAM-B3LYP is par-
ticularly sensitive with respect to the choice of basis. Since the S3 transition
disappears once the basis is enlarged, this indicates that the (quantitatively
correct) prediction using aug-cc-pVDZ is a mere artefact, and that CAM-
B3LYP is not properly able to describe the excitations in the limit of a com-
plete basis. This view is further supported by the results obtained in plane
waves, where the S3 state is absent: The ordering of the states obtained at a
cutoff of 120Ry coincides with the one obtained using a doubly augmented
Gaussian basis. It has to be noted that the S1 state has an oscillator strength
f = 0, and that it is not predicted when using plane waves.

Overall, the results obtained using a plane wave pseudopotential ap-
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proach are in excellent agreement with the ones obtained with all-electron
calculations in a Gaussian basis set. If any of the orbitals included in the
transitions of interest is highly diffuse, plane waves fare better than a singly
augmented Gaussian basis. There is no indication that the presence (or ab-
sence) of pseudisation has any (relevant) influence on the spectra, with the
remaining differences between the doubly augmented Gaussian basis and
the plane waves being vanishingly small. Although the excitation energies
usually do not change considerably when approaching the diffuse limit, the
character and number of states may, which can be important for applications
such as excited-state dynamics. The observations made in p-nitroaniline fur-
ther stress the importance of a sufficiently large basis, since seemingly correct
predictions may be an artefact due to an incomplete basis. Only the use of
a very diffuse Gaussian basis set or plane waves reveal that CAM-B3LYP
does not properly predict one of the transitions. Given that most standard
applications of Coulomb-attenuated functionals use only a single set of aug-
mentation functions, plane waves hence offer the advantage of converging
much more rapidly towards the basis set limit, thanks to their inherently
diffuse character. This is further illustrated by the haphazard description of
the S1 state in naphthalene, which is easily recovered in plane waves.

5.5.3 Performance of New Customised ‘à-la-carte’ Coulomb-
Attenuated Functionals

Our generalised implementation of the Coulomb-attenuation method renders
adjustments to the established xc functionals straightforward, for instance
by using different range-separation parameters α, β, or by changing μ (com-
monly referred to as γ-tuning). The flexible form of Kx

σ also opens the
distinct possibility of assembling new long-range corrected functionals based
on simple physico-chemical considerations.

CAM-B3LYP has become a valuable tool in the calculation of excited
states, as illustrated by the substantial improvements of the excitation ener-
gies with respect to a simple GGA published in the aforementioned studies.
Still, the values in Table 5.3 reveal that not all transitions may be accurately
captured quantitatively or qualitatively. The basis-set sensitivity of the ex-
citations in p-nitroaniline are more of a practical issue, since reliable values
may still be recovered in an accurately large basis, although at a substantial
computational cost. However, the wrong ordering of states in 7-azaindole is
one example that can only be overcome by resorting to generally less widely
applicable xc functionals such as LC-BLYP, with a similar situation occur-
ring in the β-dipeptide. The orbital localization problems in the AT base
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pair represent a further challenge. Such problems are often attributed to
stem from an imbalance between short- and long-range exchange. The usual
remedy to this weakness is the use of LC-BLYP, which fares worse for the
systems for which CAM-B3LYP excels, but offers a more reasonable descrip-
tion of compounds where the ordering of CT or Rydberg states proves to be
inaccurate. In the following, we have attempted to construct a functional
that is sufficiently accurate for both systems where CAM-B3LYP is of sat-
isfactory accuracy, as well as for the few charge-transfer systems where the
functional has its known weaknesses.

A modified version of CAM-B3LYP with 80% exact exchange at long
range was reported to yield eigenvalue differences closer to LC-BLYP, but
performed worse for other properties where the ‘standard’ CAM-B3LYP
yields accurate results.38 LC-BLYP includes no exact exchange at shortest
range, whereas CAM-B3LYP still includes 19%, a value close to the 20% used
in standard B3LYP. A suitable compromise between LC-BLYP and CAM-
B3LYP could therefore lie in attenuating an existing hybrid functional with
more GGA exchange at short range, and less at long range. Following the
CAM-B3LYP approach, the short-range contribution of the exact exchange
should lie close to the value used in the conventional hybrid to ensure proper
balance at short-range.

Handy’s OPTX196 functional in conjecture with Lee-Yang-Parr correla-
tion197 has on several occasions been shown to be superior to Becke’s 1988
exchange functional,198–201 and hybrids including OPTX such as O3LYP196

include a lower percentage of exact exchange than the famous B3LYP while
retaining comparable accuracy. We therefore assumed a Coulomb-attenuated
version of O3LYP with 80% exact exchange at long range (as in the CAM-
B3LYP declination in reference 38) and only 11% at short range (as in the
O3LYP-hybrid) to offer the same benefits as LC-BLYP or CAM-B3LYP with
80% exact exchange at long range, but with an improved description of the
short-range region due to the inclusion of the more accurate OPTX.

The performance of the CAM-O3LYP functional on the test set used in
the previous chapter, including the problematic 7-azaindole, is summarised
in Table 5.3. In the dipeptide, much alike the retinal protonated Schiff base,
CAM-O3LYP yields virtually indistinguishable results from CAM-B3LYP,
with a maximum deviation in S4 of 0.06eV. The S1 and S2 states are there-
fore accurately described, whereas the deviations for S3 and S4 remain too
large for practical applications in both of the functionals. We should note
that the good agreement between CAM-B3LYP and reference values repor-
ted by Peach et al. were based on values obtained in a basis without diffuse
functions and without the TDA; the higher energies of the CT states we re-
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Table 5.4: Comparison of excitation energies between CAM-B3LYP and CAM-
O3LYP for a structure of the retinal protonated Schiff base obtained from a mo-
lecular dynamics snapshot. CAM-B3LYP is known to give good agreement with
respect to high-level wavefunction methods for this molecule.166,180

State CAM-B3LYP CAM-O3LYP
Retinal protonated Schiff base
S1 2.66 2.63
S2 4.13 4.25
S3 4.97 4.95
S4 5.12 5.08

port for the cc-pVDZ basis are in line with their results. With CAM-O3LYP,
the state ordering in 7-azaindole is now correctly reproduced, although the
absolute errors are still considerable, with the energetic difference between
the 1La and 1Lb states being too low. (This is also observed for CAM-
B3LYP and may be attributed to the use of the TDA, since in general, the
energy difference between the two states becomes larger if the TDA is not
employed.) In p-nitroaniline, the spectrum substantially improves with the
use of CAM-O3LYP, due to an improved description of the S3 state, which
is now predicted even when approaching the basis set limit. For systems
in which a classical hybrid functional is preferable to CAM-B3LYP, such as
DMABN, the error due to CAM-O3LYP is comparable to the one of CAM-
B3LYP, even slightly smaller in the case of the S2 state.

Table 5.4 shows the excitation energies for a structure of the retinal
protonated Schiff base from a molecular dynamics snapshot calculated with
both CAM-B3LYP and CAM-O3LYP. Since CAM-B3LYP has been shown
to yield very accurate excitation energies in this system, this can serve as
an additional benchmark for the accuracy of our new functional. Indeed,
CAM-O3LYP yields virtually indistinguishable excitation energies.

The remaining ‘problematic cases’, the AT base pair and the β-dipeptide
are presented in table 5.5, where excitation energies obtained from CAM-
O3LYP and CAM-B3LYP are compared to reference values.

For one of the two notorious cases, CAM-O3LYP outperforms CAM-
B3LYP on a qualitative level: The spectrum of the AT base pair is qualit-
atively correctly reproduced, with the HOMO lying on adenine rather than
thymine, in contrast to CAM-B3LYP results. Overall, both functionals cap-
ture the energetics of all but the S1 state accurately, but CAM-O3LYP gives
a correct theoretical description of the orbital localization. Only in the β-
dipeptide there is no improvement with respect to CAM-B3LYP, but the
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Table 5.5: Comparison of excitation energies between CAM-B3LYP, CAM-O3LYP
and reference values for some typical usage cases of range-separated functionals
known to be problematic when treated with CAM-B3LYP. The character of the
transition is given where it differs with respect to the reference. The reference values
for the β-dipeptide correspond to those adopted by Peach et al.140; remaining values
for molecules included therein and not explicitly mentioned so far are tabulated in
the Supporting Information.

State CAM-B3LYP CAM-O3LYP Ref.
AT base pair202

S1 5.25 5.24 4.94
S2 5.26 5.29 5.21
S3 5.36 5.40 5.40
S4 5.38 5.45 5.47
β-dipeptide173

S1 5.69 n1 → π∗1 5.66 n1 → π∗1 5.10 n2 → π∗2
S2 5.76 n2 → π∗2 5.74 n2 → π∗2 5.40 n1 → π∗1
S3 6.06 π1 → π∗2 6.00 π1 → π∗2 7.99 π1 → π∗2
S4 6.14 n1 → π∗2 6.01 n1 → π∗2 9.13 n1 → π∗2

qualitative and quantitative behaviour is again very similar.

Overall, CAM-O3LYP shows identical or superior performance to CAM-
B3LYP for all of the excitations; it appears to be more versatile in the
description of systems that require a larger percentage of exact exchange
at long range, where it is able to remedy some of the pitfalls encountered
with CAM-B3LYP. These are systems where LC-BLYP has typically been
used so far. While the mean absolute error (MAE) over all the molecules
considered here is about MAE = 0.65eV for CAM-B3LYP, it improves for
CAM-O3LYP, where MAE = 0.55eV.

This demonstrates that based on simple considerations, a new Coulomb-
attenuated functional can be constructed. CAM-O3LYP predicts qualitat-
ively correct state ordering where CAM-B3LYP fails, and in these systems
yields excitation energies similar to the latter. With CAM-O3LYP, it is
therefore possible to cover a larger range of systems than with CAM-B3LYP
with slightly improved accuracy. This is further reflected by the MAE of both
functionals, which is about 0.1eV lower for the CAM-O3LYP presented here.
For other delicate systems and specific problems, our implementation offers
the possibility of adapting existing xc functionals at hand, or to assemble
entirely new Coulomb-attenuated functionals.
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5.6 Conclusions

We have presented a new, efficient and fully flexible implementation of Cou-
lomb-attenuated functionals in the plane wave/pseudopotential code CPMD
which allows for a customised composition of exchange-correlation function-
als. On the base of a comprehensive test suite, we could demonstrate that
the results obtained within the plane wave/pseudopotential framework do
not significantly deviate with respect to results obtained in all-electron cal-
culations with Gaussian bases. The results indicate that the complete basis
set limit is more easily reached in plane waves, and that the pseudisation
of the nuclear cusp is of no relevant influence on HOMO-LUMO gaps or
excitation energies. We have also shown that based on the same consid-
erations that led to the construction of CAM-B3LYP, a new xc functional
CAM-O3LYP can be constructed, which shows improved performance over
CAM-B3LYP in systems where the latter fails, and yields comparable accur-
acy for systems where CAM-B3LYP typically fares well. This demonstrates
that the flexibility of ‘à-la-carte’ combinations of xc functionals can help in
obtaining excitations of higher accuracy over a larger range of systems.
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Chapter 6

Shedding Light on the Basis Set
Dependence of the Minnesota

Functionals: Differences Between
Plane Waves, Slater Functions and

Gaussians

Chapter 6 is a pre-print version of an article submitted to:

M06

M06-HF

M06

M06-HF
Bircher, Martin P.; Lopez-Tarífa, P.; Rothlisberger, U. Journal of Chemical Theory
and Computation submitted i

iAn initial closed-shell-only implementation of the Minnesota Functional Module
(MFM) in the old xc driver of the CPMD code is due to P.L. M.P.B. performed the
definitive implementation in the new xc driver for both spin-restricted and -unrestricted
systems, including the appropriate adaptation of definitions and the tests and data ana-
lysis presented in this chapter.
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CHAPTER 6. BASIS SET DEPENDENCE OF MINNESOTA FUNCTIONALS

The Minnesota family of xc functionals are among the most popular,
accurate and abundantly used functionals available to date. However, their
use in plane-wave based first principles MD has been limited by their sparse
availability. Here, we present an implementation of the M05, M06 and M11
families of xc functionals within a plane wave/pseudopotential framework
allowing for a comprehensive analysis of their basis set dependence. While it
has been reported that in Gaussian bases, some members of the Minnesota
family only converge slowly to the basis set limit,204 we show that converged
energies can be conveniently obtained from plane waves if sufficiently dense
integration meshes are used. Based on the HC7/11 database, we assess the
influence of basis set type on the calculation of reaction enthalpies and show
that complete basis set values obtained in plane waves may occasionally differ
notably from their atom-centred counterparts. We provide an analysis of the
origin of these differences and discuss implications on practical usage.

6.1 Introduction

Density Functional Theory (DFT)14 in its Kohn-Sham (KS) formulation15

is one of the fundamental pillars of modern-day computational chemistry.
Large systems of several hundreds of atoms can presently be treated. This
is vital for the description of condensed matter systems with first principles
Molecular Dynamics (MD) simulations, in which thermodynamic properties
can be obtained as time-averages at finite temperature. Even larger sys-
tems can be routinely treated using mixed quantum mechanics/molecular
mechanics (QM/MM)72 approaches and with computational power ever in-
creasing, the time scales that can be sampled are growing continuously, thus
decreasing the statistical error. Powerful enhanced sampling methods have
helped to reduce the time scales that have to be simulated, and at present,
the error due to the sampling can become smaller than the error of the
underlying potential energy surface (PES). The accuracy of the underly-
ing exchange-correlation (xc) functional therefore becomes an increasingly
dominant factor. The reliability of the underlying PES will not only be in-
fluenced by the choice of functional, but also by the basis set used to expand
the density. Some functionals may be particularly sensitive to the choice and
size of basis.161,204,205 A plane wave expansion offers the intrinsic advantage
of convergence control via a single parameter, the cutoff energy Ecut. A
plane wave description is therefore ideally suited whenever a highly flexible,
delocalised basis set is needed in order to obtain converged PES.

If KS-DFT has become abundantly used, then this is not at least due
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to the vast effort, persistence and creativity that have been invested in the
development of approximate forms for the unknown xc functional. This
fundamental problem can be approached in many different ways.83,115 In
some philosophies, functionals that contain as few free parameters as possible
are generally preferred; the free parameters of such functionals are obtained
from physical constraints and limits,103 In another school of thought, a design
that is directly fit to thermochemical data is considered nothing but an
extension of basic physical constraints to the chemical world.122,196 Such
an approach may be taken even further by obtaining free parameters not
from atomic data, but by resorting to larger databases of thermochemical
and structural data.43,46 Even if the foundations of the different approaches
to the problem may not be the same, they have ultimately been guided by
the very same goal of improved accuracy and reliability.

A very prominent example of the latter philosophy is given by the widely
used family of the Minnesota functionals,39–46 which have been developed by
the Truhlar group. Many prominent functionals have been derived to offer
one single functional that is as versatile as possible. Instead, the Minnesota
philosophy aims to find the best possible performance for a given functional
model and for a certain range of systems. Based on a given functional form,
the free parameters are optimised according to different constraints: Cer-
tain parts of a test set may or may not be included in a given fit, and the
functional form may or may not include an exact exchange contribution.
Therefore, for every new generation of the Minnesota functionals, different
variants have been developed, each with specific advantages in a certain re-
gime, but sharing a basic functional form. This approach has proven to be
highly successful for many chemical problems.46,206 Even though the early
members of the Minnesota family, the M0539,40 and M0641–43,207 group of
functionals, have since been superseded by more accurate models, the M06
family is still vastly popular in computational chemistry, as shown in Fig.
6.1 by the rate of citations per year for the seminal M06 paper.

Along with the advent of empirically optimised functionals, several data-
bases have been created which can be used both for the fitting of free
parameters in functional development as well as for performance assess-
ment.46,83,208,209 The HC7/11 database (Fig. 6.2), for instance, gathers diffi-
cult hydrocarbon reaction enthalpies,43,208–210 including a set of particularly
challenging isodesmic reactions. Truhlar and coworkers have shown that all
functionals of the M06 family (i.e M06-2X, M06-HF, M06-L and the par-
ent M06 itself) outperform the other contemporary xc functionals, including
the still very popular B3LYP31,163; and similar trends were found for other
data sets.46,206 In the case of the CT7/04 set of charge-transfer dimers,208
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CHAPTER 6. BASIS SET DEPENDENCE OF MINNESOTA FUNCTIONALS

Figure 6.1: Citations per year for the seminal M06 paper43
(source:webofknowledge). As of July 2018, the paper has accumulated a
total of 10545 citations, making it the most cited of the Minnesota papers.

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

N
br

. o
f c

ita
tio

ns
 / 

Y
ea

r

Year

the performance of the Minnesota functionals was either superior (M06-2X,
M06-HF, M05) or at least on par (M06) with the best non-Minnesota xc
functionals considered in the study43,209 (B97-3).211

Despite such an encouraging performance, the underlying approach has
also been met with scepticism.115,204 It has been argued that a fit that is not
based on physical limits may deteriorate the formal qualities of a functional
(however, all the Minnesota functionals are constrained to fulfil the UEG
limit). Mardirossian et al.204 have shown that in an atom centred basis of
Gaussian functions, the energetics of some members of the Minnesota func-
tional family converge remarkably slowly, and may at first appear not to
converge at all. By analysing the inhomogeneity correction factors of the
slowly converging functionals, they have shown that slow convergence cor-
relates with either large correction factors for certain limits of the working
function or with the occurrence of positive energy densities. The slow conver-
gence of certain Minnesota functionals is also reflected in a high sensitivity
towards basis-set superposition errors (BSSE).204 Since the Minnesota func-
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Figure 6.2: The HC7/11 set of difficult hydrocarbon reactions.43

1 E1 → E22
2 E1 → E31
3 (CH4)4CC(CH3)3 → n-C8H18
4 n-C6H14 + 4CH4 → 5 C2H6
5 n-C8H18 + 6CH4 → 7 C2H6
6 Adamantane → 3 C2H4 + 2 C2H2
7 Bicyclo[2.2.2]octane → 3 C2H4 + C2H2

tionals have been fit employing a specific basis set, the reference results can
often only be obtained for the same (or a very similar) basis; while changing
the ‘balance’ of the basis set - or even approaching the basis set limit - may
also change the energetics by up to a few kcal mol−1 . However, in many
practical applications, functional/basis set combinations are benchmarked
against accurate reference data46 and then used in that specific configura-
tion. In these cases, a given functional/basis set combination may be found
to be accurate, even though the basis set limit values might show larger de-
viations with respect to the reference data than the combination adopted.
From a theoretical point of view, however, the possibility of reaching con-
vergence systematically and assessing the performance of a functional with
a fully converged basis set is certainly desirable, in particular concerning the
transferability of the results.

The study by Mardirossian et al. was conducted by expanding the density
in atom-centred Gaussian functions. Inspired by the concept of overlapping
atomic orbitals, atom-centred functions - and in particular Gaussians - are
probably the most prominent choice of a basis set. However, the electron
density may as well be expanded in other functional forms that need not
necessarily be localised in space. Delocalised bases such as plane waves offer
particular advantages beyond a simple control of convergence: Neither do
Pulay forces occur,148 nor are Basis-set superposition effects of any concern.
This comes at the price of having to pseudise16 the effect of the core electrons;
but the error due to this procedure has been shown to be negligible for the
vast majority of chemically relevant properties of main group elements.16,161
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These features make plane waves not only intrinsically suitable for first prin-
ciples Molecular Dynamics, but also for the calculation of quantities that are
sensitive to basis-set superposition or that require multiple long-range func-
tions. In a plane wave basis, the convergence of some property is monitored
by increasing the cutoff energy of the highest-frequency reciprocal space vec-
tor. This makes plane waves ideally suited for the assessment of xc functional
convergence, since the basis can be systematically increased until the basis
set limit is attained. These features enable systematic convergence studies
of xc functionals that may be difficult to converge in atom-centred bases.

Despite their popularity, availability of the Minnesota functionals in plane
wave codes is scarce, being mostly limited to the (semi-)local declinations
of the functionals.212,213 Here, we present a comprehensive numerical ana-
lysis of an implementation of the M05, M06, M08 and M11 members of
the Minnesota family in a plane wave/pseudopotential framework. Our im-
plementation in the CPMD code makes Minnesota functionals available for
routine plane wave calculations without the computational overhead (up to
20%) due to external libraries.

The text is organised as follows: First, we give a short overview of the
functional forms of the M05, M06, M08 and M11 families, followed by a
brief description of the plane-wave specific details of our implementation.
We then provide a comprehensive assessment of the basis set convergence
in plane waves, which will be discussed at the example of the HF dimer.
This member of the CT7/04 database had also been used by Mardirossian
et al. in their convergence analysis in Gaussian bases,83 making a direct
comparison to their results possible. Particular emphasis will be put on the
functionals that Mardirossian et al. have identified as slowly converging. We
will then show that using standard ratios between density and orbital cutoff
values, for a certain subset of the functionals considered here, no system-
atic convergence is reached in a plane wave basis and that it is possible to
systematically resolve this convergence issue by increasing the ratio between
density and wavefunction cutoff. By including this additional parameter in
the convergence analysis, the energetics of all functionals can be analysed
straightforwardly in a plane wave setup. Based on the possibility of ob-
taining converged energetics, we will then compare the influence of basis
set type on the reaction enthalpies of hydrocarbons at the example of the
HC7/11 database. Values will be compared between our plane wave imple-
mentation, two Gaussian basis sets commonly employed with the Minnesota
family (aug-cc-pVTZ151 and 6-311+G(2df,2p)),150 as well as two polarized
Slater bases (TZ2P and ATZ2P).184 Slater functions exhibit an exact r−1

decay, which makes it possible to assess the effects of long-range decay and
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basis set delocalisation separately. This analysis will reveal that the range-
separated functionals M11 and M11-L are particularly sensitive to the choice
of basis and that converged energy differences obtained from plane waves or
Slater functions may differ from their atom-centred equivalents, stressing
the importance of a fully flexible basis. We will then see that results for
M06-2X and M06-HF can deviate significantly from the values obtained in
both Gaussian and Slater bases. We will show that these deviations can be
tracked down by analysing the exchange energy density εx(r), illustrating
that the analytical form of the M06 family can lead to particular electron
density differences between plane waves and Gaussian functions. Finally,
we will provide a short discussion of the implication of our findings on the
run time of plane wave calculations using the Minnesota family, and suggest
approaches to reduce the computational overhead.

6.2 Theory

6.2.1 The Minnesota Functionals

The oldest members of the Minnesota family are M0539 and M05-2X.40 The
exchange part of the M05 family can be seen as a kinetic-energy dependent
empirical extension of the PBE103 exchange functional. Introducing the
working variable:

f(ωσ) =

m∑
i=0

aiω
i
σ, (6.1)

where the {ai} are empirically determined weights and

ωσ(tσ) =
(tσ − 1)

(tσ + 1)
, (6.2)

tσ(ρσ, τσ) =
3

10
(6π2)2/3

ρ
5/3
σ

τσ
, (6.3)

where ρσ is the spin density and τσ =
∑occ

i

∣∣∣∇ψ(σ)
i

∣∣∣2 is the spin-dependent

kinetic energy density of the (generalised) Kohn-Sham orbitals, {ψ(σ)
i }, Truh-

lar and coworkers proposed to write:

EM05
x = XEHFX +

∑
σ

(1−X)

∫
drFPBEx [ρ,∇ρ]f(ωσ). (6.4)
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Here, X denotes the contribution of exact exchange, EHFX , and FPBEx is
the PBE enhancement factor that depends on both the electron density ρ
and the gradient ∇ρ. The correlation functional is written as a sum over
equal and opposite spin components using the Stoll ansatz:

EM05
c =

∫
dr eUEGc,αβ gαβ(xαβ , zαβ) +

∑
σ

∫
dr eUEGc,σσ gσσ(xσ, zσ)Dσ(xσ, zσ),

(6.5)

where eUEGc is the correlation energy of the (spin-polarised) uniform electron
gas and Dσ is the self-interaction correction factor:

Dσ(xσ, zσ) = 1− x2σ
4zσ + CF

. (6.6)

Dσ is a function of the reduced gradient xσ = ρ
−4/3
σ |∇ρσ| and zσ = 2τσ

ρ
5/3
σ

−CF
with the constant CF = 3

5(6π
2)2/3. Finally, the gαβ and gσσ are constructed

from:

gαβ(xαβ , zαβ) =
n∑
i=0

c
(i)
αβ

(
γαβ(x

2
α + x2β)

1 + γαβ(x2α + x2β)

)
, (6.7)

gσσ(xσ, zσ) =

n∑
i=0

c(i)σσ

(
γσσx

2
σ

1 + γσσx2σ

)
, (6.8)

where γσσ = 0.060 and γαβ = 0.031 are constants and the {cσσ} and {cαβ}
are free parameters. The free parameters of the exchange and correlation
functional are obtained simultaneously. X and the number of expansion
coefficients m,n are fixed arbitrarily and the {ai}, {cσσ} and {cαβ} are then
determined by a fit to a database with the exception of a0 = 1, which is kept
fixed in order to recover the uniform electron gas (UEG) limit. Two fits with
different values of X were performed, resulting in the M05 (X = 0.28) and
M05-2X (X = 0.56) functionals.

Building on the initial success of the M05 family, the M06 function-
als41–43 constitute an extension of the M05 philosophy by adding additional
degrees of freedom. This was achieved by mixing the M05 expression with a
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reparametrisation of the VS98214 exchange correlation functional:

EV S98xc = EV S98x + EV S98c , (6.9)

EV S98x =
∑
σ

∫
dr ρσe

UEG
x,σ hx(xσ, zσ), (6.10)

EV S98c =

∫
dr eUEGc,αβ hc(xαβ , zαβ) +

∑
σ

∫
dr eUEGc,σ hc(xσ, zσ), (6.11)

where eUEGx,σ is the exchange energy density of a uniform electron gas and
x2αβ ≡ x2α + x2β and zαβ ≡ zα + zβ . h(x, z) takes the general form:

h(x, z) =
a

γ(x, z)
+
bx+ cz

γ(x, z)2
+
dx2 + exz + fz2

γ(x, z)3
, (6.12)

with free parameters a to f . The functionals of the M06 family then take
the form:

EM06
x = XEHFX +

∑
σ

∫
dr
[
FPBEx [ρ,∇ρ]f(ωσ) + ρσe

UEG
x,σ hx(xσ, zσ)

]
,

(6.13)

EM06
c =

∫
dr eUEGc,αβ [gαβ(xαβ , zαβ) + hαβ(xαβ , zαβ)]

+
∑
σ

∫
dr eUEGc,σσ [gσσ(xσ, zσ)Dσ(xσ, zσ) + hσσ(xσ, zσ)] ,

(6.14)

where, contrary to the M05 family, no parameter is explicitly fixed. Instead,
the UEG limit is enforced using appropriate constraints on the zeroth-order
expansion coefficients. Different fitting databases were used to fit four dif-
ferent functions: A completely semi-local meta-GGA (X = 0), M06-L,41

and three meta hybrid functionals: M06,43 M06-2X43 and M06-HF.42 Of
these functionals, M06-2X was fitted to a smaller database. Therefore,
d = 0 → hx = 0 was imposed for EV S98x , i.e the functional has an exchange
part that reduces to the M05 expression. A detailed recommendation con-
cerning typical usage cases for every of the M06 family members is given in
the seminal paper by Zhao et al.43 as well as in Ref. 206 ; here, it should not
go unmentioned that M06-L has proven to be the best semi-local functional
for many systems, whereas M06-2X and M06 have probably been the most
successful meta-hybrid functional of the M05/M06 group.204
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Inspired by the encouraging results obtained with the M06 family - and
in particular with M06-2X - Truhlar and coworkers investigated possible im-
provements by including even more flexible functional forms,207 while retain-
ing a large exact exchange contribution as in M05-2X and M06-2X. Contrary
to previous work, the next generation of exchange functionals was defined
using the spin-unpolarised system with density ρ = ρα + ρβ :

EM08
x = XEHFXx

+(1−X)

∫
dr ρeLDAx

[
f1(ω)F

PBE
x [ρ,∇ρ] + f2(ω)F

RPBE
x [ρ,∇ρ]] ,

(6.15)

where FPBEx and FRPBEx are the PBE and RPBE enhancement factors,
respectively, and the weights fi(ω) are defined as in eq. 6.1. A generalisation
to spin is trivial using the spin-scaling relations. The Stoll ansatz for the
correlation functional is abandoned in favour of the expression:

EM08
c =

∫
dr ρeLSDAC (ρ, ζ)f3(ω) +

∫
dr ρHPBE(ρ,∇ρ, ζ, t)f4(ω), (6.16)

where ζ = (ρα − ρβ)/ρ is the spin polarisation, eLSDAC is the correlation
energy per unit density in the Perdew-Wang form120 and HPBE is the PBE
correction to the correlation energy. Fitting these forms by only imposing
the UEG limit yields the functional M08-HX. Furthermore, by imposing that
the gradient expansion to second order be obeyed for both exchange and
correlation, M08-SO was parametrised. While the former outperformed its
predecessors M05 and M06 on many databases (and related properties), the
latter was found to be particularly accurate in the prediction of main-group
thermochemistry.

The next generation of functionals following the Minnesota philosophy
were published in 201144,45 and made use of the promising results140 obtained
by using range-separated xc functionals in either full long-range correction
(LC)141,143 schemes or the Coulomb attenuation method (CAM).38 The M11
family comprises two members; the parent range-separated hybrid M1144 as
well as a completely local - but still range-separated - meta-GGA M11-L.45

Based on the M08 exchange functional, Peverati et al. applied the CAM to
the M08 exchange energy:

EM11
x [ρ] = EHFXx,LR [ρ] + Elocx,SR[ρ]. (6.17)
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For M11, the long-range exchange contribution is given by a Coulomb-
attenuated exact exchange operator:

EHFXx,LR [ρ] =
1

2

∑
i

∑
j

∫∫
drdr′ ψ∗

i (r)ψ
∗
j (r

′)
α+ β erf(μ |r− r′|)

|r− r′| ψj(r)ψi(r
′),

(6.18)

where α, β govern the contribution of exact exchange at short range (α) and
long range (α+ β) respectively, and μ determines how rapidly the exact ex-
change contribution increases between short and long range. The (semi-)local
contribution to exchange, Elocx,SR, is obtained by straightforwardly replacing
eLDAx by a suitable range-separated integrand, eCAMx :

Elocx,SR =

∫
dr ρeSRx

[
fSR1 (ω)FPBEx [ρ,∇ρ] + fSR2 (ω)FRPBEx [ρ,∇ρ]] , (6.19)

eSRx = −3

2

(
3

4π

)1/3

ρ1/3G(ρ, α, β, μ), (6.20)

where the function G(ρ, α, β, μ) is defined as:

G(ρ, α, β, μ) = 1− α− β

{
8

3
a

[√
πerf

(
1

2a

)
− 3a

+ 4a3 + (2a− 4a3) exp

(
− 1

4a2

)]}
,

(6.21)

a =
μ

2(6π2ρ)1/3
. (6.22)

The correlation energy functional takes the same form as in eq. 6.16. The free
parameters were then fit imposing the UEG limit, the second-order gradient
expansion as well as two constraints concerning extrema of τ , which had
previously been proposed by Becke.129 In a completely local declination,
M11-L, the long-range exchange component EHFXx,LR is replaced by pure (local)
DFT exchange, but using a different set of parameters fLR:

Elocx,LR =

∫
dr ρeLRx

[
fLR1 (ω)FPBEx [ρ,∇ρ] + fLR2 (ω)FRPBEx [ρ,∇ρ]] , (6.23)

eLRx = −3

2

(
3

4π

)1/3

ρ1/3 [1−G(ρ, α, β, μ)] . (6.24)

Like the M08 and M11 hybrids, M11-L has been fitted under appropriate
constraints, such that the resulting parametrisation is correct to second order
in both exchange and correlation. Due to the absence of single-determinantal
exchange, it has been found to be particularly appropriate for multireference
systems, with an average performance superior to M06-L.
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6.2.2 Expanding the Electron Density in Plane Waves

At the Γ-point, the (real, generalised) Kohn-Sham orbitals can be expanded
in a plane wave basis of the form16:

ψi(r) =

Gmax∑
G=0

ψi(G)eiG·r, (6.25)

where r,G are real and reciprocal space vectors, respectively, and the {ψi(G)}
are the (Fourier) expansion coefficients of an orbital indexed by i. The length
of the expansion is given by the highest-frequency G-vector Gmax and is
usually indicated with respect to its energy, the cutoff energy Ecut. In a
discretised Cartesian basis, the ψi(r) and ψi(G) are mutual Fourier trans-
forms. It is therefore straightforward to switch between representations at
an O(N(logN)) scaling using Fast Fourier Transforms (FFT). This is of par-
ticular advantage for the computation of the Coulomb potential: Since the
Coulomb operator is diagonal in reciprocal space, Φ(G) = 4π

G2 , the corres-
ponding potential is easily obtained from the reciprocal space density ρ(G).
The density itself is most conveniently constructed in real space:

ρ(r) =
∑
i

fi |ψi(r)|2 , (6.26)

where fi are occupation numbers and ρ(G) is obtained via a FFT. However,
due to the square in eq. 6.26, the spectrum of the function ρ will extend
to higher-frequency G-vectors than the initial ψ. This requires for a second
cutoff energy to be introduced, Eρcut, with a value of 4 being analytically
sufficient to guarantee correspondence between ψ and ρ. The ratio between
Eρcut and Ecut is commonly referred to as the dual:

ξ =
Eρ
cut

Ecut
. (6.27)

Choosing a value of ξ larger than the default value of r results in real-space
representations of ρ which is Fourier-interpolated with respect to the default
grid. This makes it possible to arbitrarily increase the resolution of the
mesh without introducing higher-frequency components in the description
of ψ, therefore minimising numerical noise.

116



6.3. COMPUTATIONAL DETAILS

6.2.3 Range-Separated and Screened Exchange in Plane Waves

In plane waves, the exact exchange of a generalised Kohn-Sham determinant
is usually calculated in reciprocal space from157:

E0
x[ρ] = −1

2

Nb∑
i

Nb∑
j

Gmax∑
G

Φ(G) |ρij(G)|2 , (6.28)

where Φ(G) denotes the reciprocal space (i.e. Fourier series) representation
of a (generic) Coulomb operator Ŵ and ρij(G) = F [ψ∗

i (r)ψj(r)] are the
Fourier transforms of pair densities constructed from Nb occupied general-
ised Kohn-Sham orbitals. In a fully periodic setup and within a discrete
representation of G, E0

x[ρ] exhibits an (integrable) divergence at G = 0.
Φ(G) therefore needs to be appropriately modified.158,159 For the conven-
tional Coulomb operator Ŵ =

∑
ij

1
rij

, based on an initial procedure by Gygi
and Baldereschi,158 Broqvist et al.159 have suggested to write:

Φ(G) =

⎧⎨
⎩

1

Ω

4π

G2
for G �= 0

χ(0) for G = 0,
(6.29)

where Ω denotes the supercell volume and the screening function χ(0) is
obtained as the limγ→0 from:

χ(γ) =

[
1√
πγ

− 4π

Ω

∑
G

e−γG2

G2

]
. (6.30)

It is straightforward to show that for a Coulomb attenuated operator Ŵlr =
α+βerf(μrij)

rij
, we have that161:

Φlr(G) =

⎧⎨
⎩

1

Ω

4π

G2

[
α+ βe−G2/4μ2

]
for G �= 0

αχ(0) + βχ
(

1
4μ2

)
for G = 0.

(6.31)

Our implementation of the range-separated Minnesota family members make
use of eq. 6.31, a derivation of which is available in the literature.159,161

6.3 Computational Details

Plane wave calculations were carried out using the CPMD code.176 Hard
Goedecker-Teter-Hutter (GTH)154 pseudopotentials have been used in or-
der to ensure maximum transferability. Hartree-Fock exchange energies,160
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where not otherwise stated, were obtained using a constant, default ξ = 4,
whereas ξ used in the calculation of τ , ∇ρ, ρ and the xc energy was set
to different values. These are reported in the result sections, along with
orbital cutoff energies Ecut. The Poisson equations of the periodic images
were decoupled using the algorithm by Martyna and Tuckerman.155 The or-
thorhombic supercell for the HF dimer spanned 20×15×10 Å3, whereas the
supercells for the reactions of the HC7/11 database were cubic of dimension
303 Å3. In order to rule out basis set convergence issues for the M06-2X
functional for reactions 1 and 2, reaction energies were also calculated in a
203 Å3 supercell, using a cutoff energy of 275 Ry and ξ = 12 for both local
and Hartree-Fock contributions.

Calculations employing a Slater basis were performed using the ADF185–187

program package and the TZ2P and ATZ2P basis sets,184 adding diffuse fit-
ting functions for the RI calculations and eliminating linearly dependent
basis functions using a threshold of 10−4. The xc energy and potentials were
calculated using libxc215 on a very fine Becke grid216 (‘excellent quality’ in
ADF jargon).

Calculations using Gaussian basis sets were carried out using the Gaus-
sian16217 suite of programs, a tight convergence criterion on the (generalised)
Kohn-Sham orbitals and a superfine integration grid.

6.4 Results and Discussion

6.4.1 The Total Energy of a HF Dimer

In the following, we will provide an analysis of the convergence of the M05 to
M11 families of functionals in a plane wave basis. First, we will consider the
conventional case at fixed ξ = 4 and increasing Ecut. We will then perform
the same analysis at increasing values of ξ in order to assess the effect of a
denser mesh.

6.4.1A Convergence in Plane Waves

The convergence behaviour of the functionals considered here with respect
to the energy cutoff Ecut and using a standard ξ = 4 is illustrated in Fig.
6.3 at the example of the binding energy of an HF dimer. A reference value
for every functional, obtained at a cutoff of 300 Ry and ξ = 12 is illustrated
as a straight line.

Panel 6.3a) shows the convergence of the PBE and TPSS132 xc function-
als, which will serve as an example for standard generalised gradient ap-
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proximation (GGA) and meta-generalised gradient approximation (MGGA)
functionals, respectively. Even at the lowest cutoff energy considered here,
125 Ry, the energy is converged to less than 0.3 kcal mol−1 , which is already
within chemical accuracy. Values at 225 Ry are essentially converged in a
sub 0.1 kcal mol−1 regime. In both cases, the energies at lower cutoff values
are an upper bound to the reference value. The situation is fundamentally
different for the Minnesota functionals studied here. In panel 6.3b), the
oldest members of the group, M05 and M05-2X, are shown. In both cases,
the reference energy can only be reached at a cutoff value of 300 Ry, with
deviations at 125 Ry reaching the 3 kcal mol−1 range. In both cases, the
unconverged energies do not serve as an upper bound for the converged val-
ues. A similar behaviour is observed in panel 6.3c) for the M06-L functional,
although the maximum deviation is less than 1.5 kcal mol−1 . The spread
of the values is much lower for M06, where deviations < 0.3 kcal mol−1 are
reached at 200 Ry.

The situation improves for M06-HF in panel 6.3d), where deviations only
narrowly exceed 1 kcal mol−1 and lie within a 0.3 kcal mol−1 range from 225
Ry onward. Values for M06-2X, on the other hand, are most erratic and vary
by up to almost 3 kcal mol−1 for certain cutoff values. For the two members
of the M08 family shown in panel 6.3e), both M08-SO and M08-HX converge
around 225 Ry, even though deviations at 125 Ry are larger than for the M06
family. Deviations are again larger for M11 and M11-L shown in panel f),
with maximum deviations of 2 kcal mol−1 , second only to the M05 family.

When discussing the basis set convergence in a Gaussian basis, several
authors have stressed the importance of a fine integration grid204,218,219 in
order to obtain accurate values for most Minnesota functionals. In plane
waves, while an increase in cutoff energy Ecut implies a finer mesh on which
the xc energy is evaluated, the high frequency components in reciprocal space
may also introduce further noise. A finer integration grid can be obtained
by increasing the value of ξ. Performing the convergence analysis at higher
values of the dual ξ therefore allows to assess the influence of grid granularity
on the energy convergence.

Fig. 6.3 shows a clear improvement of the convergence behaviour of the
Minnesota functionals for higher values of ξ. For the reference functionals
in panel 6.3a), the influence of an increased mesh is far below chemical ac-
curacy. Even for the more sensitive TPSS functional, deviations between
different values of ξ do not exceed 0.2 kcal mol−1 . For both PBE and
TPSS, convergence within a sub 0.1 kcal mol−1 interval can be reached at
175 Ry when using ξ ≥ 8. Values obtained using ξ of 8 and 12 are virtually
indistinguishable for both functionals. The convergence behaviour of the
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Minnesota functionals in panels 6.3b) to 6.3f) substantially improves upon
increasing ζ. For both ξ of 8 and 12, all energies except M06-HF, M06-2X
and M11-L lie within a < 0.3 kcal mol−1 interval starting from 150 to 175
Ry, and are close to within a sub 0.1 kcal mol−1 range from 200 Ry on.
The convergence behaviour is therefore very similar to the PBE and TPSS
functionals indicating that it is not the high-frequency components in the
wavefunction expansion that are needed for accurate energetics, but rather a
very fine mesh for the density. These observations are in line with the com-
mon requirement imposed on the integration grid for Minnesota functionals
in atom-centred bases. Increasing ξ further from 8 to 12 results in changes of
energetics that are negligible. The remaining outliers are M06-2X, M06-HF
and M06-L. For M06-HF, values for ξ of 8 or 12 remain within a 0.3 kcal
mol−1 range. For cutoff energies lower than 200 Ry, results obtained from ξ
8 deviate visibly from those obtained at ξ = 12. The only other example of
this behaviour is M11-L, which overall behaves very similarly to M06-HF for
higher values of ξ and is therefore slightly less well-behaved than many of
the earlier-generation Minnesota functionals studied here. Still, due to the
narrow spread of the energies once a higher ξ is used, this is not expected
to result in practical problems. The least well-behaved outlier is M06-2X,
where binding energies abruptly change at 275 Ry. Only from this value
onward do the energies remain within a very narrow range and appear to be
properly converged. We have verified the stability of the M06-2X results by
increasing the value of ξ = 20, which did not alter the convergence behaviour,
nor did it have any significant influence on the binding energies. It therefore
appears that, in addition to a suitably fine integration grid, M06-2X needs
an increased amount of high-frequency components in the wavefunction ex-
pansion in order to account for the binding of the HF dimer.

For practical applications, energy differences can therefore be converged
straightforwardly, provided that the value of ξ is increased above the stand-
ard of 4. For chemical accuracy, a value of 8 has proven sufficient for the
system considered here. This makes it possible to obtain reference values for
the Minnesota functionals in a fully nonlocal basis, enabling studies free of
basis-set superposition errors and independent of the balance of basis func-
tions and integration grids employed. In the case of M06-2X, at least for the
weakly bound HF dimer studied here, particular attention has to be paid to
the choice of integration grid and cutoff.

The substantial improvement of convergence behaviour when increasing
ξ from 4 to 8 illustrates yet once more the need for a dense enough mesh. Our
observations suggest that the cutoff of the basis set is as straightforwardly
controlled as it is the case of conventional functionals (with the exception
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of M06-2X, which requires particular attention). Instead, for a basis of a
given size, it is the integration mesh of the xc term that is the most crucial
ingredient. This is an unconventional observation in a plane wave basis,
since commonly, and as reported here for PBE and TPSS, convergence is
reached straightforwardly by increasing the energy of the highest-frequency
plane wave in the expansion at a default ξ = 4. However, this exceptional
behaviour of the Minnesota functionals is in line with the requirements for
very dense integration grids that are recommended in Gaussian bases.218

In contrast to commonly employed Gaussian bases and the observations by
Mardirossian et al. we can rule out any influence of the balance of the
exponents of the basis set on the final result, implying that for a given
pseudopotential and given an appropriately dense mesh, the convergence
behaviour of the Minnesota functionals does not differ from that of other
meta-GGA functionals.

The flexibility of a plane-wave based description therefore makes it pos-
sible to obtain truly converged energetics, which can serve as reference values
for calculations carried out in other (atom-centred) basis sets.

6.4.1B Comparison to Atom-Centred Bases

Among the functionals studied, M05, M06-2X, M06-HF and, to a lesser
extent, the M08 and M11 families are the most sensitive to changes in cutoff
energies. Both M06-HF and M11-L are functionals that Mardirossian et al.
have identified as particularly slowly convergent with respect to the Gaussian
basis set size; unlike the M05 family and M06-2X, which were found to
be comparably well-behaved. However, the convergence of M05 and M05-
2X substantially improves once ξ is increased resulting in a well-behaved
approach to the converged limit (which has also been documented in an
atom-centred basis of Gaussian functions at the example of a sufficiently fine
integration grid). M06-L, however, appears to be much more well-behaved
in plane waves than what was reported for a Gaussian basis.

Table 6.1 provides more insight into the basis-set sensitivity of the Min-
nesota family of functionals. Values of the HF dimer binding energy are re-
ported for all three choices of dual considered here (4,8,12). The converged
values from plane waves at ξ 12 are compared to values obtained from the
commonly used and popular aug-cc-pVTZ and 6-311++G(2df,2p) basis sets
as well as the complete Gaussian basis set of Ref. 204 as a reference. In order
to exclude possible effects due to the unphysical long-range decay and cusp
behaviour of Gaussian functions, results for a larger Slater basis set (TZ2P)
and an augmented Slater basis (ATZ2P) are also given.
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For both members of the M05 family, results across all bases agree well,
with a maximum deviation of 0.26 kcal mol−1 between the converged plane
wave result and the complete basis set limit obtained from Gaussian func-
tions. Results obtained in a Slater basis do not deviate by more than 0.04
kcal mol−1 from aug-cc-pVTZ and the limit value from Ref. 83; changes upon
inclusion of an augmentation function are lower than 0.04 kcal mol−1 . How-
ever, the binding energy obtained with 6-311++G(2df,2p), which is similar
to the basis commonly used to benchmark the database that contains the HF
dimer, deviates by about 0.4 kcal mol−1 from the reference value in the case
of M05. As reported by Mardirossian et al. changes between the complete
basis and aug-cc-pVTZ are negligible. For M05 and M05-2X, the overall
agreement between the different bases is well within chemical accuracy.

The deviations are larger for some members of the M06 family. For
the parent M06 itself, plane wave binding energies using ξ = 12 exceed
the reference value by 0.44 kcal mol−1 . The values obtained in a Slater
basis are by about 0.20 kcal mol−1 lower than the reference value and are
again insensitive to the addition of augmentation functions. Results from 6-
311++G(2df,2p) are closer to plane wave values than to the converged value
in a Gaussian basis. For M06-2X, the agreement between plane waves, both
Slater bases, aug-cc-pVTZ and the value from a complete Gaussian basis
show excellent agreement, with a deviation of ≤ 0.10 kcal mol−1 . The largest
error with respect to the limit occurs again for 6-311++G(2df,2p), with a
difference of 0.25 kcal mol−1 . Given the rather erratic convergence behaviour
of this functional, these are encouraging results; indicating that once the
requirements on grid and cutoff are met, the plane wave implementation
accurately reproduces results from atom-centred bases. In the case of M06-
HF, converged plane wave values differ by 0.34 kcal mol−1 from the reference,
which is smaller than the deviation that occurs for aug-cc-pVTZ (0.53 kcal
mol−1 ). The value for 6-311++G(2df,2p) is closer to the limit, while both
augmented and non-augmented Slater bases give deviations of up to 0.81 kcal
mol−1 . The situation is improved for the completely local M06-L, where the
deviation between the converged plane wave value and the limit in a Gaussian
basis is 0.22 kcal mol−1 . The value for aug-cc-pVTZ is slightly closer (error
of 0.13 kcal mol−1 ), whereas the two Slater bases and 6-311++G(2df,2p)
are closest to the value of the limit.

The situation is similar for the more recent M08 and M11 families. For
M08-HX, the converged plane wave result differs by only 0.16 kcal mol−1 ,
which is smaller than the deviations of aug-cc-pVTZ and 6-311++G(2df,2p)
(0.20 and 0.40 kcal mol−1 , respectively). The binding energies obtained
using TZ2P and ATZ2P show only a negligible deviation of ≤ 0.10 kcal
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mol−1 . Plane wave deviations are largest for M11, where the converged
plane wave binding energy differs by 0.51 kcal mol−1 from the reference value.
It should however be noted that this value is comparable to the deviations
observed for Slater bases in the case of M06-HF, and for 6-311++G(2df,2p)
in the case of M06. Values obtained within a Slater basis and aug-cc-pVTZ
are again closer to the reference (deviations of maximum 0.11 kcal mol−1

), while 6-311++G(2df,2p) is again the least accurate Gaussian basis, with
an error of 0.40 kcal mol−1 . Errors for the local M11-L are much lower for
plane waves, with a deviation of 0.09 kcal mol−1 between converged values.
The error in a Slater basis is about 0.32 kcal mol−1 for the augmented basis,
but it is only 0.16 kcal mol−1 for TZ2P. M11-L is the only functional for
which the influence of augmentation functions in a Slater basis exceeds the
0.10 kcal mol−1 regime. The largest deviation between aug-cc-pVTZ, 6-
311++G(2df,2p) and the reference value are also observed for M11-L, ranging
from 0.45 to 0.69 kcal mol−1 .

Overall, for all of the functionals but M06-HF, M11 and M11-L, the
results between plane waves, Slater bases and different Gaussian bases show
excellent agreement. The largest deviation is observed in the non-augmented
Slater basis for M06-HF, even though it is still smaller than chemical accur-
acy (1.0 kcal mol−1 ). The maximum deviation observed in a Gaussian basis
occurs for M11-L/6-311++G(2df,2p), exceeding 0.60 kcal mol−1 . Errors of
about 0.50 kcal mol−1 can be observed for all bases, but not necessarily for
the same functional. Maximum deviations in plane waves are reached for
M11, whereas the maximum deviation for aug-cc-pVTZ occurs for M11-L.
These results highlight the importance of benchmarking the results not only
when changing the type of basis - plane waves, Slater, Gaussians - but even
when changing from one kind of Gaussian basis (aug-cc-pVTZ) to another
(6-311++G(2df,2p)). This can be of particular importance when compar-
ing to results from large benchmarking data bases, where sometimes, very
specific basis sets are used. The deviations observed so far suggest that,
for the Minnesota family of functionals, basis-set effects may exceed half
a kcal mol−1 . While it is encouraging that these errors are still smaller
than chemical accuracy, they can possibly affect the average performance of
a functional, and conclusions based on benchmarks that cannot be carried
out sufficiently close to the basis set limit should bear this source of error in
mind. In view of common practice, a careful assessment of basis-set related
errors will be of particular importance if a study makes use of a basis set
different than the benchmark basis set.

Our plane-wave implementation offers the possibility of smoothly reach-
ing a converged value, as exemplified in the usually small changes of binding
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energies when increasing ξ from 8 to 12. The residual differences between the
converged values obtained from the custom Gaussian basis by Mardirossian
et al. and our converged plane wave results suggest that the flexibility due
to the fully delocalised plane waves leaves room for an improved description
of the basis-set limit.

6.4.2 Implications for Reaction Enthalpies of the HC7/11
Database

Given the popularity and success of the Minnesota functionals in the de-
scription of organic molecules,46,209 we now consider their performance for
a particularly difficult set of thermochemical data: The reaction enthalpies
of the HC7/11 database.208,210 In particular for reactions 1 and 2, the in-
troduction of the M06 family constituted a significant improvement over its
predecessor, M05.

In order to assess the influence of the choice of basis on the overall per-
formance of the functionals, we have calculated reaction enthalpies at 0 K
for the HC7/11 database of hydrocarbon reactions in a plane wave basis,
aug-cc-pVTZ and the ATZ2P Slater basis for M05 as well as the complete
M06 and M11 families. While the standard plane wave setup was a 30 Å3

box with Ecut = 125 Ry and ξ = 8, values for M06, M06-2X and M06-HF
were also calculated in a 20 Å3 box with Ecut = 275 Ry and ξ = 12. These
values, however, differ by less than 0.5 kcal mol−1 from those at Ecut = 125
and are therefore not reported.

6.4.2A The M05 family

The values for the related M05 and M06 families are given in Table 6.2.
For M05, all values show excellent agreement between plane waves and the
atom centred bases. The deviations with respect to the Slater basis range
from a minimum of 0.05 kcal mol−1 for reaction 6 to 0.68 kcal mol−1 for
reaction 4, and from 0.30 kcal mol−1 for reaction 2 to 2.12 kcal mol−1 for
reaction 6 (which is still in the sub-percent regime) aug-cc-pVTZ. However,
reactions 5 and 6 show the largest spread over all bases, with results differing
by about 0.22 kcal mol−1 between 6-311++G(2df,2p) and aug-cc-pVTZ for
reaction 5, and reaction 6 even showing the best agreement between Slater
bases and plane waves among all the test set. The difference between plane
waves and the Slater basis is only about 0.29 kcal mol−1 for reaction 5 and
therefore much lower than the deviation between Slater basis and aug-cc-
pVTZ (0.77 kcal mol−1 ). Overall, best agreement is reached between the
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Slater basis and plane waves, with deviation between Slater bases or plane
waves and Gaussian bases being slightly larger. However, deviations between
aug-cc-pVTZ and 6-311++G(2df,2p) can be equally sizeable for systems 6
and 7. Finally it should be noted that for reactions 1 and 2, the spread
is about equal between all the bases considered here. Overall, the reaction
enthalpies obtained from the different bases agree very well, making the
results reproducible across different approaches.

6.4.2B The M06 family

The average agreement is slightly inferior for the M06 family. With respect
to M05, the spread of the values increases substantially between all the
atom-centred bases. While the deviations remain in a sub-percent or sub
kcal mol−1 range for reactions 3 and 4, they can be larger for the remaining
reactions. Slater basis results for reactions 1, 2 and 7 differ between 1 and
4 kcal mol−1 from Gaussian results, which themselves exhibit a significant
spread of up to ≈ 2 kcal mol−1 for reaction 7.

For reactions 3 to 5, M06 shows outstanding agreement between plane
wave basis and Slater results, with a minimum deviation of 0.04 kcal mol−1

, and a maximum deviation of 0.17 kcal mol−1 . Deviations between plane
waves and the Gaussian bases correspond to those observed between ATZ2P
and Gaussian functions. The agreement for reactions 1,2,6 and 7 is less
homogeneous, ranging from 1.5 to 2.07 kcal mol−1 . The relative errors for
reactions 6 and 7, however, do not exceed 2 % with respect to a Slater basis.
For reactions 1 and 2, plane wave and Slater basis values show a comparable
absolute deviation with respect to the Gaussian bases, but are of opposite
sign.

Plane wave results for the local M06-L are again closest to those obtained
in a Slater basis, but consistently lower. In spite of a good overall agreement,
deviations between ATZ2P and plane waves can occasionally exceed 1 kcal
mol−1 . For the isomerisation reactions 1 and 2, values show excellent agree-
ment between the Slater ATZ2P and the Gaussian reference basis, whereas
the differences between both plane waves and aug-cc-pVTZ with respect to
ATZ2P are comparable, but of opposite sign. In both cases, the spread of
values slightly exceeds chemical accuracy with respect to the reference value.
Similarly, the octane isomerisation 3 exhibits a large spread, with the value
from ATZ2P again lying in between plane waves and aug-cc-pVTZ. In this
case, notably, relative errors are large, with the plane wave, Slater basis and
aug-cc-pVTZ values being roughly one, two and three quarters of the value
obtained in the reference basis. However, due to the small magnitude of
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Table 6.2: Reaction enthalpies for the members of the HC7/11 database computed
using the M05, M06, M06-2x, M06-HF and M06-L xc functional in plane waves (125
Ry, ξ = 8), an augmented Slater basis (ATZ2P) and the commonly used Gaussian
aug-cc-pVTZ basis. Reference values correspond to 6-311+G(2df,2p), which is the
recommended basis for benchmarking in Ref. 43.

System ξ = 8 ATZ2P aug-cc-pVTZ Reference
M05

1 E22-E1 28.59 28.36 29.89 30.17
2 E31-E1 35.60 35.46 37.30 37.68

E31-E22 7.01 7.10 7.41 7.51
3 Octane isomerisation 7.73 7.64 7.05 7.14
4 Reaction (a) 5.12 5.84 5.58 5.49
5 Reaction (b) 0.16 0.45 1.22 1.00
6 Reaction (c) 191.17 191.12 188.55 190.75
7 Reaction (d) 125.11 124.81 123.61 124.99

M06
1 E22-E1 20.96 18.46 19.65 19.26
2 E31-E1 27.05 24.98 26.61 26.11

E31-E22 6.09 6.52 6.96 6.85
3 Octane isomerisation 2.24 2.20 2.89 3.00
4 Reaction (a) 7.32 7.48 7.77 7.89
5 Reaction (b) 13.20 13.37 14.52 14.78
6 Reaction (c) 190.81 192.12 196.69 198.49
7 Reaction (d) 124.46 125.56 129.04 130.08

M06-L
1 E22-E1 15.71 16.45 17.59 16.28
2 E31-E1 18.04 19.71 21.50 19.91

E31-E22 2.33 3.26 3.91 3.63
3 Octane isomerisation 0.25 0.61 0.99 1.23
4 Reaction (a) 5.70 6.07 6.08 6.23
5 Reaction (b) 8.78 9.68 10.07 10.51
6 Reaction (c) 179.41 185.29 191.53 190.41
7 Reaction (d) 115.98 120.44 124.85 124.01

M06-2X
1 E22-E1 20.18 15.77 16.51 16.30
2 E31-E1 28.39 23.78 23.94 23.65

E31-E22 8.21 8.01 7.43 7.35
3 Octane isomerisation 1.34 1.44 1.76 2.11
4 Reaction (a) 7.58 7.55 7.71 7.98
5 Reaction (b) 12.65 12.70 13.28 14.02
6 Reaction (c) 203.77 198.24 198.46 198.36
7 Reaction (d) 133.81 129.60 129.64 129.44

M06-HF
1 E22-E1 21.38 13.30 13.98 14.36
2 E31-E1 32.52 22.78 23.22 23.90

E31-E22 11.14 9.48 9.24 9.54
3 Octane isomerisation 1.34 2.22 3.85 3.62
4 Reaction (a) 7.32 7.97 8.66 8.86
5 Reaction (b) 12.30 14.10 16.79 16.92
6 Reaction (c) 214.00 201.76 202.74 201.17
7 Reaction (d) 139.92 131.26 131.99 130.61
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the reaction enthalpy, the errors stay below chemical accuracy. Best agree-
ment is reached for reaction 4, with a deviation of 0.37 kcal mol−1 between
ATZ2P and plane waves and 0.16 kcal mol−1 between ATZ2P and the ref-
erence basis. The spread is again larger for reactions 5, 6 and 7, but the
difference between plane waves/ATZ2P and aug-cc-pVTZ/ATZ2P remain
either within the sub-kcal mol−1 range (reaction 5) or lie within 5% of the
reference value. In all three cases, the deviations are again of very similar
absolute values, but of opposite sign.

M06-2X exhibits a behaviour largely reminiscent of M06. Enthalpies for
reactions 3 to 5 agree well between plane waves and ATZ2P, while the de-
viations for reactions 1, 2, 6 and 7 roughly double with respect to M06,
although they still exhibit similar trends. M06-HF shows the worst agree-
ment among the M06 family, with deviations up to one order of magnitude
larger than for M06 itself. For reactions 3 to 5, however, deviations with re-
spect to a Slater basis remain comparable to those between the Slater basis
and the Gaussian reference basis. In general, for the hybrids of the M06
family, the maximum deviation with respect to atom-centred bases increases
with the percentage of exact exchange.

Overall, for M05, M06 and M06-L, the enthalpies obtained in plane waves
show excellent agreement with the values obtained in an augmented Slater
basis. Deviations with respect to Gaussian bases may be somewhat larger,
with changes between Slater functions and plane waves often being com-
parable to a change from Slater functions to Gaussians. For M06-2X and
M06-HF, the most important deviations are observed for reactions 1 and
2. Absolute errors are larger for reactions 6 and 7, but due to the large
magnitude of the enthalpy, relative errors remain much lower than for 1 and
2. However, the enthalpy of the conversion of reactant E22 to product E31
- which is not listed as an official database entry - reveals good agreement
between the basis sets for all the functionals; for this system, only M06-HF
shows a value that exceed chemical accuracy. This observation indicates that
the problem might be linked to reactant E1. The source of this considerable
deviations for reactions 1 and 2 will therefore be examined further on in the
text.

6.4.2C The M11 family

The basis-set dependence of the enthalpies obtained from M11 is comparably
uniform for all reactions. For the isomerisations 1 and 2, the values from
the reference Gaussian basis (6-311+G(2df,2p)) lie between the values from
ATZ2P/aug-cc-pVTZ and plane wave results, respectively, with deviations
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Table 6.3: Reaction enthalpies for the members of the HC7/11 database computed
using the M11 and M11-L xc functional in plane waves (125 Ry, ξ = 8), an augmen-
ted Slater basis (ATZ2P), aug-cc-pVTZ and the reference basis (6-311+G(2df,2p))
.

System ξ = 8 ATZ2P aug-cc-pVTZ Reference
M11

1 E22-E1 21.67 20.14 20.19 20.83
2 E31-E1 29.48 28.09 27.59 28.94
3 Octane isomerisation 3.52 3.00 4.10 4.52
4 Reaction (a) 6.60 6.94 7.38 7.47
5 Reaction (b) 13.40 13.35 15.16 15.68
6 Reaction (c) 193.15 196.20 193.97 198.68
7 Reaction (d) 125.61 128.15 126.46 129.52

M11-L
1 E22-E1 19.99 14.60 17.12 15.91
2 E31-E1 26.52 21.12 24.26 22.80
3 Octane isomerisation 0.01 1.29 1.27 1.14
4 Reaction (a) 6.51 8.26 8.17 7.88
5 Reaction (b) 9.69 13.60 13.56 12.82
6 Reaction (c) 195.12 194.15 197.70 198.55
7 Reaction (d) 126.83 126.52 129.47 129.74

ranging from −0.9 to +0.9 kcal mol−1 with respect to the reference. For
the octane isomerisation 3, plane wave results deviate by about 0.5 to 1.0
kcal mol−1 from results obtained using Gaussians, whereas the difference
between Slater and Gaussian bases exceeds chemical accuracy, ranging from
1.1 to 1.5 kcal mol−1 . For reactions 4 and 5, plane waves and ATZ2P show
excellent agreement, whereas the values from aug-cc-pVTZ and the Gaussian
reference basis lie up to 2 kcal mol−1 higher. Interestingly, the situation is
different for reactions 6 and 7, where plane waves and aug-cc-pVTZ agree
well; the ATZP and 6-311+G(2df,2p) results are up to 4 kcal mol−1 higher
in energy (which corresponds to a 5 % range).

Energetics vary more considerably in the case of M11-L, in analogy with
the slow basis set convergence documented in Ref. 204 and the trends ob-
served in the present work for the HF dimer. For the isomerisations, the
enthalpies span a range of over 4 kcal mol−1 ; ATZ2P values are the low-
est, plane wave values the largest, aug-cc-pVTZ and 6-311+G(2df,2p) lie in
between and differ themselves by almost 2 kcal mol−1 . For reactions 3 to 5,
all atom-centred bases agree well, with plane wave results deviating by more
than 1 kcal mol−1 with respect to the closest Gaussian value. Reactions 6
and 7 show again good agreement within about 1 kcal mol−1 between plane
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waves and Slater functions, whereas the enthalpies obtained for aug-cc-pVTZ
and the reference basis are between 2 − 3 kcal mol−1 higher. These results
highlight the possible high sensitivity of range-separated density functionals
to the underlying basis set.

Given the large spread of enthalpies obtained in atom-centred bases,
plane wave results still agree well with the other basis sets. Consistent with
Ref. 204, we find that M11-L is more sensitive to basis set effects than its
hybrid equivalent, M11. This sensitivity is reflected in a considerable change
of reaction enthalpies when changing the type of basis function. While sim-
ilar trends hold for M11, they are exacerbated for M11-L. M11-L therefore
appears to be exceptionally sensitive to the underlying functional form of the
basis, which may be due to its dual-range functional form: Similar trends
were observed for certain systems when comparing excited states obtained
from range-separated functionals in plane waves and Gaussians.161 Like for
the M06 family, plane waves therefore allow for new insights on converged en-
ergetics to be obtained. In view of the improved accuracy of M11 over M06,
the fact that converged quantities are readily available from plane waves is
particularly favourable.

6.4.2D Summary

Overall, results obtained from plane waves and Slater bases show satisfactory
agreement with Gaussian bases, even if there appears to be no systematic
trend linking plane wave, Slater and Gaussian basis results among all of
the functionals and systems. While the spread between the results may be
considerable for a given reaction, the deviations between the different bases
are rather evenly spread for many of the functionals considered here (M05,
M06, M06-L, M11, M11-L). Large relative deviations are only observed for
the isomerisation reactions 1 and 2. Often, where larger deviations can be
observed, Slater basis results lie between plane wave and aug-cc-pVTZ val-
ues. In many cases, the deviations of plane waves and aug-cc-pVTZ with
respect to the Slater basis are of comparable absolute value, but are of op-
posite sign. In the case of M11, which has a different functional form, values
from the Gaussian reference basis lie between those obtained in plane waves
and those obtained with Slater functions, which may be attributed to effects
due to range-separation. The only significant absolute deviations between
plane waves and atom-centred bases occur for M06-2X, M06-HX and M11-L,
which, with the exception of M06-2X, have both been identified as difficult
to converge in Gaussian bases by Mardirossian et al.204 M06-L, on the other
hand, appears to be more well-behaved in plane waves than in Gaussians,
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exhibiting the lowest deviations within the M06 family along with M06 itself.
In the case of M11-L, deviations are larger than for M11, but comparable
to the differences observed within different atom-centred bases. This indic-
ates that the functional simply calls for a very flexible basis. M05, M06 and
M06-L show the best overall agreement across all bases considered here.

Our results show that a plane wave description can add valuable in-
formation on the convergence and basis set limit of reaction enthalpies. In
particular, where energetics differ considerably between Slater functions and
Gaussian basis sets, the fully delocalised plane wave basis allows for a more
flexible description and a convenient approach to the basis set limit.

6.4.3 Energy Density and Exact Exchange Analysis for the
M06 Family

For the hybrid functionals of the M06 family, agreement between plane wave
and atom-centred basis results for the isomerisations 1 and 2 noticeably
deteriorates with increasing Hartree-Fock exchange contribution: From M06
over M06-2X to M06-HF, the maximum errors increase from 2 over 5 to
14 kcal mol−1 . In contrast, the conversion of E31 to E22 is much more
accurately described by all the functionals, with a maximum error of about
1.5 kcal mol−1 for M06-HF. The problem therefore appears to be related to
the description of reactant E1.

We first consider the effect of exact exchange. The pure Hartree-Fock
enthalpy for reaction 1 calculated using the same plane wave setup as used
in Table 6.2 is −10.29 kcal mol−1 , whereas the corresponding value obtained
using an atom-centred aug-cc-pVTZ basis is −12.30 kcal mol−1 . While this
difference is not negligible, it is well within the spread of values that could be
observed for several systems and functionals - even among the two Gaussian
basis sets. Therefore, the exact exchange contribution cannot alone account
for all of the sizeable differences between plane wave and Gaussian values
that were obtained using M06-2X and M06-HF.

In order to assess the possible influence of pseudising the core electrons,
it appears pertinent to analyse the exchange and correlation energy densities
εx(r) and εc(r), i.e. the integrands of the xc functional

Exc =

∫
dr ρ4/3(r) (Kx(r) +Kc(r)) (6.32)

=

∫
dr εx(r) + εc(r), (6.33)

for reactant and product of reaction 2 and all of the functionals of the M06
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family. Table 6.4 lists values for ε summed over the nuclear core region, i.e.
regions of real space that lie at points rcore within the cutoff radius rc of the
pseudopotentials employed for a nucleus α at nuclear coordinate R:

E(rc)
xc =

∑
α

∫ rc

0
d(r−Rα) (εx(r) + εc(r)) . (6.34)

Table 6.4 shows that irrespective of the differences between plane wave and
atom-centred results in Table 6.3, the changes of the contribution to εxc due
to the core are below 1%. Similarly, the magnitude of the energy density
itself is no indicator of the deviation that is to be expected with respect to
all-electron calculations. It is however notable that the exchange-correlation
contribution from M06-HF takes on an (unphysical204) positive value which
counterbalances the 100% exact exchange employed in this functional.

In order to assess the effect of pseudisation further, Fig. 6.4 shows the
electron density along with the energy density ε for a cut through one of
the C − H bonds of the reaction product E31. Both exchange and correl-
ation energy densities are smooth outside the core region rc for both M06
and M06-L. Within rc, they can oscillate considerably, which is due to a
local maximum in τ(r) that occurs on top of the carbon nucleus (given that
τ(r) can be viewed as a probe for chemical bonds, one might refer to this
as a misdiagnosed chemical bond). Since the oscillations are limited to the
pseudised region, no transferability issues are to be expected, which is fur-
ther illustrated by the values in Table 6.4. M06-2X and M06-HF, however,
show turning points in εxc even outside rc. In particular, εxc exhibits a
step-like pattern when approaching the cusps of the density, whereas the
correlation functional is smoother and more well-behaved. It appears that
while the parametrisation of M06-2X and M06-HF can be beneficial for weak
and long-range interactions, it results in unphysical phenomena when com-
bined with pseudised nuclear cusps. Due to the high flexibility of the plane
wave basis, these effects may become particularly prominent. While our res-
ults suggests that in many cases, these effects do not considerably influence
energy differences due to error compensation, this is not necessarily the case
for reactions involving reactant E1.

A final quantification of the numerical behaviour of the M06 family in a
pseudopotential framework can be obtained by comparing the integrated εxc
between reactant and product, where we define:

Espher
xc =

∫ rc+δr

rc

d(r−Rα) (εx(r) + εc(r)) (6.35)
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Figure 6.4: Zoom on the values of the energy density ε(r) for exchange x, cor-
relation c and exchange-correlation xc for the M06, M06-L, M06-2X and M06-HF
functional at the example of a cut through a carbon-hydrogen bond of product E31
of reaction 2. The electron density is displayed on the secondary y axis.
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Figure 6.5: Values for the ratio of change in energy around the nuclei, ΔEspher,
and the total change in energy, ΔE, for exchange only x as well as exchange-
correlation xc for the M05, M06, M06-L, M06-2X and M06-HF functional for the
isomerisation reaction 2.

as the integral of εxc(r) around nuclei α, starting from the pseudopotential
cutoff radius rc - outside of which the pseudo-orbitals are identical to their all-
electron counterparts - and integrating up to an upper bound rmax = rc+δr.
Here, we have chosen the upper bound such that 2δr+rαc +r

β
c < dαβ to ensure

that there is no double counting between nuclei α and β separated by a bond
of length dαβ . We then plot the ratio of change of Espher

xc between reactants
and products, ΔEspher

xc , and the total change in exchange-correlation energy,
ΔExc, as a function of rmax, in Fig. 6.5. The same data is also provided
for the exchange-only contribution. For comparison, the values for M05 are
given, too.

For the latter, all functionals exhibit negative values for the ratio given
by ΔEspher

x /ΔEx. This implies that the change of εx spherically integrated
from rc to rmax around each nucleus is opposite in sign to the overall change
of the exchange-correlation energy. This behaviour is consistent for all func-
tionals of the M06 family. However, for M06-2X, the ratio increases much
slower and reaches lower values, whereas it increases more sharply than for
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M06-HF. M05, M06 and M06-L show an almost identical behaviour. For
δr ≥ 0.7, the ratio decreases by almost one order of magnitude, indicating
that there must be considerable areas where Δex(r) > 0, which will com-
pensate for the negative values at δr < 0.7, thus leading to a lower absolute
value of the integral. Note that δr ≈ 0.7 is close to the centre of a C-C or C-
H bond. For the overall exchange-correlation energy, those trends are even
more pronounced. While M06 and M06-L behave almost identically, and
M05 very similarly, the ratio is consistently lower in magnitude for M06-2X,
and reaches positive values for M06-HF. Given that the components of Exc
close to the nuclei counterbalance the overall change in Exc, this can provide
a rationale as for why the predicted reaction enthalpy increases in the series
M06 → M06-2X → M06-HF. For M06-2X and M06-HF, the overall contri-
bution close to the nuclei is considerably lower than for the other functionals
(which is also illustrated by the values in Table 6.4 and the CH bond in
Fig. 6.4), the functionals therefore lack some counterbalancing element. A
flexible basis such as plane waves may amplify this tendency, resulting in
an overestimation of the energy of the isomerisation. The different energet-
ics of the Hartree-Fock exchange between all-electron bases and the plane
wave/pseudopotential framework can further amplify this behaviour.

Fig. 6.6 shows the influence of different basis functions on the electron
density at the example of reactant E1. Shown are electron density differ-
ences between a converged plane wave density and its analogue obtained
using the aug-cc-pVTZ basis for M06 and M06-HF as well as the electron
density contour with the same isovalue. In plane waves, for both functionals,
the electron density is depleted around the nuclei due to pseudisation, but
due to a tight cutoff radius rc, those regions are not visible in Fig. 6.6. It
can be seen from panels 6.6a) and 6.6c) that for M06, residual changes in the
electron density occur along σ bonds. Their shape is a distinctive result of
the higher flexibility in plane waves, leading to small changes of the electron
density along bonds. These effects are expected to be highly transferable and
to be compensated when comparing different systems. In contrast, panels
6.6b) and 6.6c) show that for M06-HF, plane waves show increased dens-
ity along all bonds, whereas aug-cc-pVTZ yields more density further away
from the nuclei. As can be seen from panels 6.6a) and 6.6b), this behaviour
is amplified around the cyclopropane structure in the case of M06-HF. The
large change of enthalpy between plane waves and atom-centred correlates
with a less localised density difference on E1, in particular around the cyclo-
propane rings. Other reactions, where agreement between M06-2X, M06-HF
and the atom-centred bases is much better, appear to be far less sensitive to
those density differences; in particular, the enthalpies of the ‘difficult’ isode-
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a b c d

Figure 6.6: Isosurface (0.0035 a.u.) of the electron density (grey) and the electron
density difference between a plane wave setup and aug-cc-pVTZ for compound E1.
Regions depicted in red show more density in aug-cc-pVTZ, regions in turquoise
have more density in a plane wave basis. Panel a) and c) show densities for M06,
panels b) and d) for M06-HF.

smic reactions singled out by Grimme210 are rather equally predicted by all
functionals.

The differences with respect to atom-centred functions are due to the
highly flexible nature of plane waves and can be amplified by the varying
exact exchange energies predicted in different bases. The features shown
in Figs 6.5 and 6.6 are a result of the functional form and parametrisation
of the Minnesota functionals and may only manifest themselves in a highly
flexible, delocalised basis such as plane waves.

Plane waves therefore offer a new perspective on the problem of functional
convergence. Our results have illustrate that considerable differences with
respect to atom-centred systems might occur for some specific functionals
and in some particular cases. This is particularly important if results from
benchmarks carried out in one basis are to be expected to be transferable
to another basis. If the energetics differ considerably between bases, this is
reflected in differences in the electron density around the bonding regions
and by the ratio of the integral ΔEspher

xc /ΔExc. Instead, the influence of
core-pseudisation has been shown to only negligibly contribute to the energy
difference between all-electron and plane wave/pseudopotential calculations.

6.5 Computational Overhead

Fig. 6.7 shows the increase in computational time for one DIIS step using
a fixed number of 384 CPU cores. While the scaling of the local quantities
computed in plane wave codes is in principle linear with an increase in cutoff,
here, for certain cutoffs, real space meshes may not be uniformly distributed
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Figure 6.7: Time per DIIS step for the HF dimer using the M06 and M06-
L xc functionals at different cutoff energies and using different values of ξ. All
calculations were carried out in a 20× 15× 10 Å box using 384 processors.

over processors, resulting in a computational overhead.16 At the example
of the M06-L functional, it is easily seen that the increase in runtime is
proportional to the ratio between ξ used in the calculation and the baseline
using ξ = 4. Since for any meta-GGA, the computational bottleneck is given
by the 3D FFTs, an increase in ξ is directly reflected in the run time. The
same holds for the hybrid functional M06, although typical load-balancing
issues may occur, leading to a non-linear increase in execution time. This is
especially prominent at cutoff energies above 250 Ry, and is more pronounced
for higher values of ξ. Since the Hartree-Fock exchange potential does not
have to be calculated on the density grid, an increase in ξ does not affect
the run time in a non linear manner. Due to the small number of orbitals in
the HF dimer, the overhead due to the computation of the exact exchange
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integrals is modest (about 2.5). The run time of the hybrid-meta GGA in an
isolated system and a plane wave basis can further be decreased by resorting
to recently proposed density scaling algorithms.220

As ξ = 8 has been found to be sufficient for both the HC7/11 database
and the HF dimer, the computational overhead of the Minnesota functionals
with respect to standard (hybrid) meta-GGA is therefore a factor of 2. Since
an increase of ξ is directly reflected in a finer Fourier mesh, this overhead is
very easily overcome by doubling the amount of CPUs.

6.6 Conclusions

We have presented a comprehensive analysis of the convergence behaviour
of the M05 to M11 families in a plane wave basis, providing a complete basis
set description within a pseudopotential framework. We could demonstrate
that given a sufficiently fine integration grid, energy differences for a HF
dimer converge rapidly for most functionals with the exception of M06-2X,
which requires a particularly high cutoff energy. Results between atom-
centred Gaussian and Slater bases agree favourably with those obtained in
plane waves. Residual differences were attributed to the high flexibility of
the plane wave basis.

At the example of reaction enthalpies of the HC7/11 database, we could
subsequently show that for M05, M06, M06-L, M11 and M11-L, there is
good agreement between values obtained in plane waves and those obtained
from an augmented Slater basis, whereas deviations with respect to augmen-
ted Gaussian-type bases may be larger and can exceed chemical accuracy.
For the M06-HF and M06-2X functionals, which both include a large per-
centage of exact exchange, we found that in the case of two isomerisations
involving species E1, E22 and E31, changes with respect to atom-centred
basis sets can be notable. We have shown that these differences cannot
be attributed to core pseudisation. Instead, the difference between exact
exchange calculated in a plane wave basis and its atom-centred equivalent
can partially account for the differences. Most importantly, sizeable devi-
ations between plane waves and atom-centred bases correlate with the ratio
between the spherically integrated energy density around the nuclei and the
overall exchange-correlation energy, which we have further illustrated at the
example of electron density difference maps. For both M06-2X and M06-HF,
this ratio has a higher value than in the case of the more well-behaved M06,
M06-L and M05, which all show a more uniform behaviour. In particular,
for M06, changes in electron density between plane waves and aug-cc-pVTZ
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were shown to be localised close to the nuclei and σ bonds, whereas the
electron density differences for M06-HF are substantially more pronounced
in regions far from the nuclear core. For the more recent M11 and M11-L, an
unusual sensitivity with respect to the kind of basis functions was observed,
which was reflected in considerable differences between results obtained with
Slater functions and their Gaussian equivalents. We have attributed this to
the underlying range-separation, for which the highly flexible plane waves
offer a more versatile and complete description. These functionals are the
most accurate considered in this study and, contrary to Gaussian bases, do
not pose convergence problems when used in a plane wave/pseudopotential
framework. Finally, it was shown that the need for a finer integration mesh
introduces an overhead of a factor of 2, independent of the inclusion of exact
exchange.

Hence, with this plane wave implementation, it becomes possible to ob-
tain values at the complete basis set limit for the M05, M06 and M11 families.
While residual changes with respect to converged Gaussian basis set calcu-
lations are small for most systems, they can be sizeable for specific reactions
described using M06-2X, M06-HF or M11-L. While these features may re-
main hidden in a Gaussian basis, they will only surface once functions with
an exact asymptotic decay (such as Slater functions) or a fully flexible and
delocalised basis (such as plane waves) are used.
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Part III

Accelerating the Evaluation of
Exact Exchange Integrals in

Plane Waves
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Preface

In the previous part, we have made use of xc functionals that for the
most require inclusion of the exact exchange of a Kohn-Sham determinant.
As we have seen in Chapter 4.1.3, this can be a costly endeavour in a plane
wave basis. In this part, we present an approach that can substantially speed
up the calculation of the exact exchange contribution in the case of clusters.

In the following, the use of the Fourier series representation for the re-
ciprocal space forms of ψ(G) and ρ(G) shall be implicit. For notational
simplicity, the bar for the Fourier series coefficients ψ̄(G) and ρ̄(G) will
therefore be omitted.
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Chapter 7

Exploiting Coordinate Scaling
Relations to Accelerate Exact

Exchange Calculations

Chapter 7 is a post-print version of a letter published as:

Bircher, Martin P.; Rothlisberger, U. The Journal of Physical Chemistry Letters
2018, 9, 3886–3890
For reasons of consistency, the notation used in the published article has been
changed to reflect the conventions adopted throughout the present dissertation.
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Exact exchange is an important constituent in many state of the art
approximations to the exchange-correlation (xc) functional of Kohn-Sham
DFT. However, its evaluation can be computationally intensive, which can
be particularly prohibitive in DFT-based Molecular Dynamics (MD) simu-
lations, often restricted to semi-local functionals. Here, we derive a scheme
based on the formal coordinate scaling properties of the exact xc functional
that allows for a substantial reduction of the cost of the evaluation of both
the exact exchange energy and potential. We show that within a plane
wave/pseudopotential framework, excellent accuracy is retained, while spee-
dups from up to ∼ 6 can be reached. The coordinate-scaling thus accelerates
hybrid-functional based first-principles MD simulations by nearly one order
of magnitude.

The history of Kohn-Sham density functional theory (KS-DFT)14,15 has
been marked by the quest for increasingly accurate approximations to the
exchange-correlation (xc) functional. While a computationally tractable
form for the exact xc functional75 remains, alas, elusive, a plethora of ap-
proximate forms have been developed and successfully applied over the past
decades.87

Known properties of the exact xc functional have served as a valuable
guide in the design of many an approximate functional,114,221,222 but their
use has mostly been limited to the theoretical realm of functional develop-
ment113,223–226 rather than the improvement of the computational perform-
ance in practical implementations. Here, we show how the use of a simple
scaling relation109–111 can substantially lower the computational overhead of
the evaluation of exact exchange in plane waves for isolated systems. This
is achieved without loss of accuracy, enabling studies of systems that have
hitherto been untractable.

Among the conditions an exact functional must fulfil, the coordinate scal-
ing relation112,113 for the exact exchange energy is of particular simplicity.
Fig. 7.1 illustrates the concept of density scaling on a hydrogen molecule.
Given a (L1-norm-conserving) electron density scaled in the coordinates by
a constant λ:

ρλ(r) = λ3ρ(λr), (7.1)

where λ > 1 contracts the density and λ < 1 stretches it out, the exchange
energy is homogeneous to degree one:

Ex[ρλ] = λEx[ρ]. (7.2)

While a similar relation only gives an upper bound for the correlation energy,
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Figure 7.1: Illustration of the coordinate scaling at the example of the hydrogen
molecule. Shown are a cut of the N -electron density ρ(r) along the bonding axis,
as well as its one-dimensional coordinate-scaled analogue ρλ(r) for λ = 0.5.

in the case of the exchange functional, eq. 7.2 imposes strict boundaries on
functional forms.

This scaling relation is trivially derived from the exact exchange func-
tional, the familiar functional form of which is given as the exchange energy
(or Fock exchange) of the single Slater determinant of the Nb occupied (gen-
eralised) Kohn-Sham orbitals that sum up to ρ(r) =

∑Nb
i |ψi(r)|2:

Ex[ρ] =
1

2

∑
ij

∫∫
drdr′

ψ∗
i (r)ψ

∗
j (r

′)ψj(r)ψi(r′)
|r− r′| . (7.3)

Eq. 7.3 is the primordial ingredient in the family of hybrid exchange-correla-
tion functionals31 which combine a fraction of exact exchange with semi-
local functional forms and which have seen tremendous success over the
last decades.83,227 The advent of hybrid functionals extended the applic-
ability of density functional theory (DFT) to many chemical systems for
which a description at the generalised gradient approximation (GGA) level
was hampered by insufficient accuracy, substantially improving properties
ranging from ionisation potentials over excitation energies to reaction en-
thalpies.83

The improved accuracy of energetics and excitation energies obtained
from hybrid functionals is of particular appeal to first principles ground- and
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excited-state molecular dynamics (MD) simulations. However, due to the
large computational overhead associated with the evaluation of the integral
in eq. 7.3, applications using hybrid functionals are often limited by the
time scale that can be simulated at an achievable computational cost.30

The overhead due to the evaluation of the Fock integral can be particularly
expensive in the plane wave/pseudopotential framework that is frequently
used for first principles MD.157

Hybrid functionals are most commonly used within the generalised Kohn-
Sham (GKS) scheme,137 where the (local) Kohn-Sham optimised effective po-
tential can be replaced by the familiar orbital-dependent form known from
Hartree-Fock exchange. In a plane wave basis at the Γ-point, the gradient
of the exact exchange energy with respect to every one out of Nb orbital ex-
pansion coefficients ψ̄i(G) is then obtained from a discrete Fourier transform
S160,228:

∂Ex
∂ψ̄∗

i (G)
= SDSΔR

⎡
⎣∑

j

ψj(R)vij(R)

⎤
⎦ , (7.4)

where we have introduced capital symbols (G,R) to denote discrete repres-
entations of continuous functions. The domain DS

ΔR of the discrete Fourier
transform are the real space mesh points R spaced by ΔR that are contained
within the entire simulation supercell S. For notational simplicity, we have
restricted DS

ΔR to the one-dimensional case:

DS
ΔR = {R | (0 ≤ R < l) ∧ (R = nΔR, 0 ≤ n < nmax, n ∈ Z≥0)} , (7.5)

where l is the edge length of the simulation supercell. A generalisation to
3D Cartesian space is straightforward. For a given supercell, the spacing of
the real space grid ΔR and the number of grid points nmax is defined by the
value of the cutoff energy in reciprocal space, Ecut. The potential vij(R) is
determined by two discrete Fourier transforms, exploiting the fact that the
Coulomb operator is diagonal in reciprocal space:

vij(R) = S−1
DSΔR

[
Φ(G)

(
SDSΔR

[ψ∗
i (R)ψj(R)]

)]
, (7.6)

where Φ(G) is an appropriately defined form of the Coulomb operator in
reciprocal space G that eliminates the divergence at G = 0.158,159 Orbital
pair products can therefore be conveniently obtained in real space, whereas
the associated Coulomb potential is straightforwardly computed from the
diagonal reciprocal-space Coulomb operator. The computational cost for
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the evaluation of a given pair is only determined by the granularity of the
real space mesh; a resolution R′ halved in every Cartesian component with
respect to a reference mesh R decreases the cost for every 3D FFT by a
factor of about 8.

While for first principles MD, plane waves offer many advantages over
localised, atom-centred bases (such as intrinsic periodicity, absence of Pulay
forces and basis set superposition effects, and scaling as N logN due to the
extensive use of fast Fourier transforms in the calculation of S), following
eqs 7.3, 7.4 and 7.6, practical calculations employing hybrid functionals for
a system with Nb occupied KS orbitals require at least (3Nb)

2 additional
fast Fourier transforms (FFT) with respect to a GGA. Although the use of
blocking techniques can improve the effective scaling for large Nb on a large
number of processors,160 the computational cost can remain prohibitively
expensive in the absence of specialised computational hardware that provides
multiples of thousands of threads.

This problem is exacerbated in the case of isolated systems, which are
usually required for nonperiodic systems in a full QM or QM/MM context.
In order to recover the first/nearest image interaction, rather than the infin-
itely periodic description which is intrinsic to a plane wave expansion, the
Poisson equation has to be solved under appropriate boundary conditions.
A solution to this problem has, among others, been proposed by Tuckerman
and Martyna155 (TM), using an appropriate Fourier series representation for
Φ(G). This approach requires that the simulation supercell spans twice the
range of the charge density; since the cost of an FFT scales approximately cu-
bically (N logN)3 with respect to the supercell volume, this approach carries
a significant computational overhead due to large regions of the simulation
supercell where the orbitals are effectively zero. For a system under the TM
decoupling scheme, we will distinguish the domain of non-negligible elec-
tron density Dρ

ΔR within DS
ΔR by the superscript ρ, and its one-dimensional

analogue reads:

Dρ
ΔR = {R | (l/4 ≤ R < 3l/4) ∧ (R = nΔR,

nmax/4 ≤ n < 3nmax/4, n ∈ Z≥0)}.
(7.7)

In combination with the (3Nb)
2 FFTs required in the calculation of the exact

exchange energy, this can make calculations on isolated systems prohibitively
expensive for a typical number of electronic states Nb that would still be
tractable in an infinitely periodic system.

In the following, based on the extension of the coordinate scaling rela-
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tions to the Kohn-Sham orbitals,17,112 we shall demonstrate that the exact
exchange energy and potential for isolated systems described by a plane wave
expansion of the GKS orbitals can be straightforwardly obtained from the
coordinate-scaled quantities at a substantially lower computational cost.

The homogeneous coordinate scaling of the density by λ can be general-
ised to the KS orbitals according to17:

ψλi (r) = λ3/2ψi(λr), (7.8)

where λ3/2 ensures that the norm of the N -electron density be conserved.
The corresponding Coulomb potential vλij(r) due to a scaled orbital pair
ψλi

∗
(r)ψλj (r) expressed in terms of the unscaled generalised Kohn-Sham or-

bitals reads:

vλij(r) =

∫
dr′

ψλj
∗
(r′)ψλi (r

′)
|r− r′| =

∫
dr′

λ3ψj
∗
(λr′)ψi(λr′)
|r− r′| . (7.9)

Introducing the coordinate transformation q = λr, where the infinitesimal
volume element changes according to the Jacobian of the transformation
matrix, dr = λ−3dq, one finds:

vλij(λ
−1q) = λ

∫
dq′ ψj

∗(q′)ψi(q′)
|q− q′| . (7.10)

By comparing with the Coulomb potential vij(r) of an unscaled orbital
pair ψ∗

i (r)ψj(r), it follows that the coordinate scaled Coulomb potential and
its unscaled counterpart are related according to:

vλij(λ
−1r) = λvij(r). (7.11)

While the Kohn-Sham ψλi (r) minimise Ts for a given scaled density, no such
proof exists for orbitals obtained from a GKS-type potential. In GKS theory,
the ψλi (r) are therefore not necessarily the minimising orbitals associated to
ρλ(r). By extending eqs 7.9 through 7.11 to the exact energy functional, it
is readily seen that any set of orbitals obtained from eq. 7.8 obey a relation
of the type Ex[{ψλ}] = λEx[{ψ}], independent of them coming from the
minimising determinant of ρλ(r). Since here, the Euler-Lagrange equation is
solved on the initial, unscaled orbital space of ψi(r), the ψλi (r) of GKS theory
are not constrained to be the minimising orbitals for a given ρλ(r). Instead,
they can be defined to be the set of orbitals that fulfil eq. 7.2, which allows
for the same scaling relations to be applied to both GKS and KS orbitals.
Ts itself is always calculated using the original, unscaled orbitals.
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We now seek to lower the resolution of the real space grid R for the
discrete Fourier transforms in eq. 7.6 without loss of accuracy. This is pos-
sible by exploiting the considerable volume in the supercell where the density
is zero, which is imposed by the necessity for a decoupling of the Poisson
equation.

We set λ = 0.5 and define the set of stretched, coordinate-scaled gener-
alised Kohn-Sham orbitals:

ψλi (R
′) = λ3/2ψi(λR

′ +TD(λ)), (7.12)

where the translation TD(λ) = 1
2(l − λl) ensures that the orbitals remain

centred within the periodic supercell of length l, thus preserving transla-
tional invariance. Since the representation of ψi(R) is not continuous, the
coordinates R′ obtained from eq. 7.12 have to be discretised on a grid with
ΔR′ = 2ΔR. Only the non-zero domain Dρ

ΔR of the unscaled orbitals is now
used in constructing ψλi (R

′). The spatial extent of the simulation supercell
remains the same. The resulting coordinate-scaled generalised Kohn-Sham
orbitals are now defined on the domain DS

ΔR′ containing the points of a
coarser mesh R′ on the entire supercell S. For the one-dimensional case:

DS
ΔR′ = {R′ | (0 ≤ R′ < l) ∧ (R′ = mΔR′, 0 ≤ m < λnmax, m ∈ Z≥0)}.

(7.13)

vλij(R
′) is then easily obtained from eq. 7.6 by performing two discrete

Fourier transforms on the domain DS
ΔR′ ,

vλij(R
′) = S−1

DS
ΔR′

{
Φ(G)

[
SDS

ΔR′

(
ψλi

∗
(R′)ψλj (R

′)
)]}

, (7.14)

which reduces the energy cutoff in G by a factor of 8 compared to the
one used for vij(R). Based on eq. 7.11, one obtains vij(R) from the low-
resolution, scaled Coulomb potential vλij(R

′) according to:

vij(R) =

{
λ−1vλij(λ

−1R+TD(λ
−1)) for R ∈ Dρ

ΔR

0 for R ∈ DS
ΔR \Dρ

ΔR,
(7.15)

where TD(λ
−1) again ensures proper centring of vij(R) within the periodic

supercell. After multiplication by ψj(R), vij(R) can be used to update the
expansion coefficients ψ̄i(G) via eq. 7.4 from the full vij(R), which is again
defined for all points of DS

ΔR. We have implemented this approach in the
CPMD code.176
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Table 7.1 compares total energy, HOMO-LUMO gaps and the first 5
excited states obtained from the standard vij(r) to those obtained from eq.
7.15 at the example of the organic dye DMABN. Total energies between the
approaches differ by only 0.3 ·10−4 kcal/mol. The forces on the atoms span a
range from 10−2 to 10−5 a.u. and differ at maximum by 1%. However, 80%
of the deviations are < 0.1%. The HOMO-LUMO gap is identical within
2 · 10−4 eV, and good accuracy is retained in the excitation energies for the
first five singlet states, where the maximum deviation is observed for the S4
state. Still, the difference between the approaches is below 0.1 eV, i.e. lower
than 2%. The differences are not sensitive to changes in the geometry that
are smaller than the grid spacing (cf. Supporting Information).

Practically, the performance of the algorithm described here is not only
limited by the last Fourier transform in eq. 7.4, which is carried out on the full
reference mesh, but also by inter-processor communication in a distributed
memory framework. Table 7.2 compares execution times for the calculation
of the first 5 excited states of both DMABN and a DMABN trimer at the
example of the three different routines in which the exact exchange contribu-
tion has to be calculated: ODIIS229 wavefunction optimisation to obtain the
occupied (but non-diagonal) ground-state KS orbitals, the Davidson diagon-
alisation that yields the canonical (occupied and non-occupied) KS orbitals,
and the final Davidson diagonalisation of the TDDFT matrix. In the CPMD
code, the fast index of the three-dimensional real space mesh, x, is distrib-
uted over MPI tasks.160 In order to resolve load-balancing issues, a second
parallelisation layer is available, where electronic states are distributed over
processor groups. All timings are given for the most efficient parallel setup
(x planes vs. bands) for a given number of CPU cores, such that they are
representative of practical applications.

For a single DMABN molecule (Nb = 28), an average step of DIIS op-
timisation is sped up by a factor of about η = 2.5, whereas the calculation of
the orbital eigenvalues (diagonalisation of the non-canonical KS orbitals) is
accelerated by about η = 4.5. The solution of the Tamm-Dancoff equation
for the 5 first singlet states is η = 3.3 times faster when using the scaled dens-
ities. Speedups are particularly sizeable for a DMABN trimer (Nb = 84),
where an average DIIS step is accelerated by a factor of η = 4.5. The speedup
of η = 4.9 in the calculation of the canonical KS orbitals remains compar-
able to the monomer, whereas the diagonalisation of the TDDFT matrix is
faster by a factor of η = 5.7. These considerable speedups make the density
scaling approach particularly beneficial for applications where many inde-
pendent trajectories have to be gathered in parallel, such as thermodynamic
integration or excited-state applications like surface hopping, thus making
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CHAPTER 7. COORDINATE SCALING RELATIONS FOR EXACT EXCHANGE

optimal use of the computing resources available.
Here, we have shown how the simple coordinate-scaling relations of Kohn-

Sham DFT can be applied in practical calculations, offering a substantial
performance benefit over conventional approaches. The calculation of the
orbital-pair Coulomb potential on the scaled orbitals allows for a much lower
cutoff energy in the discrete Fourier transforms, thereby significantly redu-
cing the computational cost. Sizeable speedups can be achieved, and the
coordinate-scaled calculation of exact exchange can increase the available
timescale or the number of independent trajectories that can be run within
a given time by a factor of up to ∼ 6, which significantly increases both
sampling accuracy and efficiency with respect to current state of the art
plane wave/pseudopotential calculations.
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CHAPTER 8. IMPLEMENTATION OF COORDINATE-SCALED EXACT EXCHANGE

Exact exchange is a primordial ingredient in Kohn-Sham Density Func-
tional Theory based Molecular Dynamics (MD) simulations whenever ther-
modynamic properties, kinetics, barrier heights or excitation energies have
to be predicted with high accuracy. However, the cost of such calculations
is often prohibitive, restricting the use of first principles MD to (semi-)local
density functionals, in particular in a plane wave basis. We have recently
proposed the use of coordinate-scaled orbitals to reduce the cost of the most
expensive Fourier transforms during the calculation of the exact exchange
potential of isolated systems. Here, we present the implementation and
parallelisation of this coordinate scaling approach in the CPMD code and ana-
lyse its performance under different parallelisation schemes. We show that
speedups gather with system size and that with an optimal configuration,
speedups of up to one order of magnitude are possible with respect to con-
ventional calculations. Simulations that have previously taken one week can
therefore be finished within less than a day.

8.1 Introduction

Chemical processes take place at finite temperature and, to a large majority,
in the condensed phase. The typical temperature ranges of chemical and
biological processes imply that entropy can have a substantial influence on
the outcome and time-scale of a chemical reaction. In solution, the behaviour
of the reactants is influenced by their local environment and the specific
reaction conditions. Taking all these effects into account calls for a statistical
approach that goes beyond the picture of a few molecules interacting in the
gas phase.

Following the ergodic hypothesis, the phase-space average in a parti-
tion function can be replaced by a time-average that can be conveniently
obtained by simulating the time-evolution of the system in a molecular dy-
namics (MD) scheme. Since the very first calculations in the 1950ies,57 the
simulation of the dynamics of condensed matter has become one of the pil-
lars of modern-day computational chemistry.21,22,72,231 The introduction of
the extended electronic Lagrangian by Car and Parrinello232 in 1985 made
it possible to simulate (reactive22,33) (bio-)chemical events from first prin-
ciples by exploiting on-the-fly calculated potential energy surfaces (PES)
obtained from Kohn-Sham density functional theory (DFT).14,15 Ever since,
the increased performance and availability of computational resources have
made it possible to go beyond ground-state simulations through TDDFT79

based excited-state approaches such as Tully’s trajectory surface hopping
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8.1. INTRODUCTION

(TSH),27,66 where a swarm of trajectories are propagated on excited-state
surfaces. Such calculations do call for appropriate underlying computational
methods and suitable algorithms.16

In Kohn-Sham DFT, the accuracy of a PES for a given system is determ-
ined by the model for the exchange-correlation (xc) functional that is adop-
ted. While xc approximations have become more and more accurate, and
their predictive power has considerably increased over the last decades,83 the
fundamental quantities used to model the quantum nature of the electrons
have mostly been the same since the end of the 1990ies.87 Most modern day
exchange-correlation functionals Exc[ρ] are hybrid31 functionals that consist
of a (semi-)local part which directly depends on the density, as well as a
nonlocal contribution due to the determinantal exchange of the set of (gen-
eralised) Kohn-Sham orbitals {ψi} which is commonly referred to as exact
or Hartree-Fock exchange (HFX):

Exc[ρ] = Eloc
xc [ρ] + Eexact

xc [{ψi}], (8.1)

where, for a spin-restricted system, Eloc
xc [ρ] takes the general form:

Eloc
xc [ρ] =

∫
dr ex(ρ(r), |∇ρ(r)|, τ(r)) +

∫
dr ec(ρ(r), |∇ρ(r)|, τ(r)). (8.2)

ex and ec are the exchange and correlation energy densities, respectively,
that can depend on the density ρ(r) alone (local density approximation or
LDA15), the density and its gradient ∇ρ (generalised gradient approxima-
tion or GGA126) or the density, its gradient and the kinetic energy density of
the i Kohn-Sham orbitals τ(r) =

∑
i |∇ψi(r|2 (meta-GGA127,129–131). These

quantities are all easily expanded and evaluated as a sum on a real space
grid. The exact exchange contribution, on the other hand, involves the com-
putation of nonlocal integrals over generalised Kohn-Sham (GKS) orbitals.
It reads:

Eexact
x [{ψi}] = c

2

∑
ij

∫∫
drdr′ ψ∗

i (r)ψ
∗
j (r

′)Ŵ(r, r′)ψj(r)ψi(r′); (8.3)

Ŵ(r, r′) is a general38,141 two-electron operator. In the case of conven-
tional hybrid functionals, it takes the form of the classical Coulomb operator
Ŵ(r, r′) = |r − r′|−1, where c denotes the fraction of exact exchange in the
functional that has to be suitably counter-balanced in the functional form
of ex(r). The inclusion of Eexact

xc has been shown to be primordial for the
accurate prediction of excited states,140 and it can also substantially improve
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CHAPTER 8. IMPLEMENTATION OF COORDINATE-SCALED EXACT EXCHANGE

the description of ground-state properties.31,83,163 However, the evaluation
of the exact exchange energy and potential is cumbersome and expensive in
particular in the plane wave basis commonly employed in condensed matter
computer codes.157,158,160 We have recently proposed a scheme that substan-
tially reduces the computational cost of this procedure for isolated molecules
and clusters220 by resorting to the exact coordinate-scaling properties of the
exchange functional.

The first principles MD program CPMD176 is a direct successor of the
seminal code developed by Roberto Car and Michele Parrinello. It has been
developed at IBM Zurich Research Laboratory and by the CPMD consortium
since the early 1990ies and has been considerably refactored before the re-
lease of the current version, 4.1. In the following, we present an efficient
implementation of our recently devised coordinate-scaling scheme within the
existing exact exchange driver160 and give a detailed assessment of its per-
formance and speedups with respect to reference algorithms. With the ex-
tended driver, it becomes possible to treat systems with hundreds of orbitals
at a significantly lowered computational cost.

The paper is organised as follows: First, we give an account of the al-
gorithmics of plane wave Kohn-Sham DFT. We will pay particular attention
to the use of Fast Fourier Transforms (FFT) and their parallelisation in
the CPMD code. We shall then describe the algorithm specific to the ex-
isting exact-exchange driver implemented by Weber et al.160 and discuss
typical parallelisation issues, before giving an account of our new, paral-
lel implementation of the coordinate-scaled exact exchange. We will finally
provide an analysis of the performance of both full and coordinate-scaled
exact exchange at different levels of parallelisation and we will show that for
hundreds of orbitals, sizeable reductions of CPU time by almost one order
of magnitude can be achieved by optimally tuning the parallelisation of the
coordinate-scaled approach.

8.2 Fast Fourier Transforms in Plane-Wave Kohn-
Sham DFT

The ascent of first principles MD is not at least due to the development of
highly efficient algorithms that scale beyond thousands of processors.189,190

Since in MD, time-averages replace the ensemble averages over the partition
function, long enough simulations have to be performed in order to ensure
that the observables converge properly.20,30,72 This can only be achieved if
the execution time spent in the generation of the on-the-fly PES is sufficiently
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8.2. FAST FOURIER TRANSFORMS IN PLANE-WAVE KOHN-SHAM DFT

low to allow for sufficiently long simulations to be performed. Such a goal
can be achieved in three ways: By ensuring that the algorithms scale well
with system size, by employing algorithms with the lowest possible execution
time, and by exploiting algorithms that parallelise well over a large number
of processors.

In this respect, a particularly appealing approach lies in the use of a
plane wave basis, where the (generalised) Kohn-Sham orbitals are expanded
according to16

ψi(r) =

Gmax∑
G

ψi(G)eiG·r, (8.4)

where ψi(G) is the expansion (Fourier series) coefficient of the orbital i at
a given reciprocal space vector G. Gmax is commonly expressed in terms of
the orbital cutoff energy Eψcut = 0.5G−2

max. As it is easily seen from eq. 8.4, it
is straightforward to switch representation from a 3D array ψi(r) to its recip-
rocal space counterpart ψi(G) by means of Fast Fourier Transforms (FFTs),
ψi(r) = FFT−1 [ψi(G)]. In practice, 3D FFTs are resolved as a series of one-
dimensional FFTs, which results in a scaling of O(N logN) where N denotes
the number of 3D vectors G used in eq. 8.4. This quantity depends both
on the cutoff energy Ecut as well as on the size of the supercell in which the
periodic Fourier series is expanded. Many highly efficient implementations
of the FFT algorithm exists.

With the possibility of treating both real- and reciprocal space forms of
ψ and, by extension, ρ, implementations of (semi-local) KS-DFT where the
performance determining steps scale linearly with system size (or, equival-
ently, orbital number Nb) become straightforward. In particular, both the
gradient of the electron density as well as its classical Coulomb potential
vJ(r) =

∫
dr′ |r′|−1ρ(r − r′) are easily obtained from the reciprocal space

density ρ(G):

vJ(r) = FFT−1

[
4π

G2
ρ(G)

]
, (8.5)

∇ρ(r) = FFT−1 [iGρ(G)] . (8.6)

The cutoff Eρcut at which the density is expanded is commonly ζ = 4 times
bigger than Eψcut itself, since the orbital products in ρ(r) =

∑Nb
i |ψi(r)|2

generate higher frequency components that cannot be accurately described
if Eρcut = Eψcut (the case ζ = 1). In practice, the reciprocal space density used
in eqs 8.5 and 8.6 is constructed from the arrays of wavefunction coefficients
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ψ(G) by a series of FFTs:

ρ(G) = FFTEρcut

[
Nb∑
i

∣∣∣∣FFT−1

Eψcut
[ψi(G)]

∣∣∣∣2
]
, (8.7)

which, for a given size of the periodic supercell, results in a linear scaling
with the number N

Eψcut
of electrons for the Fourier transforms at the wave-

function cutoff Eψcut, whereas the number NEρcut
of (more expensive) Fourier

transforms at the density cutoff Eρcut is constant. The overall scaling due to
the FFTs is therefore of the order O(Nb(NEψcut

logN
Eψcut

) + c(NEρcut
logNEρcut

))

where c is a constant. For sufficiently large Nb, the algorithm therefore scales
linearly with the number of Kohn-Sham orbitals and exhibits the typical FFT
scaling for the number of basis vectors. Below the orders of thousands of
atoms, where the cubic scaling of the wavefunction orthogonalisation may
become dominant, the FFTs constitutes the main bottleneck of the calcula-
tion. Therefore, even if FFTs scale favourably with system size, their efficient
parallelisation is primordial if low execution times are to be achieved.

In the CPMD code, distributed memory (MPI) parallelisation of the FFTs
is straightforward, since the 3D FFTs are in practice decomposed into a series
of 1D FFTs. Every task holds all y and z components of the real space mesh
in the periodic supercell, but only a part of the total of imax

x planes. In the
following, and in the style of Fortran, we will use colons between delimiters
to denote a range of elements, while a colon alone will denote the entire
extent of a matrix (or an array). The array holding the density is effectively
distributed over NP MPI tasks m:

ρ(ilowx : iup
x , i

min
y : imax

y , imin
z : imax

z ) =

NP∑
p

ρ(ilowxp : iup
xp , i

min
y : imax

y , imin
z : imax

z ),

(8.8)

i.e. every MPI task holds iup
xp − ilowxp +1 FFTs out of the total imax

x yz planes
(called x-pencils) in real space.16 Optimal load balancing is recovered if
iup
xp − ilowxp is constant for every single task m. This restricts the numbers

of processors NP that can be used for a given real space mesh in to x =
NP (i

up
xm− ilowxm +1). Consequently, for NP > imax

x or for a number of available
CPU that is not a divisor of imax

x , this straightforward parallelisation is
quickly exhausted (a typical mesh in modern-day first principles MD may
comprise between 256 and 712 mesh points per direction, depending on Eρcut.
Additionally, speedups may be limited at large numbers of processors due to
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8.2. FAST FOURIER TRANSFORMS IN PLANE-WAVE KOHN-SHAM DFT

the overhead of the all-to-all communication that is due to the decomposition
of the 3D FFT into a 1D series.160

Instead, Weber et al.160 have implemented a processor group strategy
called CP groups. For a total of NCPU processor cores, every single c out
of NC CP groups unites NP processors that replicate the parallelisation
strategy of eq. 8.8:

ρ(ilowx : xup, imin
y : imax

y , imin
z : imax

z ) =

NC∑
c

NP∑
p

ρg(i
low
xp : iup

xp , i
min
y : imax

y , imin
z : imax

z ).

(8.9)

Each CP group with index c still holds NP x-pencils, i.e. the delimiters
ilowxp : iup

xp remain the same for every pth member across all NC groups, as well
as all Nb orbitals. Instead, only a part of the electron density is computed
by each CP group, corresponding to a partial sum over (generalised) Kohn-
Sham orbitals:

ρc(G) = FFTEρcut

⎡
⎣ iup∑
i=ilow

∣∣∣∣FFT−1

Eψcut
[ψi(G)]

∣∣∣∣2
⎤
⎦ , (8.10)

ρ(G) =

NC∑
c

ρc(G), (8.11)

where NC(iup − ilow + 1) = Nb. For (semi-)local functionals, inter-group
communication is only necessary once the total ρ(r) is assembled, which -
as a reduction over all processors - only carries a small overhead This allows
for an optimal, balanced distribution over the real-space grid due to the
FFTs. While a distribution of gridpoints alone can result in load-balancing
issues and is exhausted once xmax = NCPU, a distribution of the FFTs for
the Nb electronic states allows for an optimal trade off between the numbers
of x-pencils per FFT and the cost of communication. In contrast to earlier
parallelisation schemes,233 the reciprocal space representations {ψ(G)} of all
Nb states remain replicated across all processors, but are not used for the
FFTs of a given group.

It is particularly important that load balancing issues be avoided if exact
exchange energies and potentials have to be calculated. The calculation
of the exact exchange contribution requires the computation of a correlation
function and is most conveniently carried out in a mixed real/reciprocal space
approach similar to the computation of the Coulomb potential.157 The exact
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exchange energy in eq. 8.3 is then given by:

Eexact
x [{ψ}] = −1

2

Nb∑
i

Nb∑
j

Gmax∑
G

Φ(G) |ρij(G)|2 , (8.12)

where Φ(G) is an appropriately generalised reciprocal space form of a two-
electron operator Ŵ158,159 and we have introduced the pair densities ρij as
products of GKS orbitals:

ρij(r) =

(
FFT−1

Eψcut
[ψi(G)]

)∗
FFT−1

Eψcut
[ψj(G)] , (8.13)

ρij(G) = FFTEρcut
[ρij(r)] . (8.14)

The potential acting on an expansion coefficient ψ(G) is obtained from:

δEexact
x [ρ]

δψ∗
i (G)

=

Nb∑
j

FFT
Eψcut

[
δEexact

x [ρ]

δψ∗
i(j)(r)

]
, (8.15)

and

δEexact
x [ρ]

δψ∗
i(j)(r)

= ψj(r)
(
FFT−1

Eρcut
[Φ(G)ρij(G)]

)
. (8.16)

From eqs 8.12 to 8.16 it is easily seen that the computation of the exact
exchange energy and potential is the most expensive part of a calculation
involving a hybrid functional. In a straightforward implementation, where
the real-space GKS orbitals are not stored, N2

b FFTs at the wavefunction
cutoff (eq. 8.13) and N2

b FFTs at the density cutoff (eq. 8.12) are required. In
order to determine the potential, an additional N2

b FFTs at the density cutoff
(eq. 8.16) and N2

b FFTs at the wavefunction cutoff (eq. 8.15) are necessary.
According to the ON logN scaling of the FFTs and by exploiting symmetry
in the sum of eq. 8.12 that effectively reduces the number of pairs by one
half, the bottleneck is given by a total of N2

b FFTs at the density cutoff.
Due to the large number of additional FFTs at the density cutoff, load-

balancing issues due to all-to-all communication can become particularly
prohibitive. The CP group approach by Weber et al. can remedy this prob-
lem if the parameters controlling the parallelisation NC and NP are properly
balanced. Further performance gains can then be made by blocking the or-
bitals in the calculation of eq. 8.12 and storing the inverse Fourier transforms
of the GKS orbitals: By measuring the load-balancing on the fly, blocks of
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8.3. COORDINATE-SCALED EXACT EXCHANGE

b2 = (ilow : iup)× (jlow : jup) orbitals are distributed over CP groups, and a
subset {ψ(r} with indices ilow to iup and jlow to jup is precomputed on every
block and stored. Then, the associated b2 FFTs for all pairs ρij constructed
for a given subset are performed, followed by ilow : iup forward FFTs that
yield the potential in eq. 8.15. All these operations can be carried out in-
dependently for different subsets on every CP group. The total potential is
then given by a sum over the contributions of all CP groups:

δEexact
x [ρ]

δψ∗
i (G)

=

NC∑
c

Nb∑
j

FFT
Eψcut

[
δEexact

x [ρ]

δψ∗
i(j)(r)

]
. (8.17)

Weber et al. have shown that the resulting algorithm scales up to thou-
sands of processors and yields unprecedented performance gains.160 For suf-
ficiently large numbers of states Nb, they have reported linear scaling with
respect to the FFTs at Eρcut by the use of thresholding algorithms: By exploit-
ing Wannier centres in systems with a finite band gap, it becomes possible
to screen orbital pairs that have a negligible overlap.

8.3 Coordinate-Scaled Exact Exchange

For isolated systems such as clusters and quantum mechanical systems treated
within a classical environment (QM/MM),72 we have recently reported a
scheme that can substantially lower the computational cost of the exact ex-
change computation.220 For a (pair) density stretched by a scaling factor
λ < 1, ρλ(r) = λ3ρ(λr), the coordinate scaling relations for the exact ex-
change functional impose that:

Eexact
x [ρλ] = λEexact

x [ρ]. (8.18)

Using the decoupling scheme of Martyna et al. to isolate the system from
its periodic replicas requires that the length of the simulation supercell span
twice the extent of the charge density,155 resulting in large regions of space
where the density is effectively naught. We have advocated to exploit this
empty space by applying the coordinate scaling of the exact exchange func-
tional to the computation of the exact exchange energy and the potential.
If orbitals and potential are stretched by a scaling factor λ < 1, this results
in smoothened functions that can be described on a real space mesh much
coarser than the unscaled reference. Choosing λ = 0.5 allows to optimally ex-
ploit the size of a supercell in a cluster, while the Fourier transforms needed to
compute the Coulomb potential of pairs ρλij can be performed at an auxiliary
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cutoff energy Eρ(λ)cut = Eρcut/4. The reduction of the cutoff energy by a factor
of 4 allows for the real-space mesh sampling Δx to be halved, ΔX = 2Δx.
Applying coordinate-scaling, we have demonstrated that total ground-state
energies, generalised Kohn-Sham orbital eigenvalues and excitation energies
obtained from linear-response TDDFT are in excellent agreement with cal-
culations that employ the full, standard exact exchange, while preliminary
speedups of up to ≈ 6 have been achieved.

8.4 Implementation of Coordinate-Scaled Exact Ex-
change

The use of the coordinate scaling relations requires a set of stretched GKS
orbitals17:

ψλi (r) = λ3/2ψi(λr), (8.19)

which have to be computed in real space and therefore require at least N
FFT at the usual wavefunction cutoff Eψcut (cf. eq. 8.13. The coordinate-
scaled pair densities ρλij(r) = ψλi (r)ψ

λ
j (r) are then used in eqs 8.14 and 8.16,

which allows for the FFTs to be computed on a coarse grid with E
ρ(λ)
cut for

the scaled potential:

vλij(r) = λvij(λr). (8.20)

The full exact exchange potential has to be used to obtain accurate deriv-
atives of the expansion coefficients in eq. 8.15, i.e. the last sets of Fourier
transforms have to be performed at the standard wavefunction cutoff again.
To this end, the full potential can be obtained by inversing the relation given
in eq. 8.20. The coordinate scaling scheme can be implemented based on the
existing exact exchange driver, which makes it possible to exploit its high
level of efficiency. All extensions to the existing exact exchange driver were
written in accordance with the Fortran2003 standard.

In the following, we shall denote the set of discrete Cartesian coordinates
by x, y, z in the case of the standard (fine) mesh associated to Eρcut and use
X,Y, Z for the corresponding value on the coarse mesh of Eρ(λ)cut . The grid
spacing of both meshes is related by ΔX = 2Δx, and the maximum numbers
of elements are therefore imax

X = imax
x /2 etc. . The grid index of a specific

discrete coordinate will be ix = x/Δx + 1 and iX = X/ΔX + 1, i.e. the
lower boundary for the grid indices is 1, as it is common in Fortran. Both
meshes have their origin at X = x = 0 with ix = iX = 1. Therefore, all
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8.4. IMPLEMENTATION OF COORDINATE-SCALED EXACT EXCHANGE

points of the coarse grid have an equivalent on the fine grid, X = x, only
if x = 2Δx + 1. Points on the fine mesh with x′ = 2Δx are not described
on the coarse mesh. Choosing a scaling parameter of λ = 0.5 doubles the
spatial extent of a given (pair) density, which allows for a straightforward
mapping between the grids, as outlined in figure 8.1.

After computation of a block b of ilow : iup and jlow : jup orbitals {ψ(r)}
from their reciprocal space form {ψ(G)} using the standard inverse FFT on
the wavefunction grid, the scaled orbitals are created. This is done by first
reducing the y and z dimension of all xyz planes that a given MPI task holds
into an auxiliary orbital ψscr of dimension ψ(imax

x , imax
Y , imax

Z ):

ψscr(ix, iy, iz) = λ3/2ψ(ix, iy + cz, z + cz), (8.21)

where cy and cz denote shifts of indices (cf. Fig. 8.1), cy = ly/(4Δy), based on
the length of the supercell edge ly. Only after this step are the xp-components
of the mesh redistributed within the NP tasks of a given group. In order to
minimise communication in this step, we have mapped the existing distrib-
uted memory parallelisation of the CPMD code to an easily accessible structure
that suits the needs of grid-redistribution as shown in Fig. 8.1.

AllNP MPI tasks associated to a given CP group are organised in receiver
and sender groups, in ascending order of the running indices iX , ix. Given
two equidistributed grids with a total of xmax and Xmax elements, respect-
ively, every MPI task will hold nx = NC(xmax/NP ) and nX = NC(Xmax/NP )
yz-planes. For every CP group, the first sender/receiver pair carries the ID
of the processor that will hold the element irX = 1 (receiver) as well as the
ID of the processor that sends the element ix = csx (sender).

ψλ(i
r
X , :, :) = ψscr(i

s
x, :, :). (8.22)

Communication is managed by the standard MPI routines mpi_send and
mpi_recv. At the example of Fig. 8.1, the first sender/receiver group sr =
(r, s) is given by the MPI sender III and the receiver I; the second group will
be formed of sender III and receiver II, etc.İf possible, one send/receive call
does not send single yz-pencils, but instead sends the maximum number of
X components that can be transferred between a given sender/receiver pair
at once. In the example of the mesh of Fig. 8.1, this corresponds to a pair
of two yz planes that can be sent together, which can substantially reduce
the communication overhead:

ψλ(i
r
Xlow

: irXup , :, :) = ψscr(i
s
xlow

: isxup , :, :). (8.23)
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Figure 8.1: Illustration of the coordinate scaling approach at the example of the
x-pencils over which the FFTs are parallelised. Every index ix in x corresponds to
an entire yz plane of the periodic supercell. An example of some (pair) density is
shown in the upper part, its coordinate-scaled analogue is depicted below. Points
correspond to discretised real-space mesh points indexed by ix. The choice of
λ = 0.5 allows for a straightforward mapping between the original density and its
coordinate-scaled counterpart. The MPI parallelisation is visualised in the form of
NP white and grey blocks, which correspond to one MPI task each. In the case of
the reference mesh, every task holds 4 yz planes, whereas there are only 2 yz planes
for the coarse, coordinate-scaled mesh. If the non-vanishing parts of the density
are distributed on the coordinate-scaled, coarser mesh shown in the lower half of
the figure, different tasks have to communicate with each other. By moving from
left to right, it can be seen that the first two tasks (I and II) send no data, whereas
they receive density from task III. Task III in turn sends its data to both tasks
I (first two gridpoints) and II (subsequent two gridpoints). Tasks IV and V will
retain parts of their gridpoints; all the others completely swap their data. Once the
full potential vij(x, y, z) has to be obtained from its scaled counterpart vλij(X,Y, Z),
the mapping is inverted. If CP groups are used, this mapping can be carried out
independently on all NC groups without any inter-group communication.
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As soon as either the ID of the sender or the receiver changes, the index of the
pair sr is incremented, and the next pair accordingly treated. The mapping is
structured in an incremental fashion with respect to the mesh, rather than in
an ascending order of processor IDs (their ordering coincides in Fig. 8.1, but
does not necessarily have to). Therefore, the manipulations can be performed
on the same arrays without running the risk of overwriting data that is
needed in the construction of the scaled orbitals (all data that is overwritten
consists of either points where the density is naught, or points that have
already been transferred to a receiving process), since the indices accessed
obey ix ≥ iX . The structure that holds the mapping can be generated once
at the beginning of the calculation, after the two Fourier pools at Eρcut and
E
ρ(λ)
cut have been initialised; this operation therefore comes at no overhead

with respect to the total execution time of the program.
All ρλij(r) of a given block can then be constructed from the orbitals

ψλi,j(r). After the forward FFT at Eρ(λ)cut , multiplication with the reciprocal
space Coulomb operator and an according inverse FFT, the scaled Coulomb
potential is first multiplied with the scaled orbital ψλj (r). In the original
algorithm, a forward FFT on Eψcut then follows for every pair, and the sum
over all pairs ij for a given state i is carried out on the reciprocal space form
of δEexact

x [ρ]
δψ∗
i(j)

(G) . Since the forward FFTs at the wavefunction cutoff are not the
bottleneck of the calculation, this helps to save memory.

If employed with the coordinate scaling approach, however, this would
create a large communication overhead, as the computation of δEexact

x [ρ]
δψ∗
i(j)

(G) has

to be carried out at the full wavefunction cutoff Eψcut for reasons of accuracy.
Instead, following the generation of δE

exact
x [ρ]

δψ∗
i(j)

(r) on the coarse grid, the quantity
for a given state i is saved, which results in the storage of a total of Nb

real-space potentials to which new pairs ij are added. Instead of eqs 8.15
and 8.16, the quantity

δEexact
x [ρ]

δψ∗
i(c)(r)

=

Nb∑
j ; ij∈c

ψj(r)
(
FFT−1

Eρcut
[Φ(G)ρij(G)]

)
(8.24)

is stored on every CP group c. Since this quantity is still expanded on the
coarse mesh, it requires a factor of 23 less storage than its full counterpart,
making the additional memory requirements tractable. The intermediate
storage allows for the density to be mapped back onto the initial, fine mesh
only after all pair potentials have been obtained in real space; the term
δEexact

x [ρ]
δψ∗
i (r)

is updated on-the-fly by adding freshly computed pair potentials ij
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to the existing sum. This reduces the computational overhead due to pro-
cessor communication considerably. The points of the fine grid are generated
by reversing the mapping loop used for the generation of the scaled densities;
all points for which there is no data on the coarse grid are set to zero. Then,
the next block of orbitals with indices i′low : i′up and j′low : j′up is treated in
the same manner, until all b blocks have been treated.

After the iteration over all blocks is completed, the Nb real-space arrays
of eq. 8.24 are subjected to a final FFT on every CP group. Finally, just
like in the conventional algorithm the total δE

exact
x [ρ]

δψ∗
i (G) is obtained by summing

over all NC groups:

δEexact
x [ρ]

δψ∗
i(c)(G)

= FFT
Eψcut

[
δEexact

x [ρ]

δψ∗
i(c)(r)

]
, (8.25)

δEexact
x [ρ]

δψ∗
i (G)

=

NC∑
c

δEexact
x [ρ]

δψ∗
i(c)(G)

. (8.26)

8.5 Results and Discussion

We have assessed the performance of our algorithm with respect to the stand-
ard, full exchange by comparing average execution times for hybrid functional
calculations with the B3LYP31,122,163,197 xc functional at the example of an
ODIIS229 wavefunction optimisation for Nb orbitals and the calculation of
the first four singlet excited states using linear-response TDDFT for a series
of polycyclic aromatic molecules. Performance gains are therefore repres-
entative both for ground-state Born-Oppenheimer or Car-Parrinello MD as
well as for excited-state dynamics such as Tully’s fewest switches traject-
ory surface hopping (TSH). All calculations were carried out using Martins-
Troullier pseudopotentials153 and a wavefunction cutoff of Eψcut = 60 Ry and
Eρcut = 240 Ry. The Fourier transforms on the scaled orbitals were carried
out with a cutoff energy of Eρ(λ)cut = 60 Ry. The (semi-)local contribution
to the xc energy was evaluated using the new XC_driver of CPMD described
in Ref. 161. The periodic images were decoupled using the Poisson solver
by Tuckerman and Martyna155; the dimensions of the periodic supercell are
tabulated in Table 8.1.

In order to assess the scaling with the number of electronic states, we
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considered acenes of increasing chain length l:

(8.27)

with X = H for l = 1, 3, 5. We have also included a stacked dimer for
X = H, l = (5)2 and its fully chlorinated derivative X = Cl, l = (5)2, both
at a distance of d = 6.4 a.u.

The reference implementation of exact exchange scales well on thousands
of processors and is therefore suitable for very large numbers of electronic
states. However, such resources may not always be available and here, we
will therefore focus on medium-size systems that can in principle still be run
on typical server infrastructure with a few dozen racks of 16-core nodes, even
though execution times may be sizeable if the full exact exchange potential
is computed. In this light, when assessing the performance gain due to our
coordinate-scaled implementation, we will focus on the overhead generated
by the redistribution of planes during the coordinate rescaling.

8.5.1 Box Size: Execution Times and Speedups

In order to assess the influence of yz-plane redistribution in the coordin-
ate scaling scheme, we have performed calculations on naphthalene (l = 1,
Nb = 24) at varying sizes of the simulation supercell and using a completely
distributed Fourier grid. The number of processors is chosen such that every
MPI task carries nx = 1 yz-planes at Eρ(λ)cut and nX = 2 yz-planes at Eρcut.
An increase in the size of the simulation supercell is therefore accompanied
by an increase in the numbers of processors; therefore, the only parameter

Table 8.1: Number of CPU (or MPI tasks) for a given size of the simulation
supercell spanned by vectors of length lx, ly, lz. All calculations were carried out
on identical processors on 16-node racks.

NP lx [a.u.] ly [a.u.] lz [a.u.]

64 25.0 25.0 12.5
96 37.5 25.0 12.5
128 50.0 25.0 12.5
160 62.5 25.0 12.5
192 75.0 25.0 12.5
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Figure 8.2: Average execution time and speedups for an average step of wavefunc-
tion optimisation for naphthalene using the ODIIS algorithm at different blocking
ratios b/Nb. Dashed lines with dots denote a full reference calculation of the exact
exchange energy and potential, straight lines with squares the coordinate-scaled
exchange. Numbers of processors NP for every simulation supercell size are given
in Table 8.1; only one CP group is used.

varied is the communication during the FFTs and in grid redistribution. The
number of processors for every supercell is summarised in Table 8.1.

The resulting timings and speedups are shown in Fig. 8.2 for the ground-
state wavefunction optimisation, and Fig. 8.3 depicts timings for the calcula-
tion of the first four singlet states from a converged ground-state wavefunc-
tion. The data is given as a function of the blocking ratio b/Nb, where b is
the block size. Both in the case of the coordinate-scaled exchange and the
full exact exchange, best performance is obtained if b = Nb, i.e. a blocking
ratio of 1, and efficiency decreases monotonously as b approaches 1 and the
blocking ratio tends to the number of states. For the coordinate-scaled ex-
change, an increase in system and processor size consistently increases the
execution time. For a constant number of blocks, this increase is almost lin-
ear. In the reference implementation, there is no clear trend in this respect;
while the smallest supercell has the lowest execution times, the largest box
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Figure 8.3: Average execution time and speedups for the calculation of the first
four excited singlet states of naphthalene at different blocking ratios b/Nb. Dashed
lines with dots denote a full reference calculation of the exact exchange energy and
potential, straight lines with squares the coordinate-scaled exchange. Numbers of
processors NP for every simulation supercell size are given in Table 8.1; only one
CP group is used.

is only slightly more expensive, but considerably cheaper to treat than the
second-largest one.

Hence, the speedups that can be obtained vary between systems: The
largest speedups are all observed for an optimal blocking ratio of 1 and range
from about 7.5 for xl = 37.5 a.u. to about 4 for xl = 75.0 a.u. for an average
DIIS step; the speedups obtained in a TDDFT calculation reach factors of
9.5 and 5, respectively. The efficiency of the wavefunction optimisation at
b = 1 is severely hampered by load-balancing issues both if the full exact
exchange and its coordinate-scaled analogue are computed.

8.5.2 Distribution of Orbital Pairs vs. Planes for various Nb

We will now assess the influence of varying the number NC of CP groups
on the efficiency for systems with varying numbers of orbitals, but at a
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Table 8.2: Number of yz-planes, xup − xlow + 1, held by ever MPI tasks, for a
75.0× 25.0× 12.5 Å3 supercell and different numbers of CP groups NC at constant
Eρ

cut and E
ρ(λ)
cut . The mesh for Eρ

cut comprises a total of x = 384, y = 128 and
z = 64 gridpoints; its counterpart for Eρ(λ)

cut contains only half of the gridpoints per
direction. Calculations were carried out on NP = 192 cores.

NP = 192 xup − xlow + 1

NC NP /NC Eρcut E
ρ(λ)
cut

1 192 2 1
2 96 4 2
3 64 6 3
6 32 12 6

constant size of the simulation supercell. Table 8.2 lists the number of yz-
planes per MPI task for varying numbers of CP groups. Fig. 8.4 and 8.5
show execution times for acenes with l = 1, 3, 5, (5)2 and Nb = 24, 42, 60, 120
orbitals, respectively. For ease of readability, execution times have been
divided by Nb in all of the following plots.

Best performance for the scaled exchange is achieved using a blocking
ratio of 1 with only one CP group, NC = 1 for Nb ≤ 120. Only for the
largest system studied here, the chlorinated acene dimer with Nb = 216 does
communication become significant, and the best performance is achieved by
using NC = 3. For the full exact exchange, load balancing issues are more
important, and NC = 1 is only optimal if Nb ≤ 24. For higher numbers of
electrons, maximum efficiency is obtained using Nb = 3. While the speedups
increase from 3 − 4 to 5 − 6 from Nb = 24 to Nb = 120, a speedup of
more than a factor of 8 can be achieved for the largest system studied here.
This speedup is higher than the theoretical gain from the use of a lower FFT
cutoff and must therefore be due to improved load balancing. The trends are
the same for the TDDFT calculations performed with the scaled exchange.
While the speedups show a larger spread, they start at a higher value for
Nb = 24 (in a range of 3− 5) and reach only slightly smaller maximal values
than their ODIIS counterpart; speedups are about 6 − 7.5 for Nb = 216.
The only notable difference between full and scaled exchange lies in the best
configuration for Nb > 24, which is given by NC = 2 rather than NC = 3 for
the full exchange, even though the differences between NC = 2 and NC = 3
are of the order of � 10%.
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Figure 8.6: Average execution time and speedups for one step of wavefunction
optimisation as well as for a TDDFT calculation involving the first four singlet
states at fixed supercell size for systems with different numbers of orbitals Nb and
different numbers of CP groups NC . Dashed lines with dots denote a full reference
calculation of the exact exchange energy and potential, straight lines with squares
the coordinate-scaled exchange. All calculations were carried out on the same
12× 16 processor cores.

8.5.3 Computational Cost as a Function of Nb and Effective
Speedup

Fig. 8.6 compares execution times and speedups for the optimised blocking
ratios with b = Nb/NC for different numbers of occupied orbitals Nb. Both
execution times for the scaled and the full exchange nicely illustrate the
on average cubic scaling with the number of orbitals (note that tCPU is
normalised by the number of states), apart from some outliers which can be
attributed to load-balancing issues in the distribution of the orbital pairs. For
both wavefunction optimisation and TDDFT calculations, speedups reach a
range of up to 6.5−8.5 forNb = 216. While theNC = 1 andNC = 6 speedups
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Figure 8.7: Average execution time and speedups for one step of wavefunction
optimisation at Nb as well as for a TDDFT calculation for the first four singlet
states at fixed supercell size for systems with different numbers of orbitals Nb.
Dashed lines with dots denote a full reference calculation of the exact exchange
energy and potential, straight lines with squares the coordinate-scaled exchange.
All calculations were carried out on the same 12 × 16 processor cores; values are
compared between optimal parallelisation with different NC , NP and b = Nb/NC .

evolve most smoothly, those for NC = 2 and NC = 3 are slightly more
irregular for Nb < 60. This is also correlated with a more irregular increase
of the execution times for the full exchange potential and is therefore likely
to be due to load- and communication imbalances. Notably, the highest
speedups are recorded for a large number of orbitals, reaching values of
almost 9 for NC = 3. The smaller increase of the speedup when increasing
Nb from 120 to 216 suggests that the speedups reach a plateau region for
a large number of states. Yet again, optimal configurations differ between
the scaled and the full exact exchange; NC = 3 has proven most beneficial
for the former, whereas NC = 2 is the most efficient for the latter. Overall,
the coordinate-scaled exchange scales excellently with system size, allowing
for sizeable speedups with respect to the full exact exchange. This alleviates
the need for a large number of processors.
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Fig. 8.7 summarises the shortest possible CPU times for both algorithms
at every Nb and the corresponding speedup; Table 8.3 lists the corresponding
values. While those values do not necessarily compare identical distributions
comprising an identical number of NC CP groups and NP MPI tasks per CP
group, they give an accurate estimate of the speedup that can be achieved
with respect to an optimally set up calculation. While the best possible
speedup is about 3.75 at Nb = 24, it increases to a virtually constant 5.5 for
Nb = 42 and Nb = 60, which already constitutes a considerable decrease of
execution time. The speedup is even larger for the most expensive systems
that are treated in this study; at Nb = 120, it is larger than 7.0, and for Nb =
216, it reaches a factor of 8.5. This is almost one order of magnitude and
more than the theoretical gain due to the decrease of Eρcut. Given that there
is additional cost due to the communication during the grid redistribution,
this indicates that our coordinate-scaling approach can not only substantially
reduce the cost of the intermediate FFTs, but that it also improves load-
balancing when used within the existing exact exchange driver. Overall, for
larger systems and independent of the approach, the optimal numbers of CP
groups suggest that the best trade-off between distribution of FFTs and the
distribution of orbital pairs is achieved once the number of yz planes per
processors lies between NC = 3 and NC = 4.

Table 8.3: Lowest average execution times tCPU for a wavefunction optimisation
(ODIIS) and the optimisation of the first four excited states using linear-response
TDDFT with increasing numbers of orbitals Nb for both coordinate-scaled (Scaled)
and full (Ref) hybrid functional calculations performed within a 75.0× 25.0× 12.5
Å3 supercell on 192 CPU cores using an optimal block size b and group distribution
NC , NP .

DIIS TDDFT
Nb tScaled

CPU [s] tRef
CPU [s] tScaled

CPU [s] tRef
CPU [s]

24 0.6 2.2 6.8 30.5
42 1.2 6.4 17.1 94.0
60 2.1 11.4 33.4 181.5
120 6.7 47.2 98.4 725.3
216 17.0 144.0 284.3 2352.6
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8.6 Summary

We have shown that our recently reported coordinate-scaling scheme is easily
implemented in a plane wave code based on existing parallelisation strategies.
After proposing a grid-redistribution scheme for the generation of the coordi-
nate-scaled orbitals, we have shown that the approach scales well with in-
creasing size of the simulation supercell for a constant number of orbitals
by providing timings for both a ground-state wavefunction optimisation as
well as the optimisation of the first four excited singlet states. We have sub-
sequently identified the optimal blocking size b in the calculation of both the
coordinate-scaled and the full exchange potential to be b = Nb/NC , where
NC denotes the number of CP groups. We have compared execution times
and speedups at constant numbers of processors, but different values of NC

and found that optimal load-balancing is achieved when every one out of the
NP processors holds imax

x = 3 to 4 yz pencils. A comparison of the fastest
execution times showed that the speedup obtained with the coordinate scal-
ing approach can reach ≈ 8.5 for a large number (Nb = 216) of generalised
Kohn-Sham orbitals.

Our coordinate-scaling scheme has therefore been show to scale excel-
lently with increasing system size and to provide unprecedented speedups
of almost one order of magnitude. This will allow for hybrid functional
calculations on systems with hundreds of orbitals to be carried out with con-
siderably sleeker computational infrastructure. This applies to both ground-
and excited-state calculations. With the coordinate-scaled exact exchange,
much longer time scales can be reached and the (statistical) convergence of
approaches that require many trajectories to be run in parallel (TSH, ther-
modynamic integration) can be sensibly improved - in practice, simulations
that have previously taken one week to finish will be complete within less
than one day.
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Chapter 9

Further Work and Projects

We have dedicated most of our discussion to the accuracy of the PES that
underlies a putative first principles MD run. This chapter will conclude
this perspective by summarising additional work that has been concerned
with the improvement of dispersion forces in GGA based DFT. We will then
shift our focus from improving the PES itself to improving its sampling; a
description of a new, biased MD scheme tailored to structural elucidation
based on electron densities only will complete the review of development
carried out in the present work.

9.1 Dispersion Correction for Plane Wave DFT

Many xc functionals provide a description of dispersion forces that is either
spurious at best, or lacking completely. In 2004, the Röthlisberger group
have proposed to alleviate this issue for GGA xc functionals by resorting
to an effective atom-centred potential formalism (DCACP) which will be
sketched over the next paragraphs. The present work extends the availability
of DCACP to parts of rows 5 and 6 of the periodic table and provides a case
study for metals at the example of gold.

9.1.1 Atom-Centred Potentials for Molecular Properties

Placing basis functions on nuclei seems strikingly natural, even though it
can be associated to certain drawbacks such as those discussed in Chapter 4.
The concept of atom-centred properties (electronegativity, electrophilicity,
etc.) is in itself abundant in chemistry, and it may therefore provide an
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intuitive basis for computational corrections that are atom-dependent. We
shall outline two such approaches over the next few lines.

Historically, the implementation of a fully Hamiltonian quantum mech-
anics/molecular mechanics (QM/MM) coupling scheme234 in the plane-wave
pseudopotential code CPMD required the introduction of suitable capping
techniques for QM/MM boundaries crossing covalent bonds, in order to as-
sure a smooth transition between the QM and MM part. Standard ap-
proaches are either based on capping of dangling bonds with dummy hydro-
gens or on the inclusion of link pseudopotentials with an adjusted valence
charge.234,235 However, in the absence of additional modifications to the
pseudopotential, the latter is a rather crude approximation and can result
in energy drifts.234 Instead of a simple modification of the valence charge,
the Röthlisberger group proposed a set of modified pseudopotentialsi which,
in their most general form, are designed to yield certain molecular proper-
ties.235 One property relevant to QM/MM MD is the electronic density at
the capping site. By minimising a penalty function that is constructed from
the target property, analytical capping pseudopotentials were derived that
mimic the density of a reference system, which then substantially improves
on the quality of dipoles and ESP charges around the capping site. The pen-
alty function P (hl, rl) that guides the optimisation of the set of parameters
{hl, rl} of the analytical pseudopotential is given by a sum over real-space
mesh points R:

{hl, rl} = argminP (hl, rl) = argmin
∑
R

(ρref(R)− ρcap(R))2, (9.1)

where ρref denotes the full QM reference electronic density in the region of
interest, ρcap is the corresponding density for the capped system, and hl, rl
are pseudopotential parameters that are optimised during the fit.

For reasons of simplicity, the fit was carried out on Goedecker-Teter-
Hutter (GTH) pseudopotentials154 which have a simple analytical form. In
the GTH approach, the nonlocal part of the Hamiltonian is completely sep-
arable and defined as follows:

vGTH(r, r
′) =

2∑
i

∑
l

∑
m

Yl,m(r̂)p
l
i(r)h

l
ip
l
i(r

′)Y ∗
l,m(r̂

′). (9.2)

r̂ is a unit vector in the direction of r and r is given by the distance |r−RI |,
where RI is the nuclear centre on which the projectors are positioned. The

iThe first use of such numerical potentials in the Röthlisberger group dates back to
the late 1990ies
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radial projectors pli(r) are normalised and read

pli(r) =
√
2

rl+2(i−1)e
− 1

2

(
r
rl

)2

rl+2i−0.5
l

√
Γ(l + 2i− 0.5)

, (9.3)

where Γ denotes Euler’s gamma function. In the original pseudopotential
optimisation, hli and rl are optimised with respect to the all-electron atom;
in the approach by Röthlisberger and coworkers, they are fit to best describe
the more general target quantities instead (such as in eq. 9.1).

9.1.2 Dispersion-Corrected Atom-Centred Potentials

Inspired by the liberty of fitting pseudopotential parameters to any prop-
erty, the Röthlisberger group proceeded with trials correcting qualitatively
wrong behaviour of GGA exchange-correlation functionals. GGA are in-
famous for their failure of taking into account truly nonlocal correlation
effects,47,87,121,236 such as the formation of van der Waals complexes due
to electron dispersion. Whilst some functionals exhibit spurious attraction
in certain systems (PBE94), others show a completely repulsive interaction
curve (BP86,122,237 BLYP122,197). Although some of the Minnesota func-
tionals39–46 presented in Chapter 6 are able to describe (most) equilibrium
van der Waals complexes, they may predict qualitatively wrong results in
particular off equilibrium. This is due to the underlying parameterisation:
In the Minnesota family, dispersive interactions are included by training the
functional, i.e. the training data base includes a certain amount of van der
Waals complexes without physically accounting for those interactions in the
underlying functional form.

The approach by von Lilienfeld et al.47,238 is an extension of the capping
potential scheme outlined above and hence based on the electron density,
while generating a very low computational overhead. In contrast to later
popular approaches such as Grimme’s DFT-D2210 and DFT-D3,239 the effect
of electron dispersion is therefore self-consistently included during the optim-
isation of the Kohn-Sham orbitals, rather than by superimposing a force-field
like potential term based on the molecular structure. While the approach was
inspired by the capping potentials, the concept of the dispersion-corrected
atom-centred potentials (DCACP) differs in one fundamental aspect.

Due to the encouraging results obtained with the capping potentials
and the ease of implementation connected to the exploitation of an exist-
ing pseudopotential, the DCACP were calibrated by the use of modified
pseudopotential files. However, and in contrast to the capping potentials, all
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of the angular momentum channels of the underlying pseudopotential were
kept fixed. Instead, an additional channel (commonly f) was fit on top of the
existing pseudopotential. Those additional DCACP parameters are orders
of magnitude smaller than the pseudopotential parameters and, by construc-
tion, orthogonal to them. Since the atomic pseudopotential itself remains
unmodified, this amounts to including a correction term in the Hamiltonian
that is of the form:

Exc[ρ] =

∫
drρ(r)

(
Hxc(r) +

∫
dr′v(f)GTH(r, r

′)
)
, (9.4)

where Hxc(r) is the conventional GGA enhancement factor for exchange and
correlation:

Hxc(r) = Kxc(r)ρ
1/3(r), (9.5)

and v
(f)
GTH is a potential with the functional form of eq. 9.2 at angular mo-

mentum f . The DCACP parameters σ1 = hl and σ2 = rl are then calibrated
at the equilibrium geometry rAB of a van der Waals complex using the pen-
alty function:

{σ1, σ2} = argminP (σ1, σ2), (9.6)

P (σ1, σ2) =

config.∑
Rα

(
ΔEDCACP(Rα, σ1, σ2)−ΔEref(Rα)

)2

+

Nα∑
α

10−ω
∣∣FDCACP

α (Req
α , σ1, σ2)− Fref

α (Req
α )
∣∣2 ,

(9.7)

ΔE = ΔEAB(rAB)−ΔEAB(∞), (9.8)

where Eref is the interaction energy of the van der Waals complex at a set
of dimer nuclear coordinates (or distances) Rα, EDCACP is its counterpart
obtained from the use of DCACP, and the Fα are the forces acting on the
Nα nuclei α at the equilibrium geometry characterised by Req

α . ∞ denotes
the limit of a dissociated complex. ω is a scaling factor that is used if the
forces fall below a certain threshold:

ω =

{
0 for

∣∣FDCACP
α (Req

α , σ1, σ2)− Fref
α (Req

α )
∣∣ ≥ 10−4

4 for
∣∣FDCACP

α (Req
α , σ1, σ2)− Fref

α (Req
α )
∣∣ < 10−4

. (9.9)

The penalty function may be applied to the minimum of the interaction
curve at req only, but improved results were obtained for certain elements if
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Figure 9.1: Availability of DCACP for the BLYP xc functional: Currently pub-
lished and tested (yellow), unpublished and tested in the current work (red), cal-
ibrated and tested in the current work (blue). This table is a derivative of Pekka
Pyykkö’s 172-element (extended) periodic table by Pekka Pyykkö and WhiteTim-
berwolf, used under CC BY-SA 3.0, initially reproduced from Ref. 240 with per-
mission of the author.

a midpoint rmid, which corresponds to a point where the interaction energy is
half of its maximal value, is included in the penalty function.238 Initially, all
reference data was obtained from high-level wavefunction calculations. Nat-
urally, the parameters σ differ substantially from those used in the generation
of a pseudo- or capping potential: σ1 = hl is orders of magnitudes smaller
than for pseudowavefunction projectors, and σ2 = rl is located further away
from the nuclear centre, which effectively achieves a complete spatial sep-
aration of the DCACP and the pseudopotential47; the pseudowavefunctions
themselves are not modified, which maintains their chemical transferability.

In its essence, the DCACP scheme is a perturbative approach to the
electron density.47,238 The success of DCACP was linked to Bader’s atoms-
in-molecules theory,238 but a derivation based on analytical expressions is
still missing. DCACP have successfully been used in a broad range of ap-
plications. Notable examples include first-principles molecular dynamics236

of water using the BLYP functional, where the use of DCACP significantly
improved structural properties over the uncorrected BLYP, thus pinpoint-
ing the significance of van der Waals interactions in hydrogen bonding of
water. DCACP accurately predict stacking of organic molecules238,241 and
biomolecules,242 including base pairs.243 They are also able to take halogen-
halogen interactions into account, a phenomenon where many other disper-
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Table 9.1: Calibration systems for DCACP as used in the present work. Values
for σ1, σ2 are given for the species calibrated in the present work, denoted in bold
face.

ΔE [kcal mol−1] req [Å]
System DCACP Ref. DCACP Ref. σ1 [a.u.] σ2 [a.u.]

CuAr247 -0.254 -0.255 4.00 4.00 2.821 -3.533·10−3

AgAr248 -0.255 -0.257 3.99 4.00 2.786 -4.062·10−3

ZnAr249 -0.240 -0.240 4.40 4.38 2.825 -2.840·10−3

CdAr250 -0.417 -0.320 4.27 4.28 3.662 -1.662·10−3

(B3N3H6)2ii;251 -3.57 -3.3 3.57 3.42 3.235 -0.530·10−3

AlAr252 -0.428 -0.431 3.5 3.5 2.320 -4.404·10−3

GaAr253 -0.100 -0.100 4.73 4.76 3.753 -2.657·10−3

InAr254 -0.492 -0.512 3.6 3.6 2.516 -4.863·10−3

(As4)2255 -5.42 -5.49 3.72 3.70 3.221 -1.939·10−3

(Sb4)2255 -6.87 -6.89 3.91 3.92 3.971 -2.979·10−3

(Se6)2255 -5.70 -5.72 4.43 4.43iii 3.113 -1.887·10−3

(Te6)2255 -9.75 -8.83 3.39 3.40 3.344 2.372·10−3

sion correction schemes fail.244

9.1.3 Extension of the DCACP Library

Although portable and of high accuracy, the limited availability of DCACP
for large parts of the periodic table may discourage potential users. Fig. 9.1
shows the DCACP calibrated in previous work47,238,244–246 and the currently
unpublished extensions to it.

In this work, the DCACP library has been extended to comprise the
elements Cu, Ag, Zn, Cd, B, Al, Ga, In, As, Sb, Se and Te for the BLYP
functional. In contrast to the existing DCACP, the additions to the library
made use of literature reference data for complexation energies and geomet-
ries (both high-level wavefunction methods and experimental values were in-
cluded). Table 9.1 summarises the calibration systems and the origin of the
reference data. All calibrations were carried out using a modular Nelder-
Mead-Simplex or Particle Swarm (PS) algorithm written in Fortran2008.
The implementation introduces the possibility to relax molecular structures
in short geometry optimisations, which allows for a self-consistent optimisa-
tion of the DCACP parameters wherever equilibrium structures may be more
severely impacted by electron dispersion. Calibrations for Se and Te were

iiSandwich
iiir between Se atoms with identical xy coordinates
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Table 9.2: Test systems for DCACP calibrated in the present work. The species
calibrated in the present work are indicated in bold face.

ΔE [kcal mol−1] req [Å]
System DCACP Ref. DCACP Ref.

CuHe256 -0.059 -0.012 4.00 4.85
CuKr247 -0.443 -0.427 3.92 3.92
AgHe256 -0.021 -0.017 4.63 3.75
ZnHe257 -0.031 -0.022 4.49 4.46
ZnKr249 -0.362 -0.329 4.28 4.20
CdHe250 -0.143 -0.043 4.3 4.5
CdKr250 -0.556 -0.383 4.4 4.4
(B3N3H6)(C6H6)251 -2.52 -2.1 3.80 3.62
(B3N3H6)2iv;251 -2.70 -2.6 2.49 2.67
AlKr254 -0.610 -0.571 3.6 3.7
GaKr258 -0.728 -0.945 3.93 3.78
InKr254 -0.705 -0.512 3.7 3.9

carried out by creating a dimer on-the-fly, based on monomer structures op-
timised using the updated DCACP parameters. In contrast, for As and Sb,
the monomers were kept fixed, while the dimer was allowed to relax upon
changing the DCACP parameters. All the other systems did not require
structural relaxation. Preliminary investigations on alkali and earth-alkali
dimers revealed spurious attraction due to the BLYP functional, indicating
that the bonding was significantly influenced by other than dispersion in-
teractions; calibrations for groups I and II were therefore not pursued any
further. A previously calibrated DCACP for Au167 is currently undergo-
ing testing at the example of physisorption of benzene on a gold layer, cf.
Chapter 9.1.4.

The performance assessment for the metal DCACP in Table 9.2 shows
good energetic agreement for all complexes; while the relative error for very
weakly bound systems that involve helium is large, the absolute error is still
very low. Given the weak interaction, the DCACP can still reproduce the en-
ergetics of those systems very well, while the equilibrium geometry shows lar-
ger errors due to the extreme flatness of the binding interaction curves. Due
to the low magnitude of the interaction energy, calibrations and validations
have been carried out on a particularly fine mesh. This can introduce oscilla-
tions in the PES in the 10−2 kcal mol−1 range that generate various spurious

ivT-shaped
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minima with respect to the forces. However, those effects are only limited to
complexes with helium, the krypton complexes are of satisfactory accuracy
throughout. It has to be stressed that errors might be slightly larger for
the present calibrations since they rely on mixed dimers. Existing DCACP
have all been calibrated using pure compounds that contain no other species
apart hydrogen, eliminating contributions from other heavier elements. Still,
the mixed calibration leads to DCACP of good accuracy, which is further
reflected in the data for boron. Both a mixed borazine-benzene dimer as
well as a T-shaped borazine-borazine dimer are well described with the new
boron DCACP, in notable contrast to the popular DFT-D3239 correction that
severely overestimates the binding energy of the borazine reference dimer by
almost 100% (ΔEBLYP-D3 = 5.2 [kcal mol−1]).

9.1.4 Gold: A Case Study

Gold is a particularly interesting element not only for its socioeconomic
implicationsv. Both the particular physics and chemistry of gold are governed
by strong relativistic effects261 which are not only at the root of the noble
metal’s characteristic colour and its lattice constant, but which also give
rise to an aurophilic effect: London dispersion forces are not only crucial
for the formation of surface-adsorbate complexes (just as it is the case for
many metals), but they are also assumed to play an essential role in the
formation of the comparably strongly bound aurophilic complexes such as
(HAuPH3)2.259 Table 9.3 shows the performance of an unpublished DCACP

vOr its glistening shininess.

Table 9.3: Equilibrium distance d|| and binding energy ΔE|| for the aurophilic
complex (HAuPH3)2. DCACP-BLYP predicts a minimum close to the CCSD(T)
reference.259 The energetic error of DFT-D2,210 however, considerably exceeds the
range of chemical accuracy.

Method d|| [Å] ΔE|| [kcal mol−1]

CCSD(T) 4 3.00 -6.13
DCACP-BLYP 3.15 -6.46
BLYP-D2 3.65 -9.79
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Figure 9.2: Performance of a one- and two-channel (2c) DCACP for the phys-
isorption of benzene on a Au(111) surface on a 6× [12×12] (bottom) and 6× [5×6]
(top) slab. Values obtained using DFT-D2 are given for comparison. The refer-
ence data is interpolated from experiment; it has been shown that by altering the
collision factor, the values could change by up to 20 kcal mol−1.260

for gold167 in the description of said aurophilic complex. DCACP-BLYP
shows good performance for both energy and equilibrium distance of the
aurophilic dimer and is in both cases more accurate than Grimme’s DFT-
D2210; while the latter is reasonably accurate for the equilibrium distance,
the complexation energy is off by over 50%, which by far exceeds chemical
accuracy.

Usually, the fit of a set of parameters σ1, σ2 that corresponds to one pro-
jector is sufficient,47,238 but an improved r−6 asymptotic decay of the poten-
tial could be obtained by including two angular momentum channels (d and f
instead of f only) in a two-channel DCACP.238 However, this was never veri-
fied for interactions between a surface and an adsorbate, where the potential
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Figure 9.3: Decay of the surface-adsorbate interaction for the graphs of Fig. 9.2
fit on ad−x

|| + b for fixed x = 4, x = 6 and using x as a variable (free). Optimised
parameters are x = 7.55 for DCACP, 6 × [12 × 12] slab, x = 7.51 for DCACP,
6× [6× 5] slab and x = 5.16 for 2c-DCACP, 6× [6× 5] slab.

decays as r−4. Based on both the DCACP tested for (HAuPH3)2 and its
unpublished two-channel extension, the accuracy of two-channel DCACPs to
describe the long-range decay of a physisorbed molecule on a metal surface
was examined at the example of benzene on a Au(111) surface and compared
to results from Grimme’s DFT-D2, the corresponding potential energy pro-
files are depicted in Fig. 9.2. For the one-channel DCACP, the minimum of
adsorption is reasonably well reproduced. The two-channel DCACP shifts
the minimum by about 0.5 Å and predicts only about half of the one-channel
DCACP binding energy. Comparison of the interaction energy to reference
data260 is made difficult by the uncertainty in the latter. Since the best (ex-
perimental) reference data available requires that a typical collision factor
be assumed in order to reconstruct the adsorption energy,260 the energy thus
obtained can vary by almost two orders of magnitude as a function of the
collision factor. This can change the absorption energy by up to over 20 kcal
mol−1. The drastic deviation of the DFT-D2 curve from the reference range
can be attributed to a general overbinding tendency of DFT-D2, multiply
reported in the literature.262–264 Due to the large spread of the experimental
data, DCACP and DFT-D2, it is at present not possible to draw a definitive
conclusion with respect to the energetics.

Fig. 9.3 shows the long-range decay of the potential for one- and two-
channel DCACP. The r−4 long-range decay expected for the interaction is
not reproduced in any of the systems. Instead, by fitting the exponent of
the long-range decay, one finds that the one-channel DCACP decays roughly
as r−8, while its two-channel counterpart exhibits a r−5-like decay. Notably,
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if a one-channel DCACP is used to describe the 6 × [12 × 12] slab, there
appears a small artificial barrier at large d||. This is a behaviour that has
previously been observed to occur in certain systems and which is remedied
by the two-channel DCACP.238

9.1.5 Direct Implementation of the DCACP Library in the
CPMD Code

In order to facilitate the use of DCACP and to avoid the manual modification
of pseudopotential files, the DCACP library was directly implemented in the
CPMD code and can therefore be accessed in an intuitive keyword based
way. For ease of implementation, the internal library still makes use of empty
pseudopotential projector channels, but their generation is automatised and
does not require user interaction.

9.2 Density-Difference Driven MD: d3MD

We have discussed various aspects of first principles MD accuracy without
actually having performed any dynamics. We should not want to border
on this insolence for any longer; and so in this very last section, atoms will
finally be made to wiggle.

The Röthlisberger group has recently demonstrated that first principles
Molecular Dynamics can be used as a predictive tool in the refinement of
time-resolved crystal structures.265 Such experiments provide density differ-
ences maps between a state at time t and the initial state t = 0, but the
resolution may not be sufficient in order for conventional refining algorithms
to predict a sensible structure without imposing too many (potentially non-
physical) constraints, or the structures of the intermediates may not be de-
scribed by conventional models used for the refinement. A first principles
refinement is therefore particularly beneficial for such systems. The electron
density difference maps from experiment can then be compared to those
computed on-the-fly during the MD, therefore quantifying the agreement
between structures obtained from simulation and experiment. In particular,
a dynamic approach does not only allow for the characterisation of stable
and meta-stable intermediates, but makes transient structures accessible as
well.

However, success relies on the possibility of describing the (rare) event
that links states 0 to t. But what if that event cannot be simulated (at
least within reasonable computational time)? One obvious possibility would
lie in combining experimental and first principles density difference maps
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in order to guide the time evolution of the system at hand. It is this
very approach that will be explored over the next few paragraphs: Density-
Difference Driven Molecular Dynamics (d3MD).

9.2.1 Biasing Potentials from Electron Density Differences

Instead of relying on sets of collective variables or nuclear constraints, d3MD
is based on an electronic biasing potential which, in a general form, reads:

Ĥd3MD
KS (t) = ĤKS + V̂d3MD(t), (9.10)

where ĤKS is the familiar time-independent Kohn-Sham Hamiltonian and
V̂d3MD(t) is a time-dependent biasing potential constructed from differences-
of-differences between a set of reference data (Ref) and the MD run:

ΔΔρ(r, t) = ΔρMD(r, t)−ΔρRef(r, t) (9.11)
= ρMD(r, t)− ρMD(r, 0)− (ρRef(r, t)− ρRef(r, 0)) . (9.12)

Here, the point t identifies an on-the-fly density of the MD run. The biasing
potential vd3MD(r, t) is then constructed from:

vd3MD(r, t) = κ(t)ΔΔρ(r, t), (9.13)

where κ(t) is some time-dependent function that controls the magnitude
of the bias, and the biasing potential energy and its functional derivative
evaluated at a fixed time step τ are given by:

Vd3MD(t) =

∫
dr vd3MD(r, t)ρ(r, t), (9.14)

∂V d3MD [ρ,ΔρRef]

∂ρ(r, t)

∣∣∣∣
t=τ

= κ(t) {ρMD(r, t) + ΔΔρ(r, t)} . (9.15)

This scheme can be straightforwardly implemented in existing MD codes at
little computational overhead. Depending on the sensitivity of the problem
at hand with respect to the applied bias, κ(t) can either be a constant κ(t) =
c, or it can be chosen to grow linearly κ(t) = (cEnd − c0)t. Any other
functional form is in principle possible, such as e.g. an oscillating potential.

9.2.2 Application to Test Systems

We have implemented d3MD in the molecular dynamics code CPMD176 and
carried out preliminary studies using theoretical density differences as a ref-
erence, i.e. density differences calculated from KS-DFT density differences
maps between an initial and final structurevi. We consider both inter- and in-

viWhich are both known, since the aim is to provide a proof of principle.
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Figure 9.4: Isomerisation of trans-2-butene to its cis form by performing d3MD
at 400 K and using κ(t) = 0.50 a.u. The N -electron density is depicted in lilac.
Snapshots were taken from 0 ps (panel a) to 15 ps (panel d) and are spaced by 5
ps.

tramolecular reactions, as well as different forms for κ(t). All simulations are
carried out at finite temperature using a simple velocity rescaling algorithm.

9.2.2A Pushing Against the Barrier: trans-2-Butene to cis-2-
Butene

The isomerisation of 2-butene can take place at high temperatures, with the
equilibrium being shifted to the more stable isomer, trans-2-butene. Here, we
perform a forced isomerisation of trans-2-butene to cis-2-butene in the gas
phase at 400 K by performing d3MD using a scaling factor of κ(t) = 0.50 a.u.
Since this reaction does not readily occur in the ground state and strict single
state dynamics are enforced, a large barrier is to be expected; the system can
therefore serve as a test case for the general potential of the method even if
the underlying lowest-energy mechanism does not occur in the ground state.
Such transformations - which do not necessarily have to correspond to the
minimum energy transition path - are of particular relevance with regard to
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the isomerisation of trans-2-butene to its cis form. The unbiased potential energy
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the possibility of carrying out structural refinement based on electron density
difference maps.

Fig. 9.4 shows various snapshots collected along the trajectory, the cor-
responding biased and unbiased potential energy profile together with the
biasing potential Vd3MD of eq. 9.14 are depicted in Fig. 9.5. At constant
value of κ, the biasing potential continuously decreases in magnitude along
the trajectory, whereas the biased potential energy is only slightly growing
until the reactive event at 12 ps. The biased potential energy decreases al-
most monotonically during the reaction and does not appear to exhibit any
barrier; the slight bump at 12 ps is well within the range of thermal fluctu-
ations. The biasing potential itself is almost zero at the top of the barrier
on the underlying PES. In agreement with the isomerisation not readily tak-
ing place in the ground state, the unbiased potential energy is substantial,
reaching an order of 102 kcal mol−1 . Still, due to the lack of a barrier on
the biased potential energy profile, the system readily isomerises into the
target structure. As it is evident from Fig. 9.4, the path from panel a) to d)
bears no resemblance to an intuitive minimum energy path (note the delayed
isomerisation of the hydrogen atom). Nonetheless, the reaction takes place
without disrupting the molecular structure. The method therefore appears
suitable for structural refinements where there is no principal interest in
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the minimum energy path and, hence, no need of more involved enhanced
sampling techniques.

The rather abrupt isomerisation (in particular of the hydrogen atom)
raises the question of adiabaticity and hysteresis effects. The applied poten-
tial may be too strong for the nuclei to follow the electron density adiabat-
ically, which would require a biasing potential of lower magnitude. In the
next section, we will first consider a monotonically growing biasing function
at the example of two other systems, before revisiting 2-butene at the very
end of this chapter.

9.2.2B Intermolecular Reactions: Diels-Alder Cyclo-Additions

Encouraged by the results obtained for the isomerisation of 2-butene, and
with the hope of characterising more than just reactants and products, we
will now examine a simple intermolecular reaction: The Diels-Alder cyc-
loaddition of cyclopentadiene with itself and with furan, the latter being
disfavoured with respect to the former266:

The reactant state consists of a snapshot of a short molecular dynamics
run of the van der Waals complex of the monomers. Both reactions are
simulated at a typical temperature of 400 K using a scaling factor of the form
κ(t) = (cEnd − c0)t, with c0 = 0.010 a.u. and cEnd = 0.105 a.u. Snapshots of
the molecular structure and density of the dimerisation of cyclopentadiene
are depicted in panels a) to h) of Fig. 9.6. The reactants and products of
this reaction are shown in Fig. 9.7, along with the reference density difference
ΔρRef(r).

The evolution of the carbon-carbon (CC) bonds that are formed in the
product are shown in Fig. 9.8. While the profile for both CC-bonds is vir-
tually identical for the dimerisation to dicyclopentadiene, it is asymmetric
for the formation of the cyclopentadiene-furan adduct. For the latter, the
CC distance involving the carbon adjacent to the oxygen is smaller upon
approach of the reactants and then stays at a plateau while the other CC
distance shortens. Fig. 9.10 compares the strength of the biasing potentials
as a function of time (or, equivalently, of κ) for the formation of both the
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Figure 9.6: Dimerisation of two molecules of cyclopentadiene to yield dicyclo-
pentadiene. Shown is the N -electron density in lilac. Snapshots were taken from 3
ps (panel a) to 24 ps (panel h) and are spaced by 3 ps.
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Figure 9.7: Reactants and product for the formation of dicyclopentadiene from
cyclopentadiene along with the reference density difference map ΔρRef(r). Regions
of density depletion (negative density difference) are depicted in red, regions of
accumulation (positive density difference) in turquoise.
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dicyclopentadiene (DiCp) as well as the cyclopentadiene-furan adduct (Cp-
Furan). It can be seen that the biasing potential is stronger for a given value
of κ(t) in the case of the less favoured reaction (Cp-Furan); interestingly, this
reflects chemical intuition (the disfavoured, sluggish reaction should have a
higher barrier that needs to be overcome).266

Fig. 9.9 shows the underlying unbiased potential energy (PE) as well as
the biased d3MD-PE (dashed lines). Note that contrary to the PE, the bias-
ing potential itself (Fig. 9.10) is much smoother, and that it is comparably
low close to the barrier on the PE profile. Again, the reluctance of Cp-Furan
to form is reflected in a higher barrier on the PE profile, which also occurs
later through the trajectory. It should be noted that the unbiased PE exhibit
some features that can be linked to concepts from organic chemistry: Fast
reactions have an early transition state, i.e. a transition state that resembles
the reactants rather than the product, whereas slow processes tend to have a
late transition state that bears more resemblance to the product instead.266

This can be linked to the CC bonds in Fig. 9.8; the larger potential energy
contribution for the formation of the Cp-Furan adduct appears to result from
the asymmetric approach of the reactant, i.e. the earlier approach of the car-
bon adjacent to the oxygen and the corresponding delayed approach of the
other reactive carbon. Hence, in the case of DiCp, the configuration of the
approaching reactants does not deviate significantly from the reactive con-
figuration, indicating an early transition state. In contrast, for the Cp-Furan
adduct, the asymmetric configuration of the approaching reactants implies
that the transition state bears more resemblance to the product than the
reactant, corresponding to a late transition state. These observations are
encouraging with regard to a possible predictive power of the method, which
would extend its applicability beyond simple structure elucidation. However,
the physical origin of those observations is as of yet unclear; it has yet to be
demonstrated that the chemically intuitive phenomena observed so far are
rooted in physics in order for them to be more than just anecdotal evidence.

9.2.3 Electron Transfer in d3MD

A preliminary analysis of the effect of the biasing potential has been per-
formed based on the d3MD-electron densities. Fig. 9.11 visualises the effect
of the d3MD potential vd3MD(r) on the electron density; compared is the
N -electron density of the perturbed and the unperturbed system. Clearly,
in a d3MD simulation, a small amount of electron density is transferred from
the reactant to the product state with respect to a reference density ρ(r).
The effective absolute values of electron transfer have been quantified by
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Figure 9.11: Perturbation introduced by the d3MD potential. A density contour
cloud is shown in grey, along with the density difference of the same magnitude.
Density differences were calculated between the d3MD density and an unperturbed
density. Regions of depletion are shown in red, density accumulations in turquoise.
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integrating the electron density within 1.57 Å spheres centred in the middle
of the basis vectors connecting the bond-forming carbons:

ΔρCC =

∫
CC

dr (ρd3MD(r)− ρ(r)) , (9.16)

where CC denotes the integration sphere around the centres of the carbon-
carbon bonds. As can be seen from Fig. 9.12, only a minute amount of
electron density is shifted to the new bond. Relative values have been ob-
tained by dividing by the integral of the unbiased electron density within the
same spheres, and as can be seen from Fig. 9.12, maximum transfer rates
do not even reach 0.5 %. The d3MD methodology therefore only introduces
slight perturbations on the electron density, which appear nonetheless signi-
ficant enough to influence the dynamics of the nuclei and ultimately lead to
a reactive event.

9.2.4 Versatile Grid Interpolation for Electron Density Maps

In view of future applications of d3MD which may resort to experimental
density difference maps, a suitable interpolation between the experimental
mesh and the real-space mesh used in a plane wave code has to be performed.
In order to ensure that the interpolated density difference be as smooth as
possible, a Gaussian interpolation algorithm has been devised that accepts
any orthogonal grid, irrespective of the orientation of the grid vectors a,b, c
(which are general 3-tuples of Cartesian coordinates) in Cartesian coordinate
space.

The output basis vectors have to be diagonal in Cartesian space and will
be denoted x,y, z. Based on the input and output basis vectors, a set of
auxiliary output vectors is computed:

x′ =

⎛
⎝||a||−1a · x
||b||−1b · x
||c||−1c · x

⎞
⎠ , y′ =

⎛
⎝||a||−1a · y
||b||−1b · y
||c||−1c · y

⎞
⎠ , z′ =

⎛
⎝||a||−1a · z
||b||−1b · z
||c||−1c · z

⎞
⎠ ,

(9.17)

where a ·x denotes a dot product. The auxiliary vectors x′,y′, z′ are nothing
but the diagonal (conventional) output vectors expressed within the rotated
basis a,b, c. After translating the origins of the coordinate systems to co-
incide with each other, it then becomes easy to calculate distances between
discrete points in both coordinate systems. We shall denote discretised grid
points in the output mesh as R, use Q for the input mesh and express both
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of them in terms of the auxiliary output coordinates x′,y′, z′. We then write
the discrete elements of the output density difference Δρ(R) as a linear com-
bination of elements of the input density difference Δρ(Q), weighted by a
Gaussian g(R,Q):

Δρ(R) = N
∑
Q

Δρ(Q)g(R,Q), (9.18)

g(R,Q) = e−σ
−2
x ||ex′ ·(R−Q)||2e−σ

−2
y ||ey′ ·(R−Q)||2e−σ

−2
z ||ez′ ·(R−Q)||2 , (9.19)

N =

∑
QΔρ2(Q)∑
RΔρ2(R)

. (9.20)

e{x,y,z} denote unit vectors in the direction of x,y, z, σ{x,y,z} are Gaussian
widths and N is a normalisation constant that preserves the L2 norm of
the input and output density difference. In practice, to save computational
resources, the sum in eq. 9.18 is only taken over non-vanishing elements of
g(G,Q) > min, which is easily determined from σ. This algorithm has been
directly implemented in the d3MD driver of the CPMD code and requires no
user input; the σ{x,y,z} are determined from the input grid dimensions such
that the distance matrix calculated for eqs 9.18 and 9.19 can be restricted
to contain at maximum 53 elements with no loss of accuracy.

We have verified that the use of a coarse input grid does not affect the
ability of a test system to isomerise by revisiting the isomerisation of 2-
butene. Progressively coarser reference density differences have been gener-
ated comprising grid spacings of up to 2.4 a.u.; Fig. 9.13 shows unbiased and
biased potential energies for reference density differences of varying resolu-
tion. For all simulations but the 27× 27× 10 mesh, isomerisation could be
observed. While the granularity of the reference density difference seems to
slightly influence the time at which the reaction occurs (at identical initial
conditions), the potential energy of the putative transition state structure
does not change, and the evolution of the biased potential energy is very
similar for the different meshes. When employing a very coarse 27× 27× 10
mesh, no reaction takes place, since the biasing potential in this simulation
is very low and can take negative values even for the reactant.

It seems that a minimal resolution for the input grid still has to be
maintained since the reference density difference from which the potential is
constructed will otherwise be too coarse. Still, for grid spacings of up to ∼ 1
Å, coarse reference data can reliably be treated thanks to the interpolation
algorithm that has been described here. Given that today’s experiments can
achieve resolutions lower than 1 Å, the feasibility of simulations based on
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Figure 9.13: d3MD of the isomerisation of trans-2-butene to cis-2-butene per-
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Å3 supercell. Apart from the 27 × 27 × 10 reference density difference grid, all
simulations led to an isomerised structure.

experimental maps will have to be more carefully assessed in a case-by-case
evaluation.
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Chapter 10

Conclusions and Outlook

What is the ultimate goal of Computational Chemistry? Opinions will
differ, as do priorities. While certain events can only be observed at very
long time scales and can be difficult to treat using conventional enhanced
sampling algorithms, others may lend themselves to shorter time scale studies
but suffer from the inaccuracy of (one single) PES. So: does the key to
an accurately sampled free energy surface lie in improved sampling or in
improved accuracy of the PES?

Eventually, both. The issue boils down to the computational tractability
of the underlying methods. Yes, ever increasing computational power and
readily available resources do indeed allow for far more accurate simulations
to be performed than one or two decades ago. But while more CPU can
provide more answers, they can also pose more questions, in particular re-
garding most efficient usage. Modern quantum chemical codes are highly
parallel, efficient and hence complex; many years of development and modi-
fications by different authors may hamper new implementations, often re-
quiring that a substantial amount of time be dedicated to the understanding
of their inner workings, long before it can be invested into their improve-
menti.

In the field of DFT-based first principles MD, the main issues are well
known; it is the improbable combination of tractability and accuracy of the
underlying density functional that ultimately constitute a prohibitive bot-
tleneck for efficient sampling. While O(N) simulations are straightforwardly
and most elegantly implemented in a plane wave basis, they are limited to

iFellow CPMD developers might remember tongue-twisting eye-burning finger-
twiddling classics such as tpiba2, lrxpl, inzf and nzfs. And, of course, the chameleon
rhoe that almost never contains the quantity that one would expect it to hold: ρ(r).
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(semi-)local functional forms. As we have seen in Chapters 5 and 6, such
methods can perform satisfactorily in many cases - in particular if they com-
bine highly flexible functional forms with fits on large reference databasesii.
However, we also had to acknowledge that the average performance of higher-
level functionals which include a fraction of the exact exchange of the KS
determinant is all too often much superior compared to semi-local forms. It
can at present be very difficult to avoid hybrids - or their range-separated
derivatives - if not utterly impossible for certain systems (CT complexes
and Rydberg states). This need for hybrid functionals in turn exposes one
principal weakness of the plane wave/pseudopotential approach, which is the
high computational overhead linked to the evaluation of the FFTs that ap-
pear with the exchange integrals. While for insulators, efficient algorithms
have been described that can achieve linear scaling for large systems,160 the
prefactor is still sizeable and has prevented hybrids from being abundantly
used in plane wave MD.

The developments sketched in this text are an attempt at alleviating
those problems by either providing an existing methodology within a plane
wave framework to obtain more accurate PES for on-the-fly first principles
MD, or by designing new algorithms that can ultimately save precious com-
putational time and thereby allow to improve sampling. We have started in
the excited state by demonstrating that the Coulomb-attenuation method
can be straightforwardly implemented in a plane wave/pseudopotential code
and that the results obtained from Coulomb-attenuated functionals generally
show excellent agreement with commonly employed atom-centred basis sets.
Nonetheless, we have also seen that in the case of excitation energies, a plane
wave basis can provide a more robust reference than Gaussian functions, as
many commonly employed Gaussian basis sets do either not predict excit-
ations that occur in the limit of larger, more diffuse (and computationally
expensive) bases or give different overall results. This now makes it possible
to study the excited-state dynamics and properties in a completely delocal-
ised basis and, in combination with the QM/MM engine of the CPMD code,
to study such processes in a realistic (be it solvent or protein) environment.

We have then focused our attention on ground-state thermodynamics at
the example of the widely used family of Minnesota functionals, hitherto
unavailable in plane waves. By providing a comprehensive convergence ana-
lysis of the M05 to M11 families of xc functionals, we identified the dual ζ
to be a primordial ingredient if converged results are to be obtained, and
we have linked this observation with the commonly stated need for very fine

iiAnd even if such an approach is often highly disputed.
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integration grids in atom-centred bases. While we were able to show that
plane wave results compare very well with those obtained in a Slater basis,
deviations with respect to Gaussian bases were often larger and inconsist-
ent in nature. In the case of the two largest deviations, we could link this
behaviour to the exceptionally high basis-set sensitivity of the affected func-
tionals and we have shown that this can be related to the integral of the
exchange energy density outside of the pseudisation radius. While caution is
advised when Minnesota functionals are used with plane waves due to their
general basis set sensitivity, it is important to note that the highly flexible
plane waves only expose existing fallacies in the construction of the func-
tionals that went unnoticed in the (more restricted) atom-centred basis sets.
There is no counterindication to the use of the Minnesota family for plane
wave MD, as long as the reference results from literature are carefully com-
pared (and transferred) to the completely flexible and delocalised basis that
are plane waves. Due to the encouraging results that have been obtained
with Minnesota functionals, especially for barrier heights and certain trans-
ition metal complexes, the availability of these functionals can prove valuable
in particular for the simulation of biological processes (which often involve
transition metals) or reactive events in general (be it a chemical process in
solution or a biological system).

With both of the implementations heavily relying on exact exchange, we
have suggested an approach that can substantially reduce the computational
cost associated to the evaluation of the determinantal exchange potential in
a plane wave basis. This method is based on the use of coordinate-scaled pair
densities and potentials in the computation of the exact exchange terms. In
doing so, we could show how concepts from theoretical and conceptual DFT
can inspire the development of new, more efficient computational algorithms,
and we have also discussed what formal conditions have to be met in order
for those relations to be valid in a generalised context. Using our coordinate
scaling scheme, we could document speedups of up to a factor of 8.5, which is
almost one order of magnitude. This substantially accelerates the simulation
of nonperiodic systems with more accurate hybrid functionals. Those clusters
can themselves be embedded in much larger systems (such as in a QM/MM
context), which finally makes it possible to sample sufficiently large time
scales with hybrid functionals on conventional server infrastructure, without
having to resort to an exceptionally large number of CPU on specialised
architecture.

In our last attempt at improving the PES in the perspectives of Chapter
9, we have shown how the accuracy of semi-local functionals can be im-
proved by calibrating new DCACP for some metals and metalloids. We
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CHAPTER 10. CONCLUSIONS AND OUTLOOK

have presented a fit uniquely based on literature data rather than tailored
high-level wavefunction calculations without losing accuracy of the result-
ing potentials. This approach allows for a rapid generation of new DCACP,
which, as we have shown at the examples of gold and boron, can outper-
form popular dispersion correction schemes such as DFT-D2 and DFT-D3.
With the DCACP of this work being the first reported for metals, we were
able to show that despite the weak magnitude of the dispersion correction,
rare gas complexes with metals can be reliably described. At last, we have
assessed the performance of the gold DCACP for surface-adsorbate interac-
tions. While the metal DCACP works very well for aurophilic complexes
and yields acceptable structural minima for the interaction of benzene with
a Au(111) surface, the use of DCACP results in an unphysical long-range
decay of the potential. This has been documented before for systems in
the gas phase, with the notable difference that the use of a two-channel
DCACP that usually remedies this pitfall only slightly improves the long-
range behaviour. This raises questions on the origin of the long-range decay
of DCACP-mediated van der Waals interactions. Future work might hold
the answer to this question. In the long term, obtaining a correct long-range
decay would allow metal DCACP to be calibrated and routinely used for the
study of surface-adsorbate interactions.

The final approach outlined in this text offers a complementary per-
spective of the work dedicated to the improvement of the PES: Our Density-
Difference Driven MD (d3MD) scheme allows to overcome time-scale re-
strictions by the use of electronic biasing potentials. By exploiting electron
density difference maps between products and reactants, we were able to
isomerise trans- to cis-2-butene and to initiate Diels-Alder cycloadditions
between two molecules of cyclopentadiene as well as cyclopentadiene and
furan, respectively. We have shown that those reactions are mediated by a
low-magnitude density transfer between product and reactant state and that
chemical trends are reflected in the evolution of the d3MD biasing potential
under otherwise identical conditions. We have also introduced a general in-
terpolation algorithm which allows for the use of coarser reference density
difference maps, and we have successfully demonstrated that grid resolu-
tions of up to 1 Å are sufficient in order for a reactive event to take place.
With modern experimental time-resolved techniques reaching resolutions of
2 Å, this leaves open the possibility of using experimental density differ-
ence maps for the structural refinement of transient, meta-stable or stable
biological structures. This constitutes a promising possibility for all cases
where excessive assumptions have to be made in conventional refinement
algorithms, which can insert an unphysical bias into the final result. And
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not at least, the results obtained for the pericyclic reactions suggest that,
once properly formalised, it might be possible to extract some physical (equi-
librium) behaviour out of the d3MD simulations, which could be combined
with nonequilibrium approaches (cf. Jarzynski’s theorem267–269). This is an
exciting perspective in particular with respect to the absence of (arbitrary)
explicit collective variables (we may consider d3MD to implicitly modify the
chemical potential by perturbing the electron density itself), but also in view
of the low computational cost of the method. Failing that, the method can
still provide an excellent, chemically intuitive and computationally efficient
guess for a transition path from A to B, which can then be the basis for more
refined enhanced sampling techniques.33,270

The methods presented here can ultimately benefit the simulation of con-
densed matter by providing more accurate tools at a reduced computational
cost and by potentially overcoming the time-scale limit due to rare events.
But our field is still riddled with open questions. Ruminations on the ulti-
mate limits of semi-local density functional approximations,105,106 advances
in wavefunction methods and their computational tractability,5 progress in
orbital-free DFT,271,272 density matrix functionals,97 the increasing import-
ance of complex fitting procedures,273–276 the need to incorporate nuclear
quantum effects into dynamics25–27 and not least the new possibilities and
issues that will accompany the ascent of quantum computing277,278 have the
potential of haunting and inspiring many a theoretician for years to come.

- and very luckily so! For how frustratingly boring would the world of
chemistry be if the answers to those questions were already and trivially
known.
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Chapter A

Supporting Information

A.1 Supporting Information for Chapter 5

A.1.1 HOMO-LUMO Gaps in a Plane Wave/Pseudopoten-
tial Basis

Gaps obtained from a soft pseudopotential show convergence at 120Ry for all
systems. For a small simulation supercell (l = 10Å), choosing a lower cutoff
value of 70Ry introduces a substantial error of 0.3 eV. A notable error is still
present at 70Ry even for the two larger simulation cells, but it becomes less
relevant for practical purposes, since the maximal error of 0.1 eV lies below
the typical accuracy of the functional itself. Values at 100Ry are essentially
converged in all supercells, with errors being lower than 0.05 eV, and full
convergence is reached at 120Ry.

Table A.1: HOMO-LUMO gap of a water molecule calculated using CAM-B3LYP
and MT pseudopotentials at increasing energy cutoffs and varying simulation cell
lengths l representing an isolated and periodic system, respectively.

Ecut [Ry] Δεi [eV], isolated system Δεi [eV], periodic system
10 Å 20 Å 30 Å 10 Å 20 Å 30 Å

70 10.082 10.457 10.479 10.111 10.458 10.479
80 10.234 10.510 10.527 10.259 10.511 10.527
100 10.360 10.546 10.562 10.381 10.547 10.562
120 10.375 10.549 10.565 10.396 10.550 10.565
150 10.377 10.550 10.566 10.397 10.551 10.566
180 10.379 10.551 10.567 10.399 10.552 10.567
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The convergence behaviour is analogous to the one observed for GGA
or standard hybrid functionals once the simulation cell is of sufficient size:
Changes in the gap are still substantial when increasing the side l of the
cubic simulation cell from 10 Å to 20 Å, with changes in the converged gap of
0.2 eV. The change in gap is within the usual numerical tolerance (< 0.5 eV)
for a further extension to 30 Å, emphasising again the importance of an
appropriately large cell for the correct description of the system’s LUMO.

The results for the truly periodic system (where the Poisson equations are
not decoupled) show the same trend, with the only relevant difference with
respect to the isolated system occurring in the 10 Å box. Given the trends
observed for the isolated system, this is most likely attributed to spurious
interactions between periodic images at this intermolecular distance. The

Table A.2: Size l of the orthorhombic periodic supercell for all systems considered
in this study. For structures and abbreviations, see Ref. 140.

System lx [a.u.] ly/lx lz/lx
7-azaindole 34.9555 1.00 1.00
AT nucleobase pair 71.8096 0.40 0.40
4-(N,N-dimethylamino)benzonitrile (DMABN) 34.9599 1.00 1.00
p-nitroaniline 34.9599 1.00 1.00
Acene (n=1 / naphthalene) 34.9556 1.00 1.00
Acene (n=2) 45.0000 1.00 0.50
Acene (n=3) 45.0000 1.00 0.50
Acene (n=4) 45.0000 0.75 0.50
Acene (n=5) 60.0000 0.50 0.33
Polyacetylene (PA) oligomer (n=2) 45.0000 0.66 0.50
Polyacetylene (PA) oligomer (n=3) 30.0000 1.00 0.50
Polyacetylene (PA) oligomer (n=4) 30.0000 1.00 0.50
Polyacetylene (PA) oligomer (n=5) 45.0000 0.50 0.50
N-phenylpyrrole (PP) 45.0000 0.66 0.50
Dipeptide 34.9599 1.00 1.00
Tripeptide 60.0000 0.50 0.25
β-dipeptide 69.9199 0.50 0.50
Retinal protonated Schiff base 71.8096 0.40 0.40
CO 18.9036 1.00 1.00
H2CO 18.9036 1.00 1.00
HCl 20.0000 1.00 1.00
N2 10.0000 1.00 1.00
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considerable influence of these interactions on the gap supports the view
that the requests on the Tuckerman-Martyna Poisson solver are not met yet
either, since the simulation cell must span at least twice the spatial extent of
the charge density.155 The strong changes in gaps when increasing the cutoff
within the small simulation cell is hence most probably due to an insufficient
cell size for both the isolated and periodic system, resulting in an incomplete
description of the electron density.

A.1.2 Supercell Size for Plane Wave Calculations

Plane wave calculations were carried out using the supercell sizes tabulated
in Table A.2.

A.1.3 Excitation Energies for the Test Set by Peach et al.

Table A.3 summarises the excitation energies for the molecules contained
in the test set by Peach et al.140 that have not been included in the main
text. All excitation energies were calculated with both CAM-B3LYP and
CAM-O3LYP in a plane wave/pseudopotential framework as described in
the Computational Setup.

A.2 Supporting Information for Chapter 7

A.2.1 Translational Invariance

Table A.4 compares total energy, HOMO-LUMO gaps and the first 5 excited
states obtained from the standard vij(r) to those obtained from the proced-
ure outlined in the main text for DMABN. The configuration of DMABN has
been distorted by 0.05 Å in the Cartesian x and z directions. The resolution
of the full density grid is ΔRx = ΔRz = 0.096Å. Comparison to Table 1 in
the main text clearly indicates that changes in the geometry smaller than the
grid spacing do not influence the error of the method. Forces are of the same
accuracy as mentioned in the main text. The method is therefore suitable
for geometry optimisations and molecular dynamics.
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