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Abstract

The turbulent plasma dynamics in the periphery of a fusion device plays a key role in deter-

mining its overall performance. In fact, the periphery controls the heat load on the vessel

walls, the plasma confinement, the level of impurities in the core, the plasma fuelling and the

removal of fusion ashes. Hence, understanding and predicting the plasma turbulence in this

region is of crucial importance for the success of the fusion program.

The GBS code has been developed in past years to simulate plasma turbulence in the periphery

of limited tokamaks. The goal of the present thesis is to extend GBS to the treatment of diverted

scenarios. Such configurations are of interest for present state-of-the-art experiments and

future fusion reactors. For the implementation of this geometry, we express the model in

toroidal coordinates, abandoning the flux coordinates previously used in limited configuration,

and overcoming the singularity that this coordinate system presents at the X-point of diverted

configurations. The accuracy of the numerical scheme is improved by upgrading the second

order finite differences scheme to fourth order on staggered grids. The resulting version of

GBS is carefully verified through a series of tests (i.e., a benchmark with the previous version of

GBS in limited configuration, a rigorous check of the correctness of the code implementation

with the method of manufactured solutions, and a convergence study on a relatively simple

diverted configuration).

The results of a GBS simulation is then used to investigate the dynamics of coherent turbulent

structures, called blobs, that characterise plasma turbulence in the periphery of fusion devices.

A diverted double-null configuration is considered, and the blob motion is studied using a

pattern recognition algorithm. The velocity of the blobs in the presence of an X-point matches

the analytical scaling that we derived by considering the different blob properties in the

divertor and main SOL regions, retaining the correction terms that account for blob density

and ellipticity. In addition, we show that the blob current pattern observed in the simulation

results match the theoretical expectations.

Finally, the new version of GBS is run with a realistic diverted magnetic equilibrium, taken

from an experiment carried out on the TCV tokamak. First insights of the turbulence properties

are in good agreement with the current physical understanding of plasma dynamics in the

periphery of diverted tokamaks.
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Riassunto
La dinamica turbolenta del plasma nella regione di bordo (periferia) dei reattori a fusione

svolge un ruolo cruciale nel determinarne le prestazioni complessive. Infatti, la periferia

controlla il carico di calore sulle pareti, il confinamento del plasma, il livello di impurità nel

nucleo, il rifornimento di plasma e la rimozione delle ceneri risultanti dalle reazioni di fusione.

Pertanto, comprendere e prevedere la dinamica turbolenta del plasma in questa regione è di

cruciale importanza per il successo dell’intero programma.

Il codice numerico GBS è stato sviluppato nell’ultimo decennio per simulare la turbolenza del

plasma nella periferia di macchine tokamak in configurazione magnetica limited. L’obiettivo

di questa tesi è di estendere GBS al trattamento di configurazioni magnetiche con divertore, di

interesse per gli attuali esperimenti e per i futuri reattori a fusione. Le coordinate di flusso usate

in configurazione limitata presentano una singolarità al cosiddetto punto a X in configurazioni

con divertore, per questo motivo il modello fisico è qui riformulato in coordinate toroidali.

La precisione dello schema numerico è migliorata passando da differenze finite al secondo

ordine a differenze finite al quarto ordine su griglie sfalsate. La nuova versione di GBS è

accuratamente verificata attraverso una serie di test: un confronto con la versione precedente

in configurazione limitata, un rigoroso controllo di correttezza dell’implementazione con il

metodo delle soluzioni fabbricate e uno studio di convergenza su una configurazione con

divertore relativamente semplice.

Quindi, il codice è utilizzato per indagare la dinamica dei blob, strutture coerenti di plasma che

caratterizzano la turbolenza nella periferia. Partendo da una simulazione in configurazione

con divertore con due punti a X, chiamata double-null (doppio-nullo), il movimento del blob

viene tracciato utilizzando un algoritmo per il riconoscimento delle immagini. I risultati

ottenuti riproducono le previsioni analitiche per la velocità dei blob in presenza di punti a X,

qui derivate considerando le diverse proprietà dei blob nel divertore e nella zona periferica

principale, mantenendo i termini che tengono conto della densità e dell’ellitticità dei blob.

Inoltre, in questa simulazione, il flusso della corrente interna ai blob è in accordo con le

aspettative teoriche.

La nuova versione di GBS viene usata per simulare la turbolenza periferica per un equilibrio

magnetico con divertore, tratto da un esperimento effettuato sul tokamak TCV. I risultati

preliminari sono in generale accordo con l’attuale comprensione fisica della turbolenza nella

periferia del plasma.
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1 Introduction

Fusion aims at providing clean energy based on practically inexhaustible fuel, to support

the increasing world energy demand, without impacting the Earth climate. Fusion reactions

currently powers the stars by fusing mainly hydrogen atoms together and generating enormous

amount of energy. In a earthbound fusion power plant, two isotopes of hydrogen (deuterium

and tritium) will be brought to an energy of about 10 keV and will fuse together to release 18

MeV, as the kinetic energy of an alpha particle (14 MeV) and of a neutron (4 MeV) [1]. The

alpha particles, consisting of two protons and two neutrons, will be used to heat up the fresh

fusion fuel, keeping the reaction going, while the neutrons will be, first, used to produce

tritium, which cannot be found in nature, by having them collide with lithium and, ultimately,

their energy will be harvested and converted into electricity.

The advantages of fusion are multiple. Its energy density, i.e. energy produced per unit mass of

fuel, is millions times higher than fossil fuels: 1 kg of deuterium and 3 kg of lithium can support

the energy demand of 100 people for their entire lifetime, one would need 15.000.000 kg of

coal to achieve the same [2]1. Unlike fossil fuels, fusion does not emit CO2, primal responsible

of the world’s quickly rising temperatures and climate change. Moreover, fusion fuel is widely

available and abundant, deuterium can be found naturally in water, while lithium is present in

the Earth crust and in ocean water. Fusion power plants based on deuterium-tritium reactions

could power the world for 100 million years before running out of lithium. If we were able to

master deuterium-deuterium reactions, we could use fusion for 10 billion years [3]. Unlike

solar or wind, fusion does not depend on weather conditions. In fact, intermittency, which is

nowadays a limiting factor in the use of many reusable energies [4], does not concern fusion

energy. With respect to other renewable sources, such as hydroelectric or tidal, fusion is not

contingent to a country’s geography. Radioactivity is not an issue for fusion reactors in the

same way it is for fission ones. The lithium and deuterium are not radioactive, tritium is, but

its half life is short (12.5 years) and will be produced and consumed in within the power plant.

Energetic neutrons instead can activate the reactor’s structural material, but this radioactivity

is short-lived especially if compared to fission. Indeed, it takes 100 years for fusion and 1

million for fission waste to become safe to handle [5]. Finally, there is no risk of nuclear

1Based on an average power consuption of 1kW for a lifetime of 80 years, with a fusion power plant producing
an harvesting an energy of 70 million kWh from 1kg of deuterium and 3kg of tritium.
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Chapter 1. Introduction

accidents in fusion, since it is not based of a chain reaction, like fission is. In fact, achieving

controlled fusion requires a fine tuning of different parameters, which makes fusion hard to

achieve, but extremely easy to stop.

The downsides to fusion are caused by the incredible technological challenge that comes with

it. One is the huge up-front down-payment needed to fund the research. For example ITER,

the world research project expected to prove the feasibility of fusion energy, costs around

20 billion Euros. The second big downside is timing, with the present level of funding, most

likely fusion will not be an energy option in the first half of this century, meaning that other

low-carbon energy solutions need to be considered in the immediate future to tackle climate

change.

1.1 The tokamak reactor

Deuterium and tritium fuse at energies of 10 keV, corresponding to a temperature of about

100 million degrees Celsius. At this temperature matter is completely ionised, made of ions

and electrons, in the so-called plasma state. A plasma has to be confined sufficiently long

and at sufficiently high density to produce electricity. In the present thesis we focus on

plasma confinment based on the use of magnetic fields. In the presence of a magnetic field,

the Lorentz force causes particles to gyrate, confining their motion perpendicularly to the

magnetic field line. In a tokamak fusion device (Fig. 1.1), a plasma is confined by using a

magnatic field in a toroidal chamber. In this configuration poloidal and toroidal components

of the magnetic field results in helical field lines. The helical lines looping around the torus

map nested toroidal surfaces, called flux surfaces (see Fig. 1.1). The toroidal component of

the magnetic field is created by a set of poloidal coils. The poloidal magnetic field, instead,

is generated through induction, by a ramp up of current in a coil located at the center of the

torus. As the current cannot be increased indefinitely, tokamak operation is inherently pulsed.

A detail description of a tokamak device can be found in [1].

1.2 The plasma periphery

Because of collisions and turbulence, plasma is not perfectly confined in a tokamak and tends

to flow outwards, across the flux surfaces, eventually reaching the tokamak wall. To avoid the

hot plasma outflow damaging the first wall of the reactor, the plasma is channel towards the

limiter or the divertor plates, made to withstand high energy fluxes. A limiter can be either a

metal rail that intercepts the outermost flux surfaces, or it can be integral part of the inboard

wall, which the flux surfaces are pushed towards. Fig. 1.2 (left) sketches the poloidal cross

section of a plasma limited by a toroidal rail (in blue), that extends along the toroidal direction.

The limited configuration was implemented in the early days of fusion history. Nowadays,

diverted configuration are preferred since they move the interaction of the plasma with the

wall further away from the core of the reactor. In a diverted single-null scenario, the shape of

the outer flux surface is modified using external coils to create two legs, ending at the divertor

plates.

2



1.2. The plasma periphery

Poloidal eld

Toroidal eld

Helical eld

Central coil

Induced current

Poloidal coils

Shaping coils

Figure 1.1 – Schematic representation of a tokamak magnetic cage. The poloidal coils generate
the toroidal magnetic field (in blue). A current rump up in the central coil induces a toroidal
current in the plasma that generates the poloidal magnetic field (in green). The combination
of toroidal and poloidal fields, results in an helical field line (in black) that wraps around the
torus, defining the flux surface in pink. Image credit Euro-fusion.

Three main nested regions can be identified in Fig. 1.2 for both limited and diverted scenarios:

the core, the edge and the scrape-off layer (SOL). The core is the hottest central part where

fusion reactions take place; temperature and density decrease moving radially outwards, until

the edge region is reached, where the plasma is relatively cold. Here,the formation of a steep

pressure gradient might be observed, due to a transport barrier. Both the core and the edge are

characterised by magnetic field lines that lie on nested closed toroidal surfaces. In contrast,

the SOL is the outermost region where magnetic field lines are “open”, in the sense that they

do not close inside the tokamak chamber and they intercept the wall of the machine. With the

term periphery we identify the colder region of the tokamak, composed by the edge and the

SOL. This region is highly turbulent and characterised by the presence of coherent turbulent

structures, called blobs, that detach from the main plasma and move radially outwards. The

SOL and the edge are separated by the last closed flux surface, also called separatrix. Note that

the separatrix in fig 1.2 (right) displays an X-point, which corresponds to a location where the

magnetic field is purely toroidal. In general, various shapes for the separatrix are possible, and

they are characterised by the number or type of X-points present. We can have single-null (like

the one presented here), double null (two X-point at top and bottom) and snowflake (where

two X-points coincide) configurations.

The interaction between the SOL plasma and its surrounding walls represents one of the main

challenges of the fusion program. Recent investigations of the heat load on the wall of existing

tokamaks show alarmingly narrow features of the heat flux profile in the proximity of the last

3
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Figure 1.2 – Illustration of the poloidal cross-section of a limited (left) and of a diverted (right)
tokamak configuration.

closed flux surface [6]. Empirical extrapolations point out that, in ITER, the quasi totality of the

heat produced by fusion reactions might be exhausted over a surface 1mm thick, exceeding

the heat flux limit of 5MW/m2, above which the wall is damaged [7]. Moreover, plasma fueling,

impurities and neutral dynamics are all governed by the complex physics that takes place in

the plasma periphery of a tokamak device. Hence, understanding and predicting the plasma

turbulence in this region, with the use of simulation codes, is of crucial importance for the

success of fusion [8].

From a modelling point of view, multiple challenges arise when approaching the tokamak

periphery. Phenomena occurring on a wide range of length and time scales are present,

from the electron gyro-radius to the machine major radius; from the gyro-motion to the

turbulence time scale. The presence of large amplitude turbulent structures does not allow for

the decoupling between fluctuating and background quantities.

GBS is a three-dimensional first-principles simulation code that has been developed in the

past years in order to study the plasma turbulence dynamics in the tokamak periphery. Simi-

larly to other codes developed for the same reason (BOUT++ [9], TOKAM3X [10], GBD [11],

GRILLIX [12], HESEL [13]), GBS evolves the drift-reduced Braginskii’s equations [14]-[15], a

set of fluid equations valid in the high-collisionality regime of the tokamak periphery. In the

past years GBS has contributed to progress our understanding of the SOL physics in limited

configurations, where the SOL is defined by a toroidal or poloidal limiter. For example, GBS

has provided predictions of the SOL width [16] in this configuration. The work discussed in

the present thesis is focused on extending GBS to the treatment of diverted tokamak scenarios.

4



1.3. Challenge behind simulations of diverted configurations

1.3 Challenge behind simulations of diverted configurations

The main challenge related to the implementation of a diverted configuration into a simulation

code is the choice of a proper coordinate system. As charged particles move freely along the

magnetic field line, whereas their motion is constrained in the direction orthogonal to it,

parallel and perpendicular dynamics in a magnetised plasma occur on very different length

scales. In particular, most plasma properties are approximately constant on flux surfaces

and vary sharply across them. Therefore a coordinate system where the basis vectors identify

parallel and perpendicular directions has the advantage of reducing the computational cost of

the simulations.

In most code implementations, as well as in the limited version of GBS [17], a coordinate

whose contour lines correspond to the flux surfaces is chosen as one of the two perpendicular

coordinates. Such flux coordinate can be identified with the magnetic poloidal flux ψ, the

function that allows expressing the tokamak toroidally symmetric equilibrium magnetic field

as:

B = F (ψ)∇ϕ+∇ψ×∇ϕ (1.3.1)

which ensures ∇ ·B = 0 [18]. The first term on the right-hand side of Eq. (1.3.1) represents

the toroidal component of the magnetic field, F (ψ) being a scalar function of ψ, and the

second term identifies the poloidal component, ϕ being the toroidal angle. For a toroidally

symmetric magnetic field, the poloidal flux ψ does not depend on ϕ, ∇ϕ · ∇ψ = 0. From

Eq. (1.3.1), it follows that B ·∇ψ= 0. This shows that ψ contour lines correspond indeed to

the flux surfaces on which the magnetic field lies and that the contravariant basis vector ∇ψ
always conveniently points in a direction orthogonal to the magnetic field line and to the flux

surface, as desired.

In diverted equilibria, the use the poloidal flux ψ as one of the coordinates is complicated

by the presence of one or multiple X-points. At these locations, the magnetic field is purely

toroidal and has no component in the poloidal plane. Equation (1.3.1) implies ∇ψ×∇ϕ= 0

and consequently ∇ψ= 0 at the X-point. In fact, the X-point is defined as a saddle point of

the magnetic flux ψ. As a consequence, a coordinate system that uses the flux coordinate in

diverted configuration, is singular at the X-point, in fact its Jacobian is J = (∇ψ·∇α×∇ϕ)−1 =∞
(∇α denoting a third basis vector, in addition to ∇ψ and ∇ϕ). Moreover, the use of a flux

coordinate is made problematic by the flux expansion around the X-point: in the proximity

of the X-point, since ∇ψ is small, the spacing between the ψ contour lines becomes larger

than at the midplane. This makes it challenging from a numerical standpoint to attain a good

physical resolution around the X-point. Indeed, a uniform spacing in ψ does not correspond

to a uniform spacing in physical space, and an over-resolution at mid-plane is needed in

order to attain a good resolution around the X-point, increasing the computational cost of a

simulation.

Various approaches are being followed to tackle the singularity of the flux coordinate in di-

verted equilibria. In BOUT++ [9] and TOKAM3X [10], the use of the flux coordinate is retained

5



Chapter 1. Introduction

Figure 1.3 – Example of domain decomposition linked to the use of flux coordinates in
TOKAM3X for WEST tokamak (courtesy of F. Nespoli). Here 8 domains meet at the X-point,
complicating the numerical treatment of the region.

also in diverted scenarios, but the numerical grid points are generated to avoid falling on the

X-point position. This bypasses the problem of the singularity at the X-point but does not

solve the low resolution issue due to the flux expansion. In addition, usually this approach is

implemented by decomposing the domain in sub-domains which are rectangular in the (ψ,α)

coordinates (α indicating the chosen poloidal coordinate). Fig 1.3 shows the domain decom-

position used by TOKAM3X for WEST tokamak. The downside is that the X-point becomes

the point at which the domains are glued together, complicating the numerical treatment

of a region of high physical interest that is already unresolved when using flux coordinates.

In GRILLIX [12], flux coordinates are abandoned in favour of Cartesian coordinates in the

poloidal plane. To compensate the lack of alignment of the coordinates to the magnetic flux,

an effort to accurately capture the parallel direction is put in place by carefully handling the

parallel operator with the Flux Coordinate Independent (FCI) method [19]-[20]. HESEL and

GBD instead do not include X-point geometries.

In GBS we choose to step away from the use of flux coordinates and, instead, use the toroidal

coordinates (r,θ,ϕ), which are defined as:

x = R cosϕ= (R0 − r cosθ)cosϕ

y = R sinϕ= (R0 − r cosθ)sinϕ (1.3.2)

z = Z0 + r sinθ

6



1.3. Challenge behind simulations of diverted configurations

θ

r

ϕ

Figure 1.4 – Visualisation of the toroidal coordinates (r,θ,ϕ) used to implement diverted
configuration in GBS. The corresponding grid (in dashed lines) is not aligned to the poloidal
flux ψ (represented by the color-plot).

being R the distance from the symmetry axis of the torus, θ the poloidal angle, and r the

distance in the poloidal plane from the point located at R = R0 and vertical position Z0. This

allows us to easily enclose the edge and SOL of a diverted plasma in a domain that corresponds

to a rectangular box in the (r,θ,ϕ) coordinates, unlike in the case of flux coordinates or

Cartesian coordinates (R, Z ,ϕ). In addition, the coordinate system and numerical method we

propose have the advantage of being flexible, allowing the straightforward implementation of

double-null [21] or snowflakes [22] configurations.

To partially compensate for the loss of alignment of the coordinate system to the magnetic

field, we increase the order of accuracy of the numerical scheme.

This thesis is organised as follows. In chapter 1 we presented the potential of fusion as a source

energy for humankind and the basic mechanism of the tokamak fusion device (see Sec. 1.1).

Section 1.2 highlighted the importance simulating plasma turbulence in the tokamak periph-

ery, motivating the work of this thesis, which consists in extending the GBS code capabilities

to the simulation of the periphery of diverted tokamaks. We discussed the downsides of flux

coordinates for the implementation of diverted equilibria and our choice of using non-flux

aligned toroidal coordinates in Sec. 1.3.

Chapter 2 focuses on the drift-reduced Braginskii’s equations solved by GBS (Sec. 2.1). It

reports on the analytical derivation of differential operators in the new toroidal coordinate

system (Sec. 2.2) and completes the physical picture by presenting the boundary conditions

7
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used at the wall and at the divertor legs (Sec. 2.3). Finally the initial condition are presented

(Sec. 2.4).

The first part of chapter 3 is dedicated to the numerical implementation, in toroidal coordi-

nates, of the physical model presented in chapter 2, in order to allow for a diverted equilibrium,

starting from the existing limiter version of GBS [23]: after introducing the code structure

(Sec. 3.1), the new grid and the upgraded numerical scheme are detailed (Sec. 3.2), followed

by the implementation of the wall boundaries (Sec. 3.3). The second part of the chapter is

dedicated to the verification of the new code by testing its parallelisation properties (Sec. 3.4),

by benchmarking it with the previous version of GBS in the case of a limited configuration

(Sec. 3.5), by using the rigorous method of manufactured solution to check the convergence

order of the algorithm (Sec. 3.6), and, finally, by running the first diverted equilibrium with

GBS and proving that it converges when increasing the grid resolution (Sec. 3.7).

In chapter 4, we investigate the physical properties of turbulence in the case of a double null

equilibrium. Following the work of Myra et al. [24], we derive an analytical scaling for blob

velocity in the presence of an X-point (Sec. 4.1). We then present the blob tracking technique

used for the double-null GBS simulation (Sec. 4.2) and, finally, the numerical results are com-

pared with the analytical predictions (Sec. 4.1).

In chapter 5), a TCV single-null is implemented into the new version of GBS. Some modifi-

cation to boundary conditions, initial conditions and source terms are required to improve

code stability as well as the physical model, and are presented in Sec. 5.2. A preliminary

analysis of the turbulent dynamics in the simulation result is performed in Sec. 5.3. Finally,

the importance of the inner radial boundary condition is the subject of Sec. 5.4. A Summary of

the thesis follows.
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2 Physical model in toroidal coordi-
nates

The present chapter details the physical model used by GBS to evolve plasma turbulence in the

tokamak periphery and it provides expressions of the differential operators in toroidal coordi-

nates. The physical model is a two-fluid model resulting in a set of a equations known as the

drift-reduced Braginskii’s equations. The model and its derivation are detailed in section 2.1.

The spatial differential operators, appearing in the drift-reduced Braginskii’s equations, act

either in the direction parallel to the magnetic field or in the one perpendicular to it, and

therefore involve very different scale lengths. Since our coordinate system is not aligned to

the magnetic field, the projection on it of the parallel and perpendicular operators mixes the

different scale lengths. The derivation of the differential operators and their simplification

in the case of large aspect ratio and high safety factor approximation is the subject of sec-

tion 2.2. Finally, the physical model is completed by introducing boundary conditions and

initial conditions in sections 2.3and 2.4.

2.1 Drift-reduced Braginskii’s equations

Since the plasma at the periphery of a tokamak device is sufficiently collisional that devia-

tions from a Maxwellian distribution are small, a fluid description, such as the one derived

by Braginskii [14], is generally used. These equations express the conservation of density,

momentum, energy and electric charge of a quasi-neutral plasma. Formally, they are derived

by taking the moments of Boltzmann’s equation.

Here we derive the density equation (2.1.11) and refer to [14], [15], and [25] for the derivation

of the complete set of equations. Boltzmann’s equation for the electron distribution function

fe = fe (x,v, t ) states that:

∂ fe

∂t
+∇x ·

(
v fe

)−e∇v ·
(

E+v×B/c

me
fe

)
=C (2.1.1)

where v is the velocity of the electrons, E and B are the electric and mangetic field, e and me

are the electric charge and mass of the electrons. Integrating over velocity space and defining
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Chapter 2. Physical model in toroidal coordinates

the electron density ne =
∫

fe (x,v)dv one obtains the continuity equation:

∂ne

∂t
+∇· (ne ve ) = 0 (2.1.2)

where ve is the electron fluid velocity defined as the first moment of Boltzmann’s equation,

ve =
∫

v fe (x,v)dv/ne .

Since turbulence occurs on a time scale considerably longer than the gyro-motion (∂t �
Ωci = eB/(mi c)) and on a scale length larger than the ion sonic gyro-radius, ρs = cs/Ωci , with

cs =
�

Te /mi , the drift approximation of the particle orbits can be used to simplify Braginskii’s

equations, as shown by Zeiler [15]. Considering only leading order terms, the velocity can be

split into the component parallel to the magnetic field and the perpendicular drifts, i.e. the

E×B and diamagnetic drift, that is:

ve = v‖,e +v⊥ = bv‖,e +vE +vd ,e (2.1.3)

with

vE =− c

B
∇φ×b (2.1.4)

vd ,e =− c

ene B
b×∇(ne Te ) (2.1.5)

Substituting Eq. (2.1.3) into ∇· (ne ve ):

∇· (ne v‖,e ) = b ·∇(ne v‖,e )+ne v‖,e∇·b ≈∇‖(ne v‖,e ) (2.1.6)

∇· (ne vE ) = cne∇× b

B
·∇φ+ c

B
b ·∇φ×∇ne

= 2cne

B
C (φ)+ c

B
[φ,ne ] (2.1.7)

∇· (ne vd ,e ) =− 2c

eB
C (ne Te ) (2.1.8)

In eq (2.1.6) we neglected the divergence of b since it is proportional to the tokamak inverse

aspect ratio a/R0 (a minor radius and R0 major radius), this will be proven in the section 2.2.

The parallel operator ∇‖u, the curvature operator C (u) and the Poisson brackets operator

[φ,u], u being an arbitrary fluid quantity, in physical units are defined as:

∇‖u = b ·∇u, C (u) = B

2

(
∇× b

B

)
·∇u, [φ,u] = b ·∇φ×∇u (2.1.9)

By assuming quasi-neutrality and singly charged ions, i.e. n = ne = ni , the density equation in

physical units becomes:

∂n

∂t
=− c

B
[φ,n]+ 2c

eB
C (nTe )− 2cn

B
C (φ)−∇‖(nv‖,e ) (2.1.10)

The continuity equation, together with the other conservation equations, consitutes the drift-
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2.1. Drift-reduced Braginskii’s equations

reduced Braginskii’s set of equations. That is:

∂n

∂t
=− ρ−1

�

B
[φ,n]+ 2

B

[
C (pe )−nC (φ)

]−∇‖(nv‖e )+Sn +Dn∇2
⊥n (2.1.11)

∂v‖e

∂t
=− ρ−1

�

B
[φ, v‖e ]− v‖e∇‖v‖e (2.1.12)

+ mi

me

(
ν j‖ +∇‖φ− 1

n
∇‖pe −0.71∇‖Te

)

− 2

3n

mi

me
∇‖Ge +Dv‖e∇2

⊥v‖e

∂v‖i

∂t
=− ρ−1

�

B
[φ, v‖i ]− v‖i∇‖v‖i − 1

n
∇‖(pe +τpi ) (2.1.13)

− 2

3n
∇‖Gi +Dv‖i ∇2

⊥v‖i

∂Te

∂t
=− ρ−1

�

B
[φ,Te ]− v‖e∇‖Te + 4

3

Te

B

[
1

n
C (pe )+ 5

2
C (Te )−C (φ)

]
(2.1.14)

+ 2

3
Te

[
0.71∇‖v‖i −1.71∇‖v‖e +0.71(v‖i − v‖e )

∇‖n

n

]
+STe +χ⊥,e∇2

⊥Te +χ‖,e∇2
∥Te

∂Ti

∂t
=− ρ−1

�

B
[φ,Ti ]− v‖i∇‖Ti + 4

3

Ti

B

[
C (Te )+ Te

n
C (n)−C (φ)

]
(2.1.15)

+ 2

3
Ti
(
v‖i − v‖e

) ∇‖n

n
− 2

3
Ti∇‖v‖e − 10

3
τ

Ti

B
C (Ti )+STi +DTi ∇2

⊥Ti

∂ω

∂t
=− ρ−1

�

B
[φ,ω]− v‖i∇‖ω+ B 2

n
∇‖ j‖ + 2B

n
C (pe +τpi ) (2.1.16)

+ B

3n
C (Gi )+Dω∇2

⊥ω

∇2
⊥φ=ω−τ∇2

⊥Ti (2.1.17)

In Eqs. (2.1.11)-(2.1.17) all variables are dimensionless. In the following, we use a tilde to

denote physical variables, unless specified otherwise. We define the plasma density n = ñ/n0,

the electron temperature Te = T̃e /Te0, the ion temperature Ti = T̃i /Ti 0, the electro-static

potential φ= eφ̃/Te0, the electron parallel velocity v‖e = ṽ‖e /cs0, the ion parallel velocity v‖i =
ṽ‖i /cs0 and the vorticity ω = ω̃ eρ2

s0/Te0 with n0,Te0,Ti 0, cs0 = �
Te0/mi and ρs0 = cs0/Ωci

reference density, temperatures, sound velocity and ion sonic Larmor radius expressed in

physical units. The electron and ion pressures are denoted as pe = nTe and pi = nTi . The

dimensionless current is j‖ = n(v‖i −v‖e ). Time is defined as t = t̃ cs0/R0, where R0 is the major

radius at magnetic axis, in physical units. The dimensionless parameters appearing in the

model equations are: ρ∗ = ρs0/R0 (normalised ion sonic Larmor radius), ν= e2n0R0/(mi cs0σi )

(normalised resistivity), τ= Ti 0/Te0 (ion to electron temperature ratio).
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Chapter 2. Physical model in toroidal coordinates

The gyroviscous terms Ge,i in the parallel velocities and vorticity equations are defined as:

Ge =−η0,e

(
2∇‖v‖e − C (pe )

Bn
+ C (φ)

B

)
(2.1.18)

Gi =−η0,i

(
2∇‖v‖i +τ

C (pi )

Bn
+ C (φ)

B

)
(2.1.19)

with η0,e,i constant coefficients.

Some of the differential operators present in eqs (2.1.11)-(2.1.17) were already introduced in

Eq. (2.1.9) in physical units. In dimensionless form they can be rewritten as:

∇‖u = R0∇̃‖u = R0b · ∇̃u (2.1.20)

∇2
∥u = R2

0∇̃2
‖u = R2

0 b · ∇̃(b · ∇̃u) (2.1.21)[
φ,u

]= ρ2
s0[̃φ,u ]̃ = ρ2

s0b · (∇̃φ×∇̃u) (2.1.22)

C (u) = R0ρs0C̃ (u) = R0ρs0
B̃

2

(
∇̃× b

B̃

)
· ∇̃u (2.1.23)

∇2
⊥u = ρ2

s0∇̃2
⊥u = ρ2

s0∇̃ · ((b×∇̃u)×b) (2.1.24)

The final form in Eqs. (2.1.20)-(2.1.24) presents the operator in terms of the equilibrium

magnetic field B̃, with B̃ being it modulus and b = B̃/B̃ its normalised versor. The first equality,

instead, relates the dimensionless form to the physical one, making use of the scale lengths R0

and ρs0.

Making use of the definition of fluid quantities and differential operators in dimensionless

form, we can relate the density equation derived from Maxwell’s equation in physical units

(see Eq. (2.1.10)) to its dimensionless form (see Eq. (2.1.11)):

∂n

∂t
=−ρs0R0

B
[̃φ,n ]̃+ 2ρs0R0

B
C̃ (nTe )− 2nρs0R0

B
C̃ (φ)−R0∇̃‖(nv‖,e )

=−ρ−1∗
B

[φ,n]+ 2

B
C (nTe )− 2n

B
C (φ)−∇‖(nv‖,e ) (2.1.25)

In the density and temperature equations (2.1.11),(2.1.14),(2.1.15), the additional source terms

Sn and STe,i are introduced to mimic the outflow of plasma and heat from the core. Further-

more, small numerical diffusion terms of the type D f ∇2
⊥ f are added for numerical stability.

We note that the drift-reduced Braginskii’s equations were first implemented in the GBS

code in limited configuration in the electrostatic, cold-ion limit, assuming no interaction of

the plasma with the neutrals, as described in Ref. [26]. In the following years, the hot ion

physics was introduced by Mosetto et al. [27], electromagnetic effects by Halpern et al. [28]

and coupling with the neutral dynamics by Wersal et al. [29]. The most complete model

used for limited simulations is summarised in the paper by Halpern et al. [23]. The version

of the drift-reduced Braginskii’s equations considered in the present paper, summarised in

Eqs. (2.1.11)-(2.1.17), does not include coupling with neutrals, nor electromagnetic effects,

but does include hot ions. The Boussinesq approximation in the evaluation of the divergence
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2.2. Differential operators in toroidal coordinates

of the polarisation current is used to reduce the cost. Finally, we assumed ∇ ·b � 0 when

computing the parallel advection terms.

2.2 Differential operators in toroidal coordinates

In the previous section, we have defined the dimensionless operators ∇‖(u), ∇2
‖(u), C (u), [φ,u]

and ∇2
⊥ in terms of the equilibrium magnetic field. In this section, we project them on toroidal

coordinates and we simplify them under the large aspect ratio, R0/a � 1, and large safety

factor assumptions, q > 1.

In order to obtain the simplified expression, we proceed as follows. We first comment on the

typical scale lengths of the physical operators (e.g. ∇̃‖u = 1/R0, ∇̃⊥ ∼ 1/l⊥) in Sec. 2.2.1. Then,

after rigorously defining the toroidal coordinate system and the magnetic field covariant and

contravariant form in Sec. 2.2.2, 2.2.3, we project the differential operators on the toroidal

basis (Sec. 2.2.4). Since the coordinate system and magnetic field are not aligned, the resulting

expressions involve derivatives in all three directions, mixing poloidal, radial, and toroidal

scale lengths of magnetic field and evolved quantities u. Hence, in Sec. 2.2.5 we propose

an ordering for the magnetic field components, by identifying the typical scale lengths of

the poloidal flux derivatives (e.g. ∂r̃ψ ∼ 1/a) and in Sec. 2.2.6 we justify the assumptions

on the u derivatives in toroidal coordinates (e.g. ∂r̃ u ∼ 1/l⊥). Having determined the scale

lengths of differential operators, magnetic field and u derivatives in toroidal coordinates, we

can order them using the small parameters ρ∗ = ρs0/R0, σ= l⊥/R0, and ε= a/R0. The final

simplification neglects terms that are order one or higher in ρ∗,σ and ε.

2.2.1 Physical operators scale lengths

The scale lengths ρs0 and R0 that we used to write the dimensionless form of the operators in

Eqs. (2.1.20)-(2.1.24) do not necessarely correspond to the typical ones. Or, otherwise said, we

proposed a dimensionless form for the operators and not a normalised one. This in particular

holds true for the perpendicular scale length. We used ρs0 for the nondimensionalisation, but

the perpendicular gradients have to be on scale lengths larger than the Larmor radius for the

drift-reduced approximation to hold. We call l⊥ > ρs0 the typical perpendicular gradient scale

length (in physical units) and l∥ ∼ 2πqR0 ∼ R0 the parallel one.

While it is straightforward to identify ∇̃‖ and ∇̃2
‖ as parallel and ∇̃2

⊥ as perpendicular operators,

it is less intuitive doing so for the curvarute gradient or the Poisson brackets. They were first

introduced in Eqs. (2.1.7) and (2.1.8) to account for the density transport due to E×B and

diamagnetic drifts, which are perpendicular to the magnetic field by definition (see Eqs. (2.1.4)

and (2.1.5)). The curvature operator, though, contains a derivative that acts on the fluid

quantity u and one that acts on the magnetic field, ∇̃× (b/B̃) (see Eq. (2.1.23)). This latter

corresponds to the curvature of the magnetic field which is proportional 1/R0. In fact, the

curvature of the magnetic field is defined as k = b ·∇b and, when the local current density is

negligible, ∇̃× B̃ = 0 and ∇̃× (b/B̃) = 2b×k/B̃ . Incidently, with this we have also proven that

the derivative on u in C̃ (u) acts orthogonal to the magnetic field, since (2b×k/B̃) ⊥ b.
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To conclude, the typical scale lengths of the physical operators are,

∇̃‖u ∼ 1

R0
, ∇̃2

‖u ∼ 1

R2
0

, C̃ (u) ∼ 1

R0l⊥
, [̃φ,u ]̃ ∼ 1

l 2
⊥

, ∇̃2
⊥u ∼ 1

l 2
⊥

(2.2.1)

and, analogously, for the dimensionless form,

∇‖u ∼ 1, ∇2
‖u ∼ 1, C (u) ∼ ρs0

l⊥
= ρ∗σ−1, [φ,u] ∼ ρ2

s0

l 2
⊥

= ρ2
∗σ

−2, ∇2
⊥u ∼ ρ2

s0

l 2
⊥

= ρ2
∗σ

−2

(2.2.2)

Note that using l⊥ instead of ρs0 when defining the dimensionless form in Eqs. (2.1.20)-(2.1.24)

would have indeed led to operators of order one, but l⊥, unlike ρs0, can not be determined

starting from plasma quantities such as the plasma electron temperature, ion mass and

strenght of the magnetic field. l⊥ corresponds to the turbulence scale in the perpendicular

direction and can not be estimated a-priori, nonetheless we expect ρs0 < l⊥ < R0.

2.2.2 Toroidal coordinates

Before proceeding with the ordering, let us rigorously define the toroidal coordinate basis and

its properties. The toroidal coordinates (r̃ ,θ,ϕ) can be defined by a mapping to the Cartesian

coordinates (x̃, ỹ , z̃) = G(r̃ ,θ,ϕ):

x̃ = R̃ cosϕ= (R0 − r̃ cosθ)cosϕ

ỹ = R̃ sinϕ= (R0 − r̃ cosθ)sinϕ (2.2.3)

z̃ = Z0 + r̃ sinθ

with (R0, Z0) magnetic axis position on a poloidal plane and R major radius. The covariant

coordinate basis [30] (er ,eθ,eϕ) is defined as follows:

er̃ = ∂G

∂r̃
= (−cosθcosϕ, −cosθ sinϕ, sinθ)

eθ =
∂G

∂θ
= r̃ (sinθcosϕ, sinθ sinϕ, cosθ)

eϕ = ∂G

∂ϕ
= R̃(−sinϕ, cosϕ, 0)

The contravariant basis (er̃ ,eθ,eϕ) = (∇r,∇θ,∇ϕ) is instead defined as [30]:

ei =∇i = e j ×ek

ei ·e j ×ek
= ei

||ei ||2
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since the toroidal coordinates orthogonal. Furthermore, due to the orthogonality of the

coordinate system,

er̃ //∇r̃ , ||er̃ || = 1, ||∇r̃ || = 1,

eθ//∇θ, ||eθ|| = r̃ , ||∇θ|| = 1

r̃
(2.2.4)

eϕ//∇ϕ, ||eϕ|| = R̃, ||∇ϕ|| = 1

R̃

Finally, the Jacobian of the transformation G is J̃ = (∇r̃ ·∇θ×∇ϕ)−1 = r̃ R̃.

2.2.3 Magnetic field in toroidal coordinates

We express the axisymmetric tokamak magnetic field in the form

B̃ = F (ψ̃)∇̃ϕ+∇̃ϕ×∇̃ψ̃(r̃ ,θ) (2.2.5)

where, for simplicity, we assume F = R0B0, implying that the toroidal magnetic field varies as

1/R̃. The expression of the magnetic field in contravariant components, B̃ = B̃ i ei , reads as

B̃ = B0R0

R̃2
eϕ− 1

r̃ R̃
∂θψ̃ er̃ + 1

r̃ R̃
∂r̃ ψ̃ eθ (2.2.6)

that can be obtained applying the relation B̃ i = B̃ · ∇i to the magnetic field expression in

Eq. (2.2.5), and using the information on the basis vectors in Eqs. (2.2.4). In covariant compo-

nents, B̃ = B̃i ei , one obtains

B̃ = B0R0 ∇̃ϕ− 1

r̃ R̃
∂θψ̃ ∇̃r̃ + r̃

R̃
∂r̃ ψ̃ ∇̃θ (2.2.7)
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2.2.4 Operators in toroidal coordinates

Eqs. (2.1.20)-(2.2.6) provide all the elements to evaluate the expressions of the differential

operators in toroidal coordinates. In physical units these are (note the use of Einstein notation)

∇̃‖u = B̃

B̃
·
(
∇r̃

∂u

∂r̃
+∇θ∂u

∂θ
+∇ϕ∂u

∂ϕ

)

= 1

B̃

(
B̃ r̃ ∂u

∂r̃
+ B̃θ ∂u

∂θ
+ B̃ϕ ∂u

∂ϕ

)
(2.2.8)

∇̃2
‖u = ∇̃‖(∇̃‖u) = B̃ i

B̃

∂

∂c̃ i

(
B̃ j

B̃

∂u

∂c̃ j

)
(2.2.9)

[̃φ,u ]̃ = B̃

B̃
·
[(

∂φ

∂r̃
∇r̃ + ∂φ

∂θ
∇θ+ ∂φ

∂ϕ
∇ϕ

)
×
(
∂u

∂r̃
∇r̃ + ∂u

∂θ
∇θ+ ∂u

∂ϕ
∇ϕ

)]

= 1

B̃ J̃
(B̃ϕ[φ, f ]r̃ ,θ+ B̃r̃ [φ,u]θ,ϕ+ B̃θ[φ,u]ϕ,r̃ ) (2.2.10)

C̃ (u) = 1

2 J̃ B̃

[
− B̃ϕ

B̃ 2
∂θB̃ 2 ∂u

∂r̃
+ B̃ϕ

B̃ 2
∂r̃ B̃ 2 ∂u

∂θ

+
(
∂r̃ B̃θ−∂θB̃r̃ − B̃θ

B̃ 2
∂r̃ B̃ 2 + B̃r̃

B̃ 2
∂θB̃ 2

)
∂u

∂ϕ

]
(2.2.11)

∇̃2
⊥u = ∇̃ · ∇̃⊥u = 1

J̃

∂

∂c̃k

(
J̃ (∇⊥u)k

)
= 1

J̃

∑
k

∂

∂c̃k

(
J̃

B̃ 2
||ek ||2εi j kε

lni B̃l B̃ j ∂u

∂c̃n

)
(2.2.12)

where we define [φ, f ]x,y := ∂xφ∂y f −∂yφ∂x f ,c̃ i indicates one of the coordinates (r̃ ,θ,ϕ), and

εi j k is the Levi-Civita symbol. B̃ is the modulus of B̃, computed as B̃ =
√

B̃i B̃ i .

The derivation of the operators above is relatively straightforward but for the perpendicular

Laplacian in Eq. (2.2.12). Starting from Eq. (2.1.24) the perpendicular Laplacian in physical

units reads:

∇̃2
⊥u := ∇̃ · ∇̃⊥u = ∇̃ ·

[
1

B̃ 2
(B̃×∇̃u)× B̃

]

Let us start by computing the innermost cross product:

B̃×∇̃u = 1

J̃
εi j k B̃i

∂u

∂c̃ j
ek

Now the perpendicular gradient can be computed

∇̃⊥u = 1

B̃ 2
(B̃×∇̃ũ)×B = 1

B 2 J̃εi j k (B̃×∇̃ũ)i B̃ j ek

= 1

B̃ 2
εi j kε

lni B̃l B̃ j ∂u

∂c̃n ek (2.2.13)
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2.2. Differential operators in toroidal coordinates

Finally, we compute the divergence of the perpendicular gradient

∇̃2
⊥u := ∇̃ · ∇̃⊥u = 1

J̃

∂

∂c̃k

(
J̃ (∇⊥u)k

)
= 1

J̃

∑
k

∂

∂c̃k

(
J̃

B̃ 2
||ek ||2εi j kε

lni B̃l B̃ j ∂u

∂c̃n

)
(2.2.14)

Note that all operators involve derivatives in all three directions (r,θ,ϕ), since our coordinate

system is not aligned to the magnetic field.

2.2.5 Ordering of the magnetic field components

In order to simplify the expression of the operators in Eqs. (2.2.8)- (2.2.12), we here investigate

the magnitude of magnetic field components appearing therein. The scaling of the toroidal

component of the magnetic field is immediate, as we chose it to vary as 1/R̃ see Eq. (2.2.5).

The radial and poloidal components, on the other hand, are determined by the poloidal flux,

for which we propose the following ordering

∂ψ

∂r̃
∼ 1

a
,

1

r̃

∂ψ

∂θ
∼ 1

a
, (2.2.15)

with ∂ϕψ= 0 because of axisymmetry. The dimensionless poloidal flux ψ is chosen to be of

order one, ψ̃ ∼ a2|B0| and ψ = ψ̃/(a2|B0|). Let us show that these assumptions are valid in

the SOL of a large aspect ratio tokamak. For simplicity, we consider the case of circular flux

surfaces, for which ψ=ψ(r ) and ∂θψ= 0. In this case the safety factor reads

q := r̃

R̃

||B̃ϕ∇̃ϕ||
||B̃θ∇̃θ||

=
∣∣∣∣ B̃ϕ

B̃θ

∣∣∣∣= |B0|R0

R̃2∣∣∣B0a2

r̃ R̃
∂r̃ψ

∣∣∣ =
r̃

a

R0

R̃

1

|a∂r̃ψ| (2.2.16)

where we used properties of covariant and contravariant basis in Eq. (2.2.4) and the magnetic

field contravariant components in Eq.-(2.2.6). In Eq. (2.2.16), R̃ = R0 +εr̃ cosθ evaluated at

cosθ =±1 gives an estimate for ∂r̃ψ

1

q

r̃

a

1

1−εr̃ /a
< a

∣∣∣∂ψ
∂r̃

∣∣∣< 1

q

r̃

a

1

1+εr̃ /a
(2.2.17)

Since r̃ /a ∼ 1 in the SOL and q > 1, if the inverse aspect ratio ε is small, then the extremes in

the above inequality are order 1 and the assumption on ψ gradient scale lengths in Eq. (2.2.15)

are valid.

Under this assumption, the ordering of the magnetic field in covariant components (from
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Chapter 2. Physical model in toroidal coordinates

Eq. (2.2.7)) is

B̃ =− 1

r̃ R̃︸︷︷︸
a−1R−1

0

∂θψ̃︸︷︷︸
a2B0

∇r̃︸︷︷︸
1

+ r̃

R̃︸︷︷︸
aR−1

0

∂r̃ ψ̃︸︷︷︸
aB0

∇θ︸︷︷︸
a−1

+B0R0︸ ︷︷ ︸
R0B0

∇ϕ︸︷︷︸
R−1

0

= B̃r︸︷︷︸
aR−1

0 B0

∇r̃ + B̃θ︸︷︷︸
a2R−1

0 B0

∇θ+ B̃ϕ︸︷︷︸
R0B0

∇ϕ (2.2.18)

while, in contravariant components (from Eq. (2.2.6)):

B̃ =− 1

r̃ R̃︸︷︷︸
a−1R−1

0

∂θψ̃︸︷︷︸
a2B0

er̃︸︷︷︸
1

+ 1

r̃ R̃︸︷︷︸
a−1R−1

0

∂r̃ ψ̃︸︷︷︸
aB0

eθ︸︷︷︸
a

+ B0R0

R̃2︸ ︷︷ ︸
R−1

0 B0

eϕ︸︷︷︸
R0

= B̃ r︸︷︷︸
aR−1

0 B0

er̃ + B̃θ︸︷︷︸
R−1

0 B0

eθ + B̃ϕ︸︷︷︸
R−1

0 B0

eϕ (2.2.19)

where we used ψ̃∼ a2|B0|. The modulus of B̃ also appears in the operators expressions:

B̃ 2 = B̃i B̃ i = B 2
0 R2

0

R̃2︸ ︷︷ ︸
B 2

0

+ 1

r̃ 2R̃2
∂θψ̃

2

︸ ︷︷ ︸
a2R−2

0 B 2
0

+ 1

R̃2
∂r̃ ψ̃

2

︸ ︷︷ ︸
a2R−2

0 B 2
0

= B 2
0 R2

0

R̃2
+O(ε2) (2.2.20)

In addition, the derivatives of the magnetic field can be ordered as follows:

∂r̃ B̃ 2 = 2

R̃
cosθB̃ 2 +

[
− 2

R̃2r̃ 3
∂θψ̃

2 + 1

R̃2r̃ 2
∂r̃ (∂θψ̃)2 + 1

R̃2
∂r̃ (∂r̃ ψ̃)2

]
∼ B 2

0

R0

∂θB̃ 2 =− 2

R̃
r̃ sinθB̃ 2 +

[
1

R̃2r̃ 2
∂θ(∂θψ̃)2 + 1

R̃2
∂θ(∂r̃ ψ̃)2

]
∼ a

R0
B 2

0

∂θB̃θ = 1

r̃ R̃
∂2

r̃θψ̃−
[

1

R̃2
sinθ∂r̃ ψ̃

]
∼ B0

R0

∂θB̃θ =
r̃

R̃
∂2

r̃θψ̃−
[

r 2

R̃2
sinθ∂r̃ ψ̃

]
∼ a2B0

R0

∂r̃ B̃θ =
1

R̃
∂r̃ ψ̃+ r̃

R̃
∂2

r̃ r̃ ψ̃+
[

r̃

R̃2
cosθ∂r̃ ψ̃

]
∼ a

R0
B0 (2.2.21)

∂r̃ B̃θ =− 1

r̃ 2R̃
∂r̃ ψ̃+ 1

r̃ R̃
∂2

r̃ r̃ ψ̃+
[

cosθ

r̃ R̃2
∂r ψ̃

]
∼ B0

aR0

∂θB̃r = ∂θB̃ r =− 1

r̃ R̃
∂2
θθψ̃−

[
sinθ

R̃2
∂θψ̃

]
∼ a

R0
B0

∂r̃ B̃r = ∂r̃ B̃ r = 1

r̃ 2R̃
∂θψ̃− 1

r̃ R̃
∂2

r̃θψ̃−
[

cosθ

r̃ R̃2
∂θψ̃

]
∼ B0

R0

with the terms inside the square brackets being order a/R0 higher than the leading order ones.

To conclude the ordering of the magnetic field, let us show that R0∇̃ ·b is order ε, and we can
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2.2. Differential operators in toroidal coordinates

indeed neglect it in the drift-reduced Braginskii’s equations (as mentioned in Sec. 2.1):

R0∇̃ ·b = R0

J̃

(
∂θ( J̃ B̃θ/B̃)+∂r̃ ( J̃ B̃ r /B̃)

)
= R0

r̃ R̃

(
∂θ(∂r̃ ψ̃/B̃)−∂r̃ (∂θψ̃/B̃)

)

=

ε︷ ︸︸ ︷
R0

r̃ R̃

∂r̃ ψ̃∂θB̃ 2

2B̃ 3︸ ︷︷ ︸
aR−1

0

−

ε︷ ︸︸ ︷
R0

r̃ R̃

∂θψ̃∂r̃ B̃ 2

2B̃ 3︸ ︷︷ ︸
aR−1

0

∼ ε (2.2.22)

where we used the relations ∂r̃ B̃ = ∂r̃ B̃ 2/(2B̃) and ∂θB̃ = ∂θB̃ 2/(2B̃).

2.2.6 Assumption on plasma quantities derivatives in toroidal coordinates

The last step before proceeding with the ordering and simplification of the operators expres-

sions (2.2.8)-(2.2.12), is to identify the scale lengths of the derivatives of the evolved quantities

u in toroidal coordinates. Intuitively, if the safety factor and the tokamak aspect ratio are large,

the perpendicular and the poloidal plane almost coincide. Or, analogously, the projection of

the perpendicular operators in the toroidal direction is negligible and therefore the toroidal

derivative only appears in the parallel gradients. Following this intuition we have:

∂u

∂r̃
∼ 1

l⊥
,

1

r̃

∂u

∂θ
∼ 1

l⊥
,

1

R̃

∂u

∂ϕ
∼ 1

R0
(2.2.23)

where l⊥ and R0 are the typical scale lengths of perpendicular and parallel dynamics respec-

tively (see Sec. 2.2.1). Let us prove that our intuition is correct by comparing the projection of

the perpendicular operator in the poloidal and toroidal direction. For simplicity we consider a

circular equilibrium (Br = 0), using the definition of ∇̃⊥ in Eq. (2.2.13) as well as the formula

for the safety factor q in eq (2.2.16) we have

(∇̃⊥u ·eϕ)∇̃ϕ
(∇̃⊥u ·eθ)∇̃θ = +B̃θB̃θ∂ϕu − B̃ϕB̃θ∂θu

−B̃θB̃ϕ∂ϕu + B̃ϕB̃ϕ∂θu

∇̃ϕ
∇̃θ =− B̃θ∇̃ϕ

B̃ϕ∇̃θ = 1

q

r̃

R̃
∼ ε

q
(2.2.24)

where the numerator and denominator correspond to the component of ∇⊥ in the toroidal

direction and poloidal direction, respectively. If ε is small and q is large the toroidal component

in indeed negligible in the perpendicular dynamics and the typical length scale of a toroidal

derivative will be 1/R0.

2.2.7 Simplified operator expressions

We have presented order of magnitude scalings for gradients of the fluctuating quantities u

and magnetic field, both in the poloidal plane and toroidal direction (Eqs. (2.2.23) and (2.2.15)).

The validity of these scalings increases with safety factor q and aspect ratio R0/a.

In this section, we will piece together the work done in sections 2.2.1-2.2.6 to simplify the

differential operators expressions in Sec. 2.2.4. As mentioned, we will neglect all term that are
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Chapter 2. Physical model in toroidal coordinates

order ρ∗, σ or ε, and retain only order one terms, with:

ρs0

R0
= ρ∗ ≤ l⊥

R0
=σ ≤ a

R0
= ε

Neglecting order ε terms corresponds to considering the large aspect ratio approximation,

while neglecting order σ and ρ∗ terms is justified because l⊥ and ρs0 are much smaller than

the machine major radius R0.

As we have seen in section 2.2.1 parallel and perpendicular operators have intrinsically differ-

ent magnitude, here we want to keep the terms that are order one in the operators normalised

form, for instance, since ∇̃2⊥ ∼ 1/l 2
⊥ we want to keep the terms that are smaller than 1/l 2

⊥,

while in the case of ∇̃‖ we would neglect terms smaller 1/R0. Hence, to permit consistent

treatment of the operators, we will order them in normalised form:

∇‖u ∼ 1, ∇2
‖u ∼ 1, σρ−1

∗ C (u) ∼ 1, σ2ρ−2
∗ [φ,u] ∼ 1, σ2ρ−2

∗ ∇2
⊥u ∼ 1 (2.2.25)

(re-arranged from Eq. (2.2.2)) and keep only terms of order 1 or higher in the resulting expres-

sions.

From Eqs. (2.1.20), (2.2.8), (2.2.18) and (2.2.20) the dimensionless expression for the parallel

gradient can be ordered as:

∇‖u =

εσ−1︷ ︸︸ ︷
R0

B̃ r

B̃︸︷︷︸
aR−1

0

∂u

∂r̃︸︷︷︸
l−1

p

+

εσ−1︷ ︸︸ ︷
R0

B̃θ

B̃︸︷︷︸
R−1

0

∂u

∂θ︸︷︷︸
l−1

p a

+

1︷ ︸︸ ︷
R0

B̃ϕ

B̃︸︷︷︸
R−1

0

∂u

∂ϕ︸︷︷︸
1

.

Since a > l⊥ it follows that εσ−1 > 1. Therefore the poloidal components are not negligible

and it is not possible to simplify the expression of the parallel operator.

To simplify the expression for ∇2
‖, we need to use the ordering of the derivatives of the mag-

netic field in Eqs. (2.2.21), as well as the operator expression in physical and dimensionless

units (Eqs. (2.2.9) and (2.1.21)), and the ordering of the contravariant components for B̃ in
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2.2. Differential operators in toroidal coordinates

Eq. (2.2.19):

∇2
‖u =

1︷ ︸︸ ︷(
R0

B̃ϕ

B̃

)2

︸ ︷︷ ︸
1

∂2u

∂ϕ2︸︷︷︸
1

+

ε2σ−2︷ ︸︸ ︷(
R0

B̃ r

B̃

)2

︸ ︷︷ ︸
a2

∂2u

∂r̃ 2︸︷︷︸
l−2
⊥

+

ε2σ−2︷ ︸︸ ︷(
R0

B̃θ

B̃

)2

︸ ︷︷ ︸
1

∂2u

∂θ2︸︷︷︸
l−2
⊥ a2

+

εσ−1︷ ︸︸ ︷
2R2

0
B̃ϕB̃θ

B̃ 2︸ ︷︷ ︸
1

∂2u

∂ϕ∂θ︸ ︷︷ ︸
l−1
⊥ a

+

εσ−1︷ ︸︸ ︷
2R2

0
B̃ϕB̃ r

B̃ 2︸ ︷︷ ︸
a

∂2u

∂ϕ∂r︸ ︷︷ ︸
l−1
⊥

+

ε2σ−2︷ ︸︸ ︷
2R2

0
B̃ r B̃θ

B̃ 2︸ ︷︷ ︸
a

∂2u

∂θ∂r︸ ︷︷ ︸
l−2
⊥ a

+

⎛
⎜⎜⎜⎜⎝

εσ−1︷ ︸︸ ︷
R2

0
B̃ r∂r̃ B̃ r

B̃ 2︸ ︷︷ ︸
a

+

εσ−1︷ ︸︸ ︷
R2

0
B̃θ∂θB̃ r

B̃ 2︸ ︷︷ ︸
a

−

ε2σ−1︷ ︸︸ ︷
R2

0
B̃ r B̃ r∂r̃ B̃ 2

2B̃ 4︸ ︷︷ ︸
a2R−1

0

−

ε2σ−1︷ ︸︸ ︷
R2

0

B̃θB̃ r∂θ̃B̃ 2

2B̃ 4︸ ︷︷ ︸
a2R−1

0

⎞
⎟⎟⎟⎟⎠
∂u

∂r︸︷︷︸
l−1
⊥

+

⎛
⎜⎜⎜⎜⎝

εσ−1︷ ︸︸ ︷
R2

0
B̃θ∂θB̃θ

B̃ 2︸ ︷︷ ︸
1

+

εσ−1︷ ︸︸ ︷
R2

0
B̃ r∂r B̃θ

B̃ 2︸ ︷︷ ︸
1

−

ε2σ−1︷ ︸︸ ︷
R2

0
B̃θB̃θ∂θB̃ 2

2B̃ 4︸ ︷︷ ︸
aR−1

0

−

ε2σ−1︷ ︸︸ ︷
R2

0
B̃ r B̃θ∂r̃ B̃ 2

2B̃ 4︸ ︷︷ ︸
aR−1

0

⎞
⎟⎟⎟⎟⎠
∂u

∂θ︸︷︷︸
l−1
⊥ a

+

⎛
⎜⎜⎜⎜⎝

ε︷ ︸︸ ︷
R2

0
B̃ r∂r̃ B̃ϕ

B̃ 2︸ ︷︷ ︸
R−1

0 a

+

ε︷ ︸︸ ︷
R2

0
B̃θ∂θB̃ϕ

B̃ 2︸ ︷︷ ︸
R−1

0 a

−

ε︷ ︸︸ ︷
R2

0
B̃ r B̃ϕ∂r̃ B̃ 2

2B̃ 4︸ ︷︷ ︸
R−1

0 a

−

ε︷ ︸︸ ︷
R2

0
B̃θB̃ϕ∂θB̃ 2

2B̃ 4︸ ︷︷ ︸
R−1

0 a

⎞
⎟⎟⎟⎟⎠
∂u

∂ϕ︸︷︷︸
1

In the above expression, all terms order 1, ε2σ−2 or εσ−1 must be kept and only the terms

order ε2σ−1 and ε can be dropped, meaning that of all the 9 derivatives, i.e. ∂2
ϕϕu, ∂2

r̃ r̃ u, ∂2
θθ

u,

∂2
ϕθ

u, ∂2
ϕr̃ u, ∂2

θr̃ u, ∂r̃ u, ∂θu, ∂ϕu, only the first derivative in the toroidal direction ∂ϕu can be

entirely neglected.

With respect to the parallel operators, the perpendicular ones can be significantly simplified.

From Eq. (2.1.22), (2.2.10), (2.2.19) and (2.2.20) we have for the following ordering for the

Poisson brackets:

σ2ρ−2
∗ [φ,u] =

1︷ ︸︸ ︷
σ2ρ−2

∗
ρ2

s0

J̃︸︷︷︸
ρ2

s0a−1R−1
0

B̃ϕ

B̃︸︷︷︸
R0

[φ,u]r̃ ,θ︸ ︷︷ ︸
l−2

p a

+

εσ︷ ︸︸ ︷
σ2ρ−2

∗
ρ2

s0

J̃︸︷︷︸
ρ2

s0a−1R−1
0

B̃r

B̃︸︷︷︸
aR−1

0

[φ,u]θ,ϕ︸ ︷︷ ︸
l−1

p a

+

εσ︷ ︸︸ ︷
σ2ρ−2

∗
ρ2

s0

J̃︸︷︷︸
ρ2

s0a−1R−1
0

B̃θ

B̃︸︷︷︸
a2R−1

0

[φ,u]ϕ,r̃︸ ︷︷ ︸
l−1

p
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Here the leading order is the first term, ρ2∗σ−2, which is already a small term since ρ∗/σ =
ρs0/l⊥ < 1. The second and third term are εσ times smaller than the first and will therefore be

neglected. As a results, the simplified Poisson brackets involve only derivatives in the poloidal

plane.

For the curvature operator, we make use of the ordering for the derivatives of the magnetic

field in Eq. (2.2.21), together with Eqs. (2.1.23), (2.2.11), (2.2.19) and (2.2.20). We obtain:

σρ−1
∗ C (u) =−

1︷ ︸︸ ︷
σρ−1

∗
ρs0R0

2J︸ ︷︷ ︸
ρs0a−1

B̃ϕ

B̃︸︷︷︸
R0

∂θB̃ 2

B̃ 2︸ ︷︷ ︸
aR−1

0

∂u

∂r̃︸︷︷︸
l−1

p

+

1︷ ︸︸ ︷
σρ−1

∗
ρs0R0

2 J̃︸ ︷︷ ︸
ρs0a−1

B̃ϕ

B̃︸︷︷︸
R0

∂r̃ B̃ 2

B̃ 2︸ ︷︷ ︸
R−1

0

∂u

∂θ︸︷︷︸
l−1

p a

+

σ︷ ︸︸ ︷
σρ−1

∗
ρs0R0

2 J̃︸ ︷︷ ︸
ρs0a−1

( ∂r̃ B̃θ

B̃︸ ︷︷ ︸
aR−1

0

− ∂θBr

B̃︸ ︷︷ ︸
aR−1

0

− B̃θ

B̃︸︷︷︸
a2R−1

0

∂r̃ B̃ 2

B̃ 2︸ ︷︷ ︸
R−1

0

+ B̃r

B̃︸︷︷︸
aR−1

0

∂θB̃ 2

B̃ 2︸ ︷︷ ︸
aR−1

0

) ∂u

∂ϕ︸︷︷︸
1

The term containing the toroidal derivative is order σ and can be neglected. Also in this case,

derivatives act only on the poloidal plane.

In the case of the perpendicular Laplacian, we have to make use of all the ordering for magnetic

field components, modulus and derivatives. From its definition in Eq. (2.1.24) and Eq. (2.2.12),

we obtain:

σ2ρ−2
∗ ∇2

⊥u =σ2ρ−2
∗

ρ2
s0

r̃ R̃︸︷︷︸
ρ2

s0a−1R̃−1
0

[ ∂

∂ϕ

( r̃

R̃︸︷︷︸
aR−1

0

( B̃θB̃θ

B̃ 2︸ ︷︷ ︸
a2R−2

0

∂u

∂ϕ︸︷︷︸
1

− B̃ϕB̃θ

B̃ 2︸ ︷︷ ︸
1

∂u

∂θ︸︷︷︸
l−1
⊥ a

− B̃ϕB̃ r

B̃ 2︸ ︷︷ ︸
a

∂u

∂r̃︸︷︷︸
l−1
⊥

+ B̃r B̃ r

B̃ 2︸ ︷︷ ︸
a2R−2

0

∂u

∂ϕ︸︷︷︸
1

))

+ ∂

∂θ

( R̃

r̃︸︷︷︸
a−1R0

( B̃r B̃ r

B̃ 2︸ ︷︷ ︸
a2R2

0

∂u

∂θ︸︷︷︸
l−1
⊥ a

− B̃θB̃ r

B̃ 2︸ ︷︷ ︸
a3R−2

0

∂u
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⊥

− B̃θB̃ϕ
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0

∂u

∂ϕ︸︷︷︸
1

+ B̃ϕB̃ϕ

B̃ 2︸ ︷︷ ︸
1

∂u

∂θ︸︷︷︸
l−1
⊥ a
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+ ∂

∂r

(
r̃ R̃︸︷︷︸
aR0

( B̃ϕB̃ϕ
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1

∂u
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l−1
⊥

− B̃r B̃ϕ
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0
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1
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0

∂u
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s0

+ B̃θB̃θ
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a2R−2

0

∂u

∂r̃︸︷︷︸
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⊥

))]

where the terms in the boxes are the terms that dominate after taking the partial derivative in

each line. Finally we have

σ2ρ−2
∗ ∇2

⊥u ∼−

εσ︷ ︸︸ ︷
σ2ρ−2

∗
ρ2

s0

R̃2︸︷︷︸
ρ2

s0R−2
0

B̃ϕB̃ r

B̃ 2︸ ︷︷ ︸
a

∂2u

∂r̃∂ϕ︸ ︷︷ ︸
l−1
⊥

+

1︷ ︸︸ ︷
σ2ρ−2

∗
ρ2

s0

r̃ 2︸︷︷︸
l 2
⊥a−2

B̃ϕB̃ϕ

B̃ 2︸ ︷︷ ︸
1

∂2u

∂θ2︸︷︷︸
l−2
⊥ a2

+

1︷ ︸︸ ︷
σ2ρ−2

∗ ρ2
s0

B̃ϕB̃ϕ

B̃ 2︸ ︷︷ ︸
1

∂2u

∂r̃ 2︸︷︷︸
l−2
⊥

Therefore of all the initial terms only two will be retained, one containing a double derivative
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2.2. Differential operators in toroidal coordinates

in r̃ and the other a double derivative in θ, once again the originally 3D operators is reduced

to 2D. Note that this time the effect on code implementation is important, since ∇2
⊥ has to be

inverted to give the electric potential from the vorticity (the last equation of the drift-reduced

Braginskii’s equation (2.1.17)), inverting a 2D operator or instead of a full 3D one leads to

drastic reduction in computational cost.

To conclude, by neglecting terms that are order ρ∗, σ, ε or smaller and introducing the explicit

form of the magnetic field components in terms of the poloidal flux (Eq. (2.2.7) and Eq. (2.2.6))

we obtain the simplified expression for the differential operators:

∇‖u = B0

|B0|
∂u

∂ϕ
+ a

ρs0
∂r̂ψ

1

r

∂u

∂θ
− a

ρs0

1

r̂
∂θψ

∂u

∂r
(2.2.26)

∇2
‖u = ∂2u

∂ϕ2 +dr r
∂2u

∂r 2 +dθθ
1

r 2

∂2u

∂θ2

+dϕθ
1

r

∂2u

∂ϕ∂θ
−dϕr

∂2u

∂ϕ∂r
−dθr

1

r

∂2u

∂θ∂r

+dr
∂u

∂r
+dθ

1

r

∂u

∂θ
(2.2.27)

[φ,u] = 1

r

B0

|B0|
[φ,u]r,θ (2.2.28)

C (u) = B0

|B0|
(
sinθ

∂u

∂r
+ cosθ

r

∂u

∂θ

)
(2.2.29)

∇2
⊥u = ∂2u

∂r 2 + 1

r 2

∂2u

∂θ2 (2.2.30)

Note that we have introduced two different dimensionless form of the radial coordinate,

r̂ = r̃ /a, r = r̃ /ρs0, to highlight the two different scale lengths of equilibrium poloidal flux and

fluctuating quantities. The coefficients appearing in the parallel Laplacian are:

dr r = a2

ρ2
s0r̂ 2

(∂θψ)2, dθθ =
a2

ρ2
s0

(∂r̂ψ)2,

dϕθ =
2a

ρs0

B0

|B0|
∂r̂ψ, dϕr = 2a

ρs0

B0

|B0|
1

r̂
∂θψ, dθr =

2a2

ρ2
s0r̂

∂r̂ψ ∂θψ

dr = a

ρs0r̂ 2

(
∂θψ ∂2

r̂θψ−∂r̂ψ ∂2
θθψ− 1

r̂
(∂θψ)2

)

dθ =
a

ρs0r̂

(
∂r̂ψ ∂2

r̂θψ−∂θψ ∂2
r̂ r̂ψ+ 1

r̂
∂r̂ψ∂θψ

)

These simplified operators expressions in Eqs. (2.2.26)-(2.2.30) have been checked using

Mathematica, starting from the operators definition Eqs. (2.1.20)-(2.1.24) and the magnetic

field expressions (2.2.7), (2.2.6) and imposing the scaling assumptions on ψ and u derivatives

in Eqs. (2.2.15)-(2.2.23).

Interestingly, the perpendicular operators (i.e. [φ,u], C (u), and ∇2
⊥u) do not depend on the
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Chapter 2. Physical model in toroidal coordinates

Figure 2.1 – Sketch of the computational domain of GBS with a contour plot of the poloidal
flux ψ in the edge (thin lines) and in the SOL (thick lines).

poloidal flux ψ, the information on the magnetic field topology is solely carried by the parallel

operators ∇‖u and ∇2
‖u. Furthermore the our approximation led to simplification of the

perpendicular operators that are now acting only in the poloidal plane, but did not impact

significantly the parallel ones, that are still (unfortunately) fully 3D.

Finally, we would like to stress the flexibility resulting from the use of toroidal coordinates.

All expressions of the geometrical operators are reduced to combinations of derivatives in

r,θ, and ϕ multiplied by coefficients that depend only on the equilibrium magnetic field. The

resulting scheme is very flexible, since by prescribing these values as input parameters, any

axisymmetric magnetic equilibrium can be investigated, for example single null, double null

or snowflake configurations.

2.3 Radial boundary conditions

The domain where Eqs. (2.1.11)-(2.1.17) are solved is a toroidal ring, rmin ≤ r ≤ rmax, 0 ≤ θ <
2π, 0 ≤ϕ< 2π. The ring is centered at the tokamak magnetic axis and contains a closed flux

surface region, the separatrix, the X-point, and divertor legs (see Fig. 2.1).

In the previous limited configuration implemented in GBS, the magnetic field lines were

intersecting the wall at the toroidal limiter, usually localised at the low field side, coinciding

with θ = 0 (or θ = 2π) (see Fig. 1.2). In diverted configuration there is no limiter, and the

magnetic field lines enter the wall at r = rmax, not only at the divertor plates, but all along the

outer wall.

The plasma interaction with a solid wall is described by the boundary conditions at the

magnetic pre-sheath entrance, developed by Loizu et al. [31] in the cold ion limit and then

24



2.4. Initial conditions

extended by Mosetto et al. [27] to include hot ion effects. These were previously applied as

boundary conditions in θ, at the limiter location, and are now adapted to be applied at the

outer wall, in the radial direction:

v∥,i =±
√

Te FT

v∥,e =±
√

Te max{exp(λ− φ

Te
),exp(λ)}

∂rφ=∓
�

Te

FT
∂r v∥,i

∂r n =∓ n�
Te FT

∂r v∥,i (2.3.1)

ω=− 1

F 2
T

(∂r v∥,i )2 ∓
�

Te

FT
∂2

r r v∥,i

∂r Te = 0

∂r Ti = 0

with FT =�
1+τTi /Te . Where all quantities are in GBS dimensionless units. The plus/minus

indicates whether the magnetic field points towards (top sign) or out from the wall (bottom

sign). Note that, for simplicity, the boundary conditions in Eqs. (2.3.1) neglect correction

terms containing derivatives along the wall, included in Ref. [31].

Boundary conditions are also required towards the core at r = rmin. Since we lack a physical

model to describe the interaction between edge and core, an ad hoc set of boundary conditions

is chosen. We impose for all fields ∂r u = 0 (homogeneous Neumann), except for ω and φ,

for which we impose Dirichelet conditions ω = 0 and φ = λTe . The electric potential φ

requires a Dirichelet condition to grant uniqueness of the solution for the Poisson’s equation

∇2
⊥φ=ω+τTi (Eq. (2.1.17)). The presence of the sources of plasma density and temperature

in the closed flux surface region should help decouple the plasma dynamics in the edge and

SOL from the ad hoc core boundary conditions, which are not based on a physical rationale.

In the poloidal and toroidal directions the domain is periodic.

We remark that most magnetic equilibria used in experiments present a vertically elongated

shape. As a consequence, the use of a circular ring as a computational domain results into

an inefficient use of resources. In these cases the use of toroidal coordinates with a vertical

elongation, such that constant r surfaces map ellipses instead of circles, is a relatively straight-

forward possible future implementation to exploit more efficiently the computational domain.

2.4 Initial conditions

The long term evolution of the system is statistically independent of the initial conditions.

For this reason the initial conditions are not physically interesting, and they are just chosen

compatible with the boundary conditions. We impose φ(r,θ,ϕ) =λTe , with Te being an initial
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Chapter 2. Physical model in toroidal coordinates

constant electron temperature. Similarly, ω, n and Ti are usually set to a constant value on

the entire domain. Additionally, we impose v‖e = v‖i , with the v‖e , v‖i functions satisfying

v‖e,i |rmax =±�Te and ∂r v‖e,i |rmax = 0, such that the right-hand side of the boundary conditions

for n,φ,ω is zero at the wall (see Eqs. (2.3.1)), according to uniform initial profiles of these

quantities. Finally, for all fields, the initial conditions present no toroidal dependence, except

for a three-dimensional random noise that is added to seed plasma turbulence.
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3 Numerical implementation and code
verification

Hereafter we detail the implementation in the GBS code of the physical model described in

chapter 2. Our implementation is based on the GBS version for the simulation of limited

plasma, which uses flux aligned coordinates [23]. With respect to the limited version of

GBS, the use of toroidal coordinates impacts the operators expressions (see Eqs. (2.2.26)-

(2.2.30)), and the use of a diverted equilibrium, instead of a limited one, impacts the boundary

conditions (Sec. 2.3) and the initial conditions (Sec. 2.4). To compensate for the lack of

alignment between grid and magnetic field, we increase the order of accuracy of the centered

finite differences scheme.

This chapter is structured as follow. First the code structure is presented in Sec. 3.1. The spatial

discretisation including the grid used and the new finite difference scheme that implements

the spatial operators is the subject of Sec. 3.2. We then focus on the boundary conditions used

in the case of a diverted equilibrium (Sec. 3.3). Finally, we test the code implementation and

performance in sections 3.4, 3.5, 3.6, and 3.7.

3.1 Code structure

Figure 3.1 sketches the GBS code work-flow. We first set the initial condition (IC) for u =
n,Te,i , v‖e,i , ω and electric potential φ, such that it satisfies the Poisson’s Eq. (2.1.17) and

the boundary conditions in (2.3.1). The time loop includes the evaluation of the right hand

side (RHS) of the drift-reduced Braginskii’s equations (2.1.11)-(2.1.16). This is computed

and stored in the vector ki with i = 1, ...,4 corresponding to the four substeps of the fourth

order Rounge-Kutta (RK4) time stepping. The fields values at each substep are computed

combining their expression at the previous time step, un , with ki according to the Runge-Kutta

scheme. In figure 3.1, un is assigned to [n[1],T [1]
e,i , ...], where the square brackets around the

apex indicate a Runge-Kutta substep, in this case [ j ] = [1] is the last substep, as i = 1, ..,4 but

j = mod(i ,4)+1 = 2,3,4,1. At every substep the boundary conditions (BC) are applied and

the Poisson’s equation for the electric potential is solved. This requires the inversion of the

perpendicular Laplacian and is the computational bottleneck of the code.

The boxes contoured with a dashed line were modified in the framework of the present thesis
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Chapter 3. Numerical implementation and code verification

Figure 3.1 – Work-flow of GBS, for both the flux aligned limited version and the toroidal diverted
one. The boxes contoured with dashed line correspond to the blocks of code rewritten in the
framework of this thesis.

to use toroidal coordinates, diverted equilibrium, and the new finite differences scheme. Note

that the new differential operators are discretised and applied to the fields when evaluating the

right-hand side of the drift-reduced Braginskii’s equations and when inverting the Laplacian.

The drift-reduced Braginskii’s equations are evolved until a quasi-steady state is reached,

where the plasma quantities averaged on the 3D domain fluctuate in time around a constant

value. This state results from a balance between the fluxes of plasma density and temperature

coming from the core, turbulent transport across the magnetic flux surfaces, and the plasma

losses to the wall.

3.2 Spatial discretisation

3.2.1 Numerical grid and staggering

We discretise our domain by using a numerical grid of Nr , Nθ, and Nϕ points along the radial,

poloidal and toroidal directions respectively. The discretisation in the toroidal direction is

usually coarser than in the poloidal or radial directions (2π/Nϕ > 2π/Nθ ∼ (rmax − rmin)/Nr ) re-

flecting the difference in characteristic scale lengths discussed in Sec. 2.2.6. For simplicity, the

spacing is chosen to be constant in each direction, even though in the future a possibility could

be to use a more refined mesh for the SOL and wall boundaries to reduce the computational

cost of the simulation.

Figure 3.2 shows the difference between the flux aligned grid used for GBS in limited sim-

ulations [17] (left) and the toroidal one for diverted simulations (right). The black dashed

lines trace the grid and help visualising its alignment (left) and misalignment (right) with
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3.2. Spatial discretisation

ψ

θ∗

ϕ

θ

r

ϕ

Figure 3.2 – Schematic comparison between grids of the two version of GBS: the flux aligned
for limited simulation (left) and the one discretising the toroidal coordinates, for diverted
configuration (right). The case of a limited elongated equilibrium is shown. The numerical
grid points in black help visualising the alignment/misalignment of the coordinate system
with respect to the magnetic field line (traced by red continuous lines) and the flux surfaces.

respect to the flux surface. Note that we could not compare the two schemes on a diverted

configuration as the existing version of GBS in flux aligned coordinates for the limited cases

(obviously) does not allow for it. For a schematic visualisation of toroidal grid applied to a

diverted equilibrium see Fig. 1.4. We choose to consider an elongated equilibrium rather than

a circular one because in a circular equilibrium the two coordinate systems coincide, partly

motivating our choice to use toroidal coordinates rather than Cartesian ones. The numerical

grid in the flux aligned case is always chosen such that the grid points are aligned on the

magnetic field line (traced with solid red lines), to facilitate the treatment and the accuracy of

the parallel operators.

We stagger the grid that discretises the n, φ, ω, Te and Ti fields (n-grid) with respect to the grid

where we evaluate v‖e and v‖i (v-grid) in the toroidal and poloidal directions. In the limited

version of GBS, this was only done in the toroidal direction. Staggered-grids were first used

by Harlow and Welch in 1965 [32] to provide a remedy to the checkerboard patterns that can

appear when treating an advection problem with centered finite differences, as shown in [33].

The idea behind grid staggering can be shown by considering a minimal system, contained in

the drift-reduced Braginskii’s equations (2.1.11) and (2.1.12), which describes the evolution of

density and electron parallel velocity, i.e.:

∂t N +∇∥v‖e = 0

∂t v‖e +Te∇‖N = 0

where we indicate N = log(n) and we consider Te constant for simplicity. If a second order
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Chapter 3. Numerical implementation and code verification

centered finite difference scheme is used to discretise the parallel derivative of N and v‖e on

the same uniform grid of spacing Δx, together with an explicit Euler time discretisation of step

Δt , we obtain:

N m+1
j = N m

j − Δt

2Δx

(
vm
‖e, j+1 − vm

‖e, j−1

)
(3.2.1)

vm
‖e, j = vm−1

‖e, j − Δt

2Δx
Te

(
N m−1

j+1 −N m−1
j−1

)
(3.2.2)

Here j and m indicate the spatial and temporal grid index, i.e. N m
j = N (x j , tm). Combining

equations (3.2.1) and (3.2.2) we derive:

1

Δt 2

(
N m+1

j − 2N m
j +N m−1

j

)
= 1

4Δx2 Te

(
N m−1

j−2 −2N m−1
j +N m−1

j+2

)
(3.2.3)

We note that in Eq. (3.2.3) N m+1
j only depends on values of N at the j −2, j and j +2 points.

The values of N on even and odd grid points are therefore decoupled. This decoupling allows

for nonphysical checkerboarder patterns, i.e. solutions with a,b such that N j = a for even

j , and N j = b for odd j , with a �= b. Shifting the position of the grid point at which v is

evaluated by Δx/2, midway between two n-grid points, i.e. “staggering” the n and v-grids,

avoids the formation of checkerboarder patterns. Grid staggering could be extended to the

radial direction in the future.

3.2.2 Fourth order finite differences

In order to compensate for the misalignement between numerical grid and magnetic field, we

proceed with the implementation of fourth order finite difference operators in GBS, an upgrade

with respect to the second order scheme used in the flux aligned/limited version. Hereafter

we describe the discretisation of derivatives in one-dimension, since all GBS operators, except

for the Poisson brackets, can be computed as a linear combination of derivatives in r,θ, and

ϕ. More precisely, the differential operators can be written in terms of the discretised first

derivatives Dx ,Dn2v
x ,Dv2n

x , the discretised second derivative Dxx , and of the interpolation

between staggered grids, I n2v
x , I v2n

x , which are defined as:

Dx u j = 1

Δx

[
1

12
u j−2 − 2

3
u j−1 + 2

3
u j+1 − 1

12
u j+2

]
(3.2.4)

Dn2v
x u j = 1

Δx

[
1

24
u j−2 − 9

8
u j−1 + 9

8
u j − 1

24
u j+1

]
(3.2.5)

Dv2n
x u j = 1

Δx

[
1

24
u j−1 − 9

8
u j + 9

8
u j+1 − 1

24
u j+2

]
(3.2.6)

Dxx u j = 1

Δx2

[
− 1

12
u j−2 + 4

3
u j−1 − 5

2
u j + 4

3
u j+1 − 1

12
u j+2

]
(3.2.7)

I n2v
x u j =

[
− 1

16
u j−2 − 9

16
u j−1 + 9

16
u j − 1

16
u j+1

]
(3.2.8)

I v2n
x u j =

[
− 1

16
u j−1 − 9

16
u j + 9

16
u j+1 − 1

16
u j+2

]
(3.2.9)
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Δx

v-grid j−2 j−1 j j+1 j+2

n-grid j−2 j−1 j j+1 j+2
x

Figure 3.3 – Sketch of the grid staggering performed in the θ and ϕ. Here x is either one of
these directions. The velocities v‖e and v‖i are evaluated on v-grid points, indicated with
crosses, while n,ω,φ,Te and Ti are evaluated on n-grid points, indicated with circles. The
labeling of the grid points is useful to interpret the expressions of the discretised derivatives
and discrete interpolation in Eq. (3.2.4)-(3.2.9), that allow operating between the two grids.

where x stands for one of the three coordinates r,θ, or ϕ, and the apex n2v (v2n) indicates

that the input field is defined on the n-grid (v-grid) and the output on the v-grid (n-grid) (see

Fig. 3.3). For example, the advection term in the density equation (2.1.11), evaluated on a

n-grid point (r j ,θk ,ϕl ), is computed as:

(
n∇‖v‖e

)
j ,k,l = n

(
c1

∂v‖e

∂ϕ
+c2

∂v‖e

∂θ
+c3

∂v‖e

∂r

)
� ni , j ,k

(
c1I v2n

θ Dv2n
ϕ v‖e +c2I v2n

ϕ Dv2n
θ v‖e +c3I v2n

θ I v2n
ϕ Dr v‖e

)
j ,k,l

where c1 = B0/|B0|, c2 = ∂r̂ψa/ρs0, c3 =−∂θψa/ρs0, from Eq. (2.2.26). Note that the interpola-

tion is performed only along the θ and ϕ directions, since there is no staggering in r . We also

note that all the above operators require a 5-point stencil [ j −2, j +2] and that n2v and v2n

operators use the same coefficients.

Two additional operators, Dn2v
xx and Dv2n

xx , are needed for the curvature-related contribution

to the gyro-viscous terms, in Eqs. (2.1.18)-(2.1.19), i.e. C (∇‖(u)), ∇‖(C (u)) and C (C (u)). Since

a fourth order implementation of these operators requires a 7-points stencil, which impacts

the number of ghost points in the treatment of the MPI subdomain boundaries (see Sec. 3.4),

Dn2v
xx and Dv2n

xx are implemented at second order:

Dn2v
xx u j = 1

Δx2

[
1

2
u j−2 − 1

2
u j−1 − 1

2
u j + 1

2
u j+1

]
(3.2.10)

Dv2n
xx u j = 1

Δx2

[
1

2
u j−1 − 1

2
u j − 1

2
u j+1 + 1

2
u j+2

]
(3.2.11)

In the limited version of GBS, the Poisson brackets are discretised by using the Arakawa

scheme at second order [34]. We keep the use of Arakawa scheme in the diverted version but

we implement it at fourth order [35], to be consistent with the rest of the code.

Finally, to compute the electric potential according to Eq. (2.1.17), one needs to invert the

perpendicular diffusion operator ∇2
⊥ = ∂2

r r +1/r 2∂2
θθ

, see Eq. (2.2.30). This is done by using a

LU factorisation of the matrix resulting from the fourth order discretisation of this operator,

computed once for all at the beginning of the simulation.
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3.3 Implementation of the boundary conditions

Two ghosts points are added on each side of the radial domain, i.e. r = rmin and r = rmax, to

impose Dirichlet and Neumann boundary conditions. By indicating the grid points inside the

domain with indices i = 1, ..., Nr , the four ghosts points have indices i =−1,0 at the boundary

r = rmin and i = Nr +1, Nr +2 at the vessel wall. We impose that the boundary conditions

are satisfied midway between the i = 0 and i = 1 points and between the i = Nr and i = Nr+1

points, for core and wall boundaries respectively. In practice, to implement the Dirichlet

boundary condition u(rmin) = ub for ω and φ, we impose (u0 +u1)/2 = ub and, at the same

time, (u−1 +u2)/2 = ub . The same scheme is applied to ω to impose the Dirichlet boundary

conditions at the wall r = rmax. On the other hand, to impose the Dirichlet conditions at r = rmax

for v‖e and v‖i we impose uNr +2 = uNr +1 = ub . To implement Neumann boundary condition

∂r n|rmin = ub (and similarly for Te ,Ti , v‖e , v‖i ), we set (u1−u0)/Δr = ub and (u0−u−1)/Δr = ub .

The same holds at r = rmax for n,Te ,Ti , and φ. These schemes are preferred to a fourth-order

algorithm for numerical stability.

A discontinuity arises in the velocities boundary condition at the locations where the magnetic

field is tangent to the wall, see Eq. (2.3.1). At these locations, the boundary condition for

parallel ion velocity presents a jump from −�Te to +�Te , and a similar discontinuity arises

for v‖e . This issue is solved by applying a smoothing function from +�Te to −�Te so the

v‖i boundary condition varies continuously at the wall. The discontinuity present in the

v‖e boundary condition is treated similarly. The discontinuity in n and φ boundary is only

apparent, as the term ∓∂r v‖i remains generally negative across the points where B is tangent

to the wall. We remark that this ad hoc smoothing function is required since a rigorous

derivation of the magnetic pre-sheath boundary conditions for B tangent to the wall has not

been developed yet, despite recent significant work on the subject [36]-[37].

3.4 Parallelisation

The use of the fourth order Runge-Kutta explicit time stepping method allows GBS to be easily

parallelised. Domain decomposition is performed in all three coordinates (r,θ,ϕ) and ghost

cell passing is carried out by using standard MPI calls. We note that the use of 5-points stencils

for the numerical operators (see section 3.2) requires two ghosts points to be passed in each

direction.

For the computation of the electric potential φ, Eq. (2.1.17), a direct solver based on the

MUMPS library [38]-[39] is used. An iterative multigrid method is also implemented in GBS

to allow for a massive parallelisation of the solution of the Laplace operator in the poloidal

plane [23], but it is only available for the second order finite difference scheme in the limited

scenario at the moment (an ongoing effort is targeted to port the multigrid solver to fourth

order).

Scalability tests of the new version of the GBS code are performed using the CPU partition

of the Piz Daint supercomputer (hybrid Cray XC40) at the Swiss National Supercomputing

Center in Lugano, Switzerland. Figure 3.4 shows the results of a strong scaling test (left), where
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3.5. Comparison with previous version of GBS in limited configuration

the grid size is kept constant while the number of cores is increased, and of a weak scaling test

(right), where the grid size and the number of cores in ϕ are increased simultaneously keeping

their ratio constant. For both scalings the inverse normalised elapsed times, tN cor es/tN0 , i.e.

the speedup for the strong scaling and the efficiency for the weak scaling, are plotted as a

function of the number of cores (N cor es). Good scaling properties are observed up to 4608

cores for a grid of Nr ×Nθ×Nϕ = 512×1024×256, which corresponds to that of a simulation

of a medium size tokamak.
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Figure 3.4 – Results of strong (left) and weak (right) scaling tests on Piz Daint. In the strong
scaling the grid size is fixed to Nr ×Nθ ×Nϕ = 512×1024×256 and the number of cores is
increased. The speedup, i.e. the inverse of the normalised elapsed time, is expected to scale
linearly with the number of cores in the ideal case. In the weak scaling, the ratio of grid
size to number of cores stays constant as the number of cores increases (Nr × Nθ × Nϕ =
512×1024×Nϕ). In this case the efficiency, i.e. the normalised elapsed time, is expected to be
constant.

3.5 Comparison with previous version of GBS in limited configura-

tion

As a first step to check the performance of the new version of the GBS code in toroidal

coordinates, we simulate a limited circular configuration and compare the results with the

previous version of GBS in flux aligned coordinates. We refer to the new and old version of

GBS as tor4 and fa2, respectively. For the comparison we consider a flux function of the form:

ψ(r̂ ,θ) =− r̂ 2

2q
, q = 4 (3.5.1)
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Figure 3.5 – Sketch of fa2 grid on a flux surface and parallel gradient scheme. The dotted
intersection of the dotted lines represent the grid points, the red continuous lines trace two
neighbouring magnetic field lines looping around the flux surface. Note how the parallel
operator expression “skips” one point in θ, allowing for a toroidal grid coarser by a factor of
two. In fact, given here q = 2, r̂ = 1 and Nθ = 16, we can use Nϕ = 4 instead of Nϕ = Nθ/(r̂ q) = 8.

In limited circular configuration, flux aligned coordinates and toroidal coordinates (r,θ,ϕ) co-

incide, since the radial component of the magnetic field is zero (Br ∝ ∂θψ= 0 from Eq. (2.2.7)

and (3.5.1)). Hence, the main difference between the two codes is the treatment of the parallel

operators acting in the poloidal and toroidal direction. While the tor4 version computes the

parallel derivative through its projection along the ϕ and θ directions, the fa2 version aligns

the grid points to the magnetic field line to compute the parallel operators directly in the

parallel direction.

In the tor4 version, the parallel operator is expressed as ∇‖u = ∂ϕu−∂θu/(r̂ q) (from Eqs. (3.5.1)

and (2.2.26)), and is discretised using a 5×5 point stencil in θ, ϕ corresponding to fourth order

finite differences, on staggered grids.

In the fa2 version, the alignment of the structured flux aligned grid (r,θ,ϕ) (with θ geometrical

poloidal angle) to the magnetic field lines is possible if q is rational and constant across flux

surfaces, by choosing Nϕ/Nθ = 1/(r̂ q) with r̂ = 1 corresponding to r̃ = a. The second order

finite difference scheme used to compute the parallel derivative in fa2 is sketched in Fig. 3.5

on a flux surface for a magnetic field line of q = 2. Note that in the fa2 code it is possible

to allow for a toroidal grid coarser by a factor 2, by taking only one every two points in θ

when computing the parallel gradient1, as shown in Fig. 3.5. This reduces the computational

cost and reflects the difference in gradient length scales in the parallel and perpendicular

directions.

1It is possible to extend this algorithm to a factor n higher than 2, in order to have Nϕ → Nϕ/n, but it can lead
to numerical instability at the boundaries as it requires the extrapolation of n boundary points at the limiter.
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pe , fa2 pe , tor4

Figure 3.6 – Typical snapshot of pe in the poloidal cross section in circular limited configura-
tion, showing qualitative agreement between fa2 (left) and tor4 (right) GBS code versions. The
dotted lines in red track the plasma source location.

Fig 3.6 shows typical snapshots of pe = nTe in the poloidal plane for such configuration, with

the fa2 case (left) and the tor4 one (right) showing turbulent structures similar in size and

amplitude. The red dotted line traces the source location, and the grey line indicate the

limiter position. The region from the inner boundary to the source location is discarded when

analysing the simulation results, since it is physically uninteresting. The two simulations use

the same set of physical parameter and a grid Nr ×Nθ×Nϕ = 128×256×32, with R0/ρs0 = 500

and a/R0 ∼ 0.13.
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Figure 3.7 – Scrape off layer width with fa2 and tor4 case, predicted from the electron pressure
exponential decay length.
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For a more quantitative analysis of the results, we compare the SOL width predicted by

looking at the radial decay length of the plasma pressure, Lpe (in ρs0 units) such that 〈pe〉θ,ϕ ∼
pe0 e−r /Lpe , which is used to determine the heat flux on the tokamak wall. In figure 3.7 we plot

the Lpe time traces for both fa2 and tor4 during the quasi-steady state. The thick lines indicate

the time average of Lpe . The two version of GBS predict an almost identical average SOL width,

well within the statistical uncertainties indicated by the dashed lines.

Since the main difference between the two codes lies on the evaluation of the parallel gradients,

we focus on these. We Fourier decompose the fields fluctuations on a flux surface along the

θ and ϕ directions. The Fourier representation of the parallel gradient along the parallel

direction x̃‖ is:

∇‖u = R0∇̃‖u = R0
∂u(x̃‖)

∂x̃‖
=

N‖/2−1∑
m‖=−N‖/2

i m‖
2πR0

L̃‖
û(m‖)exp

(
i m‖

2π

L̃‖
x̃‖
)

=
N‖/2−1∑

m‖=−N‖/2
i

m‖
q

û(m‖)exp

(
i

m‖
q

x̃‖
R0

)
(3.5.2)

where L̃‖ = 2πqR0 is the magnetic field line length and N‖ = qNϕ is the number of points in

the parallel direction. At the same time:

∇‖u =
Nϕ/2−1∑

mϕ=−Nϕ/2

Nθ/2−1∑
mθ=−Nθ/2

i

(
mϕ− 1

q
mθ

)
û(mϕ,mθ)exp

(
i mϕϕ+ i mθθ

)
(3.5.3)

By equating Eqs. (3.5.2) and (3.5.3) we obtain a relation between parallel, poloidal and toroidal

modes:

m‖ = qmϕ−mθ, with û(m‖) = û(mϕ,mθ) (3.5.4)

In Fig. 3.8, the amplitude of the Fourier modes in (θ,ϕ) of the electron pressure, averaged

in time and radial direction, i.e. 〈|p̂e |2(mϕ,mθ)〉r,t , are plotted for the fa2 (left) and tor4

(right) case. Note that the fa2 case has half of the spectrum in θ, since the parallel gradient

uses half of the poloidal grid resolution. There is very good quantitative and qualitative

agreement between fa2 and tor4. The central oblique line corresponds to the m‖ = 0 mode

for which mθ = qmϕ. Moving away from the central axis m‖ increases. The black lines set the

maximum parallel mode number allowed by the grid resolution m‖,max = N‖/2 =±qNϕ/2 =
±64, after which we incur into numerical aliasing. The peaks visible at the top left and bottom

right corners are at m‖ = 128 = 2m‖,max and maps numerically to m‖ = 0. The mϕ = 0 line

corresponds to the axisymmentric part of the spectrum, i.e. the Fourier decomposition of the

background electron pressure profile in θ.

Using the relation in Eq. (3.5.4), we can sum all |p̂e |2(mϕ,mθ) that map to the same m∥.

Removing the background mode at mϕ = 0, we can observe the parallel turbulent spectrum in

Fig. (3.9) for fa2 and tor4 simulations.
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Figure 3.8 – Fourier spectrum of the parallel dynamics in θ and ϕ for fa2 (left) and tor4 (right)
version of the code, with the fa2 version using half of the poloidal resolution and hence half of
the poloidal modes. There is excellent qualitative and quantitative agreement between the two
codes. The central oblique line corresponds to parallel mode number m‖ = 0, while the black
lines trace the maximum parallel mode number m‖ =±64 allowed by the grid resolution.

To conclude, in the case of a limited circular configuration, the tor4 version of GBS reproduces

an almost identical perpendicular and parallel dynamics to the fa2 version, suggesting that the

use of fourth order finite differences and staggered grid compensates for the non alignment of

the toroidal grid to the magnetic field line.
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Figure 3.9 – Turbulent parallel spectrum of the electron pressure for fa2 and tor4 simulation
showing good agreement.

37



Chapter 3. Numerical implementation and code verification

3.6 Verification of GBS with the method of manufactured solution

We verify the new version of the GBS code using the method of manufactured solutions (MMS),

a technique widely adopted by the computational fluid dynamics community [40] and first

applied to fully verify a plasma turbulent code by Riva et al. [41] for GBS in limited magnetic

configuration. We remark that the objective of the MMS is to verify that the discretised model

equations have been implemented correctly in the code, not to validate the choice of the

physical model. Herein we briefly present the basic idea behind the MMS and refer to Ref. [41]

for a more detailed description of this methodology.

Given a model M with s its analytical solution (i.e. M(s) = 0), we aim at testing the implemen-

tation of a numerical discretisation of M , denoted as Mh , with h the discretisation parameter,

through estimate of the error eh = ‖s − sh‖, where sh is the numerical solution of Mh (i.e.

Mh(sh) = 0). Since s is unknown, eh cannot be evaluated. However, one can choose an arbi-

trary function u, referred to as the manufactured solution, compute the source term S = M(u)

analytically, solve Mh(uh)−S = 0 numerically, and study ẽh = ‖u−uh‖. Since the source term S

is exact, the error ẽh is due to the discretisation of M and in our case it is expected to decrease

as h4 when h → 0 since we use fourth order discretisation schemes (both in space and time).

In practice, one needs to compute

p = ln(ẽr h/ẽh)

ln(r )
(3.6.1)

where r h indicates the coarsening of the temporal and spatial mesh by a factor r , and show

that p → 4 for h → 0.

In order to carry out the GBS code verification, we consider the diverted flux function plotted

in Fig. 3.10:

ψ(r̂ ,θ) = k(2u3 −2u2 − (3/2+cosθ)u +1) (3.6.2)

where u = (r −a/ρs0)/(rmax − rmi n) and k controls the relative intensity of poloidal to toroidal

magnetic field. In the present work we use a = 127ρs0, k = 0.06, rmax−rmin = 90 and R0 = 500ρs0.

We remark that, while ψ is not a solution of the Grad-Shafranov equation, it provides an

analytical expression to compute the source term, M(u) = S.
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Figure 3.10 – Contour lines of the flux function in eq (3.6.2) used for GBS code verification and
convergence tests.

The manufactured solution for the evolved quantities u = n,Te,i , v‖e,i ,φ,ω are chosen to have

the form

u(r,θ,ϕ; t ) = Au[Bu + sin(Cuϕ)sin(Duθ)sin(Eu t +Fur )]

where Au , Bu , Cu , Du , Eu and Fu are arbitrary constants that may be different for each field u

and are tuned to excite all the terms in the model equations.

The source term S = M(u) is computed by using Mathematica software package [42], and it

is added to the GBS model equation. The results of the GBS verification confirms that p → 4

for h → 0 for both the L∞ (Fig. 3.11, left) and L2 (Fig. 3.11, right) norm. These results do not

include the curvature parts of gyroviscous terms, as they are implemented at second order and

have been verified independently. The boundary conditions are not considered in this study.
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Figure 3.11 – GBS code verification by the method of manufactured solution. The error of
the numerical solution to the analytical manufactured one is shown as a function of the grid
size h, both in L∞ (top left) and L2 norm (top right). The order of convergence p tends to
4 as h decreases for both norms (bottom left and right), consistent with the 4th order finite
difference numerical scheme used.
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3.7 Convergence study

Figure 3.12 – Typical snapshot in the poloidal plane of plasma pressure (p = n(Te + τTi ),
normalised to n0T0), electric potential, parallel electron and ion velocities for the analytical in
flux function shown Fig. 3.10. The plasma is mainly confined inside closed field line region,
turbulent eddies are sheared at the separatrix (white dashed line) and form blob structures
that move radially outwards and are eventually lost at the wall. The simulation with fine grid is
considered.
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Figure 3.13 – Typical snapshot of density and electron and ion temperatures at the r = 20 plane
inside the separatrix. Turbulence structures follow the magnetic field lines, traced by white
dashed lines. The same simulation and time frame of Fig. 3.12 is considered.

The GBS convergence with respect to the grid refinement is tested with the flux function

in Eq. (3.6.2). Three simulations with increasing spatial grid resolution are compared: a

coarse simulation with grid Nr × Nθ × Nϕ = 39× 122× 16, a medium simulation with grid

Nr ×Nθ ×Nϕ = 78×244×32, and a fine simulation with grid Nr ×Nθ ×Nϕ = 156×488×64.

The time step is chosen to grant stability. Typical snapshots from the fine simulation are

reported in Fig. 3.12 and 3.13 showing turbulence structures that are field aligned. We perform

the convergence analysis focusing on time averaged profiles, obtained after the system has

reached a quasi steady state. This sets in when the inflow of density and temperature due

to the sources is balanced by parallel and radial losses at the wall, resulting in fluctuations

around an approximately constant value.
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Figure 3.14 – Time trace of Te ,Ti , v‖i , v‖e ,n and φ averaged over the 3D domain for simulation
of increasing grid resolution at quasi-steady state: coarse grid (Nr ×Nθ×Nϕ = 39×122×16),
medium grid (Nr ×Nθ×Nϕ = 78×244×32) and fine grid (Nr ×Nθ×Nϕ = 156×488×64).

Fig. 3.14 shows the averaged values of Te ,Ti , v‖e , v‖i ,φ and n over the entire domain during

quasi-steady state. The plots show qualitatively the convergence of the code results with the

grid resolution, inasmuch as the time traces of fine and medium are close to each other, while

the coarse grid traces are slightly off. Convergence is evident for n, Ti , v∥e and v∥i . For φ

the three average values are close to each other, being in overall agreement. Finally, for the

electron temperature Te the trend displayed by the fine and medium simulations is similar,

although the average values differ slightly, and the coarse Te profile oscillates somewhere in

between.
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Figure 3.15 – Toroidal and temporal average of radial profiles at the LFS (solid lines) and
HFS (dashed lines) for n, Te , Ti , φ resulting from GBS simulations carried out for the three
different resolutions in Fig. 3.14. The vertical lines at r − rmin ∼ 30 show the radial position of
the separatrix, while the shaded area is the buffer zone between the inner radial boundary and
the plasma source position.

The toroidal and time averaged radial profiles of n,Te ,Ti and φ, which are often used to predict

SOL width (see e.g. [16]), are shown in Fig. 3.15 on the equatorial midplane at the low field

side (LFS) and high field side (HFS), with a solid and dashed line, respectively. The vertical

dashed line at r − rmin ∼ 30 indicates the separatrix location. The shaded region that extends

from the inner radial boundary to the source location is a buffer volume, which is not subject

of physics investigations. The three simulations show qualitative agreement for all fields with

clear convergence pattern for n,Te ,Ti .

As an indicator of the convergence of the v‖e and v‖i fields, we analyse their time and toroidally
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averaged profiles along the separatrix. Since we are not using flux coordinates, the values

on the separatrix are obtained by performing a linear interpolation between the grid points.

In Fig. 3.16 the averaged values of v‖e and v‖i are plotted against s, a coordinate that maps

the separatrix and it is normalised to ρs0. We impose s = 0 at the divertor plate at the HFS,

the coordinate s increases moving along the inner divertor leg. The value of s at the X-point

is indicated by the first vertical line. Larger values of s parametrise the loop around the

separatrix from the HFS to the LFS until the X-point position (indicated by the second vertical

line). Finally, s tracks the outer leg up to the wall. The results of the three simulations are again

in good agreement and show convergence with the refinement of the grid, in particular for v‖i .
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Figure 3.16 – Toroidal and time average of the velocities profiles as a function of s, a coordinate
that maps the separatrix from the HFS to the LFS, for the three different resolutions in Fig. 3.14

To conclude the convergence analysis with a quantitative evaluation, we consider the time

and toroidally averaged profiles of all fields in the (r,θ) poloidal plane. We use as index of

convergence the distance, in the sense of the L2 norm on the poloidal (r,θ) plane, between the

coarse and the fine simulations and between the medium and the fine ones. This is represented

in Fig. 3.17, where h/h0 indicates the ratio of the coarser grids to the refined grid spacing. The

distance to the refined simulation is smaller for the medium grid than for the coarse grid for

all fields, with an indicative order of convergence, evaluated from the slope of the lines in

Fig. 3.17 ranging from approximately 2 for ω and φ, to approximately 5 for n.
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Figure 3.17 – Quantitative estimate of code convergence. The toroidal and temporal average of
φ,n,ω, v‖e , v‖i ,Te ,Ti for the coarse and medium grid is compared to the fine grid, by computing
the L2 norm in (r,θ) of their difference. The parameter h0 denotes the grid spacing of the fine
grid and h the grid spacing of the coarser grids, so that h/h0 = 4 and h/h0 = 2 for the coarse
and medium grid, respectively.
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4 Blobs

The plasma dynamics in the periphery of magnetic fusion devices is characterised by the

presence of blobs. These are coherent structures of enhanced plasma pressure with respect

to the background value, spatially localised in the plane perpendicular to the magnetic field

and elongated along it [43]. Because of their shape, blobs are also known as filaments. Blobs

detach from the main plasma and move radially outwards, making turbulence at the edge of

fusion devices intermittent and significantly contributing to the radial transport mechanism

in the SOL. Boedo et al. [44] estimated that ∼ 50% of radial transport is due to blobs. Blobs

have been observed in tokamaks (e.g. in the Caltech Research Tokamak [45], Alcator C-Mod

[46], JET [47], JT-60U [48], Tore Supra [49], TCV [50]), stellarators (see, e.g., [51] [52]), reversed

field pinches [53], and basic plasma devices (e.g. in LAPD [54] and in TORPEX [55]). They

can lead to enhanced intermittent heat flux on the main vessel wall, possibly damaging radio

frequencies antennas, wall tiles, and causing sputtering of impurities [56], [57], [58]. On the

other hand the presence of blobs can be desirable as the enhanced radial transport can lead to

a widening of the SOL width and, consequently, to a reduction of the power deposited on the

divertor plates.

It is generally believed that blobs are the result of the non-linear saturation of edge localised

interchange-like instabilities, with the density fluctuation sheared apart by the E×B velocity

and detached from the main plasma, as observed in JET [59] and in TORPEX [55], and as

described by 2D fluid models as in [60].

Once detached from the main plasma, the blob moves radially outwards. An extensive review

of the literature on blob motion can be found in Ref. [43]. The radial motion results from the

vertical charge separation inside the blob stemming from the effect of the curvature and of

the ∇B drifts. The charge separation leads to an electric field and its associated E×B drift

that causes the blob to move radially outwards. This basic mechanism of radial motion is

confirmed by a series of blob studies conducted on the TORPEX device, where blobs radial

velocity was shown in agreement with the E×B drift [61], [62] and by numerical simulations

of seeded blobs (see, e.g., [63], [64], [65], [66]). Also using simulations of a single seeded blob,

the effect of the X-point on blob motion has been investigated [67] using a 3D version of

BOUT++ to reproduce the experimental work of Avino et al. [62] on TORPEX. In addition,

the magnetic shear effect has been studied as a proxy for the X-point and has been shown to
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improve particle confinement and reduce radial transport [68].

The goal of the present chapter is to use the results of a full-turbulence simulation of the

tokamak periphery to present the first detailed self-consistent analysis of blob radial motion

in a diverted geometry. Only very recently the study of blob motion has been approached by

using 3D full-turbulent self-consistent simulations. Results of a full 3D turbulent simulation

with the XGC1 gyrokinetic code of a DIII-D H-mode discharge have been used to carry out

an initial investigation of the blob properties [70]. Considering a self-consistent simulation

of a TCV discharge carried out with the GBS code in limited configuration, Nespoli et al.[71]

implemented a pattern-recognition algorithm for blob tracking and showed good agreement

of the blob velocity with the theoretical scalings. The present chapter extends the work in

Ref.[71], and compares the simulation results with the theoretical scalings developed to predict

blob velocity in the presence of an X-point ([24, 72]). In diverted configuration, as pointed out

also by a more recent work on ASDEX Upgrade [73] the collisionality can affect the blob velocity

scaling. Our results focus on the high collisionality regime and, depending on the blob size, we

identify the polarization or the parallel current as balance mechanisms to the curvature drive.

In both cases, our simulations results are in good agreement with the theoretical scalings.

The present chapter is organised a follows. Leveraging previous derivations, we provide the

analytical scaling to estimate the velocity of blobs in diverted configurations in Sec. 4.1. Then,

Sec. 4.2 presents the diagnostic tools that allow us to study the velocity of blobs in the double-

null GBS simulations. Finally, the simulation results of the blob radial velocity are compared

with the analytical scaling in Sec. 4.3.

4.1 The two-region model for the blob dynamics in diverted config-

uration

Analytical predictions of the blob radial velocity can be obtained by using simplified 2D two-

fluid models, describing the plasma dynamics in the poloidal plane. These models usually

consider continuity equation, a charge conservation law, and a closure for the parallel current.

Examples can be found in [74], [56], [61].

When one wants to account for the X-point effect, the most investigated of such analytical

2D models, is the two-region model [24]. This model separates the upstream region, where

the unfavourable curvature of the magnetic field provides most of the drive for the blob radial

motion, and the divertor region, where the magnetic shear causes the blob to elongate in the

radial and to squeeze in the vertical directions, facilitating the damping of the blob charge

separation by cross-field currents (see Fig. 4.1, the two region are labelled 1 and 2, respectively).

Here, we follow Ref. [24] to re-derive the two-region model and, although our results are

qualitatively similar to the ones obtained therein, we find quantitative differences that affect

the comparison of analytical and simulation results (see Sec. 4.3). Starting from the drift-

reduced Braginskii’s equations for density (Eq. (2.1.11)) and vorticity (Eq. (2.1.16)) in GBS
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4.1. The two-region model for the blob dynamics in diverted configuration

dimensionless units, the two-region model by Myra reads:

∂ω1

∂t
+ R0

ρs0
[φ1,ω1] = 1

n1
∇‖ J‖,1 +

2Te,1

n1
C (n1)

∂n1

∂t1
+ R0

ρs0
[φ1,n1] = 0

∂ω2

∂t
+ R0

ρs0
[φ2,ω2] = 1

n2
∇‖ J‖,2

∂n2

∂t
+ R0

ρs0
[φ2,n2] = 0 (4.1.1)

In the density equations, with respect to the drift-reduced Braginskii density equation (Eq. (2.1.11)),

the parallel streaming and magnetic curvature terms are neglected, as they are smaller than

the dominant E×B drift. In the vorticity equations, the parallel terms associated with the

polarisation current are neglected and, in the divertor region, the interchange drive is also

discarded. The large aspect ratio approximation is used, allowing us to drop the normalised

magnetic field strength B that appears in [24].

By balancing the divergence of J‖ with the resistive term in Ohm’s law J‖ = −∇‖φ/ν in the

electron velocity equation (2.1.12), in the upstream region we approximate

∇‖ J‖,1 = φ1 −φ2

νL2
1

(4.1.2)

where L1 is length of the magnetic field line from the equatorial midplane to the entrance

of the divertor region (normalised to R0). In the divertor region, a closure for the parallel

current can be obtained by integrating the divergence of the parallel current along the parallel

direction from the interface with the upstream region to the sheath entrance, i.e.

∫sh

2
∇‖ J‖,2 dl = J‖

∣∣∣sh

2
=−φ1 −φ2

νL1
+ n2cs,2

Te,2
(φ2 −φ f ) (4.1.3)

where the sheath current J‖ = ncs
(
1−exp

(
λ−φ/Te

))
is linearised around φ ∼ φ f = λTe /e.

With the current closures and evaluating the curvature terms at the outboard midplane (using

Eq. (2.2.29)), the two-region model becomes:(
∂

∂t
+ R0

ρs0
vE ,1 ·∇

)
∇2
⊥φ1 =σ1

φ1 −φ2

n1
− β

n1

1

r

∂n1

∂θ
(4.1.4)(

∂

∂t
+ R0

ρs0
vE ,1 ·∇

)
n1 = 0 (4.1.5)(

∂

∂t
+ R0

ρs0
vE ,2 ·∇

)
∇2
⊥φ2 =−σ2

φ1 −φ2

n2
+α(φ2 −φ f ) (4.1.6)(

∂

∂t
+ R0

ρs0
vE ,2 ·∇

)
n2 = 0 (4.1.7)
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φ1,n1
[σ1,β]

φ2,n2
[σ2,α]

Figure 4.1 – Schematic illustration of the two region model. Region 1 (light gray) correspond to
the outboard low field side, where the curvature drive β is active, and extend from midplane to
the X-point region. Here the flux expansion is maximal and causes the blobs to elongate and
tilt due to field line mapping, disconnecting region 1 from the divertor, i.e region 2 in darker
gray, characterised by the current to the sheath α. The coefficients σ1 and σ2 in Eqs. (4.1.4)-
(4.1.6) regulate the parallel current flow between the two regions and depend on the resistivity
ν.
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4.1. The two-region model for the blob dynamics in diverted configuration

having defined

σ1 = 1

νL2
1

, σ2 = 1

νL1L2
, β= 2ρ2

s,1, α= 1

ρs,2L2
(4.1.8)

with L2 magnetic field line length from X-point to wall (in R0 units). In addition, in Eqs. (4.1.4)-

(4.1.7), the Poisson brackets terms are rewritten as advective terms due to the E×B velocity

vE , for example

[φ,ω] = b ·∇φ×∇ω= vE ·∇ω (4.1.9)

where vE is in cs0 units and ∇ is in ρs0 units.

In order to make analytical progress in the analysis of the blob velocity, we linearise the two-

region model. We indicate the radial ψ and binormal χ directions (eχ = b×eψ) with x and y ,

respectively (they are normalised to ρs0 units) and Fourier decompose φ1,2 and n1,2 along the

y direction, allowing for different wavenumbers in the two regions, i.e.

φ1 = δφ1(x)e−iωt+i k1 y , n1 = n0,1(x)+δn1(x)e−iωt+i k1 y (4.1.10)

φ2 = δφ2(x)e−iωt+i k2 y , n2 = n0,2(x)+δn2(x)e−iωt+i k2 y (4.1.11)

We note that the background density is given by nbg = n0 −δn and the peak blob density by

npeak = n0 +δn (see Fig. 4.2).

We then approximate ∇2
⊥δφ1 � −k2

1δφ1 (assuming the blob electric potential to vary along

the x direction on longer scales than along y , consistently with the physical picture of a

dipole generating in y), and we work in the E×B frame of reference, so that the background

equilibrium potentials φ0,1,φ0,2 vanish, assuming φ0,1 = φ0,2 = const. We then obtain the

following linearised two-region model

iωk2
1δφ1 = σ1

n0,1

(
δφ1 −δφ2

)− iβk1
δn1

n0,1
(4.1.12)

−iωδn1 − R0

ρs0
i k1δφ1

∂n1

∂x
= 0 (4.1.13)

iωk2
2δφ2 = σ2

n0,2

(
δφ2 −δφ1

)+αδφ2 (4.1.14)

−iωδn2 − R0

ρs0
i k2δφ2

∂n2

∂x
= 0 (4.1.15)

where we made use of Eqs. (4.1.9) to write vE , j ·∇ ≈−i k jδφ j
∂
∂x .

Eq. (4.1.13) allows us to express δn1 as a function of δφ1, that is

δn1 =− 1

ω

R0

ρs0
k1

∂n1

∂x
δφ1. (4.1.16)

Note that we allowed the background density to vary in the radial direction, n0, j = n0, j (x)
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φ

n

δn

2ay =λ/2 =π/k1
npeak

n0

nbg

y

y

Figure 4.2 – Blob cut along the vertical direction, y , showing potential and density wavelike
profiles as expressed in Eqs. (4.1.10)-(4.1.11) and their relation to the blob density peak npeak

and the density background value nbg . We also show the link between wavenumber k1 and
blob radius ay computed with the Half Width Half Maximum technique detailed in Sec. 4.2,
i.e. k1 =π/(2ay ).

in Eqs. (4.1.10)-(4.1.11), in the case of uniform background we would have ∂x n j = ∂xδn j =
δn j /ax , with ax half of the radial blob size. Eq. 4.1.16 can be substituted in Eq. (4.1.12) to

obtain:

ω2δφ1 =−i
σ1

n0,1k2
1

ω
(
δφ1 −δφ2

)+ β

ρ∗
1

n0,1

∂n1

∂x
δφ1 (4.1.17)

with ρ∗ = ρs0/R0. Introducing the characteristic frequencies ωσ, j = σ j /(n0, j k2
1) and γ2

mhd =
−βρ∗∂x n1/n0,1, this can be written as

ω2δφ1 =−iωσ,1ω
(
δφ1 −δφ2

)−γ2
mhdδφ1 (4.1.18)

and, using the same notation, Eq. (4.1.14) becomes

ωδφ2 = iωσ,2
k2

1

k2
2

(
δφ1 −δφ2

)− iωα,2δφ2 (4.1.19)

where ωα,2 =α/k2
2. From Eqs. (4.1.18) and (4.1.19), the following dispersion relation is derived:

ω2 +γ2
mhd +

(iωσ,1ω)(ω+ iωα,2)

ω+ iωσ,2k2
1/k2

2 + iωα,2
= 0 (4.1.20)
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γ2
mhd −2ρ2

s,1
R0
ρs0

1
n0,1

∂n1
∂x −2

Ω2
0ρ̃

2
s,1

R0

1
ñ0,1

∂ñ1
∂x̃ −2

Ω̃2ρ̃2
s

R̃
∂x̃ lnn1

ωσ, j
(
νL1L j n0, j k2

1

)−1 Ω2
0miσ‖

e2L̃1L̃ j ñ0, j k̃2
1

Ω̃2miσ‖
e2L̃2

‖ñ1k̃2
1

ωα, j

(
ρs,2L2k2

j

)−1 Ω0

ρ̃s,2L̃2k̃2
j

2Ω̃
ρ̃s L̃‖k̃2

j

Table 4.1 – Comparison of the characteristic frequencies of the two-region model as derived
in the present work and as derived by Myra et al. [24]. In the first column the dimensionless
frequencies are written in GBS dimensionless units, the second column translates them in
physical units and, finally, the third column reproduces the expressions from the referenced
article. The physical expression ωσ, j are evaluated imposing ν= e2n0R0/(miσ‖cs0), with σ‖
parallel conductivity.

Since k2 = k1/εχ, with εχ inversely proportional to the flux tube fanning, Eq. (4.1.20) becomes

ω2 +γ2
mhd +

(iωσ,1ω)(ω+ iε2
χωα,1)

ω+ iε2
χωσ,2 + iε2

χωα,1
= 0 (4.1.21)

In table 4.1 we compare the characteristic frequencies we have derived with the ones in Myra et

al. [24], in physical units. We note that with the hypothesis of L̃1 = L̃2, ñ1 = ñ2, and ρ̃s,1 = ρ̃s,2

(i.e. T̃e,1 = T̃e,2), our expressions in physical units reduce to the large aspect ratio limit of the

ones derived in ref. [24]. For ωσ, we impose ν= e2n0R0/(miσ‖cs0).

Dividing Eq. (4.1.21) by γ2
mhd, we obtain

1+ ω̂2 +
i ω̂Θ(ω̂+ iε2

χΘ)

Λ(ω̂+ iε2
χΘ)+ iε2

χ
ωσ,2

ωσ,1
Θ

= 0 (4.1.22)

where the normalised frequency ω̂=ω/γmhd is introduced as well as the parameters that mostly

affect the blob motion, i.e. Θ=ωα,1/γmhd and Λ=ωα,1/ωσ,1. The Θ and Λ parameters describe,

respectively, the importance of the sheath resistivity with respect to the interchange drive and

with respect to the plasma resistivity. As we will see shortly, Θ=ωα,1/γmhd can be reinterpreted

as proxy of the blob size, in fact ωα,1 contains the poloidal wavenumber k1 = π/(2ay ) (see

Fig. 4.2) while γmhd contains information on the blob radial size through ∂x n1. For this reason

we approximate ∂x n1 with Δx n1/ax , where, in the general case of background density varying

in x over the blob extension, Δx n1 �= δn1 and ax , unlike ay , is not the size at the half maximum

but rather half of the radial extension of the entire perturbation above background. Let us
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estimate the values of Λ and Θ as functions the blob properties

Λ= n1α

σ1
= ωα,1

ωσ,1
= νn1

L2
1

L2ρs,2
(4.1.23)

Θ= ωα,1

γmhd

=
⎡
⎣ k−4

1 ax

2ρ2
s,1ρ

2
s,2L2

2
Δx n1
n0,1

ρ−1∗

⎤
⎦

1
2

fig 4.2=

⎡
⎢⎢⎣ (2ay /π)

4
5 a

1
5
x(

2ρ2
s,1ρ

2
s,2L2

2
Δx n1
n0,1

ρ−1∗
) 1

5

⎤
⎥⎥⎦

5
2

=
(ab

a∗
) 5

2 = â
5
2

(4.1.24)

where ab = (2ay /π)4/5a1/5
x is used to estimate of the blob size, while a∗ is the reference size,

which is given by the balance between the curvature drive β and the sheath current α (defined

in Eq. (4.1.8)):

a∗ =
(
2ρ2

s,1ρ
2
s,2L2

2
Δx n1

n0,1
ρ−1
∗
) 1

5 =
(
β

α2

Δx n1

n0,1
ρ−1
∗
) 1

5

(4.1.25)

We finally derive an analytical prediction for the blob radial velocity, as a function of the

normalised blob size â (or Θ) and the collisionality Λ. As a first step, we express the radial

velocity vx as a function of the frequency ω. Since the radial blob motion is due to the E×B

drift, using the linearised continuity equation (4.1.13), one can write:

vx = vE = Im(ω)
ρs0

R0

δn1

Δx n1
ax (4.1.26)

as ∂x n1 =Δx n1/ax , and vE =−i k1δφ1. Then, we choose a reference blob velocity such that

the normalised velocity v̂ = vx /v∗ reads

v̂ = Im(ω̂)â1/2 (4.1.27)

This reference velocity is

v∗ = vx

∣∣∣
ω=iγmhd

â−1/2 = γmhd

ρs0

R0

δn1

Δx n1
ax â−1/2 = ρs,1

[
8

δn5
1

Δx n2
1n3

0,1

(
πax

2ay

)2

ρs,1ρs,2L2ρ
2
∗

] 1
5

(4.1.28)

One can immediately see that since ω̂=ω/γmhd the second to last expression in Eq. (4.1.28)

combined with (4.1.26) gives directly the desired expression for the normalised velocity in

Eq. (4.1.27). The chosen reference velocity can be interpreted as the radial velocity of blob of

size â = 1, when the Resistive Ballooning is the dominant instability, for which the drive in

region 1 is balanced by the inertia in the same region (i.e. the first and last terms in Eqs. (4.1.18))

and ωRB = iγmhd.

Table 4.2 summarises the differences between our expressions for Λ, ab , a∗, and v∗, and

the ones in Ref. [24]. In the physical expression for Λ the electron to ion collision frequency
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Λ νn1
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ñ0,1

(
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] 1

5

ρ̃s

[
L̃2
‖

ρ̃s R̃

] 1
5

v∗ ρs,1

[
8C (n1)ρs,1ρs,2L2

ρ2
s0

R2
0

] 1
5

c̃s,1

(
8C (n1) ρ̃s,1ρ̃s,2L̃2

R3
0

) 1
5

c̃s

(
ρ̃2

s,1L̃‖
R̃3

) 1
5

Table 4.2 – Comparison of main blob parameters expression as derived here and as reported
in the reference article [24]. Columns 1 and 2 contain the same expressions in GBS units and
in physical units respectively. Myra’s expression in physical units are reported in the third
column. In v∗, C (n) = (δn5

1/Δx n2
1n3

0,1)(πax /(2ay ))2.

νe/i appears. This relates to the parallel resistivity ν through the parallel conductivity σ‖ =
e2ñ1/(meν

e/i ),

ν= R0meν
e/i

mi n1cs0
= νe/i

n1Ω0,e

R0

ρs0
(4.1.29)

with Ω0,e =Ωmi /me electron gyro-frequency.

With respect to Myra et al. [24], herein we provide an explicit expression for ab , a quantity that

is otherwise usually interpreted as the radial (or poloidal) blob size ãx (or ãy ) normalised over

ρ̃s,1. In addition, we retain Δx n1/n0,1 effects in a∗ and v∗ as they account for the reduction of

the curvature drive due to non zero background density.

Once again, if we set L̃1 = L̃2, ñ1 = ñ2, ρ̃s,1 = ρ̃s,2 (i.e. T̃e,1 = T̃e,2), Δx n1 = δn1 = n0,1 = 1, and

ax = ky = 2ay /π we retrieve the same expressions as the one derived in [24] in the large aspect

ratio limit (up to some constant values).

Further progress can be done by observing that we can identify 4 main instabilities that

drive the blob motion [24]. They correspond to different mechanisms that counter-balance

the curvature drive in region 1 and they are: the sheath connected, denoted as Cs , and ideal

interchange mode Ci regimes, typical in low collisionality (Λ� 1), and the Resistive Ballooning

RB and Resistive X-point RX regimes, typical in high collisionallity (Λ� 1). We focus here on

the high collisionality case Λ� 1, where one can incur either in the RB, if Λ�Θ, or in the RX

regime, if Λ�Θ. Since Λ� 1, then ωα �ωσ, and the linearised vorticity equation in region 2

(see Eq. (4.1.19)) reduces to

ω� iωσ,2
δφ1

δφ2
− iωα,2 (4.1.30)

Since ωσ,2 is small relatively to ωα,2, either the parallel current term iωσ,2δφ1/δφ2 drops

completely or, alternatively δφ1 � δφ2. In the first case the two regions are completely

disconnected and the perturbation does not extend to region 2, therefore δφ2 ∼ 0 and, in
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region 1, the inertia balances the drive (RB regime), from Eq. (4.1.18):

ω2δφ1 =−γ2
mhdδφ1, this leads to ω̂RB = i , and v̂RB = â

1
2 . (4.1.31)

On the other hand, if δφ1 � δφ2 (RX regime), in region 1

ω2 =−iωσ,1ω−γ2
mhd (4.1.32)

i.e the parallel current balances the drive:

ω̂RX = i
γmhd

ωσ,1
= i

Λ

Θ
, and v̂RX =Λâ−2 (4.1.33)

The transition threshold between the two regimes is at Θ = Λ, as it can be observed in

Eq. (4.1.32):

ω̂2 + i
Θ

Λ
ω̂+1 = 0 (4.1.34)

If Λ>Θ (RB regime) first and third term balance, alternatively, if Λ<Θ the second and the

third term balance (RX regime), and the first term drops since ω̂2 = −Θ/Λ� 1. The same

result for these two regimes can be obtained more formally, but less intuitively, by taking the

limit of the dispersion relation in Eq. (4.1.22) for high values of Λ and obtaining directly the

above Eq. (4.1.34).

Let us mention the relevant results in Ref. [24] concerning the low collisionality case. In the

sheath connected Cs regime the curvature drive is balanced by the current flow to the sheath.

In this case, ω = iγ2
mhd/ωα,2, Im(ω̂) = Θ−1, and therefore v̂ = â−2. In the ideal interchange

mode Ci regime instead the ion polarisation current (due to fanning of the flux surfaces) in

region 2 balances the drive; the unstable frequency is ω= iεX γmhd, which implies v̂ = εX â1/2.

A practical way to visualise the four regimes and their transition threshold, introduced in

Ref. [24], is reported in Fig. 4.3)
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Figure 4.3 – Characterisation of blob regimes in the (Λ,Θ) plane and correspondent velocity to
size scaling, as derived in [24] from the two region model.

To conclude, starting from a simplified version of the GBS vorticity and continuity equations,

Eq. (4.1.1), and following the steps of [24], we have derived the expression of Λ, Θ, ab , a∗, v ,

and v∗ that determine the blob radial motion within the two region model, obtaining the

velocity to size scaling of a blob in the various regimes at play in diverted configurations. Our

expressions of the blob parameter show a few differences with respect to the ones obtained by

Myra et al. [24]. In fact, the δn/n effects are here retained both in the reference blob size a∗

and in the reference velocity v∗. We keep the distinction between the length of the magnetic

field line, L1 and L2 in the upstream and divertor regions. We express the resistivity Λ in terms

of the normalised GBS resistivity ν and, finally, we define the blob size as ab = (2ay /π)4/5a1/5
x .

These differences affect quantitatively the comparison of simulation and analytical results

shown in Sec. 4.3.

4.2 Blob tracking in double-null GBS simulation

The scaling of the blob velocity provided by the two-region model is tested here against the

results of a GBS simulation. The simulations are carried out with the version of GBS developed

within the framework of the present thesis and consider a double-null configuration, with a

poloidal flux based on that generated by three current-carrying wires and given by

ψ(r̂ ,θ) = S(log(r̂ −c)+1

2
I log((r̂ −c)2 +4−4(r̂ −c)sinθ)

+1

2
I log((r̂ −c)2 +4+4(r̂ −c)sinθ)) (4.2.1)
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with S = 0.03, I = 10, and c = 0.9. We remind that the radius r̂ is normalised to the tokamak

minor radius a and the poloidal flux ψ is normalised to (a2|B0|). Fig. 4.4 (left) presents a sketch

of the flux surfaces in the GBS domain.

We note that in this configuration the magnetic field line length in the upstream region 1, L1,

is approximately 2/3 of the magnetic field line length from target to the midplane L‖ (in the

proximity of the LCFS). This can be computed numerically as:

L‖ = 1

2

∫
dl‖ = 1

2

∫
ρ∗

√
B 2

pol +B 2
tor

Bpol
d s (4.2.2)

where Btor = BϕBϕ = 1, Bpol = BθBθ+Br B r = ε
√

(∂r̂ψ)2 + (∂θψ/r̂ )2, with ε being the inverse

aspect ratio, and the integral from the lower to the upper strike point is performed along a flux

surface.

After an initial transient, the simulation reaches a quasi-steady state where a strong blob

activity is present on the low-field side of the device, leading to transport of the plasma out-

flowing from the tokamak core to the far SOL. A typical snapshot of this turbulent regime is

shown in Fig. 4.4 (right). The present study is performed on a time window of 73 dimensionless

time units during this quasi-steady state. The main physical parameters of interest are ν= 1,

R0/ρs0 = 500, and a/ρs0 ∼ 127.

Figure 4.4 – Contour lines of the double null flux function in Eq. (4.2.1) used to run blob
simulations (left) and typical snapshot of plasma density (right)

To detect blobs in the GBS simulation we use a pattern recognition algorithm similar to the

one presented in Ref. [75]. We define as blob a structure of enhanced density (at least 2.5 times

the fluctuation level) that moves coherently (i.e., it exists for Δt > 0.2). More precisely, blobs

are detected from the simulation results as follows. We first identify the regions Ωb,high with
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4.2. Blob tracking in double-null GBS simulation

density larger than the average density, nbg , by 2.5 times the fluctuation level, σn , that is:

n(r,θ, t ) > nbg +2.5σn , (4.2.3)

The average background density is computed by time and toroidally averaging the density

during the quasi-steady state, nbg (r,θ) = 〈n〉t ,ϕ, and the standard deviation is defined as

σn(r,θ) =
√

〈n(r,θ,ϕk , tm)−nbg (r,θ))2〉t ,ϕ. Once the regions where Eq. (4.2.3) is satisfied are

detected, a pattern recognition algorithm groups the points that are connected and therefore

belong to and form the same blob. A blob is then tracked from one time frame to the next

by checking whether there is (sufficient) spatial overlapping between Ωb,high belonging to two

subsequent time frames. Splitting and merging of blobs is also allowed by checking if 2 blobs

end up corresponding to one single blob in the following time frame or vice-versa. The blob

detection is carried out in one poloidal plane.

Having detected the blobs, we determine their size and velocity. The algorithm described

above is efficient in tracking blobs, but it often underestimates the blob size, as it only detects

the high density peak of a blob, indicated by the striped region in Fig. 4.2. In order to determine

the blob size in a way consistent with the analytical two-region model, one needs to detect

all the colored region in Fig. 4.2 that we will indicate with Ωb , characterised by a density

fluctuation above the half maximum, n0. To determine Ωb , we take an area Ωb,ext larger than

Ωb,high by ∼ 30ρs0 in every direction, and re-define the blob as the set of connected (r,θ) points

in Ωb,ext for which:

n(r,θ, t ) > n0 = nbg +δn = nbg + max
Ωb.high(t )

n −nbg

2
. (4.2.4)

Note that the poloidal radius of Ωb is the half-width half-maximum (HWHM) of the blob

density perturbation, corresponding to ay of the two-region model (see Fig. 4.2). The HWHM

technique is commonly used in blob studies [71][76].

The blob detection algorithm also verifies the presence of sufficient overlapping in the subse-

quent time frames

||Ωb(tm)∩Ωb(tm+1)||
||Ωb(tm)|| > 0.8 (4.2.5)

as well as∣∣∣∣ ||Ωb(tm)||− ||Ωb(tm+1)||
||Ωb(tm)||

∣∣∣∣< 0.2 (4.2.6)

to assess that the the blob size does not change very abruptly. If the blob domain Ωb changes

considerably from one time frame to the next, we consider them as two different blobs. The

threshold coefficients 0.8 and 0.2 in the double null case are chosen so that the blobs have size

and shape that are continuous enough, without incurring excessive splitting.

In order to compare the two-region model in Sec. 4.1 with the simulation results, we estimate
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ax , ay , Λ, Θ= â5/2 = (ab/a∗)5/2, and v̂ = vx /v∗ from the blob parameter in region 1. For this

reason, we analyse only the blobs detected around the outboard midplane. Specifically, the

blob center of mass can be at most 50ρs0 away from midplane, −50 < ZC M < 50, with the

center of mass location (RC M , ZC M ) defined as

RC M = 〈R n(R, Z )〉Ωb

〈n〉Ωb

, ZC M = 〈Z n(R, Z )〉Ωb

〈n〉Ωb

(4.2.7)

This also avoids counting the same blob twice, when the blob extends over the magnetic field

by more than one toroidal turn. Note that x and y directions correspond to the radial and

vertical directions, R and Z , when focusing on the outer midplane of an up-down symmetric

equilibria (under the large inverse aspect ratio and large safety factor assumptions that allow

us to approximate the plane perpendicular to b with the poloidal plane). The blob radii ax = aR

and ay = aZ correspond therefore to half of the extension of Ωb along the R and Z directions.

Note that actually for ax we should take the half width of the total blob size, rather than the

half width at the half maximum, but unfortunately we do not have a detection algorithm that

captures the entire blob size above background density, as such algorithm would wrongly

consider every fluctuation above background as a blob.

To limit the effect of numerical noise and uncertainty, aZ and aR are computed by averaging

the top 10% of the ΔZ and ΔR values for each blob, where ΔR is the radial extension of the

blob area at a given Z , and analogously for R.

We define n0,1 as the minimum value of n in Ωb , as suggested by figure 4.2, once again, to

avoid numerical noise we average over the lowest 10% density values. To compute the density

perturbation Δx n1 that we use to approximate ∂x n1, we look at the maximal blob density

difference along R, for every fixed Z with (R, Z ) ∈Ωb , that we denote Δnb |Z and we take the

average of the top 10% values. Analogously, to compute δn1 (in the equation of the reference

velocity) we look at the maximal blob density difference along Z . Note that if the background

density value is constant in the radial direction (across the blob domain) then δn1 =Δx n1 and

the two estimates coincide.

Another term frequently appearing in the blob parameter expressions is the Larmor radius ρs,1

which in GBS dimensionless units corresponds to
√

Te,1 and that we compute similarly to n0,1.

The temperature in region 2 instead is not straightforward to compute since the magnetic field

line can end at the wall on a different toroidal location than the one we are studying (ϕ= 0).

For this reason we will consider here ρs,2 ∼ ρs,1.

The radial velocity vx = vR (in cs0 units) is computed by tracking the radial center of mass

location RC M during a blob lifetime:

vR (ti ) = RC M (ti+1)−RC M (ti )

ti+1 − ti
ρ−1
∗ (4.2.8)

where ti is the snapshot time (within the present study ti+1 − ti = 0.05).

Finally, we compute the parameters Λ, Θ (or â), and v̂ , using the expressions in the first
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4.2. Blob tracking in double-null GBS simulation

column of table 4.2 and averaging over the blob lifetime.

Let us discuss some characteristics of the 248 blobs detected with the described algorithm.

The average slow-down factor due to the background finite density is Δx n1/n0,1 ∼ 0.7. The

average lifetime is 0.3, after which either the blob is lost or its size changes enough for it to be

considered as a separate blob (according to the condition in Eq. (4.2.6)).
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Figure 4.5 – Each line corresponds to a blob density (left) or temperature (right) time trace,
plotted as a function of its distance to the separatrix in the major radius (R −RSep ). 〈n〉Ωb

(〈Te〉Ωb
) is the density (electron temperature) averaged on the blob poloidal cross section

Ωb . Both density and temperature decrease linearly as the blob travels radially outwards, at
approximately the same rate.

Figure 4.5 (left) shows the decay of the blob density as it moves radially outwards. Each line

corresponds to a blob, tracked over time. The density is computed as the averaged plasma

density in the blob poloidal cross section Ωb for the detected blobs. The reduction of the

average density as the blob moves away from the separatrix is mostly the result of an increase

of the blob size. While the integrated density across the blob area remains approximately

constant, the blob area grows over the blob lifetime by approximately 132%, on average. This

is due to 8.5% increase of aZ (aR remaining approximately constant) and to the general trend

of a blob to go from a circular to a more square like shape, consistently with the picture of a

resistive blob developing a mushroom like structure (see, e.g. Fig. 3 in Ref. [24]). If the blobs

were attached to the sheath one would expect them to lose plasma to the wall. Figure 4.5

(right) shows a very similar behaviour reproduced also in the blob temperature. The total

energy contained in a blob, 3/2
∫
Ωb

nTe , also appears to decrease with the major radius, as

shown in Fig. 4.6. Here we are plotting the average blob energy at a certain radial location,

using 30 bins in the major radius. The gray shaded area represents the standard deviation

from the mean in each bin. Large values of standard deviation are due to the variety of blob

sizes in each bin, which obviously impacts the total energy.
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Figure 4.6 – Blob energy as a function of major radius. By grouping the blobs in bins according
to their radial location, we compute the average energy contained in a blob for each bin
(continuous black line). The gray shaded area indicates the standard deviation in each bin.

4.3 Comparison of the simulation results with the two-region model

Figure 4.7 locates the detected blobs in the (Θ,Λ) plane (left) and plots the normalised velocity

v̂ of each blob as a function of its size â (right). The detected blobs belong to the RB and RX

regimes, with the threshold between the two regimes being at Θ/Λ= 1. The analytical scalings

of the two-region model for the blob velocity in the RB and RX regimes (black dashed lines) are

shown to be the upper bounds of the measured blob velocity. We also plot the velocity scaling

of the sheath connected Cs regime (red dashed line). This is similar to the RX regime, since the

velocity is expected in both RX and Cs regimes be proportional to â−2, with the only difference

being the multiplying factor Λ∼ 10. The simulation results show that the sheath connected

scaling significantly underestimates the blob velocity, confirming that the large â blobs belong

to the RX regime. To our knowledge, it is the first time that blobs in RX regimes are observed

and studied in blob simulations or experiments. The high collisionality causes the blob to

partially disconnect from the sheath, as a consequence the blob sustains its self-induced

electric field more efficiently, resulting in a faster outwards motion.
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Figure 4.7 – Characterisation of blob regimes in (Θ,Λ) plane (left panel). The blobs belong
to the resistive ballooning (RB) and resistive X (RX) regimes. The normalised blob velocity
v̂ = vZ /v∗ as a function of the normalised size â = ab/a∗ (right panel). Good agreement
with the analytical scalings of RB and RX regime (in black dashed lines), and very different
behaviour with respect to Cs sheath connected regime (in red dashed line) is shown. The
color-scheme indicates log(Θ/Λ), with the transition between the RB and the RX regimes
being at Θ=Λ.
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Figure 4.8 – Effect of various approximation of blob scaling. From left to right, top to bottom,
impact of: excluding δn/n effects, approximating magnetic field line length in region 1 with
L‖ = L1 + L2, considering ab to be the radial blob radius aR or the vertical size aZ . The
qualitative behaviour is similar, but quantitatively the agreement with the analytical scaling is
worse than in Fig. 4.7.

Our two-region scalings differ from the ones in Myra et al. [Ref.], as they retain δn/n effect,

possibly different values for the magnetic field lines in the upstream and divertor regions, as

well as blob ellipticity. In Fig. 4.8, we test the influence of these effects on the velocity scaling.

The top-left panel of Fig. 4.8 shows that removing the density perturbation effect shifts the

blobs distribution to the left with respect to the analytical scaling since the normalised size

â is reduced by a factor (Δx n/n0)2/5. At the same time, the normalised velocity is reduced

by the increase of the reference velocity by a (δn5/Δx n3n2
0)1/5 factor. Considering the total

magnetic field line length from target to midplane, L‖, rather than the field line length in region

1, L1, (top-right panel of Fig. 4.8) reduces â and impacts the value of Λ, resulting in a slightly

worse agreement between the RB/RX regime transition, as indicated by the color code and as

suggested by the velocity to size dependence. Finally, taking ab to be the average between aR

and aZ (bottom left panel of Fig. 4.8) significantly impacts the two-region prediction since
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4.3. Comparison of the simulation results with the two-region model

most blobs are now estimated to belong to the RX regime, with the blobs distribution moving

to the right, and the normalised size â being overestimated. This is mainly due to the fact

that we drop the 2/π term in ab , introduced when relating the wavenumber k1 to aZ (i.e.

k1 = 2aZ /π). This leads to an overestimate of the blob size, as shown in the bottom-right panel

of Fig. 4.8.

We investigate further the difference between RB blobs and RX blobs by looking at the density,

potential and parallel current of typical blobs belonging to the two regimes. Typically, RB blobs

are localised closer to the separatrix and they do not extend to the divertor region. Furthermore,

their parallel current is negligible. On the other hand RX blobs are localised further in the

SOL and develop a parallel dynamic, reaching the wall. Nonetheless the associated potential

perturbation is considerably small in region 2.

A typical blob contoured by a solid black line in the RX regime is shown in Fig. 4.9. As it can be

seen from the top panels, the blob structure extends to the wall and reappears periodically in

the poloidal plane, at the locations where the magnetic field line (identified by red circles) that

passes through the center-of-mass of the detected blob comes back on the ϕ= 0 plane. The

blob gets stretched as it approaches the X-points, because of the flux expansion present in

these regions. The blob elongation along the magnetic field is also confirmed by the bottom

panels that show the plasma density and parallel current on the flux surface of the center-of-

mass of the blob in the (s,ϕ) plane, where s is the poloidal distance from midplane, along

the magnetic flux surface of the blob, and ϕ is the toroidal angle (the square identifies the

blob center-of-mass at ϕ= 0, which is also shown in the top panels). Note that the presence

of the parallel current in region 1 and region 2 is not negligible. Furthermore, even though

the structure can be traced up to the wall, the fluctuations in density and potential decrease

moving from midplane to wall, indicating partial disconnection of the blob between the sheath

and the midplane.
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Figure 4.9 – A resistive-X (RX) blob. From left to right, top to bottom: density fluctuation n−nbg

in (R, Z ), potential fluctuation φ−φbg in (R, Z ) (blob perimeter traced with continuous black
line), density fluctuation along the flux surface, and parallel current J‖ = n(v‖,i − v‖,e ) along
the flux surface (square indicating blob center of mass location).

Fig. 4.10 shows the density poloidal snapshot of a RB blob. With respect to the RX blob, it is

smaller in size and it is located just outside the separatrix. The electric potential shows the

presence of a dipole, even though this extends outside of the blob perimeter (top right). Note

that the blob structure does not reappear periodically on the poloidal plane this time. If we

focus on the flux surface passing through the blob center of mass we can observe that the blob

extends along the magnetic field line on the flux surface, without reaching region 2. Finally,
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the bottom right plot shows that the parallel current, J‖ = n(v‖,i −v‖,e ), is almost negligible for

a RB blob, in agreement with the model that predicts for a RB blob that the curvature drive is

compensated by the perpendicular ion-polarisation current and with the parallel dynamics

playing a minor role.

Figure 4.10 – An resistive ballooning RB blob. From left to right, top to bottom: density
fluctuation n −nbg in (R, Z ), potential fluctuation φ−φbg in (R, Z ) (blob perimeter traced
with continuous black line), density fluctuation along the flux surface, and parallel current
J‖ = n(v‖,i − v‖,e ) along the flux surface (square indicating blob center of mass location).
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5 TCV-like simulation

To show the potential of the new version of the GBS code, we present here the results of a

simulation that implements the magnetic geometry of TCV [77] discharge #49633. An L-mode

lower single null plasma, with magnetic field at the axis |B0| = 1.4429T , safety factor q ∼ 3.6−4,

minor radius a ∼ 22cm, major radius R0 ∼ 88cm, elongation k ∼ 1.4 and triangularity δ∼ 0.1

[78].

Since this is the first time a TCV diverted equilibrium has been simulated in GBS, we did not

attempt to reproduce TCV plasma conditions or to perform a quantitative comparison with

shot results. In particular, for computational reasons, we simulate here a machine roughly

half the size of TCV by setting ρ−1∗ = R0/ρs0 = 909.6. This is an improvement with respect to

the simple X-point and the double-null simulations presented in sections 3.7 and 4.2, for

which ρ−1∗ = 500. This work presents a stepping stone for future quantitative comparisons with

experimental results, as the simulation results presented here show good agreement with the

general physical understanding of plasma turbulence in the periphery of a diverted tokamak.

This chapter is organised as follows. Section 5.1 is a guide to the implementation of the TCV

diverted geometry in GBS and to the related challenges. Section 5.2.1 details the simulation

setting, focusing on what differs from the general GBS setting presented in chapter 2. Of

particular importance is the introduction of a friction term in the velocity equations, which

prevent the source of plasma density and temperature from injecting parallel momentum.

The simulation results are analysed in Sec. 5.3. In section 5.4 we underlying the importance of

further investigating the inner radial boundary conditions before quantitative comparison

with experiments can be made.

5.1 Exporting a TCV magnetic equilibrium to GBS

The diverted configuration discussed in the previous chapters presented analytical expressions

for the poloidal flux (see Eqs. (3.6.2) and (4.2.1)), symmetric around the R = R0 vertical axis.

This allowed an easier computation of the first and second ψ derivatives appearing in the

differential operators (eqs (2.2.26)-(2.2.29)). The radial magnetic field at the wall changed

sign only at a few regular intervals (in fact for both double null and simple X-point Br |wall = 0
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at θ = kπ/4, k = 0, ...,3), simplifying the implementation of the boundary conditions and of

the initial conditions. Moreover, a certain degree of symmetry in the magnetic equilibrium

facilitated the post processing analysis. Finally, by choosing the innermost flux surface to

be almost circular, the ∂r u = 0 inner boundary condition (u indicating the evolved fluid

quantities) roughly coincided with the more physical ∂ψu = 0 condition.

Using a TCV equilibrium requires us to deal with a ψ defined numerically on a Cartesian

(R, Z ) grid, on a domain whose boundaries do not coincide with the GBS ones (see Fig. 5.1).

Hence, the function ψ, its first derivatives and its second derivatives in r̂ and θ need to be

extrapolated to the GBS domain. In addition, ψ and its derivatives should be defined as

continuous functions, otherwise the drift-reduced Braginskii’s differential operators present

discontinuities and as a consequence the evolved fields might do as well. From a physical point

of view, a discontinuity in ∂r̂ψ or ∂θψ corresponds to a discontinuity of B and a discontinuity

in ∂r̂ r̂ψ,∂r̂θψ or ∂θθψ leads to discontinuous current.

We first extrapolate the flux function ψ̃(R, Z ) reconstructed by the equilibrium code LIUQE [79]

(note that ψLIUQE = 2πψ̃), on a wider rectangular (R, Z ) domain that contains the circular GBS

one. This is done with a MATLAB routine that uses plate deformation theory to perform

smooth extrapolations [80]. The staring ψLIUQE has to be computed without wall currents to

avoid discontinuities in the ψ derivatives when extrapolating across the wall. We numerically

compute the first and second derivatives in R and Z , and we use them to evaluate the r̂ ,θ

derivatives on the (R, Z ) grid, for example by using ∂r̂ ψ̃ = ∂Rψ̃∂r̂ R + ∂Z ψ̃∂r̂ Z . Finally, we

interpolate the derivatives on the (r̂ ,θ) grid of the GBS domain and normalise them to a2|B0|.
With respect to the reference shot, the toroidal magnetic field direction is chosen such that

the B×∇B ion drift points away from the X-point, i.e. B0 > 0, to avoid potentially entering

into H-mode. Although simulating an H-mode scenario can be extremely interesting, the

sharp gradients forming at pedestal require a smaller time step to grant the stability of the

code, and therefore an increase in computational cost. Hence, as a first simulation, an L-mode

is preferable. Furthermore, in H-mode scenarios, the drift-reduced approximation of the

Braginskii’s set of equations implemented in GBS looses its validity, since the perpendicular

gradients at the pedestal are not lengths scales considerably larger than the sound Larmor

radius ρs (see Sec. 2.1). Otherwise said, the physics length scales that are of interest in an

H-mode scenario are that of the Larmor radius, implying that a gyrokinetic approach would be

probably better suited for such configuration. Fig. 5.1 shows the contour plot of the poloidal

flux ψ given by LIUQE inside the TCV vessel and its extrapolation to fill the GBS circular

domain. Fig. 5.2 shows the color-plot of the ψ derivatives in the GBS domain. Note that

the derivatives are continuous and their magnitude is of order 1, satisfying the assumption

regarding typical scale lengths of ψ derivatives in sec 2.2.6 Eq. (2.2.15). Inverting the steps, i.e.

interpolating first ψ on the (r̂ ,θ) and then deriving it, produced discontinuous derivatives that

can not be used.
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B̃tor

Figure 5.1 – Contour plot of TCV poloidal flux reproduced by LIUQE (black continuous line)
in the TCV vessel and its extrapolation to the GBS domain (red staggered line). In blue the
locations along the wall at which the radial magnetic field changes sign, that require special
boundary treatment.
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Figure 5.2 – Derivatives of ψ in Fig. 5.1 used to compute the differential operators on the GBS
domain

5.2 Simulation settings

The simulation of TCV magnetic field is performed with a partly different setting that is an

improvement of the one described in Chapter 2 and used for the simple X-point in Sec. 3.7

and the double-null in Sec. 4.2. The main differences are the wall boundary conditions for

the smoothed areas, the location on the source on the flux surface rather than at r = const,

the introduction of a friction term in the parallel momentum equations, and a different

setting for the core boundaries. These two latter changes were implemented after observing

unrealistically high parallel Mach numbers in the TCV simulation results (Sec. 5.2.4). The

physical parameters are chosen to be closer to the experimental ones (Sec. 5.2.2).
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5.2.1 Initial conditions and wall sources

The initial conditions are set to satisfy the boundary conditions presented in Sec. 2.3. In

particular, the initial parallel velocities at the wall boundary have to be equal to the sound

speed in norm, with the sign depending on whether the magnetic field line enters or exists the

wall, i.e. v‖e,i =±�Te for Te =φ/λ= 1, with ± sign of Br |wall. It can be seen in Fig. 5.1 that Br

changes sign six times, i.e. Br vanishes at the locations indicated by blue squares. Figure 5.3

(left) shows the initial condition for electron and ion velocities. In the vicinity of the Br = 0

locations, smoothing is applied to transition from +�Te to −�Te with no discontinuities.

In Fig. 5.3 (right), the initial condition for plasma density and electron temperature are shown

through the electron pressure. These conditions are chosen so that density and temperature

have higher values in the closed flux surface region and lower ones in the SOL, with the

transition being at the closed flux surface where the source is located. In the simple X-point

and double null case the initial density and pressure were constant on the whole domain and

the source was located at r = const rather than at ψ= const.

Figure 5.3 – Initial conditions for density temperature and velocity.

Sources of plasma at the wall were introduced in these simulations to avoid excessive decrease

in density in the far SOL, which would cause numerical instabilities, due to 1/n terms appear-

ing in equations and boundary conditions. Additionally, the physical model itself is not valid

in the absence of plasma.

5.2.2 Physical parameters

The simulation considers the following parameters: ρ−1
� = 909.6, inverse aspect ratio a/R0 ∼

rmi n/R0 = 0.2, parallel resistivity ν= 0.3, and τ= 0 (cold ion limit). In order to improve the

physical model, we introduce the dependence on plasma density and electron temperature of

the parallel heat conductivity χ‖ and parallel viscosity ηe,i , that were considered as constant
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parameters in the previous studies presented in this thesis.

ηe = ηe,p
T 5/2

e

n
+ηe,0 (5.2.1)

ηi = ηi ,p
1

n
+ηi ,0 (5.2.2)

χ‖ =χ‖,T T 5/2
e +χ‖,0 (5.2.3)

Here χ‖,0 = 4, ηe,p = 2×10−3, ηi ,p = 2×10−2, ηe,0 = 0.4, χ‖,T = 1.4×10−2, χ‖,0 = 4.7.

5.2.3 Revised wall boundary conditions

In the magnetic pre-sheath model, the plasma accelerates towards the wall at the sound

speed, meaning that the ion velocity increases its absolute value going towards the wall

∂r |v‖i | > 0. The radial derivative of v‖i and its sign are of crucial importance for the wall

boundary conditions implemented in GBS (see Eqs. (2.3.1)). The wall behaves as a sink of

plasma only if ∂r |v‖i | > 0, as ∂r n ∝−∂r |v‖i |. Therefore, a change of sign in the radial derivative

can lead to nonphysical flow of plasma from the wall to the SOL. Similarly the derivative of the

electric potential should be negative, ∂rφ∝−∂r |v‖i |, in agreement with the presence of an

electron sheath at the wall.

When approaching the Br = 0 locations, the smoothing (see Sec. 2.3) forces v‖i to deviate

from cs and tend towards 0, as illustrated in Fig. 5.3 left. This leads to ∂r |v‖i | < 0 and to the

development of numerical instabilities especially at the top smoothing region, where the

turbulent SOL plasma approaches the wall with net parallel velocity that can be greater than

boundary value.

A revised set of boundary conditions for the smoothed areas shows good numerical stability.

The extrapolation of v‖,i ,e boundary values is left unchanged, but we use ∂r v‖,i = 0 and

∂2
r r v‖,i = 0 at the RHS of the magnetic pre-sheath boundary conditions in Eqs. (2.3.1), such

that ∂rϕ= 0, ∂r n = 0, ω= 0, ∂r Te,i = 0. In the rest of the domain the boundary conditions are

mostly unchanged, except for a limitation of derivative of n to zero, to prevent the plasma

from flowing radially in from the wall. When this happens, the plasma can still be advected to

the wall by the parallel velocity.

From a physical point of view, the magnetic pre-sheath boundary conditions describe the

behaviour of the background equilibrium field rather than the one of the fluctuating quanti-

ties [31] (in the derivation of the boundary conditions, ∂t u terms are set to zero). In future, a

more robust and consistent way of applying the boundary conditions in the non smoothed

regions could be obtained using the radial derivative of the time averaged v‖,i .

5.2.4 Source of parallel momentum and inner radial boundary conditions

The simulation setting presented in the above sections 5.1-5.2.3 was used to run a TCV-like

simulation, with grid Nr ×Nθ×Nϕ = 216×732×88, and time step Δt = 10−5. Fig. 5.4 shows

the field values averaged on the 3D domain as a function of time. Focusing on the ion velocity
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v‖i profile, we notice that its average value increases by 50% from t ∼ 10 to t ∼ 20 and then it

stabilises between t ∼ 31 and t ∼ 42. The average of ω, v‖e ,φ fluctuate around constant values,

i.e. are at quasi-steady state, from time t = 20 onward. Density and electron temperature

display variations that are less than 1% for the temperature and 5% for the density in the

gray region. The simulation took two/three weeks to run (0.1 GBS time units per hour), it

was parallelised on 44 nodes, with 36 tasks per node (i.e. 1584 CPUs), at the Swiss National

Supercomputing Center in Lugano, Switzerland supercomputer.

Figure 5.4 – Time trace of the evolved quantities averaged over the 3D domain. The grey region
exhibits steady state behaviour, with fields fluctuating around roughly constant values.

The simulation results in the steady state region were analysed and most of the quantities

behaved as expected, except for the parallel ion velocity. Figure 5.5 shows a temporal snapshot

(left) and the time and toroidally averaged profile (right) of v‖i . The fact that v‖i , is positive

in the entire closed flux region indicates that the plasma is rotating in the toroidal direction.

Since v‖,i is normalised to the reference ion sound speed cs0 =
�

Te0/mi , values above unity in

the background profile as the ones in Fig. 5.5 (right) appear to be nonphysical.

75



Chapter 5. TCV-like simulation
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Figure 5.5 – Parallel ion velocity poloidal snapshot (left) and time and toroidally averaged
profile (right).

The Mach number M = ṽ‖,i /c̃s , computed using the the local ion sound speed c̃s =
√

T̃e /mi ,

was used to test the physicality of the parallel ion velocity. Since in experiments without

injection of parallel momentum Mach numbers in the closed flux region are usually ∼ 0.1 and

not above 0.4 (see [81]), parallel Mach number above 1 in the edge of tokamak devices are not

realistic. The parallel Mach number computed from the dimensionless GBS quantities is

M = ṽ‖,i

c̃s
= v‖,i

�
Te0/mi√

T̃e /mi

= v‖,i�
Te

= v‖,i

cs
(5.2.4)

Figure 5.6 (left) shows the time and toroidally averaged parallel M displaying nonphysical

values around 1 in the SOL and above 1 in the edge. This can also have negative repercussions

on the boundary physics, in fact, as discussed in Sec. 2.3, if the absolute value of the parallel

velocity does not increase towards the wall, the magnetic pre-sheath boundary conditions fail.

For this reason, and in order to avoid numerical instabilities, in this simulation the boundary

conditions for the parallel ion velocity (in the regions without smoothing) were adjusted to be

|v‖,i (rmax)| = max(cs(rmax), |v‖,i (rmax−Δr )|), with Δr radial grid spacing, such that the ∂r |v‖,i | ≥ 0,

always.
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Figure 5.6 – Parallel Mach number M = v‖i /cs showing unrealistically high values M > 1 in the
near SOL and EDGE for the standard case (left), and values of M ∼ 0.5 when introducing a
friction source term in the parallel direction and lowering the inner boundary value for v‖,i

(right).

The Mach number takes its maximum value at the bottom close to the source location (see

Fig. 5.6 (left)), suggesting there could injection of parallel momentum there. In order to mimic

the outflow of plasma from the core, the drift-reduced Braginskii’s equations implemented in

GBS introduce a source term solely in the density and temperature equations. A friction term

in the parallel electron and ion equations should be introduced to account for the fact that the

density is injected with zero velocity. In this simulation, since the friction term is missing, the

plasma density source assumes the local velocity, resulting in a net injection of momentum.

This would be the equivalent of an NBI beam injecting plasma at the local parallel velocity.

Specifically, if the continuity equation has a source term Sn

dn

d t
= ∂ñ

∂t̃
+∇· (ñṽs) = S̃n (5.2.5)

with vs fluid velocity of the s species, then the corresponding term in the momentum equation

is:

msñ
d ṽs

d t̃
=∑ F̃−msS̃n ṽs (5.2.6)

This results from substituting the density equation into the momentum equation to remove

∂t n, ms∂t (ñṽs) = ms ṽs∂t ñ + msn∂t ṽs . For the dimensionless parallel equations in drift-

reduced Braginskii’s model (2.1.12)-(2.1.13), the term becomes −v‖,i ,e Sn/n. The injection

of momentum linked to the perpendicular drift velocities is not investigated in the framework

of this thesis.

Another factor that could contribute to the high values of parallel velocity is the inner radial
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boundary condition. As mentioned in Sec. 2.3, the region between the inner radial boundary

and the source location is of no physical interest, and the presence of the source should help

to decouple the dynamics of this region from those at the edge. As previously shown, the

boundary conditions at the inner wall are of the type ∂r u = 0 for all fields except the electric

potential for which a Dirichlet boundary condition is required. In the case of TCV simulations,

there is a drop in electric potential across the separatrix, with φ going from positive in the SOL

to negative in the edge. This is not compatible with the φ=λTe > 0 inner boundary condition,

used for previous simulations. For this reason the inner boundary of φ is set to 0. Furthermore,

to help the field values in the inner region stay in a range not too far from the edge values, we

bound the evolved quantities at the core:

u(rmin) = max(umin,min(umax,u(rmin +Δr )) (5.2.7)

where u(rmin) = u(rmin +Δr ) would correspond to ∂r u = 0. In the current simulation, v‖,i

background velocity reaches the maximum imposed value v‖,i ,max = 2.8 over most of the inner

boundary (Fig. 5.5 right panel).

With the aim to reduce the toroidal rotation, the friction source term in the ion and electron

velocities is introduced and the v‖,i ,max inner boundary value is lowered from 2.8 to 2. The

simulation again reaches a quasi-steady state starting from t ∼ 70 (see Fig. 5.7). Fig. 5.6 (right)

shows that the average Mach number has significantly decreased towards more realistic values

in the in the edge and SOL.

5.3 Preliminary results

The results from the TCV simulation with source of parallel momentum and v‖i ,max = 2 at the

core are presented in this section. The quasi-steady state time interval between t = 70 and

t = 87 is indicated by the shaded grey area in Fig. 5.4, where the field values averaged on the

3D domain are plotted in time. All fields show a clear steady state behaviour in the grey region,

except for the density, although its overall variation is ∼ 5%.
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Figure 5.7 – Time trace of the evolved quantities averaged over the 3D domain. The gray region
exhibits steady state behaviour, with fields fluctuating around roughly constant values.
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Figure 5.8 – Poloidal cut of the electron pressure (pe = nTe ) in GBS simulation of TCV-like
scenario. The dashed lines trace the separatrix and the last connected flux surface.

Fig. 5.8 shows a snapshot of the electron pressure pe = nTe turbulence at t = 73.98. The

electron pressure is mostly confined in the closed flux surface region and peaks at the source

location. The up down asymmetry of pe could be due to the flux expansion around the X-point,

that maps the turbulent modes forming at the edge of the LFS into radially wider structures

above the X-point. The unstable modes in the closed flux surface region are sheared at the

separatrix and form blobs, especially at the LFS, in agreement with our physical understanding

of blob formation (see introduction to chapter 4). Furthermore, close to the outer divertor legs,

the blobs are elongated because of the flux expansion around the X-point, in accordance with

to the two-region model underlying mechanism (see Fig. 4.1). The innermost white dashed

line tracks the separatrix, while the outer one is the last flux surface that connects the LFS to

the HFS. When the plasma crosses this second flux surface, it experiences an abrupt drop in

the parallel connection length L‖, which plays a key role in determining the blob dynamics

(see chapter 4). In particular, a reduction in L‖ facilitates the connection to the sheath and

the current closure in the parallel direction, possibly explaining the drop in electron pressure

beyond the last connected flux surface.

Typical turbulent snapshots for all fields are shown in Fig. 5.9 at time t = 76.67. In subplot

(a) the turbulent fluctuations of log(n) are lower at the HFS than at the LFS, consistently

with the ballooning character of turbulence. The density peaks at the source location, which

is traced by the dotted line. The increase of density towards the inboard wall is due to the

presence of the localised wall sources, discussed in Sec. 5.2.1. The top part of the circular

wall acts as a limiter for the plasma exiting the last connected flux surface. The temperature

shows a similar HFS/LFS asymmetric behaviour, although its radial profile appears to decay

on longer scale lengths (see subplot (b)). The electron parallel velocity (c) is positive at the
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outer leg and negative at the inner leg, in agreement with the boundary conditions, and it

presents elongated structures matching the elongated blob shapes. The X-point topology

is here more clearly visible. Furthermore, v‖e present sharp fluctuations above background

reaching values of ±12cs0, and dropping to zero over only 3 or 4 ρs0. Both electron (c) and ion

velocities (d) are positive in the closed field line region, with plasma rotating toroidally. The

electric potential (e) goes from positive in the SOL to negative inside the separatrix, causing

the plasma to rotate poloidally. This drop of electric potential was incompatible with the

boundary condition initially set for the core φ=λTe and is the reason why the inner boundary

is now set to φ= 0 (see Sec. 5.2.4). Finally, the fluctuation levels in the vorticity plot (f) helps

locating the turbulent region, consisting mainly in the edge and SOL.

In Fig.5.10 the time and toroidally averaged profiles of the fields are presented. The peak of

the density and temperature is localised around the flux surface where the source is located

ψsrc. The average v‖e ,φ, and ω highlight the magnetic field topology, especially the last closed

flux surface and the last connected flux surface. The vorticity in particular takes its highest

and lowest values just around the separatrix. Knowing the exact relation between φ profile

and separatrix could help reduce the uncertainty on the separatrix location in experiments. In

figure 5.10 (f) the electric potential appears to cross the zero value around the separatrix at the

LFS, but a more precise estimate still requires further investigation.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.9 – Typical poloidal snapshots of plasma quantities for TCV-like simulation.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.10 – Poloidal cross-section of time and toroidally averaged plasma quantities for
TCV-like simulation.
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5.3.1 Radial turbulent transport

At the LFS, ∇p and ∇B point in the same direction, the edge interchange modes become

unstable and most of the plasma radial transport is localised in this region. Fig. 5.11 (left)

illustrates the turbulent radial flux due to the E×B velocity:

〈n f l vE , f l ·uψ〉t ,ϕ = 〈(n − n̄)(vE − v̄E ) · ∇ψ
||∇ψ|| 〉t ,ϕ

Eq. (4.1.9)= 〈(n − n̄)
[φ− φ̄,ψ]

||∇ψ|| 〉
t ,ϕ

(5.3.1)

with ∇ in ρs0 units and uψ unitary vector pointing in the direction orthogonal to the flux

surface, i.e. uψ =∇ψ/||∇ψ||. As expected, in the simulation the flux is higher at the LFS and

almost negligible at the HFS. The turbulent flux intensifies around the upper part of the outer

leg. This is due to the flux expansion in the region, as explained by Galassi et al. [82]: “the

parallel transport tends to homogenize the plasma structures on a flux surface [...]. For this

reason, the perpendicular transport tends to adapt its behaviour according to the local flux

expansion, resulting in stronger fluxes where further flux surfaces must be reached in order to

keep the turbulent structures almost field-aligned”. The radial flux in Eq. (5.3.1) indicates the

transport in physical space, rather than the transport from one flux surfaces to the next. The

latter is given by:

〈n f l vE , f l ·∇ψ〉t ,ϕ = 〈(n − n̄)[φ− φ̄,ψ]〉t ,ϕ (5.3.2)

Since v ·∇ψ= (dx/d t ) · (dψ/dx) = dψ/d t , Eq. (5.3.2) describes the E×B transport across flux

surfaces. Fig. 5.11 (right) shows the resulting transport in dψ presenting a very clear and more

up-down symmetric ballooning behaviour with respect to transport in physical space (left).

Figure 5.11 – Two different estimates of the turbulent transport orthogonal to the flux surface.
The left panel shows transport in physical space, the right panel shows transport in ψ.

From the physical picture of turbulent transport, blobs (holes) form from edge interchange

modes and move radially outwards (inwards) giving rise to positive (negative) intermittent
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fluctuations in the SOL (edge) [43]. As previously mentioned in chapter 4, intermittency and

asymmetry of fluctuations in the edge and SOL have been widely recorded in both simulations

and experiments (for example [83]). The same behaviour is seen in this simulation, as shown

in Fig. 5.12, where the ion saturation current, Isat = ncs , taken at the outboard midplane of

SOL (left) and edge (right) is plotted in time, simulating a Langmuir probe signal used in

experiments. The positive asymmetry of the signal is clear in the SOL, while in the edge signal

is almost symmetric. Further analysis shows that the simulation Isat peaks come from the

plasma density rather than the plasma temperature, as can be inferred from the fluctuation

plot of log(n) and log(Te ) in Fig. 5.9, panels (a) and (b).
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Figure 5.12 – Isat fluctuation at the outboard midplane in the SOL (left) and at the edge (right)
displaying intermittent behaviour typical of blob turbulent transport. Isat peaks in the SOL
are associated with blobs and Isat sinks in the edge with holes.

Figure 5.13 shows a time lapse of the plasma pressure at the outboard midplane around

t = 80.3, where the Isat peaks in the SOL (Fig. 5.12). The two crosses indicate the locations at

which the Isat signal for edge and SOL is detected. It is believed that holes detach from the

edge unstable modes and propagate radially inwards [43]. Consequently, in order to detect

their presence, one should at a location ψ<ψMODE, with ψMODE flux surface of the edge mode

location. In this simulation, though, the edge mode location coincides with the source location

and the region ψ<ψsr c is excluded from the physical analysis. This explains why Isat edge in

Fig. 5.12 (right), detected outside the source location, does not show a clear asymmetry.

In Fig. 5.13, the crests of an unstable mode extend from the edge into the SOL and are sheared

around the separatrix location. The crest around midplane evolves into a blob, detached from

the main plasma, moves radially outwards and sees a sharp decrease in its peak pressure value.

The negative bursts in Isat Fig. 5.12 (right) are due to the detection of the minimum of the edge

mode while it moves poloidally. The dynamics of the holes are not present in this simulation,

possibly because of insufficient radial extension of the domain towards the core.
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pe

Figure 5.13 – Time frames of electron pressure at the outer midplane showing the formation of
a blob from an edge interchange mode, which is rotating poloidally. The dotted line traces the
source location, while the staggered lines correspond to the separatrix and the last connected
flux surface. The two crosses indicate the locations at which the Isat signals for edge and SOL
in Fig. 5.12 are detected.

5.3.2 Poloidal rotation

The pressure sequence in figure 5.13 suggests that the plasma in the edge is rotating poloidally.

In principle, both to E×B drift and parallel velocity can contribute to the poloidal rotation.

The E×B drift in the poloidal direction, vE ,pol , is generated by the drop in electric potential

around the separatrix. From the φ average poloidal profile in Fig. 5.10 we see that ∇φ point

radially outwards, B ∼ Btor enters the plane (see Fig. 5.1), and therefore E×B =−∇φ×B creates

a clockwise rotation, in qualitative agreement with the blob motion in Fig. 5.13. The use of

“poloidal” here indicates the direction orthogonal to ∇ψ and ∇ϕ and does not coincide with

eθ. We can compute vE ,pol as:

vE ,pol =
ṽE

cs0
= ṽE

cs0
· ∇̃ϕ×∇̃ψ̃
||∇̃ϕ×∇̃ψ̃|| =

c

B0cs0
(b×∇̃φ) · (∇̃ϕ×∇̃ψ̃)

||∇̃ϕ×∇̃ψ̃|| =
c

B0cs0
b̃ϕ ∇̃φ̃ · ∇̃ψ̃

||∇̃ϕ×∇̃ψ̃||

=
(
∂ψ

∂r̂

∂φ

∂r
+ 1

r̂

∂ψ

∂θ

1

r

∂φ

∂θ

)/√(∂ψ
∂r̂

)2

+
(

1

r̂

∂ψ

∂θ

)2

(5.3.3)

Where we used the magnetic field definition in toroidal coordinates, see Sec.2.2.3, as well as the

vector identity (A×B)·(C×D) = (A·C)(B·D)−(A·D)(B·C). Fig. 5.14 (left) shows vE ,pol averaged

in time and ϕ, with positive values corresponding to clockwise motion. The rotation is stronger

at the LFS and peaks at the separatrix, in agreement with the physical understanding of blob

generation being caused by the high E×B shear at the separatrix. We do not investigate the

negative values of poloidal rotation in the closed flux surface region, as they are located inside

the source region (in white dotted line).

As mentioned, the parallel velocity can contribute to the poloidal rotation. The parallel

velocity v‖i is positive in the core (see Fig. 5.10) and since the magnetic field wraps around the

flux-surfaces clockwise (see Fig.5.1), v‖,i contributes to the clockwise rotation. The parallel
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contribution is computed as:

v‖i ,pol = v‖i b · ∇̃ϕ×∇̃ψ̃
||∇̃ϕ×∇̃ψ̃||

Eq. (2.2.5)= v‖i

B0
||∇̃ϕ×∇̃ψ̃||

= v‖i
a

R0

√(
∂ψ

∂r̂

)2

+
(

1

r̂

∂ψ

∂θ

)2

(5.3.4)

Hence v‖i ,pol is given by the parallel ion velocity and the poloidal component of the magnetic

field. v‖i ,pol , Fig. 5.14, mimics ∂r̂ψ, Fig. 5.2 top-left panel, especially in the region closer to the

core boundary where v‖,i average value is almost constant, Fig. 5.10 (d), and ∂θψ/r̂ is small,

Fig. 5.2 top-left panel. At the outboard midplane, the magnitude of vE ,pol is comparable to

v‖,i in the edge and dominates in the SOL.

Figure 5.14 – Time and toroidally averaged poloidal velocity due to the E×B drift (left) and to
the parallel ion velocity v‖,i (right).

5.4 Outlook

The simulation results presented in Sec. 5.3 open up the possibility to investigate physical

mechanisms that influence the plasma dynamics in the periphery of diverted tokamaks, which

are not entirely understood yet. Some of the open questions that the current version of GBS

could help answering are: the self-consistent generation drop in the electric potential φ across

the separatrix leading to the E×B shear, the relation between φ profile and separatrix location,

the blob generation mechanism, the circulation pattern around the X-point, the role of various

physical parameters such as parallel viscosity and parallel heat conductivity on the turbulent

dynamics and on the heat flux at the wall, the role on the ∇B drift (by inverting the direction

of the toroidal magnetic field).

There are currently still shortcomings in the model that need to be addressed before proceed-

ing to quantitative comparison with experiment. In particular the impact of the inner radial
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boundary conditions on the SOL physics requires further investigation. In section 5.2.4, after

observing unrealistically high values of Mach numbers, a source of parallel momentum, acting

as a friction term for the conservation of parallel momentum, and a limits for the inner radial

boundary conditions were introduced. The combination of the two lead to a drop in Mach

numbers towards more physical values.
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Figure 5.15 – Time traces of average v‖i values in the SOL for 4 different simulations highlight-
ing the effect on the SOL dynamics of the additional friction term in the parallel momentum
equations (w/ or w/o frc) and of the maximal v‖,i value used at inner radial boundary con-
dition (v‖,i ,max). The purple and red line correspond to the two simulations at quasi steady
state analysed in Sec. 5.2.4 and in Sec. 5.3, whose Mach number is compared in Fig. 5.6. The
time axis has been shifted and starts at the beginning of the quasi-steady state for the two
simulations.

Fig. 5.15 shows the impact of these two factors on the SOL physics. Time traces of average

parallel ion velocities in the SOL, v‖,i ,SOL , are shown for 4 different simulations. The purple

(red) line correspond to the quasi-steady states characterised by high (low) Mach number

investigated in Sec. 5.2.4 ( Sec. 5.3). The time axis has been shifted to start at the beginning

of the quasi-steady state for the two simulations. The yellow and blue lines show the trend

of other two simulations started for the one with low Mach number in red line, where the

momentum source and the inner value of the parallel ion velocity were changed individually.

It is clear from these trends that both factors impact the parallel ion velocity in the SOL. The

necessity of introducing the source terms was motivated in Sec. 5.2.4, conversely, the choice

of v‖i ,max = 2 for the inner boundary is arbitrary and it should in principle not impact the

dynamics in the SOL. In fact, the location of the density source on a flux surface between

SOL and inner boundaries should help decoupling the two. This is clearly not the case in

this simulation and further investigation is required to understand what is the impact, or

alternatively, a physically motivated choice of inner radial boundary conditions should be

implemented in GBS.

88



6 Summary

In this thesis, a new version of GBS for the treatment of diverted equilibria is presented,

successfully tested, and used to investigate turbulence in the tokamak periphery.

With respect to the limited version of GBS we abandon the use of flux aligned coordinates

and use toroidal coordinates (r,θ,ϕ) instead (Sec. 1.3). A choice motivated by the singularity

of flux coordinates at the X-point, which is by definition a saddle point for the poloidal flux,

meaning that ∇ψ = 0 and hence the Jacobian J ∝ (∇ψ)−1 =∞. In addition to being locally

ill-defined, flux coordinates in diverted configuration makes it challenging from a numerical

point of view to obtain good physical resolution around the X-point, due to the increasing

distance between flux surfaces when approaching the X-point.

Toroidal coordinates, on the other hand, are defined everywhere and lead to relatively uniform

grid spacing, especially in tokamak periphery far from the coordinates axis. Moreover, they

do not require domain decomposition, often used in the case of flux coordinates in order to

guarantee a structured grid. The obvious downside is the lack of alignment to the magnetic

field and the impossibility of taking advantage of the difference in length scales between the

direction parallel and perpendicular to the magnetic field line, to reduce the computational

cost.

The use of a new coordinate system, requires the re-definition of the parallel (∇‖, ∇2
‖) and

perpendicular ([φ, ], C ( ), ∇2
⊥) operators, present in the drift-reduced Braginskii’s equations,

solved by GBS (Sec. 2.2). Simply projecting them onto the toroidal basis gives rise to operator

expressions that are fully three dimensional in (r,θ,ϕ), causing the typical length scales of

parallel and perpendicular gradients to mix. This would lead to an increase of the computa-

tional cost, due to the necessity of using a refined grid in all directions. Furthermore, and most

importantly, the solution of ∇2
⊥φ=ω for the electric potential would require the inversion of a

full 3D operator at each time step, which is extremely computationally expensive. Fortunately,

under the assumption of large machine aspect ratio and safety factor, the component in the

toroidal direction of the perpendicular operators can be neglected, leading to bi-dimensional

expression for [φ, ], C ( ), and ∇2
⊥, which, incidentally, are independent from the poloidal flux

ψ in their final form. The parallel operators can not be simplified under the same assumptions.

Hence, they remain fully 3D and they contain all the information on the poloidal flux shape.
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Chapter 6. Summary

To compensate for the lack of alignment between toroidal coordinates and magnetic field,

the spatial accuracy of the numerical scheme is increased from second to fourth order, and

additional grid staggering is added in the poloidal direction (Sec. 3.2). This numerical scheme

allows for an efficient code parallelisation. A benchmark between the new version of GBS and

previous version is performed in circular limited configuration, showing excellent quantitative

agreement in the prediction of the SOL width (mainly dependent on the perpendicular radial

dynamics) and of the fluctuation spectrum on the flux surface (mainly dependent on the

parallel dynamics) (Sec. 3.5). The study of diverted equilibria required the additional imple-

mentation of the magnetic pre-sheath boundary condition at the wall and at the divertor legs,

complicated by the presence of points where the magnetic field line is tangent to the wall, for

which the physical model fails (Sec. 3.3). The code is verified with the method of manufactured

solution in the case of a simple X-point configuration, proving the correct implementation of

the fourth order differential operators (Sec. 3.6). Finally, the simple X-point configuration is

run with three different grid size resolutions. The results at quasi-steady state are compared

and prove that the code converges as the grid size decreases (Sec. 3.7).

The new version of GBS is used to investigate blob dynamics in the presence of an X-point. An

analytical scaling for the blob velocity as a function of the blob size and plasma collisionality is

derived starting from the two-region model in Ref. [24] (Sec. 4.1). This model accounts for the

difference in the physical mechanisms and in the magnetic field geometry that characterise

the outboard midplane and the divertor regions. The scaling is re-derived starting from a

simplified version of the drift-reduced Braginskii’s equations for density and vorticity and

providing a closure for the parallel dynamics, using Ohm’s law and the magnetic pre-sheath

physics. The final scalings retains the effect of finite background plasma density and blob

ellipticity that are not present in Ref. [24].

A simulation is run in a double-null configuration, a blob detection/tracking algorithm is

developed and used to compute blob velocities, sizes and other physical parameters needed

to perform a comparison between simulation results and analytical scaling (Sec. 4.2). The

blobs appear to be in the high-collisionality Resistive Ballooning and Resistive X regimes of the

two-region model, where the curvature drive is balanced by the perpendicular ion polarisation

current and parallel current flow between the two regions, respectively (Sec. 4.3). The plot of

the detected blob velocities as a function of their sizes has the derived analytical scaling for the

two regimes as upper limits. The effect of finite background density and ellipticity are shown

to be quantitatively important, although the qualitative trends are unchanged. A detailed

analysis of two blobs, one in Resistive X and one in Resistive Ballooning, show density and

electric potential fluctuations as well as parallel current profiles that are in agreement with the

theoretical physical picture. This is the first time that a blob velocity scaling is investigated

using full-3D turbulent simulation in diverted geometry.

Finally, the TCV diverted equilibrium from discharge #49633 is implemented in the new version

of GBS (Sec. 5). Results of this simulation produced unrealistically high Mach numbers, partly

attributed to the lack of friction source terms in the physical model for the parallel momentum

equations (Sec. 5.2.4). The updated model resulted in a better agreement with the general
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physical understanding of plasma turbulence in the periphery of diverted tokamaks (Sec. 5.3).

The simulated Langmuir probe Isat signals are typical of turbulent dynamics characterised by

the presence of blobs (Sec. 5.3.1). The electric potential drop across the separatrix, going from

positive values in the SOL to negative values in the edge, is in agreement with experimental

observations. The resulting peak in the E×B velocity at the separatrix appears to be linked

with blob formation at the outer-mid plane (Sec. 5.3.2). The ad-hoc inner radial boundary

conditions are shown to impact the SOL dynamics, suggesting that further investigation is

required before proceeding towards quantitative comparison with the experimental results

(Sec. 5.4).

To conclude, in this thesis the GBS code has been advanced to simulate the periphery of

diverted tokamaks, by using non-flux-aligned coordinates. The new verified version of GBS

has been used to investigate blob transport mechanisms, showing agreement with theoretical

models. A preliminary analysis of a TCV-like simulation shows that the current version of

GBS is able to address open questions regarding plasma dynamics in the periphery, such as

blob generation mechanisms, formation of potential drops, and the effects of plasma toroidal

rotation on SOL physics. Quantitative comparison with the experimental results is possible

after a careful investigation of the inner radial boundary conditions.
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